
Processing Freehand Vector Sketches

by

Chenxi Liu

B.Eng., Beihang University, 2013

M.Sc., Carnegie Mellon University, 2014

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

June 2023

© Chenxi Liu, 2023

The following individuals certify that they have read, and recommend to the Fac-
ulty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

Processing Freehand Vector Sketches

submitted by Chenxi Liu in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Computer Science.

Examining Committee:

Alla Sheffer, Professor, Computer Science, UBC
Supervisor

Michiel van de Panne, Professor, Computer Science, UBC
Supervisory Committee Member

Robert Rohling, Professor, Electrical and Computer Engineering & Mechanical
Engineering, UBC
University Examiner

Jeff Clune, Associate Professor, Computer Science, UBC
University Examiner

Additional Supervisory Committee Members:

Dongwook Yoon, Associate Professor, Computer Science, UBC
Supervisory Committee Member

ii

Abstract

Freehand sketching is a fast and intuitive way for artists to communicate visual

ideas, and is often the first step of creating visual content, ranging from indus-

trial design to cartoon production. As drawing tablets and touch displays become

increasingly common among professionals, a growing number of sketches are cre-

ated and stored digitally in vector graphics format. This trend motivates a series

of downstream sketch-based applications, performing tasks including drawing col-

orization, 3D model creation, editing, and posing. Even when stored digitally in

vector format, hand-drawn sketches, often containing overdrawn strokes and in-

accurate junctions, are different from the clean vector sketches required by these

applications, which results in tedious and time-consuming manual cleanup tasks.

In this thesis, we analyze the human perceptual cues that influence these two tasks:

grouping overdrawn strokes that depict a single intended curve and connecting un-

intended gaps between strokes. Guided by these cues, we develop three methods

for these two tasks. We first introduce StrokeAggregator, a method that automati-

cally groups strokes in the input vector sketch and then replaces each group by the

best corresponding fitting curve—a procedure we call sketch consolidation. We

then present a method that detects and resolves unintended gaps in a consolidated

vector line drawing using learned local classifiers and global cues. Finally, we

propose StripMaker, a consolidation method that jointly considers local perception

cues from the first method and connectivities detected by the second method. We

further integrate observations about temporal and contextual information present in

drawing, resulting in a method with superior consolidation performance and poten-

tial for better user interactivity. Together, this work identifies important factors in

humans’ perception of freehand sketches and provides automatic tools that narrow

the gap between the raw freehand vector sketches directly created by artists and the

requirements of downstream computational applications.

iii

Lay Summary

Artists often start content creation by freehand sketching. These days, artists fre-

quently sketch digitally using drawing tablets and touch displays and then use soft-

ware to develop the initial sketch. Unfortunately, these initial sketches often cannot

be directly processed by software: sometimes artists use several close, repeated

lines to indicate an actual line; and sometimes the lines the artists draw do not

meet exactly. This thesis solves these two problems by investigating how humans

mentally see sketches without being confused by these busy and inaccurate lines,

and building tools so computers can do the same tasks. We compare the result

generated by each of our methods against results created by humans and alterna-

tive methods. These comparisons show that our methods generate results closer to

human results than other methods.

iv

Preface

This thesis presents three collaborative research projects. All conducted user stud-

ies were under the approval of the University of British Columbia (UBC BREB

Number H16-02320).

A version of Chapter 3 has been published as:

• Chenxi Liu, Enrique Rosales, and Alla Sheffer. “StrokeAggregator: Consoli-

dating raw sketches into artist-intended curve drawings”. ACM Transactions

on Graphics (Proceedings of SIGGRAPH 2018).

The key ideas formed through discussions between myself and Professor Alla Shef-

fer. I implemented the method and conducted all experiments. Enrique Rosales

implemented and conducted all user studies with guidance from Professor Alla

Sheffer, created most figures (except for Figure 3.2, 3.6, 3.8, 3.10, 3.11, 3.12, 3.13,

3.14, and 3.16, which are made by myself), and created the video with the help of

Silver Burla. I wrote the initial draft; Nicholas Vining helped with paper editing

and proofing; Professor Alla Sheffer wrote the final version of the manuscript. I

presented the paper at SIGGRAPH 2018.

A version of Chapter 4 has been published as:

• Jerry Yin1, Chenxi Liu1, Rebecca Lin, Nicholas Vining, Helge Rhodin, and

Alla Sheffer. “Detecting viewer-perceived intended vector sketch connectiv-

ity”. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2022).

Most ideas of the binary classifier (Section 4.4) originated from discussions be-

tween Jerry Yin and Professor Alla Sheffer; most ideas of the overall method

pipeline (Section 4.3, except for “Primary Junctions Classification”) were devel-

oped by myself and Professor Alla Sheffer. Helge Rhodin was involved in discus-

sions and provided suggestions. Jerry Yin coded most of the underlying facilities

and the binary classifier; I coded most of the overall method pipeline. The data

was created, collected and curated by myself and Jerry Yin. Jerry Yin and I collab-

oratively conducted the experiments. Rebecca Lin implemented and conducted the
1Joint first authors.

v

junction perceptual validation study with guidance from Professor Alla Sheffer.

I implemented and conducted the comparison study with guidance from Profes-

sor Alla Sheffer. The figures were created collaboratively by myself (Figure 4.1,

4.3, 4.5, 4.12, 4.15, 4.16, and 4.17) and Jerry Yin (the remaining figures). Jerry

Yin wrote the initial draft for the method related parts; I wrote parts of result re-

lated sections; Nicholas Vining helped with paper editing and proofing; Professor

Alla Sheffer and Helge Rhodin wrote the final version of the manuscript. I made

conference videos with the help of Nicholas Vining and presented the paper at

SIGGRAPH 2022.

A version of Chapter 5 has been accepted by SIGGRAPH 2023 as:

• Chenxi Liu, Toshiki Aoki, Mikhail Bessmeltsev, and Alla Sheffer. “Strip-

Maker: Perception-driven Learned Vector Sketch Consolidation”. ACM

Transactions on Graphics (Proceedings of SIGGRAPH 2023).

The initial ideas originated from discussions between Professor Alla Sheffer and

Mikhail Bessmeltsev. Toshiki Aoki created an early prototype and conducted pre-

liminary experiments. The ideas were further developed by myself, Mikhail Bess-

meltsev, and Professor Alla Sheffer. I implemented the method using the prototype

as a reference and conducted all later experiments. Luciano Silver Burla collected

raw data and I collected data annotations using a GUI created by Dave Pagurek van

Mossel and modified by Toshiki Aoki. I implemented and conducted all user stud-

ies. I created most figures (except for Figure 5.2 made by Matias Bofarull Oddo,

Figure 5.5, 5.7, 5.8, 5.10, and 5.11 made by Professor Alla Sheffer), and made the

video with the help of Nicholas Vining. I wrote notes for the manuscript; Professor

Alla Sheffer and Mikhail Bessmeltsev wrote the final version of the manuscript.

vi

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vii

List of Tables . x

List of Figures . xi

Acknowledgements . xxv

1 Introduction . 1
1.1 Sketch Consolidation . 2

1.2 Sketch Connectivity . 6

1.3 Contributions . 8

2 Related Work . 10
2.1 Artist Sketching Practice . 10

2.2 Vector Sketch Processing . 12

2.3 Raster Sketch Vectorization and Consolidation 13

2.4 Vector Sketch Consolidation . 16

2.5 Sketch Connectivity . 19

3 StrokeAggregator: Artist-Intended Vector Sketch Consolidation . . 22
3.1 Introduction . 23

3.2 Overview . 25

3.2.1 Perception of Oversketched Strokes 25

3.2.2 Algorithm . 28

3.3 Stroke Clustering . 30

vii

3.3.1 Coarse Clustering . 30

3.3.2 Local Cluster Refinement 36

3.3.3 Cluster Unification . 41

3.4 Fitting . 45

3.5 Validation . 49

3.6 Results . 54

4 Detecting Viewer-Perceived Intended Vector Sketch Connectivity . . 57
4.1 Introduction . 58

4.2 Perception of Intended Sketch Connectivity 61

4.3 Algorithm . 64

4.4 Junction classifier . 68

4.5 Algorithm Details . 71

4.6 Results and Validation . 73

5 StripMaker: Perception-driven Learned Vector Sketch Consolidation 81
5.1 Introduction . 82

5.2 Analysis of Overdrawn Sketches 85

5.3 Algorithm . 88

5.3.1 Local Temporal Consolidation 89

5.3.2 Refinement . 91

5.4 Classifier Design . 94

5.5 Algorithm Details . 98

5.6 Results and Validation . 100

6 Conclusion and Discussions . 109
6.1 Future Work . 110

Bibliography . 114

A Preprocessing Strokes . 126
A.1 StrokeAggregator: Artist-Intended Vector Sketch Consolidation . 126

A.2 Detecting Viewer-Perceived Intended Vector Sketch Connectivity . 127

A.3 StripMaker: Perception-driven Learned Vector Sketch Consolidation128

viii

B Study Details . 129
B.1 StrokeAggregator: Perception Driven Parameter Setting 129

B.2 Detecting Viewer-Perceived Intended Vector Sketch Connectivity:

Study Design . 131

B.3 StripMaker: Study Details . 133

B.3.1 Data Collection . 133

B.3.2 Comparison Setup . 136

B.3.3 Comparative Study Design 136

ix

List of Tables

Table 1.1 Perceptual cues used for vector sketch consolidation. 5

Table 4.1 Gini importances of junction classifier features. 70

Table 5.1 Average L1 and Lmax distances to consolidations generated us-

ing manual labelings. (left) result on our cross-validation set;

(right) results on unseen annotation set. Our method achieves

the best performance among all algorithms tested, approaching

human performance. 101

Table 5.2 Gini importances of local classifier features. 107

Table 5.3 Gini importances of global classifier features. 108

x

List of Figures

Figure 1.1 The evolution of digital drawing tablets. (a) The RAND tablet

(1964). (b) Various Wacom drawing tablets and a pen and

touch display (photo taken in 2012). (c) An artist draws dig-

itally using a pen and touch display (photo taken in 2019).

Source: (a) Gwen Bell, Computer History Museum; (b,c) ©David

Revoy under CC BY 4.0. 1

Figure 1.2 A raw sketch with overdrawn strokes and the corresponding

perceived clean sketch. Human observers consistently view the

raw sketch (a) as a composition of strips (indicated by different

colors) (b). Each strip is seen as depicting a clean aggregate

curve and together they compose a clean line drawing (c). . . 3

Figure 1.3 Stroke strip parameterization. Each stroke strip in a raw sketch

(a) is associated with its corresponding aggregate curve (c).

Each point on a raw stroke (orange in zoom-in, b) is associ-

ated with a point closest to it on the aggregate curve (orange,

c). Points on different raw strokes that are associated with the

same aggregate curve point are corresponded (orange in zoom-

in, b) and share the same u value. 4

Figure 1.4 Unintended gaps in a typical freehand sketch. A freehand

sketch (a) contains numerous unintended gaps (b,blue) that are

in the similar scale as intended gap (b,red). Bucket-filling each

region a different color indicates that multiple adjacent regions

are incorrectly merged (white indicates the background) (c). . 6

Figure 1.5 The categories and diverse configurations of junctions. Binary

junctions are formed by pairs of strokes: end-end junction (a),

T-junction (b). High-valence junctions involve multiple dan-

gling endpoints and strokes, in both end-end and T- configura-

tions (c,d). 7

xi

https://www.davidrevoy.com/
https://www.davidrevoy.com/

Figure 1.6 A freehand vector sketch processing pipeline. A raw input

sketch (a) is consolidated (b) then connected (c) for coloriza-

tion. Note the closed loops trivially detected on (b) are shown

in the inset. Source: © Rami Alsafadi. 8

Figure 2.1 A typical freehand drawing with overdrawing and unintended

gaps. Repeatedly overdrawing existing strokes refines the ini-

tial curve (a, b, red). Overdrawing is used to emphasize, in

this example, to distinguish blue and cyan strokes are from

two strips (a, b, blue, cyan). Overlapping short strokes forms

a long and complex curve (a, b, green). Even in this carefully

created cleanup line drawing (c), unintended gaps remain (d).

Please zoom in to see full details. 10

Figure 2.2 A single level of detail used by Stanko et al. [100] does not fit

all local contents (red arrow). Their integer grids cause arti-

facts when fit to high-curvature smooth curves (blue arrows). . 14

Figure 2.3 The raster-to-raster consolidation methods, e.g., Xu et al. [111],

have difficulties handling multi-way junctions (b,c) that are

trivial for vector space consoldiation method (d). Note that the

consolidated raster output (b) needs to be further processed by

a clean sketch vectorization method, e.g., Parakkat et al. [82],

to obtain the final vector result (c). 15

Figure 2.4 Raster-space consolidation methods are significantly affected

by input resolutions and due to diverse levels of details within

a single sketch, these methods can destroy fine details (red ar-

rows) and leave overdrawing unattended (blue arrows) at the

same time. 15

Figure 2.5 Vector sketch consolidation remains an open problem. The

method by Orbay and Kara [78] does not generalize well (b).

The result of Liu et al. [69] is noticeably influenced by the

choice of method parameters and is imperfect even after tuning

parameter (c). 17

xii

Figure 2.6 Sketch drawing order in color-coding. The drawing order of

strokes in this typical sketch shows that strokes depicting the

same local content are often drawn consecutively shown in

similar colors. Yet it is not always the case as there are few

strokes put down out of order indicated by orange and red,

perhaps to fulfill the refinement purpose of overdrawing. . . . 18

Figure 2.7 Recent raster-space gap closure methods produces sub-par out-

puts with both unintended junctions and unresolved dangling

endpoints on a relatively simple input. Each region is assigned

a different color and white indicates the background. 20

Figure 2.8 Jiang et al. [54] connects most of dangling endpoints in the

input (a) yielding a great number of redundant regions while

still mishandling detailed areas, e.g., fingers in this example (b). 21

Figure 3.1 Stroke consolidation: (a) a raw, vector format, sketch; (b) man-

ually consolidated clean curve drawing; (c) algorithmically clus-

tered strokes and (d) consolidated curves. Our output curve

set (d) is of similar quality to the manually generated one (b).

Please zoom in online to see image details. Raw sketch: © En-

rique Rosales. Manual consolidation: © Elinor Palomares. . . 22

xiii

Figure 3.2 Manual consolidation examples (color shows stroke grouping):

(a) a typical cluster consists of strokes which are angle com-

patible, or roughly parallel along their side-by-side portions;

(b) within each cluster, strokes are roughly evenly spaced and

the internal distance is much smaller than the inter-cluster dis-

tance. Note that the absolute distance between the top red and

blue clusters is roughly the same as the internal absolute dis-

tance of the orange cluster; however, humans treat the two dif-

ferently based on relative proximity rather than absolute dis-

tance; (c) disjoint Gestalt continuous clusters define separate

aggregate curves; (d) connected branches with uneven inter-

nal density define separate curves; (e) width to length ratio, or

cluster narrowness impacts viewer choices. Here, strokes are

viewed as separate despite satisfying all other grouping cues.

Raw sketch: © Enrique Rosales. Manual consolidation: © Eli-

nor Palomares. 24

Figure 3.3 Humans group visual objects based on relative distance. The

clustering below (indicated by coloring) has the inner-cluster

distance that is the same as the inter-cluster distance above. . . 26

Figure 3.4 Connectedness and strength in numbers cues. 27

Figure 3.5 Local versus global proximity: (a,c) on-average evenly spaced

(and connected) strokes may depict multiple aggregate curve

branches; (b,d) perceived narrow clusters. 28

Figure 3.6 Given a raw vector sketch (a), our method first clusters based

on pairwise compatibilities of angle and relative proximity, re-

sulting in clusters consisting of connected parallel strokes (b,

Section 3.3.1). Our method then analyzes relative proxim-

ity within each cluster to separate branches (c, Section 3.3.2).

Given these reliable clusters, our method assesses all pairs of

nearby clusters and merges them following the visual grouping

rules (d, Section 3.3.3). Finally, the clusters are consolidated

into the cleaned-up sketch (e, Section 3.4). Raw sketch: © En-

rique Rosales. 28

xiv

Figure 3.7 Stroke pair layouts. 33

Figure 3.8 Clustering stages: (a) angle based clustering output with two

clusters (pink and cyan) highlighted; (b) average proximity

based clustering breaks these two clusters into roughly evenly

spaced distinct components; (c) local refinement separates branches

producing uniformly narrow clusters; (d) consolidated output.

Input sketch is from [78]. 34

Figure 3.9 Local cluster refinement: Pointwise stroke correspondences

are defined using intersections between strokes and orthogo-

nal rays emanating from the cluster’s aggregate stroke (black).

The spacing between lowest top (blue) and highest bottom (or-

ange) intersection points is significantly larger than the internal

spacing within the top (blue) and bottom (orange) branches.

We measure this uneven distribution of intersection points by

comparing the inter-cluster gap g (gray, upper inset) and the

left, right gaps gL,gR (blue, orange, upper inset). The mea-

sured gap ratio r is positive when the two clusters are clearly

separate (upper inset, blue shadow section) and zero when they

overlap (lower inset, red shadow section). 38

Figure 3.10 The growing step for potential separation generation. At po-

sition pj, given the gap across the aggregate curve, the inter-

section points are labeled into blue and orange, and the strokes

are labeled correspondingly. The assignment at pj is propa-

gated into pj−1 and pj+1. There are three possible separations

at pj−1 defined respectively by g1 to g3. Our method chooses

the largest gap g2 greedily. There is only one possible assign-

ment at pj+1. 39

Figure 3.11 Special cases of separation assessment. Wide cluster is sepa-

ratable even when inter-stroke distance is small (a); An inter-

mediate cluster may contain more than one branch (b). Input

sketches: © Enrique Rosales. 40

Figure 3.12 Final unification: (a) before; (b) after, (c) consolidated result.

Input sketch: © Enrique Rosales. 41

xv

Figure 3.13 The outermost strokes in a cluster form a cluster envelope that

is used to assess proximity between clusters. 42

Figure 3.14 An example of an outlier stroke visually separate from the

other strokes in their intended cluster, sourced from Liu et al.

[69]. 43

Figure 3.15 T-junctions are optionally enforced as a post-processing step. . 45

Figure 3.16 Aggregate curve fitting: (a) input stroke with original (red)

and consistent (green) orientations; (b) MLS fitting output;

(c) proximity graph and extracted polyline (e) resampled (thin)

and final (thick) optimized polyline curve. 46

Figure 3.17 Examples of manually (blue) and algorithmically (red) traced

aggregate curves of different stroke configurations (black). Man-

ual results form multiple participants are overlaid over one an-

other. The ratio shows the number of participants whose results

agreed with the plurality consolidated result in terms of output

curve number and approximate location. In all cases our result

aligns with the plurality response. 49

Figure 3.18 Consolidation comparison (clusters and fitted curves): (a) in-

put; (b) manually consolidated drawing; (c) Orbay and Kara

[78]; (d) Liu et al. [69]; (e) our result. While the results of

prior methods exhibit a range of artifacts, our result (e) is con-

sistent with the manual consolidation output (b). Raw sketch:

© Enrique Rosales. Manual consolidation: © Elinor Palomares. 50

Figure 3.19 Comparison with raster cleanup and vectorization methods.

The top input is from Orbay and Kara [78]; the bottom input is

from Liu et al. [69]. 51

Figure 3.20 Comparison (clusters and fitting) with Orbay and Kara [78].

Inputs sourced from Liu et al. [69]. In column two the exam-

ples of wrongly clustered strokes are highlighted. 52

Figure 3.21 Comparison (clusters and fitting) with Liu et al. [69]. Note the

differences in the consolidation of feet and other fine features.

The eagle input is sourced from Orbay and Kara [78]. Toucan,

penguin: © Enrique Rosales. 53

xvi

Figure 3.22 Additional diversely sourced results. The duck input is sourced

from Liu et al. [69], the architectural model and man are sourced

from Orbay and Kara [78], shark and triceratops: © Cristina

Arciniega, flower and bow-tie: © Enrique Rosales. Please

zoom in online to see image details. 54

Figure 3.23 Our framework relies on local context rather than recognition.

Thus its ability to process intentionally sketchy (a) or stylized

inputs with unreliable stroke tangents (b) is limited. (c) Our

clustering choices on this input are consistent with local hu-

man ones (8 out of 10 viewers keep the strokes separate given

purely local context (left)), and do not account for global con-

text which humans rely on given the complete image (right).

Bunny: © Elinor Palomares. 56

Figure 4.1 A typical freehand vector line drawing (a) and the connectivity

indicated by intersections only (a, top left), by two previous

work [35, 38] (b, c) and by our method (d). Each closed loop

interior colorized with a different color, with the background

left white. Please zoom in to see image details throughout the

paper. Input image ©The “Hero” artist Team under CC BY

4.0. 57

Figure 4.2 Human observers employ local and global cues to determine

if a dangling endpoint (red) is intentional, or is intended to be

part of a junction. As highlighed in (ab) and (ef), distance is a

major factor in distinguishing between intended junctions (af)

and intended gaps (be). Different tangent directions can impact

the perception of junction intent for endpoint (cd) or endpoint

and stroke pairs (gh) at the same distance from one another.

(i-n) The presence of other strokes can change the perception

of whether strokes do or do not form junctions. 58

xvii

https://studio.blender.org/films/hero/pages/team/

Figure 4.3 Typical free-hand drawings (a) contain jaggy, fragmented, and

overdrawn strokes (pointed and circled in green), unintention-

ally dangling endpoints (pointed and circled in blue) and strokes

that extend past their intended end-junctions (pointed and cir-

cled in purple). Directly extracting closed stroke loops from

such drawings (b) produces heavily under-segmented outputs.

By identifying unintentionally dangling endpoints and form-

ing intended junctions we form loops consistent with viewer

expectations. Top input image ©Mathias Eitz, James Hays

and Marc Alexa under CC BY 4.0. Bottom input image ©The

“Hero” artist Team under CC BY 4.0. 60

Figure 4.4 Stroke-pair properties. The inter-stroke distance is relative rather

than absolute (ab). The relative location of the projection of the

endpoints affects the perceived junction type (c). 61

Figure 4.5 Method Overview. Given a vector line drawing (a), we first

detect trivial stroke-wise intersections forming closed stroke

loops (b, right). We then identify likely end-to-end (red) and

T- (blue) junctions (b, left zoom-ins). With these pairs and

their predictions, we constructs primary junctions, support-

ing arbitrary valence (c, see left zoom-ins for examples). We

proceed to identify secondary T-junctions formed by the re-

maining dangling endpoints and composite strokes (d, see left

zoom-ins for example connections). In the final closure in-

tegrated step, we close remaining undesirable gaps by jointly

evaluating classifier predictions and gap ratios along the bound-

aries of potential cycles (e, see the zoom-in for a connection

classified as marginally negative in our primary step and ac-

cepted in this step). Input image ©The “Hero” artist Team

under CC BY 4.0. 63

Figure 4.6 The gap ratio RC = D/L quantifies the gap size relative to the

adjacent region reflecting the closure property of Gestalt psy-

chology. 63

Figure 4.7 High-valence junctions in two example configurations. 65

xviii

https://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/
https://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/
https://studio.blender.org/films/hero/pages/team/
https://studio.blender.org/films/hero/pages/team/
https://studio.blender.org/films/hero/pages/team/

Figure 4.8 When solving for primary junctions, the method picks the best

high-valence junction configuration (a) while avoiding creat-

ing small cycles. 66

Figure 4.9 When solving for secondary junctions, strokes that are con-

nected by trivial junctions (a) and previously detected intended

junctions (bc) are considered to be a single stroke. 67

Figure 4.10 Measurements of distance and direction. 69

Figure 4.11 End-end pairs with diverging directions are filtered. 71

Figure 4.12 Study summary: participants preferred our method over all al-

ternatives by a factor of 9 to 1 or more. 75

Figure 4.13 Comparison against interactive region detection. Given an in-

put (a), the interactive LazyBrush tool [101] required 31 min-

utes (70 strokes, one erased) (b); starting from our automati-

cally computed output (c) users required 2 minutes (7 correc-

tions) to obtain the same final output (d). Input image ©The

“Hero” artist Team under CC BY 4.0. 75

Figure 4.14 Impact of increasing the top left gap size (top) and the closure

factor C (bottom) during our final, global closure-aware classi-

fication step. Top input image ©Company et al. [23]. Bottom

input image ©The “Hero” artist Team under CC BY 4.0. . . . 76

Figure 4.15 Rasterizing vector sketches and then applying the methods of

[35] (b), [38] (c), [82] (d), [93] (e), and [97] (f) to compute

closed stroke loops produces sub-par outputs with both unin-

tended junctions (e.g. Fourey et al. [38] over-segments char-

acter’s face) and unresolved dangling endpoints (e.g. none

of [35, 82, 93, 97] separates character’s face from the back-

ground). Our outputs (g) correctly identify both intended junc-

tions and intended dangling endpoints. We show both high and

low resolutions (600 px and 1000 px) for (b, c, e, f); and the au-

thors’ automatically selected resolution (600 px) for (d). Light

gray spots in the output of [82] correspond to pixels unassigned

by their method. Input image ©Jiang et al. [53]. 77

xix

https://studio.blender.org/films/hero/pages/team/
https://studio.blender.org/films/hero/pages/team/
https://studio.blender.org/films/hero/pages/team/

Figure 4.16 Additional results and comparisons. Input images from top to

bottom ©Company et al. [23]; ©Lien-ze Tsao under CC BY

4.0; ©Enrique Rosales. 78

Figure 4.17 When presented with an incomplete drawing both our method

and human observers could perceive some intended gaps as

unintended. Source: ©The “Hero” artist Team under CC BY 4.0. 79

Figure 5.1 Given a vector sketch with multiple overdrawn strokes (a) Strip-

Maker automatically consolidates it (f) replacing each detected

viewer perceived strip of strokes (e, each strip in different color)

with the corresponding intended curve. StripMaker outputs (e)

are better aligned with user expectations than those produced

by state-of-the-art algorithmic alternatives (b,c,d). Inset in (d)

shows strips generated by Chapter 3. Frames point to artifacts

in outputs of previous methods. Source: Yan et al. [112]. . . . 81

Figure 5.2 Consolidation cues: Locally groups of strokes are seen as be-

longing to the same strip if they are proximate (a), roughly par-

allel (b) , and approximately evenly spaced (c). Strips are ex-

pected to be narrow (d) and have roughly even width through-

out (e). Local (f) and global (g) context impacts strip percep-

tion. 83

Figure 5.3 Correspondense between strokes are defined by 1D parameter-

ization. The isolines of this 1D parameterization are shown in

gray and orange. The orange isolines indicate the side-by-side

section between the top stroke and the remaining ones. 86

Figure 5.4 Strokes belonging to the same intended strip are often drawn

temporally close to one another as indicated by coloring (a).

Incomplete sketches share many properties with finished ones

and strokes perceived as belonging to the same strip in an in-

complete sketch are highly likely to be perceived as such in the

finished one (b). Source: Yan et al. [112]. 87

xx

https://studio.blender.org/films/hero/pages/team/

Figure 5.5 Viewers’ consolidation decisions are impacted by global and

local context: the overall sketch precision (a) and the percep-

tion of inter-strip junctions (b). 88

Figure 5.6 StripMaker first generates preliminary consolidations (b) of

the input sketches (a) and then refines those using global cues

to arrive at the desired output (c). Note that the over-merged

left side of the screen (b) is corrected separated through refine-

ment (c). Source: Pagurek van Mossel et al. [79]. 88

Figure 5.7 A new stroke (red) is considered against existing strips (a) and

added to the strip (purple) with highest probability that is larger

than 0.5 (b). The newly added stroke makes the updated strip

more likely to be combined with another existing strip (orange)

and thus we iteratively combine strips (c). 89

Figure 5.8 Multi-stroke strip are split and re-evaluated (a). A pair of

strokes with the lowest probability are selected as seeds (b).

The sub-strips are grown from these seeds (c) until all strokes

are assigned (d). 93

Figure 5.9 Parameterization [79] computed on given sub-strips (in blue

and red). Correspondences are indicated by isolines in gray

and orange; features are measured within the side-by-side sec-

tion highlighted in orange. Positive (a) and negative (b) sub-

strip pairs have visual difference which we try to capture via

geometric features. 95

Figure 5.10 Distances are measured within each side-by-side isoline and

aggregated along the side-by-side section. Within an exam-

ple isoline illustrated as a dash line, the distance between sub-

strips is shown in purple; the width of the wider sub-strip in

red; the width of the narrower sub-strip in blue; the width of

the combined strip in black. 96

Figure 5.11 Evenness is measured based on the isolines at the ends of side-

by-side section (red) and the isolines immediately outside the

side-by-side section (black). Large difference in length be-

tween red and black isolines indicates unevenness. 96

xxi

Figure 5.12 Two examples of winding strokes. The overdrawn ellipse is

supposed to be fit as a closed strip (a); while the intentional

spiral is supposed to be left open (b). 98

Figure 5.13 Consolidating typical inputs (a) using state-of-the-art methods

for simultaneous consolidation and vectorization [100] (b), and

vector [67] (c) and raster [111] (d) space consolidation, often

results in both loss of details and under-consolidation. Raster-

ized input used for (b) and (d) shown as inset in (a). The raster

output of [111] (shown in the inset in (d)) was vectorized using

the method of [86]. Our method (e) produces viewer expected

consolidations on these inputs. Please zoom-in to see details.

Source: Yan et al. [112]. 99

Figure 5.14 Consolidating typical inputs (a) using raster-space methods (b)

[100] (c) [111] (vectorized using the method of [86]) often re-

sults in both loss of details and under-consolidation (raster con-

solidation outputs shown as insets). Our method (d) produces

viewer expected consolidations on these inputs. Source: Yan

et al. [112] (top), © Rami Alsafadi (below). 102

Figure 5.15 Our method (d,e) consistently produces consolidations better

aligned with viewer expectations than those produced by the

state-of-the-art vector consolidation approach of [67] (b,c) on

diverse overdrawn inputs (a). Stroke grouping is shown with

each strip rendered in a different color (b,d). Source: Gryadit-

skaya et al. [44] (top), © Tina Nowarre (below). 102

Figure 5.16 Earlier sketch consolidation methods, such as [69] (left) and

[97] (right) often fail to adequately consolidate typical sketches

(a,d) that our method succeeds on (c,f). On the left we used

classifiers trained excluding the input shown (we have some

results of [69] but no access to their code). Source: © Enrique

Rosales (left), Gryaditskaya et al. [44] (right). 103

xxii

Figure 5.17 Comparison to simultaneous consolidation and vectorization

methods: (b) [35], (c) [82], (d) [73] on typical overdrawn sketches

(a). Our method (e) produces viewer expected results on this

data. Source: © Val Novikov (top), © Rami Alsafadi (below). 103

Figure 5.18 Comparative study summary: Participants preferred our results

over all alternatives by a significant margin. 104

Figure 5.19 Limitations: Our results are not preferred on these three ex-

amples. Source: © Val Novikov (left), © Champ Semalulu

(middle), Gryaditskaya et al. [44] (right). 104

Figure 5.20 Consolidation applications: We follow consolidation by topol-

ogy extraction [115] to facilitate colorization (ab); We use the

consolidated strips to directly edit the input drawing (cd). Source:

Yan et al. [112]. 106

Figure 6.1 Limitation of StripMaker. The refinement step using sketch

precision could fail and over-segment when the intermediate

correctness assumption (a) and homogenous assumption (b) do

not hold. The problematic strips are highlighted as opaque in

the clustering view and as colorful in the clean line drawing

view. Source: © Val Novikov (top), © Edwin González Espitia

(below). 111

Figure 6.2 Potential extensions to our gap closure method. The accuracy

of already formed junctions can be further improved by intel-

ligently merging close misaligned intersections, for instance,

around the lower corner of this snake example these three strokes

do not intersect exactly (a). When paired up, junctions can im-

ply occlusion, a necessary piece of information for animating

occluded objects (b). 112

Figure B.1 Narrowness threshold question examples and answer distribu-

tion (top); proximity question examples and answer distribu-

tions (bottom). 130

xxiii

Figure B.2 Junction annotation study example questions and interface. The

full line drawing is shown on the left, the zoomed-in view of

the potential junction in question and the corresponding ques-

tion is shown on the right. In both views, we use color gradi-

ents to indicate endpoints (pink and green in (a) and orange in

(b)) and a solid blue to indicate the non-endpoint stroke of a

T-junction (b). Images left and right ©Nahu under CC BY 4.0;

[40]. 132

Figure B.3 Our strip annotation interface. 135

Figure B.4 Study question layout. 137

xxiv

Acknowledgements

The research of this thesis was made possible by the unwavering support and en-

couragement of my family, friends, and colleagues, whose constant motivation and

guidance inspired me to pursue my academic goals.

First, I would like to express my thanks to my supervisor, Alla Sheffer, for her

invaluable guidance and support throughout my doctoral journey. Alla has taught

me important lessons on how to verify, demonstrate and present one’s research,

which I am very grateful for.

I would like to thank my other mentor figures: Mikhail Bessmeltsev, Nicholas

Vining, Helge Rhodin, Michiel van de Panne and Dongwook Yoon, for being pa-

tient and spending precious time on giving me help and feedback. I would like to

thank my lab-mates, Enrique Rosales, Jerry Yin, Rebecca Lin and Dave Pagurek

van Mossel for generously co-authoring papers with me, as well as other members

of my group for urgent help before many deadlines. I also want to send my thanks

and best wishes to Toshiki Aoki for being a mentee of an inexperienced mentor like

myself. Special thanks to study participants, artists and reviewers whose names are

hidden by anonymity; without their selfless help, my research would not have been

possible.

I would like to thank all my friends. Spending time with you folks always

helps me recover from hitting obstacles: Matthew Chun for anime watching and

organizing group outing; Shayan Hoshyari for interesting discussions and constant

friendship since the beginning of my study; Jim McCann for extending his mentor-

ship ; Silver Burla and Jonathan Griffin for being members of our regular Friday

gathering; Hanjun Zuo for always being there (virtually).

Last but not least, I would like to thank my parents, Ping Liu and Jia Na, for

raising me to be an independent person and for their support, especially during the

pandemic years.

I acknowledge that this thesis was completed while I worked at UBC, which

is located in the traditional, ancestral, and unceded territory of the xwm@Tkw@y’@m

(Musqueam) people.

xxv

Chapter 1
Introduction

(a)

(b) (c)

Figure 1.1: The evolution of digital drawing tablets. (a) The RAND tablet (1964).
(b) Various Wacom drawing tablets and a pen and touch display (photo taken in
2012). (c) An artist draws digitally using a pen and touch display (photo taken in
2019). Source: (a) Gwen Bell, Computer History Museum; (b,c) ©David Revoy
under CC BY 4.0.

Freehand sketching is an intuitive way for artists to quickly create and commu-

nicate visual content. Traditionally, sketching is done by a single artist with a pen

on a piece of paper. Since the advent of computing, devices for digital sketching

have evolved rapidly (Figure 1.1), from Davis and Ellis’s pioneering digital graph-

ics tablet for natural handwriting, the RAND tablet [26] (1964), to various com-

mercial drawing tablets attached to computers with monitor displays (the iconic

Wacom Intuos was released in 1998), to pen and touch displays (the Wacom Cintiq

was released in 2001; Apple released the Apple Pencil together with iPad Pro in

2015). As digital drawing devices become user-friendlier and more affordable, dig-

ital sketching has become increasingly common among professionals working in

1

https://www.davidrevoy.com/

a variety of industries, such as industrial design and paperless cartoons. For these

different applications, sketches serve blueprints and need to be further processed

by downstream software. Even when stored digitally, freehand sketches, often

containing overdrawn strokes and inaccurate junctions, are different from the clean

vector sketches required by these applications. To make these applications work,

artists carefully clean up input sketches by hand—a tedious and time-consuming

task that has not changed since paper-and-pen times.

To narrow the gap between what artists sketch and what downstream appli-

cations require, we aim to develop automatic methods that tackle the overdrawn

strokes and inaccurate junctions that are unavoidable in freehand digital sketches.

We refer to these issues as the consolidation and connectivity problems respec-

tively.

Understanding artist intentions is a complex task, as their intentions may be in-

fluenced by many factors, such as high-level aesthetic choices and low-level muscle

memory. Instead, as strongly suggested in prior literature that artists strive to cre-

ate drawings that are easily understood by viewers [45, 94, 109], we use these two

well-correlated concepts interchangeably in this thesis and aim to develop algo-

rithms that mimic viewers’ perception. By taking this approach, we can leverage

the rich collection of criteria and principles provided by Gestalt psychology [104],

which studies how viewers perceive multiple objects as a whole. Furthermore, we

can investigate data-driven methods that learn from viewer-annotated data to tackle

these problems.

Before we explore further, we need to specify the format of sketches that we

want to study. Digital sketches can be stored in raster and vector format. Sketches

in vector format contain more information about inputs than those in raster format,

such as the definition of a stroke, local tangents, etc., and are feasible to capture

using add-ons to common raster drawing software [70]. We thus select vector

sketches as our target input and the scope of all methods introduced in this thesis.

1.1 Sketch Consolidation

When creating an initial sketch, artists use overdrawing to correct or refine earlier

strokes, emphasize specific curves, and break down hard to draw long and com-

2

(a) (b) (c)

Figure 1.2: A raw sketch with overdrawn strokes and the corresponding perceived
clean sketch. Human observers consistently view the raw sketch (a) as a compo-
sition of strips (indicated by different colors) (b). Each strip is seen as depicting a
clean aggregate curve and together they compose a clean line drawing (c).

plex curves into shorter, easier to sketch strokes. When presented with such a raw

sketch, human viewers effortlessly perceive a cluster or a strip of strokes as jointly

depicting a single artist intended curve, called an aggregated curve (Figure 1.2).

While this mental process is near instantaneous, manually annotating or retracing

sketches to communicate this intended mental image to sketch based applications

is highly time consuming. We define this perceptual process of grouping strips

of strokes and replacing each strip by an aggregated curve as sketch consolida-

tion. The computational methods that are designed to mimic human viewers and

automate this process are called algorithmic sketch consolidation.

Formally, an input sketch consists of n raw strokes, S = {S1, · · · ,Sn}; a sketch

consolidation method seeks: (1) a clustering C = {C1, · · · ,Cm} partitioning the in-

put sketch S into strips, such that the clustering is as close to the human-perceived

result as possible and (2) a clean sketch containing the aggregate curves corre-

sponding to the resulting stroke clusters.

Chapter 3 and 5 rely on perceptual cues for clustering, and this strategy of

measuring these cues forms the foundation of both chapters. To give readers a

summary, we describe our measurement strategy and summarize the cues as fol-

lows.

To compare an arbitrary pair of strokes for measurement, we find correspon-

3

(a) (b)

u

v

(c)

u

Figure 1.3: Stroke strip parameterization. Each stroke strip in a raw sketch (a) is
associated with its corresponding aggregate curve (c). Each point on a raw stroke
(orange in zoom-in, b) is associated with a point closest to it on the aggregate
curve (orange, c). Points on different raw strokes that are associated with the same
aggregate curve point are corresponded (orange in zoom-in, b) and share the same
u value.

dences between points from these two strokes via 1D parameterization (Figure 1.3).

If two strokes belong to the same strip, the strip would have a corresponding aggre-

gate curve (Figure 1.3b,c). It is trivial to associate any point on these two strokes

with a single point on the aggregate curve by finding the closest corresponding

point. This corresponding point on the aggregate curve is parameterized because

the aggregate curve has a 1D mapping from a parameter u to an arbitrary position

on the curve (IR2 in our setting). In this way, we correspond points from differ-

ent strokes if they are associated with the same aggregate curve point; in other

words, if the two points share the same u value in the same isoline with respect

to the 1D parameterization. Note that even if these strokes do not belong to the

same strip, one is still able to find such correspondences. These correspondences

are computed via a simple fit-and-project procedure in Chapter 3 and via a more

complicated parameterization method [79] in Chapter 5. These correspondences

also help us define the region of interest for stroke-stroke comparison: two strokes

are only comparable in the interval where points from both strokes exist, which we

refer to as the side-by-side section. A value quantifying a cue can be computed

by locally measuring pointwise within an isoline and then integrating along the

4

Table 1.1: Perceptual cues used for vector sketch consolidation.

Category Cue Chapter

Local

Absolute distance
Density (relatively distance, proximity)

Angle
Narrowness
Evenness

Parameterization distortion

Chapter 5
Chapter 3,5
Chapter 3,5
Chapter 3,5
Chapter 5
Chapter 5

Contextual
Connectivity

Global precision
Chapter 5
Chapter 5

Temporal Drawing order of strokes Chapter 5

side-by-side section. This strategy is extended to measure multiple strokes against

multiple strokes and to measure a strip internally by considering all local point

combinations.

We apply the same measurement strategy to a set of cues summarized in Ta-

ble 1.1. Cues are classified into three categories.

Local cues. Cues in this category are measured solely based on the geometry

of strokes that are hypothesized to belong to the same strip.

Contextual cues. Cues in this category are measured based on multiple strips.

Note that a contextual cue can involve a strip and another strip immediately adja-

cent or another strip in the same input sketch regardless of positional relation.

Temporal cues. This cue is about the drawing order of strokes independent of

the two geometric cues above.

In Chapter 3, we introduce StrokeAggregator, a method that automatically con-

solidates raw vector sketches via grouping and fitting. This method applies purely

local cues that are quantified by conducting individual perception studies. In Chap-

ter 5, we expand this basic consolidation method by accounting for more cues that

are local, contextual and temporal. Since conducting an individual study per per-

ceptual cue quickly becomes too costly as the number of cues increases, we apply

a learning based approach and by integrating local classifier with global refinement

based on contextual and temporal cues, we overcome the data sparsity issue. This

5

new method, StripMaker, achieves comparable performance to manual consolida-

tion. In our comparative studies participants preferred our results by a 52% margin

over those of StrokeAggregator, the closest algorithmic alternative.

1.2 Sketch Connectivity

(a) (b) (c)

Figure 1.4: Unintended gaps in a typical freehand sketch. A freehand sketch (a)
contains numerous unintended gaps (b,blue) that are in the similar scale as intended
gap (b,red). Bucket-filling each region a different color indicates that multiple
adjacent regions are incorrectly merged (white indicates the background) (c).

When curves meet, they form junctions, defining the topological relationship or

the connectivity of a sketch. The connectivity provides necessary information for

plenty of applications; for example, junctions define occlusions for sketch-based

3D modeling [11, 12], serve as a basic editable element in advanced vector graph-

ics editing and modeling [24, 25], and define regions which is essential for drawing

colorization [38, 82, 88, 101]. However, artist drawings are inherently imprecise

[55], and routinely contain unfinished strokes that artists intend to intersect other

strokes, but that stop short of doing so as shown in Figure 1.4. As reported by

Yan et al. [112], artists continue to leave unintended gaps between strokes even

when explicitly asked to draw as precisely as possible. As a result, in practice,

connecting unintended gaps is separated from sketching and often treated as a te-

dious manual preprocessing step of colorization, called flatting, involving repeated

zoom-in checks and trial-and-error operations and in the scenario of webtoon pro-

duction, taking roughly 50% of work time for the whole colorization process [113].

Furthermore, a better understanding of connectivity is beneficial to consolidation as

6

consolidation and connectivity are interconnected in the sense that viewers’ deci-

sion of perceptually grouping overdrawn strokes is influenced by junctions formed

by potential intended curves [69].

(a) (b) (c) (d)

Figure 1.5: The categories and diverse configurations of junctions. Binary junc-
tions are formed by pairs of strokes: end-end junction (a), T-junction (b). High-
valence junctions involve multiple dangling endpoints and strokes, in both end-end
and T- configurations (c,d).

We categorize junctions into two categories: binary junctions and high-valence

junctions (Figure 1.5). Binary junctions are formed by pairs of strokes. They

have two types: end-end junctions that are formed by joining the endpoints of

two strokes; and T-junctions that are formed by connecting a dangling stroke end-

point to the middle of another stroke. As the name implies, high-valence junctions

involve multiple dangling endpoints and strokes, in both end-end and T- configu-

rations. The existence of high-valence junctions complicates the problem as there

are an arbitrary number of configurations of them while each configuration often

only occurs occasionally in a sketch.

We discuss this issue in detail in Chapter 4. We further propose a method in

Chapter 4 that detects such unintended gaps in consolidated vector line drawings

using learned local classifiers in an inference framework that incorporates global

cues. We demonstrate our method on a diversity of line drawings in the wild for

the colorization application and apply our connectivity detection method to provide

contextual cues for consolidation in Chapter 5.

7

1.3 Contributions

We explore two closely related problems arising in processing freehand vector

sketches: consolidation problem and connectivity problem. Our work identifies

important factors in humans’ perception of freehand sketches, provides, and vali-

dates automatic tools that narrow the gap between the raw freehand vector sketch

directly created by artists and the requirements of downstream computational appli-

cations. Taken together, the automatic tools presented in this work form a pipeline

capable of consolidating a rough sketch, then equipping the resulting clean line

drawing with connectivity. The final result is then ready for further processing

such as colorization (Figure 1.6).

(a) (b) (c)

Chapter 3&5 Chapter 4

+ [van Mossel’21]

Tr
iv

ia
l

cl
os

ed
 lo

op
s

Figure 1.6: A freehand vector sketch processing pipeline. A raw input sketch (a) is
consolidated (b) then connected (c) for colorization. Note the closed loops trivially
detected on (b) are shown in the inset. Source: © Rami Alsafadi.

Our detailed contributions are as follows.

• In Chapter 3, we present a method that consolidates a raw vector sketch

into a clean vector line drawing. The resulting consolidated drawings are

validated to be consistent with viewer perception by our comparison studies

and evaluated to have path quality most similar to manual results among

raster and vector consolidation methods at the time by a recent benchmark

[112]. This chapter established a measurement strategy and a set of local

cues that serve as foundation for Chapter 5.

• In Chapter 4, we introduce a method that extracts viewer-perceived stroke

connectivity from inexact freehand vector drawings. We demonstrate our

method on diversely sourced inputs, including actual cartoon movie draw-

8

ings, doodles, and consolidated drawings. The connectivity studied in this

chapter is considered as a contextual cue in Chapter 5.

• In Chapter 5, we propose a more advanced consolidation method that builds

upon earlier chapters and utilizes further observations about temporal persis-

tence and global context of drawing. This method exhibits superior consoli-

dation performance and potentials for better user interactivity.

9

Chapter 2
Related Work

Freehand sketching digitally on a drawing tablet or a pen-and-touch display has

been gradually becoming a common practice and motivated research about fur-

ther processing these digital sketches into refined visual contents, such as colored

drawings and 3D models. In this chapter, we first provide background about how

an artist sketch and how visual contents are created at industrial scale. We then

discuss research topics that share similarities with ours yet have different goals,

as well as methods that serve as downstream applications taking vector sketch as

input. Finally, we examine prior work about the consolidation problem in raster

and vector settings, and the connectivity problem.

2.1 Artist Sketching Practice

(a) (c) (d)(b)

Figure 2.1: A typical freehand drawing with overdrawing and unintended gaps.
Repeatedly overdrawing existing strokes refines the initial curve (a, b, red). Over-
drawing is used to emphasize, in this example, to distinguish blue and cyan strokes
are from two strips (a, b, blue, cyan). Overlapping short strokes forms a long and
complex curve (a, b, green). Even in this carefully created cleanup line drawing
(c), unintended gaps remain (d). Please zoom in to see full details.

10

Artists frequently apply overdrawing strategies in various scenarios (Figure 2.1):

they gradually refine intended imagery by layering new strokes on top of existing

scaffolding strokes; they overdraw strokes for emphasis, and they often depict

long and complex curves with multiple shorter and simpler strokes that are par-

tially overlapping [2, 32]. Apart from overdrawing, inaccurate junctions are an-

other common feature of freehand sketches. While overdrawing is a strategy which

artists consciously apply, unintended gaps are left unintentionally by artists (Fig-

ure 2.1). This implies that while a skillful artist may be able to avoid overdrawing

when sketching carefully, artists continue to leave unintended gaps between strokes

even when explicitly asked to draw as precisely as possible [112]. Although these

raw sketches by themselves convey visual contents efficiently, they need to be con-

verted into clean, accurate lines with closed gaps for production in industries, such

as paperless cartoon animation and industrial design.

Paperless cartoon production is similar to traditional 2D cartoon production,

except that all drawing and colorization processes are performed digitally. A car-

toon project is conducted in two top-level stages: preproduction and production;

the cleanup is critical for both stages [108]. In the preproduction stage, necessary

preparations are made. One crucial asset during preproduction of cartoon anima-

tion are storyboards, which provide a first visual interpretation of the script that

then guides further developments in production. To serve as a reference for multi-

ple stakeholders, including the main production team, sub-contracting studios, and

even the legal department, the final storyboards need to be as fully rendered as pos-

sible and commonly require a special role, the cleanup storyboard artist, dedicated

to the job. In the production stage, the cleanup is necessary for both foreground

characters and background assets to ensure that the lines are consistent and ready

for colorization. Since the workload is heavy, this production step is executed by a

team of artists, referred to as the 2D cleanup animation team.

Sketches used for industrial design are also developed through multiple steps,

changing from concept sketches to presentation sketches [44]. Concept sketches

contain construction lines, such as scaffolds, axes, and projection lines, to assist

designers building the envisioned 3D shapes using 2D medium. While concept

sketches serve as a workspace for designers, presentation sketches are used to

demonstract design products to clients and to guide the subsequent 3D modeling

11

and thus require cleanup. Despite the usage of digital sketching and colorization

tools, the common practice in both these examples is to clean up by hands, which

is tedious and time-consuming.

2.2 Vector Sketch Processing

Multiple tools target processing of artist sketches, facilitating tasks such as col-

orization [38, 82, 88, 101], shading [36, 94], 3D editing [52], modeling [66, 109]

and manufacture [65]. Similarly to applications in industry, sketch-based methods

in academia require clean vector line drawings with accurate junctions.

Before we discuss consolidation in detail, we distinguish two related problem

settings: sketch beautification and sketch simplification. Despite that results from

these types of methods could be fed into the same kind of downstream applications,

there is a difference: the goal of consolidation is to preserve contents as truthfully

as viewers perceive while these beautification and simplification methods alter the

visual contents to achieve their respective goals.

Sketch beautification methods assist artists in creating cleaner and more aes-

thetic drawings by modifying the input curve geometries. Curve fitting based

beautification methods target point sequences directly captured by the drawing

input device and fit primitive chains as strokes to overcome inaccuracies in cap-

turing and sketching [7, 83, 102]. Pavlidis and Van Wyk [84] proposed a cluster-

ing based method designed for diagrams that fits line segments to stroke groups

unlike the fidelitous aggregate curves in the consolidation setting. Later methods

[18, 37, 51, 74] support more primitive types (e.g., segments, arcs) and enforce spa-

tial relations (e.g., positional, angular) between primitives via constraints, which is

still less flexible than consolidation methods.

Sketch simplification methods reduce details in a drawing by representing the

original sketch using a subset of the input strokes. This class of methods are applied

to reduce visual clutter in detailed artist drawings [41, 75] or to save computation

time in non-photorealistic (NPR) rendering [56, 107]. These methods are differ-

ent from consolidation methods because they do not compensate for the deleted

strokes and moreover, the ones for NPR leverage 3D information not available in

our problem setting.

12

2.3 Raster Sketch Vectorization and Consolidation

Line drawing vectorization methods convert a raster sketch into a vector line draw-

ing as accurately as possible, either automatically or semi-interactively. Vectoriza-

tion methods can be further categorized based on whether the method simultane-

ously consolidates sketches with overdrawing. For vectorization methods target-

ing clean raster line drawings, they can acquire the consolidation functionality by

preprocessing via a group of methods that consolidate fully in raster space either

automatically or interactively.

Clean sketch vectorization methods focus on recovering clean vector curves

from pixels in a clean raster sketch. As with vector consolidation, challenges for

clean sketch vectorization methods lies in distinguishing near-overlapping strokes

and reconstructing junctions accurately. Methods in this category often start by

identifying the content pixels by either filtering [20, 28, 29, 77] or simply thresh-

olding [6, 10, 86]; then follow by constructing an initial graph by thinning and

connecting [28, 29, 77], tracing a tangential [6, 20] or polyvector field [10], or

linking detected keypoints [86]; finalize by optimizing graph topology with several

methods focusing on junction topology as well as optimizing the graph geometry

[20, 77, 86]. Recent methods rely on neural network with different focuses. Guo

et al. [46] propose a method specialized in junction topology. Bhunia et al. [13]

explore adapting self-supervised learning strategies. Several neural network based

methods target domain specific data including fonts [60], technical drawings [31],

and CAD sketches [71].

To handle raster inputs containing overdrawing, clean sketch vectorization meth-

ods need to be applied following raster-to-raster consolidation methods. Raster-to-

raster consolidation methods transform a raster sketch with overdrawing to a clean

raster line drawing. Early raster-to-raster consolidation methods [19] applies flow

oriented filter with a fixed kernel size which may not apply to different levels of

details within a sketch. Recent raster-to-raster consolidation methods based on

convolutional neural network work either automatically [96, 97, 111] or interac-

tively [98]. Apart from overdrawing, these methods also handle raster sketches

captured in poor conditions, such as, non-uniform canvas textures, uneven light-

ing, and faint stroke colors, thanks to the image processing nature. For more deep

13

learning based methods, see the survey by Xu et al. [110] for details.

(a) (b)

Figure 2.2: A single level of detail used by Stanko et al. [100] does not fit all local
contents (red arrow). Their integer grids cause artifacts when fit to high-curvature
smooth curves (blue arrows).

The raw sketch vectorization methods consolidate and vectorize at the same

time. Most methods [21, 35, 80, 117] detect and iteratively merge regions, then

extract region boundaries as an initial graph. Following these steps, these methods

simplify the graph topology and optimize the geometry into the final vector re-

sult. Parakkat et al. [82] use a semi-automatic approach that require user to merge

initially detected regions. These region based methods tend to over-simplify the in-

puts and cannot naturally process open curves. Note that these region based meth-

ods recover junctions between regions along side consolidation and the details of

region detection strategies are further discussed in Section 2.5. Stanko et al. [100]

introduce a method that formulate target clean curves as integer grids—a concept

borrowed from quad meshing. This integer grid method still heavily depends on

a global kernel size, which may not suit all detail levels locally in a sketch, and

the outputs often contain artifacts when a grid corner is associated with a high-

curvature smooth curve (Figure 2.2). Mo et al. [73] propose a deep learning based

method that trace raw raster sketch by clean vector curves. However, their traced

outputs contain almost exclusively short, broken curves rather than long, consistent

curves as intended that are meaningful for the downstream applications.

The vector consolidation problem can be converted into the raster consolidation

14

(a) Input (b) [Xu et al. 2019] (c) [Xu et al. 2019]
[Puhachov et al. 2021]

(d) StripMaker

Figure 2.3: The raster-to-raster consolidation methods, e.g., Xu et al. [111], have
difficulties handling multi-way junctions (b,c) that are trivial for vector space con-
soldiation method (d). Note that the consolidated raster output (b) needs to be
further processed by a clean sketch vectorization method, e.g., Parakkat et al. [82],
to obtain the final vector result (c).

(a) Input (b) [Stanko et al. 2020] (c) [Xu et al. 2019]
[Puhachov et al. 2021]

Figure 2.4: Raster-space consolidation methods are significantly affected by input
resolutions and due to diverse levels of details within a single sketch, these meth-
ods can destroy fine details (red arrows) and leave overdrawing unattended (blue
arrows) at the same time.

problem by rasterizing the input sketch. However, solving the problem in this way

faces major challenges and remains open as acknowledged by Parakkat et al. [82]

and Yan et al. [112]. Vectorization and raster consolidation in general are more

challenging than vector consolidation due to reduced information. For instance

(Figure 2.3), though the combination of state-of-art raster-to-raster consolidation

[111] and clean sketch vectorization [86] generates viewer perceived results on

simple inputs, it has issues handling multi-way junctions when the sketch complex-

ity increases; while for vector consolidation, the connectivity is clearly indicated

by underneath stroke topologies. In addition, when consolidating vector sketches

in raster space the choice of rasterization resolution can significantly impact output

quality, and there exists no principled way of choosing the best resolution [112].

As Figure 2.4 shows, while raster-space methods often destroy fine details or leave

15

overdrawing unattended, our vector-space method is consistently better at preserv-

ing fine details. With little to no cost for digital drawing software to capture strokes

in vector format, we believe vector-space method is a more promising direction for

solving consolidation problem.

2.4 Vector Sketch Consolidation

Vector sketch consolidation has two subproblems: identifying strips, or groups of

strokes perceived as depicting single curves, and fitting the aggregate curve to each

strip. Compared to the grouping subproblem, the fitting is less challenging. Early

methods first order point samples on a stroke by projecting to the dominant axis

[58], or by computing Laplacian spectral embedding [78], then fit a curve to fully

ordered points. We introduce a moving least squares based fitting in Chapter 3 that

integrate a tangent fitting term in addition to the sole position fitting term used by

the earlier methods. Pagurek van Mossel et al. [79] propose a method dedicated to

fitting stroke strips that orients strokes, explicitly compute a 1D parameterization

using isoline as the basic element, and fit the final curve using position, tangent and

an extra curvature smoothing term. Since this state-of-art method robustly provides

desired 1D parameterization and fitting curve even given incorrect stroke strips, we

use this method for fitting and focus on the grouping subproblem in Chapter 5.

The grouping subproblem remains an open problem [112]. Early sketch anal-

ysis and consolidation methods [8, 90, 95] use cues such as absolute proximity,

degree of parallelism, and continuation to group strokes. These methods rely on

user specified thresholds to determine which strokes to group, requiring per-model

tuning. Moreover, the majority of methods [8, 90] measure cues based on one or

few pairs of corresponded point samples, e.g., closest points, endpoints and mid-

points, which is prone to sensitive to noise unlike the integral based measurement

we apply; Shesh and Chen [95] measure cues on all combinations of sufficiently

close points, which is computationally more expensive and comparing faraway

points is not as meaningful.

Orbay and Kara [78] proposed a neural-network-based method which is the

first work using the word “consolidation” and identifying branching as a challenge.

Their model learns a pairwise probability function depending on features of angles

16

(a) Input (b) [Orbay&Karaet al. 2011] (c) [Liu et al. 2015]

= 0.8BT

Figure 2.5: Vector sketch consolidation remains an open problem. The method by
Orbay and Kara [78] does not generalize well (b). The result of Liu et al. [69] is
noticeably influenced by the choice of method parameters and is imperfect even
after tuning parameter (c).

and distances. Their method then builds initial clusters by thresholding the prob-

abilities and subsequently refines these clusters using an algorithmic branch sepa-

ration step. In their clustering framework, every stroke pair is examined based on

their shortest path which fails to capture the correct positional relationship when

two strokes are in two different branches (should be in two clusters) sharing the

same stem (thus, the shortest path cannot capture this separation). The method

works well when trained and tested on drawings produced by the same artist; but,

as the authors acknowledge and shown in Figure 2.5, this method fails to generalize

to drawings from multiple sources and usually over-merges significantly.

Liu et al. [69] introduce contextual angle and proximity metrics defined relative

to the size of empty spaces, or regions, enclosed by the input strokes. They con-

struct the regions by iteratively merging small regions based on a threshold and in

a similar fashion, they merge the raw strokes iteratively with a threshold adjusted

based on nearby region sizes. As a result of the usage of regions, their method

assumes the input sketches are closed planar maps and thus may have unexpected

behaviors when the sketch contains multiple layers or open curves are involved.

Additionally, as demonstrated in Figure 2.5, their method requires users to man-

17

ually adjust two thresholds, without clear semantic meanings, to produce optimal

results, which diminishes the method’s effectiveness and makes it scale-dependent

even though the input vector sketches are scale-free.

0

100

80

60

40

20

Figure 2.6: Sketch drawing order in color-coding. The drawing order of strokes
in this typical sketch shows that strokes depicting the same local content are often
drawn consecutively shown in similar colors. Yet it is not always the case as there
are few strokes put down out of order indicated by orange and red, perhaps to fulfill
the refinement purpose of overdrawing.

Temporal cues are taken into consideration by several incremental drawing sys-

tems that consolidate sketches on-the-fly [4, 9, 42] and an interactive stroke group-

ing system [76]. These incremental drawing systems [4, 9, 42] are designed for 3D

sketching, and due to the usage of simple cues similar to those of early consolida-

tion methods, heavily depend on user gestures or click inputs as guidance. Noris

et al. [76] take user-drawn guiding strokes as cores and cluster raw input strokes

based on their perceptual similarities to the cores and their drawing orders. Unlike

the consolidation setting where raw strokes are grouped into strips, this interactive

stroke grouping system aims to divide strokes into semantic components, which is

higher level than our target use case. Although the grouping strategies of these sys-

tems are far from error-proof, they inspire us to utilize temporal cue. Our analysis

of manually consolidated inputs shows that around 30% of viewer perceived multi-

stroke strips contain strokes which were not drawn consecutively (an example is in

Figure 2.6). Validated by this analysis, we design the consolidation workflow to

use drawing order as guidance in Chapter 5.

18

2.5 Sketch Connectivity

The connectivity of a sketch is defined by junctions. As described in Section 2.1,

inaccurate junctions are inevitable in freehand sketches. We focus on the inaccu-

racy caused by unintended gaps in this thesis. Existing methods for gap closure are

mostly designed to be used in a semi-automatic setup and can be roughly grouped

into two categories: methods that collect user inputs to guide the following auto-

matic gap connection algorithm; and methods that generates an initial gap closed

result and then optionally interact with user for corrections. Note that due to the

interconnected nature of consolidation and connectivity [69], several consolida-

tion methods mentioned above also tackle the connectivity either in an integrated

raster-to-raster framework [96, 97] or as a by-product from the region based strat-

egy [35, 82].

Within the first category, vector graphics creation systems [1, 3, 39] first ask

user to specify a gap size threshold then automatically close all gaps below the

given value; other methods in vector [76] and raster space [88, 101] fully rely on

user to provide gap closure instructions using stroke-based interactions. The first

type is prone to errors since the gap size alone is insufficient to correctly close all

unintended gaps in a typical sketch with different levels of details. The second

type, as discussed by Parakkat et al. [81], tend to be highly sensitive to properties

of the initial inputs, requiring significant amount of trials-and-errors to produce a

desired outcome. Our method in Chapter 4 is fully automatic and account for a set

of local cues apart from the gap size.

The second category of methods attempt to first automatically close gaps and

only resort to user correction when necessary. Yet since the initial results often

contain artifacts, most methods identify as semi-automatic and consider user cor-

rection as default.

Gap closure is studied for the industrial design drawing. Gryaditskaya et al.

[45] conducts gap closure as a preprocessing step using a distance threshold defined

as a function of stroke width. This heuristic is an improvement over the ones used

by vector graphics creation systems [1, 3, 39] but it is still far from sufficient to

handle all scenarios. We similarly normalize distances by stroke width but our

extended cue set is adequate for the gap closure problem. Other methods [23,

19

105, 106] restrict to a smaller target data type: wireframe drawings of polyhedra,

under the assumption that input drawings contain only straight lines and end-to-

end junctions without intentionally dangling endpoints. While these methods also

make use of multiple cues, their problem setup is much more limited compared to

ours and our method can be applied as-is to drawings of polyhedra.

Input

600 px600 px

1000 px

600 px

1000 px

600 px

1000 px

600 px

1000 px

[Favreau et al. 2016] [Fourey et al. 2018] [Parakkat et al. 2016] [Sasaki et al. 2017] [Simo-Serra et al. 2018a]

Figure 2.7: Recent raster-space gap closure methods produces sub-par outputs with
both unintended junctions and unresolved dangling endpoints on a relatively simple
input. Each region is assigned a different color and white indicates the background.

Sasaki et al. [93] propose a raster-to-raster gap closure method. They employ a

deep learning based structure similar to the raster-to-raster consolidation methods

[96, 97] with the learning objective specified to gap closure. As mentioned earlier,

these raster-to-raster consolidation methods can implicitly close gaps while fulfill-

ing the consolidation task. Zhang et al. [116] collect Danbooregion, a large dataset

of regions in 5377 raster cartoon drawings annotated by real artists. To achieve this

amount of data, they assist artists with a neural network trained on a small subset

in a human-in-the-loop annotation fashion. Building upon Danbooregion, Zhang

et al. [116] develop a neural network based flat-filling method to color each region

in an input raster line drawing with a single color based on a user color scrib-

ble. Similarly based on neural networks, Yan et al. [113] create a flat colorization

method with a different interaction design. Based on their interviews of profes-

sional webtoon creators, they introduce automatically generated neural lines that

connect gaps to define initial regions, then their system allows artists to rewrite neu-

ral lines in the following fine colorization stage. All these raster-to-raster methods

suffer from the resolution dependency issue similarly to the consolidation problem

setup.

Determining intended junctions via region detection on raster input is a com-

20

mon strategy. Several methods apply a combination of trapped-ball initialization

and subsequent diffusion locate closed regions in raster line drawings [35, 117].

Although this is a fully automatic procedure, the authors acknowledge that when

using their default parameters the method may often fail to produce results aligned

with user expectations and thus require per-input tuning or detailed user correction.

Alternatively, other methods detect regions via Delaunay triangulation [81, 82],

or via extending curves with dangling endpoints [38]. These methods also tend

to produce redundant regions and since the target application is colorization, they

rely on users to duplicate colors for redundant regions. All these raster based meth-

ods, despite the support of a fully automatic mode, depend on user corrections for

desired results and frequently mishandle open curves within a region like in the

consolidation setup. We leverage information provided by vector data to address

a more general problem of locating and closing unintended gaps, including both

gaps along region boundaries and between strokes internal to such regions.

(a) (b)

Figure 2.8: Jiang et al. [54] connects most of dangling endpoints in the input (a)
yielding a great number of redundant regions while still mishandling detailed areas,
e.g., fingers in this example (b).

Jiang et al. [54] propose a vector-space gap closure method. They hold the

assumption that the vast majority of dangling endpoints are unintended, leading

their method to often close gaps that viewers perceive as intentional (Figure 2.8).

Therefore, like the region detection based methods above, they propose a semi-

manual interface that enables users to correct such undesirable connections.

21

Chapter 3
StrokeAggregator: Artist-Intended Vec-

tor Sketch Consolidation

(a) (c) (d)(b)

Figure 3.1: Stroke consolidation: (a) a raw, vector format, sketch; (b) manually
consolidated clean curve drawing; (c) algorithmically clustered strokes and (d)
consolidated curves. Our output curve set (d) is of similar quality to the manu-
ally generated one (b). Please zoom in online to see image details. Raw sketch:
© Enrique Rosales. Manual consolidation: © Elinor Palomares.

Freehand line drawing provides a natural avenue for artists to quickly commu-

nicate shapes, ideas and images. When creating line drawings from scratch, artists

often employ oversketching, using groups of multiple raw strokes to depict their

intended, aggregate, curves (Figure 3.1a). Human observers can easily visually

parse, or consolidate, these drawings by mentally replacing clusters of raw strokes

with their corresponding aggregate curves. To create more refined, colorized, or

shaded drawings, or to use these sketches as inputs to editing or modeling software,

artists typically perform manual stroke consolidation by retracing the drawing and

replacing raw stroke clusters with carefully drawn corresponding aggregate curves

(Figure 3.1b) [2, 32]. In this chapter, we present StrokeAggregator, an algorithm

that generates consolidated drawings of comparable quality to those generated by

artists (Figure 3.1d) and lays the foundation for further improvements in Chapter 5.

22

3.1 Introduction

Given the prevalence of tablets and other pen-sensitive displays, artists can easily

create line drawings within a computer program and have the strokes recorded in

vector form. These vector drawings contain more information about artist intent

than their raster counterparts, motivating us to use vector format sketches as in-

put. Algorithmic consolidation of both raster and vector drawings remains an open

challenge: existing methods require parameter tuning and frequently fail to pro-

duce satisfactory results. Manually generating consolidated drawings from either

raster or vector sketches requires expertise and time. An artist required nearly thirty

minutes to create the consolidated drawing in Figure 3.1b; our algorithm generated

a comparable quality consolidated drawing in five minutes.

We identify and describe the core factors that lead viewers to mentally consoli-

date raw strokes in line drawings in Section 3.2.1. Intuitively, we expect aggregate

curves to correspond to distinct, narrow clusters of roughly evenly spaced strokes

(Figure 3.2). We expect strokes within the same cluster to be angle compatible, or

to be roughly parallel along their nearby side-by-side sections (Figure 3.2a), and

expect strokes within the same cluster to be roughly evenly spaced; we expect this

internal spacing to be significantly smaller than the closest distance from strokes

within the cluster to all partially parallel strokes outside it (Figure 3.2b). Percep-

tion literature refers to this spacing-based property as relative proximity or relative

distance [104]. Our challenge is to algorithmically account for these properties.

Relative proximity assessment is complicated by the fact that pairwise distances

between strokes can vary at different points along them, resulting in different spac-

ing along different side-by-side stroke sections (Figure 3.2d). Human observers

mentally separate stroke branches once the spacing between them becomes visibly

uneven. Algorithmically replicating branch separation requires local analysis of

spacing between side-by-side strokes.

Our algorithm is based on two key insights. We note that for nearby strokes,

angular compatibility provides a strong negative cue: nearby strokes with sharply

varying tangent directions are unlikely to describe the same aggregate curve. We

also note that given a group of angle compatible strokes, we can successfully assess

if these strokes form an internally consistent cluster with respect to the principles

23

(c)

(e)

(b)

(d)(a)

Manual consolidation

Input raw sketch

Figure 3.2: Manual consolidation examples (color shows stroke grouping): (a) a
typical cluster consists of strokes which are angle compatible, or roughly paral-
lel along their side-by-side portions; (b) within each cluster, strokes are roughly
evenly spaced and the internal distance is much smaller than the inter-cluster dis-
tance. Note that the absolute distance between the top red and blue clusters is
roughly the same as the internal absolute distance of the orange cluster; however,
humans treat the two differently based on relative proximity rather than absolute
distance; (c) disjoint Gestalt continuous clusters define separate aggregate curves;
(d) connected branches with uneven internal density define separate curves; (e)
width to length ratio, or cluster narrowness impacts viewer choices. Here, strokes
are viewed as separate despite satisfying all other grouping cues. Raw sketch:
© Enrique Rosales. Manual consolidation: © Elinor Palomares.

above. We use these observations as the basis for a coarse-to-fine gradual clus-

tering framework (Section 3.3). We form initial coarse clusters based on angular

compatibility between strokes and refine those based on average pairwise distance

between them, to form clusters of roughly evenly spaced strokes (Section 3.3.1).

We then perform local analysis of intra-cluster stroke spacing to detect and sepa-

rate stroke branches (Section 3.3.2). In the presence of perceptual ambiguities in

both stages, we separate groups of strokes absent clear evidence that the combined

cluster satisfies all necessary perceptual criteria. Our final step (Section 3.3.3) re-

lies on the internal consistency of the computed clusters to resolve ambiguities and

to merge clusters which are both angle and spacing compatible. Finally, we fit a

24

shape preserving aggregate curve to each resulting cluster (Section 3.4). We rely on

the same set of perception driven parameters across all inputs throughout the entire

process; we derive their values from perception literature, and customize them to

our setting via targeted human perception studies (Appendix B.1).

Key to our approach is the ability to consistently assess perceptual compati-

bility between, and within, groups of strokes; and to use the same metrics across

different configurations of overdrawn strokes that artists may draw (Figure 2.1, see

surrounding text for description). We provide this unified framework by comput-

ing a common parameterization for each group of assessed strokes based on their

corresponding aggregate curve.

In summary, our overall contribution is the first sketch consolidation method

that reliably generates output curve networks that are consistent with viewer expec-

tations without the need for any parameter tuning. We achieve this goal by leverag-

ing a combination of perceptual criteria and insights about artistic practices, which

guide our clustering framework and help resolve data ambiguities.

We present a gallery of results generated using our algorithm on a diverse set of

36 raw line-drawings, created by multiple artists (Section 3.6). We validate our ob-

servations and algorithm via a series of user studies, and extensive comparisons to

prior art and manually consolidated drawings. These experiments jointly confirm

that our method outperforms the state of the art, and provides results consistent

with viewer expectations. We plan to release our data and code to facilitate further

research.

3.2 Overview

3.2.1 Perception of Oversketched Strokes

To mimic the mental process viewers apply to consolidate the drawing, we rely

on the following observations about human perception of sketches derived from

perception literature and sketching tutorials.

Angular compatibility. Studies indicate that viewers rely on angular compati-

bility, or the degree of similarity between stoke tangents, when grouping nearby

25

side-by-side strokes [8, 90] (Figure 3.2a). While viewers mentally group strokes

that serve as visible continuation of one another [11] they do not hallucinate curves

absent from the drawing, and thus employ separate corresponding aggregate curves

for such strokes (Figure 3.2c).

Figure 3.3: Humans group visual objects based on relative distance. The clustering
below (indicated by coloring) has the inner-cluster distance that is the same as the
inter-cluster distance above.

Relative proximity. Perceptual literature strongly suggests that humans group ob-

jects based on relative proximity, or relative distance: given a set of shapes, we

visually group objects if the spacing between them is much smaller than the space

between them and other objects (see Figure 3.3) [104]. Proximity can also be

interpreted as a function of density: the perceived groups have near-constant in-

ternal object density, while incorporating any other object into the group would

result in highly uneven density. Note that this grouping is contextual—similarly

spaced objects (Figure 3.3, top versus bottom) are seen as belonging to the same,

or different, groups based on the position of other objects. Also note that prox-

imity based grouping is scale independent, scaling all distances in Figure 3.3 by

the same amount will not change the grouping. Using proximity as a criterion

for stroke grouping poses several challenges. First, it requires context, since one

cannot assess the relative proximity of any individual pair of strokes. Second,

relative proximity is a negative rather than positive property: it indicates when ob-

jects do not belong together—when both or one of them have much more close by

objects—not when they do. For roughly evenly spaced strokes, relative proximity

alone provides no cue as to whether these strokes should, or should not, belong to-

gether. Lastly, distances between side-by-side strokes vary at different points along

them, raising a question of how to assess proximity locally.

26

Narrowness. We speculate that humans intuitively understand curves as being

narrow, namely having a small width to length ratio. We believe they use this in-

tuition to distinguish between equally spaces strokes that jointly depict aggregate

curves and those that do not (Figure 3.2e). We incorporate this narrowness crite-

rion into our clustering algorithm, and use a narrowness threshold estimated via a

perception study that validates our hypothesis (Appendix B.1).

(a) (b)

Disconnected

Connected

1 or 2 clusters?

2 clusters

Figure 3.4: Connectedness and strength in numbers cues.

Connectedness. The connectedness principle highlighted by perception research

[104] suggests that humans group objects that are inter-connected, such as points

connected by lines. For strokes, this principle argues for grouping intersecting or

near intersecting strokes when doing so does not contradict other cues (see Fig-

ure 3.4a).

Strength in numbers. Even with these cues in place, we theoretically can have

stroke configurations which, from a purely perception driven perspective, are am-

biguous (see Figure 3.4b). To address this type of configurations, we leverage artist

intent. Specifically, we recall that our inputs are generated by artists who intend

for viewers to assemble a clear mental image of the drawn content. Design litera-

ture [32] suggests that artists rely on thicker, overdrawn, lines to enhance drawing

clarity and eliminate ambiguities. This suggestion confirms our observation that

artists use tight multi-stroke clusters to highlight intended aggregate curves that

may be ambiguous when drawn with a single stroke (Figure 3.4b). We refer to this

principle as strength in numbers and use it to resolve ambiguous configurations,

27

(a)

(b)

(c)

(d)

Figure 3.5: Local versus global proximity: (a,c) on-average evenly spaced (and
connected) strokes may depict multiple aggregate curve branches; (b,d) perceived
narrow clusters.

by using stroke number within a cluster as a factor in the final decision making

(Figure 3.6d, Section 3.3.3).

3.2.2 Algorithm

(a)

(b) (c) (d)

(e)

...

Unify into
larger clusters:

Figure 3.6: Given a raw vector sketch (a), our method first clusters based on pair-
wise compatibilities of angle and relative proximity, resulting in clusters consisting
of connected parallel strokes (b, Section 3.3.1). Our method then analyzes relative
proximity within each cluster to separate branches (c, Section 3.3.2). Given these
reliable clusters, our method assesses all pairs of nearby clusters and merges them
following the visual grouping rules (d, Section 3.3.3). Finally, the clusters are
consolidated into the cleaned-up sketch (e, Section 3.4). Raw sketch: © Enrique
Rosales.

The observations above provide cues for judging the likelihood that a given

group of strokes depicts a single aggregate curve; however, these cues cannot be

easily translated into any standard clustering framework. While relative proximity

plays a major role in clustering decisions, assessing it requires context and thus

28

cannot be reliably performed on stand-alone stroke pairs. Moreover, distances be-

tween strokes may vary at different points along them, requiring fine-grained local

analysis to separate connected stroke branches that depict different curves (Fig-

ure 3.5), which in turn requires a meaningful dense inter-stroke correspondence.

Our method overcomes these challenges by employing a targeted clustering frame-

work that refines clusters by gradually incorporating new and more localized per-

ceptual cues into their assessment (Figure 3.6). We first coarsely cluster strokes

based on average, or global, compatibility between their strokes (Section 3.3.1,

Figure 3.6b). We first assess the angular compatibility of each pair of strokes in-

dependently. While this metric may become fuzzy for far away strokes and bor-

derline cases, we successfully use it to provide initial, rough stroke segmentation

(Section 3.3.1). We refine the obtained segmentation by assessing the relative prox-

imity between strokes within each angle-compatible cluster, breaking clusters into

sub-clusters, each of which has roughly uniform average inter-stroke spacing (Sec-

tion 3.3.1). We then assess the width of the resulting clusters, as well as their

local spacing uniformity. We use both cues to detect and refine clusters which are

only weakly connected, namely those that have multiple distinct curve branches

(Section 3.3.2, Figure 3.5). The output of this stage is a set of stroke clusters that

satisfy all our perceptual criteria, and their corresponding aggregate curves (Fig-

ures 3.6c, 3.5bd).

Across all these clustering stages, we opt for a conservative interpretation of

ambiguous and borderline cases, keeping strokes apart absent clear evidence of

compatibility. The last merging stage of our algorithm resolves these ambiguous

cases by relying on the fact that, at this point, most of the clusters already con-

tain multiple strokes; we can therefore use intra-cluster stroke proximity to more

reliably assess inter-cluster relative proximity. We merge pairs of clusters if the

combined cluster satisfies our key perceptual criteria: angle, relative proximity,

and narrowness. Since most of the processed clusters contain multiple strokes, we

also employ the strength in numbers principle by including cluster size in our con-

sideration of borderline cases. This process is repeated until no more cluster pairs

can be merged (Section 3.3.3, Figure 3.6d).

To assess the different properties of the considered clusters throughout the al-

gorithm, we compute their corresponding aggregate curves (Section 3.4) and use

29

those as a common reference frame, or parameter domain, for perceptual proper-

ties assessment. We use the same computation to generate the final consolidated

drawing (Figure 3.6e).

Input and Output. The input to our algorithm is a line drawing in vector format,

generated using a standard stylus and tablet interface, and where each stroke is

represented by a polyline. We expect each stroke to have an associated width value,

generated via tablet pressure or other UI specification, and we assume a stroke

width of one if such a value is not available. We replace clusters of strokes that

jointly depict individual artist intended curves by their corresponding aggregate

curves. We represent the aggregate curves using the same format as the input

strokes: as polylines with an associated width. We leave it to the user to decide if

they want to fit these polylines with smooth curves later on (e.g. using the methods

in [7, 72]).

Raw strokes captured via a stylus-on-tablet interface are often noisy due to a

combination of involuntary hand movement and capture software inaccuracy [7,

72]. We pre-process the raw data as described in Appendix A.1. We do not use this

process on previously cleaned data, such as the examples provided by [69]. Our

figures include both raw and pre-processed strokes: input renders show the raw

strokes and clustering output images show pre-processed ones for comparison.

3.3 Stroke Clustering

3.3.1 Coarse Clustering

Clustering Based on Angular Compatibility

The angular compatibility between a stroke pair provides the first cue about whether

these strokes depict a common aggregate curve. Two nearby strokes Si and S j are

more likely to depict the same aggregate curve when they are fully or partially

parallel and are less likely to belong together when they are orthogonal to one an-

other. We define an angular compatibility score ComA(Si,S j) that addresses all

these scenarios (Equation 3.1). This score is set to be positive for strokes that are

30

angle compatible, and negative for those which are not. The value of the score

reflects the degree of (in)compatibility. Since angle provides a confident estimator

of compatibility only for nearby side-by-side strokes, we set the score to a small

negative value for all other stroke pairs, allowing their clustering to emerge from

the interaction of more adjacent strokes.

Given the angular compatibility scores, we wish to group stroke pairs with

positive scores, to separate strokes with negative scores, and to resolve ambiguities

by considering the magnitude of the scores. This set of requirements naturally fits

into a correlation clustering framework [5]. The advantage of using correlation

clustering over other clustering formulations is that the number of clusters emerges

directly from the input scores and does not need to be estimated as a priori. We

formulate our clustering goal as maximizing ∑i j ComA(Si,S j)Yi j, where Yi j = 1 if

the two strokes are in the same cluster and Yi j = 0 otherwise. Obtaining an optimal

correlation clustering is proven to be NP-complete; we use the method of Keuper

et al. [59], which provides an efficient approximation of the optimum.

Pairwise Angular Compatibility Score

We require an angular compatibility score that is robust to noise and accounts for

the different adjacency relationships between stroke pairs: strokes that are fully

and partially side-by-side. In previous work, this problem is handled by crafting

multiple special cases [8, 69] or by considering only angles at closest points [78].

Purely local angle computation is clearly unreliable, as point-wise normals can be

noisy, but an average or integral measure requires a meaningful reference frame

or correspondence between the two strokes. We provide a unified, integral angu-

lar compatibility score by first fitting a common aggregate curve SA
i j to the pair

of strokes Si and S j (Section 3.4), and then assessing the angles between the tan-

gents of this common curve and each of its originating strokes. Specifically, we

define Da(Si,S j) (Equation 3.2) as the angular distance between each stroke and

the aggregate curve and set Da(Si,S j) = max(Da(Si,SA
i j),Da(S j,SA

i j)). Since each

point on the input strokes has a corresponding point on the fitted curve, this for-

mulation addresses all possible stroke configurations, providing a unified measure.

We convert this angular distance value φ = Da(Si,S j) into a compatibility score as

31

follows:

ComA(Si,S j) =

1, φ < 8◦

exp(− (φ−8◦)2

2σ2
1

), 8◦ ≤ φ < 17◦

0, 17◦ ≤ φ < 23◦

−1.5exp(− (φ−30◦)2

2σ2
2

), 23◦ ≤ φ < 30◦

−1.5, 30◦ ≤ φ

, (3.1)

The parameters of this function reflect cues from perception research. Litera-

ture indicates that viewers use approximately 20◦ as the threshold distinguishing

between perceived similar and dissimilar tangents [49]. We therefore center our

compatibility function around this value, and use an angular compatibility thresh-

old Ta = 20 through the rest of our computations. We set the size of the Gaussians

to create smooth dropoff: σ1 = 9◦/3.5,σ2 = 7◦/3.5. At this stage we are seek-

ing for conservative clusters, and therefore we use a higher negative than positive

maximal correlation score (1 v.s. −1.5).

Angular compatibility only impacts clustering decisions for nearby curves. We

expect far away curves to end up in the same final cluster only if they are in-

terconnected via series of intermediate proximate and angle compatible strokes

(Figure 3.2ac). We therefore set the overall score to a minuscule negative num-

ber −10−6 for strokes that are far from one another (farther than twenty times the

stroke widths, 20Ws away at their nearest points) or have no side-by-side sections

(Figure 3.7). This value is small enough to allow strokes to be grouped together if

they share angle compatible intermediate strokes, but pushes them apart otherwise.

Angular Distance

We compute the angular distance between a stroke Si and a corresponding ag-

gregate curve SA
i j as follows. For a point p ∈ Si, we define the corresponding

point p′ ∈ SA
i j as its closest point on the aggregate curve. Given this correspon-

dence mapping p′ = Mi(p), we compute the pointwise angular difference at p′ as

Ai(p′) = arccos(t · t′). Here, t and t′ are unit tangents to Si and SA
i j at p and p′

respectively.

32

Figure 3.7: Stroke pair layouts.

We intend to use the stroke to curve angular distance to evaluate whether two

strokes are roughly parallel. Therefore, instead of integrating angular distances

along the entire curve, we narrow the computation to sections of interest where

points on the aggregate curve have corresponding points on both input strokes I1

(Figure 3.7, blue). We evenly sample the points p along SA
i, j and define the angular

distance as

Da(Si,SA
i, j) =

1
|I1| ∑

p′∈I1

Ai(p′), (3.2)

where |I1| is the number of samples along the section I1.

Average Proximity Based Clustering

Our first step of the coarse clustering stage focuses on angular compatibility, and

thus often groups side-by-side strokes which are visibly disjoint (Figure 3.8a). We

separate such strokes by breaking angle compatible clusters into sub-clusters with

no sudden internal proximity changes based on average inter-stroke proximity.

This process results in clusters which are narrow enough to be effectively parame-

terized via a shared aggregate curve based correspondence (Figure 3.8b). We use

the computed correspondences to further refine these clusters using local proximity

analysis (Section 3.3.2, Figure 3.8c).

To measure the proximity, or distance, between two strokes Si and S j we fit

them using an aggregate curve SA
i j which provides us with their common parame-

terization. We define the correspondence mapping q = Mi j(p) where Mi(p) = p′ =
M j(q) are the mappings from the strokes to the curve SA

i j. Note that by construc-

tion the points p′,q,p are colinear and the line connecting them is orthogonal to

33

(a) (b)

(c) (d)

Figure 3.8: Clustering stages: (a) angle based clustering output with two clusters
(pink and cyan) highlighted; (b) average proximity based clustering breaks these
two clusters into roughly evenly spaced distinct components; (c) local refinement
separates branches producing uniformly narrow clusters; (d) consolidated output.
Input sketch is from [78].

the aggregate curve. The average distance is then defined as

Di, j(I1) =
1
|I1| ∑

p′∈I1

||p−q||. (3.3)

If the side-by-side section |I1| is empty we set the inter-stroke distance Di, j =+∞.

Our computation directly employs the mapping between the stroke points, since at

this point in the computation, the side-by-side portions of the strokes we consider

are roughly parallel, ensuring reliable correspondences. This was not the case for

the angle difference computation (Equation 3.2), where to obtain reliable values

we had to map strokes to the aggregate curve instead of to one another.

To measure proximity within a cluster C, for each stroke, we locate its nearest

neighbor based on the inter-stroke distance. We define the internal cluster proxim-

34

ity as the maximum of these distances:

Dc = max
i∈c

(min
j∈c, j 6=i

(Di, j)).

Intuitively, this value measures the size of the largest gap between strokes in the

cluster. We measure the distance between two distinct clusters by finding the clos-

est distance between any two strokes where each stroke belongs to a different clus-

ter:

Dc,c′ = min
i∈c, j∈c′

Di, j

Following the relative proximity principle, we merge clusters C and C′ if both of

the following conditions are true.

Dc,c′ < T ′d ·max(Dc,Dc′),

max(Dc,Dc′)< T ′d ·min(Dc,Dc′).

We set T ′d as follows. Our proximity study (Appendix B.1) indicates that humans

separate lines when the ratio of intra-cluster to inter cluster distances reaches ap-

proximately Td = 2.1. The distances we employ at this stage are averaged along

the full length of the strokes, and are thus only approximating closest inter- and

intra- cluster distances. We perform more fine grained-analysis during subse-

quent local separation; therefore, to avoid over-segmentation at this stage, we use

T ′d = 1.25 ·Td . Increasing the multiplicative factor from 1.25 to 1.3, or even 1.4,

leads to no visible changes in our outputs.

We merge clusters incrementally, using the merging criterion above. We speed

up computation by using the HDBSCAN algorithm [16].

Initialization. Our clustering criterion uses intra-cluster distances Dc. However,

these are only meaningful for clusters with at least two strokes. We generate initial

clusters by leveraging the connectedness principle. We recall that intersecting or

near-intersecting strokes are likely to be seen as grouped together. We therefore

generate initial clusters by forming (near-)connected stroke components. We con-

sider two partially side-by-side strokes as nearly-intersecting if they have pairs of

35

points at a distance less or equal to twice the stroke widths, 2Ws. We group inter-

secting pair of strokes only if the resulting clusters conform to our perceptual cues:

we check that the two strokes are angle compatible and that their joint aggregate

curve is narrow. We measure angular compatibility as

Ai, j(I1) =
1
|I1| ∑

p′∈I1

arccos(t(p) · t(q)), (3.4)

where p′ = Mi(p) = M j(q), and t(p), t(q) are their respective tangents. If the angle

average Ai, j exceeds the threshold Ta, we keep the strokes separate. To assess nar-

rowness, we compute the width Wc of their joint aggregate curve (Equation 3.5) and

compare the curve’s length to width ratio against the threshold Tn = 8.5 established

via our study (Appendix B.1).

Aggregate Stroke Width To compute the width of an aggregate curve, we first

shoot left and right orthogonal rays from densely sampled point p ∈ I1 on the

curve and locate the farthest left and right intersections il(p) and ir(p) with cluster

strokes along each ray. We set the width as

Wc = max(Ws,median
p∈I1

(||il(p)− ir(p)||)). (3.5)

3.3.2 Local Cluster Refinement

The clusters obtained via this bottom-up clustering are visually connected but may

depict multiple connected curve branches instead of a single aggregate curve (Fig-

ures 3.5, 3.8, 3.9). We detect such multi-branch clusters and separate them into

branches that correspond to individual aggregate curves using a top-down recur-

sive process (Algorithm 1). At each level of the algorithm we consider two criteria:

evenness of the internal spacing between cluster strokes (Section 3.3.2), and cluster

narrowness. We assess narrowness as described in Section 3.3.1. For any cluster

that fails one of these tests, we perform the split that maximally reduces spacing

unevenness (Section 3.3.2). Once a cluster is split into left and right branches, we

recursively apply the refinement algorithms to these branches.

36

In assessing spacing evenness, we seek to detect contiguous branches, or sub-

clusters, that have significantly larger intra-cluster spacing along a significant por-

tion of their length, compared to the internal spacing within each branch (Sec-

tion 3.3.2). We generate candidate sub-clusters based on local inter-stroke spacing

(Section 3.3.2) and then compare their internal spacing to the inter-cluster one to

determine if they indeed need to be separated (Section 3.3.2).

ALGORITHM 1: Recursive Branch Separation
Input: A set of strokes to separate, C.
Output: ResultBranches.
ResultBranches←{C};
PotentialSeparations← FindPotentialSeparations(C) (Sec. 3.3.2);
Rmax← 0; {C∗L,C∗R}← {C, /0};
for each separation {CL,CR} in PotentialSeparations do

R← ComputeGapRatio({CL,CR}) (Sec. 3.3.2);
if R > Rmax then

Rmax← R; {C∗L,C∗R}← {CL,CR};
end

end
if Rmax > Td or C violates Narrowness then

LeftBranches← RecursiveBranchSeparation(C∗L);
RightBranches← RecursiveBranchSeparation(C∗L);
ResultBranches← LeftBranches ∪ RightBranches;

end

Potential Clusters

We compute potential sub-clusters by analyzing local spacing between strokes

(Figure 3.9). We parameterize each cluster by shooting orthogonal rays from

densely sampled aggregate curve points and compute the intersections of these

rays with the cluster strokes (Figure 3.9, inset). We order the intersections from

leftmost to rightmost (with left and right defined with respect to the aggregate

curve direction). The lengths of the segments, or gaps, between consecutive inter-

sections along individual rays, provide a local measurement of relative proximity.

If all these gaps are of equal size, then visibly the intersection points and their cor-

responding strokes are grouped together. If a gap g is much larger than the gaps

to the left gL ∈ GL and right gR ∈ GR of it, then the intersections to the left and to

37

r = 0
r > 0

r > 0

r = 0

Figure 3.9: Local cluster refinement: Pointwise stroke correspondences are defined
using intersections between strokes and orthogonal rays emanating from the clus-
ter’s aggregate stroke (black). The spacing between lowest top (blue) and highest
bottom (orange) intersection points is significantly larger than the internal spac-
ing within the top (blue) and bottom (orange) branches. We measure this uneven
distribution of intersection points by comparing the inter-cluster gap g (gray, up-
per inset) and the left, right gaps gL,gR (blue, orange, upper inset). The measured
gap ratio r is positive when the two clusters are clearly separate (upper inset, blue
shadow section) and zero when they overlap (lower inset, red shadow section).

the right and the strokes they lie on are locally visibly separate (Figure 3.9). We

first detect candidate gaps g which indicate possible cluster separation using the

ratio between the length of this gap and that of those left and right to it as a cue

Specifically, we mark a gap g as a candidate if

g > Td(gL +gR)/2.

If g is the leftmost or rightmost gap, we only compare its size against that of the

gaps to the right, or left, respectively. If there is only one gap, i.e. only two

participating strokes, we set gL = gR = 2Ws, the same lower bound on gap size as

in the initialization of Section 3.3.1.

Given a candidate gap, we assign the strokes to the left and right of it into sep-

arate left and right clusters, CL and CR, respectively. We then assign the remaining

strokes to these clusters as follows. We first advance left and right along the aggre-

gate curve as long as all currently marked strokes remain on correct sides. At each

38

Figure 3.10: The growing step for potential separation generation. At position pj,
given the gap across the aggregate curve, the intersection points are labeled into
blue and orange, and the strokes are labeled correspondingly. The assignment at
pj is propagated into pj−1 and pj+1. There are three possible separations at pj−1
defined respectively by g1 to g3. Our method chooses the largest gap g2 greedily.
There is only one possible assignment at pj+1.

encountered aggregate curve point, we split the unmarked strokes locally based on

the largest gap between the previously marked strokes. Intuitively, the optimal as-

signment of the remaining strokes is one that maximizes the average gap between

the left and right clusters. To make this assignment, we assess three alternatives

and choose the separation that produces the largest average gap ratio. The three

alternatives we test are assigning each stroke to the nearest, left or right, cluster

based on shortest distance, assigning all remaining strokes to CL, or assigning all

remaining strokes to CR.

Separation assessment

Given a pair of clusters, we analyze the gap ratio to determine whether they should

be separated. We iterate over all rays that intersect both clusters and, for each ray,

locate the leftmost intersection with the right cluster and the rightmost intersection

with the left cluster. If these intersections are immediately next to one another, we

compute the ratio between the size of middle gap g and the size of the average left

39

and right gaps as above

r = g/((gL +gR)/2).

If the intersection order is flipped, the clusters are locally connected. In this case,

we set r = 0.

The left and right gap values are ill-defined if the one of these clusters consists

of a single stroke. They can also be arbitrarily small at a location where two or

more strokes intersect; a division by a value close to zero would result in an ar-

bitrarily large ratio value which would drastically change the average ratio. We

resolve both cases by rounding (gL +gR)/2 up to a lower bound. To determine the

bound we compute the average inter-stroke distances dl and dr within the left and

right clusters. If the larger of these is above the baseline value of 2Ws that we use

throughout (Section 3.3.1, 3.3.2), we use 2Ws as the lower bound.

(a) (b)

Figure 3.11: Special cases of separation assessment. Wide cluster is separatable
even when inter-stroke distance is small (a); An intermediate cluster may contain
more than one branch (b). Input sketches: © Enrique Rosales.

Otherwise, we examine if the cluster is sufficiently wide to potentially merit

separation. We classify a cluster as wide if the ratio of its length l to its maximal

gap gm inside is close to the narrowness threshold l/gm < 2Tn. We use the default

bound for non-wide clusters. For clusters which are wide, yet have very small

left and right inter-stroke distances (see Figure 3.11a), we follow the strength in

numbers principle and use the smaller bound max(dl,dr,Ws). This choice facil-

40

(a) (b) (c)

Figure 3.12: Final unification: (a) before; (b) after, (c) consolidated result. Input
sketch: © Enrique Rosales.

itates separation of small clusters with small inter-cluster gaps but even smaller

intra-cluster gaps.

We use these computed ratios to determine if the left and right clusters are

separable. In theory, if each of the left and right clusters had uniform internal

spacing, we could directly compare the average of local ratios r to our proximity

threshold Td to determine if the two clusters need to be separated. However, our

original cluster could have multiple branches (Figure 3.5ab). Thus, either of the left

or right clusters may consist of more than one branch (see Figure 3.11b) and, as a

result, may have large internal gaps; this makes gap ratio assessment less reliable.

To nevertheless separate such right and left clusters, we use a more lax gap ratio

assessment, setting R to the average of the 90% largest ratio values and compare

this number to the threshold as a separation criterion. While this approach may

occasionally lead to over-segmentation, the resulting split clusters are merged back

by our final unification step. If multiple cluster pairs pass the splitting test, we

select the one with the largest R.

3.3.3 Cluster Unification

We finalize the consolidation process by assessing each pair of clusters and merg-

ing them if the joint cluster satisfies our compatibility criteria (angle, proximity,

and narrowness). We can now perform this task reliably as most clusters now con-

tain multiple strokes, allowing for reliable relative proximity assessment and aggre-

gate curve width estimation. Conceptually this step mirrors our branch separation

41

step (Section 3.3.2) by using similar criteria and principles. As an optional step,

we further consolidate the output drawing by detecting and enforcing T-junctions

and shared end points between aggregate curves.

Pairwise Assessment We determine if a pair of clusters Cl and Cr should be merged

based on narrowness, local angular compatibility, and relative proximity. We assess

narrowness as before: we compute a common aggregate curve SA
lr that corresponds

to the union of the two clusters. If the length to width ratio of the curve SA
lr is

smaller than Tn, we keep the two clusters separate.

We assess angular compatibility within the region where the two clusters are

side-by-side. Given the aggregate curve SA
lr and the left and right aggregate curves,

Sl and Sr, we compute the average angle difference as described in Equation 3.4

by averaging pointwise angle differences between Sl and Sr with respect to SA
lr. If

the angle average exceeds the threshold Ta, we keep the clusters separate.

Figure 3.13: The outermost strokes in a cluster form a cluster envelope that is used
to assess proximity between clusters.

Proximity Assessment. In assessing proximity between clusters, we try to over-

come local noise by computing distances between clusters that account for their

average rather than pointwise width. We wish to use this average width when com-

puting distances between clusters in regions where the pointwise width is smaller

than the average. To this end, we introduce the notion of a cluster envelope (see

Figure 3.13) computed based on the cluster’s width. This envelope is designed to

reflect the average width of the cluster and contain all cluster strokes. We fit ev-

ery cluster with an aggregate curve SA and compute the widths of these curves Wc

(Equation 3.5). We define the cluster envelope using the cluster’s width as follows.

We shoot orthogonal rays left and right from dense ordered samples on the clus-

42

ter’s aggregate curve. If the distance from the curve to the outermost intersection

with a cluster stroke is larger than half the curve’s width, we use this intersection

(Figure 3.13, green) as an envelope vertex, otherwise, we use a point along the

ray at a half width distance as a vertex (Figure 3.13, blue). We connect vertices

corresponding to adjacent samples on the left and right of the curve, forming two

envelope boundaries. We connect the last left and right vertices on both ends of the

cluster to form a closed envelope polygon.

For each cluster we compute the median gap g within it. To compute it, we

consider all gaps between adjacent intersections along orthogonal rays emanating

from aggregate curve samples. For median computation we ignore rays that inter-

sect only a single stroke, as well as intersections which are less than a stroke width

apart.

We merge clusters if the distance between their envelopes is less than Td · (gl +

gr)/2 everywhere along their side-by-side sections. We measure the local distances

along the rays computed for each cluster and compare those to our threshold. To

account for noise in the computation, we ignore sequences of gaps larger than

this threshold if the length of this sequence (measured as distance between the

originating samples of the rays) is less than min(5Ws,0.1 ·L) where L is the length

of the aggregate curve SA
lr.

Figure 3.14: An example of an outlier stroke visually separate from the other
strokes in their intended cluster, sourced from Liu et al. [69].

43

Single-stroke clusters. As noted earlier, relative proximity assessment requires at

least three strokes to be meaningful, making assessment of proximity for single-

stroke clusters problematic. Moreover, when drawing free-hand, artists do occa-

sionally draw outlier strokes—ones that are intended to depict a target aggregate

curve but are sufficiently inaccurate to be visually separate from the other strokes

in their intended cluster (see Figure 3.14).

We handle such ambiguous configuration by leveraging the strength in numbers

principle. For pairs of clusters where one cluster has multiple strokes and the other

has only one stroke, we use the angle and narrowness tests as above, but apply a

relaxed version of the proximity test as follows. We keep the clusters apart if the

shortest distance between the single stroke and the envelope of the multi-stroke

cluster is larger than the median gap g computed on the multi-stroke cluster m.

Otherwise, as before, we measure the gaps between the cluster’s envelope and the

stroke and compare those to Td ·g. We relax the strict proximity requirement above

and merge the stroke into the cluster if half the gaps within the side-by-side region

are below the threshold.

We finally consider pairs of single-stroke clusters. We use exactly the same

process as for the single stroke test above, but use the stroke width Ws in lieu of the

gap size g.

Outliers. Finally, we addresses a common artifact present in raw artist drawings.

When artists draw clearly erroneous strokes, instead of deleting them, they some-

times simply hide them underneath wide clusters of overdrawn strokes. To detect

such outliers, for each pair of single-stroke and multi-stroke clusters we assess con-

tainment as follows. We intersect the single stroke S with the cluster’s envelope

and measure the portion of S which is outside the envelope. We classify the stroke

S as an outlier and remove it from the consolidated output, if this portion is less

than 10% of its length.

Enforcing curve connections. We locate and enforce coincident aggregate curve

end-points and T-junctions as an optional post-processing step. We consider two

endpoints of aggregate curves Si and S j with width Wi and Wj respectively as co-

44

After:

Before:

Figure 3.15: T-junctions are optionally enforced as a post-processing step.

incident, if they are within a distance of Wi +Wj from one another. We consider an

end-point of a curve Si as forming a T-junction with the curve S j if it is similarly

within distance Wi+Wj from its closest point on S j. To enforce these detected con-

nections, we project the stem end-points at T-junctions to the top curves of the T,

and place the shared end-points at their average locations. We propagate the con-

nection constraints along the curves by using standard Laplacian deformation [99];

we use the current positions and tangents of curve vertices as reference and trigger

the deformation by constraining the curve end-points to their new locations. We

show a comparison in Figure 3.15. All final results shown in this paper have this

optional step turned on.

3.4 Fitting

The goal of this stage is to fit an aggregate polyline curve to a cluster of polyline

strokes. In computing the curve we seek to capture its artist intended shape, and to

explicitly preserve the slopes, or tangents, of the input strokes (Figure 3.16). Our

main challenge is that while our input points are ordered along each given stroke,

we have no order between points on different strokes. Standard fitting frameworks

are not well designed for such data: traditional polyline or parametric curve fitting

techniques for unordered data typically do not account for tangents, while implicit

frameworks that use normals or tangents are typically designed for closed curves.

We compute the desired curve using a modified Moving-Least-Squares (MLS)

fitting algorithm [63, 64]. The standard MLS formulation does not support tangent

optimization, since tangent processing requires point order information which is

45

(a)

(b)

(c)

(d)

Figure 3.16: Aggregate curve fitting: (a) input stroke with original (red) and consis-
tent (green) orientations; (b) MLS fitting output; (c) proximity graph and extracted
polyline (e) resampled (thin) and final (thick) optimized polyline curve.

not available in the MLS setting. To provide an ordering, we split the fitting into

three stages: we first perform an initial MLS optimization, where we solve for

positions and tangents separately; we then use these positions and tangents to com-

pute an initial aggregate polyline; finally, we align the edges of this polyline with

the desired tangent directions. As an alternative to our first step, one could obtain

tangential information by constructing a non-oriented gradient field [19]; however,

this still requires consistently orienting the resulting tangents.

Stroke Orientation To perform any meaningful operations on point tangents, we

require their orientations to be consistent (Figure 3.16a). More specifically, we

want point tangents along parallel or near-parallel strokes to have similar direc-

tions.

We achieve this goal using a simple pair-based orientation method. We pick the

longest stroke in the group, and set its orientation as defined; we set the orientations

of all other strokes to be undefined. We then repeatedly select the closest pair of

one defined and one undefined strokes based on a distance computed as described

below. We assign an orientation to the undefined stroke such that t(p) · t(p′) > 0

using their respective representative points (p,p′). We assign a distance value to

each pair of strokes as follows. If the mid-point tangents of the two strokes are

near perpendicular (larger than 60◦ in our implementation), their orientation with

respect to one another is not well defined. We therefore set the distance between

them to ∞. This choice delegates the orientation decision to other more reliable

pairs if these exist. Otherwise, we locate close and representative pairs of points on

46

the two strokes. To avoid points with unreliable normals, we only consider points

on each stroke whose tangents are within 60◦ to the mid-point tangent. We then

select the closest pair of such sample points (p,p′) and use the distance between

them as the pairwise stroke distance. This process works well for the data we tested

and requires less computation than more complex alternatives such as eigenspace

analysis [78].

MLS fitting Our initial fitting step uses Moving-Least-Squares (MLS) with adap-

tive neighborhood size [63, 64]. We adapt the basic MLS framework to simulta-

neously compute both position and tangent values. MLS takes a point cloud as

the input and projects these points to the position-error-minimized manifold (the

position stroke SP in our case) [64]. To conduct the MLS projection step, each

point needs to be associated with a local neighborhood. Following the method in

Lee [63], we construct the neighborhood by adaptively increasing the radius of a

disk centered at each point. The radius is increased until all points in this disk are

adequately co-linear; that is, until the correlation reaches a minimum value ρ . We

use an initial neighborhood size of h0 = 10Ws and set the minimum correlation to

ρ = 0.7. We obtain the point positions on SP using the standard MLS projection

(Figure 3.16b).

We compute the corresponding tangents as follows. Let p be the position of a

input sample and t be its corresponding tangent. With the final neighborhood size

h, we now define the averaging kernel for a position p0 with tangent t0 as

K(p0,T) =
∑p∈N(p0) t ·θ(||p−p0||)
‖∑p∈N(p0) t ·θ(||p−p0||)‖

. (3.6)

We define the neighborhood N(p0) to include all the points p that satisfy ||p−
p0|| < αh and t · t0 > β . Here, we scale the neighborhood size h by α = 0.6 to

avoid tangent over-smoothing, since tangents are more sensitive than positions.

We set β = cos(π

3) to avoid averaging outlier tangents. θ(d) = exp(−d2/(αh)2)

is a Gaussian function, similar to the position Gaussian of the MLS projection.

47

Polyline extraction. After computing the positions and tangents on for points on

SP, we extract an ordered sequence of such points that will form the base for our

output polyline (Figure 3.16c). We compute this sequence as a path in a directed

graph as follows. We construct an Euclidean proximity graph where each point

is connected to all neighbors within the distance of h. Each edge in this graph

is assigned a direction that aligns with the averaged tangent of its two endpoints.

When the dot product of the two tangents is negative, it suggests that one of them

is an outlier and the edge is thus deleted. We then compute the minimum spanning

directed tree using Edmonds algorithm [22, 30] and trim the tree down to its largest

path. We determine if the path is closed by searching for a path from its end to its

beginning. If such a path exists, and its length is below a small value (5Ws in our

implementation), we label SP as closed. An artist may not precisely line up the

start and end of a closed loop, and may accidentally extend the end of a closed

loop past its starting point. In order to address this case in addition to the start to

end path, we test paths between all vertices within 10% away from the start and

end points.

Tangent optimization. We now seek to optimize the polyline S = {pi}(i= 1, . . . ,n)

by aligning its edges (pi,pi + 1) with the corresponding neighborhood tangents.

Our objective function is defined as

d(S,SA) =
n

∑
i=1
‖ pi+1−pi

||pi+1−pi||
−K(pi,T)||2 +λ ||pi−p0

i ||2, (3.7)

p0
i is the initial position of point pi on the aggregate polyline curve. Here, the

first term enforces tangent alignment and the second term reflects the expectation

that the polyline stays close to its original position. We set λ = 10−3 to prioritize

tangent alignment.

We minimize Equation 3.7 using iterated least squares. We define the kth round

48

10/10

10/10

9/10

5/10

9/10

10/10

10/1010/10

Figure 3.17: Examples of manually (blue) and algorithmically (red) traced aggre-
gate curves of different stroke configurations (black). Manual results form multiple
participants are overlaid over one another. The ratio shows the number of partici-
pants whose results agreed with the plurality consolidated result in terms of output
curve number and approximate location. In all cases our result aligns with the
plurality response.

objective as

d(Sk,Sk−1)≈
n

∑
i=1
||

pk
i+1−pk

i

||pk−1
i+1 −pk−1

i ||
−K(pk−1

i ,T)||2 (3.8)

+λ ||pk
i −p0

i ||2

Here, we replace the varying polyline edge length term in the denominator with the

known corresponding length in Sk−1; K(pk−1
i ,T) is the average kernel centered at

position pk−1
i and T is the input tangent set. The aggregate tangent update helps

center the curve and diminish the impact of outlier stoke tangents.

We solve this least-squares problem using standard Cholesky decomposition.

For smooth input data a single tangent update step is typically sufficient. However,

solving the problem for multiple rounds gives better results for highly noisy cases.

We find three iterations to be sufficient for all experiments.

3.5 Validation

We validate the key aspects of our method in a number of ways: comparisons to

manual consolidation, comparison against prior art, and qualitative evaluation.

49

Input raw sketch [Orbay&Kara 2011] [Liu et al. 2015]Manual consolidation Our result
= 0.8BT

(a) (c) (d)(b) (e)

Figure 3.18: Consolidation comparison (clusters and fitted curves): (a) input; (b)
manually consolidated drawing; (c) Orbay and Kara [78]; (d) Liu et al. [69]; (e)
our result. While the results of prior methods exhibit a range of artifacts, our result
(e) is consistent with the manual consolidation output (b). Raw sketch: © Enrique
Rosales. Manual consolidation: © Elinor Palomares.

Comparison to Manual Consolidation. Our method aims to recover the viewer-

perceived consolidated curve set from the input drawings; therefore the key cri-

terion for assessing it is via a comparison to manually consolidated results. We

perform two separate comparative studies.

The first study has two goals—to asses how consistent humans are in their

consolidation choices given a collection of strokes, and to compare human consol-

idation choices to our algorithmic ones. We picked 28 samples of different stroke

configurations selected from a diverse set of 14 drawings. We then asked 10 par-

ticipants (4 artists and 6 non-artists) to draw the curves they perceive these strokes

to represent: “You will examine different images in which you will have to trace

a clean version of the strokes you see.” The combined results for a subset of the

inputs (blue) superimposed with our output (red) are shown in (Figure 3.17). The

results show that human observers are generally consistent in their consolidation

choices. For 80% of the inputs, at least 8 out of 10 participants provided the same

curve configuration. On only 2 out of 28 inputs (including one in Figure 3.17) the

participant configuration choices were evenly split. In all cases, StrokeAggrega-

tor’s result was similar to the plurality response.

In our second study, we selected seven complete input drawings and asked

an artist to consolidate them. Figures 3.1 and 3.18 show two such artist results

side-by-side with our outputs. As these comparisons show, our results are well-

50

Input raw sketch [Simo-Serra et al. 2017] Our result[Favreau et al. 2016]
(a) (c) (d)(b)

Figure 3.19: Comparison with raster cleanup and vectorization methods. The top
input is from Orbay and Kara [78]; the bottom input is from Liu et al. [69].

aligned with the artist outputs. It took the artist 10 to 30 minutes to create each

consolidated output, significantly larger than our automatic consolidation times of

1 to 8 minutes.

Comparison to Prior Art. We compare our framework against the most recent

alternatives. Figure 3.19 compares our output against two raster-space methods for

vectorization [35] and cleanup [97]. To perform the comparison, we rasterized the

drawings at their original resolution using standard software and ran the executable

kindly provided by the authors. As shown by the results, both raster methods fail to

fully consolidate the strokes when presented with drawings containing thick stroke

clusters. Our method successfully consolidates these inputs. The failure of these

methods is unsurprising, as raster-space methods rely on less information. It also

suggests that directional information, which is increasingly available due to the

wide usage of tablet displays, benefits our consolidation task.

Figures 3.18, 3.20, and 3.21 show comparisons to vector consolidation meth-

51

Our result[Orbay and Kara 2011]Input raw sketch
(c)(b)(a)

Figure 3.20: Comparison (clusters and fitting) with Orbay and Kara [78]. Inputs
sourced from Liu et al. [69]. In column two the examples of wrongly clustered
strokes are highlighted.

ods [69, 78]. The results in these figures were provided by the authors. As shown

in Figures 3.18 and 3.20, the method of Orbay et al. frequently fails to separate

connected clusters resulting in poor consolidation outputs, on a range of inputs on

which our framework produces the expected results. Figures 3.18 and 3.21 com-

pare our results with those of Liu et al. Our method achieves better fine input

feature preservation, while still correctly consolidating wide large-scale clusters.

The results of the method of Liu et al depend on a user provided parameter TB

(listed in the figures), and those of Orbay et al. depend on the choice of the input

training sketches. Our outputs are produced with no additions input or parameter

adjustment.

Qualitative Evaluation. We also conducted a study to compare our outputs to

artist outputs and previous work. We asked 20 participants to compare our outputs

to consolidated drawings generated by alternative methods [35, 69, 78, 97] and

artists (5 each of [35, 78, 97], 6 [69], and 5 artist). Each query in this study in-

cluded an input drawing (“Original”, top) and two consolidated outputs (“(a)” and

“(b)”, bottom), arranged in random order and presented side-by-side: one gener-

52

Input raw sketch [Liu et al. 2015] Our result

= 0.8BT

= 1.5BT

= 1.1BT

(a) (b) (c)

Figure 3.21: Comparison (clusters and fitting) with Liu et al. [69]. Note the differ-
ences in the consolidation of feet and other fine features. The eagle input is sourced
from Orbay and Kara [78]. Toucan, penguin: © Enrique Rosales.

ated by our algorithm, and one generated by an alternative method or by an artist.

We asked “Which of the drawings below, ‘(a)’ or ‘(b)’ is a cleaner and accurate

version of the drawing on top ‘Original’? If both are, please select ‘both’ if nei-

ther select ‘neither”’. Our results were judged on par with those created by artists;

in comparisons with artist results, viewers selected “both” 50% of the time, and

preferred our result 25% of the time. In a comparison with prior work, our results

were overall judged as superior 92% of the time. In comparisons to the method of

Liu et al [69], our results were preferred 80% of the time and ranked on par 17%

of the time. In comparisons to other methods, our results were judged as superior

97% of the time. These numbers validate that our methods performance is on par

53

Figure 3.22: Additional diversely sourced results. The duck input is sourced from
Liu et al. [69], the architectural model and man are sourced from Orbay and Kara
[78], shark and triceratops: © Cristina Arciniega, flower and bow-tie: © Enrique
Rosales. Please zoom in online to see image details.

with manual consolidation and is far superior to prior art.

3.6 Results

We tested our method on 36 inputs with sizes (measured in pixels) ranging from ap-

proximately 300x400 to 1000x800, 20 of which are shown throughout this chapter.

Our inputs include examples sourced from prior work, e.g. fandisk (Figure 3.19),

eagle (Figure 3.21), man and opera (Figure 3.22) are from [78], and grandpa (Fig-

ure 3.19), duck (Figure 3.22), and fairy and car (Figure 3.20) are from [69]. They

also include new inputs created by two different artists (e.g. Figures 3.1, 3.18,

shark, bowtie and triceratops in Figures 3.22). Our inputs include relatively clean

drawings with few overdraws (bowtie, man) and very sketchy drawings with large

clusters of overdrawn strokes (penguin, toucan, grandpa). We include both draw-

ings of organic shapes (toucan, pig, penguin), as well as design drawings of free-

form and regular shapes (opera, fandisk, car). Our framework produces results

consistent with viewer perception on all these inputs.

Impact of Design Choices. Figures 3.6, 3.8, 3.12 show the stages of our progres-

sive cluster refinement process, highlighting the contribution of each stage. The

local analysis stage (Section 3.3.2) is critical for processing clusters with branch-

54

ing structures (Figures 3.6b, 3.8b). The narrowness cue is critical in processing

features such as the tail of the penguin (Figure 3.21), the moon shaped windows on

the building (Figure 3.23), or the stripes on the side of the shark (Figure 3.22).

Runtimes. Our method takes on average 2.5 minutes to consolidate a drawing.

Approximately 50% of the time is spent in the final unification, given we exhaus-

tively assess pairs of nearby clusters in this stage. The rest of the runtime is split

between the angular compatibility stage and the proximity refinement stage with a

ratio of 1 : 4. In our inputs, the numbers of strokes range from a couple of dozens

to 300 and the number of clusters range from 15 to 140 (toucan).

Limitations While human observers likely base some of their mental consoli-

dation decisions on content recognition (Section 3.5), our method relies only on

local stroke context. Thus, it may fail in situations where stroke level cues be-

come unreliable. In particular, our method targets inputs where overdrawing is

used for the purposes identified in Chapter 2, and is not directly applicable to styl-

ized line drawings (Figure 3.23ab). In such drawings strokes are used as expressive

paint-brushes and their tangents no longer reflect the tangent of their correspond-

ing aggregate curves. In this setting, our core cue of angular compatibility between

cluster strokes fails. Figure 3.23c shows another example where local context and

global image recognition may result in different consolidation outputs. While our

result is consistent with human grouping given local context only (left), one may

argue that in the global context (right) humans would group the highlighted vertical

strokes together to form a building corner.

55

8/10

(a) (b) (c)

Figure 3.23: Our framework relies on local context rather than recognition. Thus its
ability to process intentionally sketchy (a) or stylized inputs with unreliable stroke
tangents (b) is limited. (c) Our clustering choices on this input are consistent with
local human ones (8 out of 10 viewers keep the strokes separate given purely local
context (left)), and do not account for global context which humans rely on given
the complete image (right). Bunny: © Elinor Palomares.

56

Chapter 4
Detecting Viewer-Perceived Intended Vec-

tor Sketch Connectivity

[Fourey et al. 2018]Vector line drawing Primary junctions Our final closed loops

Secondary
Junctions

Tr
iv

ia
l c

lo
se

d
lo

op
s

[Favreau et al. 2016]
(c)(a) (d) (e)(b)

Figure 4.1: A typical freehand vector line drawing (a) and the connectivity indi-
cated by intersections only (a, top left), by two previous work [35, 38] (b, c) and by
our method (d). Each closed loop interior colorized with a different color, with the
background left white. Please zoom in to see image details throughout the paper.
Input image ©The “Hero” artist Team under CC BY 4.0.

Freehand vector line drawings are often imprecise with strokes intended to in-

tersect stopping short of doing so. Because of this inaccuracy, even after being

cleaned up by consolidation method, e.g., StrokeAggregator in Chapter 3, consol-

idated sketches need to be further prepared for downstream processing, such as

colorization (Figure 4.1(a)). While human observers easily perceive the artist in-

tended stroke connectivity, manually, or even semi-manually, correcting drawings

to generate correctly connected outputs is tedious and highly time consuming. In

this chapter, we propose a novel, robust algorithm that successfully extract viewer

perceived intended stroke connectivity distinguishing between intended junctions

(e.g., circled in blue in Figure 4.1(a)) and intended gaps (e.g., circled in red in Fig-

ure 4.1(a)) outperforming prior art. We arrive at this solution by leveraging obser-

vations about local and global factors that impact human perception of inter-stroke

connectivity.

57

https://studio.blender.org/films/hero/pages/team/

(b)(a)

(e)

(c) (d) (j)(i)

(l)(k) (n)

(m)

(h)(g)
(f)

Figure 4.2: Human observers employ local and global cues to determine if a dan-
gling endpoint (red) is intentional, or is intended to be part of a junction. As high-
lighed in (ab) and (ef), distance is a major factor in distinguishing between intended
junctions (af) and intended gaps (be). Different tangent directions can impact the
perception of junction intent for endpoint (cd) or endpoint and stroke pairs (gh) at
the same distance from one another. (i-n) The presence of other strokes can change
the perception of whether strokes do or do not form junctions.

4.1 Introduction

Free-form line drawings are ubiquitous, both as an art form and as inputs to differ-

ent computer applications. Thanks to the broad availability of touch pen and stylus

devices, such drawings, especially those that artists intend to process later with

different algorithmic tools, are increasingly recorded and stored in vector format

[15, 33, 45, 79]. Drawing processing applications typically require inputs with

precisely identified stroke intersections (Fig. 4.1e). Unfortunately, artist draw-

ings are inherently imprecise [55], and routinely contain unfinished strokes that

artists intend to intersect other strokes, but that stop short of doing so (Fig. 4.1a)

[82, 101, 112, 114]. While human observers easily mentally complete unfinished

strokes [57, 101] and identify the intersections they are intended to form, extract-

ing this intended connectivity algorithmically remains an open challenge (Sec. 2.5).

We propose a new perception-driven algorithm for identifying intended intersec-

tions that produces outputs well aligned with human perception and significantly

outperforms the state of the art.

Locating intended junctions algorithmically is highly challenging, as little re-

search exists on the cues that humans employ when mentally separating intended

intersections from intended gaps. Observations of manual annotations of intended

junctions and intentionally dangling stroke endpoints (Fig. 4.2), suggest that view-

ers leverage both local and contextual cues when making such decisions (e.g. the

58

relation between the strokes in Fig. 4.2m is not evident, but these same strokes are

seen as clearly forming an intended end-to-end junction given the extra stroke in

Fig. 4.2n). We use a combination of perception literature review, observation of

artist drawings, and manually annotated junctions to identify the factors that de-

termine whether humans perceive dangling stroke endpoints as parts of intended

junctions or not (Sec. 4.2). We hypothesize that these decisions are impacted by

both local and global cues, and thus depend both on the geometry of the strokes in

question (Fig. 4.2a-h) , their immediate surroundings (Fig. 4.2i-l) and on the more

global drawing context (Fig. 4.2mn).

A possible approach for addressing perception motivated tasks is to learn the

desired outcomes from human annotated data. Applying this approach in our con-

text raises two conflicting challenges. First, the global nature of the human de-

cisions noted above means that a purely learning-based method would require a

very large body of fully annotated sketches to adequately perform the task at hand.

At the same time, typical drawings contain many dozens of strokes, and manually

separating all intended junctions from intended gaps in a single drawing takes 20

minutes or more on even moderately complex sketches using interfaces optimized

for this task (Sec 4.5); manually annotating large collections of drawings is thus im-

practical. We overcome these difficulties by developing a hybrid approach which

combines data-driven and perception-driven components, and allows us to robustly

compute outputs well aligned with human perception from just 31 drawings with

partial manual annotations.

We leverage the collected annotations to design two local classifiers. Our first

classifier uses the local geometry and context of a pair of dangling endpoints to

predict how likely they are to form an end-to-end junction. Our second classifier

uses similarly local information to predict the likelihood that a dangling endpoint

and a stroke form a T-junction. Both classifiers utilize geometric features we ex-

pect to strongly correlate with human perception of junctions, and are trained on

our collected manual annotations. Our classifiers achieve an accuracy of 99% in

leave-one-drawing-out cross-validation. We embed these classifiers in an incre-

mental decision making process that combines purely local considerations with

global properties. It first performs basic pairwise classification across all pairs of

valence two end-end and simple T-junction candidates, identifying primary junc-

59

(b)(a) (c)

Figure 4.3: Typical free-hand drawings (a) contain jaggy, fragmented, and over-
drawn strokes (pointed and circled in green), unintentionally dangling endpoints
(pointed and circled in blue) and strokes that extend past their intended end-
junctions (pointed and circled in purple). Directly extracting closed stroke loops
from such drawings (b) produces heavily under-segmented outputs. By identifying
unintentionally dangling endpoints and forming intended junctions we form loops
consistent with viewer expectations. Top input image ©Mathias Eitz, James Hays
and Marc Alexa under CC BY 4.0. Bottom input image ©The “Hero” artist Team
under CC BY 4.0.

tions (Fig. 4.1d); it then leverages these decisions to form high probability, more

complex, secondary junctions, and finally uses all previously made decisions to an-

alyze global context and identify junction candidates whose likelihood of forming

junctions is strongly boosted by global perceptual cues (Fig. 4.1e).

We design and test our method to operate on free-hand artist drawings which

exhibit a range of inaccuracies and drawing artifacts (Fig. 4.3). We evaluate our

method on 95 diversely sourced inputs, and validate it via comparisons to manual

annotations and a perceptual study comparing our outputs against prior art. In our

60

https://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/
https://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/
https://studio.blender.org/films/hero/pages/team/

annotation comparison our method achieves comparable accuracy to human anno-

tators (92% versus 94%). Comparative study participants preferred our results by

a factor of 9 to 1 over the best performing competitor (Sec. 4.6). These advance-

ments are made possible by leveraging novel insights about human perception of

intended junctions and converting those into an actionable robust algorithm for

distinguishing intended intersections form intended gaps.

4.2 Perception of Intended Sketch Connectivity

The goal of our algorithm is to identify intended junctions and gaps as perceived by

human observers. Like prior work [94, 109] we operate under the assumption that

artists aim for their drawings to be well understood, and that viewer understanding

of the drawings is in general consistent with artist intent. As in many similar prob-

lem settings, one of the big challenges in detecting the intended connectivity is that

the exact mechanism observers use to mentally perform this task is unknown. At

the same time, our review of related literature points to a number of cues observers

are likely to use when identifying intended junctions (Fig. 4.2).

(b)(a) (c)

Figure 4.4: Stroke-pair properties. The inter-stroke distance is relative rather than
absolute (ab). The relative location of the projection of the endpoints affects the
perceived junction type (c).

Stroke-Pair Properties Prior research [23, 38, 81, 82] convincingly demonstrates

that distances between potentially connected strokes play a large role in the per-

ception of intended junctions. Notably, the perception of inter-stroke distance is

61

relative rather than absolute: wider strokes are perceived as closer to one another

than thin strokes located at the same distance (Fig. 4.4a), and same distance longer

strokes are seen as closer than shorter ones (Fig. 4.4b). Prior research [23] further

suggests that stroke directions at the evaluated potential junction locations serve as

a similarly strong cue (e.g. the distance between the pairs of strokes in in Fig. 4.2cd

is identical but due to different endpoint directions we view the strokes in Fig. 4.2d

as intended to connect, and the ones in Fig. 4.2c as not). Lastly we note that strokes

are perceived as more likely to form an end to end junction if their nearest points

are at or near their endpoints and a T-junction if the endpoint of one is close to

the middle of the other (Fig. 4.4c); notably this distinction suggests that the type

of intended junction formed by the strokes depends on the relative location of the

projection of the endpoints of one stroke onto the other.

Local Context We note that perception of intended junctions is impacted not just

by the geometry of the participating strokes but by both local and global context.

Specifically the presence of other strokes in the immediate vicinity of the assessed

pair can impact the perception of junctions (Fig. 4.2i-l), providing local context.

In particular the presence of nearby intersections between the assessed and other

strokes impacts the perception of whether an endpoint is dangling or not, and thus

the expectation of its stroke being part of any additional junctions.

Closure. Lastly, and critically, we note that the closure principle of Gestalt psy-

chology [61, 104] is highly relevant when analyzing perceived sketch connectivity,

as it suggest that viewers are highly likely to mentally close gaps between strokes

if doing so results in formation of closed loops, or regions. Liu et al. [69] utilize

this principle for sketch cleanup, merging together overdrawn strokes perceived

to bound the same region. They suggest that to evaluate whether a sequence of

strokes (or stroke segments) is forming a perceived loop one can consider the ratio

between the diameter D of the biggest circle inscribed inside the loop and the length

of the largest gap L between consecutive strokes in the sequence as illustrated in

Figure 4.6,

RC =
D
L
. (4.1)

62

(b)(a) (c) (e)(d)
13%

1%

2%
22% 2%

1% 31%

91%

1%

57%
17%

4%

74%62%98%

100%

100%

95%

100%

100%

84% 69%

100%

100%

100%

1%

2%
22% 2%

1%13%

61%

3%

74%

2%

1%

57%
17%

4%

3%
46%
10%

68% 18%88%

100%

100%

53%

79%

96%

93%

100%

95%

100%

100%

1%

10%
92%

61%

76%

31%

1%

3%

7%
47%

19% 67%

39%

1%

96%

8%

87%

79%

52%

98%

100%

100%

98%

100%

100%

95%

100%

100%

100%

100%

84% 69%

100%

88%

100%

100%

53%

79%

100%

100%

95%

100%

100%

96%

93%

87%

79%

98%

100%

52%

100%

100%
90%

100%

90%

47%

Closure cue

Figure 4.5: Method Overview. Given a vector line drawing (a), we first detect
trivial stroke-wise intersections forming closed stroke loops (b, right). We then
identify likely end-to-end (red) and T- (blue) junctions (b, left zoom-ins). With
these pairs and their predictions, we constructs primary junctions, supporting arbi-
trary valence (c, see left zoom-ins for examples). We proceed to identify secondary
T-junctions formed by the remaining dangling endpoints and composite strokes (d,
see left zoom-ins for example connections). In the final closure integrated step, we
close remaining undesirable gaps by jointly evaluating classifier predictions and
gap ratios along the boundaries of potential cycles (e, see the zoom-in for a con-
nection classified as marginally negative in our primary step and accepted in this
step). Input image ©The “Hero” artist Team under CC BY 4.0.

D

L

Figure 4.6: The gap ratio RC = D/L quantifies the gap size relative to the adjacent
region reflecting the closure property of Gestalt psychology.

The larger this gap ratio is the more likely viewers are to perceive the strokes as

forming a loop. We observe that conversely, when the ratio is sufficiently small,

viewers are unlikely to perceive strokes as forming a loop even if other cues suggest

otherwise. In particular our analysis of manually annotated sketches (Sec. 4.6)

suggests that viewers do not mentally close gaps between strokes when doing so

results in loops with the ratio RC being below 1. We refer to this property as

minimal cycle ratio. This property is connected to topological persistence in the

curve and surface reconstruction literature [27, 91].

63

https://studio.blender.org/films/hero/pages/team/

4.3 Algorithm

Our method takes as input raw, free-hand sketches collected in the wild (Sec. 4.6).

We process drawings with both constant and variable width strokes. We pre-

process these drawings removing hooks, merging overdrawn strokes, and detecting

all trivial stroke intersections (locations where pairs of strokes overlap) as dis-

cussed in Appendix A.2. The output of our method is a set of intended junctions

between pairs of locations on these strokes, where these strokes do not overlap

a priori in the drawings. We specifically focus on junctions formed by connect-

ing stroke endpoints with either other endpoints (end-to-end junctions) or with lo-

cations along other strokes (T-junctions). Our last closure-aware step (Sec. 4.5)

considers both junctions involving endpoints and those involving pairs of nearest

mid-stroke locations on adjacent strokes.

We identify these intended junctions by leveraging a combination of the per-

ceptual cues listed above and ground-truth data. While access to ground truth data

is highly beneficial for producing results consistent with human perception, a core

challenge we face is data scarcity: as noted in Sec. 4.1 annotating intended junc-

tions is a time consuming and mentally non-trivial task. Typical artist drawings

(e.g. Fig. 4.1) have over a hundred strokes ; and take 20 minutes or more to anno-

tate. Thus we require an approach capable of correctly detecting intended intersec-

tions using limited data.

We achieve these goals using a method that relies on a combination of four key

elements.

Pairwise Junction Classifiers. We utilize the collected annotations to train two

classifiers, one for predicting how likely a pair of stroke endpoints is to form an

end-to-end junction and one for predicting how likely an endpoint and a stroke are

to form a T-junction (Sec. 4.4). Our classifiers utilize a compact set of features

encoding the properties of the evaluated pairs and their local context.

Filters. We utilize the perceptual cues above to narrow down the set of endpoint

and endpoint-stroke pairs that the classifiers are applied to by automatically dis-

carding impossible pairs, i.e. ones that humans are virtually guaranteed to not

64

see as forming intended junctions. This filtering allows us to dramatically reduce

the number of negative (perceived as not forming a junction) training examples

we need to collect (naive classifier would otherwise need to evaluate all pairs of

strokes and endpoints in a drawing against one another). It also allows us to reduce

the number of features that the classifiers operate on and thus further reduce the

amount of negative and positive training data they require to achieve robust perfor-

mance. Our pre-filtering considers both the properties and the local context of the

classified pairs.

(b)(a)

Figure 4.7: High-valence junctions in two example configurations.

Intended High-Valence Junctions Freehand sketches can contain junctions with

arbitrary high valence; including both complex end-to-end junctions and ones con-

necting multiple endpoints to a shared T-junction point (see Figure 4.7). Notably,

while many drawings contain such junctions, they each contain only a handful of

them. This sparsity means that while in theory one could train separate classifiers

for different high-valence junction topologies, collecting enough data to train such

classifiers would require annotating a very large number of drawings. We over-

come this challenge by developing a junction processing workflow where we suc-

cessfully utilize the pairwise junction classifiers to predict the likelihood of higher

valence junctions (Sec. 4.3, 4.3).

Closure-Aware Classification. While the perception of closure plays an impor-

tant role in human perception of stroke connectivity, closure evaluation is inher-

ently global in that it involves considering multiple strokes and multiple potential

65

intended junctions at once. As such it is hard to account for using only pairwise or

other purely local classifiers; learning closure based choices directly would there-

fore require a dramatic increase in the amount of training data. We address closure

in a data efficient manner by using a delayed decision process where in the first

rounds of our computation, closure, and specifically, minimal cycle ratio, is only

used as a hard negative constraint preventing us from forming junctions that would

create loops violating this constraint. Once all local decisions are made we ef-

ficiently compute potential loops induced by these decisions and revisit all prior

negative classification decisions, incorporating closure as a positive cue (Sec. 4.3).

Armed with these tools we formulate our intended intersection detection as the

following gradual decision process (Fig. 4.5).

0.1
0.9

0.6
0.8

Formed
Junctions

Probabilities

(a)

0.9
0.6

0.9

0.6

0.9

Before After

(b)

Figure 4.8: When solving for primary junctions, the method picks the best high-
valence junction configuration (a) while avoiding creating small cycles.

Primary Junctions Classification

Our primary junctions classification step first identifies pairs of endpoints or end-

points and strokes that have the potential to form intended junctions and then uses

our two classifiers to compute the probability of each pair forming such a junction

(Sec. 4.4). It uses this information to form likely binary and high-valence junctions

when doing so does not violate our minimal cycle ratio constraint. Specifically,

when the classifier deems two or more pairs containing one or more same end-

points as each being likely to form an intended junction we form the subset of these

interconnected junctions that maximizes the joint probability across them (see Fig-

ure 4.8a). After making these decisions, we evaluate the gap ratio (Eq. 4.1) for each

newly formed cycle; if a cycle violates the minimal cycle ratio constraint (RC < 1),

66

we break it by removing the lowest probability junction along its perimeter (see

Figure 4.8b).

(a) (b) (c)

Figure 4.9: When solving for secondary junctions, strokes that are connected by
trivial junctions (a) and previously detected intended junctions (bc) are considered
to be a single stroke.

Secondary Junctions Classification

Our secondary classification step addresses the formation of intended high-valence

junctions. Specifically, it analyzes remaining dangling endpoints and nearby pre-

viously identified junctions and evaluated whether the dangling strokes should be

extended to connect to these junctions. The previous junctions considered include

both trivial junctions (Figure 4.9ab) and previously detected intended junctions

(Figure 4.9c). Our evaluation leverages two observations: we first note that two

strokes whose endpoints are part of a common junction can be conceptually seen

as a single composite stroke (pairs of black strokes on the left of each inset in Fig-

ure 4.9), thus for our purposes we can evaluate if a dangling endpoint should be

connected to such a junction utilizing our T-junction classifier and applying it to the

dangling endpoints and such composite strokes. While at a high-valence junctions

one can potentially composite multiple strokes (Figure 4.9b), given a dangling end-

point, humans are likely to only consider the composite stroke (black in Figure 4.9)

formed by the two strokes that are immediately next to the assessed endpoint (with

respect to a circular ordering around the junction location) and ignore those oc-

cluded by these two (blue in Figure 4.9). This observation again suggests that we

can evaluate if a dangling endpoint should be connected to such a high-valence

67

junction utilizing our T-junction classifier by applying it to the dangling endpoint

and temporary composite strokes formed by the strokes (or portions of strokes) that

are part of the junction and are immediately next to the endpoint. We process all

classifier decisions utilizing such composite strokes using a process identical to the

one in Sec. 4.3.

Global Closure-Aware Classification

Our final, closure integrated step forms potential stroke cycles containing remain-

ing dangling endpoints or pairs of nearest points on adjacent strokes and uses a

combination of previously computed classifier probabilities at these endpoints and

the gap ratios along these cycles to determine whether the remaining gaps along

these cycles should be closed or remain open (Sec. 4.5).

4.4 Junction classifier

End-end classifier. Given endpoints p1 and p2 on strokes S1 and S2, we construct

four sets of features, motivated by the perceptual cues in Sec. 4.2. In the description

below, each asymmetric feature, reported for p1, is computed for both endpoints;

the minimum and maximum over both values are used to make the classifier com-

mutative by design.

Distance. We use three features to encode the distance between the stroke

endpoints. We measure the distance between the stroke envelopes dE = ‖p1−p2‖−
1
2(w1+w2) (see Figure 4.10a). We convert this distance into three viewer-perceived

scale-invariant features by normalizing it by (1) the mean of the maximum width of

each stroke (W1,W2), and by the (2) min and (3) max of the stroke lengths (L1,L2).

Directions. We use four types of features to encode the interaction between

the directions of the two strokes at the endpoints of interest overcoming drawing

inaccuracies. We codify the type of the junction, characterizing it as belonging to

one of the three categories in Figure 4.10b, by counting whether two, one, or zero

of the endpoints project onto the opposing stroke endpoints. We include the angles

θ1,θ2 between the stroke tangents and the line connecting the two endpoints (see

Figure 4.10c); we compute the tangent~t1 by stepping back from the endpoint along

68

p1 dE

p2

w1

w2

L1 L2

(a)

p1

p1

p2

p2

(b)

θ1
θ2t1

t2

p1

p2
dC

d1
S

d2
S

dC
dC

(c)

Figure 4.10: Measurements of distance and direction.

the stroke by the distance dC = ‖p1−p2‖. We also include two ratios that are even

less susceptible to noise than the tangents: the step-away ratio, measured as the

distance dS
2 from the step-away point to S2 divided by dC, and the projection ratio,

the distance from p1 to S2 divided by dC.

Relative Location. We encode the distance between the projection of p1 on S2

and its closest endpoint along S2, normalized by L2.

Local Context. We encode local context as the distance from p1 to the closest

stroke in the drawing other than S1 and S2, normalized by gap size dC.

T-junction classifier. We use similar features for the T-junction classifier, modi-

fying them to account for its asymmetric nature. To this end, we compute distance

measures between endpoint p1 on S1 and the closest point p2 on stroke S2, the di-

rectional features are computed only from the endpoint to the other stroke, and we

skip the projection ratio since the projection and p2 are the same for T-junctions.

When computing local context, points that are occluded by S2 are excluded. We

incorporate larger context for T-junction decisions than for end-end ones by using

an additional endpoint density feature, defined as a function of the distances from

this endpoint to all endpoints,

b = ∑
pe∈{endpoints}

e−
1
2

(
1
σ

‖p1−pe‖
we

)2

.

69

Table 4.1: Gini importances of junction classifier features.

Endpoint-endpoint features Gini importance

Envelope distance dE/(0.5(W1 +W2)) 0.246
Envelope distance dE/max(L1,L2) 0.171
Envelope distance dE/min(L1,L2) 0.160
Junction type 0.001
max(θ1,θ2) 0.015
min(θ1,θ2) 0.011
Larger step-away ratio max(dS

1/dC,dS
2/dC) 0.031

Smaller step-away ratio min(dS
1/dC,dS

2/dC) 0.027
Larger projection ratio 0.001
Smaller projection ratio 0.009
Larger relative location 0.009
Smaller relative location 0.0004
Larger distance to nearest other 0.190
Smaller distance to nearest other 0.128
T-junction feature Gini importance
Envelope distance dE/(0.5(W1 +W2)) 0.250
Envelope distance dE/L1 0.174
Envelope distance dE/L2 0.270
θ1 0.067
Step-away ratio dS

1/dC 0.077
Relative location 0.012
Distance to nearest other 0.136
Endpoint density b 0.015

The contribution of each endpoint is a Gaussian of the distance to it normalized by

we, the average of the widths along its stroke. We use σ = 1, which ensures that

endpoints fall to a negligible contribution when they are 3 stroke widths away.

Training. We implement both the endpoint-endpoint and T-junction classifiers as

random forests that are trained on either endpoint or endpoint and stroke pairs that

are labelled as intended or unintended junctions.

List of Features. A list of the classifier features we use and their Gini importance

values are listed in Table 4.1 where important features have larger values. All

features contribute to the decision making. The top five important features of end-

end classifier are envelope distance dE/(0.5(W1 +W2)), larger distance to near-

est other, envelope distances dE/max(L1,L2), dE/min(L1,L2), smaller distance to

nearest other. They corresponds distance and local context cues. Similarly, the

top five important features of T-junction classifier are envelope distance dE/L2,

70

dE/(0.5(W1 +W2)), dE/L1, distance to nearest other, step-away ratio dS
1/dC. They

corresponds distance and local context cues, followed by the direction cue. This

suggests the perceptual cues influencing both end-end and T-junction classifiers

have similar importance order: distance, local context, and direction are the top

three most important features in descending order. The top two cues suggest that

both local and contextual cues are important to a similar degree.

4.5 Algorithm Details

Figure 4.11: End-end pairs with diverging directions are filtered.

Filtering Junction Candidates The number of possible junctions grows quadrati-

cally with the number of endpoints, and the vast majority of end-end or end-stroke

pairs are not intended to connect. Our filtering avoids a massive imbalance be-

tween positive and negative examples during training, reduces the runtime cost of

our method, and drastically reduces the number of negative annotations we need to

collect for training. Following the observation about the impact of local context,

for each endpoint, we only consider connections with the closest three endpoints

and strokes, respectively. We further filter those that are too far, lack a line of sight,

or have diverging directions (Figure 4.11). We similarly prevent end-to-end junc-

tions between parallel strokes. The closest-three filter reduces the number of pairs

from quadratic to linear, and the later filters further reduce the number of pairs

passed to the classifier by a factor of 2 or more on a typical input.

Global Closure-Aware Classification At this point of the process, we expect the

vast majority of intended intersections to be appropriately classified, enabling us to

71

compute meaningful stroke cycles containing only a handful of unintended gaps.

We first locate all pairs of closest points on immediately adjacent strokes; for

each pair we compute the cycles formed by connecting the pair; we mark the pair

as forming an intended junction if the distance between its points is smaller than

the length of the largest previously closed gap along these cycles and RC > 20 for

both cycles.

Our closure-aware step then leverages the probabilities computed by the clas-

sifier and combines those with the evaluation of the closure ratio RC (Eq. 4.1) to

identify pairs of strokes that are likely to form junctions once closure is accounted

for. Our analysis of training data suggests that the closure ratio can be viewed

as a boost signal, increasing the likelihood of a gap being intended by approxi-

mately a linear factor. In other words, given a ground truth probability P of the

end-points of a gap forming a junction, the gap ratio boosts this probability to

P′ = P+C(RC−1). In practice, the probabilities provided by our classifier are ap-

proximate. We thus use a conservative step-function approximation of the formula

above with C = 0.025. Using a step size of 0.05 and starting at P = 0.45 for each

gap with classifier probability of P and above we close the gap if P′ > 0.5.

Specifically, at each step value of P we order all junction candidate pairs with

probability P or more; for each pair we compute the cycles formed by connecting

the pair. We mark the junction as intended if P′ > 0.5 for both cycles. We repeat

this process considering two candidate pairs at once. We have not encountered

cases for which evaluating three or more pairs was necessary.

Random Forest. Our random forest classifiers have 100 trees each. We limit the

maximum depth to 10 for the endpoint-endpoint classifier and 12 for the T-junction

classifier. We use the scikit-learn library [85] for all training.

Training Set. We trained our method using 31 sparsely annotated drawings. In

assembling this set we aimed for a diverse set of sources spanning different styles,

content and levels of expertise. Our training set consists of 13 drawings from

the Blender Art Gallery [14], 5 from Quick, Draw! [47], 2 design sketches from

OpenSketch [44] and 11 original drawings. In total, we have 290 positive endpoint-

72

endpoint examples, 1778 negative endpoint-endpoint examples, 460 positive T-

junction examples, and 2817 negative T-junction examples. The annotatins were

created using an in-house interface that incrementally colorizes regions based on

user annotations.

Closing gaps. We visualize closed gaps by using shortest straight lines connect-

ing participating endpoints and strokes. To close gaps in a geometrically-pleasing

manner, one can use the method of [54] or modify a curve-fitting method (e.g. [79])

to enforce junctions.

4.6 Results and Validation

We tested our method on 95 previously unseen inputs from a diverse set of sources

spanning different styles, content and levels of expertise. To this end we include 30

professional drawings of characters and organic shapes created using the Blender

Grease Pencil Tool and provided in the Blender Art Gallery [14]; rough amateur

sketches, including five each from [47], [33] and Ge et al. [40], and 10 each from

[92] and [87]. We also included 11 drawings of polyhedra from [23], and one input

from Jiang et al. [54]. In addition to these raw inputs, we applied our methods to

pre-consolidated sketches: 8 from StrokeStrip [79] and 3 from OpenSketch (using

the ground truth consolidations for the former, and the StrokeAggregator (Chap-

ter 3) consolidations for the latter), as well as algorithmic vectorizations of 7 raster

drawings from Parakkat et al. [81, 82]. Representative examples are shown in the

paper.

We validate the key aspects of our method in a number of ways: we evaluate

our classifiers using leave-one-drawing out cross-validation, evaluate our methods

final classification decisions by comparing them against manual annotation, and

compare our method to algorithmic alternatives via a comparative user study.

Classifier Cross-Validation. We evaluate our classifiers using a round-robin cross-

validation process where we leave one drawing out, train on the remaining draw-

ings, and then test on the ground truth labels in the left-out drawing. Under cross-

validation, we achieve an accuracy of 99%, a precision of 97%, and a recall of

73

96%. As expected, visual analysis of the few failure cases points to global cues

discussed above as the main reason for failure.

Perceptual Validation. While assessing artist intent requires direct access to the

artist, sketch processing literature [45, 94, 109] strongly suggests that artist intent

is well correlated with viewer perception. We thus focus our evaluations on com-

pariosn against viewer expectations. In addition to the ground truth labels used

for training the classifiers, we collected manual annotations of 91 potential end-

to-end and T-junctions across 10 drawings from the test set, with each potential

junction annotated by 8 non-expert study participants. Across all junctions, par-

ticipants agreed with the majority response 94% of the time, and were evenly split

on 1 junction. The final classification decisions made by our algorithm agree with

the majority response 92% of the time, nearly identical to the human agreement

level—the most we can expect from an algorithm. This agreement number sug-

gests that for a typical drawing with approximately 100 dangling tips after running

our method users are unlikely to require more than 2-3 corrections to obtain an

output consistent with their expectations.

Comparisons Against Prior Art We compare our method against prior interactive

and automatic methods. When comparing against the former, we seek to assess the

time it takes a user to generate a desired drawing connectivity using ours versus

alternative approached. We focus this comparison on the LazyBrush [101] method,

as it has been implemented in a popular professional software package [62]. On a

representative input (Fig. 4.13a) it took an artist 31 minutes to achieve the desired

output (Fig. 4.13c). To achieve this result, they used 70 scribble of different widths

(including one erased in the process), Fig. 4.13b. Starting from our automatically

generated output (Fig. 4.13c) the user required 2 minutes to generate the same

output, using 7 corrections.

We also compare our method to five state of the art automatic gap closure

methods, whose code we were able to access [35, 38, 82, 93, 97]. As discussed

in Sec. 2.5 these methods detect closed cycles in raster data. To compare against

these methods we rasterize our inputs and run them on the raster data, We use

74

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

[Fourey et al. 2018]

[Favreau et al. 2016]

[Sasaki et al. 2017]

[Parakkat et al. 2021]

[Simo-Serra et al. 2018a]

Ours Both Neither OtherVote Percentage

58%

65%

67%

69%

77%

9%

12%

8%

9%

2%

28%

15%

23%

17%

18%

5%

7%

2%

5%

2%

Figure 4.12: Study summary: participants preferred our method over all alterna-
tives by a factor of 9 to 1 or more.

(b)(a) (d)(c)

Figure 4.13: Comparison against interactive region detection. Given an input (a),
the interactive LazyBrush tool [101] required 31 minutes (70 strokes, one erased)
(b); starting from our automatically computed output (c) users required 2 minutes
(7 corrections) to obtain the same final output (d). Input image ©The “Hero” artist
Team under CC BY 4.0.

the output colorizations of [35, 38, 82]. We colorize the outputs of [93, 97] using

flood-fill. We render the vector strokes on top of both colorizations and use a

consistent raster resolution for all drawings (600 px for shorter image side); based

on our experiments, this resolution produces the best result on average across these

methods.

Fig. 4.15 and Fig. 4.16 compare our results against those generated by these

methods. To compare the perceptual accuracy of our method against these prior

approaches we conducted a comparative study (Appendix B.2). Participants were

shown an input line drawing, and colorizations of this drawing obtained using our

method and an alternative method. They were asked to “envision which strokes in

75

https://studio.blender.org/films/hero/pages/team/
https://studio.blender.org/films/hero/pages/team/

C = 0.0125 C = 0.025 C = 0.05

2.6x 2.7x 2.8x

Figure 4.14: Impact of increasing the top left gap size (top) and the closure factor C
(bottom) during our final, global closure-aware classification step. Top input image
©Company et al. [23]. Bottom input image ©The “Hero” artist Team under CC
BY 4.0.

[the input] drawings are intended by the artist to form closed loops,” to “Identify

the differences between the two [shown] colorings (ignore small color bleedings),”

and then answer “Which of the images on the bottom. (B) or (C), better corre-

sponds to the partition you envisioned?” Overall we had collected answers to 135

comparative questions, 6 answers per question. The study findings are summa-

rized in Fig. 4.12. Participant debriefings suggest that viewers looked for both

under- and over-segmentations when evaluating alternative colorizations. When

both colorizations were imperfect, they preferred the colorization with fewer or

less visually disruptive errors. In a comparison with the best alternative [35] our

method was preferred 65% of the time, and judged equally good 12% of the time;

the method of Favreau et al. [35] was preferred just 8% of the time, and neither re-

sult was judged as corresponding to the participant envisioned one 15% of the time.

76

https://studio.blender.org/films/hero/pages/team/

Vector line drawing [Favreau et al. 2016] [Fourey et al. 2018] [Parakkat et al. 2021]

600 px600 px

1000 px

600 px

1000 px

[Sasaki et al. 2017] Our result[Simo-Serra et al. 2018a]

600 px 600 px

1000 px 1000 px

(a) (b) (c) (d)

(e) (g)(f)

Figure 4.15: Rasterizing vector sketches and then applying the methods of [35] (b),
[38] (c), [82] (d), [93] (e), and [97] (f) to compute closed stroke loops produces sub-
par outputs with both unintended junctions (e.g. Fourey et al. [38] over-segments
character’s face) and unresolved dangling endpoints (e.g. none of [35, 82, 93,
97] separates character’s face from the background). Our outputs (g) correctly
identify both intended junctions and intended dangling endpoints. We show both
high and low resolutions (600 px and 1000 px) for (b, c, e, f); and the authors’
automatically selected resolution (600 px) for (d). Light gray spots in the output
of [82] correspond to pixels unassigned by their method. Input image ©Jiang et al.
[53].

77

Vector line drawing [Sasaki et al. 2017] Our result[Favreau et al. 2016] [Fourey et al. 2018] [Parakkat et al. 2021] [Simo-Serra et al. 2018a]

Vector line drawing [Sasaki et al. 2017] Our result[Favreau et al. 2016] [Fourey et al. 2018] [Parakkat et al. 2021] [Simo-Serra et al. 2018a]

Vector line drawing [Sasaki et al. 2017] Our result[Favreau et al. 2016] [Fourey et al. 2018] [Parakkat et al. 2021] [Simo-Serra et al. 2018a]

Vector line drawing [Sasaki et al. 2017] Our result[Favreau et al. 2016] [Fourey et al. 2018] [Parakkat et al. 2021] [Simo-Serra et al. 2018a]

(a) (e) (g)(b) (c) (d) (f)

Figure 4.16: Additional results and comparisons. Input images from top to bottom
©Company et al. [23]; ©Lien-ze Tsao under CC BY 4.0; ©Enrique Rosales.

The demonstrated preferences were highly statistically significant (p < 0.001 for

all methods). These numbers convincingly demonstrate our significant improve-

ment over the state of the art, in the context of detecting intended junctions in

vector drawings.

Closure Ablation. We conducted a geometry variation and a parameter variation

ablation experiment on the closure cue. Fig. 4.14 (top) demonstrates how the clos-

ing of gaps is robust to the gap size. For this specific input, the closure step contin-

ues to connect the gap until the distance becomes 2.8 times larger than the original.

Fig. 4.14 (bottom) shows the impact of changing the value of the closure factor C

during our final, global closure-aware classification step (Sec. 4.5). If C is too low,

the gap ratio RC does not have sufficient influence in this stage, and major regions

such as the face are not captured. If C is too high, however, the global step may

yield undesirable false positives, such as the front of the tunic in the example figure.

78

This both validates the importance of incorporating the gap ratio during this final

stage, and our choice of closure factor. An interesting area for future work could

be to learn an adaptive closure factor based on local or global drawing properties.

FinalIntermediate

Figure 4.17: When presented with an incomplete drawing both our method and
human observers could perceive some intended gaps as unintended. Source: ©The
“Hero” artist Team under CC BY 4.0.

Incremental Processing. As an alternative to our approach, we also experimented

with an incremental workflow based on drawing order. Unfortunately, when pre-

sented with an incomplete drawing (Figure 4.17) both our method and human ob-

servers perceive some intended gaps as unintended; automatically closing such

intended gaps mid-drawing is highly disruptive to the artist. Processing complete

drawings provides our method with more complete decision-making context, lead-

ing to outputs better reflecting artist intent.

Junction Statistics Across the 95 inputs in our test set, our method forms 1584

junctions in total: 638 (40.3%) junctions are binary end-end junctions, 855 (54.0%)

junctions are binary T-junctions, and only 91 (5.7%) junctions are high-valence

junctions. We note that the sparsity of high-valence junctions (fewer than 1 per

input on average) validates our design choice to use the pairwise junction classifiers

to predict the likelihood of higher valence junctions.

Junction Formation Counts per Step. Across the 95 inputs in our test set, 1452

(91.7%) junctions are formed during our primary step, 58 (3.7%) are formed during

79

https://studio.blender.org/films/hero/pages/team/
https://studio.blender.org/films/hero/pages/team/

our secondary step, and 74 (4.7%) are formed during our closure-aware step. This

confirms that our primary step forms most of the junctions, whereas the secondary

and closure-aware steps form fewer, yet visually critical, junctions (as demon-

strated in Fig. 4.1 and Fig. 4.5.)

Limitations While as demonstrated above our method significantly outperforms

all state-of-the-art alternatives, a non-negligible number of comparative study par-

ticipants selected the “neither” option when faced with our and alternative inputs.

This suggests that while we significantly advance the state of the art, additional

effort is necessary to detect intended junctions in free-hand drawings fully auto-

matically. Furthermore, while our pre-processing is capable of detecting and con-

solidating sketches which contain some amount of overdrawing, our core method is

designed to operate on inputs with no or minimal overdrawing. Using our method

on sketchy inputs with large amount of overdrawing or hatching requires a more

robust consolidation pre-process; while the methods reviewed in Sec. 2.5 for this

task can often be used for such pre-processing, robust consolidation remains an

open research problem.

80

Chapter 5
StripMaker: Perception-driven Learned

Vector Sketch Consolidation

[Stanko et al. 2020]Input sketch [Xu et al. 2019]
[Puhachov et al. 2021] StripMaker strips[Liu et al. 2018] StripMaker output

[Liu et al. 2018]
strips

(b)(a) (c) (e)(d) (f)

Figure 5.1: Given a vector sketch with multiple overdrawn strokes (a) StripMaker
automatically consolidates it (f) replacing each detected viewer perceived strip of
strokes (e, each strip in different color) with the corresponding intended curve.
StripMaker outputs (e) are better aligned with user expectations than those pro-
duced by state-of-the-art algorithmic alternatives (b,c,d). Inset in (d) shows strips
generated by Chapter 3. Frames point to artifacts in outputs of previous methods.
Source: Yan et al. [112].

StrokeAggregator, the consolidation method we present in Chapter 3, generates

clean line drawings based on local geometric cues. These local geometric cues are

far from the complete set of perceptual cues involved in sketch consolidation. This

makes us wonder if additional cues that are contextual and temporal would bring

improvement and also support a new framework that can be easily adapted to an

interactive workflow. In this chapter, we propose StripMaker, a new and robust

learning based method for automatic consolidation of raw vector sketches. While

the strategy of conducting an individual study per cue in Chapter 3 is shown to

be promising, this strategy is hardly scalable for contextual and temporal cues. In-

spired by our research on connectivity that faces the similar challenge in Chapter 4,

we avoid the need for an unsustainably large manually annotated learning corpus

by utilizing observations about artist workflow and perceptual cues viewers employ

when mentally consolidating sketches.

81

5.1 Introduction

When presented with raw overdrawn sketches, human observers effortlessly imag-

ine the artist-intended stroke groups and their corresponding curves. However,

annotating or retracing sketches to produce these viewer imagined consolidated

outputs is highly time-consuming [67]. While a range of attempts have been made

to automate consolidation of both vector [67, 69] and raster [100, 111] sketches

(Section 2.4), existing consolidation algorithms frequently fail to produce viewer

expected results (Figure 5.1b-d). We propose a new vector sketch consolidation

method that produces outputs significantly better aligned with viewer expectations

than those produced by these alternatives. We focus on vector inputs since, as noted

in earlier chapters, such sketches and the interfaces used to create them are increas-

ingly ubiquitous, and the additional information they contain can be potentially

used to simplify the consolidation task. Vector sketch consolidation can be thought

of as a combination of two tasks: clustering strokes into groups that jointly depict

intended curves (Figure 5.1e) and fitting the best corresponding curve to each such

group (Figure 5.1f). We focus on the clustering task, and use the state-of-the-art

method of Pagurek van Mossel et al. [79] for the latter. Following Van Mossel et

al., we refer to stroke groups that depict intended curves as strips and consequently

refer to our method as StripMaker.

Prior research and our observations (Section 5.2) suggest that viewers decide

which strokes belong to the same strip based on the spatial relations between these

strokes, the local context surrounding these strokes, and the global properties of

the viewed sketches (Figure 5.2). In particular, when evaluating whether groups of

strokes form strips, observers mentally establish dense correspondences between

the side-by-side portions of these strokes [67, 79] and use these correspondences to

assess the compatibility between them (Figure 5.2a-e). Our analysis suggests that

viewers are impacted by the presence of actual or viewer-perceived intersections

between the assessed and neighboring strokes (Figure 5.2f). Lastly, we speculate

that viewers are more likely to combine farther apart strokes on drawings that ap-

pear less accurate overall, and to be less aggressive given drawings which appear

more neat (Figure 5.2g). Still, it remains unknown how viewers measure or balance

the different factors, or cues, involved.

82

(a) Distance (b) Angle

(c) Density (e) Evenness

(d) Narrowness (f) Local Context

(g) Global Context

Figure 5.2: Consolidation cues: Locally groups of strokes are seen as belonging to
the same strip if they are proximate (a), roughly parallel (b) , and approximately
evenly spaced (c). Strips are expected to be narrow (d) and have roughly even
width throughout (e). Local (f) and global (g) context impacts strip perception.

A potential approach for addressing perception motivated tasks with similar

unknowns is to learn the viewer desired outcomes from manually annotated data

[115]. Learning to consolidate sketches requires addressing several challenges.

Even with a user-friendly UI, strip annotation takes between 10 and 30 minutes

for small- to medium-complexity sketches (see Appendix B.3.1) This makes col-

lecting thousands or even hundreds of annotated training examples impractical. At

the same time, the need to account for global and contextual factors impacting

human consolidation choices strongly suggests that brute-force learning of viewer

preferences is only possible using large datasets which span a diverse spectrum of

local, contextual, and global factor combinations. We address this challenge by

leveraging a number of observations that allow us to break our clustering problem

into sub-problems, the answers to which can be learned using limited amounts of

training data. We first note that while correctly clustering strokes often requires

global context, many clustering decisions can be made using purely local informa-

tion. In other words, we can often correctly classify groups of strokes as belonging

to the same strip without considering the properties of any other strokes in the

drawing. We also observe that given an approximately consolidated sketch, we

can compactly encode the global context required for making even more accurate

83

local consolidation choices. Following this observation we use a two step consol-

idation process: we first use purely local properties to obtain an approximate, or

preliminary consolidation; we then refine this preliminary outcome by combining

local cues with contextual and global features computed using preliminary strips

(Section 5.3).

Both stages of our algorithm require a way to robustly and efficiently cluster

strokes into strips using relevant geometric features. Even when focusing on lo-

cal or compactly encoded global features, learning N-way clustering where N can

vary is likely to require large amounts of training data. We dramatically reduce the

amount of training data necessary by focusing on binary classification: given two

groups of strokes, we train our classifiers to determine if the union of the two forms

a common strip (Section 5.4). Since typical sketches contain dozens of strips,

and exponentially more sub-strips (groups of strokes which are part of a strip),

such classifiers can be successfully trained using a relatively small set of diverse

sketches (our classifiers were trained on 66 annotated sketches). Robustly assess-

ing if a pair of sub-strips belongs together requires capturing the different features

that impact human clustering decisions, and thus requires establishing dense cor-

respondences between the side-by-side portions of the sub-strips; computing such

correspondences algorithmically is far from instant [67, 79]. We therefore require

a principled way to keep the number of such correspondence computations and the

classifier calls that trigger them small without sacrificing output accuracy.

Bottom-up strategies that first apply a classifier to all pairs of individual strokes

in a sketch, and then repeatedly apply it to all pairs consisting of newly formed and

other sub-strips, are unsuitable for our needs as they are likely to require a pro-

hibitive number of classifier calls. We obtain our preliminary consolidations while

keeping down the number of calls by observing that during the drawing process

artists often, though not always, draw strokes belonging to the same strip tempo-

rally close to one another. Following this observation, we employ an incremental

pairwise sub-strip evaluation order that leverages this workflow and allows us to

dramatically limit the number of classifier calls (Section 5.3.1).

We refine the resulting preliminary consolidation by re-evaluating the cluster-

ing decisions within each preliminary strip and in-between adjacent preliminary

strips using our second classifier which uses both local and contextual features and

84

is trained on the same compact set of annotated drawings (Section 5.3.2). In our

cross-validation experiments, our refinement step improves consolidation accuracy,

measured as distance between algorithmically and manually consolidated sketches

by 20%.

We validate our method via a range of quantitative and qualitative comparisons

to prior art and manual consolidation (Section 5.6). Our comparative study par-

ticipants preferred our results over the closest alternative 67% of the time, judged

them as on par 19% of the time, and preferred the alternative only 14% of the time.

Our evaluations demonstrate that StripMaker significantly outperforms the state of

the art in terms of alignment with user needs.

5.2 Analysis of Overdrawn Sketches

Professional and amateur artists often depict intended curves using strips of over-

drawn strokes [2, 32, 112]. They use overdrawing to correct or refine earlier

strokes, emphasize specific curves, and break down hard to draw long and com-

plex curves into shorter, easier to sketch strokes. Observers easily overcome such

inaccuracies and correctly interpret artist intent. To match this intent when forming

strips, we therefore consider both artistic practices and research on human percep-

tion. While the exact mechanism viewers employ to parse sketches remains un-

known, based on prior work and our own observations we speculate that viewers

employ the following cues when consolidating sketches (Figure 5.2). We leverage

those cues in our algorithm (Section 5.3).

Correspondence. At its core, consolidation merges together groups of strokes that

are fully or partially side-by-side, or next to one another (Figure 5.3). Research sug-

gests that when making consolidation decisions, viewers rely on implicit dense cor-

respondence (orange isolines in inset) between side-by-side stroke sections when

evaluating the degree of compatibility between them [67], and expect each strip

to allow for a low distortion 1D parameterization and be well approximated by a

single curve [79].

85

Figure 5.3: Correspondense between strokes are defined by 1D parameterization.
The isolines of this 1D parameterization are shown in gray and orange. The orange
isolines indicate the side-by-side section between the top stroke and the remaining
ones.

Local Geometry. Application of Gestalt psychology grouping principles [61, 104]

to strokes suggests that parallelism, distances, and density play a major role in

consolidation decisions (Figure 5.2a-c). Viewers are more likely to group strokes

which are more parallel and closer to one another along their side-by-side sections.

Density suggests that viewers are more inclined to see strokes as forming a strip

if the distances between adjacent strokes are more even, in particular this suggests

that wider sub-strips are more likely to be seen as belonging to the same strip than

more narrow sub-strips spaced at the same distance, see Figure 5.2c. In addtion,

Liu et al. [67] demonstrate that viewers expect strips to be narrow, having a small

width to length ratio (Figure 5.2d). We further observe that viewer perceived strips

typically have roughly the same, or even, width throughout with no drastic changes

(Figure 5.2e).

Drawing Order. Our analysis of sketch drawing order confirms observations in

prior literature [42, 76] that strokes belonging to the same intended strip are often

drawn temporally close to one another, and are frequently drawn consecutively; in

Figure 5.4 the coloring reflects drawing order—while few strips are drawn fully

consecutively, large portions of many strips are.

More generally, we note that incomplete sketches, i.e., sketches visualized at

any intermediate drawing time steps, share many properties with finished ones,

see Figure 5.4b which has the first half of the strokes of the cupcake above it.

In particular, strokes perceived as belonging to the same strip in an incomplete

86

sketch are highly likely to be perceived as such in the finished one. The same holds

to a weaker degree in the inverse direction—strokes perceived as being apart in an

incomplete sketch more often than not continue to be seen as belonging to different

strips in the final sketches. We refer to this property as temporal persistence.

0

100

80

60

40

20

120

(b)(a)

Figure 5.4: Strokes belonging to the same intended strip are often drawn temporally
close to one another as indicated by coloring (a). Incomplete sketches share many
properties with finished ones and strokes perceived as belonging to the same strip
in an incomplete sketch are highly likely to be perceived as such in the finished one
(b). Source: Yan et al. [112].

Global and Local Context. Our analysis suggests that viewers’ consolidation de-

cisions are impacted by the overall sketch precision. Viewers are more likely to

group widely spaced strokes together on rough messy drawings, where all strips

have more spaced out strokes. In contrast, on cleaner drawings, views are likely

to see adjacent side-by-side strokes as separate intentional details rather than a

byproduct of sketchy overdrawing (Figure 5.5a left vs right). In particular, viewers

are likely to incorporate stand-alone, outlier, strokes (red in the top Figure 5.5a)

into one of their adjacent strips when their surrounding clusters are less precise,

[67].

Lastly and importantly, consolidation decisions are impacted by perception of

inter-strip junctions. Specifically, viewers expect connectivity to be non-accidental,

and are less likely to mentally consolidate strokes when doing so reduces the num-

ber of perceived inter-strip junctions. In the Figure 5.5b, the two highlighted groups

of strokes look likely to be in the same strip in isolation (left), but are viewed as

87

(b)(a)

Figure 5.5: Viewers’ consolidation decisions are impacted by global and local con-
text: the overall sketch precision (a) and the perception of inter-strip junctions (b).

apart when the gray strip is present (right). We refer to this property as connectivity

preservation.

5.3 Algorithm

(a) (b) (c)

Temporal
consolidation Refinement

Figure 5.6: StripMaker first generates preliminary consolidations (b) of the input
sketches (a) and then refines those using global cues to arrive at the desired output
(c). Note that the over-merged left side of the screen (b) is corrected separated
through refinement (c). Source: Pagurek van Mossel et al. [79].

Input. The input to our method is a vector format sketch, where strokes are fixed-

width curves and sorted based on their drawing order. We pre-process each curve

into an evenly and densely sampled polyline, remove end-point hook artifacts re-

sulting from inadequate device capture [115], and break strokes at sharp corners,

enabling processing of cases where users use zigzag overdrawing patterns; see Ap-

pendix A.3 for details.

88

Workflow. We first consolidate the inputs using a method based on an analysis

of local geometric feature (Section 5.3.1, Figure 5.6b). While not perfectly ac-

curate, the approximate consolidations it computes are close enough to the viewer

expected output, enabling us to estimate sketch precision and likely strip connectiv-

ity. We use these estimates in our refinement pass generating the final outputs (Sec-

tion 5.3.2,Figure 5.6c). We discuss the design and training of the classifiers used

in both stages in Section 5.4 and provide implementation details in Section 5.5.

Output. We fit an aggregate curve to each output strip using the method of [79].

Prior to the fitting, we identify strips that form continuation end-end junctions us-

ing a simplified version of the method of [115]. We merge strips connected via

continuation junctions and fit them jointly. Similar to Liu et al. [67] we delete sin-

gle stroke strips which almost completely overlap multi-stroke ones, as these single

stroke strips are perceived as noise.

5.3.1 Local Temporal Consolidation

Our main consolidation step uses a local-feature-based classifier to group the in-

put strokes into preliminary strips (Figure 5.6ab). Computing the geometric fea-

tures necessary to evaluate whether two sub-strips belong to the same strip requires

computing a correspondence between them, a computationally non-trivial task. We

thus require a consolidation workflow that keeps the number of classifier calls and

corresponding feature computations small.

New stroke (red) 1st iteration 2nd iteration

s

B

s

B

(a) (b) (c)

Figure 5.7: A new stroke (red) is considered against existing strips (a) and added
to the strip (purple) with highest probability that is larger than 0.5 (b). The newly
added stroke makes the updated strip more likely to be combined with another
existing strip (orange) and thus we iteratively combine strips (c).

We limit the number of classifier calls by leveraging temporal persistence and

drawing order. Given the time-ordered sequence of sketch strokes as the input, our

89

algorithm processes one stroke at a time, see Figure 5.7. Given the new stroke s

(red in the Figure 5.7), we measure the likelihood that the stroke belongs to one

of the previously formed sub-strips using our local classifier (Section 5.4). If the

classifier indicates that the stroke may belong to one or more of these sub-strips, we

add it to the sub-strip B with the highest classifier likelihood that is larger than 0.5

(purple in the Figure 5.7); otherwise, we store the stroke as a separate sub-strip.

In case a stroke is added to a sub-strip, the classification process is iterated, this

time assessing if this new sub-strip should be combined with one of the previously

formed sub-strips. If yes, the new sub-strip is combined with the sub-strip with

the highest classifier likelihood that is larger than 0.5 (Figure 5.7c). We repeat the

process until there are no sub-strips to combine.

Speed-up Naively testing new strokes or sub-strips against all previously formed

sub-strips at each iteration would imply performing numerous classifier calls, the

vast majority of which are likely to provide a negative answer. To gain necessary

performance, as a pre-filter to the classifier, we first evaluate the compatibility of

the assessed sub-strips, and only call the classifier if they are deemed compatible,

i.e., , have non-zero likelihood of belonging to a common strip. We consider sub-

strips compatible if three conditions are satisfied: (1) they are at least proximate,

(2) they are weakly parallel, (3) their joint parameterization has sufficiently low

distortion, and (4) their side-by-side sections are sufficiently long. More specifi-

cally, if they fail any of the conditions in this order below, the sub-strips are highly

unlikely to belong to the same strip and there is no need to call the classifier to

evaluate them.

(1) We check if the shortest pointwise distance between the two sub-strips is

below 10 times stroke thickness. If not, the strips are not compatible. If yes, we

proceed with additional evaluations using the already computed fitting curves of

each sub-strip. Given these two fitting curves, we compute the shared parame-

terization of them for the faster pre-filter checks (note that such parameterization

is much faster to compute than a parameterization of all strokes in the sub-strips

which is required to compute the classifier features). (2) We compute the an-

gle difference between the combined fit curves along the side-by-side sections and

check if the average angle is below 35◦. (3) We check if the joint parameterization

90

has excessive distortion (the maximum magnitude of the alignment term [79] in

Equation 5.2 is greater than 2). (4) We check that in the common parameterization

the side-by-side section of the fitted curves is longer than six times the stroke width

and is at least 20% of the length of the shorter sub-strip. A pair that fails one of

these tests is deemed incompatible. All threshold values above were determined

based on training data set statistics.

Similarly, comparing each newly formed sub-strip against all other sub-strips

necessitates many classifier calls, the vast majority of which return a negative an-

swer. We speed up the computation by observing that a stroke is more likely to

belong to the same strip as its temporally previous stroke, than to belong to a dif-

ferent multi-stroke strip.

As described in Algorithm 2, we at each iteration keep track of the sub-strip

R that the most recently processed stroke belongs to. After locating the strip B

that a new stroke s is deemed to belong to, if B = R we add s to B, delay any new

sub-strip comparisons, and proceed to the next stroke in the temporal order. If B

is different from R or if s is not added to any existing strip, and R has more than

one stroke, we assess if R can be merged with other strips (TryMerging(R, C) runs

a fixed number of passes, 3 in our implementation): we use our local classifier to

evaluate the sub-strip R against all previously formed sub-strips, merging it with

an existing sub-strip if the classifier deems the two to belong to the same strip.

We repeat the iterative evaluation when a merger occurs. Our delayed evaluation

reduces the number of classifier calls by an order of magnitude: the comparisons

between two multi-stroke strips are reduced to 56% on average. This effect is more

evident on inputs with thick strips: the most extreme case in our validation set is

the car (Figure 2.4) with the comparisons reduced to 13%.

5.3.2 Refinement

After the temporal pass is complete, we expect the vast majority of the result-

ing strips to match viewer expectations (in our cross validation experiments, Sec-

tion 5.6, the consolidations produced at this stage were 97% consistent with the

ground truth labels). We thus only revisit clustering decisions locally where the

temporal pass results are most likely to need refinement. In doing so, we seek to

91

ALGORITHM 2: Local Temporal Consolidation
Data: A sequence of strokes S = {si}, i = 1, . . . ,N
Result: A set of strips C = {C j}, s.t. ∪C = S
R← /0;
C← /0;
for i = 1, . . . ,N do

C′← all strips in C that are compatible with si;
p,D = maxc∈C′ classify(c∪{si});
if p≥ 0.5 then

B← D∪{si}
else

B←{si}
end
if B 6= R then // The stroke belongs to a different strip

R← TryMerging(R, C);
C =C∪R;
R = B;

end
end
R← TryMerging(R,C) // Final merging attempt
C =C∪R

balance the global and local classifier choices. On the one side, our global clas-

sifier and the algorithm around it are able to leverage contextual information that

is not available during our temporal pass. On the other side, our global classifier

relies on features computed using complete sketches, and is thus more sensitive to

the fact that our training corpus is by necessity not large and thus may not have

the necessary overall drawing style diversity to fully generalize. We thus change

preliminary consolidation decisions conservatively, and only use our global con-

text aware classifier to re-evaluate and split existing strips, when necessary, and to

merge adjacent strips that clearly warrant merging.

Strip Re-evaluation. We re-evaluate each multi-stroke strip taking context into

account (see Figure 5.8). For each strip, we select two seed strokes by finding the

stroke pair least likely to belong together using our global classifier (Section 5.4).

If this likelihood is sufficiently high (> 0.6), the strip is left as is. Otherwise,

if multiple pairs have the same likelihood of being together, we select the pair

with the largest average stroke-wise distance as the seeds. We mark all non-seed

92

SeedsAssessed strip

Final sub-stripsGrowing sub-strips

(b)(a)

(d)(c)

Figure 5.8: Multi-stroke strip are split and re-evaluated (a). A pair of strokes with
the lowest probability are selected as seeds (b). The sub-strips are grown from
these seeds (c) until all strokes are assigned (d).

strokes as unassigned, and grow sub-strips incrementally from the two seeds, by

adding unassigned strokes to one of the sub-strips, and stopping when all strokes

are assigned. At each iteration, we assess for all unassigned strokes the likelihood

of them belonging to one of the seed sub-strips. If more than one stroke has a

likelihood of 0.5 or higher, we prioritize strokes that are side-by-side to both seed

strips. Among those we select the ones with the highest likelihood value, and

break ties by prioritizing strokes that are closest to the corresponding seed strip. If

no unassigned strokes are deemed to belong to a seed sub-strip, we classify one of

the unassigned strokes as a new seed, and continue.

Once all strokes are assigned to sub-strips, we re-evaluate if any pair of sub-

strips belongs to the same strip. We merge pairs back into common strips if they are

deemed to likely belong together by our global classifier, and if doing so does not

change the viewer-perceived sketch connectivity as discussed below. Specifically,

subject to the connectivity assessment below, we merge multi-stroke sub-strips to-

gether if the likelihood is above 0.5 and merge single strokes with other sub-strips

if the likelihood is above T = 0.3 (the conservative threshold is motivated by the

observation that human decisions on such pairs are less affected by context).

Strip Re-evaluation Speed-Up To speed up our strip reevaluation step, during

the entire strip refinement process, we use the parameterization of the preliminary

93

strips to compute the local features used by the classifier. Only if at the end of the

re-evaluation the strip is deemed in need of a split, we reparameterize the sub-strips

and re-evaluate the split decision.

Connectivity Preservation. The connectivity preservation property suggests that

if a sub-strip is perceived to form a junction with another strip at one of its end-

points, it is more likely to be perceived as being a stand-alone strip. We detect

perceived junctions at the end-points of the assessed sub-strips by fitting them with

the corresponding intended curves and use the classifier in Yin et al. [115] deter-

mining the likelihood of two curves forming a junction. If a junction is detected,

we do not merge the assessed sub-strips if the global classifier likelihood is below

1−T and the distance from the junction to the other assessed sub-strip is high (1.5

sub-strip width).

Strip Merging We merge adjacent strips in the temporal pass output if they are

deemed to be part of the same strip by our global classifier and if they pass the

connectivity preservation test above. Specifically following the conservative logic

above, we merge multi-stroke sub-strips together if the likelihood is above 0.55,

merge single strokes with mutli-stroke sub-strips if the likelihood is above 0.5, and

merge singe strokes if the probability is above 1−T .

5.4 Classifier Design

At the core of our iterative consolidation pipeline lie two binary Random Forest

[50] classifiers, responsible for predicting the probability that two given sub-strips

belong to the same or different viewer-perceived strips. The classifiers output a

number c ∈ [0,1]; if c ≥ 0.5, the pair is more likely to belong together than apart.

Random Forests had been shown to be well suited for the type of problems we

address [43, 115].

Our local classifier, used in our temporal consolidation step, operates on fea-

tures that can be computed purely on the evaluated sub-strips, and is trained on sub-

strips similar to the ones encountered during temporal consolidation. Our global

classifier uses the same set of features with the addition of a relative precision

94

feature that encodes the precision of the assessed pair of sub-strips relative to the

precision of the rest of the sketch, and is trained on sub-strips similar to the ones

encountered during the refinement step. For additional details of the composition

of the classifier training corpuses see Appendix B.3.1.

Our classifier features are inspired by the analysis of cues observers employ

when making consolidation decisions (Section 5.2, Figure 5.2). Computing ro-

bust features to capture these cues requires point-to-point correspondences between

the assessed sub-strips (see Figure 5.9). We obtain these correspondences via

StrokeStrip parameterization [79]. The parameterization isolines provide a reliable

and intuitive pointwise correspondence across all sub-strip strokes and the length

of each isoline provides an estimate of the strip widths. We define the parameter

span shared between the two sub-strips as the common side-by-side section. We

measure all pairwise geometric features over isolines in that interval only (orange

in Figure 5.9). We normalize all computed distance by the stroke thickness.

(b)(a)

Figure 5.9: Parameterization [79] computed on given sub-strips (in blue and red).
Correspondences are indicated by isolines in gray and orange; features are mea-
sured within the side-by-side section highlighted in orange. Positive (a) and nega-
tive (b) sub-strip pairs have visual difference which we try to capture via geometric
features.

Angles and Distances. We measure the angles between tangents at correspond-

ing points, over all shared isolines and measure distances between the closest cor-

responding points on the two sub-strips, purple in Figure 5.10 (for intertwined

sub-strips this distance is defined as zero). For each of these measurements, we

compute averages and medians over all the relevant isolines (4 features overall).

95

Figure 5.10: Distances are measured within each side-by-side isoline and aggre-
gated along the side-by-side section. Within an example isoline illustrated as a dash
line, the distance between sub-strips is shown in purple; the width of the wider sub-
strip in red; the width of the narrower sub-strip in blue; the width of the combined
strip in black.

Density. We encode density by measuring the distances between closest points

on different sub-strips (purple) and normalizing those by the widths of the wider

(red) and narrower (blue) sub-strips, and the width of the entire isoline (black).

For each of these measurements, we compute averages and medians over all the

relevant isolines. We also measure the ratios between the 90th and 10th percentile

within strip distances and the inter-strip distance (10 features overall).

Narrowness and Side-by-Side Extent. We capture how narrow a strip is as the

ratio of its length, measured as its full parameterization span, to its average and

median widths. We measure the minimum and maximum of the two ratios com-

puted for each sub-strip, as well as the ratios for the combined strip (6 features).

We measure the side-by-side extent of the two sub-strips as the ratio of the length

of the shared parameter span to the full parameter span.

Figure 5.11: Evenness is measured based on the isolines at the ends of side-by-side
section (red) and the isolines immediately outside the side-by-side section (black).
Large difference in length between red and black isolines indicates unevenness.

96

Evenness. We define the evenness of the combined strip as the difference in

width between the side-by-side segment of the combined strip and the widths out-

side this segment. At both ends of the side-by-side segment (red in the Figure 5.11),

we compute the ratio of the width of the first isoline inside the segment to that of

the outside isoline just next to it, red to black distance ratio in Figure 5.11 (we use

1 as the value if no outside isoline exists). We also compute the ratio between the

average width of the side-by-side section and the width of the sub-strips inside the

parameter intervals before and after it (we use 1 as the value if there is no such

interval); we store both sets of values ordered as maximum and minimum.

1D Parameterization Distortion. Since viewer perceived strips are expected to

allow for a low-distortion parameterization [79], the quality of this parameteriza-

tion is in itself an indirect indicator of whether a group can be interpreted as a strip

or not. We measure the distortion using the energy terms in the original StrokeStrip

formulation [79].

We compute two values for a given potential strip: the maximum deviation of

the tangent length (velocity) from 1, and the maximum misalignment [79]. Here

u(x) is a parameterization, defined for every strip point, C(t) is the isoline for the

parameter value t, τ(t) is an average tangent over the isoline, and n(t) is the average

normal.

Elength =
∫ L

0

∣∣∣∣ 1
W (t)

∫
C(t)

∇u(x) · τ(t)dx−1
∣∣∣∣2 dt (5.1)

Ealign =
∫ L

0

∫
C(t)
|∇u(x) ·n(t)|2dxdt (5.2)

Relative Precision. Our global classifier combines the features above with a

family of features which relate the distance between the assessed sub-strips to the

stroke density across all other strips in the current consolidation. Specifically, we

measure for all strips the average and median inter-stroke distances along all iso-

lines, and record the median, average and 90th percentile results across all strips.

We similarly measure the median and average distance between the assessed sub-

strips. We record all ratios between these values as features (6 features in total).

97

5.5 Algorithm Details

Postprocesing Our postprocessing detects continuations between strips and en-

forces those during fitting by merging the strips. We first detect actual or intended

strip end-end intersections, and treat pairs of intersecting strips as continuations

if the angle between the tangents at their endpoints is under 20◦ [12, 49] and the

two local strip widths differ by less than 4 times. We detect highly-likely junctions

(with probabilities > 90%) as intended junctions using Yin et al. [115], and con-

sider strips as forming actual end-end junctions if they intersect immediately next

to their respective end-points (within 20% of the strip length and three times the

strip width from the endpoints). As noted by Liu et al. [67], artists often do not

delete extreme outlier strokes if these are essentially covered, or hidden, by other

stroke strips. Similarly to Liu et al., we detect and delete such outliers. We define

a single stroke strip as an outlier if more than 90% of its area is covered by the en-

velope of another strip extended by 50% its width. Lastly, we detect single stroke

overdrawn ellipses and fit them as closed strips [79].

Simo-Serra + Puhachov Mo Stanko SA full Prediction
px longer axis, 20 px padding) (500 px longer axis, 20 px padding, padding to square) (500 px longer axis, 20 px padding)

(missing) (missing) (missing) (missing)

NA NA NA NA 0.0474615565004529 NA

NA NA NA NA

0 10 20 30 40 50 60 70

stroke strip 1115/Giraffe03 SA cluster.scap (missing) (missing) (missing) (missing)

Measured on stroke-stroke pairs:
SA full:

Sample count 217
Failure count 68
— True positives 35
— False positives 13
— True negatives 114
— False negatives 55
Balanced accuracy 0.643263
True negative rate 0.897638
F1 score 0.507246
Precision 0.729167
Recall 0.388889

Ours:
Sample count 217
Failure count 0
— True positives 90
— False positives 0
— True negatives 127
— False negatives 0
Balanced accuracy 1
True negative rate 1
F1 score 1
Precision 1
Recall 1

Measured on training example pairs:
SA full:

Sample count 43
Failure count 20
— True positives 16
— False positives 8
— True negatives 7
— False negatives 12
Balanced accuracy 0.519048
True negative rate 0.466667
F1 score 0.615385
Precision 0.666667
Recall 0.571429

Ours:
Sample count 43
Failure count 0
— True positives 28
— False positives 0
— True negatives 15
— False negatives 0
Balanced accuracy 1
True negative rate 1
F1 score 1
Precision 1
Recall 1

11

(a)

(b)

Figure 5.12: Two examples of winding strokes. The overdrawn ellipse is supposed
to be fit as a closed strip (a); while the intentional spiral is supposed to be left open
(b).

We consider an input stroke as potentially an overdrawn ellipse if its total

signed curvature magnitude, |κ| > 2π . In this case, we compute the substrokes,

corresponding to the loops with |κ| ≤ π . We distinguish between actual overdrawn

98

(a) Input sketch (c) [Liu et al. 2018] (e) Our output

[Liu et al. 2018]
strips Our stripsRasterized input

(d) [Xu et al. 2019]
[Puhachov et al. 2021]

[Xu et al. 2019]
raster output

(b) [Stanko et al. 2020]

Figure 5.13: Consolidating typical inputs (a) using state-of-the-art methods for
simultaneous consolidation and vectorization [100] (b), and vector [67] (c) and
raster [111] (d) space consolidation, often results in both loss of details and under-
consolidation. Rasterized input used for (b) and (d) shown as inset in (a). The
raster output of [111] (shown in the inset in (d)) was vectorized using the method
of [86]. Our method (e) produces viewer expected consolidations on these inputs.
Please zoom-in to see details. Source: Yan et al. [112].

ellipses (Figure 5.12a) and intentional spirals (Figure 5.12b) using the following

heuristic. We find the barycenter of each loop and set dmass to the maximal Eu-

clidean distance between those. We parameterize the substroke as a closed strip

using the method of Pagurek van Mossel et al. [79]. We measure the maximal

distance between adjacent points along parameterization isolines g and compute

the strip radius r = L/2π where L is the strip length. Given the stroke width w,

we consider the stroke to be an ellipse if g < 50w and one of the following holds

dmass/r < 0.25 or dmass/r < 0.45 and g < 3w.

Random Forest Our classifiers have 150 trees with maximal tree depth capped at

20. Our average tree depth for the local classifier is 13.7, and the mean number

of leaves is 129. We use the scikit-learn library [85] implementation of random

forest.

99

5.6 Results and Validation

We tested our method on 191 previously unseen sketches, including 107 sketches

from sketch processing benchmarks [44, 112] as well as 82 sketches we commis-

sioned from 12 different artists. 16 of these are shown in the paper. These sketches

span a vast range of styles and content, and varrying degrees of precision form

highly sketchy ones such as the hand in Figure 5.15 to much more precise ones,

such as the girl in Figure 5.13. Visual inspection confirms that our consolidation

results are well aligned with viewer expectations.

We further validate our method via the evaluations and comparisons below.

Cross-Validation We evaluate both of our classifiers via a round-robin leave-one-

out cross-validation on the 66 sketches in our training set. We leave one sketch

out, train the classifier on the remaining sketches and then compare our classifier

results to the ground truth annotations. Both classifiers achieve 99% accuracy (the

local classifier fails on 118 sub-strip pairs out of 15959 and the global fails on 51

sub-strip pairs out of 6280).

To evaluate our end-to-end consolidation pipeline on this data, we similarly

leave one sketch out, train both classifiers on the remaining sketches and then use

those within our algorithm pipeline to consolidate the left-out sketch. We then

measure the distance between our fitted outputs and those produced using ground

truth annotations (Tab. 5.1, left). Our average distance, normalized by stroke width

is less than 0.15, indicating very high degree of agreement. This number is sig-

nificantly lower than the error obtained after applying only our preliminary step

(0.179). Using distances to assess consolidation quality enables us to evaluate di-

verse methods via the same metric and is motivated by [112].

Comparison to Manual Consolidation. We compare our consolidation outputs on

unseen data to manual consolidations. We collected manual consolidation annota-

tions for 20 complete sketches from 12 participants. Each sketch was annotated

by two participants. We evaluate agreement between participants by measuring

the distance between the consolidated sketches produced using their annotations.

As expected, while participant agreement is high, they are not 100% aligned (Ta-

100

Table 5.1: Average L1 and Lmax distances to consolidations generated using manual
labelings. (left) result on our cross-validation set; (right) results on unseen anno-
tation set. Our method achieves the best performance among all algorithms tested,
approaching human performance.

Cross Validation Human Annotation
L1 Lmax L1 Lmax

Human - 0.548 12.924
[Stanko et al. 2020] 2.252 11.668 1.574 19.075

[Xu et al. 2019] 1.106 10.293 1.201 11.617
[Liu et al. 2018] 0.287 5.629 0.920 14.477

Our temporal consolidation 0.179 3.409 0.708 11.598
Our final 0.149 3.141 0.645 10.353

ble 5.1, right). We measure the degree to which our algorithm agrees with human

choices by using the smaller between per-sketch distances (L1 and Lmax) between

our and manually fitted results for each input sketch and report the averages of these

measurements. Our error of 0.645 is just 0.1 higher than the one between different

human annotations, suggesting that our method is nearing human performance.

Comparison Against Prior Art. We compare our method against prior art in three

related categories: raster-space consolidation methods, simultaneous consolida-

tion and vectorization methods, and vector-space consolidation methods. We first

demonstrated qualitatively by examples that our method visibly significantly out-

performs all earlier approaches. To apply the raster space methods to our data, we

rasterize our inputs as discussed in Appendix B.3.2. We focus our comparisons

on the latest or best performing automatic methods in each category [67, 100, 111]

(Figure 5.1, 5.13, 5.14, 5.15). While raster-space methods [86, 100, 111] often

produce artifacts of both loss of details and under-consolidation, and the state-of-

the-art vector consolidation approach of [67] over-merges, our method consistently

produces consolidations better aligned with viewer expectations. As shown in Fig-

ure 5.16 and 5.17, earlier sketch consolidation methods [69, 97], often fail to ad-

equately consolidate typical sketches; and simultaneous consolidation and vector-

ization methods [35, 73, 82], fail to generate viewer-expected outputs when applied

to rasterizations of typical overdrawn vector sketches.

101

Our strips

(a) Input sketch (d) Our output(b) [Stanko et al. 2020]

Our strips

Raster
input

Raster input

[Xu et al. 2019]
raster output

[Xu et al. 2019]
raster output

(c) [Xu et al. 2019]
[Puhachov et al. 2021]

Figure 5.14: Consolidating typical inputs (a) using raster-space methods (b) [100]
(c) [111] (vectorized using the method of [86]) often results in both loss of de-
tails and under-consolidation (raster consolidation outputs shown as insets). Our
method (d) produces viewer expected consolidations on these inputs. Source: Yan
et al. [112] (top), © Rami Alsafadi (below).

(a) Input sketch (e) Our output(b) [Liu et al. 2018] strips (c) [Liu et al. 2018] (d) Our strips

Preferred: 0/6 Preferred: 6/6

Preferred: 1/6 Preferred: 5/6

Figure 5.15: Our method (d,e) consistently produces consolidations better aligned
with viewer expectations than those produced by the state-of-the-art vector consol-
idation approach of [67] (b,c) on diverse overdrawn inputs (a). Stroke grouping
is shown with each strip rendered in a different color (b,d). Source: Gryaditskaya
et al. [44] (top), © Tina Nowarre (below).

We measure mean and maximal distances between the outputs of these meth-

ods and our two ground truth corpuses as discussed above (to eliminate any mis-

alignment we apply an ICP alignment step to all pairs of algorithmically generated

and ground truth consolidations). This metric allows us to meaningfully compare

vector and raster space methods performance. While the quality of vector space

consolidation can in theory be evaluated by comparing which strokes are grouped

together and which are not, the method of Liu et al. [67] uses a pre-process that

102

R
as

te
riz

ed
 in

pu
t

[S
im

o-
Se

rr
a

et
 a

l.
20

18
a]

ra
st

er
 o

ut
pu

t

O
ur

 s
tr

ip
s

[L
iu

 e
t a

l.
20

15
]

st
rip

s

O
ur

 s
tr

ip
s

(e) [Simo-Serra et al. 2018a]
 [Puhachov et al. 2021]

(a) Input sketch (d) Input sketch (f) Our output(c) Our output(b) [Liu et al. 2015]

Figure 5.16: Earlier sketch consolidation methods, such as [69] (left) and [97]
(right) often fail to adequately consolidate typical sketches (a,d) that our method
succeeds on (c,f). On the left we used classifiers trained excluding the input shown
(we have some results of [69] but no access to their code). Source: © Enrique
Rosales (left), Gryaditskaya et al. [44] (right).

Our strips

Our strips

(a) Input sketch (d) [Mo et al. 2021] (e) Our output(c) [Parakkat et al. 2018](b) [Favreau et al. 2016]

Figure 5.17: Comparison to simultaneous consolidation and vectorization meth-
ods: (b) [35], (c) [82], (d) [73] on typical overdrawn sketches (a). Our method
(e) produces viewer expected results on this data. Source: © Val Novikov (top),
© Rami Alsafadi (below).

deletes short strokes and splits raw strokes in high curvature areas. As a result, we

cannot directly compare the strips it forms against ground truth data, as there is no

one-to-one map between the strokes they operate on and the manually consolidated

ones. To enable the most fair comparison we re-fit the strips produces by [67] using

our fitting method. As reported in Table 5.1, the distances for all the methods we

compare to are at least 30% higher than those achieved by StripMaker.

We compare the perceptual accuracy of our method against the prior approaches

of [67, 100, 111] via a comparative study (Appendix B.3.3). Study participants

were shown an input sketch and two consolidations of this sketch, one obtained

using StripMaker and one generated using an alternative and were asked to evalu-

ate which of the two was a cleaner and accurate version of the input. Overall we

103

67%

69%

82%

14%

9%

5%

5%

11%

9%

14%

12%

4%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

[Liu et al. 2018]

[Xu et al. 2019]

[Stanko et al. 2020]

Ours Both Neither OtherVote Percentage

Figure 5.18: Comparative study summary: Participants preferred our results over
all alternatives by a significant margin.

collected answers to 90 questions (30 per method), 6 answers per question (540 an-

swers in total). Figure 5.18 summarizes the study results. In comparisons against

the best performing alternative, participants preferred our results 67% of the time,

preferred the alternative just 14% of the time, judged both results as equally good

14% percent of the time, and as equally bad 5% of the time. The measured prefer-

ence was highly statistically significant (p < 0.001 for all methods). These num-

bers convincingly demonstrate that our consolidation method provides a significant

improvement over the state-of-the-art. Figure 5.19 shows three inputs where view-

ers preferred the alternative over StripMaker (alternative methods were preferred

on 6 out of 90 inputs shown). We further discuss the limitations in Section 6.1.

(g) Input sketch

(i) Our output

(h) [Liu et al. 2018]

Preferred: 6/6

Preferred: 0/6

(a) Input sketch (c) Our output(b) [Stanko et al. 2020] (d) Input sketch (f) Our output
(e) [Xu et al. 2019]
[Puhachov et al. 2021]

[X
u

et
 a

l.
20

19
]

ra
st

er
 o

ut
pu

t

R
as

te
r i

np
ut

R
as

te
r i

np
ut

Preferred: 3/6 Preferred: 2/6Preferred: 4/6 Preferred: 0/6Neither: 2/6 Neither: 1/6

O
ur

 s
tri

ps

O
ur

 s
tri

ps

Our strips

[Liu et al. 2018]
strips

Figure 5.19: Limitations: Our results are not preferred on these three examples.
Source: © Val Novikov (left), © Champ Semalulu (middle), Gryaditskaya et al.
[44] (right).

Runtimes. Our median runtime across all inputs in our test set is 50 seconds per

sketch. All runtimes measured on MacBook Pro (2020), Apple M1 chip (8-core

CPU), 8 GB memory. The code is parallelized with 8 threads. The time bottleneck

in our method, as expected, is the parameterization of sub-strip pairs.

104

Gini Coefficients. Tables 5.2 and 5.3 report the Gini coefficients of our classi-

fiers. All features contribute to the decision making. The top five important

features of local classifier are average distance, density average distance over lo-

cal min width, median distance, median angle, density median distance over local

min width. They corresponds to distances, density, and angle cues. The top five

important features of contextual classifier are average distance, average distance

over global average of average inter-stroke distances, average distance over global

90th percentile of average inter-stroke distances, density average distance over lo-

cal min width, median angle. They corresponds to distances, relative precision,

density, and angle cues. For both local and contextual classifiers, density and an-

gle are shown to be important which verifies the usage of these cues in Chapter 3.

Distance is shown to be the most important cue based on Gini. While it is hard to

incorporate the distance cue via simple thresholding in Chapter 3, in this Chapter,

we are able to include this cue without the potential risks of using hard threshold,

since we could model the interactions between cues automatically. For the con-

textual classifier, relative precision cue is shown to be important in addition to the

ones important to local classifier.

Performance with different sets of features. We had experimented with remov-

ing different subsets of features from the classifiers. In all instances, performance

declined or remained on par. Additionally, we experimented with removing differ-

ent subsets of features from the classifiers. In all instances, performance declined

or remained on par. Among the features of our classifiers, angle, narrowness, and

density categories, in this order, have the most impact: removing them decrease the

accuracy in the cross-validation experiment by 0.93%, 0.31%, and 0.06% respec-

tively. We also experimented with adding the temporal distance between sub-strips

as a classifier feature, performance did not improve.

Consolidation applications. The consolidated results produced by our method

can be directly processed by downstream applications. For instance, applying

topology cleanup [115] directly to a typical input (Figure 5.20a) produces numer-

ous undesirable tiny regions (545 on this input) (Figure 5.20b); while consolidating

105

the input with our method produces the viewer expected topology that can facilitate

colorization (Figure 5.20d). In addition, our output strips (Figure 5.20f) facilitate

per-strip manipulations, such as recolorization with gradient based on per-strip pa-

rameterization (Figure 5.20g).

(a) Input sketch (e) Input sketch
(b) Tiny regions formed by

direct topology cleanup
(c) Our output

(d) Recolored regions from
topology cleanup

(f) Our strips (g) Our strips recolored

Figure 5.20: Consolidation applications: We follow consolidation by topology ex-
traction [115] to facilitate colorization (ab); We use the consolidated strips to di-
rectly edit the input drawing (cd). Source: Yan et al. [112].

106

Table 5.2: Gini importances of local classifier features.

average angle 0.072
median angle 0.075
average distance 0.162
median distance 0.105
density avg distance to Max Width 0.058
density median distance2LocalMaxWidth 0.062
density avg distance2LocalMinWidth 0.146
density median distance2LocalMinWidth 0.073
density avg distance2width combined 0.066
densitymedian distance2width combined 0.053
density max 90th LocalMedianGap2width 0.002
density min 90th LocalMedianGap2width < 0.001
density max 10th LocalMedianGap2width 0.002
density min 10th LocalMedianGap2width < 0.001
side-by-side length to combined length 0.004
max avg narrowness 0.011
max median narrowness 0.012
min avg narrowness 0.004
min median narrowness 0.005
avg combined narrowness 0.003
median narrowness combined 0.002
max non-side-by-side to side-by-side 0.002
min non-side-by-side to side-by-side 0.041
max Avg non-side-by-side to Avg side-by-side 0.028
min Avg non-side-by-side to Avg side-by-side 0.007
parameterization velocity 0.003
parameterization alignment 0.001

107

Table 5.3: Gini importances of global classifier features.

average angle 0.065
median angle 0.075
average distance 0.146
median distance 0.067
density avg distance to Max Width 0.036
density median distance2LocalMaxWidth 0.031
density avg distance2LocalMinWidth 0.081
density median distance2LocalMinWidth 0.027
density avg distance2width combined 0.059
densitymedian distance2width combined 0.014
density max 90th LocalMedianGap2width 0.001
density min 90th LocalMedianGap2width < 0.001
density max 10th LocalMedianGap2width 0.001
density min 10th LocalMedianGap2width 0.001
side-by-side length to combined length 0.011
max avg narrowness 0.006
max median narrowness 0.006
min avg narrowness 0.004
min median narrowness 0.003
avg combined narrowness 0.002
median narrowness combined 0.001
max non-side-by-side to side-by-side 0.004
min non-side-by-side to side-by-side 0.01
max Avg non-side-by-side to Avg side-by-side 0.012
min Avg non-side-by-side to Avg side-by-side 0.002
parameterization velocity 0.002
parameterization alignment 0.004
average distance2global average average distance 0.111
median distance2global average median distance 0.04
average distance2global median average distance 0.013
median distance2global median median distance 0.015
average distance2global p90th average distance 0.111
median distance2global p90th median distance 0.037

108

Chapter 6
Conclusion and Discussions

In this thesis, we addressed the barriers to direct usage of freehand vector sketches

in downstream sketch processing applications: overdrawing strokes and inaccu-

rate junctions. In current industry practice, these issues are solved via manual

cleanup that is tedious and time-consuming. In Chapter 3, we identified basic local

cues, i.e., density, angle, and narrowness, for consolidation based on perception

research literature and our own observations, and established a parameterization

based strategy for pointwise correspondence and measurement given an arbitrary

number of strokes. Assisted by these building blocks, we presented StrokeAggrega-

tor, a method for automatic consolidation that groups raw strokes into strips and fits

aggregated curves. In Chapter 4, we examined local and contextual cues guiding

connectivity perception. To overcome data sparsity issue in learning, we observed

that the connectivity problem can be decomposed into local binary decision and

global inference. While the limited annotated data is insufficient for learning con-

textual cues, it is adequate to train local classifiers which can be integrated into a

global solving framework. This gap closure method was evaluated on a variety of

sketches and used in Chapter 5 to provide contextual information. In Chapter 5, we

further improved on consolidation by accounting for not only local cues but also

contextual and temporal cues. Conducting individual studies to obtain a threshold

per cue as in Chapter 3 is no longer sustainable. We thus applied a strategy similar

to Chapter 4: to train a local classifier and integrate it with global refinement steps

designed for contextual and temporal cues. We demonstrated that this resulting

method out-performs StrokeAggregator on a diverse test set. Our research on con-

solidation has been evaluated by a survey study [112] and concluded to generate

the best path quality at that time; it also has started to benefit downstream applica-

tions, for instance, to significantly save computation time as a preprocessing step

for a design sketch lifting method [45].

109

6.1 Future Work

The research on vector sketch consolidation and connectivity can be further ex-

plored in multiple directions. One immediate extension to our consolidation method

in Chapter 5 is an interactive mode. Both of our consolidation methods are con-

structed without considering the semantics of the input sketch, since it is difficult

if not impossible to quantify these semantics without large amounts of data. A

bypass to this issue is to directly ask artists for instructions, similar to many semi-

automatic methods discussed in Chapter 2. In terms of interaction design, these

previous methods define the correction input as a procedure separate from sketch-

ing which negatively impacts intuitiveness of sketching for creation and interaction.

For this future direction, the drawing system should work incrementally recording

a new stroke and updating the current consolidated sketch on the fly. Instead of

defining a different correction operation, the system should support user correction

in the same form as regular sketching stroke so the sketching process can be car-

ried out as a whole rather than be interleaved with distractive correction operations.

In terms of technical challenge, this system requires real-time update which is in-

feasible if directly applying our current method in Chapter 5. This is because our

current method has to recompute the expensive parameterization from scratch for

every comparison, which can be slow when the number of existing strokes is high.

To achieve real-time performance, the parameterization algorithm by Pagurek van

Mossel et al. [79] needs to be modified to support a fast incremental construction.

Our consolidation method in Chapter 5 utilizes sketch precision as a contextual

cue. Currently, this precision is measured on all but the current strip in question.

This is representative under the assumptions that the initial strips are roughly cor-

rect and the ground truth strips in a sketch share homogenous precisions. How-

ever, these two assumptions may not always hold. Figure 6.1(a) shows an exam-

ple where our method generates an initial result containing multiple over-merged

strips, which biases the refinement to continue this incorrect trend and over-merges

more in the final result. Figure 6.1(b) presents an example where the majority of

ground truth strips are single-stroke strips. When considering the non-single-stroke

strip (arrowed in Figure 6.1(b)), the method incorrectly decides that it is over-

merged and produce the final over-segmented result. This heterogeneous property

110

(b)

(a)

Input

Input

Preliminary consolidation

Preliminary consolidation

Final result

Final result

Figure 6.1: Limitation of StripMaker. The refinement step using sketch precision
could fail and over-segment when the intermediate correctness assumption (a) and
homogenous assumption (b) do not hold. The problematic strips are highlighted
as opaque in the clustering view and as colorful in the clean line drawing view.
Source: © Val Novikov (top), © Edwin González Espitia (below).

even within a single freehand sketch has been a constant challenge for both raster

and vector consolidation methods. It would be interesting to consider adding a

similarity matching step so a strip is only considered against the truly similar strips

in the same sketch.

Apart from these instant extensions, the consolidation can be further studied

for two questions. One is the shading and texture strokes in sketch. As surveyed

by Yan et al. [112], the shading and texture strokes form a common component of

sketch yet most methods including ours do not handle them in any manner. Re-

search focusing on the shading and texture strokes, for example, automatic extrac-

tion of the shading and texture from a sketch, could be important for downstream

sketch processing applications. Another question is the raster consolidation. As

discussed above, the heterogeneous property posts a challenge to vector consolida-

tion methods. The small handful of raster consolidation methods that accept over-

111

drawn inputs handle this challenge even more poorly, which is partially reflected

by the heavy input resolution dependency. An exciting future direction would be to

transfer findings in vector consolidation to the raster space while overcoming the

reduced information provided by raster input.

(a) (b)

+

Figure 6.2: Potential extensions to our gap closure method. The accuracy of al-
ready formed junctions can be further improved by intelligently merging close
misaligned intersections, for instance, around the lower corner of this snake ex-
ample these three strokes do not intersect exactly (a). When paired up, junctions
can imply occlusion, a necessary piece of information for animating occluded ob-
jects (b).

One direct extension to our gap closure method in Chapter 4 is to more closely

examine remaining inaccuracies that are currently not tackled by our method. Like

unintended gaps, artists could unintentionally misalign stroke endpoints forming

an inaccurate junction as in Figure 6.2(a). Our current strategy is to move intersec-

tions to the nearby endpoint if some heuristic conditions are satisfied. Similarly,

our method handles over-shot stroke segments using simple heuristics which may

not always be efficient. Moreover, although our solve strategy avoids forming ex-

tra small regions, we do not have a strategy to clean up redundant small regions

formed by intersections. One more ambitious future direction is to recover beyond

just junctions. Vector graphics can have more advanced topology that provides the

facilities for editing and animation [24, 25, 34]. For instance, a pair of T-junctions

implies occlusion [11, 12] in Figure 6.2(b) and successful detection of underlying

112

topology is beneficial to applications, such as auto-completion of occluded con-

tents.

Data sparsity is a common challenge for vector-space learning. Although we

successfully combined local classifier and global inference framework for both

consolidation and connectivity problems, our methods are unaware of semantics.

Semantics-aware raster vision and graphics methods have seen huge successes in

raster visual content creation [89] and processing recently (see [110] for a survey

about learning based sketch processing methods). One may wonder if the cur-

rent development could benefit research on sketch data. However, all these deep

learning based methods are built upon vast sets of training examples, mostly anno-

tated. Conducting the same scale of data annotations is more expensive due to the

higher difficulties of vector annotation tasks and would not be unlike reinventing

the wheel. One promising approach is to be less supervised, e.g., to apply unsu-

pervision or self-supervision [13] or train on synthetic data [17, 48, 68]. Another

existing potential solution is to wrap a vector layer on mature raster or text based

models, as Vinker et al. [103] demonstrated, saving the efforts to build an equally

powerful model from scratch.

113

Bibliography

[1] Adobe Inc. Adobe illustrator, 2022. URL
https://adobe.com/products/illustrator. → page 19

[2] R. Arora, I. Darolia, V. P. Namboodiri, K. Singh, and A. Bousseau.
Sketchsoup: Exploratory ideation using design sketches. In Computer
Graphics Forum, volume 36, pages 302–312. Wiley Online Library, 2017.
→ pages 11, 22, 85

[3] P. Asente, M. Schuster, and T. Pettit. Dynamic planar map illustration.
ACM Trans. Graph., 26(3):30–es, July 2007. → page 19

[4] S.-H. Bae, R. Balakrishnan, and K. Singh. Ilovesketch:
As-natural-as-possible sketching system for creating 3d curve models. In
Proc. UIST, pages 151–160, 2008. → page 18

[5] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine
learning, 56(1-3):89–113, 2004. → page 31

[6] B. Bao and H. Fu. Vectorizing line drawings with near-constant line width.
In 2012 19th IEEE International Conference on Image Processing, pages
805–808, Sept. 2012. → page 13

[7] I. Baran, J. Lehtinen, and J. Popović. Sketching Clothoid Splines Using
Shortest Paths. Comput. Graph. Forum, 29(2):655–664, 2010. → pages
12, 30, 126, 128

[8] P. Barla, J. Thollot, and F. Sillion. Geometric clustering for line drawing
simplification. In Proceedings of the Eurographics Symposium on
Rendering, 2005. URL http://maverick.inria.fr/Publications/2005/BTS05a.
→ pages 16, 26, 31

[9] T. Baudel. A mark-based interaction paradigm for free-hand drawing. In
Proc. UIST, pages 185–192, 1994. → page 18

[10] M. Bessmeltsev and J. Solomon. Vectorization of Line Drawings via
Polyvector Fields. ACM Trans. Graph., 38(1):9:1–9:12, Jan. 2019. →
page 13

114

https://adobe.com/products/illustrator
http://maverick.inria.fr/Publications/2005/BTS05a

[11] M. Bessmeltsev, W. Chang, N. Vining, A. Sheffer, and K. Singh. Modeling
character canvases from cartoon drawings. Transactions on Graphics
(2015), 34(5), 2015. doi:10.1145/2801134. → pages 6, 26, 112

[12] M. Bessmeltsev, N. Vining, and A. Sheffer. Gesture3d: Posing 3d
characters via gesture drawings. ACM Transactions on Graphics
(Proceedings of ACM SIGGRAPH Asia 2016), 35(6), 2016. → pages
6, 98, 112

[13] A. K. Bhunia, P. N. Chowdhury, Y. Yang, T. M. Hospedales, T. Xiang, and
Y.-Z. Song. Vectorization and rasterization: Self-supervised learning for
sketch and handwriting. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5672–5681, 2021. →
pages 13, 113

[14] Blender. Blender Cloud, 2021. URL
https://cloud.blender.org/p/gallery/5b642e25bf419c1042056fc6. → pages
72, 73

[15] Blender. Grease pencil, 2022. URL
https://www.blender.org/features/grease-pencil/. → page 58

[16] R. J. G. B. Campello, D. Moulavi, A. Zimek, and J. Sander. Hierarchical
density estimates for data clustering, visualization, and outlier detection.
ACM Trans. Knowl. Discov. Data, 10(1):5:1–5:51, 2015. → page 35

[17] C. Chan, F. Durand, and P. Isola. Learning to generate line drawings that
convey geometry and semantics. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages
7915–7925, 2022. → page 113

[18] S. Cheema, S. Gulwani, and J. LaViola. QuickDraw: Improving drawing
experience for geometric diagrams. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 1037–1064,
May 2012. → page 12

[19] J. Chen, G. Guennebaud, P. Barla, and X. Granier. Non-oriented mls
gradient fields. In Computer Graphics Forum, volume 32, pages 98–109,
2013. → pages 13, 46

[20] J. Chen, Q. Lei, Y. Miao, and Q. Peng. Vectorization of line drawing image
based on junction analysis. Sci. China Inf. Sci., 58(7):1–14, July 2015. →
page 13

115

http://dx.doi.org/10.1145/2801134
https://cloud.blender.org/p/gallery/5b642e25bf419c1042056fc6
https://www.blender.org/features/grease-pencil/

[21] J. Chen, M. Du, X. Qin, and Y. Miao. An improved topology extraction
approach for vectorization of sketchy line drawings. Vis Comput, 34(12):
1633–1644, Dec. 2018. → page 14

[22] Y.-J. Chu. On the shortest arborescence of a directed graph. Science Sinica,
14:1396–1400, 1965. → page 48

[23] P. Company, R. Plumed, P. A. C. Varley, and J. D. Camba. Algorithmic
Perception of Vertices in Sketched Drawings of Polyhedral Shapes. ACM
Trans. Appl. Percept., 16(3):18:1–18:19, Aug. 2019. → pages
xix, xx, 19, 61, 62, 73, 76, 78, 127

[24] B. Dalstein, R. Ronfard, and M. Van De Panne. Vector graphics complexes.
ACM Transactions on Graphics (TOG), 33(4):1–12, 2014. → pages 6, 112

[25] B. Dalstein, R. Ronfard, and M. van de Panne. Vector graphics animation
with time-varying topology. ACM Trans. Graph., 34(4), July 2015. →
pages 6, 112

[26] M. R. Davis and T. O. Ellis. The rand tablet: A man-machine graphical
communication device. In Proceedings of the October 27-29, 1964, Fall
Joint Computer Conference, Part I, AFIPS ’64 (Fall, part I), page 325–331,
New York, NY, USA, 1964. Association for Computing Machinery. ISBN
9781450378895. → page 1

[27] T. K. Dey. Curve and surface reconstruction: algorithms with
mathematical analysis, volume 23. Cambridge University Press, 2006. →
page 63

[28] L. Donati, S. Cesano, and A. Prati. An Accurate System for Fashion
Hand-Drawn Sketches Vectorization. In 2017 IEEE International
Conference on Computer Vision Workshops (ICCVW), pages 2280–2286,
Oct. 2017. → page 13

[29] L. Donati, S. Cesano, and A. Prati. A complete hand-drawn sketch
vectorization framework. Multimed Tools Appl, 78(14):19083–19113, July
2019. → page 13

[30] J. Edmonds. Optimum branchings. Journal of Research of the National
Bureau of Standards, 71B(4):233–240, 1967. → page 48

[31] V. Egiazarian, O. Voynov, A. Artemov, D. Volkhonskiy, A. Safin,
M. Taktasheva, D. Zorin, and E. Burnaev. Deep vectorization of technical

116

drawings. In European Conference on Computer Vision, pages 582–598.
Springer, 2020. → page 13

[32] K. Eissen and R. Steur. Sketching: Drawing Techniques for Product
Designers. Bis Publishers, 2008. → pages 11, 22, 27, 85

[33] M. Eitz, J. Hays, and M. Alexa. How do humans sketch objects? ACM
Trans. Graph., 31(4):44:1–44:10, July 2012. → pages 58, 73

[34] E. Entem, A. D. Parakkat, M.-P. Cani, and L. Barthe. Structuring and
layering contour drawings of organic shapes. In Proceedings of the Joint
Symposium on Computational Aesthetics and Sketch-Based Interfaces and
Modeling and Non-Photorealistic Animation and Rendering, Expressive
’18, New York, NY, USA, 2018. Association for Computing Machinery.
ISBN 9781450358927. → page 112

[35] J.-D. Favreau, F. Lafarge, and A. Bousseau. Fidelity vs. simplicity: a
global approach to line drawing vectorization. ACM Transactions on
Graphics (TOG), 35(4):1–10, 2016. → pages
xvii, xix, xxiii, 14, 19, 21, 51, 52, 57, 74, 75, 76, 77, 101, 103, 133

[36] M. Finch, J. Snyder, and H. Hoppe. Freeform vector graphics with
controlled thin-plate splines. 30(6):1–10, dec 2011. ISSN 0730-0301. →
page 12

[37] J. Fišer, P. Asente, S. Schiller, and D. Sýkora. Advanced drawing
beautification with ShipShape. Computers & Graphics, 56:46–58, May
2016. → page 12

[38] S. Fourey, D. Tschumperlé, and D. Revoy. A fast and efficient semi-guided
algorithm for flat coloring line-arts. In Proceedings of the Conference on
Vision, Modeling, and Visualization, EG VMV ’18, page 1–9, Goslar,
DEU, 2018. Eurographics Association. doi:10.2312/vmv.20181247. →
pages xvii, xix, 6, 12, 21, 57, 61, 74, 75, 77, 133

[39] M. Gangnet, J.-M. Thong, and J.-D. Fekete. Automatic Gap Closing for
Freehand Drawing. In ACM SIGGRAPH 94 Technical Sketch, July 1994.
→ page 19

[40] S. Ge, V. Goswami, L. Zitnick, and D. Parikh. Creative Sketch Generation.
In International Conference on Learning Representations, Sept. 2020. →
pages xxiv, 73, 132

117

http://dx.doi.org/10.2312/vmv.20181247

[41] S. Grabli, F. Durand, and F. X. Sillion. Density measure for line-drawing
simplification. In 12th Pacific Conference on Computer Graphics and
Applications, 2004. PG 2004. Proceedings., pages 309–318. IEEE, 2004.
→ page 12

[42] C. Grimm and P. Joshi. Just drawit: A 3d sketching system. In Proc. SBIM,
pages 121–130, 2012. → pages 18, 86

[43] L. Grinsztajn, E. Oyallon, and G. Varoquaux. Why do tree-based models
still outperform deep learning on typical tabular data? In Thirty-sixth
Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2022. → page 94

[44] Y. Gryaditskaya, M. Sypesteyn, J. W. Hoftijzer, S. Pont, F. Durand, and
A. Bousseau. OpenSketch: A richly-annotated dataset of product design
sketches. ACM Trans. Graph., 38(6):232:1–232:16, Nov. 2019. → pages
xxii, xxiii, 11, 72, 100, 102, 103, 104, 127, 135, 136, 137

[45] Y. Gryaditskaya, F. Hähnlein, C. Liu, A. Sheffer, and A. Bousseau. Lifting
freehand concept sketches into 3D. ACM Trans. Graph., 39(6):
167:1–167:16, Nov. 2020. → pages 2, 19, 58, 74, 109

[46] Y. Guo, Z. Zhang, C. Han, W. Hu, C. Li, and T.-T. Wong. Deep Line
Drawing Vectorization via Line Subdivision and Topology Reconstruction.
Computer Graphics Forum, 38(7):81–90, Oct. 2019. → page 13

[47] D. Ha and D. Eck. A Neural Representation of Sketch Drawings. In
International Conference on Learning Representations, Feb. 2018. URL
https://openreview.net/forum?id=Hy6GHpkCW. → pages 72, 73, 127

[48] F. Hähnlein, C. Li, N. J. Mitra, and A. Bousseau. Cad2sketch: Generating
concept sketches from cad sequences. ACM Transactions on Graphics
(TOG), 41(6):1–18, 2022. → page 113

[49] R. Hess and D. Field. Integration of contours: new insights. Trends in
Cognitive Sciences, 3(12):480–486, 1999. → pages 32, 98, 129

[50] T. K. Ho. Random decision forests. In Proceedings of 3rd International
Conference on Document Analysis and Recognition, volume 1, pages
278–282, 1995. → page 94

[51] T. Igarashi, S. Matsuoka, S. Kawachiya, and H. Tanaka. Interactive
beautification: A technique for rapid geometric design. In Proceedings of

118

https://openreview.net/forum?id=Hy6GHpkCW

the 10th Annual ACM Symposium on User Interface Software and
Technology, UIST ’97, pages 105–114. Association for Computing
Machinery, Oct. 1997. → page 12

[52] T. Igarashi, T. Moscovich, and J. F. Hughes. As-rigid-as-possible shape
manipulation. ACM Trans. Graph., 24(3):1134–1141, 2005. → page 12

[53] J. Jiang, H. S. Seah, H. Z. Liew, and Q. Chen. Challenges in Designing and
Implementing a Vector-Based 2D Animation System. In The Digital
Gaming Handbook. CRC Press, 2020. → pages xix, 77

[54] J. Jiang, H. S. Seah, and H. Z. Liew. Handling gaps for vector graphics
coloring. Vis Comput, 37(9):2473–2484, Sept. 2021. → pages xiii, 21, 73

[55] G. Johnson, M. D. Gross, J. Hong, and E. Yi-Luen Do. Computational
support for sketching in design: A review. Foundations and Trends® in
Human–Computer Interaction, 2(1):1–93, jan 2009. ISSN 1551-3955.
doi:10.1561/1100000013. → pages 6, 58

[56] R. D. Kalnins, P. L. Davidson, L. Markosian, and A. Finkelstein. Coherent
stylized silhouettes. ACM Trans. Graph., 22(3):856–861, 2003. → page
12

[57] G. Kanizsa. Organization in Vision: Essays on Gestalt Perception. Praeger,
Sept. 1979. → page 58

[58] L. B. Kara and K. Shimada. Sketch-based 3d-shape creation for industrial
styling design. IEEE Computer Graphics and Applications, 27(1):60–71,
2007. → page 16

[59] M. Keuper, E. Levinkov, N. Bonneel, G. Lavoué, T. Brox, and B. Andres.
Efficient decomposition of image and mesh graphs by lifted multicuts. In
Proceedings of the IEEE International Conference on Computer Vision,
pages 1751–1759, 2015. → page 31

[60] B. Kim, O. Wang, A. C. Öztireli, and M. Gross. Semantic segmentation for
line drawing vectorization using neural networks. In Computer Graphics
Forum, volume 37, pages 329–338. Wiley Online Library, 2018. → page
13

[61] K. Koffka. Principles of Gestalt Psychology. International library of
psychology, philosophy, and scientific method. Routledge & K. Paul, 1955.
→ pages 62, 86

119

http://dx.doi.org/10.1561/1100000013

[62] Krita. Krita, 2021. URL https://krita.org/. → page 74

[63] I.-K. Lee. Curve reconstruction from unorganized points. Computer aided
geometric design, 17(2):161–177, 2000. → pages 45, 47

[64] D. Levin. Mesh-independent surface interpolation. In Geometric modeling
for scientific visualization, pages 37–49. 2004. → pages 45, 47

[65] C. Li, H. Pan, A. Bousseau, and N. J. Mitra. Free2cad: parsing freehand
drawings into cad commands. ACM Transactions on Graphics (TOG), 41
(4):1–16, 2022. → page 12

[66] H. Lipson and M. Shpitalni. Optimization-based reconstruction of a 3d
object from a single freehand line drawing. Computer-Aided Design, 28(8):
651 – 663, 1996. → page 12

[67] C. Liu, E. Rosales, and A. Sheffer. StrokeAggregator: consolidating raw
sketches into artist-intended curve drawings. ACM Transactions on
Graphics (TOG), 37(4):97, 2018. ISSN 0730-0301.
doi:10.1145/3197517.3201314. URL
https://dl.acm.org/citation.cfm?id=3201314. → pages
xxii, 82, 84, 85, 86, 87, 89, 98, 99, 101, 102, 103

[68] D. Liu, M. Fisher, A. Hertzmann, and E. Kalogerakis. Neural strokes:
Stylized line drawing of 3d shapes. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 14204–14213, 2021.
→ page 113

[69] X. Liu, T.-T. Wong, and P.-A. Heng. Closure-
aware sketch simplification. ACM Trans. Graph., 34(6):168, 2015. → pages
xii, xvi, xvii, xxii, 7, 17, 19, 30, 31, 43, 50, 51, 52, 53, 54, 62, 82, 101, 103, 126, 133

[70] J. Lu, F. Yu, A. Finkelstein, and S. DiVerdi. Helpinghand: Example-based
stroke stylization. ACM Trans. Graph., 31(4), jul 2012. ISSN 0730-0301.
→ page 2

[71] B. Manda, P. P. Kendre, S. Dey, and R. Muthuganapathy.
Sketchcleannet—a deep learning approach to the enhancement and
correction of query sketches for a 3d cad model retrieval system.
Computers & Graphics, 107:73–83, 2022. → page 13

[72] J. McCrae and K. Singh. Sketching piecewise clothoid curves. Computers
& Graphics, 33(4):452–461, 2009. → pages 30, 126

120

https://krita.org/
http://dx.doi.org/10.1145/3197517.3201314
https://dl.acm.org/citation.cfm?id=3201314

[73] H. Mo, E. Simo-Serra, C. Gao, C. Zou, and R. Wang. General virtual
sketching framework for vector line art. ACM Trans. Graph., 40(4), jul
2021. ISSN 0730-0301. doi:10.1145/3450626.3459833. → pages
xxiii, 14, 101, 103

[74] S. Murugappan, S. Sellamani, and K. Ramani. Towards beautification of
freehand sketches using suggestions. In Proceedings of the 6th
Eurographics Symposium on Sketch-Based Interfaces and Modeling, SBIM
’09, pages 69–76. Association for Computing Machinery, Aug. 2009. →
page 12

[75] L. Nan, A. Sharf, K. Xie, T.-T. Wong, O. Deussen, D. Cohen-Or, and
B. Chen. Conjoining gestalt rules for abstraction of architectural drawings.
ACM Transactions on Graphics (TOG), 30(6):1–10, 2011. → page 12

[76] G. Noris, D. Sỳkora, A. Shamir, S. Coros, B. Whited, M. Simmons,
A. Hornung, M. Gross, and R. Sumner. Smart scribbles for sketch
segmentation. In Computer Graphics Forum, volume 31, pages
2516–2527, 2012. → pages 18, 19, 86

[77] G. Noris, A. Hornung, R. W. Sumner, M. Simmons, and M. Gross.
Topology-driven vectorization of clean line drawings. ACM Trans. Graph.,
32(1):4:1–4:11, Feb. 2013. → page 13

[78] G. Orbay and L. B. Kara. Beautification of design sketches using trainable
stroke clustering and curve fitting. IEEE Transactions on Visualization and
Computer Graphics, 17:694–708, 2011. ISSN 10772626.
doi:10.1109/TVCG.2010.105. → pages
xii, xv, xvi, xvii, 16, 17, 31, 34, 47, 50, 51, 52, 53, 54, 133

[79] D. Pagurek van Mossel, C. Liu, N. Vining, M. Bessmeltsev, and A. Sheffer.
Strokestrip: Joint parameterization and fitting of stroke clusters. ACM
Transactions on Graphics, 40(4), 2021. doi:10.1145/3450626.3459777.
→ pages
xxi, 4, 16, 58, 73, 82, 84, 85, 88, 89, 91, 95, 97, 98, 99, 110, 133, 136

[80] A. D. Parakkat, U. B. Pundarikaksha, and R. Muthuganapathy. A delaunay
triangulation based approach for cleaning rough sketches. Computers &
Graphics, 74:171–181, 2018. → page 14

[81] A. D. Parakkat, P. Madipally, H. H. Gowtham, and M.-P. Cani. Interactive
Flat Coloring of Minimalist Neat Sketches. The Eurographics Association,
2020. → pages 19, 21, 61, 73

121

http://dx.doi.org/10.1145/3450626.3459833
http://dx.doi.org/10.1109/TVCG.2010.105
http://dx.doi.org/10.1145/3450626.3459777

[82] A. D. Parakkat, M.-P. R. Cani, and K. Singh. Color by numbers: Interactive
structuring and vectorization of sketch imagery. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems, CHI ’21, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN
9781450380966. doi:10.1145/3411764.3445215. → pages
xii, xix, xxiii, 6, 12, 14, 15, 19, 21, 58, 61, 73, 74, 75, 77, 101, 103, 133

[83] B. Paulson and T. Hammond. PaleoSketch: Accurate primitive sketch
recognition and beautification. In Proceedings of the 13th International
Conference on Intelligent User Interfaces, IUI ’08, pages 1–10.
Association for Computing Machinery, Jan. 2008. → page 12

[84] T. Pavlidis and C. J. Van Wyk. An automatic beautifier for drawings and
illustrations. SIGGRAPH Comput. Graph., 19(3):225–234, jul 1985. ISSN
0097-8930. doi:10.1145/325165.325240. → page 12

[85] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12:
2825–2830, 2011. → pages 72, 99

[86] I. Puhachov, W. Neveu, E. Chien, and M. Bessmeltsev. Keypoint-driven
line drawing vectorization via polyvector flow. ACM Trans. on Graph.
(Proc. of SIGGRAPH Asia), 40(6), 12 2021. → pages
xxii, 13, 15, 99, 101, 102

[87] A. Qi, Y. Gryaditskaya, J. Song, Y. Yang, Y. Qi, T. M. Hospedales,
T. Xiang, and Y.-Z. Song. Toward Fine-Grained Sketch-Based 3D Shape
Retrieval. IEEE Trans. Image Process., 30:8595–8606, 2021. → pages
73, 127

[88] Y. Qu, T.-T. Wong, and P.-A. Heng. Manga colorization. ACM Trans.
Graph., 25(3):1214–1220, July 2006. → pages 6, 12, 19

[89] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer.
High-resolution image synthesis with latent diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022. → page 113

[90] P. L. Rosin. Grouping curved lines. In BMVC, pages 1–10. Citeseer, 1994.
→ pages 16, 26

122

http://dx.doi.org/10.1145/3411764.3445215
http://dx.doi.org/10.1145/325165.325240

[91] B. Sadri and K. Singh. Flow-complex-based shape reconstruction from 3d
curves. ACM Trans. Graph., 33(2), apr 2014. → page 63

[92] P. Sangkloy, N. Burnell, C. Ham, and J. Hays. The sketchy database:
Learning to retrieve badly drawn bunnies. ACM Trans. Graph., 35(4):
119:1–119:12, July 2016. → page 73

[93] K. Sasaki, S. Iizuka, E. Simo-Serra, and H. Ishikawa. Joint Gap Detection
and Inpainting of Line Drawings. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5768–5776, July 2017. →
pages xix, 20, 74, 75, 77, 133

[94] C. Shao, A. Bousseau, A. Sheffer, and K. Singh. CrossShade: Shading
concept sketches using cross-section curves. ACM Trans. Graph., 31(4), jul
2012. ISSN 0730-0301. → pages 2, 12, 61, 74

[95] A. Shesh and B. Chen. Efficient and dynamic simplification of line
drawings. In Computer Graphics Forum, volume 27, pages 537–545, 2008.
→ page 16

[96] E. Simo-Serra, S. Iizuka, K. Sasaki, and H. Ishikawa. Learning to simplify:
Fully convolutional networks for rough sketch cleanup. ACM Trans.
Graph., 35(4):121:1–121:11, 2016. → pages 13, 19, 20

[97] E. Simo-Serra, S. Iizuka, and H. Ishikawa. Mastering Sketching:
Adversarial Augmentation for Structured Prediction. ACM Trans. Graph.,
37(1):11:1–11:13, 2018. → pages
xix, xxii, 13, 19, 20, 51, 52, 74, 75, 77, 101, 103, 133, 136

[98] E. Simo-Serra, S. Iizuka, and H. Ishikawa. Real-time data-driven
interactive rough sketch inking. ACM Trans. Graph., 37(4):98:1–98:14,
2018. → page 13

[99] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P. Seidel.
Laplacian surface editing. In Proc. Symposium on Geometry Processing,
pages 175–184, 2004. → page 45

[100] T. Stanko, M. Bessmeltsev, D. Bommes, and A. Bousseau. Integer-grid
sketch simplification and vectorization. In Computer Graphics Forum,
volume 39, 2020. → pages xii, xxii, 14, 82, 99, 101, 102, 103, 136

[101] D. Sýkora, J. Dingliana, and S. Collins. LazyBrush: Flexible Painting Tool
for Hand-drawn Cartoons. Comput. Graph. Forum, 28(2):599–608, 2009.
→ pages xix, 6, 12, 19, 58, 74, 75

123

[102] Y. Thiel, K. Singh, and R. Balakrishnan. Elasticurves: Exploiting stroke
dynamics and inertia for the real-time neatening of sketched 2D curves. In
Proceedings of the 24th Annual ACM Symposium on User Interface
Software and Technology, UIST ’11, pages 383–392. Association for
Computing Machinery, Oct. 2011. → page 12

[103] Y. Vinker, E. Pajouheshgar, J. Y. Bo, R. C. Bachmann, A. H. Bermano,
D. Cohen-Or, A. Zamir, and A. Shamir. Clipasso: Semantically-aware
object sketching. ACM Trans. Graph., 41(4), jul 2022. ISSN 0730-0301.
doi:10.1145/3528223.3530068. URL
https://doi.org/10.1145/3528223.3530068. → page 113

[104] J. Wagemans, J. H. Elder, M. Kubovy, S. E. Palmer, M. A. Peterson,
M. Singh, and R. von der Heydt. A century of gestalt psychology in visual
perception: I. perceptual grouping and figure–ground organization.
Psychological bulletin, 138(6):1172, 2012. → pages 2, 23, 26, 27, 62, 86

[105] S. Wang, Q. Zhang, S. Wang, X. Jing, and M. Gao. Endpoint fusing
method of online freehand-sketched polyhedrons. Vis Comput, 36(2):
291–303, Feb. 2020. → page 20

[106] Y. Wang, Y. Chen, J. Liu, and X. Tang. 3D reconstruction of curved objects
from single 2D line drawings. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 1834–1841, June 2009. → page 20

[107] B. Wilson and K.-L. Ma. Rendering complexity in computer-generated
pen-and-ink illustrations. In Proc. NPAR, pages 129–137, 2004. → page
12

[108] C. Winder and Z. Dowlatabadi. Producing Animation. CRC Press, third
edition, 2019. → page 11

[109] B. Xu, W. Chang, A. Sheffer, A. Bousseau, J. McCrae, and K. Singh.
True2form: 3d curve networks from 2d sketches via selective
regularization. ACM Trans. Graph., 33(4):131:1–131:13, 2014. → pages
2, 12, 61, 74

[110] P. Xu, T. M. Hospedales, Q. Yin, Y.-Z. Song, T. Xiang, and L. Wang. Deep
learning for free-hand sketch: A survey. IEEE transactions on pattern
analysis and machine intelligence, 45(1):285–312, 2022. → pages 14, 113

[111] X. Xu, M. Xie, P. Miao, W. Qu, W. Xiao, H. Zhang, X. Liu, and T.-T.
Wong. Perceptual-aware sketch simplification based on integrated vgg

124

http://dx.doi.org/10.1145/3528223.3530068
https://doi.org/10.1145/3528223.3530068

layers. IEEE Transactions on Visualization and Computer Graphics, 2019.
→ pages xii, xxii, 13, 15, 82, 99, 101, 102, 103, 136

[112] C. Yan, D. Vanderhaeghe, and Y. Gingold. A benchmark for rough sketch
cleanup. ACM Trans. Graph., 39(6), nov 2020. ISSN 0730-0301. → pages
xx, xxii, xxiii, 6, 8, 11, 15, 16, 58, 81, 85, 87, 99, 100, 102, 106, 109, 111, 135, 136, 137

[113] C. Yan, J. J. Y. Chung, K. Yoon, Y. Gingold, E. Adar, and S. R. Hong.
FlatMagic: Improving flat colorization through ai-driven design for digital
comic professionals. In Proceedings of the CHI Conference on Human
Factors in Computing Systems, CHI, 2022. → pages 6, 20

[114] W. Yang, H.-S. Seah, Q. Chen, H.-Z. Liew, and D. Sýkora. FTP-SC: Fuzzy
Topology Preserving Stroke Correspondence. Comput. Graph. Forum, 37
(8):125–135, 2018. → page 58

[115] J. Yin, C. Liu, R. Lin, N. Vining, H. Rhodin, and A. Sheffer. Detecting
viewer-perceived intended vector sketch connectivity. ACM Transactions
on Graphics, 41, 2022. → pages xxiii, 83, 88, 89, 94, 98, 105, 106

[116] L. Zhang, Y. Ji, and C. Liu. Danbooregion: An illustration region dataset.
In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XIII 16, pages 137–154.
Springer, 2020. → page 20

[117] S.-H. Zhang, T. Chen, Y.-F. Zhang, S.-M. Hu, and R. R. Martin.
Vectorizing Cartoon Animations. IEEE Trans. Vis. Comput. Graph., 15(4):
618–629, July 2009. → pages 14, 21

125

Appendix A
Preprocessing Strokes

Raw strokes captured via a stylus-on-tablet interface are often noisy due to both

involuntary hand movement and capture software inaccuracy [7, 72]. In particular,

such interfaces often do not accurately detect when the artist lifts the stylus away

from the tablet, leaving small “hook” sections at the ends of strokes. In some cases,

as noted by Liu et al [69] artists barely lift the stylus up inbetween drawing near

parallel strokes, in which case the capture interface records multiple strokes as one.

We account for these artifacts by pre-processing raw strokes. The pre-processing

strategies for Chapter 3, 4, 5 are described in Section A.1, A.2, A.3 respectively.

In addition, we detail the consolidation step used to pre-process input sketches for

Chapter 4 in Section A.2.

A.1 StrokeAggregator: Artist-Intended Vector Sketch
Consolidation

We smooth and densely resample the strokes using the Cornucopia algorithm [7].

As we seek to preserve the input stroke shape as much as possible, we set Cor-

nucopia “error cost” to 5, which keeps the output stroke very close to the input.

We cut each original stroke at Cornucopia-detected C0 discontinuities, as well as

at sharp curvature extrema where the curvature is both high (larger than 0.125) and

distinct from that along the rest of the curve (at least three times the median cur-

vature). Since the hooks at the end of strokes are a capture artifact and not part

of the intended artist input, we delete their hanging portion (we classify a segment

between a detected discontinuity and an end point as a hook if it is both short in

absolute terms 15Ws and forms less than 15% of the overall stroke length).

126

A.2 Detecting Viewer-Perceived Intended Vector Sketch
Connectivity

Hook Removal. When finishing a stroke, if the artist rapidly switches direction

before the pen raise is registered by the drawing device, an unintentional hook can

appear. These can interfere with tangent and distance computations. Handling

hooks robustly remains an open problem and is not a contribution of our paper.

Let vertices that remain after applying the Ramer-Douglas-Peucker algorithm be

corners. We use a simple heuristic: the section from the endpoint to the first corner

is a hook if the distance from the endpoint p1 to the line segment between its two

nearest corners is shorter than W1 f , where f is a parameter, and the hook is shorter

than min(1.5W1 f , 1
2 L1). We use f = 3 for Company et al. [23], Gryaditskaya et al.

[44], Ha and Eck [47], Qi et al. [87] and f = 1 for all other sources. We preserve

near-connections by only de-hooking an endpoint if it would not increase the enve-

lope distance to its nearest stroke by more than a factor of 2. Across all processed

inputs, we further manually removed 10 hooks not found by the criteria above.

Consolidation. Most of the inputs we process were not consolidated previously,

and thus may contain overdrawing. To align stroke length and local context fea-

ture computations to human perception, we weakly consolidate our inputs using a

simple heuristic that accounts for the presence of varying stroke widths and light

oversketching in our data. We locate all pairs of partially side-by-side strokes and

densely sample their side-by-side sections using orthogonal cross-sections. If the

sections have roughly similar lengths (ratio ∈ [1/1.2,1.2]), have similar tangent

directions at corresponding cross-section points (< 20°) that are themselves close

enough (all < 3
2 max(W1,W2)), the endpoints are close enough (< max(W1,W2)),

and if either the endpoints both overlap with the other stroke or the substrokes are

both longer than their pen widths, we replace the two strokes with a single stroke

fitted to both. We repeat this on all pairs until no more strokes can be merged. Fi-

nally, we chain strokes by merging them into a single stroke when their endpoints

overlap and the endpoint tangents align within 20°.

127

Dangling Endpoints. A subset of stroke endpoints in our drawings already over-

lap other strokes, and can be connected without consulting our classifier. These

endpoints are non-dangling. In the case of an overshot connection, where the two

stroke centerlines intersect, we define the intersection diameter d as the largest

stroke width at the intersection. An endpoint is non-dangling if the length of the

overshot portion is shorter than 15% of the larger of the stroke length and d, and

the Euclidean distance from the intersection to the edge of the endpoint cap is less

than 1.5d.

Self-Connections. We define a connection between points p1,p2 on the same

stroke to be valid if they form a loop—if max(3‖p1− p2‖,πW1) is less than the

distance between p1,p2 along the stroke. We then define the projection of an end-

point onto its own stroke as the closest valid point, if it exists. From there, feature

computations work as described in the main paper.

A.3 StripMaker: Perception-driven Learned Vector
Sketch Consolidation

We evenly resample all strokes in the inputs, with the sampling rate set to 1.2 times

the stroke width, and the minimal number of samples per stroke set to 5. As typical

of methods operating on raw vector sketches in Chapter 3, 4, we remove hook

artifacts resulting from the device continuing to record pen motion after the user

lifts it off the touch screen. We use a hook-removal method that follows Chapter 3

but remove potential hook sub-strokes only when their length is below 8 times the

stroke width. We cut strokes at the points where the angle between consecutive

tangents exceeds 90◦ or at C0 corners detected by Baran et al. [7] if the tangents at

these corners differ by more than 25◦.

128

Appendix B
Study Details

User study is a critical component of research summarized in this thesis. Via these

studies, we determine algorithm parameters (Section B.1), validate and evaluate

the results (Section B.2,B.3), establish ground truth for training and testing (Sec-

tion B.3). In these following sections, we describe the study designs and provide

the study findings in details.

B.1 StrokeAggregator: Perception Driven Parameter
Setting

To cluster strokes, we employ three perception motivated parameters: angular com-

patibility threshold Ta, relative proximity factor Tp, and curve narrowness threshold

Tn. We rely on prior research to set the angular threshold Ta [49], but have no such

sources for the other two parameters. We set these parameters to values consistent

with human perception by conducting two informal perceptual studies.

Narrowness. To establish the narrowness threshold, we show participants a range

of rectangles with varying short to long side ratios Sr (Figure B.1,top). In total,

we show viewers 36 questions in randomized order. Intuitively, we expect viewers

to perceive rectangles with low ratios as lines (thick or thin) and those with high

ratios as actual rectangles. We ask viewers “Does the image below show a line

(thick or thin) or a rectangle?” and provide them three answer options “thin line,

thick line, rectangle”. As the answers summary (Figure B.1, right) shows, there is

a strong correlation between participant responses and the ratio Sr, confirming our

hypothesis that viewers use short to long side ratios to determine if the shape they

look at is one or two dimensional. To avoid forming two-dimensional clusters, we

use a threshold designed to ensure that approximately 2/3 of respondents perceive

the input as a line. In our computations, we use the long to short side ratio; we use

129

0.01
0

10

20

30

40

50

60

70

80

90

100

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Ratios

0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.35

Width Study

Groups Study

1.00
0

10

20

30

40

50

60

70

80

90

100

1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60
Ratios

2.80 3.00 3.20 3.40 3.60 3.80 4.00

How many groups of lines do you see in
this image?

more than 5 2 1 3 4 5

A thin line A thick line A rectangle

Does the image below show a
line (thick or thin) or a rectangle?

Figure B.1: Narrowness threshold question examples and answer distribution (top);
proximity question examples and answer distributions (bottom).

a round value setting the threshold to Tn = 8.5≈ 1/0.117.

Proximity Factor. To establish the proximity factor, we show participants triplets

or quadruplets of vertical lines with different spacing (Figure B.1,bottom). For

triplets we keep the distance d1 between one pair of lines fixed, and have the third

line placed to the right or left of them at intervals d2 varying from d1 to 3d1. For

quadruplets we use the same placing strategy for three of the lines but place the

fourth line far away from the others—at distance 6d1 away. In total, we show

viewers 64 questions in randomized order. We ask the viewers “How many groups

of lines do you see in this image?” and provide six answer options “1, 2, 3, 4, 5,

more than 5”. We use those to derive the separation ratio Dr = d2/d1 at which

the viewers separate the third line from the first two. For triplets we look at the

number of 1 versus 2 answers and for quadruplets at the number of 2 versus 3

130

answers. As the answers summary (Figure B.1,bottom) shows, there is a strong

correlation between participant responses and the ratio Dr, confirming the hypoth-

esis that proximity ratio plays a major role in perceptual grouping. The answer

curves for both questions, the one with only the potentially grouped lines, and the

one with an extra “support” line are essentially identical. This confirms our hy-

pothesis that one can assess relative proximity within a potential cluster without

considering distance to other clusters. In our computations, we use the threshold

as admissible upper bound, thus to obtain conservative clustering results, we again

seek a number at which approximately 2/3 of respondents perceive the input as a

single cluster. We thus set Td = 2.1.

We collected responses from 15 different participants for each study. The va-

lidity of these studies is further corroborated by the fact that the parameters gleaned

from them allowed us to consolidate a wide range of raw input drawings in a man-

ner consistent with viewer expectations (Section 3.5).

B.2 Detecting Viewer-Perceived Intended Vector Sketch
Connectivity: Study Design

Junction Annotation Study. To validate our final connection decisions, we col-

lected additional manual annotations of 91 potential end-to-end and T-junctions

across 10 drawings. In this study (Fig. B.2), for a given question, participants

were shown a full line drawing with colors indicating potential endpoint-endpoint

connections (endpoints coloured pink and green with gradients) and T-junctions

(the endpoint coloured orange with a gradient and the other stroke flatly painted

in blue), as well as a zoomed-in view around the potential junction in question.

Participants were shown “a series of magnified views where one or two strokes

are highlighted at the region of interest.” Participants were then asked to “identify

whether the strokes were intended by the artist to form a junction at the high-

lighted region of interest” and to answer the question “Did the artist intend for the

two highlighted endpoints (pink and green) to form a junction?” or “Did the artist

intend for the highlighted endpoint (orange) and the highlighted stroke (blue) to

form a T-junction, with the highlighted stroke as the top of the ‘T’?”, depending on

131

the shown junction type. We recruited 16 non-expert participants (nine males and

seven females, split between two sessions with 43 and 48 questions respectively),

resulting in each potential junction labelled by eight participants. Two examples of

the study question are shown in Fig. B.2.

End-end junction question example T-junction question example
(a) (b)

Figure B.2: Junction annotation study example questions and interface. The full
line drawing is shown on the left, the zoomed-in view of the potential junction in
question and the corresponding question is shown on the right. In both views, we
use color gradients to indicate endpoints (pink and green in (a) and orange in (b))
and a solid blue to indicate the non-endpoint stroke of a T-junction (b). Images left
and right ©Nahu under CC BY 4.0; [40].

Comparative Study. We conducted a comparative study to evaluate human per-

ceptual preference between our method and existing gap closure methods. Par-

ticipants were shown an input line drawing on top (A), and colorizations of this

drawing obtained using our method and an alternative method, randomly assigned

to (B) and (C) below. Participants were asked to “envision which strokes in [the

input] drawings are intended by the artist to form closed loops,” to “Identify the dif-

ferences between the two [shown] colorings (ignore small color bleedings),” and

then to answer “Which of the images on the bottom. (B) or (C), better corresponds

to the partition you envisioned?” by selecting from “(B),” “(C),” “Both,” and “Nei-

ther.” We recruited 30 participants (19 male, 11 female), resulting in six responses

per question for 27 inputs from 11 data sources with diverse authors and styles.

We used the same 27 inputs for all five comparison methods and ensured that no

132

drawing was shown more than once in the same questionnaire.

We generated results for comparison methods by providing participants with

inputs rasterized at 600px for Favreau et al. [35], Fourey et al. [38], Sasaki et al.

[93], and Simo-Serra et al. [97] and Parakkat et al. [82]. We generated the coloriza-

tions of resulting closed loops by recoloring the output colorizations from Fourey

et al. [38] and Parakkat et al. [82] (setting their “unassigned” pixels to light gray);

by identifying and coloring closed loops in the vector outputs of Favreau et al. [35];

and by first binarizing the output grayscale raster images with a threshold of 0.5

(for pixel intensities in [0, 1]) and then flood-filling with a size of 1 px for Sasaki

et al. [93] and Simo-Serra et al. [97]. We chose colors for each result pair in a

question such that the corresponding closed loops between the two results were

assigned the same color, and different closed loops within a partition were given

different colors.

B.3 StripMaker: Study Details

B.3.1 Data Collection

Training data corpus

We use 66 manually annotated sketches generated by the authors of Pagurek van

Mossel et al. [79] for testing curve fitting to strips, as our training data. These

sketches are sourced from multiple prior publications, including StrokeAggregator

(Chapter 3), [69, 78] and different artists.

Local Classifier We generate both positive and negative training examples using

the dataset above. In generating the training examples, we recall that our classifier

is designed to match viewer perception, namely given two groups of strokes that

viewers perceive as strips, it assesses if the combined group of strokes is also per-

ceived as a strip. As such, for all the positive examples in the training data we want

the combined group of strokes to be also perceived as strip, and for the negative

ones we want the combined group to not be perceived as a strip. Notably, a random

subset of strokes taken from a human annotated strip may or may not be perceived

133

as a strip on its own (e.g., in isolation the farthest apart strokes in a wide strip may

be too far from one another to be perceived as belonging together).

We first generate negative training examples that satisfy the criteria above by

forming pairs of complete ground truth strips paired with either any other stroke

in the drawing, or with another complete ground truth strip. In both cases both

elements of such pairs are by definition perceived as strips, but are not perceived

as being part of the same strip.

To generate the positive examples we recall that each strip is a time-ordered

sequence of strokes. We therefore take manually labeled strips, randomly pick a

moment in time splitting the sequence into the parts before and after that moment.

The union of these parts forms a ground truth strip, and both parts are likely to

be perceived as sub-strips due to temporal persistence. We identify and discard

examples where this is not the case.

We exclude positive examples from our training data if the median distance

between the sub-strips (measured along parameterization isolines) is twice as large

as the median of these distance measured on the entire training set. We exclude

positive examples if the parameterization of the two sub-strips alone is not con-

sistent with the parameterization of the strip they originate from (i.e., there is no

monotone mapping from one to the other).

We remove training examples on which feature computation fails, including the

ones where the parameterization method we use produces highly distorted results.

Lastly, to better reflect the distribution of classifier inputs, we pre-filter the exam-

ples using the criteria in Sec. 5.3.1, and manually remove additional ambiguous

examples.

Global Classifier. We form positive training examples by splitting ground truth

strips spatially, starting from farthest apart side-by-side strokes and randomly grow-

ing either one the other seed by adding the closest side-by-side stroke, until the

strip is fully partitioned. We use pairs of ground truth strips as negative training

examples.

134

Test Set

We assembled our test set so that it includes drawings we source directly from 12

artists (82 sketches), as well as inputs from two vector sketch benchmarks, from the

“Benchmark for Rough Sketch Cleanup” [112] (46 sketches) and OpenSketch [44]

(63 sketches). In the latter, sketches of a small number of CAD objects drawn by

different designers from different angles. As noted by Yan et al. Yan et al. [112],

their “vectorized data has been normalized to have uniform line width”. Conse-

quently, “as-is” their data is unrepresentative of artist sketches, since as Chapter 3

note, stroke width plays a major role in viewer perception of sketches. We manu-

ally adjusted the width of all strokes in the inputs sourced from Yan et al. [112] to

match their provided raster references.

Figure B.3: Our strip annotation interface.

Additional Manually Consolidated Inputs

To validate our consolidation decisions and evaluate ours and alternative methods

on unseen data we collected additional manual annotations of 20 complete sketches

from 12 different arms-length annotators. The annotated sketches included one

135

from OpenSketch [44], 3 from Yan et al. [112], and the rest were sourced by us

from artists. The sketches were selected as to allow for complete individual sketch

annotation in 20 minutes or less. Annotators used the same interface as used for

data collection. Annotators took on average 12-15 minutes to annotate each sketch,

with up to 30 minutes for larger sketches in the set.

B.3.2 Comparison Setup

Rasterization. To compare our method to raster space approaches we rasterize

our inputs using the settings recommended by [112] and Chapter 4, setting the

raster resoluton to be 500px along the longest image size and then adding 20px

padding to resolve boundary artifacts that otherwise show up in [97, 111]. We

use inkscape with the parameter settings of [112]. We noticed that the method

of Stanko et al. Stanko et al. [100] sometimes dramatically fails with this anti-

aliased setting, and performs better on black and white aliased raster inputs; to

accommodate we generated both types of rasterizations and used the better of the

two outputs of Stanko et al. throughout all comparisons.

Fitting Curves for StrokeAggregator. Liu et al. propose both methods for stroke

clustering into strips and for fitting curves to these strips. Van Mossel et al. Pagurek van

Mossel et al. [79] had demonstrated that their new fitting method StrokeStrip out-

performs the fitting of StrokeAggregator (Chapter 3). Thus in our comparisons we

fit curves to the strips produced by Liu et al. using StrokeStrip. In our experi-

ments StrokeStrip indeed performs better for most inputs; using it to fit both our

and Liu’s strips allows our quantitative and qualitative comparisons to focus on the

differences between our and Liu’s stroke clustering approaches.

B.3.3 Comparative Study Design

We conducted a comparative study to evaluate human perceptual preference be-

tween our method and representative alternatives StrokeAggregator (Chapter 3),

[100, 111].

Each query in this study included an input drawing on top and two consolidated

136

Which of the drawings below, (B) (left) or (C) (right), is a cleaner and more
accurate version of the drawing on top (A)? If both are equally clean and accurate,
please select “Both”; if neither select “Neither”.

(A)

(B) (C)

Both

Neither

10

Figure B.4: Study question layout.

outputs below it, presented side-by-side and in random order: one generated by our

algorithm, and one generated by an alternative method. The layout of the questions

is shown in Fig, B.4. We asked “Which of the drawings below, (B) (left) or (C)

(right), is a cleaner and more accurate version of the drawing on top (A)? If both are

equally clean and accurate, please select “Both”; if neither select “Neither”.” The

answer options were “(B),” “(C),” “Both,” and “Neither.” We used different inputs

for each question. We recruited 24 participants (16 male, 8 female), resulting in

six responses per question for 90 inputs with diverse authors and styles. 32 inputs

were from [112], 22 from [44], and the remaining 36 were inputs commissioned

directly from artists.

We followed the study protocol of Chapter 3. Participants were provided a task

description and shown a simple reshaping example, both taken from Chapter 3; no

other explanation was provided. We use the question from Chapter 3 to discard

137

answers from participants who did not read the task description. All participants

correctly answered this question.

138

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	1 Introduction
	1.1 Sketch Consolidation
	1.2 Sketch Connectivity
	1.3 Contributions

	2 Related Work
	2.1 Artist Sketching Practice
	2.2 Vector Sketch Processing
	2.3 Raster Sketch Vectorization and Consolidation
	2.4 Vector Sketch Consolidation
	2.5 Sketch Connectivity

	3 StrokeAggregator: Artist-Intended Vector Sketch Consolidation
	3.1 Introduction
	3.2 Overview
	3.2.1 Perception of Oversketched Strokes
	3.2.2 Algorithm

	3.3 Stroke Clustering
	3.3.1 Coarse Clustering
	3.3.2 Local Cluster Refinement
	3.3.3 Cluster Unification

	3.4 Fitting
	3.5 Validation
	3.6 Results

	4 Detecting Viewer-Perceived Intended Vector Sketch Connectivity
	4.1 Introduction
	4.2 Perception of Intended Sketch Connectivity
	4.3 Algorithm
	4.4 Junction classifier
	4.5 Algorithm Details
	4.6 Results and Validation

	5 StripMaker: Perception-driven Learned Vector Sketch Consolidation
	5.1 Introduction
	5.2 Analysis of Overdrawn Sketches
	5.3 Algorithm
	5.3.1 Local Temporal Consolidation
	5.3.2 Refinement

	5.4 Classifier Design
	5.5 Algorithm Details
	5.6 Results and Validation

	6 Conclusion and Discussions
	6.1 Future Work

	Bibliography
	A Preprocessing Strokes
	A.1 StrokeAggregator: Artist-Intended Vector Sketch Consolidation
	A.2 Detecting Viewer-Perceived Intended Vector Sketch Connectivity
	A.3 StripMaker: Perception-driven Learned Vector Sketch Consolidation

	B Study Details
	B.1 StrokeAggregator: Perception Driven Parameter Setting
	B.2 Detecting Viewer-Perceived Intended Vector Sketch Connectivity: Study Design
	B.3 StripMaker: Study Details
	B.3.1 Data Collection
	B.3.2 Comparison Setup
	B.3.3 Comparative Study Design

