
Sapienza University of Rome

Department of Computer Science
PhD in Computer Science (XXXV cycle)

Scalable Geometry Processing for
Computer Graphics Applications

Filippo Maggioli
ID number 1645300

Advisor
Prof. Emanuele Rodolà

Academic Year 2023-2024

Thesis defended on 11th September 2023
in front of a Board of Examiners composed by:

Prof. Marco Anisetti (chair)
Department of Computer Science
University of Milan

Prof. Simone Melzi
Department of Informatics, Systems and Communication
University of Milano-Bicocca

Prof. Luca Cosmo
Department of Environmental Sciences, Computer Science and Statistics
Ca’ Foscari University of Venice

External reviewers:

Prof. Marco Tarini
Department of Computer Science
University of Milan

Bruno Lévy
National Institute for Research in Digital Science and Technology (INRIA)

Scalable Geometry Processing for Computer Graphics Applications
Ph.D. thesis. Sapienza University of Rome

© 2023 Filippo Maggioli. All rights reserved

This thesis has been typeset by LATEX.

Version: October 2023

Author’s email: maggioli@di.uniroma1.it

mailto:maggioli@di.uniroma1.it

i

Acknowledgments

My most sincere and profound gratitude goes to my supervisor, prof. Emanuele
Rodolà, for his invaluable support, expert mentoring, and genuine amicability. I
owe him my personal growth as a researcher and human, and I’m beholden to him
for sharing his knowledge with me and guiding me throughout these years.

I would like to extend my thanks to prof. Dominik L. Michels, for his knowl-
edgeable advice during my visiting at the King Abdullah University of Science and
Technology.

A genuine sign of gratefulness goes to the external reviewers, prof. Marco Tarini
and Bruno Lèvy, for their meticulous comments and adept suggestions that navi-
gated me toward the improvement of my thesis work.

I profoundly thank my family for their love and patience. No words could ever
express how grateful I am to them for their support over all these years.

I thoroughly thank my collaborators, my colleagues, and my friends. All the
laughs and cries, all the cheerful and melancholic moments, all the emotions they
shared with me have been precious, warmed my heart, and fed my humanity.

ii

Abstract

This thesis explores and investigates scalable solutions, grounded on geometry pro-
cessing and differential geometry concepts, to different computer graphics tasks. My
Ph.D. path gave me the opportunity to probe many research topics in the field of
computer graphics, as well as delve into mathematical and computational problems.
As a summary of my research activity, this thesis echoes my exploration, collect-
ing results from different areas of computer graphics and computational geometry.
From novel unified frameworks in spectral geometry to procedural texturing tech-
niques, simulations, and matrix multiplication algorithms, all the discussed topics
find their communion in the idea of providing geometry processing solutions made
to scale for large volumes of data.

iii

Contents

Introduction to the Thesis . vii

Overview of Published Results . ix

Motivations . x

Background in Riemannian Geometry . xi
Riemannian Manifolds . xi
Curves and Distances . xiii
Differential and Spectral Geometry . xiv
Correspondences and Functional Maps . xvi
Discretization .xviii

I Spectral Geometry 1

1 Orthogonalized Fourier Polynomials for Signal Approximation
and Transfer . 2
1.1 Introduction and Related Work . 2
1.2 Background. 5
1.3 Theoretical Results . 5

1.3.1 Frequency Distribution . 6
1.3.2 Approximating Eigenproducts . 7
1.3.3 Orthogonalized Eigenproducts . 9
1.3.4 Implementation Details . 13

1.4 Experimental Results . 15
1.4.1 Detail Transfer . 16
1.4.2 Spectral Filtering . 17
1.4.3 Function Approximation . 18
1.4.4 Function Transfer . 20

1.5 Conclusions . 23
1.6 Proofs . 24

1.6.1 Laplacian of a Product . 24
1.6.2 Proof of Theorem 1.1 . 25
1.6.3 Proof of Corollary 1.1 . 26
1.6.4 Iterative Formula for the Transform O . 26

2 Learning Spectral Unions of Partial Deformable 3D Shapes 29

Contents iv

2.1 Introduction . 30
2.2 Related Work . 31

2.2.1 Nonrigid Shape Aggregation . 32
2.2.2 Eigenvalues and Partiality . 32

2.3 Proposed Method . 33
2.4 Network Architecture . 36
2.5 Data and Evaluation . 38
2.6 Applications . 39

2.6.1 Geometry Reconstruction . 41
2.6.2 Region Localization . 41
2.6.3 Shape Retrieval . 47

2.7 Conclusion . 48

II Non-Euclidean Metric Spaces 49

3 Mold Manifold Simulation for Real-Time Procedural Texturing . . 50
3.1 Introduction . 50

3.1.1 Related Work and Background. 52
3.2 Method . 54

3.2.1 Movement Over the Surface . 54
3.2.2 Length Rescaling . 56
3.2.3 Mold Evolution . 57
3.2.4 Agent Implementation . 59
3.2.5 Multiple Species, Obstacles and Attractors 59

3.3 Results . 60
3.3.1 Mold Simulation . 61
3.3.2 Performance . 63
3.3.3 Families of Patterns . 65
3.3.4 Evolutive Procedural Texturing . 66
3.3.5 Limitations . 66

3.4 Conclusions . 67

4 A Physically-Inspired Approach to the Simulation of Plant Wilting 68
4.1 Introduction . 68
4.2 Related Work . 70
4.3 Methodology . 71

4.3.1 Water Uptake and Loss Process . 71
4.3.2 Computational Model . 72
4.3.3 Initial Conditions . 73

4.4 Algorithmics . 74
4.4.1 Efficient Evaluation . 74
4.4.2 Handling of Large Plants . 75
4.4.3 Integration with Physics Simulators . 76

4.5 Results . 77
4.5.1 Water Model Evaluation . 77
4.5.2 Environment and Material Calibration . 78

Contents v

4.5.3 Descriptive Power . 78
4.5.4 Performance . 81

4.6 Conclusion, Limitations, and Future Work . 82

5 Massive Uniform Mesh Decimation via a Fast Intrinsic Delaunay
Triangulation . 83
5.1 Introduction . 83
5.2 Related Work . 85

5.2.1 Remeshing . 85
5.2.2 Mesh Decimation and Simplification . 86

5.3 Method . 86
5.3.1 Delaunay Remeshing . 86
5.3.2 Voronoi FPS . 88
5.3.3 Dual Triangulation . 89
5.3.4 High-Density Sampling . 90

5.4 Results . 94
5.4.1 Remeshing Quality . 94
5.4.2 Performance Analysis . 99
5.4.3 Resampling of Large Triangles . 100

5.5 Limitations and Conclusions . 102

6 Reconstructing Curves in Non-Euclidean Domains103
6.1 Introduction . 103
6.2 Related Work . 105
6.3 Method . 106

6.3.1 TSP on Surfaces . 106
6.3.2 Refinements . 109
6.3.3 Complexity Analysis . 110

6.4 Results . 111
6.4.1 Dataset Generation . 111
6.4.2 Evaluation . 112
6.4.3 Performance . 116
6.4.4 Limitations . 117

6.5 Conclusions . 120

III Parallelization & Optimization 122

7 Newton’s Fractals on Surfaces via Bicomplex Algebra123
7.1 Introduction . 123
7.2 Method . 124
7.3 Implementation . 125
7.4 Results and Conclusions . 126

8 Efficiently Parallelizable Strassen-Based Multiplication of a Ma-
trix by its Transpose .127
8.1 Introduction . 127

Contents vi

8.2 Related Work . 129
8.3 AtA . 130

8.3.1 AtA in Detail . 130
8.3.2 Computational Complexity . 132
8.3.3 Space Complexity . 132
8.3.4 Cache Complexity . 133

8.4 Parallel AtA . 134
8.4.1 Preliminary Phase: Task Assignment . 134
8.4.2 Shared Memory AtA . 137
8.4.3 Distributed Memory AtA . 139

8.5 Performance Evaluation . 142
8.5.1 Experimental Setup . 142
8.5.2 Metrics . 142
8.5.3 Sequential . 143
8.5.4 Shared Memory . 144
8.5.5 Distributed Memory . 145

8.6 Conclusions . 148

Conclusions . xxi

Bibliography .xxii

vii

Introduction to the Thesis

This thesis is divided into three parts, each representing a research field that I
spanned through my Ph.D. path. The common ground for my research has been the
area of computational and Riemannian geometry in computer graphics applications,
for which an introduction is provided in the following chapters.

Part I is devoted to the field of spectral geometry processing, which denoted the
beginning of my Ph.D. career. When I started studying the notion of Laplacian
eigenproducts [154] and their application in geometry processing [193], I immedi-
ately recognized the potential for speeding up many tasks in applied spectral ge-
ometry, like approximation and transfer of functions. Extending an eigenbasis with
point-wise products of its elements is dramatically more efficient than computing a
larger basis, and in Chapter 1 we present theoretical studies that show how they
also provide a massive increase in the descriptive power. However, working with a
non-orthogonal basis introduces numerical stability issues, and makes it difficult to
extend the method and integrating it into other pipelines that intrinsically require
an orthogonal setting (e.g., ZoomOut [176]). So, in the chapter we also provide
a groundwork for the orthogonalization of the eigenproducts and the extension of
the functional map framework [202] to integrate this new basis, proving its effi-
ciency and effectiveness in multiple tasks, from the approximation and transfer of
functions, to the filtering of details [161]. Working in the setting of non-rigid and
non-isometric correspondences deepened my interest in spectral geometry, and led
me supporting my colleagues in related projects. We started searching for spec-
tral correlations between manifolds and submanifolds, with the idea that non-rigid
puzzles [145] could have a solution in a spectral fashion. The results presented in
Chapter 2 prove that, despite being hidden behind a neural network, this correlation
does exist, and that it can be exploited to compute non-rigid and non-isometric set
operations between partial shapes [185]. Since the method rely on a data-driven
optimization, I collaborated to the generation of a large dataset of partial shapes
labeled with spectral data, and to the strengthening of the theoretical foundations
by defining a mathematical background and a symmetry between the problem in
the spectral setting and the problem in the latent space.

When studying Riemannian geometry, I started having an interest in general-
izing problems to non-Euclidean metric spaces. Part II of this thesis is centered
around this idea. Discovering the complexity and visually interesting animations
arising from the simulation of slime mold organisms [114] led me to the idea of
bringing this problem on surfaces for procedural texturing tasks. In Chapter 3 we
show how, by using the notion of motion on surfaces and carefully adapting the
movement to the metric space of a mesh, this kind of simulation can be generalized

viii

to produce complex animated textures in real-time [160]. My work on the area of
simulations got me in touch with researchers from the King Abdullah University of
Science and Technology (KAUST), where I spent a three months visiting period
working on a diffusion model on graphs to simulate the water flow inside plants.
The results from Chapter 4 show how this model can be integrated with solvers
for the dynamics of non-rigid bodies to produce interactive and visually convincing
simulations of the wilting process of crop plants [159]. My studies on non-Euclidean
geometries also led to an interest in the idea of curves and connectivities in curved
domains. The seminal results presented in Chapter 5 show that it is possible to
obtain an high-quality remeshing by computing a geodesic farthest point sampling
and the corresponding geodesic Delaunay triangulation. In the same chapter we also
prove that this result can be obtained efficiently by avoiding multiple traversals of
the entire mesh [158]. Without the convenient structure of the Euclidean metric
spaces, even problems with well-established solutions could become very though,
and this is the case for the task of curve registration. After discovering the recent
community interest in designing curves on surfaces [162], I started working on an
algorithm for reconstructing curves from sparse samples in non-Euclidean metric
spaces. In Chapter 6 we discuss an algorithm that solves this task by adapting
known techniques for the traveling salesman problem to triangular mesh domains.

Searching for efficient solutions often brought me to questioning about parallel
solutions for usually though problems. Part III collects my research results in this
direction. Procedural texturing tasks are historically addressed by defining multidi-
mensional noise functions and projecting them onto a surface [101], a result that can
be achieved with real-time performance by taking advantage of GPU computing. In
Chapter 7 we present a new technique in this fashion, that exploits pixel shaders to
generate fractal patterns on surfaces. Another direction that I investigated is the
improvement of matrix multiplication algorithms. Many applications in computa-
tional and spectral geometry deals with large collections of shapes [228, 241], and
handling of large matrices is often involved, eventually in the setting of a distributed
system. In Chapter 8 we discuss a Strassen-like algorithm that efficiently deals with
the multiplication of a matrix by its transpose, and that can be easily parallelized
in both shared and distributed memory environments.

ix

Overview of Published Results

This thesis is organized so that every chapter collects independent results and defines
its own context. Each chapter is dedicated to present the results of a single research
project.

Chapter 1: the results presented in this chapter have been published in the
proceedings of the 42nd Annual Conference of the European Association for
Computer Graphics (EUROGRAPHICS 2021) [161].

Chapter 2: the results presented in this chapter have been published in the
proceedings of the 43rd Annual Conference of the European Association for
Computer Graphics (EUROGRAPHICS 2022) [185].

Chapter 3: the results presented in this chapter have been published in the
proceedings of the 30th Pacific Conference on Computer Graphics and Appli-
cations (Pacific Graphics 2022) [160].

Chapter 4: the results presented in this chapter have been published in the
proceedings of the 16th ACM SIGGRAPH Conference and Exhibition on
Computer Graphics and Interactive Techniques in Asia (SIGGRAPH Asia
2023) [159].

Chapter 5: the results presented in this chapter have been published as a pre-
print on arXiv [158]. The seminal results about the preservation of spectral
properties are not yet part of the pre-print.

Chapter 6: the seminal results presented in this chapter have not yet been pub-
lished.

Chapter 7: the results presented in this chapter have been published in the
poster proceedings of the 49th Special Interest Group on Computer Graphics
and Interactive Techniques (SIGGRAPH 2022) [157].

Chapter 8: the results presented in this chapter have been published at the 50th
International Conference on Parallel Processing (ICPP 2021) [12].

x

Motivations

Since its advent in the ‘50s, modern computer graphics has asserted its importance
in major research fields and applications, such as scientific visualization, computer-
aided engineering, and entertainment. Over the years, the research community in
the area vastly increased, alongside the number of applications, now ranging from
graphics design to computational biology, covering simulation, photography, and
virtual reality.

In this massive research area, geometry processing takes a large spot. Geometry
processing is a field where concepts from mathematics and geometry are used to
efficiently deal with 3D data, addressing tasks such as analysis, deformation, and
reconstruction, among others. Many successful geometry processing algorithms ex-
ploit notions and solutions from differential geometry to handle and process complex
surfaces in 3D, taking advantage of the formulation via their intrinsic properties,
like metric, curvature, and differential operators.

For instance, simulations and optimization problems on the surface domain can
produce complex textures and patterns programmatically [124, 253, 269]. Again,
intrinsic properties like the curvature, or features of differential operators like the
Laplacian, can be used as powerful descriptors for finding non-rigid correspondences
between shapes [179, 202]. Moreover, the metric of the surface induces the definition
of distances over a mesh, allowing for the design of curves, patterns, and boolean
operations directly on the shape [162, 188, 230].

The noticeable achievements of differential geometry algorithms are quickly
downsized when it comes to industrial applications, especially in the entertainment
industry. Movies usually deal with meshes composed of millions of polygons; in
video games, moderately sized shapes must be processed in a matter of milliseconds
and with low memory consumption to achieve real-time performance on most home
systems. The differential geometry component of the algorithm does not scale to
this volume of data: an optimization problem with 20k variables is unsuitable for
real-time applications, and the spectral decomposition of a matrix with 3M×3M
entries is an unfeasible task.

This thesis spans a variety of applications in computer graphics, ranging from
shape matching and procedural texturing to simulations and curve design. The goal
is to provide efficient and easily parallelizable algorithms that, while still relying on
concepts of differential geometry, explore new directions and ideas and deep dive into
the mathematical framework to produce accurate or visually convincing solutions
that can scale to industry-standard data volumes.

xi

Background in Riemannian
Geometry

In this thesis, we extensively make use of notions about differential geometry, spec-
tral geometry and metric spaces. This chapter serves as an introductory background
for all the mathematical tools we refer and use throughout the thesis.

We introduce the notion of Riemannian manifolds, local parametrizations and
tangent spaces, defining the notion of curves and distances on smooth surfaces.
Then, we provide an introductory presentation on the generalization of differential
operator and the properties of the Laplacian eigendecomposition, with an overview
of the functional maps framework and its use in correspondence and shape matching
applications.

Riemannian Manifolds

Informally speaking, a d-dimensional smooth manifold embedded in Rn is composed
by gluing together deformed slices of d-dimensional hyper-planes in a n-dimensional
space.

The basic building block for defining the structure of a Riemannian manifold is
the notion of chart.

Definition 1. Given a topological space M⊂ Rn, a chart (φ,U) of M is a couple
formed by an open subset U ⊂M and an homeomorphism φ : U → Rd.

Linking back to our informal definition, a chart determines a slice of the d-
dimensional hyper-plane and the rule for deforming it. The collection of all the
slices is called atlas.

Definition 2. Given a topological space M⊂ Rn, an atlas is a collection of charts
AM = {(φα, Uα) : α ∈ A}, such that ⋃α∈A Uα =M.

For determining how to glue the pieces together, we need to capture the idea of
consistently overlapping the charts.

Definition 3. Given a topological space M ⊂ Rn and two charts (φα, Uα) and
(φβ, Uβ) of M such that Uα ∩ Uβ ̸= ∅, the composition τα,β = φβ ◦ φ−1

α is called
transition map.

Informally speaking, the transition map is the operation of deforming a slice
of the hyper-plane according to a chart, taking the piece of that slice belonging

xii

Figure i. Regions of the plane (left panel) are deformed according to different charts
(middle plane). The deformation of multiple regions of the plane according to an atlas
with smooth transition maps produces a smooth manifold (right panel). In this example,
the manifold is 2-dimensional (i.e., d = 2) and the embedding is 3-dimensional (i.e.,
n = 3).

to second chart, and relaxing it back to the original hyper-plane according to the
second chart.

Definition 4. Given a topological space M⊂ Rn and an atlas AM = {(φα : Uα →
Rd, Uα) : α ∈ A}, we call M a smooth manifold if, for every α, β ∈ A such that
Uα ∩ Uβ ̸= ∅, the transition map τα,β is a smooth map.

The example in Figure i shows how an atlas defines a smooth surface. Each
piece of the plane is deformed according to a corresponding chart. Then, if the
charts are compatible in the overlapping regions, the resulting manifold is smooth.

While there would be much more to cover for properly defining a manifold,
describing all the advanced theory goes beyond the scope of this thesis, and for
further details we refer to the books from Do Carmo and Morita [73, 184].

At every point x ∈ M, we can define a linear approximation of the surface
around x, using the d-dimensional hyper-plane tangent toM at point x. We denote
this tangent plane as Tx (M). The disjoint union of all the tangent spaces is called
tangent bundle of M, and is denoted as T (M) =

⋃
x∈M Tx (M). Introducing the

notion of tangent space allows us to define an inner product between vectors on
the surface M. Given a local chart (φ,U) such that for some p ∈ φ(U) it holds
φ−1(p) = x, and by recalling that the tangent space Tx (M) lies in Rn, we can map
d-dimensional vectors to Tx (M) by using the Jacobian matrix Jφ−1 . Thus, given
two vectors u,v ∈ Rd, we can define their inner product on Tx (M) as gx(u,v) =
u⊤J ⊤

φ−1Jφ−1v. The products of the Jacobian matrices is usually called metric
tensor, and it is denoted as the d × d symmetric matrix gx = J ⊤

φ−1Jφ−1 . So,
the metric tensor encodes the distortion induced by mapping the vectors to the
surface M. Given a vector v ∈ Rd, we can define its length in Tx (M) just as

xiii

Figure ii. Left: the tangent plane to a point on the surface. Right: an arbitrary curve on
the surface connecting two points (red) and the corresponding geodesic path (green).

∥v∥gx
=
√
gx(v,v) =

√
v⊤gv. Defining a metric gx at every point x ∈ M, allows

us to define an overall metric g over the entire manifold M.

Definition 5. A d-dimensional Riemannian manifold embedded in Rn is a couple
(M, g), where M is a d-dimensional smooth manifold embedded in Rn, and g is a
metric over M. The manifold M is said to be equipped with the metric g.

Figure ii depicts an example of tangent plane to a point of the surface, with a
corresponding local coordinate system.

Curves and Distances

A curve on a manifold M consists of a diffeomorphism γ : (a, b) ⊂ R → M, and
it is itself a 1-dimensional manifold embedded in the same space as M. Given a
local chart φ for M at the point x, we can define the differential of the curve at
γ(t) = x as d

dt (φ ◦ γ). This differential represents the infinitesimal movement of a
point along the curve, and the directional vector lies in the tangent space Tx (M).
It can be proved that, independently of the chosen parametrization for the local
chart, the resulting embedding of the tangent vector is the same [73, 184]. If M is
a Riemannian manifold and g is the equipped metric, then we can use the tangent
vectors to compute the length of the curve γ as

ℓ(γ) =
∫ b

a

√
gγ(t)(γ′(t), γ′(t)) dt . (i)

Determining the length of a curve allows us to define the notion of shortest path,
and hence to generalize the idea of distance over surfaces.

Definition 6. Let (M, g) be a d-dimensional Riemannian manifold embedded in
Rn, and let x, y ∈M be two points over M. Said Γx,y = {γ : (a, b)→M : γ(a) =

xiv

x, γ(b) = y} the set of curves on M having x and y as end-points, the geodesic
path connecting x to y is a curve γ∗

x,y = arg minγ∈Γx,y
ℓ(γ). The geodesic distance

between x and y is the function δM(x, y) = minγ∈Γx,y ℓ(γ).

So, intuitively, the geodesic path is the shortest walk on the surface connecting
x and y, whereas the geodesic distance is the length of the geodesic path.

The example in Figure ii shows the difference between an arbitrary curve (high-
lighted in red) on the surface and the geodesic path (in green) connecting two
points.

Differential and Spectral Geometry

Defining a metric induces the definition of distances over surfaces, but it also comes
in handy for generalizing differential calculus.

Gradient Given some scalar field f : M → R over the surface M, we want
to generalize the notion of gradient of f . At any point p ∈ M, we consider the
basis {∂i = ∂φ−1

∂xi
} for the tangent space Tp (M) induced by the local chart φ. The

directional derivative dfp(∂i) of f at point p along the basis vector ∂i is given by
the chain rule dfp(∂i) = dfp(∂φ−1

∂xi
) = ∂

∂xi
(f ◦ φ−1) = ∂f̃

∂xi
, where f̃ = f ◦ φ−1 is

the local parametrization of f according to the chart φ. Said ∇f̃ the Euclidean
gradient of f̃ , the directional derivative dfp(v) of f at point p along the direction
vector v ∈ Tp (M) can be obtained by linearity as dfp(v) = v⊤∇f̃ . By recalling
that the directional derivative can also be expressed as the inner product between
the gradient and v, and since the gradient of f must lie in the tangent space Tp (M),
the conversion to the Riemannian metric gives dfp(v) = gp(grad(f), v), which we
can use to solve for the gradient

gp(grad(f), v) = v⊤gpgrad(f) = dfp(v) = v⊤∇f̃ , ∀v ∈ Tp (M) ,
grad(f) = g−1∇f̃ .

(ii)

Divergence For the generalization of the divergence, we rely on one of its alter-
nate definitions. For any vector field V : T (M) → Rd, and for any scalar field
f : M → R with compact support, the divergence is the adjoint of the gradient.
That is

⟨f, div(V)⟩M = ⟨grad(f), V ⟩T(M) ,∫
M
fdiv(V)dS =

∫
M
gx(grad(f), V)dS =

∫
M

grad(f)⊤gxV dS .
(iii)

Here, dS =
√

det gdx is the surface differential. By recalling that grad(f) = g−1
p ∇f̃ ,

that gx is symmetric and that Equation (iii) must hold for all f , an integration by
parts leaves us with

div(V) = − 1√
det gx

∇ · (
√

det gxV) , (iv)

where ∇· is the divergence operator in Euclidean space.

xv

Laplace-Beltrami Operator Generalizing the Laplacian operator to surfaces
comes straightforwardly from its definition as the divergence of the gradient. Given
some scalar field f : M → R, the Laplace-Beltrami operator on f is defined by
means of Equations (ii) and (iv) as

∆f = div(grad(f)) = − 1√
det gx

∇ · (
√

det gxg−1
x ∇f̃) , (v)

being f̃ = f ◦ φ−1 the local parametrization of f .
The Laplacian is a linear operator from the space F(M,R) of scalar fields over

M into itself, and hence it does make sense searching for eigenvalues and eigenvec-
tors. Namely, we want to find all the non-trivial solutions ϕ to the problem{

∆ϕ(x) = λϕϕ(x)
ϕ(∂M) = 0

(vi)

where λϕ is a scalar constant depending only on ϕ and ∂M denotes the boundary of
the manifoldM. This specific eigenproblem imposes Dirichlet boundary conditions,
constraining the function to be zero-valued at the boundary, if there is one. There
are other possibilities for constraining ϕ, but in this thesis we will only refer to the
Dirichlet eigenproblem.

For an extensive dissertation on differential geometry and specral properties of
differential operators on manifolds we remand to the books from Morita and Chavel
about this topic [184, 50, 51]. Here we summarize the properties we will mostly use
throughout this thesis:

• the solution to the Laplacian eigenproblem is a countably infinite family
(ϕk, λk), where ϕk is a real function and λk is a non-negative real value (thus
forming a non-decreasing sequence);

• the Laplacian eigenfunctions forms an orthogonal basis for the set of square
integrable scalar fields on M;

• ifM has no boundary, there is exactly a constant eigenfunction ϕ0, associated
with a null eigenvalue λ0 = 0;

• if M is composed by multiple connected components M1, · · · ,Mh, the solu-
tion to the eigenproblem onM is the union of the solutions to the eigenprob-
lems on every component Mi.

The Laplace-Beltrami eigenfunctions are a generalization to manifold domains
of the Fourier basis in Euclidean space, meaning that the Laplacian eigenvalues
generalizes the notion of base frequencies. When studying functions on Riemannian
surfaces, an important quantity that encodes information about frequency is the
Dirichlet energy.

Definition 7. Given a Riemannian manifold (M, g) and a real function f :M→ R
on M, said u = f/∥f∥M the normalized version of f , the Dirichlet energy of f is

E (f) = ⟨grad(u), grad(u)⟩T(M) = ⟨u, ∆u⟩M . (vii)

xvi

Figure iii. Example of isometric correspondence. Pairs of corresponding points are asso-
ciated by the same color.

Correspondences and Functional Maps

Given two Riemannian manifolds (M, gM) and (N , gN) with induced geodesic dis-
tances, respectively, δM and δN , we can relate M and N by defining a correspon-
dence, which is a bijective function c : M → N . Clearly, there exist infinitely
many correspondences between the two manifolds, but we are usually interested in
a particular type of correspondence, which we call isometric.

Definition 8. Let M and N be Riemannian manifolds, respectively equipped with
metrics gM, gN and induced geodesic distances δM, δN , and let cM → N be a
correspondence. c is said isometric correspondence (or isometry) if it holds

∀x, y ∈M, δM(x, y) = δN (c(x), c(y)) . (viii)

If there exists an isometric correspondence, thenM and N are said isometric man-
ifolds.

Intuitively, an isometric correspondence encodes the idea of having the same
shape in different poses, as in the example depicted in Figure iii. Sometimes, we
are interested to be invariant to the scale of the manifolds, thus we can relax the
condition by saying that there exists some constant α such that

∀x, y ∈M, δM(x, y) = αδN (c(x), c(y)) . (ix)

While we generally refer to this as an isometry, it is sometimes useful to distinguish
it from strict isometries and refer to it as α-isometry.

It is worth to mention that it is not always guaranteed that an isometry does
exist. If that is the case, we could be anyway interested in finding some kind of
meaningful correspondence, by relaxing the condition from Equation (ix) and asking

xvii

Figure iv. Two non-isometric, but semantically similar shapes and their Laplacian spectra.

for an approximated isometry or for a correspondence that minimizes the overall
error ∫

M

∫
M

(δM(x, y)− δN (c(x), c(y)))2dxdy . (x)

Since the notion of distance is induced by the metric tensor, which also deter-
mines the Laplacian, two isometric manifolds have the same Laplacian eigenvalues.
Specifically, said (ϕk, λk) the family of solutions to the Laplacian eigenproblem on
a manifold M and (ψk, µk) their analogue on a manifold N , if M and N are α-
isometric under a correspondence c :M→N , then

∀x ∈M, k ∈ N, ϕk(x) = ψk(c(x)) ,
λk = α2µk .

(xi)

The example in Figure iv shows that the Laplacian spectrum is robust even when
the isometry does not exist. If the shapes are similar enough (e.g., two humans, in
the example), the Laplacian eigenfunctions concentrate their energy on areas that
have the same semantics.

This relation between isometries and Laplacian leads to the idea of functional
maps [202]. Given a correspondence c : M → N , a functional map is a linear
operator TF : L2(M) → L2(N) that maps functions on M to functions on N ,
defined via the composition TF (f) = f ◦ c. Given the Laplacian eigenbases {ϕk}
for L2(M) and {ψk} for L2(N) (this works for any choice of bases, and it is not
restricted to the Laplacian eigenfunctions), we can represent the mapping of any
eigenfunction ϕi to N as

TF (ϕi) =
∑

j

⟨ϕi ◦ c, ψj⟩N︸ ︷︷ ︸
Ci,j

ψj . (xii)

Since any function f ∈ L2(M) can be expressed as a linear combination of {ϕk},
and by recalling that TF is linear, the mapping of f onto N can be computed as

TF (f) =
∑

i

⟨ϕi, f⟩M TF (ϕi) =
∑
i,j

⟨ϕi, f⟩MCi,jψj , (xiii)

xviii

and since the delta indicator functions (i.e., Dirac deltas)

Ip(x) =
{
∞ x = p

0 x ̸= p
(xiv)

belong to L2(M), we can retrieve the correspondence from the functional map.
By encoding the coefficients in a matrix C, we can then reduce the problem of

finding a correspondence from a continuous setting to a discrete setting. Moreover,
we can approximate the mapping by truncating the bases to some index N , meaning
that the problem of finding an approximated correspondence is finite.

Discretization

When working with manifolds in a discrete setting, like it’s usually needed for com-
putational applications, there are different choices to represent shapes. Throughout
this thesis, we will stick to the standard triangular mesh representation.

Triangle Meshes A triangle mesh M̂ = (V,E, T) is a triple where:

• V ⊂ R3 is a set of vertices in 3-dimensional space;
• E is a set of unordered edges between vertices in V ;
• T is a set of oriented triangles formed by the edges in E.

Usually, we indicize the vertices and represent the edges (reps. triangles) as pairs
(res. triplets) of indices. However, it is sometimes convenient to represent them
mathematically as pairs (resp. triplets) of actual vertices.

The ordering of the vertices in a triangle t is invariant under even permutations
(i.e., we don’t care about the ordering as long as we just cycle the indices), and the
ordering defines an outward normal vector n̂t according to the right-hand rule. The
side of t facing the direction of n̂t is called outer, while the opposite side is called
inner.

We assume the mesh structure to be consistent with the continuous definition
of manifolds. We define a mesh to be a manifold mesh if the following holds:

• triangles and edges must not be degenerate (i.e., no null-length edges and no
null-area triangles);

• edges must be incident on exactly two triangles;
• a vertex can only be surrounded by a single fan of triangles, which must be

closed.

Sometimes we allow manifolds and meshes to have boundaries, leading to a relax-
ation of some conditions. A vertex lying on the boundary has its fan of triangles
open, whereas a boundary edge is incident to exactly one triangle.

Some manifolds, like the Möbius strip, are said to be non-orientable. These
manifolds have only one side, meaning that chiral figures can be moved around
on the surfaces and be brought back to its original position, but in the form of
its mirror image. Throughout this thesis we require our manifolds (and hence our
manifold meshes) to be orientable. To enforce this property, we ask for adjacent

xix

Figure v. Examples of non-manifold and non-orientable meshes. Left: the orange vertex
is non-manifold because it is surrounded by two fans of triangles. Middle: The orange
edge is non-manifold because it is incident on three faces. Right: the surface is non-
orientable, because the two faces have normals pointing in opposite directions.

faces to have their normals pointing in compatible directions. Alternatively, this
property can be stated as asking for edge incident on two faces to be traversed in
opposite directions.

Figure v provides visual examples of non-manifold meshes with multiple triangle
fans on the same vertex and edges incident on three triangles, as well as an example
of non-orientable triangle mesh.

Differential Geometry We represents a function f : M → R as a vector
f ∈ R|V | assuming real values on vertices. Vector fields V : T (M) → R3 can
be represented either as vectors v ∈ R|E| assuming real values on edges or as vec-
tors v ∈ R|T |×3 assuming real vector values on triangles. Finally, we represent the
Laplace-Beltrami operator as a |V | × |V | real valued sparse matrix L = A−1W,
where A ∈ R|V |×|V | contains the area elements of the vertices and W ∈ R|V |×|V |

is defined according to the local geometry [213]. The area matrix is also useful
for computing the inner product between functions on the surface. Given any two
functions f, g : M → R and their corresponding discrete vectors f , g ∈ R|V |, the
weighted inner product f⊤Ag realizes

⟨f, g⟩M =
∫

M
f(x)g(x)dx . (xv)

By realizing that g(x) = 1 is discretized as the vector 1 ∈ R|V |, the computation
of the integral of some function f over M can be computed as the inner product
⟨f, 1⟩M, which reduces to the computation of the weighted inner product f⊤A1.

For further details on the discretization of differential operators on surfaces, we
refer to the Ph.D. dissertation from Hirani on discrete exterior calculus [103].

2D Parametrization Finally, we introduce the notion of discrete parametriza-
tion, which represents the discretized atlas of a manifold M. Each triangle t rep-
resents a finite flat portion of the surface, meaning we can always find an affine
transformation Jt that maps the 3D triangle into a 2-dimensional space. The trans-
formation Jt effectively represents the discrete Jacobian matrix of the local chart,

xx

Figure vi. Example of parametrization of a triangle mesh. The 3D coordinates of the
model are color-coded to better show the mapping to the unit square.

hence inducing a discrete metric gt = J⊤
t Jt. Depending on the applications, the

local charts could map every triangle to the canonical triangle (i.e., the triangle
having vertices at the origin, at the point (1, 0), and at the point (0, 1)), or could
define a piecewise affine transformation of the entire mesh into some bounded re-
gion of R2, trying to minimize the distortion, the discontinuities and the number of
connected components. The example depicted in Figure vi shows a parametrization
of a triangular mesh to a square. The mesh is split into five connected components,
which are cut and flatten onto the plane. The color-coding of the coordinates ease
the parsing of the parametrization, showing where each triangle of the 3D mesh is
mapped in the plane.

1

Part I

Spectral Geometry

2

Chapter 1

Orthogonalized Fourier
Polynomials for Signal
Approximation and Transfer

In this chapter, we propose a novel approach for the approximation and transfer
of signals across 3D shapes. The proposed solution is based on taking pointwise
polynomials of the Fourier-like Laplacian eigenbasis, which provides a compact and
expressive representation for general signals defined on the surface. Key to our
approach is the construction of a new orthonormal basis upon the set of these lin-
early dependent polynomials. We analyze the properties of this representation, and
further provide a complete analysis of the involved parameters. Our technique re-
sults in accurate approximation and transfer of various families of signals between
near-isometric and non-isometric shapes, even under poor initialization. Our exper-
iments, showcased on a selection of downstream tasks such as filtering and detail
transfer, show that our method is more robust to discretization artifacts, deforma-
tion and noise as compared to alternative approaches. The work presented in this
chapter has been realized in collaboration with prof. Simone Melzi, which largely
helped in the implementation and evaluation of the detail transfer and the spectral
filter applications, the design of the experimental section, and the overall presenta-
tion of the text, together with prof. Emanuele Rodolà, prof. Maksim Ovsjanikov
and prof. Michael Bronstein. The results presented in this chapter have been pub-
lished in the proceedings of the Annual Conference of the European Association for
Computer Graphics (EUROGRAPHICS) [161].

1.1 Introduction and Related Work

Approximation and transfer of signals between shapes are among the most widely
explored tasks in computer vision and graphics, and are at the basis of numerous
applications. Common to most approaches is the idea to encode the given surface
signal in a basis that allows to represent and transfer it efficiently; among these,
approaches based upon the construction of a Fourier-like basis (or rather its surface
counterpart [265]) play the lion’s share [134, 240, 272]. The key idea is to project
the signal onto a low-dimensional function space, e.g., corresponding to the lowest

1.1 Introduction and Related Work 3

Source Order 1 Order 2 Order 3 Order 4 Order 5
Figure 1.1. Surface approximation using orthogonalized polynomials of increasing order,

where order 1 corresponds to the plain Laplacian eigenbasis. All of these approximations
are obtained starting from just 5 eigenfunctions. Reconstruction error is encoded by
color, growing from white to dark red.

Source eigs prods ours ours*

Figure 1.2. RGB signal transfer among two non-isometric shapes with different mesh
topology. Our approach (ours, ours∗) better transfers the surface signal from bison to
cow, while using the same amount of information as other existing approaches (eigs [202]
and prods [193]). We refer to the experimental section for more details.

portion of the frequency band. This yields a well known trade-off between the
compactness of the representation and its ability to capture higher frequencies of
the signal. Efforts have been devoted to strike a balance between these two factors,
by resorting to alternative bases or via costly post-processing steps; still, the search
for a compact basis for representing high level of detail, is an unsolved problem to
date.

A closely related problem to that of signal representation is the need to transfer
these signals from a source to a target domain. This can often be cast as correspon-
dence problem, where the objective is to find a transformation that acts as a bridge
between source and target. This was shown in [202] to be equivalent to seeking a
coherent set of basis functions for the given pair of shapes; the search for a corre-
spondence is then phrased as the search for a linear map (called functional map)
that aligns the basis functions on the source to those on the target. Follow-up works
have embraced this view by introducing more stable ways to compute the functional
map [194, 203, 83, 227], by extending the framework to the partial setting [233, 61],
or by constructing new coherent bases explicitly as linear transformations of the
Laplacian eigenfunctions [127, 17, 144].

The choice of Laplacian eigenfunctions as a reduced basis for representing surface
signals is due to their optimality for continuous functions with bounded variation
[5]. However, in many real applications such as texture transfer and shape inter-
polation, this band-limited representation may not provide the necessary accuracy
for capturing fine details. To overcome these limitations, two main solutions have
been proposed: (i) to design an ad-hoc basis for fixed sets of signals; (ii) to define

1.1 Introduction and Related Work 4

algorithms for recovering the residual information that is lost in the representa-
tion. The former includes wavelets as a localized alternative to the Fourier basis
[302, 55, 153, 100, 209, 122]. Other local constructions include those based on sparse
regularization and Hamiltonian operators with step potentials [189, 128, 54, 178].
Specialized bases for piecewise-constant signals and vertex coordinates have been
proposed in [172] and [173] respectively, but these do not generalize well to different
function classes. Point (ii) is a more recent trend [176, 78]. The idea is to iteratively
seek for bases of increasing dimension starting from an initial alignment between
few Laplacian eigenfunctions. The iterative procedure preserves the alignment of
the two bases as they increase in dimension, and sidesteps the need for further
optimization to get an optimal alignment.

More closely related to ours is the work of Nogneng et al. [193], where the authors
consider the set of pointwise products of the Laplacian eigenfunctions, in addition
to the eigenfunctions alone, for representing surface signals more accurately. The
main property of these eigenproducts is that their alignment can be explicitly and
directly derived from the functional map between the standard eigenfunctions; this
way, a correct alignment between a few eigenfunctions is automatically extended to
the larger set, which includes their products.

Contribution. Our work addresses a key issue of the latter representation, namely
that the set containing Laplacian eigenfunctions and eigenproducts is not linearly
independent in general; as we show in the sequel, it is linearly independent only
when very few eigenfunctions are involved. Thus, this set does not provide a unique
representation for surface signals. Further, the linear dependence gives rise to in-
stability in the transfer task, which must be handled through additional constraints
and pre-processing as shown in [193]; see Figure 1.2 for an example. Here we follow
a similar idea and use eigenproducts to increase the dimensionality of the basis, and
in turn, the quality of the resulting representation. However, differently from [193],
we do not limit our analysis to products of order 2, but we effectively exploit the
entire set of “Fourier polynomials” with arbitrary order.

The work presented in this chapter fills the gaps left by [193] in several ways:

• For the first time, we provide a theoretical analysis on the space spanned by
the eigenproducts, including a discussion on the frequency range that they
capture;

• We propose the construction of an orthonormal basis on top of the linearly
dependent set of polynomials, yielding a simpler, more accurate, stable and
computationally efficient technique;

• We extend the discussion and empirical evaluation to eigenproducts of order
greater than 2.

Our basis applies to several applications, such as detail transfer and spectral filter-
ing, that are impossible to target through the representation proposed in [193] as
we show in the experiments.

1.2 Background 5

Figure 1.3. Shapes used for our theoretical results: human (∼ 7k vertices), bunny (∼ 10k),
cat (∼ 10k), and donut (∼ 20k).

1.2 Background

We model a shape as a 2-dimensional Riemannian manifoldsM, equipped with the
metric tensor g.

The Laplace-Beltrami operator obeys the Leibniz product rule with a correction
term involving gradients [51]. Namely,

∆f(x)g(x) = f(x)∆g(x) + g(x)∆f(x)− 2 ⟨∇f(x), ∇g(x)⟩ , (1.1)

which, in the case of eigenfunctions, leads to1:

∆ϕi(x)ϕj(x) = (λi + λj)ϕi(x)ϕj(x)− 2 ⟨∇ϕi(x), ∇ϕj(x)⟩ . (1.2)

A rescaled version of the correction term was empirically used in [249] as a
descriptor field for shape matching.

To properly introduce the mathematical background needed in this chapter, we
formalize the notion of eigenproduct.
Definition 1.1. Let I = {i1, · · · , in} ∈ N be a finite set of indices, possibly con-
taining repeated elements. We define the eigenproduct ϕI :M→ R to be the scalar
function defined as

ϕI(x) =
∏
i∈I

ϕi(x) , (1.3)

where the multiplication is to be taken pointwise. A special case of eigenproduct
is when I = {i, · · · , i} is a set containing n times the same index. In this case,
we define the function ϕI = ϕn

i an eigenpower. Finally, an N -th order Fourier
polynomial of K eigenfunctions is a linear combination of eigenproducts up to order
N involving the first K eigenfunctions (excluding the constant one).

1.3 Theoretical Results

In this section, we present some theoretical results on eigenproducts, together with
some interesting implications of their properties. We first examine their frequency
distribution, and compare it to the frequency distribution of the eigenfunctions
(i.e. their associated eigenvalues). We then discuss a result on the approximation
of eigenproducts in the space spanned by the eigenfunctions, providing possible
interpretations and implications. We use different shapes to show the generality of
our results (see Figure 1.3).

1Strictly speaking, functions in L2(M) do not admit a pointwise product; we keep the notation
for the sake of simplicity, with the understanding that it remains valid in the proper Sobolev space.

1.3 Theoretical Results 6

0 10 20 30
0

0.5

1

1.5

2 ·10−2 Order 1

0 20 40 60

·10−2 Order 2

0 20 40 60 80

·10−2 Order 3

Figure 1.4. Each plot shows the relative error min{(λi − E (ϕI))/λi} between the i-th
Laplacian eigenvalue (where i ranges on the x axis) and the closest frequency of a N -th
order eigenproduct. Here NK Laplacian eigenvalues are considered, with K = 30 and
product order N = {1, 2, 3} (left to right). At order 1 the products correspond to the
standard eigenfunctions, hence yielding exactly zero error. At increasing order the error
stays close to zero, showing that each eigenvalue is approximated by the frequency of a
product with > 99.9% accuracy. Results are averaged on four shapes.

1.3.1 Frequency Distribution

We now present a result about the distribution of frequencies (i.e. the Dirichlet
energies) of eigenproducts. Proofs are grouped in Section 1.6.

Theorem 1.1. Let M be a d-dimensional Riemannian manifold, and ∆ be the
associated Laplace-Beltrami operator. Then, let I be a set of indices of size N and
let ϕI be an eigenproduct. The following relation holds:

E (ϕI) ≥ 1
2
∑
i∈I

λi . (1.4)

Furthermore, in the special case of an eigenpower ϕI = ϕN
i , it holds

E
(
ϕN

i

)
= N2

2N − 1λi . (1.5)

Corollary 1.1. Let M be a 2-dimensional manifold, and ∆ be the associated
Laplace-Beltrami operator. Fixed N,K ∈ N, and being Φ̃ the set of N -th order
eigenproducts between the first K Laplacian eigenfunctions, maxϕI∈Φ̃{E (ϕI)} ∈
Ω(NK).

From Theorem 1.1 and Corollary 1.1, we can deduce the following. Since, by
Weyl’s law, for 2-dimensional manifolds the (NK)-th eigenvalue is Θ(NK), then
using the Dirichlet energies of N -th order products between K eigenfunctions allows
to express the same frequencies as if we use NK eigenfunctions. Further, within the
band of the first NK eigenvalues, each eigenvalue is matched to high accuracy by the
Dirichlet energy of an eigenproduct, as we empirically demonstrate in Figure 1.4.

1.3 Theoretical Results 7

4,200 4,400 4,600 4,800 5,000

1,000

1,500

2,000 E(ϕI)∑
i∈I

λi

1

Figure 1.5. Dirichlet energies of order-2 products against the sum of the eigenvalues. The
former grow much faster in the high portion of the spectrum.

Intuitively, this means that the eigenproducts up to order N have the same
expressive power as the first NK eigenfunctions. Therefore, eigenproducts can
be used to represent well band-limited functions within the band of the first NK
eigenvalues.

0 T/2 T
−1

0

1
ϕ1 ϕ2 ϕ1ϕ2

Example. On the real line M =
[0, T], consider the second-order eigen-
product ϕ̃(x) = sin(2πx/T) sin(4πx/T).
Its Dirichlet energy is E

(
ϕ̃
)

=
1/∥ϕ̃∥2

∫ T
0 (∂/∂xϕ̃(x))2dx, resulting in

E
(
ϕ̃
)

= (1/∥ϕ̃∥2)5π2/T . Since the
squared norm of ϕ̃ is T/4, we get
E
(
ϕ̃
)

= 20π2/T 2 = 4π2/T 2 +
16π2/T 2 = λ1 +λ2. See the inset figure
for an illustration.

Outside of the band of the first NK eigenvalues, the Dirichlet energy of eigen-
products grows more rapidly than the sum of the eigenvalues; we illustrate this
behavior in Figure 1.5. In fact, the Dirichlet energy of an eigenproduct ϕI can be
expressed as (see the proof of Theorem 1.1 for the derivations):

E (ϕI) = 1
2
∑
i∈I

λi +
∑
i∈I

∫
M
∥
∏
j∈I
j ̸=i

ϕj(x)∇ϕi(x)∥2dx . (1.6)

From Equation (1.6), we can see how as we add more factors to the eigenproduct,
the number of terms grows and, since these terms are all non-negative, the whole
energy is increased.

1.3.2 Approximating Eigenproducts

We now investigate the following question, and draw some interesting conclusions
that were missing in previous work: Can a given eigenproduct be represented well
in the standard eigenbasis?

Let M be a 2-dimensional manifold and {ϕi} be the set of its Laplacian eigen-
functions. For any function f , let Eυ(f) be the projection of f onto the first υ

1.3 Theoretical Results 8

Laplacian eigenfunctions and let Rυ(f) be the L2 norm of f − Eυ(f). Namely, the
residual:

Rυ(f) = ∥f −
υ∑

i=0
⟨ϕi, f⟩M ϕi∥L2 . (1.7)

Aflalo et al. [5] proved the upper bound:

R2
υ(f) ≤ ∥∇f∥

2

λυ+1
∀f , (1.8)

further showing that the bound can not be tightened by any other sequence of
linearly independent functions {ϕi} ∈ L2(M). This yields the optimality of the
Laplacian eigenfunctions for representing any function with bounded gradient mag-
nitude. For the special case of f being an eigenproduct ϕI , however, the bound is
not very informative. We instead appeal to the following:

Theorem 1.2. [154] Fixed K,N ∈ N, with K ≫ 1, for any set of indices I =
{i1, · · · , iN}, where each ij ≤ K, for any υ > K and for any χ ∈ N, it holds:

Rυ(ϕI) ≲ K
Nσ(2N,2)

2

(
K

υ

)χ
2
, (1.9)

where
σ(p, d) = max

{
d− 1

2

(1
2 −

1
p

)
, d

(1
2 −

1
p

)
− 1

2

}
. (1.10)

This result can be read as follows. For large values of K, the products tend to add
less and less information to the spanned space, until, eventually, all the products
are spanned by a basis of υ eigenfunctions, for every υ > K.

Example. Consider the product ϕ̃(x) = sin(2πx) sin(4πx) sin(6πx) between the
first three non-constant eigenfunctions on M = [0, 1]. If we represent this product
in the basis of the first υ = 4 non-constant eigenfunctions, we get the residual
R4(ϕ̃) = 3/64; this residual is already quite small, if we consider that we are using
only 1 more eigenfunction for representing the product.

Nevertheless, for small values of K and N it is very rare that an eigenproduct
can be expressed exactly as a linear combination of eigenfunctions. Extending the
basis with eigenproducts introduces a wealth of additional information. Even if they
are not all linearly independent, they could expand the dimension of the spanned
space by orders of magnitude. In Figure 1.6 we show examples where, using only 20
eigenfunctions and admitting products up to the 4-th order, we generate bases span-
ning functional spaces with up to 4000 dimensions. This kind of rank analysis was
also missing in [193], while the study about the loss of the eigenproducts basis’ full-
rank property, reported in Figure 1.6, gives a heuristic for selecting parameters N
and K. According to our theoretical and experimental analysis, we advocate using
K ≤ 50, 15, 10 for, respectively, N = 2, 3, 4, since this parameter setup maximizes
the size of the basis with respect to the computed products.

1.3 Theoretical Results 9

0 10 20 30 40 500

5

10

·102 Order 2

0 5 10 15 200

0.5

1

1.5

·103 Order 3

0 5 10 15 200

0.5

1

·104 Order 4

0 3 6 9 120

2

4

6
·103 Order 5

Figure 1.6. Number of linearly independent eigenproducts (in blue) against the number of
eigenfunctions involved; each plot is for a different maximum product order. The total
number of eigenproducts (in orange) is plotted for reference. These results are averaged
on four different shapes.

1.3.3 Orthogonalized Eigenproducts

In the work of Nogneng et al. [193], resorting to eigenproducts for representing
surface signals also involved solving an optimization problem prone to numerical
instability. Here we propose a much simpler alternative that is less empirical, more
stable, and provides consistently better results than [193]. Specifically, consider the
set of order-N products of the first K eigenfunctions, spanning a function space
F(M) with some dimension Q. We orthogonalize this set via the Gram-Schmidt
(GS) algorithm, and obtain an orthonormal basis for the same space with exactly
Q basis functions; see Figures 1.7 and 1.8 for examples. Although straightforward,
this process offers advantages both in terms of computational effort and numerical
stability.

Complexity. In [193], computing a representation for a given signal in the set
of eigenproducts requires computing the SVD decomposition of a n × L matrix
containing all eigenproducts as its columns, where n is the number of vertices and
L =

(K+N
N

)
is the number of N -th order products between the first K eigenfunctions.

This SVD decomposition has complexity O(n2L + L3) [93], which for L ≪ n (our
case) reduces to O(n2L). On the other hand, the computational complexity of GS
is O(nL2), which for L≪ n is much more sustainable than SVD decomposition.

Stability. We demonstrate empirically that our orthogonal basis produces more
stable results than [193]. For the latter method, numerical inaccuracies occurring

1.3 Theoretical Results 10

ϕ0 ϕ1 ϕ2 ϕ3 ϕ4

ϕ2
1 ϕ1ϕ2 ϕ1ϕ3 ϕ1ϕ4 ϕ2

2

ϕ2ϕ3 ϕ2ϕ4 ϕ2
3 ϕ3ϕ4 ϕ2

4

Q1 Q2 Q3 Q4 Q5

Q6 Q7 Q8 Q9 Q10

Figure 1.7. Standard Laplacian eigenfunctions (blue), eigenproducts (red, in lexicographic
order) and orthonormalized eigenproducts (green) on the real line [0, T].

in the computation of the representation tend to propagate when the function is
mapped to a different domain, producing local scale errors; see Figure 1.9 and the
experimental section for examples.

Transfer. In a similar spirit as [193], where the authors extend the notion of
functional map to eigenproducts, we also provide a way to compute a transfer
matrix for our orthogonal bases.

Let us be given a functional map matrix C between two shapes M and N ,
and let us assume a manifold-independent ordering of the eigenproducts (e.g., a
lexicographic ordering on the indices of the factors). We then have an ordered
set of P eigenproducts Φ̃ = {ϕI1 , · · · , ϕIP

} on M, and similarly Ψ̃ on N . After
orthonormalization, we get a new set of functions in the form:

ζi(x) = ϕIi(x)−
i−1∑
j=1
⟨ϕIi , ζj⟩M ζj(x) . (1.11)

Matrix C maps each eigenfunction ϕi onM to a linear combination
∑K

j=1 cj,iψj

of eigenfunctions on N . Assume for now that TF (Φ) = ΨC is a strict equality.
Further, for the sake of simplicity, we limit the exposition to second-order products,

1.3 Theoretical Results 11

ζ1 ζ2 ζ2 ζ3 ζ4

ϕ2
1 ϕ1ϕ2 ϕ1ϕ3 ϕ1ϕ4 ϕ2

2

ϕ0 ϕ1 ϕ2 ϕ3 ϕ4

Figure 1.8. Top to bottom: first five Laplacian eigenfunctions, first five eigenproducts,
and the orthogonalized eigenproducts.

but the process can be iterated and generalized to any higher order. Each eigen-
product ϕI on M is the product between two eigenfunctions ϕi and ϕj . When we
consider the mapping induced by C, we get:

ϕI(x) = ϕi(x)ϕj(x) =
(

K∑
h=1

ch,iψh(x)
) K∑

p=1
cp,jψp(x)

 =

=
K∑

h,p=1
ch,icp,jψh(x)ψp(x) .

(1.12)

Thus, the coefficients for transferring products are fully determined by the coef-
ficients for transferring eigenfunctions, as also shown in [193]. Hence, one can
compute a matrix C̃(C), depending only on C, such that TF (Φ̃) = Ψ̃C̃.

Going one step further, we extend matrix C̃ to a new matrix O that can correctly
transfer the orthonormalized basis. We proceed as follows. In general, given a set
of vectors B = (b1, . . . ,bn) with n elements and rank 1 ≤ r ≤ n, GS produces an
orthogonal basis Q = (q1, . . . ,qr) with r elements, spanning the same space as B.
A side-product is the r × n upper triangular matrix R = (ri,j):

R = (ri,j) =


⟨q1, b1⟩ ⟨q1, b2⟩ · · · ⟨q1, bn⟩

0 ⟨q2, b2⟩ · · · ⟨q2, bn⟩
... . . . · · ·

...
0 0 · · · ⟨qr, bn⟩

 , (1.13)

such that QR = B.
Applied to the sets of eigenproducts Φ̃ and Ψ̃, we get the factorizations Φ̃ =

QΦRΦ and Ψ̃ = QΨRΨ.

1.3 Theoretical Results 12

Source Target eigs prods ours ours*

Figure 1.9. Function transfer example on two pairs from the FAUST[30] dataset. The
adoption of eigenproducts as in [193] (denoted as prods) yields local scale artifacts (knee
and neck in the first row) or loss of high frequency details (arms in the second row).
With the standard eigenbasis (eigs), K eigenfunctions are simply not enough to capture
the frequency content of the transferred signal. In the bottom row, the second variant
of our method (ours*) achieves almost perfect reconstruction.

Since QΦ and QΨ span the same space as Φ̃ and Ψ̃, assuming there exists a
meaningful mapping between Φ and Ψ, it makes sense to search for a mapping
between QΦ and QΨ. Thus, we seek for a matrix O such that:

TF (QΦ) = QΨO . (1.14)

By the factorization above, we can equivalently rewrite the mapping TF (Φ̃) = Ψ̃C̃
as TF (QΦ)RΦ = QΨRΨC̃; plugging in Equation (1.14) and simplifying, we get:

ORΦ = RΨC̃ . (1.15)

Since RΦ is full row-rank, it has a right inverse R⊤
Φ

(
RΦR⊤

Φ

)−1
. Thus, if we have

access to the bases on both manifolds, we can directly compute O as

O = RΨC̃R⊤
Φ

(
RΦR⊤

Φ

)−1
. (1.16)

For small enough order N and number of eigenfunctions K, the set of eigenproducts
is likely to be full-rank (see Figure 1.6 for an empirical assessment); in this case,
RΨ is a square invertible matrix, leading to:

O = RΨC̃R−1
Φ , (1.17)

1.3 Theoretical Results 13

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Noise Weight

Er
ro

r
∥TF (Φ)−ΨC∥F

∥TF (Φ)∥F

∥TF (QΦ)−QΨO∥F

∥TF (QΦ)∥F

5 10 15 20

104

106

108

1010

Number of Eigenfunctions

∥T
F

(Q
Φ

)−
Q

Ψ
O
∥ F

KN
KM

= 1
KN
KM

= 2
KN
KM

= 3

Figure 1.10. Left: Error generated by Equation (1.16) (red curve) at increasing random
noise on the matrix C. We show the error for the functional map as a reference (blue
curve). Right: Error induced by the analytic expression of O in transferring the orthog-
onal basis onto the target shape at increasing number of eigenfunctions. Each curve
represents a different ratio between the number KN of eigenfunctions on the target and
the number KM on the source.

and since RΨ is upper triangular, its inverse can be computed efficiently.
We also derive the following alternative formula to compute iteratively the

columns of O depending only on the matrices C̃, RΦ, and RΨ:

TF (ζi) = 1
(RΦ)i,i

(∑
j

(
∑
l=1

(RΨ)j,lc̃l,i −
i−1∑
h=1

(RΦ)i,hoj,h)︸ ︷︷ ︸
oj,i

ξj

)
. (1.18)

We report the full derivation of this formula Section 1.6. In both Equations (1.16)
and (1.18), we have an explicit formula to compute O directly from C̃, and thus,
from C.

1.3.4 Implementation Details

Despite their simplicity, the analytic solutions we introduced above can be unstable
as they rely on the hypothesis that C maps perfectly the source eigenbasis onto the
target, TF (Φ) = ΨC. If the equality is not exact, we observed a quick degrada-
tion in accuracy. Moreover, in the iterative process of Equation (1.18), the error
accumulates at each iteration. We highlight this issue in Figure 1.10 (left), by eval-
uating the error obtained in the estimation of O using the formula (1.16) while
we increasingly add white noise to the coefficients stored in the map C. We com-
pute the relative error as the Frobenius norm of the difference between TF (Φ) and
ΨC and the difference between TF (QΦ) and QΨO. The latter difference increases
quickly when the former grows. Moreover, the accuracy of the transfer matrix O
decreases as we increase K; we show this in Figure 1.10 (right), by plotting the error
for different dimensions of the source and target bases. To solve these issues, we
propose a different strategy to recover the transfer matrix O. Being O a function

1.3 Theoretical Results 14

5 10 150

3

6

9

R
el

at
iv

e
Er

ro
r

∥C−Cgt∥/∥Cgt∥
∥C∗ −C∗

gt∥/∥C∗
gt∥

∥O−Ogt∥/∥Ogt∥
∥O∗ −O∗

gt∥/∥O∗
gt∥

Figure 1.11. Comparison in the estimation of the transfer matrix directly from the point-
to-point map extracted from C̃. Left: an example pair with different connectivity.
Right: error curves vs. size of the initial matrix C, averaged over 20 random FAUST
pairs.

of C̃ (and so of C), we make the educated guess that it is enough to align the first
K eigenfunctions to obtain a sufficiently precise transfer matrix. To implement this
idea, we proceed as follows:

1. We solve for the best permutation Π as the solution of a nearest neighbor
assignment problem between Ψ̃ and Φ̃C̃⊤;

2. We estimate O as the solution in the least-squares sense of QΨO = ΠQΦ.

This process is equivalent to extracting a point-to-point map from a given func-
tional map as in [202], and then converting the point-to-point map to a new matrix
with respect to different bases. Since our basis can be completely derived from the
first K eigenfunctions (with respect to which the matrix C is encoded), we expect
the estimated Π to contain enough information for estimating an accurate O. By
virtue of our analysis on the space spanned by the set of eigenproducts, we only
need a small number of eigenfunctions K ≈ 12, which ensures an easier optimiza-
tion for the functional maps. It is worth to stress that this process is more feasible
than extracting a point-to-point map directly from the orthogonalized basis, since
we extract the map from just K eigenfunctions, rather than searching for a match
between two sets of O(KN) basis functions. This is even more efficient than fast re-
finement methods like ZoomOut [176], since we do a one-shot computation, rather
than iterating on large bases one function at a time.

Dependency on the first K eigenfunctions. The i-th (for i > K) orthogonal-
ized eigenproduct can be explicitly formulated in terms of the first K eigenfunctions.
This is not true when we consider a basis of K∗ > K Laplacian eigenfunctions.
Thus, it is reasonable to think that, starting from a functional map C for the first

1.4 Experimental Results 15

Source Ground
truth K eigs prods ours ours*

Figure 1.12. Comparisons on function transfer with noise.

K eigenfunctions, we can handle the orthonormalized products basis better than
the standard Laplacian eigenbasis.

To test this claim, we apply the same strategy of computing our transfer matrix
O to estimate a functional map C∗ between eigenfunctions with the same cardinality
as our bases. In Figure 1.11, for products of order N = 3 we compare the estimation
of the two matrices varying the size K of the initial functional map C (x-axis). The
error (y-axis) is defined as the relative Frobenius norm between the estimated and
the ground-truth matrix. We report the error for the initial functional map C for
comparison. In this test, the shapes do not share the same connectivity, as we
remesh one of the two to 5k vertices. The errors for O and O∗ are stable and
comparable to the error of C, while the error for the functional map C∗ increases
when K grows. This shows that it is possible to directly estimate O accurately
from the point-to-point map extracted from C.

0 0.1 0.2
0.2

0.4

0.6

0.8

Noise Weight

E
rr

or

K eigs
prods
ours
ours*

Robustness to noise. We add an increas-
ing amount of white noise (x-axis) to an input
ground-truth functional map C, and extract the
transfer matrix O. Then we compare the error
in the transfer of the coordinate functions for K
eigs, prods, ours and ours*. The curves in the
inset figure show that our method is less sen-
sitive to noise. These results are averaged on
20 random FAUST pairs, remeshed as in Fig-
ure 1.11. In Figure 1.12, we show a qualitative
result under maximum noise. The corrupted
map generates visible distortion in the transfer
for both K eigs and prods, while the proposed
method remains stable.

1.4 Experimental Results

We evaluate the performance of our basis in tasks of surface filtering, signal approx-
imation and transfer. For all the tasks we compare with [193], and also report the

1.4 Experimental Results 16

source target K eigs NK eigs prods ours*

Figure 1.13. Detail transfer with our orthogonalized eigenproducts from a textured shape
to another. The geometric details on the target are replaced correctly with those of the
source shape.

results of taking a linear combination of NK eigenfunctions and of
(K+N

N

)
eigen-

functions.
We also investigate the numerical stability of GS, which may produce non-

orthogonal vectors with large, non full-rank input bases, since linearly dependent
functions must be discarded from the final set. This is done by thresholding small
inner products. We consider (i) a direct implementation with a permissive thresh-
old (10−2) for the identification of linearly dependent vectors (denoted by Ours),
and (ii) a reiterated variant, with a strict threshold (10−9), which enforces orthog-
onality (Ours*). The two approaches may output very different bases, which are
shown by experiments to be suitable in different applications. In particular, Ours
is more numerically stable, therefore more suitable for transferring signals in gen-
eral (Tables 1.2 to 1.4). On the other hand, Ours* sacrifices numerical stability
for more descriptive power, which can be useful for spectral filtering (Figures 1.14
and 1.15), reconstruction (Figure 1.17), detail transfer (Figure 1.13), or transfer be-
tween very different subjects (Table 1.6). The code is available at a public repository
on GitHub2.

1.4.1 Detail Transfer

In Figure 1.13, we highlight the representation power of the proposed basis by
transferring fine geometric details (encoded as vertex coordinates) from a source
shape to a target. For the first pair of shapes, we use products of order N = 3 of
the first KM = 30 eigenfunctions on the source shape and KN = 40 on the target.
For the second pair, we still use products of order N = 3, but we limited the number
of eigenfunctions to KM = 27 on the source shape and KN = 30 on the target to
show the result with a different set of parameters. The standard eigenfunctions
cannot represent the details even with NK eigenfunctions, while prods [193] only
approximates the details. Instead, our basis fulfils the task with good accuracy.

2https://github.com/filthynobleman/orthogonalized-fourier-polynomial

https://github.com/filthynobleman/orthogonalized-fourier-polynomial

1.4 Experimental Results 17

0 max0

1

Dirichlet energy

Filters

Source prods ours*

Figure 1.14. Filtering the coefficients of the vertex coordinates represented in the set of
eigenproducts (middle) and in our orthogonal basis (right). We use a smoothing filter
(blue curve, top row) and a sharpening filter (red curve, bottom row). Eigenproducts are
not easy to control and do not provide meaningful variations, while our representation
leads to the expected results.

pr
od

s
ou

rs
*

Figure 1.15. Stability of spectral filtering. From left to right, we gradually increase by
ϵ only one coefficient in the spectral representation of the vertex coordinates; we use
the same ϵ for both rows. While the reconstruction using eigenproducts degenerates
quickly, ours yields a more stable and meaningful deformation.

1.4.2 Spectral Filtering

Since the eigenproducts of [193] are not linearly independent and do not provide
a unique representation for a given signal, it is hard to design operations on the
signal coefficients along the lines of spectral filtering approaches such as [272]. To
demonstrate this, we run a test where we process vertex coordinates with simple
filters (Figure 1.14): a smoothing filter that suppresses the high frequencies, and
an enhancement filter that suppresses the lower portion of the spectrum. As a sec-
ond test, in Figure 1.15 we continuously change a single coefficient in the spectral
representation of the vertex coordinates, and then reconstruct the resulting geom-
etry. While our basis can recover a meaningful smooth deformation of the original
geometry, the plain eigenproducts rapidly degenerate to a flat shape. All these
experiments are performed using products of order 3 on the first 15 eigenfunctions.

1.4 Experimental Results 18

Source K eigs prods ours ours*

Figure 1.16. Reconstruction of a RGB signal using K = 100 eigenfunctions and order-2
products. We compare the reconstruction quality using K eigenfunctions, the eigen-
products of [193], and our two methods based on the orthogonalized basis.

K prods ours NK
(K+N

N

)
HK k 0.0% 0.0% 0.0% 0.0% 0.0%
HK K 75.8% 18.1% 13.7% 61.1% 0.0%
HKS 1.1% 0.0% 0.0% 0.4% 0.0%
WKS 14.1% 0.0% 0.0% 5.7% 0.1%
Rand 37.5% 33.8% 33.5% 37.2% 33.4%
XYZ 15.2% 2.0% 1.7% 7.6% 0.8%
Ind 29.2% 12.5% 12.2% 23.6% 11.4%

SHOT 66.8% 35.4% 33.8% 58.8% 28.9%
AWFT 12.5% 5.9% 5.8% 10.5% 4.2%

Table 1.1. Reconstruction error of our method compared to the approach from [193]
(prods) and just taking linear combinations of K eigenfunctions (K). As ideal refer-
ences, we also report the results obtained via linear combinations of NK and

(
K+N

N

)
eigenfunctions, which are prohibitive to compute on large shapes. Here, we used K = 30
and N = 2.

1.4.3 Function Approximation

In a discrete setting, computing K Laplacian eigenfunctions boils down to solving an
eigenproblem for a sparse symmetric n × n matrix, which has complexity O(Kn2)
[255]. This is prohibitive for high resolution meshes and for large K, which is
required to capture fine details. Using eigenproducts for the representation as in
[193] can lead to big accuracy improvements, at the cost of increased numerical
instability as discussed above. By contrast, our orthonormal basis leads to more
stable and accurate results.

In Table 1.1 we compare with the standard eigenfunctions and the eigenproducts
of [193] in terms of reconstruction error, measured as (

∫
M(f − f̃)2)1/2/(

∫
M f2)1/2,

where f is the original signal and f̃ is its reconstruction. We consider the same
families of functions as in [193]. Namely, HK k, HK K: the heat kernel between a
random point and the rest of the shape approximated using 200 and K eigenfunc-
tions respectively. HKS, WKS: the heat and wave kernel signatures [260, 14]. Rand:
random functions. XYZ: vertex coordinates. Ind: the binary indicator function of
a random region. SHOT, AWFT: local descriptors [268, 177].

Moving to an orthonormal basis brings additional regularization, leading in turn
to an increase in quality. Both our orthogonal basis and the plain eigenproducts

1.4 Experimental Results 19

Source 50 eigs 100 eigs prods ours ours*

Source

18 eigs 54 eigs

prods ours ours*

Figure 1.17. Coordinate reconstruction of two shapes. With N -th order products of K
eigenfunctions, the eigenproducts and the orthogonal basis get better results than NK
eigenfunctions, and start to catch some details from the surface. A lower threshold in
the orthogonalization process produces a more descriptive basis, in these cases. Here
we use N = 2,K = 50 for the statue and N = 3,K = 18 for the dancing children.

1.4 Experimental Results 20

K prods ours ours* NK

HK k 70.3% 64.4% 50.9% 52.0% 17.7%
HK K 78.4% 61.3% 52.8% 55.9% 56.4%
HKS 12.0% 10.4% 5.5% 5.6% 5.9%
WKS 29.3% 22.0% 10.6% 10.8% 17.7%
Rand 50.7% 54.8% 49.9% 50.0% 50.8%
XYZ 40.6% 44.5% 32.4% 33.2% 21.3%
Ind 47.7% 51.2% 27.2% 24.8% 35.9%

SHOT 74.6% 73.3% 65.4% 65.3% 67.0%
AWFT 31.4% 35.4% 23.8% 24.2% 22.9%

Table 1.2. Transfer error comparison on 10 isometric pairs from TOSCA. The parameters
are N = 3 and KM = KN = 12.

produce much better results than those obtained withK or evenNK eigenfunctions.
The two methods can, in most cases, compete with the approach of using

(K+N
N

)
eigenfunctions, without incurring in the prohibitive cost of computing a massive
number of eigenfunctions (in the order of O(KN)). Qualitative results on this
task are shown in Figures 1.1 and 1.17 for the coordinate functions (XYZ), and in
Figure 1.16 for a RGB signal.

1.4.4 Function Transfer

We evaluate the transfer task on several datasets, differing in terms of mesh quality,
resolution, regularity, and deformation type (isometry or lack thereof). We consider
the same set of functions used for this experiment in [193]. As a reference, we also
report the results obtained with linear combinations of NK standard eigenfunctions.
For each method, we compute the functional map matrix C with the method of [194].
As an error measure, we report the normalized error (

∫
N (fgt − f̃)2)1/2/(

∫
N f2

gt)
1/2,

where fgt is the ground truth signal on the target N and f̃ is the transferred
counterpart.

Near-isometries (synthetic). For synthetic near-isometric meshes we use 10
random pairs from TOSCA [38]; Table 1.2 summarizes the comparisons, showing
a 5–25% improvement over [193]. Using third-order products allows to successfully
transfer the 46-th eigenfunction by using only 15 eigenfunctions on the source and
18 on the target shape, as shown in Figure 1.18.

Non-isometries (real humans). Comparisons are favorable also when consid-
ering more realistic non-isometric shapes, where we use 20 random pairs from the
FAUST [30] dataset of real scans. Each pair is simultaneously inter-class and inter-
pose. Table 1.3 summarizes the results. On this dataset, we select K and N as in
[193] for a direct comparison.

Near-isometries (different meshing). We further evaluate the setting where
the shapes have a wildly different vertex count and connectivity. For these tests, we

1.4 Experimental Results 21

Source

Target

eigs prods

ours ours*

Figure 1.18. Transferring a high-frequency eigenfunction that is out of the span of the
truncated Laplacian eigenbasis. Projecting onto the latter yields a zero signal due
to orthogonality, while eigenproducts and our orthogonal basis can transfer it more
precisely. Here we used KM = 15 eigenfunctions on the source shape, KN = 18 on the
target shape, and N = 3 (third-order products).

Source Target eigs prods ours ours*

Figure 1.19. RGB signal transfer comparison on a pair from the SHREC’19 dataset. Our
approach better transfers the fine details. In this example, the noise in the ground truth
correspondence due to wildly different meshings is enough to produce local distortion
in the function transfer, but our approach remains stable and produces a smooth cor-
respondence.

take 10 random pairs from SHREC’19 [174]; the results are reported in Table 1.4 and
highlight how, under a different connectivity, even using a large eigenbasis incurs
into issues (NK column), whereas our method still gives stable results. Note that
when a mesh in a pair is undersampled with respect to the other, the ground-truth
correspondence is patchy and low-quality. Figure 1.19 shows how our approach can
still produce a higher quality transfer.

1.4 Experimental Results 22

K prods ours ours* NK

HK k 28.0% 27.4% 26.6% 27.1% 22.5%
HK K 66.7% 51.3% 46.4% 46.4% 56.3%
HKS 8.1% 12.3% 6.6% 6.7% 8.2%
WKS 16.7% 15.5% 11.4% 11.6% 12.3%
Rand 49.9% 51.0% 49.6% 50.5% 50.0%
XYZ 21.3% 21.9% 19.5% 20.0% 19.5%
Ind 36.4% 33.7% 30.1% 30.2% 31.4%

SHOT 76.6% 75.1% 73.7% 76.3% 70.7%
AWFT 15.1% 18.3% 13.4% 13.9% 14.7%

Table 1.3. Transfer error comparison on 20 inter-class pairs from FAUST. Here N = 2,
KM = 30 and KN = 40.

K prods ours ours* NK

HK k 27.9% 29.3% 26.2% 26.4% 30.4%
HK K 79.9% 67.4% 62.7% 62.8% 75.8%
HKS 12.6% 17.5% 10.7% 10.8% 13.7%
WKS 25.4% 21.6% 18.5% 18.6% 22.4%
Rand 50.8% 52.8% 50.2% 50.4% 51.5%
XYZ 30.5% 30.2% 29.2% 29.6% 30.8%
Ind 41.0% 38.2% 34.8% 35.7% 36.6%

SHOT 66.3% 66.0% 62.8% 64.7% 64.8%
AWFT 24.6% 28.0% 21.4% 21.6% 25.6%

Table 1.4. Transfer error comparison on 10 non-isometric pairs (with very different con-
nectivity) from SHREC’19, with N = 2, KM = 30 and KN = 40.

Non-isometries (different animals). We extend our comparison to the recent
dataset SHREC’20[76], composed by 30 pairs divided in 5 different test-sets (1
partial-to-full and 4 full-to-full shape with 4 different levels of isometry: highest,
high, low, lowest). In total, 14 different shapes are involved with different con-
nectivity, topological errors and missing parts. A set of ∼50 sparse ground truth
correspondences are provided for the evaluation. Due to the impossibility of retriev-
ing a dense ground truth, here we measure the average absolute error |fgt − f̃ | on
the sparse landmarks only. In Table 1.5, we show that the proposed method trans-
fers functions between these animals better than the competitors. A qualitative
visualization is given by the RGB transfer results in Figure 1.2.

Non-isometries (different semantic class). Finally, we address the difficult
setting where the shapes belong to different classes. We use the MISC dataset [175]
with 10 random pairs in random poses for a woman, a man and a gorilla; a sparse
correspondence between ∼10% of the vertices is given. The results reported in Ta-
ble 1.6 show that, with orthogonalized third-order eigenproducts, we are still able
to transfer functions with high accuracy. Having only a sparse ground truth corre-
spondence, we use the same error measure of SHREC’20. We want to stress that,

1.5 Conclusions 23

K prods ours ours* NK

HK k 12.2% 15.8% 15.2% 13.0% 14.8%
HK K 4.4% 5.9% 5.3% 3.2% 4.8%
HKS 26.6% 30.9% 23.6% 23.6% 26.7%
WKS 19.2% 25.1% 17.7% 17.7% 19.9%
Rand 26.8% 40.4% 27.2% 25.2% 26.9%
XYZ 18.1% 51.5% 11.9% 7.4% 20.4%
Ind 21.0% 26.1% 20.4% 18.6% 22.1%

SHOT 10.4% 15.8% 12.6% 11.3% 10.7%
AWFT 18.8% 30.8% 20.4% 18.3% 19.6%

Table 1.5. Transfer error comparison for SHREC’20, averaged on the 5 test-sets (30 pairs
with different levels of non-isometry, topological errors and missing parts), with N = 3,
KM = 12, KN = 12. The values are multiplied by 102 to help the comparison.

K prods ours ours* NK

HK k 11.0% 10.6% 12.0% 9.2% 8.7%
HK K 3.1% 3.7% 2.9% 2.1% 3.2%
HKS 5.8% 6.2% 5.4% 5.4% 9.6%
WKS 11.0% 8.2% 7.3% 7.3% 9.3%
Rand 25.4% 28.6% 25.2% 25.4% 25.9%
XYZ 20.1% 21.1% 19.5% 19.2% 18.1%
Ind 10.9% 10.1% 8.0% 6.9% 11.3%

SHOT 0.2% 0.2% 0.2% 0.2% 0.2%
AWFT 5.9% 7.8% 6.5% 6.3% 5.6%

Table 1.6. Transfer error comparison on 10 strongly non-isometric pairs from MISC. In
this setting, N = 3 and KM = KN = 12.

by using this measure, the values shown in Tables 1.5 and 1.6 must be interpreted
differently from those shown in Tables 1.2 to 1.4. The error, here, is not relative,
and depending on the availability of landmarks, it can have higher of lower values.
However, this does not affect the comparison, since all the methods are compared
under the same conditions. In Figure 1.20, we show a qualitative result for a pair
of non-isometric shapes.

1.5 Conclusions

In this chapter, we proposed a new orthonormal basis based on the pointwise prod-
ucts of the eigenfunctions of the Laplace-Beltrami operator. We provided a the-
oretical analysis of the properties carried by this basis, and assessed its practical
value in different settings and applications. In particular, orthogonalization yields
a notable improvement over prior work [193] in terms of computational complexity
and expressive power.

1.6 Proofs 24

Source

Target

eigs prods

ours ours*

Figure 1.20. Example of function transfer on the MISC dataset. The ground truth on the
target is only shown for the given landmarks.

Limitations and future work. Perhaps the main limitation of our approach
lies in the pipeline for function transfer, where we strongly depend on the quality
of the given functional map. If the method for building this map is not stable, the
behavior of the orthogonal basis can be unpredictable. Furthermore, currently we
need to rely on a point-to-point map in order to compute the transfer matrix, since
our analytical derivations are not stable. Directly estimating this matrix without
resorting to point-to-point conversion, is an important direction that we intend to
explore. Another possible avenue for future research is to extend our construction
to accommodate different definitions of products, for a more efficient and accurate
representation for surface signals. Finally, we will explore the adoption of our basis
in existing pipelines, such as ZoomOut [176], which are basis-agnostic and allow
to extend this work to a number of other tasks.

1.6 Proofs

1.6.1 Laplacian of a Product

We want to show that, given a function f(x) =
∏n

i=1 fi(x), the application of the
Laplace-Beltrami operator results in

∆f(x) =
n∑

i=1

n∏
j=1
j ̸=i

fj(x)∆fi(x)−
n∑

i,j=1
i ̸=j

n∏
h=1

h̸=i,j

fh(x)⟨∇fi(x),∇fj(x)⟩ (1.19)

We show it by induction, with the base case given by Equation (1.1) for n = 2.
Assuming this true up to n− 1, for g =

∏n−1
i=1 fi we have

∆f(x) = fn(x)∆g(x) + g(x)∆fn(x)− 2 ⟨∇fn(x), ∇g(x)⟩ (1.20)

1.6 Proofs 25

The first term expands to
n−1∑
i=1

n∏
j=1
j ̸=i

fj(x)∆fi(x)−
n−1∑
i,j=1
i ̸=j

n∏
h=1

h̸=i,j

fh(x) ⟨∇fi(x), ∇fj(x)⟩ , (1.21)

while the second term is
∏n−1

i=1 fi(x)∆fn(x), and the third term is

−2
n−1∑
j=1

n∏
h=1

h̸=j,n

fh(x) ⟨∇fj(x), ∇fn(x)⟩ (1.22)

By adding these all together, we finally get back Equation (1.19).

1.6.2 Proof of Theorem 1.1

Proof. For simplicity, we assume ∥ϕI∥2 = 1. Also, to keep the equations more
readable, we will abuse of our notation. When we iterate over multiple indices and
we indicate i ̸= j we do not mean that index i must be necessarily different from
index j (since eigenproducts can involve the same eigenfunction multiple times),
but that we cannot pick the i-th index two times.

By observing that

∆ϕI(x) =
∑
ii∈I

λiiϕI(x)−
∑

i,j∈I
i ̸=j

∏
h∈I

h̸=i,j

ϕh(x) ⟨∇ϕi(x), ∇ϕj(x)⟩ , (1.23)

and by knowing ⟨∇f, ∇g⟩T (M) = ⟨f, ∆g⟩M, we easily get

E (ϕI) =
∑
i∈I

λi −
∑

i,j∈I
i ̸=j

∫
M

∏
h∈I
h̸=i

ϕh(x)
∏
p∈I
p ̸=j

ϕp(x) ⟨∇ϕi(x), ∇ϕj(x)⟩ dx . (1.24)

Now, let us consider the following terms:∑
i∈I

∫
M

∏
j∈I
i ̸=j

ϕ2
j (x) ⟨∇ϕi(x), ∇ϕi(x)⟩ dx . (1.25)

Since the integrands are always non-negative, the whole sum is non-negative. Hence,
we can give a lower bound to Equation (1.24):

E (ϕI) ≥
∑
i∈I

λi −
∑

i,j∈I

∫
M

∏
h∈I
h̸=i

ϕh(x)
∏
p∈I
p̸=j

ϕp(x) ⟨∇ϕi(x), ∇ϕj(x)⟩ dx . (1.26)

The second term is the Dirichlet energy of ϕI . In fact, we have:

E (ϕI) = ⟨∇ϕI , ∇ϕI⟩T (M) =

=
∑

i,j∈I

〈∏
h∈I
h̸=i

ϕh∇ϕi,
∏
p∈I
p ̸=j

ϕp∇ϕj

〉
T (M)

=

=
∑

i,j∈I

∫
M

∏
h∈I
h̸=i

ϕh(x)
∏
p∈I
p ̸=j

ϕp(x) ⟨∇ϕi(x), ∇ϕj(x)⟩ dx .

(1.27)

1.6 Proofs 26

By plugging it into Equation (1.26), we get:

E (ϕI) ≥
∑
i∈I

λi − E (ϕI) , (1.28)

which results in the claim.
Consider now the special case of ϕI = ϕn

i . In this case, all the integrals in
Equation (1.24) are equal and can be written as∫

M

〈
ϕn−1

i (x)∇ϕi(x), ϕn−1
i (x)∇ϕi(x)

〉
dx , (1.29)

which, recalling 1
α∇f

α(x) = fα−1(x)∇f(x), gives∫
M

∥∥∥ϕn−1
i (x)∇ϕi(x)

∥∥∥2
dx = 1

n2

∫
M
∥∇ϕn

i (x)∥2 dx = 1
n2E (ϕn

i) . (1.30)

Since in Equation (1.24) there is a sum over i ̸= j, we have a total of n(n − 1) of
these terms. Hence, we are left with

E (ϕn
i) = nλi −

n− 1
n
E (ϕn

i) , (1.31)

which, with simple algebraic manipulations, leads to

E (ϕn
i) = n2

2n− 1λi . (1.32)

1.6.3 Proof of Corollary 1.1

Proof. We know that the set of eigenproducts contains all the eigenpowers, and in
particular ϕN

K ∈ Φ̃. Thus, the following holds:

max
ϕI∈Φ̃

{E (ϕI)} ≥ E
(
ϕN

K

)
= N2

2N − 1λK . (1.33)

By Weyl’s asymptotic law for 2-dimensional manifolds we have λK ∈ Θ(K), there-
fore E

(
ϕN

K

)
∈ Θ(NK). Since the maximum Dirichlet energy is lower bounded by

this value, it must be that maxϕI∈Φ̃{E (ϕI)} ∈ Ω(NK).

1.6.4 Iterative Formula for the Transform O

We consider Π : N → M the point-to-point correspondence between two shapes
N and M. TF : L2(M) → L2(N) is the functional map associated to this cor-
respondence defined via pull-back TF (f) = f ◦ π, ∀f ∈ L2(M). C is the matrix
representation of TF in a truncated pair of bases Φ and Ψ for L2(M) and L2(N) re-
spectively. For simplicity we consider both the finite bases with the same dimension
K and the general case directly arise from our analysis. Φ̃ and Ψ̃ are the matrices
the columns of which are the eigenproducts of order N of the basis functions con-
tained in Φ and Ψ. We represent each of these eigenproducts as ϕ̃h and ψ̃ℓ C̃ is

1.6 Proofs 27

the funxtional maps extended to the eigenproducts following the formula proposed
in [193].

As we describe in the main document, our bases are obtained by applying the
Gram-Schmidt algorithm to Φ̃ and Ψ̃ obtaining the two couples Φ̃ = QΦRΦ and
Ψ̃ = QΨRΨ. we are therefore interested in estimating a transform O such that
TF (QΦ) = QΨO.

First of all due to the role of C we can write ΨC = TF (Φ) and Ψ̃C̃ = TF (Φ̃).
These equality could be only approximation depending on the quality of the maps
C and C̃, and in the alignment of the bases involved. For this reason we can already

set the first K columns of O =
[
C
0

]
, where 0 is a matrix of zeros with K columns

and the number of rows equal to the number of functions in QΨ minus K. This
allows us to consider the first K columns of O already computed and only estimated
the remaining ones. For this reason we look for an iterative construction of O that
estimate at each iteration a new column of O from left to right. This procedure is
related with the iterative construction of the bases QΦ and QΨ.

Let us start writing the explicit formula for the column ζi of QΦ:

ζi = 1
RΦ

i,i

(ϕ̃i −
i−1∑
h=1

RΦ
i,hζh), (1.34)

and in the same way:

ξj = 1
RΨ

j,j

(ψ̃j −
j−1∑
ℓ=1

RΨ
i,ℓξℓ). (1.35)

Now we want to compute the image via TF of each function ζi (column) of QΦ,
for i > K, thanks to the linearity of TF we have:

TF (ζi) = TF

(1
RΦ

i,i

(ϕ̃i −
i−1∑
h=1

RΦ
i,hζh)

)
=

= 1
RΦ

i,i

(TF (ϕ̃i)−
i−1∑
h=1

RΦ
i,hTF (ζh)).

(1.36)

Now we can consider that:

TF (ϕ̃i) = Ψ̃C̃:,i , (1.37)

TF (ζh) =
∑

j

Oj,hξj , (1.38)

where j goes from 1 to the number of functions in QΨ while C̃:,i is the i-th column
of C̃. Equation (1.38) can be written only because we already know all the elements
of O, ∀j and ∀h ≤ i− 1. Then we can substitute the equivalences Equations (1.37)
and (1.38) in Equation (1.36):

TF (ζi) = 1
RΦ

i,i

(
Ψ̃C̃:,i −

i−1∑
h=1

RΦ
i,h(
∑

j

Oj,hξj)
)
. (1.39)

1.6 Proofs 28

Now we know that Ψ̃ = QΨRΨ so we can write:

TF (ζi) = 1
RΦ

i,i

(
QΨRΨC̃:,i −

i−1∑
h=1

RΦ
i,h(
∑

j

Oj,hξj)
)

=

= 1
RΦ

i,i

(∑
j

∑
l=1

RΨ
j,lC̃l,iξj −

i−1∑
h=1

RΦ
i,h(
∑

j

Oj,hξj)
)
,

(1.40)

where the last equation comes from the definition of the matrix product. Now we
can collect and reorder the element in the last equation with respect to the sum
over j:

TF (ζi) = 1
RΦ

i,i

(∑
j

(
∑
l=1

RΨ
j,lC̃l,i −

i−1∑
h=1

RΦ
i,hOj,h)︸ ︷︷ ︸

Oj,i

ξj

)
, (1.41)

where Oj,i only depends on RΦ, C̃,RΨ and form the first i− 1 columns of O. This
result proves that O can be iteratively computed on its columns as a function of
known variables. Moreover, being C̃ a function of C, this result clarify once again
that it is possible to fully recover O from C justifying the proposed procedure.

29

Chapter 2

Learning Spectral Unions of
Partial Deformable 3D Shapes

Spectral geometric methods have brought revolutionary changes to the field of ge-
ometry processing. Of particular interest is the study of the Laplacian spectrum
as a compact, isometry and permutation-invariant representation of a shape. Some
recent works show how the intrinsic geometry of a full shape can be recovered from
its spectrum, but there are approaches that consider the more challenging problem
of recovering the geometry from the spectral information of partial shapes. In this
chapter, we propose a possible way to fill this gap. We introduce a learning-based
method to estimate the Laplacian spectrum of the union of partial non-rigid 3D
shapes, without actually computing the 3D geometry of the union or any correspon-
dence between those partial shapes. We do so by operating purely in the spectral
domain and by defining the union operation between short sequences of eigenvalues.
We show that the approximated union spectrum can be used as-is to reconstruct
the complete geometry [168], perform region localization on a template [224] and
retrieve shapes from a database, generalizing ShapeDNA [228] to work with par-
tialities. Working with eigenvalues allows us to deal with unknown correspondence,
different sampling, and different discretizations (point clouds and meshes alike),
making this operation especially robust and general. Our approach is data-driven
and can generalize to isometric and non-isometric deformations of the surface, as
long as these stay within the same semantic class (e.g., human bodies or horses),
as well as to partiality artifacts not seen at training time. This work was made in
collaboration with Luca Moschella (MSc.), to whom goes the credit for carrying out
the design and implementation of the network architecture and the experiments,
to prof. Simone Melzi and prof. Luca Cosmo, both of which largely helped in
improving the technical soundness, strengthening the theoretical foundations, and
designing the experimental setup, to Or Litany (Ph.D.), prof. Maksim Ovsjanikov
and prof. Leonidas Guibas, who contributed in improving the overall presentation,
and to prof. Emanuele Rodolà, whose supervision over the entire research greatly
helped in reaching and improving the achieved results. The results presented in
this chapter have been published in the proceedings of the Annual Conference of
the European Association for Computer Graphics (EUROGRAPHICS) [185].

2.1 Introduction 30

M1

∪

M2

M1 ∪M2

∪

M3

Laplacian eigenvalues

=

M1 ∪M2 ∪M3

Figure 2.1. Given a collection of partial deformable shapes {M1,M2,M3} as input,
our method predicts the Laplacian eigenvalues of their union without first having to
compute a correspondence or a transformation between the input shapes. The resulting
eigenvalues (top right plots, colors correspond to each surface) can be used to reconstruct
the final shape if needed, up to isometry/pose (bottom right). In this example, the input
shapes have different poses, varying overlap, and different mesh connectivity.

2.1 Introduction

Recent progress in spectral geometry processing has brought to significant qual-
itative leaps that lead to better results in a range of challenging tasks such as
deformable shape matching [202, 144], retrieval [228, 39], style [168] and pose trans-
fer [127, 296] among others.

More recently, a great deal of attention has been put on the study of the eigen-
values of the Laplace-Beltrami operator (i.e., the Laplacian spectrum) as a compact,
isometry and permutation-invariant representation of the input shape. It has been
shown that, with the appropriate knowledge on the input domain, this represen-
tation contains enough information for localize shape’s regions [224] and even to
reconstruct the geometry of the shape [60, 165]. However, these methods typically
operate in a controlled scenario requiring to have access to the full geometry of the
shape, ignoring the fact that real-world data are riddled with partiality artifacts.

In this chapter, we propose a learning-based framework to predict the Laplacian
spectrum of the union of two shapes directly from the spectrum of the individual
parts. This enables the aforementioned spectral methods to be applied directly in
case of partial views of the same shape, without resorting to methods that explicitly

2.2 Related Work 31

fuse the 3D geometry of partial shapes. Indeed, a typical pipeline to combine partial
shapes can be very cumbersome, and requires to match the corresponding regions,
extract a set of (non-rigid) transformations from the matches, and merge the partial
views into a consistent discretization. Each of these steps can be error-prone and
difficult to solve, as testified by a wealth of literature on non-rigid shape matching
and reconstruction, especially in the case of partial shapes. For example, the mere
presence of inconsistent surface sampling can cause problems in most matching
pipelines [174].

Motivated by the excellent results achieved by the methods that exploit the
Laplacian spectrum representation, we propose a different perspective. We claim
that, in many cases, it is not necessary to have the extrinsic geometry of a target
full shape and propose to directly estimate the intrinsic properties of the sought full
shape without having to materialize its surface geometry. This is done by translating
the objective of merging partial shapes from the spatial to a purely spectral domain.
For each partial surface, our method takes as input the truncated sequence of its
Laplacian eigenvalues, which act as a surrogate of the shape geometry, and predicts
as output the eigenvalue sequence of the 3D model obtained from the union of
the partial surfaces (or an isometric deformation thereof) – but not the 3D model
itself, as visualized in Figure 2.1. This eigenvalues prediction task is in general ill-
posed, but can be resolved by means of a data prior, namely by training a deep net
on a few hundred examples. The advantages of this approach are numerous, and
include associativity (i.e. A ∪ (B ∪ C) = (A ∪ B) ∪ C), invariance to deformations
and sampling, and generalization to different discrete representations for the input
geometry. In a way, this recalls the notion of “homomorphic encryption” in secure
computation [231], where the task is to perform calculations on encrypted data
without decrypting it first.

Contribution In this chapter, we introduce a learning-based method to estimate
the Laplacian spectrum of the union of partial non-rigid 3D shapes, without actually
computing the 3D geometry of the union. Sidestepping the reconstruction means
that we do not have to commit to one specific 3D embedding in the output (e.g.
a specific pose for a human body), but leave this choice to task-specific blocks.
Moreover, our method takes advantage of the geometric insight that the spectra
can be used not only for single shape recovery and processing (as done in prior
works) but also to enable multi-shape operations such as unions. Once a spectrum
is predicted, it can be fed as-is to any existing spectral pipeline operating with
eigenvalues. For example, we can reconstruct the full 3D geometry by using the
method in [168] as an output module. If the geometry is not needed, e.g., for tasks
of shape retrieval [228] and region localization [224], we achieve the same accuracy
that can be obtained in the case where the full shape is given.

2.2 Related Work

We discuss two lines of research that are most closely related to our spectral ag-
gregation task: partial non-rigid aggregation of shapes in their extrinsic form (e.g,
mesh or point cloud), and spectral analysis of partial shapes.

2.2 Related Work 32

2.2.1 Nonrigid Shape Aggregation

Recovering deformable 3D shapes from partial scans has numerous applications in
AR/VR, manufacturing, and robot manipulation. A common setting for this prob-
lem is non-rigid registration, where the scans are captured sequentially and exhibit
mild inter-frame deformations, and significant overlap. In such cases, template-less
methods have been shown to perform well by using general deformation models
such as thin-plate splines [40, 41] or as-rigid-as-possible energies [137]. Wand et
al. [277, 276] used dynamic “surfels” to represent the input surfaces, and proposed
a statistical model to recover the underlying template shape. Temporal coherence
has been used in [266] to generate dense correspondences from robust landmarks,
and in [181] to reconstruct a space-time surface embedded in 4D. Sharf et al. [244] in-
corporated a mass conservation prior to control the plausibility of the reconstructed
surface. The “Dynamic Fusion” method of Newcomb et al. [190] and follow-up
work [250], demonstrated real-time, template-free non-rigid reconstruction allowing
both the object and the camera to move.

More related to our setting are cases where the input set is sparser, and the
deformations between the scans can change significantly. In fact, we do not assume
temporal coherence or an initial alignment. Similar to us, methods designed for
these settings usually assume a strong prior on the shape category or even rely
on a parametric model. In [299], a generic human template was used for building
a personalized parametric human body model similar to SCAPE [9]. Chang and
Zwicker [46, 47] assumed an articulated model and solved for joints and skinning
weights. More recently, advances in geometric deep learning for processing point
clouds and meshes were used to leverage data-driven priors (e.g. from [31]) for
deformable shape completion and fusion [142, 98].

2.2.2 Eigenvalues and Partiality

Spectral representations based on the Laplacian are widely used in the analysis of
deformable shapes, mainly due to their isometric invariance. Much less attention
has been given to the effect of partiality on the spectrum.

Shape Correspondence A first attempt at utilizing the Laplacian eigenfunc-
tions to recover dense correspondences between a partial and a full shape was shown
in [233], building upon the seminal functional maps framework [202]. This was fur-
ther extended to matching shapes in the presence of clutter [61], and to a more
efficient fully spectral variant in [144]. In the context of partial shape aggregation,
most relevant is an extension to the multi-part matching algorithm (a.k.a “non-
rigid puzzle”) proposed in [145]. Recently, deep learning techniques have also been
utilizing Laplacian eigenfunctions for matching [143, 99, 92, 16, 237, 13]. Replac-
ing eigenfunctions with a basis learned from data was recently proven more robust
and therefore applicable to challenging settings including point clouds and partial-
ity [167].

Reconstruction Aside from matching, other works have investigated spectral
methods for non-rigid completion and registration. In FARM [166] and its high-

2.3 Proposed Method 33

resolution variant [165], a functional maps representation is incorporated into a
parametric model-based regression pipeline.

Shape from Spectrum Most closely related to ours are works that aim directly
to recover the shape from its underlying spectrum, also known as the problem
of “hearing the shape of a drum” [115]. This procedure was recently studied by
Cosmo et al. [60] in practical rather than purely theoretical settings. Their pipeline,
dubbed “isospectralization”, was proven useful in multiple application scenarios, and
extended in [168] by replacing the regularizers of [60] with a data-driven prior.

In this work, we aim to perform the union of partial deformable shapes from
their spectral representation. Our method differs from the ones listed above for
two main reasons: i) we consider the shape from spectrum problem in the more
challenging setting of partiality, and ii) rather than recovering the geometry of the
full shape, we aim to recover its Laplacian spectrum, given the spectrum of two
parts. In other words, we introduce the problem of spectral unions of partial shapes
and propose an effective solution. In this light our work is related to [262], which
devised a framework to learn fuzzy representations that enable set operations on
man-made objects.

2.3 Proposed Method

Let us be given two partial shapesM1 andM2, and letM1∪M2 denote their non-
rigid alignment, as depicted on the left side of Figure 2.1. We seek an answer to the
following question: what can we say about M1 ∪M2, without actually computing
this union? More specifically: can we predict the spectrum of M1 ∪M2 without
having to solve for the point-to-point correspondence between them?

With no additional priors, the question is ill-posed; for example, there are in-
finitely many ways in which two sheets of paper can be glued together. In the sequel,
we claim that the spectrum of the union can be predicted by coupling Laplacian
eigenvalues with a data prior without solving a correspondence or reconstruction
problem in the process.

M1 M2

R1

R2

M1 ∪ M2

Mathematical Preliminaries We model a
shape as a Riemannian manifold M with bound-
ary ∂M. Each manifold identifies an equivalence
class of isometries, and thus has infinitely many
embeddings in R3 (e.g. changes in pose). Let
us be given two manifolds M1 and M2, together
with a diffeomorphism π : R1 → R2 between re-
gions R1 ⊆M1 and R2 ⊆M2. A third manifold
M1 ∪ M2 can be obtained by attaching M1 to
M2 over the common region via the map π (as depicted in the inset figure). We
refer to M1 ∪M2 as the union shape1.

1We keep the mathematical description simple for the sake of clarity. Formally, this operation
is called connected sum, denoted by M1#M2, and is part of the surgery theory of manifolds, see,
e.g., [235].

2.3 Proposed Method 34

0.0

0.25

0 2 4 6 8 10 12 14 16 18 20

0

200

400

600

Eigenvalue Index

E
ig
en
va
lu
e

X1 Spectrum
X2 Spectrum

0 2 4 6 8 10 12 14 16 18 20

0

50

100

Eigenvalue Index
E
ig
en
va
lu
e

X1 ∪X2 Pred
X1 ∪X2 GT

1

M1 ∪ M2 Ground Truth Ours

Figure 2.2. Example of partial shapes whose union entirely covers the full shape. This is
the simplest setting that we consider in this chapter. Given the spectra of the partial
shapes (red and green), we recover the spectrum of their union, and from the spectrum
we recover the geometry in standard T-pose using a shape-from-spectrum reconstruction
method [168]. The white shape is recovered from ground-truth eigenvalues; ours is
colored with a heatmap, which encodes reconstruction error.

On eachM we consider the Laplace-Beltrami operator ∆, extending the notion
of Laplace operator from Euclidean geometry to surfaces. This operator admits a
spectral decomposition:

∆ϕi(x) = λiϕi(x) x ∈M \ ∂M (2.1)
ϕi(x) = 0 x ∈ ∂M (2.2)

into eigenvalues λ1 ≤ λ2 ≤ λ3 ≤ · · · and associated eigenfunctions ϕ1, ϕ2, ϕ3, . . . ;
we adopt homogeneous Dirichlet boundary conditions (2.2). The set of eigenvalues
forms a discrete spectrum, which we assume to be ordered non-decreasingly. In this
chapter, we consider truncated spectra of length k, and introduce the vector-valued
function:

λ :M 7→ (λ1, . . . , λk) . (2.3)

In particular, we completely discard the eigenfunctions ϕ1(x), ϕ2(x), . . . , which are
point-based quantities and thus highly dependent on shape discretization.
Remark. Since the Laplacian ∆ is invariant to isometries, so is its truncated
spectrum encoded in λ. This means that eigenvalues capture shape information up
to pose, a fundamental property that is at the basis of our method.

Problem Statement In non-rigid alignment problems, one is given 3D embed-
dings (e.g. point clouds) forM1 andM2, and must recover a 3D embedding of their

2.3 Proposed Method 35

union M1 ∪M2. Since, in this setting, M1 and M2 may undergo wildly different
deformations, there is no guarantee that they have the same 3D coordinates on the
common region. Therefore, it is not clear how a 3D embedding forM1∪M2 should
look like.

In our work, we propose to mitigate this problem by switching from a discrete
representation of the 3D embedding ofM1 ∪M2 to a discrete representation of the
entire isometry class, given by λ(M1 ∪M2). Then, we translate the problem of
recovering an alignment between 3D embeddings to the estimation of a parametric
nonlinear operator UΘ : Rk × Rk → Rk, such that:

λ(M1 ∪M2) = UΘ(λ(M1),λ(M2)) . (2.4)

We call UΘ the spectral union operator, and model it as a deep neural network
with learnable parameters Θ. A specific definition for the architecture and the loss
are given in Section 2.4.
Remark. In general, the spectrum of the union shape M1 ∪ M2 is not simply
the union of the spectra of M1,M2. This is only true if M1 and M2 correspond
to disjoint regions of the complete shape (see e.g. [233, Sec. 3.1]), while in this
chapter we consider the case in which M1 and M2 partially overlap, thus making
the interactions between the two spectra much more complex.

Difficulty Settings and Associativity Estimating an operator UΘ that makes
Equation (2.4) hold for many different pairs (M1,M2) is not a simple problem,
even with short sequences (in this chapter we use k = 20). In fact, it is known that
Laplacian spectra can vary wildly under partiality perturbations [85], and predicting
these variations can be difficult.

Based on these observations, we consider two different scenarios with different
characteristics:

1. M1 ∪M2 is a complete, watertight shape;

2. M1 ∪M2 is a partial shape itself.

M1

M2

M3

As we demonstrate below, Scenario 1 is sim-
ple enough to be solved with a feed-forward net-
work, and generalizes well to unseen data, as
shown in Figure 2.2. Scenario 2 is more diffi-
cult, since allowing partiality on the union shape
introduces another dimension of variability, as
well as more ambiguity on the possible output;
see Figure 2.3 for examples.

Despite being more difficult to solve, the lat-
ter scenario lends itself to modeling more com-
plex interactions. In particular, exploiting the

associative property of the union, we can compose m > 2 partial shapes simply by
aggregating pairwise unions recursively:

λ(M1 ∪M2 ∪ · · · ∪Mm) = UΘ(λ(M1 ∪M2 ∪ · · · ∪Mm−1),λ(Mm)) . (2.5)

2.4 Network Architecture 36

M1 M2

∪ == or

M1 M2

∪ == or

Figure 2.3. Spectra capture isometry classes, thus there exist ambiguous cases where
unions have multiple valid solutions. Top: The two solutions are isometric, hence
intrinsically equivalent. Bottom: Since each part is isospectral to its symmetric version,
the union of the two spectra can result in three possible solutions (we only show two
for simplicity). The semi-transparent full shape is for reference.

See Figure 2.1 and the inset for an illustration. Note that composing m partial
shapes resembles the ‘non-rigid puzzle’ setting seen in [145], although with a crucial
difference: the method of [145] has access to the complete shape, which is instead
unknown to us.

2.4 Network Architecture

Our network takes as input two sequences of k eigenvalues, each associated with a
partial shape, and outputs a sequence of k eigenvalues, as a prediction of the spectral
union. Figure 2.4 illustrates the neural architecture. It is composed of three main
blocks: (1) the projection of the input eigenvalues into a high dimensional space;
(2) two transformers, forced to be commutative, to learn the union operation; (3) a
dimensionality reduction to decode the spectral union.

Eigenvalue Embeddings The Laplacian eigenvalues of surfaces form a non-
decreasing sequence that approximately grows linearly with rate inversely propor-
tional to surface area, a behavior described by Weyl’s asymptotic law [286]. This
results in the input eigenvalues hugely varying depending on the area of the partial
shape. To guard against network instability we encode the spectra via the offset
representation:

off(λi) = λi − λi−1 ,

with off(λ1) = λ1. This representation has the further advantage of imposing the
increasing order constraint on the predicted eigenvalues, by just requiring the non-
negativity of the predicted offset sequence.

2.4 Network Architecture 37

Λ1

Λ2

E

E TA

Θ

TA

+ TB ρ Λ̃M1∪M2

ΛM1∪M2 mse

TA = Transformer A
TB = Transformer B

Figure 2.4. Our neural architecture. Λ1 and Λ2 are the input eigenvalues of the par-
tialities, E embeds the eigenvalues into a high dimensional space, the transformer TA

produces a latent representation of the inputs that are summed up to obtain a commu-
tative latent representation of the union, the transformer TB plus the linear dimension-
ality reduction ρ decodes this latent representation to obtain the predicted eigenvalues
Λ̃M1∪M2 .

In practice, the network sees each spectrum as a sequence of length k offsets Λ =
(off(λ1), . . . , off(λk)) ∈ Rk, each one is then embedded into a higher-dimensional
representation of length 2ℓ+ 1, constructed as follows:

off(λi) 7→
(
θ⃗i

a, off(λi)θ⃗b, off(λi)
)
,

where θ⃗i
a is a ℓ-dimensional vector acting as a positional encoding for the i-

th offset, and θ⃗b is a linear mapping of the offset to a ℓ-dimensional space. The
learnable vectors θ⃗i

a and θ⃗b, once learned, are independent from the input shapes
and eigenvalues.

This representation encodes both the eigenvalue quantity and its position in the
sequence, which is a fundamental information for recovering the geometry area.

Symmetric Architecture Given the eigenvalue sequences of Λ1 and Λ2 (asso-
ciated to M1 and M2 respectively), our neural architecture learns how to perform
their union without ever leaving the spectral domain. We further require our model
to be commutative, i.e., the result should not depend on which pair between (Λ1,Λ2)
or (Λ2,Λ1) is given as input.

We gain this invariance by using a single transformer TA on the embedded
eigenvalues, performing two symmetric operations to obtain a representation of
Λ1 informed about Λ2 and vice-versa. The two transformed representations are
summed together to obtain a commutative representation of the union. We then
feed the result to the second transformer TB, whose task is to decode the union
into a representation that can be easily reduced, via a simple linear layer ρ, from
the high-dimensional representation back to a sequence of eigenvalues. The whole
architecture is illustrated in Figure 2.4.

The transformers are position-aware neural networks, where the output for each
eigenvalue depends on its value and position together with all the other eigenvalues
and their positions. It employs an attention mechanism to learn relation among
eigenvalues.

2.5 Data and Evaluation 38

In the network, the dimensionality of each representation is 32, TA has 8 heads
and 6 layers meanwhile TB has 8 heads and 3 layers. Thus, ρ reduces the represen-
tation dimensionality from 32 to 1.

Training Our model is trained with a mean squared error loss between the pre-
dicted and ground truth spectra. Before entering the loss, the offset representation
for the eigenvalues is decoded with a cumulative sum. Experimental results show
that penalizing the loss according to the linear increase of the eigenvalues does not
yield significant improvements. In the training phase, we augmented the partial re-
gions with small random changes in their surface area. The optimizer used is Adam
with a learning rate of 2 · 10−4 and weight decay of 10−5. We use a learning rate
scheduler to escape local minima and stabilize the training, in particular the cosine
annealing with warm restarts scheduler [152], doubling at each restart the number
of epochs between restarts. We trained the model for 6741 epochs for a total of 1d
13h 46m on a GeForce RTX 2080 Ti, tracking the experiments with [29].

2.5 Data and Evaluation

In our experiments we use 3D data from the FAUST [30] and SURREAL [275]
datasets of deformable human shapes with different identities. This provides us
with a total of 50 different identities, each in 10 different poses. To produce partial
data, we first extract surface patches of various sizes from the full shapes, and then
combine the patches randomly to form two datasets:

• A dataset of ∼150 partial pairs, where each union covers the entire surface.
We test in three different settings depending on the information given at
training time: (i) known identity, unknown partiality; (ii) unknown identity,
known partiality; (iii) both identity and partiality are unknown. We define
an identity as known if the training set contains any partiality in any pose of
the same shape, and we consider a partiality known if the two input partiality
types together with their corresponding union are in the training dataset in
any shape identity or pose.

• A dataset of ∼100 partial pairs, whose union does not cover the entire surface.
For training, the partial shapes are augmented by enlarging/shrinking the
patches randomly. We consider the same three settings as above.

As shown in Figure 2.3, there are cases in which more than one region on the tem-
plate is a valid solution to the union problem. Two different ambiguities arise: (a)
symmetric counterparts of one or both input partial regions may produce different
union regions with different spectra; (b) symmetric union regions are described by
the same spectra even though they are localized in different parts of the shape. We
remove these ambiguities in the training data by following a minimum union area
principle and privileging “left-sided” symmetries exploiting a ground truth sym-
metry map and labels of the template left side. By this choice, associativity is
promoted as we show empirically in the results.

We define two test sets. In Test A, the pose or the type of partiality have
never been seen, but the predicted union may be seen in a different pose or identity

2.6 Applications 39

mse mae

T
es

t
A

known man 11.14 2.09
unknown man 13.25 2.59
unknown woman 36.92 3.93
known man re-meshed 29.61 3.31
unknown man re-meshed 32.67 3.60
unknown woman re-meshed 62.33 5.23

T
es

t
B

known man 15.41 2.59
unknown man 24.05 3.60
unknown woman 64.47 4.99
known man re-meshed 51.20 4.54
unknown man re-meshed 75.91 5.90
unknown woman re-meshed 110.17 6.78

Table 2.1. Error between the predicted and ground truth eigenvalues in different experi-
mental settings. In each row, “known” denotes an identity included in the training set,
“unknown” one not included, and “re-meshed” indicates that the shapes were re-meshed
by removing 30% of their vertices before computing their spectrum.

at training time. Test B is more challenging, since the union of the two parts has
never been seen at training (neither in a different pose or identity, nor as a union
of different partialities). The number of samples in the test datasets is about 15%
of all the data available, the remaining data is used for training.

unknown
man

unknown
woman

known (in train data)

re-meshed (dropping 30% vertices)

We analyze both Test A and
Test B scenarios in different set-
tings summarized in the inset Venn
diagram.

In Table 2.1 we report a quantita-
tive analysis of the predictive power
of our learning model, according to the mean squared error (mse) and mean absolute
error (mae) metrics.

Further, we perform qualitative experiments on different classes, on horses from
TOSCA [38] and earphones from PartNet [182], some examples are in Figure 2.7, 2.8
and 2.9. Through these experiments we prove our method generalization ability to
any shape category. Additionally, we successfully trained the neural network on hu-
mans and fine-tuned it to work with horses, where the data is scarce, demonstrating
that it is possible to perform transfer learning between different shape classes.

2.6 Applications

We can easily plug our method into existing pipelines that take as input Laplacian
eigenvalues. Unique to our approach is that it addresses the scenario in which only
partial views of the complete shape are available.

2.6 Applications 40

0.0

0.25

0 2 4 6 8 10 12 14 16 18 20

0

50

100

150

Eigenvalue Index

E
ig
en
va
lu
e

X1 Spectrum
X2 Spectrum

0 2 4 6 8 10 12 14 16 18 20

0

50

100

Eigenvalue Index

E
ig
en
va
lu
e

X1 ∪X2 Pred
X1 ∪X2 GT

1

M1 ∪ M2 GT GT(M2) Ours

0.0

0.25

0 2 4 6 8 10 12 14 16 18 20
−100

0

100

200

300

Eigenvalue Index

E
ig
en
va
lu
e

X1 Spectrum
X2 Spectrum

0 2 4 6 8 10 12 14 16 18 20

0

50

100

Eigenvalue Index

E
ig
en
va
lu
e

X1 ∪X2 Pred
X1 ∪X2 GT

1

M1 ∪ M2 Ground Truth GT(M2) Ours

Figure 2.5. Given two partial shapes as input, we compare the reconstruction obtained
by running the method of [168] only on a partial input (the green shape), yielding
the fourth shape, with the reconstruction obtained from our predicted full spectrum,
yielding the last shape.

2.6 Applications 41

IoU Acc.

T
es

t
A

known man 99.28% 99.61%
unknown man 93.78% 95.83%
unknown woman 94.19% 96.32%
known man re-meshed 98.54% 99.06%
unknown man re-meshed 91.44% 94.08%
unknown woman re-meshed 93.47% 95.56%

T
es

t
B

known man 97.96% 98.55%
unknown man 87.58% 92.52%
unknown woman 96.05% 98.46%
known man re-meshed 93.04% 97.33%
unknown man re-meshed 83.69% 91.08%
unknown woman re-meshed 95.59% 98.43%

Table 2.2. Intersection over union (IoU) and accuracy in the region localization task, in
different experimental settings. Model trained on a single identity, to show generaliza-
tion.

2.6.1 Geometry Reconstruction

To recover the shape geometry from its predicted union eigenvalues, we use the data-
driven method of [168], which takes eigenvalues as input and directly yields a 3D
mesh embedding as output. An example is given in Figure 2.2, where we compare
the geometry recovered from our estimated spectra with the one obtained from the
ground truth eigenvalues. For human meshes where the correspondence between
their T-Pose and the connectivity adopted in [168] is known, we can compute the
point-wise reconstruction error as the L2 distances between correspondent points.
We plot this Euclidean error on the reconstructed surface. White color corresponds
to zero error and dark red encodes a larger error. Our spectrum prediction is
accurate enough to retain the core geometric information of the original partial
shapes, as it can be seen in these examples. For these experiments we used the
pre-trained network provided by the authors of [168] and [169]. We sampled the
test shapes outside the training set adopted in these papers. Thus the network is
not specifically trained to handle spectra predicted by our pipeline. Moreover, since
the spectrum encodes just intrinsic properties (i.e. appearance) of the shape, all
the reconstructions of [168] are in the T-pose.

To emphasize the importance of having an aggregated spectrum, as predicted
by our model, in Figure 2.5 we show the reconstructions obtained with the method
of [168] when using the spectrum of just one of the two partial shapes as input. The
result in this case is quite different from what is expected, showing that existing
state-of-the-art pipelines are not able to handle partial shapes correctly.

2.6.2 Region Localization

This task, introduced in [224], consists in locating, on a fixed template, the region
corresponding to a given partial shape. To solve this problem we combine the spec-
tral union model introduced in Section 2.4 with a simple MLP, described in detail

2.6 Applications 42

0 5 10 15 20
0

100

200

300

1

M1 ∪ M2 = Mask Laplacian eigenvalues

0 5 10 15 20
0

100

200

300

1

0 5 10 15 20
0

100

200

300

1

0 5 10 15 20
0

100

200

300

1Figure 2.6. Region localization task, under the effect of different mesh connectivity.
Given the eigenvalues of two partial shapes, we correctly predict an indicator function
that represents the union of the two over a fixed template.

2.6 Applications 43

IoU Acc.

T
es

t
A

known man 98.24% 99.09%
unknown man 96.26% 97.64%
unknown woman 96.17% 98.04%
known man re-meshed 97.70% 98.74%
unknown man re-meshed 95.88 % 97.78%
unknown woman re-meshed 96.04% 97.66%

T
es

t
B

known man 97.43% 99.14%
unknown man 93.31% 98.23%
unknown woman 95.74% 98.59%
known man re-meshed 97.61% 99.11%
unknown man re-meshed 90.85 % 97.63%
unknown woman re-meshed 96.81% 98.98%

Table 2.3. Performance when training on six different identities instead of a single identity
(compare with Table 2.2).

in the supplementary materials. The MLP takes as input the predicted eigenvalues
of the union, and outputs an indicator function over the vertices of the template.
The spectral union operator is not trained to solve the region localization but is
used as-is with frozen weights.

In principle, substituting TB in Figure 2.4 with the region localization MLP
would work if the whole system is trained end-to-end. However, the goal of this
work is to perform the union operation in the spectral space. Moreover, if we do not
impose the union to be a spectrum, we would not be able to compose the predicted
union spectra with another partiality.

In the loss definition, one must take care of the potential ambiguities exempli-
fied in Figure 2.3; we do so by implementing a symmetry-invariant loss, that does
not penalize symmetric solutions. The MLP is trained using the train/test splits
described in Section 2.4, with the difference that we used just 6 different identities
in the training phase.

To analyze the prediction quality on this task we adopt two metrics: intersection
over union (IoU) of the predicted mask with the ground truth mask, and accuracy,
i.e. the ratio of correctly predicted vertices over the full template. We show several
qualitative results in Figure 2.6 and attach an interactive demo in the supplementary
materials.

Robustness to Remeshing One key aspect of Laplacian eigenvalues is that they
are robust to shape discretization and mesh connectivity. Our model inherits this
robustness; see Figure 2.6, where we highlight the re-meshed inputs by visualizing
their surface triangulation. This is supported also by Tables 2.2 and 2.3, where
the performance on the re-meshed shapes is comparable with the original ones. In
these experiments, we test our network with the eigenvalues computed from noisy,
re-meshed partial shapes obtained by removing 30% of their vertices with an edge
collapse algorithm [90].

2.6 Applications 44

M1 ∪ M2 = Mask

Figure 2.7. Region localization across different datasets. Partial shapes come from
datasets not involved in the training.

2.6 Applications 45

∪ =

∪ =

Figure 2.8. Region localization from partial point cloud spectra. The white mesh is just
shown as a visual reference.

Generalization to New Identities Our approach generalizes to identities un-
seen at training time as can be noted in Table 2.3. To further stress this aspect, we
devised an experimental setup in which we used as training set just a single identity.
The results of this setup are shown in Table 2.2.

Generalization to Different Datasets In Figure 2.7 we use partial shapes
from other datasets to localize regions on the fixed template. These shapes have
different triangulation, vertex density and style, confirming generalization across
datasets. More specifically: a shape from TOSCA [38] for humans (first row), one
from SMAL [304] for the horses (second row) and a camel shape that has a different
triangulation and comes from a different class (third row).

Generalization to Point Clouds We obtain good results also on point clouds,
as shown in Figure 2.8. For earphones, in the top row, we perform both training
and testing on point clouds. In the bottom row, we show that our model trained
on human meshes generalizes to point clouds. We compute the Laplacian for point
clouds with the method of [245].

Associativity We can compute spectral unions of > 2 partial shapes iteratively
as described in Section 2.3. In Figure 2.9 we show qualitative results over three
parts.

2.6 Applications 46

∪ ∪ =

∪ ∪ =

∪ ∪ =

Figure 2.9. Example of associativity. Note that all the human meshes involved have
different connectivity.

Interpolation Finally, in Figure 2.10 we first interpolate the spectra of two partial
shapes (in green), and then compute the union of the interpolated spectra with the
spectrum of a fixed shape (in red). From each of these unions, we predict a mask on
the given template (in yellow). We can see how in the first example (top row) the
mask changes smoothly. On the other hand, in the second example it is less obvious
how to interpolate the completely missing leg, resulting in an abrupt discontinuity
in the predicted mask.

top-1 top-5 top-10
Ours 86.14% 97.75% 99.20%

ShapeDNA 86.59% 96.81% 97.72%
Table 2.4. Comparisons on the shape retrieval task.

2.6 Applications 47

1

∪ . . .

1

∪ . . .

Figure 2.10. Two examples of linear interpolation of eigenvalues (green shapes), and the
resulting predicted masks (in yellow). Please refer to the main text for details.

2.6.3 Shape Retrieval

This task consists in retrieving a query from a database of shapes that could un-
dergo several deformations. A well-known spectral method to tackle this problem,
ShapeDNA [228], adopts the Laplacian spectrum as a shape signature. In the space
of these signatures, nearest-neighbor search yields the desired result. However, in
order to work correctly, ShapeDNA needs the spectrum of a complete shape; ex-
tensions of this signature to the partial case have proven unsuccessful to date [234].
Our method applies directly to this case, since we can estimate the eigenvalues of
the unknown complete shape whenever the input query is just a collection of its
partial views.

We run our tests on a dataset of 440 complete shapes (44 identities in 10 poses
each). For our method, we evaluate 4400 pairs of partial shapes; for each pair we

2.7 Conclusion 48

predict the ShapeDNA signature of their union and use it to query the database.
We compare it with the accuracy obtained by standard ShapeDNA on each of the
440 complete shapes in the database, which assumes exact knowledge of the union
spectra; nevertheless, the identity it retrieves may be wrong due to spectra variations
caused by deformations between different poses. We measure the performance using
top-k metrics, which count the number of times a shape with the correct identity
is in the first k retrieved shapes; we use k = 1, 5, 10. The results are reported in
Table 2.4, and show that our predicted eigenvalues are accurate enough to compete
with, and even surpass, ShapeDNA for this task. The better performance is due to
the robustness of our method to the noise induced by the pose change.

2.7 Conclusion

We introduced a method to recover the aggregated Laplacian spectrum of a col-
lection of partial deformable shapes, while avoiding the computational burden of
computing correspondences or extrinsic alignments. Our method involves a deep
net that, given two eigenvalue sequences as input, simply produces another eigen-
value sequence as output. In spite of its apparent simplicity, this method allows to
address a number of applications that traditionally require solving for a correspon-
dence, and retains a comparable quality (in some cases, even higher) to methods
that have direct access to the 3D geometry of the full shape.

Limitations and Future Directions Perhaps the main limitation of our method
lies in the missing mathematical guarantee that our predicted sequences are actual
Laplacian eigenvalues, despite our positive empirical results. We consider enforcing
this constraint as an interesting direction of further research. Another interesting
area for improvement is the region localization generalization capability, where our
current model seems to struggle with out-of-distribution union partialities. We are
optimistic that a more diverse and extensive training set would boost the general-
ization performance. Moreover, we did not consider unprocessed partial single-view
or depth scans of physical objects. We expect a drop in performance on such data
comparable to other spectral methods. We consider improving the robustness of
spectral methods on natural non-pre-processed data as an essential and challenging
research direction.

49

Part II

Non-Euclidean Metric Spaces

50

Chapter 3

Mold Manifold Simulation for
Real-Time Procedural
Texturing

The slime mold algorithm has recently been under the spotlight thanks to its com-
pelling properties studied across many disciplines like biology, computation theory,
and artificial intelligence. However, existing implementations act only on planar sur-
faces, and no adaptation to arbitrary surfaces is available. Inspired by this gap, we
propose a novel characterization of the mold algorithm to work on arbitrary curved
surfaces. Our algorithm is easily parallelizable on GPUs and allows to model the
evolution of millions of agents in real-time over surface meshes with several thousand
triangles, while keeping the simplicity proper of the slime paradigm. We perform
a comprehensive set of experiments, providing insights on stability, behavior, and
sensibility to various design choices. We characterize a broad collection of behav-
iors with a limited set of controllable and interpretable parameters, enabling a novel
family of heterogeneous and high-quality procedural textures. The appearance and
complexity of these patterns are well-suited to diverse materials and scopes, and we
add another layer of generalization by allowing different mold species to compete
and interact in parallel. The work presented in this chapter has been realized in
collaboration with Riccardo Marin (Ph.D.), who helped in designing the experi-
mental validation and the presentation of the results, prof. Simone Melzi and prof.
Emanuele Rodolà, both of which invaluably helped in the improvement of the overall
presentation, with a particular focus on the methodological discussion. The results
presented in this chapter have been published in the proceedings of the Pacific
Conference on Computer Graphics and Applications (Pacific Graphics) [160].

3.1 Introduction

In different disciplines, the interest in biological evolutive systems has grown in
recent years. Biology and chemistry scholars and, more recently also bioinformat-
ics, artificial intelligence, and computation theory researchers are focusing on such
complex systems. More specifically, systems that can produce a consistent global
behavior by a few local rules are compelling due to their simplicity but powerful

3.1 Introduction 51

Figure 3.1. Different materials generated from the simulation of our slime approach at a
certain frame: marble and wooden grain (left and right respectively), or golden web on
a glass structure (middle).

expressive capabilities. Slime mold systems are included in this family [114]. Biolog-
ical mold organisms propagate following pheromones attraction – from a computer
scientist’s perspective, perfectly fitting the divide-and-conquer paradigm. These
properties have motivated researchers to simulate their evolution, exploiting mod-
ern computational capabilities to explore and investigate their properties. Among
the available solutions, no method offers an implementation on arbitrary surfaces
to the best of our knowledge. We believe this is not due to a lack of interest in
non-Euclidean domains, but rather because these dynamic simulations on curved
surfaces require a thorough background in differential geometry, not common in the
biological community.

From a Computer Graphics perspective, producing complex patterns over a sur-
face belongs to the procedural texturing domain. Despite the increasing availability
of computational power and advances in geometry processing, texture design is still
a human-centered and time-consuming task for the most. The growing amount and
quality of geometrical assets urge the generation of realistic synthetic textures, while
guaranteeing the quality and efficiency required by the entertainment industry.

In this chapter, we present a high-quality, real-time implementation of a slime
mold algorithm for arbitrary surfaces with potentially millions of agents running in
parallel. We design it led by simplicity, efficiency, and generality principles. We
introduce only the necessary technicalities, accepting approximations that keep the
method simple but are not visually harmful to the final quality. Our method entirely
takes place over the surface and offers a set of parameters that artists can easily
interpret, so as to produce various distinguishable patterns. These can be used
for modeling different materials, as shown in Figure 3.1. We further show how to
constrain the mold evolution to specific regions by defining repulsion / attraction
areas.

Our contribution can be summarized as follows:

• we provide the first slime mold algorithm for surfaces, with an analysis of its
behavior; we show that it is predictable, and respects the expected properties
of this kind of organisms;

3.1 Introduction 52

Figure 3.2. Visualization of the pheromone trace in a slime mold simulation. The simu-
lation involves 1M agents and takes place on a bounded flat region.

• we define a new family of patterns for procedural texturing that is inter-
pretable, controllable and admitting path constraints in the pattern evolution;

• we release a light-speed implementation that scales well at different texture
resolutions, number of agents, and mesh resolution, opening to real-time video
applications and massive texture generation.

3.1.1 Related Work and Background

Slime Mold Simulation The evolution of biological patterns is a vast research
area in biology, and it often produces interesting visualizations that can also be
used in movies and generative art. A famous example of pattern formation is the
evolution of the Physarum Polycephalum, also known as slime mold. The algorithm
first presented in [114] produces complex patterns like the one shown in Figure 3.2.
In recent years, the slime mold simulation has become popular because of its large
area of application, which covers cognition, optimization, computation and machine
learning [273, 42, 79, 139, 2]. The slime mold algorithm is also starting to be used in
generative art [171] and visualization techniques [80]. The algorithm for simulating
slime molds has proven to be so valuable that some researchers are starting to
integrate it in larger pipelines to achieve compelling results [300, 1].

Slime simulation falls under the category of systems that can produce complex
behaviors from a set of simple rules, like cellular automata simulation [53] and
reaction-diffusion systems [291].

3.1 Introduction 53

A

f
rl

A

f
rl

f
rl

A

Figure 3.3. The behavior of a slime agent A. The agent samples from three sensors in
front of it (left l, right r, and forward f) and determines the next direction by choosing
the one with highest pheromone concentration (darker red). When leaving a location,
the agent releases pheromone.

The rules of the system can be summarized in three steps:
• A set of agents lives in a closed space where they can move freely;
• Each agent releases a pheromone trace that diffuses and evaporates over time;
• Each agent tries to follow the pheromone trace in its field of view.
Figure 3.3 summarizes how agents act during an iteration. Each agent samples

three regions in front of it at an angle (forward, left, or right sensor). The region
with the most pheromone traces determines the steering direction of the agent.
While moving, the agent releases more pheromone, which in turn diffuses locally and
evaporates over time. The simulation can be tuned according to several parameters
affecting the agents and the ambient.

Despite the increasing interest in this argument, the research in this direction has
been limited to tuning and optimizing the slime mold algorithm, or to its application
in different areas.

Procedural Texturing The main works in this context are devoted to proce-
dural generation of height maps for landscapes [132, 200, 208], patterns for planar
surfaces [291], 3D noise functions [58, 101] or mixes of other textures [77]. Other
works have proposed to use procedural texturing for vector field visualization [22]
or the representation of complex repetitive geometries [191], but still, these works
are limited to flat domains. Texture synthesis on surfaces has been first addressed
in [285], and during the years the research greatly advanced; see [287] for an exten-
sive survey. However, the works in this area mainly exploit example-based methods,
adapting them to curved domains [131], or they are limited to simple patterns [124].
The only few exceptions are simulation based approaches [269, 253], which makes
them similar in spirit to our method. Only recently, some works have shown proce-
dural generation of complex patterns directly on surfaces [188, 84], but these works
are limited to recursive structures or repetitive patterns and do not explore other
possibilities. Another work following a similar fashion is [162], where the authors
propose a method for drawing Bézier curves on manifold meshes. Still, such curves
require a set of input points from the user, which is unfeasible for creating large
and complex patterns.

3.2 Method 54

Figure 3.4. Effect of sub-step subdivision on the slime mold simulation. We use the same
simulation parameters in all three cases, but vary the number of sub-steps. Left to
right: single step, 10 sub-steps, 100 sub-steps.

3.2 Method

In our setting, an agent A is a particle onM that moves over the surface following
slime simulation rules. We require that our method: i) works on general meshes
and topologies; ii) allows A to move on arbitrary paths in real time; iii) guarantees
numerical stability. This section provides a detailed description of how we define
our method to achieve such desiderata.

3.2.1 Movement Over the Surface

p

p + ∆p

p′

The motion of a particle over a surface is
a well-known problem. A widely used so-
lution is triangle unfolding [248, 247], but
to keep the implementation simple we de-
cide to approximate the path by moving
the particle in small steps and reproject-
ing it on the surface.

Given the initial position p of A, let t be the triangle that contains p, and let
∆p be the vector encoding a forward step. We split ∆p into smaller sub-steps; at
each sub-step, we re-project A’s position onto the surface. To ease the projection
computation, we consider only the triangle t′ that is the nearest to p + ∆p and
incident to t (see inset). This movement parcellation limits inconsistency produced
by edge crossing and guarantees we cannot cover more than one triangle at a time.
Alternatively, one could compute exactly when an edge has been crossed and split

3.2 Method 55

the movement perfectly between the incident triangles. However, we argue that our
approach does not require any check, and the approximation produced is negligible.
Our sub-step strategy is crucial, as can be seen in Figure 3.4; the leftmost owl does
not use any sub-step subdivision, resulting in an unrecognizable pattern. While
increasing the number of sub-steps produces a more precise approximation of the
motion, we stress that the resulting path does not converge to a geodesic. In fact,
slime agents move along a constant direction in the parametric space, which does
not necessarily coincide as moving along a geodesic.

Algorithm 3.1 summarizes the entire process. The procedure TangentSubStep
is given a point p in texture space and the triangle t where p lies. It computes
the movement over the tangent space of the mesh along some vector ∆p. The
vector is still defined in texture space, and thus must be rescaled according to
the local metric tensor g(t) (Line 3). The final position after the movement is
converted to barycentric coordinates to determine if the border of the triangle has
been crossed (Lines 5-10). The adjacent triangle w closest to the final point is
selected and the point is projected on it (Lines 12 and 13). Finally, the coordinates
are converted to 2D via barycentric coordinates (Lines 15 and 16). To handle meshes
with boundaries, it is sufficient to identify if the agent crossed a boundary edge (i.e.,
there is no adjacent triangle on that edge). If this is the case, we make the agent
bounce on the edge.

The vectors nτ and cτ are, respectively, the normal and the barycenter of a
triangle τ , while Adj(τ) is the set of its adjacent triangles. The matrices Tτ and
Lτ are defined for each triangle τ as

Tτ =
(
rτ,1 − rτ,3 rτ,2 − rτ,3

)
∈ R2×2

Lτ =
(
vτ,1 vτ,2 vτ,3

)
∈ R3×3 ,

(3.1)

where rτ,i are the coordinates of the vertices of τ in texture space and vτ,i are the
coordinates of the vertices of τ in 3D space. The matrix Tτ is the conversion matrix
from barycentric to edge coordinates and is such that Tτ λ′ = p−rτ,3, given that λ′

are the first two components of the barycentric coordinates of p. Matrix Lτ is the
conversion matrix from barycentric to Cartesian coordinates. Usually, it is defined
as a rectangular matrix in R4×3, since it must have a row of ones in order to ensure
the point is inside the triangle. In our case, we need to allow points to move outside
triangles, and thus we remove that row. As a side effect, we can move back and
forth between Cartesian and barycentric coordinates by inverting Lτ , which saves
much computation with respect to the classic area-based method.

The procedure TangentStep iterates the process multiple times to continu-
ously determine the new position and direction in texture space, as well as the
current triangle. The number of sub-steps N is some fixed constant depending on
the mesh resolution and it is used to determine the length of the sub-step (Line 3).
At each iteration, the algorithm moves the agent by a small step (Line 6) and then
uses a slightly larger step to determine the next direction (Line 8). The direction
is then normalized and rescaled to a proper length (Line 9). The call to Tan-
gentSubStep also has the job of determining the next direction and the triangle
of the next position to pass them to the next iteration.

3.2 Method 56

Algorithm 3.1 Step in the tangent space of a mesh.
1: procedure TangentSubStep(p, ∆p, t)
2: // Rescale the displacement vector
3: ∆p← ∆p√

(∆p)⊤g(t)∆p

4: // Convert to barycentric coordinates
5: q ← p + ∆p
6: λ← T−1

t (q − rt,3)
7: λ3 ← 1− λ1 − λ2
8: if λ is inside t then
9: return (t, p + ∆p)

10: end if
11: // Search for the nearest adjacent triangle
12: w ← arg minτ∈Adj(t) {|⟨nτ , q − cτ ⟩|}
13: q ← q − ⟨nw, q − cw⟩nw

14: // Return final texture coordinates and the new triangle
15: λ← L−1

w q
16: return (w, λ1rw,1 + λ2rw,2 + λ3rw,3)
17: end procedure
1: procedure TangentStep(p, ∆p, t)
2: p′ ← p
3: ∆p′ ← ∆p

N
4: for i← 1 to N do
5: // Compute the final position and the new direction
6: (w, p′′)← TangentSubStep(p′, ∆p′, t)
7: (−, ∆p′′)← TangentSubStep(p′, ∆p′, t)
8: ∆p′ ← ∥∆p′∥ ∆p′′−p′′

∥∆p′′−p′′∥
9: p′ ← p′′

10: t← w
11: end for
12: return (t, p′, atan2 (∆p′))
13: end procedure

3.2.2 Length Rescaling

In practice, we operate in texture space and represent the position of each agent
by two coordinates, and its direction as a single scalar (i.e., the steering angle).
The pheromone is encoded as color. If the agent does not cross the border of a
triangle during a step, the change in position is easily computed by summing two
2-dimensional vectors. However, this choice also requires taking into account the
metric distortion induced by the UV mapping.

To guarantee that a vector a in texture space has uniform 3D length on the
mesh domain, we divide it by the norm ∥a∥g =

√
a⊤ga, where g(t) is the discrete

metric tensor at triangle t. Since the latter depends entirely on the triangle t, it
can be pre-computed for all triangles at initialization. In Figure 3.5, we depict an
example of this correction in texture space and 3D space.

3.2 Method 57

Figure 3.5. Comparison between two pheromone traces on a torus with and without
length rescaling. On the left, the agent movements in texture space are of the same
size, producing a pattern with inconsistent lengths in 3D. On the right, lengths in
texture space are rescaled according to the metric, generating a more uniform pattern
in 3D. We represent the metric ∥·∥g as a colormap growing from dark red to white.

3.2.3 Mold Evolution

Our mold evolution process follows the spirit of [114]; we summarize it in Algo-
rithm 3.2. We pre-compute the set of adjacent triangles and the metric tensor at
each triangle (Lines 2-6). Then, we simulate a certain number of steps. At each
step, all the agents sense three positions in front of them by sampling the texture
Pheromone (Lines 11-15). The sensor placement depends on two parameters: the
sensor distance δs and the sensor angle ϑs. The location with the highest quantity
of pheromone attracts the agent (Line 17). The agent then turns to that direction
with turn speed ϑa and moves along the new direction with velocity δa (Lines 18
to 20). Some randomness can be added to the agent’s steering for adding extra dy-
namism and random changes to the pattern. We stress that Algorithm 3.1 is only a
possible implementation of TangentStep, which we choose for keeping the overall

3.2 Method 58

Algorithm 3.2 Slime mold on surfaces.
1: procedure MoMaS(M, hf , ∆h)
2: for all triangle t do
3: // Pre-compute adjacency and metric tensor
4: Compute Adj(t), g(t)
5: end for
6: h← 0
7: while h < hf do
8: for all agent a do
9: // Sense the pheromone trace

10: for θ ∈ {−ϑs, 0, ϑs} do
11: ∆s← (cos(a.θ + θ), sin(a.θ + θ))
12: (sθ,−,−)← TangentStep(a.p, δs∆s, a.t)
13: Pθ ← Pheromone(sθ)
14: end for
15: // Determine the next direction and move the agent
16: θ∗ ← arg maxθ∈{−ϑs, 0, ϑs} {Pθ}
17: a.θ ← a.θ + ϑaθ

∗

18: ∆p← (cos(a.θ), sin(a.θ))
19: (a.p, a.t, a.θ)← TangentStep(a.p, δa∆p, a.t)
20: // Release pheromone
21: Pheromone(a.p)← 1
22: end for
23: // Apply global pheromone diffusion and evaporation
24: Blur the texture Pheromone
25: Pheromone← max(Pheromone− εd, 0)
26: h← h+ ∆h
27: end while
28: end procedure

method simple and efficient, but it could be any procedure that moves a point over
the tangent space and returns the final position, the triangle containing the final
position, and the final direction aligned with the movement. An implementation
of Algorithm 3.2 is available at a public repository on GitHub.1. Once the agents
finish releasing their pheromone in their new position on the texture Pheromone
(Line 22), we apply a blurring algorithm to diffuse the pheromone and remove a
small quantity that evaporates with velocity εd (Lines 25 and 26). The parameters
introduced in the last lines characterize the behavior and the obtained pattern, and
we analyze them in detail in Section 3.3.3.

As a final note, to keep our implementation simple and GPU-friendly, we ac-
complish the blurring step (Line 25) with a standard Gaussian blur directly on the
texture. While this can in principle generate visible seams, it allows us to handle
very high-resolution textures in real time, and the artifacts on texture seams are
not visually noticeable as we demonstrate in our experiments.

1https://github.com/filthynobleman/slime-manifold

https://github.com/filthynobleman/slime-manifold

3.2 Method 59

Figure 3.6. Evolution of a 3-species slime mold over a surface. Agents start from an initial
region and diffuse over the entire mesh.

3.2.4 Agent Implementation

Agents are represented by a data structure with the following fields:
• p: position of the agent in texture space;
• θ: direction angle in texture space;
• t: triangle containing point p.

Each agent contains only four values, making the representation memory-efficient.
Despite the triangle being a piece of redundant information (it could be inferred by
p), computing it at each step becomes unfeasible in terms of performance.

Since the agents act independently, we implement their behavior on GPU,
achieving real-time performance on the simulation.

3.2.5 Multiple Species, Obstacles and Attractors

The slime mold algorithm allows for a further generalization, including multiple
species of agents; see Figure 3.6. Each different species releases a different type of
pheromone, attracting agents of the same species and repelling others. To imple-
ment this mechanics, we need to distinguish between pheromone types and define
‘attractive’ and ‘repelling’ pheromone. Since we encode the pheromone trace in a
texture, we assign a channel of the texture to each species. When sampling for
pheromone at a given cell, an agent adds the pheromone from the channel of its
species and subtracts the pheromone from the channel of other species. This way,
agents from the same species will tend to aggregate and isolate from other species.
In Figure 3.7, we visualize an example of this behavior.

Similarly, we exploit attractive/repelling pheromone to model obstacles and at-
tractors. An obstacle is a region RO that agents must avoid, whereas an attractor
is a region RA that agents must reach and never leave. With the expressive power
of our system, we can easily define these regions as particular pheromones that
never diffuse and evaporate. We assign to the obstacle region RO an infinitely large
amount of pheromone that repels all the species. This trick guarantees that an
agent prefers any other direction rather than entering RO. For the attractors, we
define an amount of attractive pheromone superior to the number of species but not
infinite. Since the pheromone of species has values in [0, 1], this always guarantees
attraction, but still makes the agents able to produce patterns inside RA.

3.3 Results 60

Figure 3.7. An example of simulation with multiple species, repelling each other. The
pheromone trace of each species is stored in a different channel of the texture and is
represented with a different color.

Parameter Property Tested Range
Movement Speed δa Pattern Scale ↑ [1.0, 2.0]
Turn Speed ϑa Stabilization ↓ [10.0, 50.0]
Vision Distance δs Cell Formation ↑ [0.4, 2.0]
Vision Angle ϑs Thickness ↑ [10◦, 50◦]
Evaporation Rate εd Clustering ↓ [0.2, 1.0]

Table 3.1. Each parameter is associated with a specific property of the generated pattern
most affected by its variation. The arrow indicates whether the parameter affects the
property positively (green up arrow) or negatively (red down arrow). The last column
shows the range we tested for the parameter.

3.3 Results

Before passing to a quantitative and qualitative evaluation, we provide a description
of the key parameters of our algorithm.

Parameters Among the parameters, five of them have a higher impact on the
produced pattern in our experiments. More in detail:
δa: movement speed (i.e. how fast agents move);
ϑa: turning speed (i.e. how fast agents change direction);
δs: distance of vision (i.e. how far the sensor is placed);
ϑs: angle of vision (i.e. how widely sensors are placed);
εd: evaporation rate (i.e. how fast the pheromone decays).

In Table 3.1, for each parameter, we show the tested range of values and the property
that is mainly affected by each of them.

3.3 Results 61

3.3.1 Mold Simulation

The generic evolution of the pattern follows these steps:
1. the agents are initialized randomly;
2. the agents start to move freely, covering large portions of the surface;
3. the agents rapidly aggregate, and the properties of the pattern family show

up;
4. the pattern changes slowly but continuously, without changing family.
These steps are common to all configurations and are not affected by the pa-

rameters, even if changing the parameters can produce small changes in the timing.
To give a quantitative idea of the pattern distribution and identify when the pro-

cess reaches each step, we studied how much surface is covered by pheromone over
time. More formally, we define the pheromone coverage Cvg(t) and the pheromone
presence Pnc(t), as:

Cvg(t) = 1
Full

∫
M

Pheromonet(x) dx ,

Pnc(t) = 1
Full

∫
M
⌈Pheromonet(x)⌉ dx ,

(3.2)

where Pheromonet(x) is the quantity of pheromone at point x and at time t and
takes values in [0, 1], and ⌈·⌉ is the ceiling operator. The values are normalized with
respect to the total coverage Full =

∫
M dx.

Figures 3.8a and 3.8b show the typical evolution of pheromone coverage and
presence during a simulation, with different values of evaporation rate. After the
random initialization, the agents start to move freely, and they cover large portions
of the mesh, reaching a peak. As the pattern is formed, the coverage decreases. The
stable line after the peak represents the slow evolution of the pattern. Biological
simulations also exhibit a similar behavior, showing our method acts as expected
[210, 163]. The evaporation rate affects pheromone coverage and presence, as shown
in Figure 3.8c. The other parameters do not affect the pheromone coverage and have
a marginal impact on the pheromone presence.

Attractors and Obstacles. In Figure 3.9, we show a simulation with attractors
and obstacles. The ability to solve mazes is a well-studied property of organisms like
the Physarum Polycephalum [3, 186], and we tested our method in this context. The
agents are initialized in the red region and expand toward the attractive region (in
green), avoiding the walls. In our implementation, we use a three-channel texture to
define the starting, repelling, and attractive regions, each associated with a different
channel. In contrast, in Figure 3.6 we show a 3-species mold evolution over a surface
with no obstacles or attractors, thus leaving the agents completely free.

3.3 Results 62

0 10 20 30 40 50 60 70 80 90 1000

0.2

0.4

0.6

0.8

1

Time

C
vg

(t
)

Evaporation Rate 0.1
Evaporation Rate 0.3
Evaporation Rate 0.6

(a)

0 10 20 30 40 50 60 70 80 90 1000

0.2

0.4

0.6

0.8

1

Time

Pn
c(
t)

Evaporation Rate 0.1
Evaporation Rate 0.3
Evaporation Rate 0.6

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

Evaporation Rate

Coverage
Presence

(c)
Figure 3.8. Evolution of the pheromone coverage (a) and presence (b) during a simulation

of 100 seconds. After the initial peak, the agents stabilize on the pattern family and
slowly vary the resulting pattern. Different decay rates shift the curve, without changing
the evolution. The pheromone coverage and presence after 70 seconds of simulation vary
as the decay rate changes (c). The slower the evaporation, the higher the coverage and
presence. We performed these experiments on the shape on the left of Figure 3.1.

3.3 Results 63

Figure 3.9. A sphere is decorated with a texture representing a maze (top-left frame). The
red region is the starting zone, and the green region is the attractor. Three species of
slime are initialized in the starting region (top-right) and evolve over the maze (bottom-
left). When the agents reach the attractor, they start forming patterns inside and never
leave the attracting region (bottom-right).

3.3.2 Performance

We run our simulations on a fixed set of ten meshes and under different conditions.
All the experiments have been carried out on a NVidia RTX 2080 Ti (11GB VRAM).

Texture Resolution. Table 3.2 summarizes the average, maximum, and mini-
mum time per frame using textures at different resolutions. We run the simulations
for 900 frames with the same settings. In particular, we use ten sub-steps in the tan-
gent space. Despite the increase in time per frame, results show that our algorithm
achieves real-time performance at very high resolutions.

3.3 Results 64

texture size avg. tpf max. tpf min. tpf
2048 8.473 37.277 7.362
4096 9.503 37.693 8.268
8192 12.120 39.039 10.263
16384 23.715 43.552 16.220

Table 3.2. Time per frame (in milliseconds) at different texture resolutions. Simulations
are ran using 10 sub-steps and involve 1M agents.

num. steps avg. tpf max. tpf min. tpf
1 12.070 37.204 10.020
10 13.428 38.632 11.087
100 47.828 61.519 44.756
1000 423.136 488.078 411.836

Table 3.3. Time per frame (in milliseconds) at different steps per frame. Simulations are
ran on a 8192× 8192 texture and involve 1M agents.

num. agents avg. tpf max. tpf min. tpf
1M 12.053 39.522 10.214
2M 19.112 37.205 17.306
3M 26.303 41.857 24.006
4M 33.510 53.710 31.114

Table 3.4. Time per frame (in milliseconds) at different number of agents. Simulations
are ran on a 8192× 8192 texture and use 10 sub-steps.

Number of Sub-steps. To show the impact of our movement parcellation pol-
icy, in Table 3.3, we show the average, maximum and minimum time per frame at
different number of sub-steps. We set the texture resolution to 8192 × 8192. As
for Table 3.2, simulations are done for 900 frames, fixing the other simulation pa-
rameters. These results show that one or ten steps perform similarly. Subdividing
by 100 or 1000 steps, the frame rate significantly drops. We conjecture that up
to 100 steps, the GPU threads warm-up cover a significant portion of the frame
time. This dependency on the number of sub-steps relates the execution time to
the mesh resolution. For denser meshes, the number of triangles crossed by a single
step increases, together with the number of sub-steps required to keep the result
consistent. This, in turn, increases the execution time.

Number of Agents. Finally, we are interested in studying the efficiency of our
implementation while varying the number of agents. Table 3.4 summarizes our
results over 900 frames. The increase in the average time per frame is almost linear
(about 7 ms at each increment of one million agents), showing our approach scales
well with the number of agents.

3.3 Results 65

Figure 3.10. Changes in the resulting pattern when varying the movement speed and
the evaporation rate. The change in movement speed scales up the pattern along each
column, making it wider. As the evaporation rate increases along each row, the agents
tend to form shorter chains and collapse into local clusters.

3.3.3 Families of Patterns

Our parameters allow to generate different types of pattern. The movement speed
controls the pattern scale; as we increase the velocity of the agents, the pattern be-
comes uniform, and local details tend to disappear. Figure 3.10 shows this variation
together with the variation in the evaporation rate. Here the values of the parame-
ters are linearly interpolated inside the ranges shown in Table 3.1. This parameter
weighs on the tendency of agents to form clusters. When the evaporation rate is
low, the pheromone stays on for longer, and agents can travel by longer distances
following it. As the evaporation rate increases, the agents tend to aggregate only
with other agents already near them, and thus they tend to form small clusters.

3.3 Results 66

Figure 3.11. Frames from simulations with the same mesh and initial conditions but with
different simulation parameters. The produced patterns have been used as composition
masks and details maps for more complex materials. The second row shows a close-up
detail of the surface.

3.3.4 Evolutive Procedural Texturing

The creation of complex patterns on meshes is a time-consuming task for texture
artists. For many applications, such as landscape generation or tile synthesis, proce-
dural texturing has become very useful and effective [170, 200, 132, 208]. Neverthe-
less, most of the literature is devoted to the generation of complex textures on planar
domains, and only a few works deal with general manifold meshes [188, 162, 84].
The ability to generate a broader range of complex patterns that follow the shape of
a mesh is of fundamental importance in generating a large variety of contents. More-
over, [114] shows that it is possible to obtain a variety of really different patterns
by simply tuning the simulation parameters, as shown in Figure 3.11.

Visualizing the evolution of patterns and effects using textures has been ex-
tensively used for time-dependent vector fields and scalar functions in 2D do-
mains [192, 22]. However, animating materials and textures over surfaces is cur-
rently limited to very simple shaders and texture changes. The evolution of slime
mold organisms on a surface effectively animates a coloration of the mesh at the
texture level. In Figures 3.1 and 3.11 we show how to exploit our method to simulate
properties like wood grain, metal incisions, or lava rivers.

3.3.5 Limitations

Our method inherits the main limitations of texture-based approaches. For example,
dealing with meshes with many small triangles may cause a performance drop due
to the high resolution required to model pixels and the step subdivision. However,
this does not impact the correctness of our method, and we expect this situation to
occur only for contexts where real-time performance is less relevant.

3.4 Conclusions 67

Moreover, if adjacent triangles in a mesh generate an angle smaller than 90
degrees can produce inconsistencies in reprojecting the agents. In this case, triangle
unfolding can be a more desirable option for moving the agent over the surface. For
this reason, we implemented the algorithm so that TangentStep can be viewed
as a black-box routine and replaced according to the user needs.

3.4 Conclusions

We presented a generalization of the slime mold algorithm to surface meshes and
an analysis of its behavior and controllability with simulation parameters. The al-
gorithm produces complex patterns on triangle meshes, behaving similarly to real
biological entities. We discussed the applicability of our method to computer graph-
ics tasks like procedural texturing. Finally, we discussed our GPU implementation
and its applicability to real-time texture animation.

We consider studying how molds evolve on surfaces with different geometrical
properties as an interesting future direction. This analysis could open to other
applications, e.g., extrapolating geometry descriptors or intrinsic properties of the
surface from the mold’s distribution.

68

Chapter 4

A Physically-Inspired Approach
to the Simulation of Plant
Wilting

Plants are among the most complex objects to be modeled in computer graphics.
While a large body of work is concerned with structural modeling and the dynamic
reaction to external forces, our work focuses on the dynamic deformation caused by
plant internal wilting processes. To this end, we motivate the simulation of water
transport inside the plant which is a key driver of the wilting process. We then map
the change of water content in individual plant parts to branch stiffness values and
obtain the wilted plant shape through a position based dynamics simulation. We
show, that our approach can recreated measured wilting processes and does so with
a higher fidelity than approaches ignoring the internal water flow. Realistic plant
wilting is not only important in a computer graphics context but can also aid the
development of machine learning algorithms in agricultural applications through
the generation of synthetic training data. This work was realized in collaboration
with Jonathan Klein (Ph.D.) and Torsten Hädrich (Ph.D.), to whom goes the credit
for realizing the models of the plants and designing the experiments, to Sören Pirk
(Ph.D.) and prof. Wojtek Pałubicki, both of which largely helped in defining the
positioning of this work in the state-of-the-art and in finding references from lit-
erature in biology, and to prof. Dominik L. Michels and prof. Emanuele Rodolà,
whose supervision in refining and organizing the work greatly improved the presen-
tation and the results. The results presented in this chapter have been published in
the proceedings of the ACM SIGGRAPH Conference and Exhibition on Computer
Graphics and Interactive Techniques in Asia (SIGGRAPH Asia) [159].

4.1 Introduction

High quality plant models are required as content in games and movies as well as for
applications in architecture, urban planning, and forestry [70]. Moreover, synthetic
data generated from detailed crop models is nowadays applied to train smart systems
carrying out computer vision tasks in agriculture [123]. For instance, SWEEPER
– a sweet pepper harvesting robot – has been successfully trained using synthetic

4.1 Introduction 69

0 hours 4 hours 8 hours 12 hours 16 hours

Figure 4.1. Temporal evolution (left to right) of the wilting process of a tomato plant
(Solanum lycopersicum) simulated with our approach (top) and captured using an ex-
perimental setup in the laboratory (bottom).

data to estimate the exact location of the individual peppers [293, 21].
While numerous studies in computer graphics and agricultural research have

provided solutions to dynamically simulate the 3D development of plants, these
works usually focus on the growth process itself [261]. Processes such as plant
reaction to stresses, e.g. disease or drought, are rarely simulated in a way that are
useable for rendering. The main reasons for this are twofold: on the one hand,
the detailed understanding of developmental processes controlling stress reactions
of plants is still an active topic of research in biology, and on the other hand, the
efficient integration of plant and mechanical signaling in a computer simulation
poses non-trivial numerical challenges.

Specifically, overcoming the challenge of comprehending how plants react to
drought is becoming an increasingly important task for humanity. More frequent
drought conditions due to climate change are widely believed to cause die-back of
forests in Europe, and unpredictable climatic events can have a detrimental impact
on yield production in agriculture [20]. Consequently, the phenomenon of plant
wilting is becoming more common in many regions.

In our method, we integrate a physical model of water distribution through the
plant’s vascular system which is essential for plant growth. We focus on the de-
scription of the wilting process as a result of insufficient water supply of the plant.
Our model is based on a partial differential equation (PDE) description of plant hy-
draulics and a simplistic model of evapotranspiration for leaves. This model allows
us to calculate the continuous water flow dynamics mapped to a discrete graph rep-
resentation of the plant structure. In contrast to other models of plant hydraulics
presented in the literature, our approach is based on efficient approximations of ana-
lytical solutions using an optimized backward difference formula integration scheme.

In summary: (i) we identify the importance of simulating the hidden water flow
inside the plant to faithfully recreate its dynamic behavior, (ii) we propose a simple
but physically inspired model to simulate said water flow, and (iii) we connect the
water flow to the shape change during wilting through a stiffness mapping, and
successfully recreate the wilting via a physical simulation.

4.2 Related Work 70

Input

Mass-Springs Models

Shape Matching

Finite Elements Methods

Position Based Dynamics

Physics Output

Topology Water Diffusion

Material
Parameters

Simulation

S
im

u
la
ti
o
n

D
o
m
a
in

Plug-and-Play Water Model

P
a
ra

m
e
te
r

S
p
a
ce

1
Figure 4.2. The water diffusion model we propose is designed to be a plug-and-play ex-

tension to different kinds of physical simulators. By using the topology of the simulated
plant, it can compute the complex behavior of the water diffusion inside the plant it-
self. The water distribution is then used by the physical simulation to compute wilting
deformations more realistically than those obtained by the manual tuning of the plant’s
stiffness.

4.2 Related Work

Faithfully modeling trees and plants is a long standing goal in computer graph-
ics research. Many of the early approaches focus on modeling the morphology of
branching structures. Methods exist to generate branching patterns based on frac-
tals [10], grammars [10], repetitive patterns [201], cellular automata [95], and even
particle systems [226]. L(indenmayer)-systems [220] enable generating plants based
on production rules that can be used to express branching patterns for a wide range
of plants. Combined with geometric modeling and user interaction, rule-based mod-
eling [141] allows generating highly complex tree models – even for less experienced
users. More recent procedural modelling approaches aim to express tree growth in
a phenomenological or self-organizing manner [205, 238, 254].

Several approach focus on reconstructing trees and plants based on sensor data.
Popular methods for tree reconstruction span from leveraging images [35, 135, 225,
264] and point clouds [150, 146], to videos [136], segmentation masks [11], silhou-
ettes [290], and envelope shapes [24]. Li et al. [140] reconstruct plants from sequences
of point cloud data to identify branching patterns to faithfully model budding and
bifurcation events for leafy plants.

4.3 Methodology 71

On a different trajectory researchers have explored to use sketch-based inter-
faces to model trees [199], plants [8], and even flowers [109]. Compared to other
approaches, sketch-based plant modeling provides more fine-grained control, which
often is of high relevance for content creation. Moreover, it has been shown that
sketch-based modeling can be combined with evolved procedural approaches to gen-
erate complex branching patterns with lightweight user intervention [151].

More recently, a number of methods focus on the dynamics and physically-
plausible modeling of plants. This ranges from interactively modeling and animating
the growth of plants [151, 215], the response of plants to physical phenomena, such as
wind [216, 96, 222] or fire [214], the simulation of the cambium of trees [129], to the
interaction of plants with their environment [216, 292]. Zhao and Barbic [301] as well
as Wang et al. [279] use finite element methods (FEM) solvers to simulate biophyical
and biomechanical deformations of plants to capture their plasticity and to generate
plant motion. Owens et al. [204] propose algorithms for modeling and animating
the development of inflorescences, while Ringham et al. [229] aim at increasing
the realism of flower models based on a combination of mathematical models for
pigmentation patterns. The simulation of biological and physical phenomena for
plants is often realized through efficient representations, such as plant modules [206],
particles [97], or discretization schemes that specifically consider the morphology of
plants, such as veins [111], or branches [214].

Closest to our work are the approaches of Hädrich et al. [97] and Shao et al. [243]
who also employ position-based dynamics [23] for simulating the growth of climbing
plants and the rod-dynamics of branching structures. Finally, our approach is simi-
lar to the objective of Jeong et al. [111] who also aim to simulate the morphological
changes of drying leaves. However, unlike these methods we propose a physically-
plausible diffusion model that allows us to simulate the water flow in the vascular
system and – consequently – the wilting of an entire plant.

4.3 Methodology

In this section, we analyze the process of water transport and evapotranspiration
inside plants. From that, we derive a computational model for simulating the water
diffusion, and we determine the system’s initial conditions.

4.3.1 Water Uptake and Loss Process

Plants lose a significant amount of water via evaporation and transpiration. About
95% of water loss happens on leaves and about 5% on the stem [232]. The loss
of water depends on the surface area and varies from the range [15, 250]g/(h ·m2)
during daytime down to [1, 20]g/(h ·m2) during night. Since transpiration happens
via wetting the surface of the plant’s cells, the water loss rate reduces as the plant
dries out [232].

Water uptake happens via a water potential gradient from the soil to the air,
passing through the roots, the stem, and the leaves. Water moves from areas with
higher potential to areas with lower potential, and according to Molz [183] one of
the simplest models for water transport is to relate the rate of water flow in direct

4.3 Methodology 72

proportion with the water potential difference, i.e.

∂θ

∂t
= −∆Ψ

R
, (4.1)

where θ is the amount of water, t is time, Ψ is the water potential, and R is the
resistance to the water flow.

Water potential depends on various properties like osmosis, gravity, and humid-
ity [263]. However, water pressure inside the cells of plants is usually the most
significant term; hence, we can approximate the potential by considering only the
pressure.

As the water transpires and evaporates, the pressure at leaves decreases, and
water starts moving upward more rapidly. However, if the water intake from the soil
is reduced (or stopped), the water leaving the lower parts of the plant is never re-
placed, and the pressure slowly decreases. Eventually, the water transport becomes
slower and slower until the plant runs out of water and dies completely.

4.3.2 Computational Model

We model a plant as a graph (i.e., as a pair of nodes and edges) that includes the
main structure (stem and branches) as well as the leaf veins. This allows for a
unified handling of all plant parts: Nodes in the main structure have a loss rate
ℓv = 0, whereas nodes representing the venation of a leaf have a loss rate ℓv = δ Av.
Here, δ is the water loss rate per surface area, and it is constant for the entire
plant, and Av is the leaf surface area covered by that node, which we approximate
as Av = rv hv. We approximate the node segments with a cylinder of radius rv and
height hv, from which we can compute the volume Vv. We associate to each node
the water amount θv contained in that segment, and we compute the water pressure
at the segment as Pv = θv

Vv
.

Finally, at each node, we also compute the water flow resistance through the
segment using the equation for circular pipes [45]: Rv = π r4

v
8 µ hv

, where µ is the
dynamic viscosity of the water. For the resistance to the water flow along an edge
e = (u, v), we average the resistances at the nodes Re = Ru+Rv

2 .
With all these quantities defined, we can set up a system of differential equations

from (4.1) and integrate the water loss induced by the transpiration of the leaves.
For each node v, said Nv the set of nodes adjacent to v, we have

∂θv

∂t
= −

∑
u∈Nv

Pv − Pu

R(u,v)
− ℓvθv = −

∑
u∈Nv

1
R(u,v)

(
θv

Vv
− θu

Vu

)
− ℓvθv . (4.2)

We now arrange all the water content values inside a vector θ = (θ1, · · · θn). We
also define two diagonal matrices DV and Dℓ, respectively filled with the volumes
and the water loss rates of the nodes. By doing so, we can rewrite the system in
(4.2) as follows:

∂θ

∂t
= R D−1

V θ −Dℓ θ =
(
R D−1

V −Dℓ

)
θ , (4.3)

4.3 Methodology 73

10−9

10−5

10−1

10−9

10−5

10−1

W
at
er

(g
ra
m
s)

10−1 100 101 102 103
10−9

10−5

10−1

Time (minutes)

1

Figure 4.3. Amount of water inside different parts of the plant at varying of time. The
thickness of the section determines the initial amount of water. The farthest the section
from the leaf, the more it retains water over time. Our water diffusion model is able
to capture the complexity of the water distribution, as the rate of water loss is not
constant over time.

where R is a symmetric matrix defined as

R = (rv,u) = (ru,v) =



1
R(u,v)

, u ∈ Nv ,

−
n∑

u=1
u̸=v

ru,v , u = v ,

0 , otherwise .

(4.4)

The matrix S = R D−1
V −Dℓ is a linear application that does not depend on the

water content and does not change over time. This means the system of differential
equations in (4.3) has a solution that can be computed analytically as

θ(t) = exp (S t) θ(0) , (4.5)

which gives us a formulation for evaluating the water content of the plant at each
time instant t, assuming the initial water distribution θ(0) is known.

In Figure 4.3, we show that the solution to these differential equations is able to
capture the complexity of the water distribution inside the plant. The water evo-
lution follows non-trivial curves and moves around, trying to equalize the pressure
everywhere, changing its local flow according to how fast the water transpires and
evaporates from the leaves.

4.3.3 Initial Conditions

For determining the system’s initial condition, we notice the following: a healthy
plant can replace all the water it loses via transpiration and evaporation. From the

4.4 Algorithmics 74

point of view of the water distribution, the plant does not lose water at all, and
hence, the water loss is 0 everywhere. By zeroing out the entire matrix Dℓ, we
see that the system in (4.3) tends to equalize the pressure everywhere. Since we
assume the wilting process to start from a healthy plant in stable conditions, we
initialize the water distribution so that the pressure is constant through the entire
plant, namely θv(0) = Vv.

4.4 Algorithmics

In this section, we provide an efficient method for computing the analytical solution
of our water model. We then describe an alternative technique for efficiently com-
puting a close approximation of the solution when the system becomes too large.
Finally, we show how our water model can be integrated with a physical solver to
simulate the dynamics of a wilting plant.

4.4.1 Efficient Evaluation

The analytical solution provided in (4.5) guarantees numerical stability and accu-
racy when computing the water diffusion, and allows for the evaluation of the water
distribution at any point in time without the need to simulate the entire diffusion
process or worrying about the size of the time steps. However, the matrix exponen-
tial is notoriously difficult to compute, and evaluating it at every frame can easily
become computationally unfeasible.

We propose a two-step solution that moves all the heavy lifting to the initial-
ization step and allows a real-time evaluation at every simulated frame. During the
initialization of the water model, we pre-compute the spectral decomposition of the
system matrix S = ΦΛΦ−1. We obtain the matrix exponential as

exp (St) = Φexp (Λt) Φ−1 , (4.6)

where exp (Λt) is computed by taking the component-wise exponential of the diag-
onal entries of Λt.

Note, that is is not required to explicitly compute the matrix exponential since
we are only interested in the matrix-vector product exp (S t) θ(0). We can rearrange
the computation order as

Φ
(
exp (Λt)

(
Φ−1θ(0)

))
, (4.7)

so that we only evaluate matrix-vector products. Furthermore, we do not require the
inverse of the eigenvectors Φ−1. We solve the linear system Φξ0 = θ(0) once during
the initialization and then compute the products Φ (exp (Λt) ξ0), where the product
exp (Λt) ξ0 is just a scaling of the entries of ξ0 by the entries of the diagonal matrix.
Said n the size of the system (i.e., the number of nodes in the tree structure), at
each step of the simulation, we only have to evaluate a single O(n2) operation,
which can be easily parallelized either on CPU or GPU for even more efficiency.

4.4 Algorithmics 75

0 100 200 300 400 500 600 700 800 900 1000

Number of Steps

10!8

10!7

10!6

10!5

10!4

10!3

10!2

A
v
er

a
g
e

R
el
a
ti
v
e

E
rr

o
r

"t = 10!2

"t = 10!1

"t = 100

"t = 101

Figure 4.4. Relative mean squared error of the solution obtained with BDF6 over time,
compared with the analytic solution and averaged across plants with different resolu-
tions. Each curve is obtained by selecting a different time step for the integration.

4.4.2 Handling of Large Plants

When dealing with small plants, the numerical stability of the analytic solution
comes in very handy. However, when dealing with larger plants with thousands of
nodes, the spectral decomposition becomes unfeasible. For huge models, even the
O(n2) matrix-vector multiplication becomes too costly.

To overcome the problem, we propose an alternative evaluation leveraging nu-
merical integrators. The stiffness of the problem leads us to rely on implicit stable
methods, and we choose to use a sixth-order backward difference formula (BDF6),
which is a notoriously stiffly stable algorithm [259].

The problem with this type of algorithms is that their solution can be com-
putationally costly to evaluate for large systems due to the implicit formulation.
However, by noticing that the system is linear and time-invariant, we can use the
efficient approach described by Cellier et al. [44]. We keep track of the last six water
evaluations in a n × 6 matrix Θ(t) and we store the coefficients of the algorithm
as α = 60

147 and β = 1
147 (−10, 72, −225, 400, −450, 360)⊤. By calling ∆t the

integration time step, and denoting by In the n× n identity matrix, we can obtain
the water distribution θ(t+ ∆t) at time t+ ∆t by solving the sparse linear system

(In − α ∆t S) θ(t+ ∆t) = Θ(t)β . (4.8)

We notice that the matrix In − α ∆t S is sparse, each row generally containing
no more than five or six entries. Furthermore, as the system is a constant across the
entire simulation which allows us to apply an efficient sparse LU pre-factorization.

To verify the efficacy of this solution, we select a sample of different plants
ranging from 300 to 2k nodes and simulate 1000 steps. We compare the results
from the simulation with those obtained with the analytic solution and average

4.4 Algorithmics 76

Root Distance Radius Ours

1

Figure 4.5. Comparison of two different approaches for computing the elasticity modulus
of a plant against our method based on the water diffusion. In all three cases, the
elasticity modulus at the root node is the same. Left: the elasticity modulus is computed
as 1/(1 +d) where d is the topological distance of the node from the root node. Middle:
the elasticity modulus is computed as a linear function of the section’s radius. Right:
the elasticity modulus is computed from the amount of water in the section obtained
from the simulation of the water diffusion.

the relative error across all the plants. We also consider the error at varying the
time step, as the step size heavily affects the quality of the simulation. Figure 4.4
shows the results of our experiments, proving that our solution is stable over time
and robust even to large time steps. The error accumulates linearly over time and
increases linearly as the step size increases. However, the error always stays in an
acceptable range, except for long-lasting simulations with very large time steps.

4.4.3 Integration with Physics Simulators

Our water model is independent from the physical simulation of the actual plant
and can be easily integrated with different solvers. For our implementation, we rely
on a position based dynamics (PBD) solver since it is a well-established method for
the simulation of plants and trees within the graphics community [69, 214].

For the modeling of the plants, we use the representation proposed in Deul et
al. [69], where each plant segment is a cylinder, connected to each of its neighbors
via a zero stretch-bend-twist constraint. According to Kim et al. [121], the elastic-
ity modulus of the cells of a plant increases with the relative water content. We
approximate this effect through the following logistic function for computing the
elasticity E from the water content:

E(θ) = 1
1 + exp (−κ (θ − χ0)) . (4.9)

The function has two tunable parameters which are determined during calibra-
tion. χ0 is the shift of the logistic curve along the axis of θ, while κ controls its
steepness.

We find, that χ0 should usually be set to zero to immediately start the wil-
ing process while κ acts more as a material parameter that abstracts the complex
cellular structure of plants. A deeper evaluation of this is found in the next section.

4.5 Results 77

0 0.5 1 1.5

8

10

12

Time (days)

W
at
er

(g
ra
m
s)

0 1 2
2

4

6

8

1

Figure 4.6. Comparison of the water curves obtained from real data (blue curves) and
simulation (orange curves) on two different tomato plants. The initial water content of
the simulation is matched to the real plant, and we used the same water loss rate for
both plants.

Note, that the dynamic simulation of the plant is entirely rod based in our
approach. Since leaves are represented through their veins in the plant graph, their
deformation naturally emerges. While we find that this gives convincing results
in practice, methods with a more detailed focus on leaf deformation have been
presented as well [111].

4.5 Results

In this section, we provide an evaluation of our water model against the actual
wilting processes of real plants. We then show how our model can be calibrated to
simulate various types of plants and model different types of diseases.

4.5.1 Water Model Evaluation

To evaluate our water diffusion model, we record wilting processes of real plants
and compare the resulting data with those coming from our simulation of the wa-
ter transport. This evaluation is however fundamentally limited by the practical
difficulties in measuring the water content in individual plant parts. These mea-
surements can be acquired in two different ways: For highly accurate results, the
plant part is separated by cutting it off and then immediately weighted on a highly
sensitive scale. It is then slowly but thoroughly dried (e.g. 15 hours at 80◦C [121])
and weighted again. The destructive nature of this method prohibits obtaining a
time series of water measurements.

Alternatively, different types of measurement devices for sap flow can be at-
tached to plant stems [251]. Absolute water values can be obtained through in-
tegration of the flow, but these devices are rigid and comparably heavy and thus
significantly interfere with the dynamic deformation through wilting. They further-
more require a minimum steam diameter making them not applicable for most of
our examples (especially not for the thin branches that start wilting first).

4.5 Results 78

We can, however, measure the total water content of a plant over time. To this
end, the plant is carefully removed from the surrounding soil and placed in a pot
filled with dry sand on top of a centigram precise scale. Since all water inside the
setup is now situated inside the plant, a weight loss of the whole system during the
wilting process directly corresponds to a water loss of the plant.

The initial water content of the plant is computed from the weight difference
of the plant at the beginning and end of the wilting process. The virtual plant is
modeled after the real plant by using photographs from multiple directions. The
radii of each branch and the leaf sizes are adjust to fit the real plant. For all our
experiments, we modeled plants with 500 to 2000 nodes. We can then simulate
the wilting of the virtual plant and compare its water loss curve directly to the
real plant. Figure 4.6 shows the results of this experiments on two different young
tomato plants. We find, that both the real and simulated plant exhibit the same
exponential water loss over time.

To evaluate not just the total amount of water inside the plant but also its
distribution we resort to a qualitative analysis due to the aforementioned reasons.
In Figure 4.5, we compare the plant shape resulting from our wilting model to
two different naive ones. We find, that our approach is superior in catching the
variations in plant stiffness which gives credit to our water distribution model.

4.5.2 Environment and Material Calibration

The two main parameters used for calibration are the water loss rate δ (expressed
in g s−1 cm−1) and the elasticity mapping slope κ (expressed in g−1). While δ is
a combination of the environment (e.g. temperature, humidity, irradiation, etc.)
and plant material (different plants can evaporate a different amount of water per
leaf area and time), κ is a pure material parameter the describes how sensitive a
plant is to water loss. In our experiments we keep the environmental conditions
constant by performing them inside a room with constant temperature, humidity
and illumination. We explore how different combinations of these values affect the
wilting process in Figure 4.7.

4.5.3 Descriptive Power

We now show a variety of different results that can be achieved by our method.
By tuning the model’s parameters, we can simulate various types of crop plants,

and we are not constrained to plants growing up from the soil. Figure 4.8 shows
an example of the simulation of a hanging ivy plant. Ivy is notoriously resilient to
water absence, so we tuned down the water loss rate and the slope of the mapping
from water to elasticity. At the beginning of the simulation, the main stems are
strong enough to keep their shape even if the plant is growing from top to bottom.
After some time without water, the plant loses its stiffness and starts to fall down
following gravity.

Our model is also capable of handle larger plants, such as a found in industrial
greenhouse environments. These are often forced into a specific and more efficient
shape (in terms of growth and harvest) by attaching them to a supporting structure
such as grids or wires. We implement this through positional constraints on specific

4.5 Results 79

3 · 10−4 6 · 10−4 9 · 10−4

75
0

10
00

12
50

δ

κ

1
Figure 4.7. The tunable parameters determine the wilting behavior of the plant. As the

water loss rate (δ) of the plant increases, the plant loses water more rapidly and wilts
faster. In contrast, increasing the steep (κ) in the mapping from the water content to
the elasticity modulus determines the difference in stiffness between parts retaining the
water differently.

plant nodes in the physical solver. An example of a 2000 node tomato plant is
shown in Figure 4.9. Scenarios like this can be used to train AI tasks in industrial
farming applications [123].

Being derived from the connections on a tree structure, our water diffusion model
can also be used to model certain common diseases and physical damages that alter
the plants ability to transport water to parts of it. To represent this kind of damage,
we increase the water flow resistance of a connection (or set it to an infinite value
to completely disabled transport) to reduce the amount of water that can reach the
top parts of the plant. We can also tune down (or zero out) the loss rate of the
bottom part of the plant if we want it to be in a healthy state. In Figure 4.10, we
show an example of disease modeling where a point of the main stem is damaged

4.5 Results 80

t = 0 t = 1 day

1

Figure 4.8. Our technique generalizes well to different types of plants. Even if hanging
plants grow downward, their branches could be stiff and resistant. As the water amount
decreases, they tend to fall down, only affected by gravity.

t = 0 t = 1 day t = 2 days

Figure 4.9. Simulation of a large plant with 1954 nodes. As it is common in industrial
greenhouses, the main stem is fixed to a supporting structure at several places, which
prevents the plant from entirely collapsing during wilting.

4.5 Results 81

t = 0 t = 12h t = 24h

1
Figure 4.10. Plants can be affected by diseases that prevent water from diffusing correctly.

With our model, we can simulate the entire plant and still obtain this behavior by simply
cutting or weakening a connection at some node. The cut prevents water from flowing
in some parts of the plant, which will wilt without affecting the sections connected to
the root.

and cannot bring water to the top branches and leaves. We see that the top part
of the plant dries and wilts, whereas the rest of the plant keeps its shape.

4.5.4 Performance

As discussed in Section 4.4, our method consists of simulating the water diffusion
inside the plant, and then mapping the water content to the stiffness, leveraging
on the PBD solver to simulate the dynamics of the plant. Since our method relies
on external solvers for simulating the plant dynamics, we evaluate the performance
by coupling our method with a state-of-the-art PBD simulator, comparing at each
frame the time required by solving for the physics of the system with the execution
time of our water model.

In Figure 4.11 we show how the execution time for a single simulated frame is
distributed between the evaluation of the water model (blue) and the simulation
of the physics dynamics with the PBD solver (orange). The time for the water
model evaluation also accounts for the time required by the mapping of the water
to the stiffness. We notice that the physics solver computationally dominates the
simulation step across different plants with varying number of nodes. As both
methods scales linearly, the time ratio remains constant around 1%.

The amount of simulated frames required is situational dependent. The dy-
namic solver must converge to an equilibrium state, which depends on the plant
geometry. Since the water model is evaluated much faster, the stiffness is adjusted
after each PBD iteration. Smooth animations, such as shown in the supplemental
video, generally require more frames for convincing visual quality, e.g. the teaser
scene was produced with 100 k simulator frames. On the other extreme, producing
static images of a few wilting states require far less frames, e.g. the complex plant
in Figure 4.9 was computed with just 2000 frames.

4.6 Conclusion, Limitations, and Future Work 82

300 617 711 1042 1387 1964 8961

Number of Nodes

10!2

100

102

T
im

e
(m

s)

Water Model
PBD Solver

Figure 4.11. Distribution of the average execution time between the water model (blue)
and the PBD solver (orange) at every time step for different plants. The PBD solver
is computationally dominant independently on the number of nodes. The experiments
have been carried out on a machine equipped with an Intel i7-10700K CPU and 32 GB
of main memory.

4.6 Conclusion, Limitations, and Future Work

We propose a physically-inspired diffusion model for simulating water distribution
inside a plant. Our model follows a computational scheme that can be computed
efficiently, and we also propose an approximation that introduces a negligible error
and scales well to problems with large sizes. The water diffusion model is defined
to work independently in a parametric space and can be integrated with any phys-
ical simulator for simulating the dynamics of a wilting plant, other than existing
approaches for simulating wilting leaves. In contrast to hand-crafted wilting ani-
mations and ad-hoc simulations, our pipeline exposes only two parameters that can
be adjusted to simulate a variety of different plants.

The definition of the problem can be adjusted with further intuitive tuning to
match plants affected by certain diseases and physical damages. Finally, we evaluate
the model showing that its results match experimental data and that the simulated
wilting process is visually convincing when compared to real wilting plants.

Our approach can be extended in several ways: Ligneous (woody) plant parts
are more resistant to deformation through water loss. This could be modeled by
allowing varying κ values for different plant parts. The current diffusion model also
neglects the capability of certain plants to react to external stress, such as closing
the leaf cells to reduce water evaporation. However, these complex processes are still
not fully researched, which makes them very hard to model in a computer graphics
contexts. It would furthermore be interesting to directly couple more advanced
models for leaves, fruits, and flowers [111, 120] with our water model to increase
realism of plant parts that are not modeled well by elastic rods.

83

Chapter 5

Massive Uniform Mesh
Decimation via a Fast Intrinsic
Delaunay Triangulation

Triangular meshes are still today the data structure at the main foundations of
many computer graphics applications. With the increasing demand in content va-
riety, a lot of effort has been and is being put into developing new algorithms to
automatically generate and edit geometric assets, with a particular focus on 3D
scans. However, this kind of content is often generated with a dramatically high
resolution, making it impractical for a large variety of tasks. Furthermore, procedu-
ral assets and 3D scans largely suffer from poor geometry quality, which makes them
unsuitable in various applications. We propose a new efficient technique for mas-
sively decimating dense meshes with high vertex count very quickly. The proposed
method relies on a fast algorithm for computing geodesic farthest point sampling
and Voronoi partitioning, and generates simplified meshes with high-quality uniform
triangulations. The work presented in this chapter has been realized in collaboration
with Daniele Baieri (MSc.), who largely helped in finding a relevant literature and
deeply studied the pre-processing step to produce an accurate complexity analysis,
and prof. Emanuele Rodolà, to whom goes the credit for improving the presenta-
tion and for being an invaluable guide throughout the relevant related literature.
The seminal results presented in this chapter have been published as a pre-print on
arXiv [158].

5.1 Introduction

In recent years, the request for content variety in many computer graphics appli-
cations has increased dramatically. Especially in the entertainment industry (e.g.,
videogames and movies), the demand for a wide range of different assets is becoming
overwhelming. Artists and researchers work continuously to design new methods
for automating and simplifying content production and editing.

Technologies such as 3D scanning have been game-changing in this regard, since
a wide variety of assets can be produced in virtually no time from real-world objects.
However, these types of technologies notoriously suffer from high-frequency noise

5.1 Introduction 84

1.26M 100 1k 10k 100k

500k 100 1k 10k 100k

Figure 5.1. Examples of our method applied to dense shapes. From left to right: the
original high-density shape, followed by the corresponding remeshed variants, with an
increasing number of vertices. The sampled points are evenly spaced, and the triangu-
lation is uniform, without sharp angles or degenerate triangles.

and poor quality of generated connectivity, other than the output being extremely
dense in terms of vertex count [26].

This is where classical geometry processing comes into play, providing a whole
range of mesh simplification and remeshing tools from its vast literature, in order
to reduce the complexity of the geometry and increase the overall quality. Mesh
processing is still today a leading topic in computer graphics, and a lot of research
in this area focuses on simplifying complex geometries or increasing their quality.
However, the simplification task always focused on deleting a limited amount of
geometric elements to preserve the details of the original geometry as much as
possible [90, 125]. On the other hand, remeshing algorithms completely reorganize
and redesign the mesh in order to obtain a high-quality model that fits the original
shape well, but without caring much about the density of the output geometry [119].

Dense meshes and high vertex count are very effective for representing high-
frequency details of the surface, which can be useful in many applications, like 3D
printing. However, there is a variety of other fields where a low polygon count is
mandatory. For example, in real-time rendering a small number of faces is vital to
guarantee efficiency [289, 284], and in spectral geometry processing a lot of research
is devoted to design techniques for speeding up computation on meshes with many
vertices [187, 161], which would otherwise be unfeasible. Our goal is to provide
a novel approach to the mesh simplification task for addressing the problem of
massively decimating large meshes, while still retaining high-quality connectivity.

To summarize, our contribution is a fast algorithm based on the geodesic De-
launay triangulation, which can efficiently simplify very large meshes, generating
a low-resolution model which approximates the underlying geometry and provides
robust connectivity without poor quality elements such as sharp angles or degen-
erate triangles (see Figure 5.1). To achieve this task, we also provide an efficient

5.2 Related Work 85

algorithm to approximate farthest point sampling based on the geodesic metric and
geodesic Voronoi partitioning, and we show how to improve the robustness of our
algorithm through a smart surface resampling strategy.

5.2 Related Work

Our method falls into the category of mesh simplification algorithms, as its goal is
to massively reduces the vertex and face count of the input shape. However, rather
than a subtractive method which iteratively removes geometric elements or clusters
vertices [33], we propose an algorithm that samples the surface and computes a new
connectivity. For this reason we consider it appropriate relating it to remeshing
techniques as well.

5.2.1 Remeshing

Remeshing is a classic topic in geometry processing which has been vastly studied
for decades. In general, the goal of remeshing algorithms is to alter geometry and
connectivity of an input mesh in order to improve some measure of quality, while
providing a good approximation for the input.

Part of the theory behind our proposal is grounded in traditional remeshing tech-
niques. The seminal studies for isotropic (i.e., guaranteeing well-shaped elements)
remeshing [28, 52, 239] leverage the notion of restricted Delaunay triangulation,
denoted DelS(P) for a surface S and a point set P (defined as the sub-complex
of the Delaunay triangulation of P whose dual Voronoi faces intersect S), whereas
others impose constraints on the shape of geometric elements and solve optimization
problems [32].

A significant fraction of remeshing algorithms are based on Centroidal Voronoi
Tessellations [74], which are Voronoi decompositions such that for each texel the
generating point is also the center of mass. Particularly relevant to our work are
the extensions of CVT where the Voronoi decomposition is computed based on
the geodesic metric, also known as geodesic-based remeshing methods: Wang et
al. [281, 280] showed two algorithms to compute intrinsic (i.e. geodesic) CVT on
triangle meshes. Liu et al. [149] improved this previous proposal, by showing how to
avoid local optimal solutions and proposing an algorithm with provable probablistic
convergence to the global optimum. Subsequently, a method to compute intrinsic
Delaunay triangulations as the dual of intrinsic CVT was developed [147].

Yi et al. [295] and Liu et al. [148] proposed simplification-based remeshing
approach which provide satisfying approximations (as they both explicitly optimize
for the Hausdorff metric) and allow for control over output vertex count. How-
ever, both these methods exhibit super-linear time complexity (O (n log(n)) and
O (nK log(K)), respectively) both in theory and in practice.

For a complete review of the remeshing literature, we refer to the survey from
Khan et al. [119] and the book from Botsch et al. [33].

5.3 Method 86

5.2.2 Mesh Decimation and Simplification

Reducing the size of a mesh, in terms of number of vertices and polygons, is a task
akin to remeshing which is mainly motivated by the necessity for lightweight 3D
models in a wide range of graphics applications. A very popular algorithm, which
can often be found implemented in 3D graphics tools, is due to Garland et al. [90]:
their method iteratively contracts arbitrary pairs of vertices (thus also handling dis-
connected components, allowing to join them), maintaining suface approximation
error via quadric metrices. This greedy scheme, which was formalized by Kobbelt
et al. [125], is actually common to several previously proposed simplification meth-
ods [106, 104, 242], which only differ in the chosen heuristics for pair selection, error
metric, and simplification operation (e.g. vertex contraction, edge collapse).

Other works focused on recomputing a decimated triangulation of a surface
trying to optimize different quality criteria, as examined by the survey from Bern
et al. [27]. More similar in spirit to our work is the idea proposed by Li et al. [138],
which tries to condense remeshing and simplification in a single algorithm that
produces a non-obtuse decimated triangulation of a given surface. However, the
method offers no guarantees on the decimation task, as the resulting meshes could
even be more dense than the input.

Mesh decimation has also been studied in recent literature, under novel points
of view or exploiting new geometric optimization frameworks. DeCoro et al. [66]
proposed a scheme for GPU implementations of quadric metric decimation, showing
that the efficiency gains are sufficient to run the algorithm in real time. The spectral
geometry processing framework can be applied to mesh decimation as showed in
[133], by requiring the simplified mesh to preserve spectral features of the original.
Finally, Potamias et al. [219] leveraged geometric deep learning in order to optimize
a data-driven decimation model which has the advantages of being differentiable and
also considerably faster than traditional algorithms.

5.3 Method

We provide a detailed explanation of our method. First, we give a high-level
overview of the algorithm, highlighting its properties. Then, we provide an in-depth
description of the single steps, focusing on our design choices aimed at improving
the performance and the quality of the output.

5.3.1 Delaunay Remeshing

We are given a triangular mesh M = (V,E, T), where
• V ⊂ R3 is a set of vertices;
• E ⊂ V 2 is a set of edges between vertices;
• T ⊂ V 3 is a set of triangles composing the surface.

and we denote by δM : V × V → R the geodesic distance between pair of vertices
on M.

Our approach consists in sampling the surfaceM evenly, and using the geodesic
distance to define a non-Euclidean Delaunay triangulation between these vertices
in the mesh domain. The process is summarized in Algorithm 5.1.

5.3 Method 87

Algorithm 5.1 Delaunay remeshing algorithm.
procedure DelaunayRemeshing(M = (V,E, T), n)

FPS ← FarthestPointSampling(M, n, δM)
VP ← VoronoiPartitioning(M, FPS, δM)
DT ← Voronoi2Delaunay(M, VP)
return (FPS, DT)

end procedure

Figure 5.2. Examples of duality between the Voronoi partitioning and Delaunay triangu-
lation problems. The centroids of adjacent Voronoi texels (separated by the blue lines)
are connected together, forming a triangular Delaunay connectivity (orange lines).

We first compute a farthest point sampling of M, using the geodesic distance
δM as metric. This ensures that M is uniformly sampled, and that the sample
points are approximately evenly spaced according to the metric of the mesh.

Since the mesh domain is equipped with a non-Euclidean metric, the Delaunay
triangulation cannot be computed with well established approached like the Bowyer-
Watson algorithm [34, 283]. Instead, we rely on the duality between the Delaunay
triangulation and the Voronoi partitioning [15], which has already been generalized,
exploited and successfully used on manifold domains [280, 147]. The example in
Figure 5.2 shows that this duality is independent on the choice of metric, and holds
both in planar and non-Euclidean domains.

Using the geodesic metric, we partition the mesh into Voronoi texels, each having
as a centroid a vertex from the farthest point sampling. The partitioning is then used
to compute the geodesic Delaunay triangulation, producing a triangular connectivity
of the sample points. Finally, we move back to the Euclidean domain, and we
connect the points using straight edges in R3, following the connectivity computed
by the algorithm.

By construction, the sampled vertices are uniformly sampled from the surface
with approximately even spacing. And, since the triangulation is performed di-
rectly on the mesh domain, the triangles are guaranteed to intersect the original

5.3 Method 88

Algorithm 5.2 Voronoi Farthest Point Sampling algorithm.
procedure VoronoiFPS(M = (V,E, T), n)

i← random index in [1, |V |]
S ← {i}
D ← δM(V, Vi)
P ← a vector of length |V | initialized to i
for h← 2 to n do

// Find the next sample
p← arg max1≤j≤|V |(Dj)
Dp ← 0
S ← S ∪ {p}
Q← {p}
// Expand from p, updating distances and partitions
while Q ̸= ∅ do

q ← arg maxj∈Q(Dj)
Q← Q \ {q}
for r ∈ adj(q) do

if Dr > δM(Vp, Vr) then
Dr ← δM(Vp, Vr)
Q← Q ∪ {r}
Pr ← p

end if
end for

end while
end for

end procedure

surface. The algorithm produces a triangulation which follows the original shape
and whose triangles have a roughly uniform area. Moreover, since the triangulation
is Delaunay, it provides robustness guarantees on the shape of the triangles.

5.3.2 Voronoi FPS

The major bottleneck of the procedure we described so far is the computation of
the farthest point sampling, followed by Voronoi partitioning, both occurring in the
mesh domain. To overcome this problem, we decide to combine the two steps in a
single procedure, exploiting the properties of both to design an algorithm which is
faster by orders of magnitude.

By approximating the geodesic distance with a shortest path on the mesh-graph,
we setup a modified Dijkstra algorithm with early-stops, as shown in Algorithm 5.2.
Here, we denote the i-th vertex of the mesh as Vi and, with an abuse of notation,
we write δM(V, x) to identify the vector of geodesic distances from all the vertices
in V to the vertex x.

Theorem 5.1. Given a triangular mesh M and a number of vertices n, Algo-
rithm 5.2 computes a geodesic farthest point sampling S of size n and partitions M
with a geodesic Voronoi decomposition whose centroids are the points in S.

5.3 Method 89

Proof. To prove the correctness of the algorithm, we first show that the vector D
always stores the shortest distance from the set of sample points. Before the first
iteration, any point can be selected and the vector D stores the shortest distances
from that point. When a new point q is selected, the mesh-graph is visited start-
ing from q. For any visited vertex r, the value Dr is updated with the distance
δM(Vp, Vr) if and only if δM(Vp, Vr) is smaller than the current distance from the
sample set.

Since D stores the shortest distance from the current sample set, taking the
point that maximizes that distance at each iteration guarantees that at the end of
the algorithm S contains a valid geodesic farthest point sampling. Moreover, since
the partition of any vertex r is updated with the current sample point p if and only
if the distance δM(Vp, Vr) is smaller than the distance to any other sample point in
S, at the end of the algorithm the vector P contains the correct geodesic Voronoi
partitioning of M which uses the sample points S as centroids.

To study the asymptotic complexity of the algorithm, we need to focus our
attention on the fact that, at each iteration, we visit an increasingly smaller subset
of the mesh. Since the vertices are added to the queue only if the distance from
the current sample p is smaller than the distance from any other sample, the visit
only covers the current Voronoi partition of p. By assuming a uniform distribution
of the vertices, at the iteration h the visited sub-graph has size approximately |V |/h.
By using the appropriate data structures (i.e., priority queues, adjacency graphs),
the complexity of a single iteration is O

(
|V |+|E|

h log
(

|V |
h

))
. Taking out the maths,

the total complexity of the algorithm is

O ((|V |+ |E|) log (|V |) Hn) ≈ O ((|V |+ |E|) log (|V |) log(n)) , (5.1)

where the harmonic number Hn is approximately the natural logarithm [57].
Theoretically, the loop is dominated by the O (|V |) arg max function, which

would keep the total complexity to O (n|V |). However, finding the arg max in a
vector is, in practice, a fast operation which extensively takes advantage of the
cache locality, and thus does not have a noticeable impact on the algorithm’s per-
formance.

5.3.3 Dual Triangulation

Once we obtained the Voronoi partitioning of a farthest point sampling, computing
the Delaunay triangulation is quite straightforward. We start from an empty set of
edges E′ and we iterate over all the edges e ∈ E of the mesh M. As long as the
edge e = (Vi, Vj) connects two nodes belonging to different partitions Pi ̸= Pj , we
create a link between VPi and VPj and we add it to E′.

This process leaves us with a graph G = (S,E′), which represents the mesh-
graph of the decimated mesh. To obtain the decimated mesh M′, we visit the
graph G and find all the three-cycles, which define the faces of M′. Figure 5.3
depicts an example summarizing the entire procedure.

5.3 Method 90

Figure 5.3. An example of the behavior of our algorithm. The input geometry (first) is
sampled and partitioned using Algorithm 5.2 (second). The connectivity of the sampled
points is then computed using the underlying original geometry (third) and the resulting
triangulation is given in output as a mesh (fourth).

i j

k mj

i

j

k

mimj

c
i j

k

i j

k

mimj

mk

Figure 5.4. Resampling scheme of the triangles, depending on the number of split edges.
Oversize edges are identified in red, and the added connectivity in green.

5.3.4 High-Density Sampling

Sometimes triangles in the input mesh may be highly non-homogeneous, and very
large triangles can have a negative impact on the uniformity of the remeshed shape.
Generalizing Algorithm 5.1 to include face sampling is certainly possible; yet, it
would be very expensive in terms of computational costs, as computing exact
geodesics which include face sampling is rather costly and would not allow to take
advantage of the benefits of Algorithm 5.2.

We propose an alternative method based on resampling the mesh as a pre-
processing step. Statistically, triangular meshes have triangle count ~3 times the
number of vertices. Given the total area AM of the original shape M, we can
estimate the average triangle area for the output mesh as AE = AM/3n, being n the
number of vertices of the remeshing. An equilateral triangle of area AE has each
side of length ℓ =

√
2AE/

√
3, so we split in half every edge with length greater than

ℓ and we insert a new vertex in the midpoint. We then split the mesh triangles
depending on the number of split edges incident on that triangle, and iterate the
process until no edges are oversize.

We provide the complete pseudocode for the resampling algorithm in Algo-

5.3 Method 91

Algorithm 5.3 Mesh resampling algorithm.
procedure Resampling(M = (V,E, T), ℓmax)

ξ ← +∞
while ξ > ℓmax do

// Mark all long edges
for e ∈ E do

ξ ← max(∥e∥2, ξ)
if ∥e∥2 > ℓmax then

Mark e for splitting
end if

end for
// Split according to scheme in Figure 5.4
for t ∈ T do

ωt ← number of marked edges incident on t
v0, v1, v2 ← vertices opposite to edges e0, e1, e2
m0,m1,m2 ← midpoints of edges e0, e1, e2
if ωt = 0 then

continue
else if ωt = 1 then

ei ← marked edge
T ← T ∪ {(vi, mi, vj), (vi, mi, vk)}

else if ωt = 2 then
ei, ej ← marked edges
c← 1

4(vi + vj +mi +mj)
T ← T ∪ {(mi, mj , vk)}
T ← T ∪ {(mi, mj , c), (vi, vj , c)}
T ← T ∪ {(mi, vj , c), (vi, mj , c)}

else if ωt = 3 then
T ← T ∪ {(m0, m1, m2), (v0, m1, m2)}
T ← T ∪ {(m0, v1, m2), (m0, m1, v2)}

end if
T ← T \ {t}

end for
Recalculate E from T

end while
end procedure

rithm 5.3. The algorithm recursively split the edges in half and recompute the
connectivity of the mesh, until no edge is longer than the given threshold.

At every recursion, all the edges longer than the threshold ℓmax are marked for
splitting and the length ξ of the longest edge is computed.

Then, we perform an iteration over all the triangles, searching for the marked
edges incident on every triangle t. The splitting scheme is summarized in Figure 5.4.

5.3 Method 92

• If the edges incident on t are not marked, than t can be kept as is, and no
new triangles or edges are added.

• If t has only one marked incident edge, we split that edge in half and create
two new triangles. However, since the splitted edge cannot be longer than
the sum of the other two edges, the two halves created are shorter than the
threshold. Moreover, the newly added edge is bounded by the two short edges.
Hence, the new edges and triangles will not be splitted at the next iteration.

• If t has two marked incident edges, we split them in half and connect the
midpoints and create a new triangle and a quad. This new connection is half
the shorter edge, hence the triangle has at least one short edge. Even if the
quad could be splitted in two triangles, we decide to add a new vertex at the
barycenter of the quad and create four triangles, to enforce a symmetry in the
split and mitigate the formation of new long edges. We have no guarantees
for these triangles, but at least two of them must have at least one short edge.

• If the edges of t are all marked, we split them and connect all the midpoints,
creating four new triangles. For these triangles, we cannot make any assump-
tion.

Finally, if t has at least one marked edge, we remove it from the old connectivity,
as it has already been replaced.

Once all the triangles have been split, we recompute all the edges using the
triangles connectivity and we start a new iteration.

By using the appropriate data structures (i.e., hash sets and hash maps), we
can achieve the operations for each edge and triangle in constant time, computing
each iteration in O (|E|+ |T |) time, and we avoid an expensive recomputation of
the triangles adjacency map at every loop cycle. Furthermore, expanding the splits
from the edges allows us to avoid unnecessary splits of triangles that are already
small enough.

Theorem 5.2. LetM = (V,E, T) be a triangular mesh and n the number of output
vertices for our decimation algorithm. Given the definition for ℓmax =

√
2AM/3n

√
3,

ê = arg maxe∈E∥e∥, q = ∥ê∥/AM, the time complexity of our resampling procedure
is

O (qn · log (qn) · |T |) . (5.2)

Proof. We start by observing that the outer loop of the algorithm runs for exactly
d = ⌈log2 (∥ê∥/ℓmax)⌉ iterations, which is the minimum number of subdivisions
which would make the longest edge in M shorter than ℓmax. Thus, the worst-case
complexity of the outer loop is O (log(∥ê∥/ℓmax)). Plugging the definition for ℓmax
and removing constant factors, we may write the outer loop complexity as

O
(

log
(∥ê∥
ℓmax

))
= O

log

 ∥ê∥
√

2AM/
√

3n
√

3


= O

(1
2 log

(
n∥ê∥
AM

))
= O (log (qn)) .

5.3 Method 93

The inner loop complexity analysis, on the other hand, is complicated by the
variations in the size of the mesh. We perform the analysis by only considering the
triangle loop, since it is often assumed that for triangle meshes |E|, |T | = O (|V |).
Let {Ti}di=0 be the sequence of triangle sets generated through the execution of the
algorithm, where T0 = T . The sequence is non-decreasing in size (since if there are
no splits, the algorithm terminates), thus the last element will be the largest.

In order to evaluate |Td|, we establish the following recurrence equation following
the splitting schemes from Figure 5.4, where T k

i = {t ∈ Ti : t was split k-ways}:

|Ti+1| = |T 0
i |+ 6|T 1

i |+ 15|T 2
i |+ 4|T 3

i | . (5.3)

To estimate |T k
i |, we have to consider the probability of any edge being oversize at

the i-th step pi. With a reasonable assumption of independence, one can find for
any triangle t ∈ Ti:

P (t ∈ T k
i) =


(1− pi)3 k = 0 ,
3pi(1− pi)2 k = 1 ,
3p2

i (1− pi) k = 2 ,
p3

i k = 3 .

(5.4)

And conclude that E
[
|T k

i |
]

= P (t ∈ T k
i)|Ti|. Substituting back into Equation (5.3)

and carrying out the math, you get

|Ti+1| = (−6p3
i + 6p2

i + 3pi + 1)|Ti| = c(pi)|Ti| . (5.5)

We consider the worst case for increase in number of triangles, that is, pi con-
stant and set to maxp∈[0;1] c(p). The result would be p = 0.8604 and |Ti+1| =
c(0.8604)|Ti| = 4.201|Ti|. In order to solve for Td, we apply the definition:

|Ti| =
i−1∑
j=0

4.201|Tj | = 4.201|Ti−1|+
i−2∑
j=0

4.201|Tj |

= 4.201|Ti−1|+ |Ti−1| = 5.201|Ti−1|
= 5.201 · 5.201|Ti−2| = · · · = 5.201i−1 · 4.201|T0| .

(5.6)

And finally, |Td| = 5.201d−1 · 4.201|T |. Recalling that d = O (log(qn)), the asymp-
totic complexity of our resampling algorithm is:

O
(
log (qn) · 2O(log(qn)) · |T |

)
= O (qn · log (qn) · |T |) . (5.7)

This procedure certainly introduces a significant computational overhead, as it
increases the size of the input mesh, on top of its already significant cost. However,
it is very helpful with respect to output quality when dealing with highly non-
homogeneous meshes, as shown in the example from Figure 5.5.

5.4 Results 94

Figure 5.5. An example of decimation with surface resampling. The long and skinny
triangles in the original shape disappear in the remeshed output. The triangles are
uniform, while still preserving the original complex and disconnected geometry.

5.4 Results

We experimentally validate our algorithm and discuss the results of our tests. We
first discuss the quality of the output meshes of our algorithm, providing both
quantitative and qualitative results. Then, we examine the execution time and
the performance of our implementation. Finally, we briefly discuss the quality
improvement given by the resampling of large triangles.

All the experiments have been performed on a machine equipped with an Intel
i7-10700K CPU (16 cores and 3.80 GHz clock frequency) and 32 GB of main memory
at 3600 MHz frequency. The quantitative results are averaged on a set of 20 shapes
from the Thingi10K dataset [303].

5.4.1 Remeshing Quality

To validate our algorithm, we run a batch of experiments on a small subset of
Thingi10K for several output resolution values. Since our goal is to provide a
uniform remeshing of the input shape, we experimentally measure: (i) the triangle
areas across the shape; (ii) the triangle quality across the shape; (iii) the surface
matching to the original shape.

Since all our metrics are averaged across different shapes, we ensure that the
quantitative measurements are consistent by centering the meshes at the origin and
rescaling all the coordinates in [−1, 1].

In Figure 5.6 we show a comparison between a high-resolution mesh decimated
to 1% of its original vertices using the Blender’s decimate modifier [56] and the
edge-collapse algorithm from the CGAL library [43], in contrast to the remesh-
ing obtained with our method. This example highlights the main difference between
our approach and the other techniques: the other approaches try to approximate as
much as possible the original shape, sacrificing the quality of triangles and connectiv-

5.4 Results 95

Input shape Blender CGAL Ours

Figure 5.6. An high-resolution mesh (first) decimated to 1% of its original vertices using
different methods. The decimate algorithm from Blender (second) and edge-collapse
from CGAL (third) better preserve the high-frequency features of the mesh, but fail in
generating a uniform triangulation, and often generate triangles with sharp angles. Our
method (fourth) yields a more stable output, where triangles have roughly the same
area and without sharp angles.

0.5 1 1.5 2 2.5

Remeshing Size #104

-0.005

0

0.005

0.01

0.015

0.02

0.025

T
ri
an

gl
e
A
re
a

Ours
Blender decimate
CGAL edge-collapse

Figure 5.7. Average triangle area and standard deviation with respect to the number
of sampled vertices. In comparison to Blender, our algorithm generates more uniform
triangles. In contrast, CGAL obtains a comparable uniformity, and tends to create
smaller areas.

ity, whereas our algorithm is much more stable in generating a uniform high-quality
triangulation.

To evaluate the triangle uniformity, we compute the area of every triangle of each
mesh. From these values, we obtain the mean and the standard deviation. Figure 5.7
summarizes the results of this experiment for our algorithm, in comparison to other
well-established methods. As expected, the mean area decreases as the number
of sample points increase. Since we experimentally verified that the number of
triangles in the output of our remeshing algorithm is about 3 times the number
of vertices, the number of triangles increases linearly with the remeshing size n,
and the mean area decreases with 1/n. The standard deviation is relatively small,

5.4 Results 96

0.5 1 1.5 2 2.5

Remeshing Size #104

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
T
ri
an

gl
e
Q
u
al
it
y

Ours
Blender decimate
CGAL edge-collapse

Figure 5.8. Average triangle quality and standard deviation with respect to the number
of sampled vertices. Compared to other methods, our method generates higher quality
triangles in a more stable manner.

and we notice that it decreases with the size of the mean area. Thus, the triangles
are roughly uniform across the shape, and they tend to be more stable with larger
samples. We expect this to depend on the behavior of the farthest point sampling
algorithm, as it tends to not always distribute the points evenly for small sample
sizes.

Compared to the other approaches, our algorithm yields more uniform trian-
gle areas, as can be seen from the distribution of the standard deviation. The
edge-collapse algorithm from the CGAL library achieves comparable results to
our algorithm, with a very low standard deviation, but the average area decreases
very rapidly. Similarly, the Blender’s decimate modifier tends to produce small
triangles, but with consistently larger standard deviation over time.

Triangle quality evaluation has been extensively discussed in the literature [119].
Between the possible approaches, we use the metric Q(t) = 2

√
3At/Stℓ∗

t proposed by
Frey et al. [87], where At is the triangle area, St is the semi-perimeter and ℓ∗t is
the longest edge. This metric spans from 0 (for degenerate triangles with null area)
to 1 (for equilateral triangles). Similarly to the area case, we measure the triangle
quality for each triangle of each shape, and then we compute the average and
standard deviation. The results summarized in Figure 5.8 show that our method is
very stable in producing high quality triangles, with negligible standard deviation.
The triangles produced by the CGAL’s edge-collapse algorithm are also stable,
but the overall quality is significantly lower than ours. By looking at the definition of
quality, this means that the algorithm tends to produce “skinnier” triangles, as the
ratio between the area and the edge lengths is smaller. Finally, Blender’s decimate
generates the lowest quality triangles, and the high standard deviation proves that
the method does not try to generate triangles with specific shape or properties.

5.4 Results 97

0 0.5 1 1.5 2 2.5

Remeshing Size #104

0

0.05

0.1

0.15

0.2

0.25

0

0.005

0.01

0.015
Hausdor, distance
3:75p

n

Chamfer distance
3:06
n

Figure 5.9. Hausdorff and Chamfer distances between the original and remeshed shapes
with respect to the remeshing size. In both cases, the reconstruction error decreases
with the number of vertices. The Hausdorff distance decreases proportionally to

√
n,

whereas the Chamfer distance decreases proportionally to n.

Figure 5.10. An example of drastic decimation obtained with our algorithm. The original
mesh has ~1.4M vertices, whereas with our algorithm we are able to obtain a uniform
decimated shape with 50k vertices which still preserves the original underlying geometry.

Finally, we evaluate the reconstruction accuracy of our method by evaluating the
Hausdorff and the Chamfer distances between the original and the remeshed shape.
Given the original mesh M = (V,E, T) and the remeshed one M′ = (V ′, E′, T ′),
Hausdorff distance H(M,M′) and the Chamfer distance C(M,M′) are computed
as

H(M,M′) = max
x∈V

min
y∈V ′
∥x− y∥2 ,

C(M,M′) = 1
|V |

∑
x∈V

min
y∈V ′
∥x− y∥22 + 1

|V ′|
∑

y∈V ′

min
x∈V
∥x− y∥22 .

(5.8)

We show the Hausdorff and Chamfer distances in Figure 5.9, plotted against

5.4 Results 98

Ours Lescoat et al.

Figure 5.11. The top row shows the ground truth functional map between the original
fertility mesh and a remeshing obtained with our algorithm using 50k vertices, com-
pared with the result obtained with the algorithm from Lescoat et al. [133]. The bottom
row shows the comparison of the eigenvalues.

the remeshing size and averaged across the dataset. As we expect, the distances
decrease as the number of sampled vertices increases. The quick drop is also not
very surprising: since we are sampling evenly from the vertices of the original shape,
we expect to have a lot of null differences, and the biggest difference to be bounded
by the largest Voronoi partition. As we increase the number of samples n, the area
of the partitions decreases as 1/n, and the radius of the partition decreases as 1/

√
n.

So, it is reasonable that the Hausdorff distance decreases proportionally to
√
n, and

the Chamfer distance proportionally to n.
In Figure 5.10 we show an example of how our algorithm can reduce the amount

of vertices in the input shape by orders of magnitude and produce a uniform remesh-
ing, while still preserving the overall underlying geometry.

As a final note, since our algorithm produces a triangulation that is geodesically
uniform, according to the underlying original geometry, it is reasonable to guess the
remeshed output would encode some of the spectral information from the original
mesh. As a test case, we use the mesh fertility (~250k vertices) and decimate it
to 50k vertices using Algorithm 5.1 and the method from Lescoat et al. [133], which
is specific for simplifying meshes while preserving the spectral decomposition. We
obtain a ground truth correspondence between the original mesh and the output
of the two algorithms by mapping nearest neighbouring vertices, and from that
we build the corresponding functional map. The results are shown in the top row
of Figure 5.11, while the bottom row of the figure shows the comparison between

5.4 Results 99

0 2 4 6 8 10 12

of Vertices #105

0

5

10

15
T
im

e
(s

ec
on

d
s)

Output resolution: 500
Output resolution: 1000
Output resolution: 5000
Output resolution: 10000
Output resolution: 25000

Figure 5.12. Execution time of the remeshing algorithm at varying of the input mesh
density. Different curves represent different numbers of output vertices.

the original eigenvalues and the eigenvalues of the remeshed shape. We see that
the difference in the quality of the functional map and the eigenvalues matching is
negligible, but while our method took about 5 seconds, the technique from Lescoat
et al., which requires the spectral decomposition of the original shape, ran for about
1h 30m before producing its output.

5.4.2 Performance Analysis

As anticipated by the study of computational complexity in Section 5.3.2, the per-
formance of our algorithm mainly depends on the number of vertices of the input
shape and the number of desired output vertices. To test the real performance of
our implementation, we used a variety of different combinations of input and output
number of vertices.

The results of our experiments are shown in Figure 5.12, where we plotted the
execution time at various output resolutions against the number of vertices of the
input meshes. Accordingly to the theoretical analysis, the execution time is always
linear in the number of vertices of the input shape. We also notice that the increase
in the slope of the curve is not logarithmic in the output resolution, but still sub-
linear: the execution time for an output resolution of 25k vertices is not 5 times the
time required by a 5k vertices remeshing, and 1k vertices does not require double
the time of 500. This is in agreement with our analysis, since, as we stated in
Section 5.3.2, searching the maximum at every iteration is still a linear operation,
but it is way more efficient than other complex sections of the algorithm due to
cache locality and vectorization of the operations.

A great advantage of our approach is that it scales linearly with the size of
the output mesh, and not with the number of removed vertices. This makes it

5.4 Results 100

0 2 4 6 8 10 12

of Vertices #105

0

10

20

30

40

50

60

70
T
im
e
(s
ec
on
d
s)

Ours
Blender decimate
CGAL edge-collapse

Figure 5.13. Comparison between the execution time of our algorithm against other
methods on decimation of variably sized input meshes to obtain a remeshed shape with
10k vertices. The fast FPS Voronoi decomposition allow us to achieve competitive
performance.

suitable in applications where a drastic reduction of vertices is needed. To prove
the effectiveness of the method, we decimated the shapes in the dataset using the
Blender’s decimate modifier and the CGAL’s edge-collapse algorithm, to obtain
an output shape with 10k vertices. We measured the execution times, and we
compared them with those obtained with Algorithm 5.1. From Figure 5.13 we can
see that our method outperforms the other algorithms, and the performance gap
increases linearly with the size of the input shape. This is because Algorithm 5.1
incrementally builds the decimated shape, whereas the other approaches iteratively
remove mesh elements. Of course, our approach would be outperformed when the
size of the input and output are close, but for drastic reductions in resolution it
performs much better.

5.4.3 Resampling of Large Triangles

As anticipated in Section 5.3.4, the input shape offers no guarantees on the distri-
bution and shape of the triangles. Since Algorithm 5.1 samples the vertices from
the original mesh, if some very large triangles existed in the input, those triangles
are very likely to appear also in the output.

With our resampling strategy, the algorithm can overcome this issue by picking
extra points from the longest edges and from the largest faces. Depending on
the amount of large faces and their size, the resampling step can be costly, and
could produce a massive amount of extra vertices and edges. Figure 5.14 shows the
dependency between the output resolution and the execution time of the resampling
step. In particular, we notice how the resampling requires logarithmic time for low
output resolutions, but as the resolution increases the number of split edges becomes

5.4 Results 101

0 0.5 1 1.5 2 2.5

Output Resolution #104

0

2

4

6

8

10

12
R
es
a
m
p
li
n
g
T
im

e
(s
ec
o
n
d
s) Input vertices: 484766

Input vertices: 980051
Input vertices: 1347290

Figure 5.14. Execution time for the resampling algorithm on various input sizes and out-
put resolution. The time for the preprocessing step increases with the output resolution,
as the edge length threshold decreases. However, even if the execution time increases
with the size of the original shape, it is affected more by the connectivity of the mesh
than by the input size.

Figure 5.15. An example of simplification with and without resampling. The original
mesh (left) is highly non-homogeneous and contains large faces. Without preprocessing
(middle) our algorithm fails to generate a uniform distribution of triangles. Performing
the resampling step (right) gives better results with more uniform triangle areas.

very high and we approach the worst case. However, results like Figure 5.15 show
that it is really game-changing for the output quality, when the input is largely
non-homogeneous. In Figure 5.16 we show quantitatively how the algorithm benefits
from this preprocessing step. The standard deviation from the average triangle area
becomes negligible; almost all the triangles are very close to the average, meaning
that the remeshing is much more uniform. Furthermore, the average triangle quality
slightly increases, proving that the triangles tend to be more regular across the
shape.

5.5 Limitations and Conclusions 102

0.5 1 1.5 2 2.5

Remeshing Size #104

-0.005

0

0.005

0.01

0.015

0.02

0.025
T
ri
a
n
gl

e
A

re
a

Ours (resampling)
Ours

0.5 1 1.5 2 2.5

Remeshing Size #104

0.68

0.69

0.7

0.71

0.72

0.73

0.74

T
ri
a
n
g
le
Q
u
a
li
ty

Ours (resampling)
Ours

Figure 5.16. Comparison of the mean and standard deviation in the distribution of
triangle areas and qualities, with and without using the resampling preporcessing step.
Being able to work with a finer sampling of the input mesh results in a more uniform
distribution of triangle areas and an higher triangle quality in the decimated mesh.

5.5 Limitations and Conclusions

We presented a new algorithm which exploits non-Euclidean Delaunay triangulation
to compute a fast drastic mesh simplification. The statistical uniformity guarantees
on triangles shapes and areas which our algorithm provides can be strengthened with
a mesh resampling step performed as preprocessing. We compared our algorithm
with other well-established decimation method, and we showed that our technique
is faster and yields more stable results for massive simplifications. Furthermore, we
designed an efficient algorithm for computing geodesic farthest point sampling and
geodesic Voronoi partitioning which scales well on highly dense triangular meshes.

As an outlook for future directions, we intend to focus on strengthening the
uniformity guarantees on the output mesh, in order to provide tight bounds and
more strict constraints on the shapes and dimensions of the triangles. Moreover,
we plan to focus on extending the algorithm to handle face sampling, avoiding
the preprocessing step on non-homogeneous shapes, and to deal with subtractive
simplifications for cases where the required decimation is less significant. Finally,
the preliminary results shown in this chapter show that the algorithm has potential
for producing remeshed shapes that preserve spectral properties. We intend to
explore this direction further, investigate the reasons behind this behavior, and
apply the algorithm to pipelines relying on functional maps for other tasks, like
shape matching and signal transfer.

103

Chapter 6

Reconstructing Curves in
Non-Euclidean Domains

Reconstructing 2D curves from sample points is a fundamental problem in computer
graphics, with consolidated utility in vector graphics applications. Despite the
amount of research devoted to this task, there is still room for improvement and
many directions are yet to be explored. Vector graphics on surfaces is becoming an
important topic nowadays, especially for its utility in design applications. However,
the task of designing and editing curves on surfaces has been only barely explored
recently. A big step has been done with the definition of Bézier splines in non-
Euclidean geometries and discrete manifolds, but the process still mostly relies on
human intervention. We provide an algorithm that generates a curve directly on
a (possibly bounded) surface from a set of sample points. Being able to solve this
problem automatically and without human input will be beneficial in reducing the
workload for artists, as well as help in industrial applications where surface elements
need to be cut, edited, or connected at boundaries, or measured. Moreover, an
algorithmic solution permits addressing this task in cases where the amount of
input points is too large to be handled interactively by a user, such as when they
are generated programmatically or from 3D scans. The work presented in this
chapter has been realized in collaboration with Diana Marin (MSc.), to whom goes
the credit for the algorithmic idea, the generation of the dataset, and the invaluable
help in the analysis and presentation of the results, Stefan Ohrhallinger (Ph.D.),
whose help in clarifying the positioning of this research and its applicability largely
improved the quality of the work, prof. Michael Wimmer, and prof. Emanuele
Rodolà, both of which helped in improving the overall presentation and defining
the structure of the task.

6.1 Introduction

Vector graphics have always been an important field in computer graphics, and it
is widely applied in many fields, spanning from design and art to engineering. One
of the important reasons for its success is the ability to generate infinite resolution
smooth complex visualizations with relative ease while requiring only little input
geometry.

6.1 Introduction 104

Figure 6.1. Curves reconstructed on various surfaces. Given a set of sample vertices of
the mesh, our method generates a geodesic closed curve that traverses all the samples.

Recently, an increasing interest has been devoted to moving vector graphics onto
surfaces, trying to address certain issues stemming from texturing methods. Textur-
ing is a well-established approach for defining patterns and decorations on surfaces,
but it generally relies on finite-resolution images and parameterization. The latter
is not always available or could be difficult or expensive to define. Procedural tex-
tures try to overcome these problems, defining patterns via mathematical functions
and algorithms. However, they generally rely on multi-dimensional noise functions
that are then projected onto the surface [77, 101, 157], which are usually agnostic
of the underlying geometric properties and can incur high computation times.

Besides some works generalizing sample-based texture synthesis to triangular
meshes [285, 270], it has been only in recent years that some solutions have been
proposed which try to leverage properties of non-Euclidean metric spaces and define
patterns directly on surfaces, either via recursive structures [188] or simulated be-
haviors [160]. Another avenue of development for texture synthesis is represented by
neural networks that generate a textured mesh in the style of an input image [180].

Despite the existence of various solutions for decorating surfaces, the problem
of constructing lines and curves on discrete manifolds has not been addressed sat-
isfactorily yet. Defining curves and shapes directly on surfaces is innovative for
design applications [217], and has a relevant impact in the processing of archaeo-
logical data [126, 91] by extracting specific decorations from the models. However,
little research has been devoted to improving the definition and the reconstruction
of curves on discrete surfaces, besides efforts to generalize Bézier curves [162]. Fur-
thermore, the existing solutions are generally centered around human interaction,
as they are designed to be tools for artists and end users. The same dependability
on user interaction is faced by the field of generating cuts in models [223], where
our method’s results can also be used to automatize this process.

With this work, we present a novel algorithm for reconstructing closed curves
directly over discrete surfaces that may contain boundaries. Our method generalizes
existing techniques for 2D curve reconstruction, leveraging the non-Euclidean met-
rics to solve the problem on manifold domains. We propose an efficient solution, al-
lowing for the reconstruction of curves made from given samples over high-resolution
arbitrary meshes (e.g., independently of the genus or the presence of boundaries)
with an interactive frame rate. Such an algorithm would allow for reducing the need
for inputs from an external user, speeding up the process of designing constrained
curves. The applications of such a method are manifold, ranging from design usage
for decorating meshes, cutting, editing, connecting, or measuring object parts in

6.2 Related Work 105

industrial settings, to selecting closed subsets for boolean operations on the sur-
face such as intersection or removal. Input as unstructured points on surfaces that
require such automatic connection include salient points from texture, or from ge-
ometry such as sharp features, or may be generated by simulations such as collisions
or fracturing.

6.2 Related Work

Reconstructing curves from samples on a non-Euclidean domain represents an un-
tapped domain existing at the intersection of curve reconstruction, surface design,
and texturing using on-surface elements. Our method is also related to heat diffu-
sion approaches through the way we have designed the reconstruction. This section
will provide an overview of various techniques that deal with each of these fields
individually and explain how they relate to our work.

Planar curve reconstruction (i.e., in the case where samples and their re-
spective reconstructed curve live in R2) is dealt with by numerous methods. They
are usually divided into two main categories: implicit (methods that approximate
the inside/outside of the shape and recreate the boundary based on the division
between the two) [105, 118] and explicit (interpolatory methods that create some
ordering among the sample points). We will focus on the explicit reconstruction
methods, as they are the most similar to our work. However, most of these meth-
ods are limited to planar curves, even if some of them have been extended to surface
reconstruction, and those which are able to reconstruct curves in R3, do not use a
manifold to construct the curve on.

In order to interpolate the input sample points, most of the methods compute
a graph on the input and use a subset of the edges as the final reconstruction. One
of the most commonly used types of graphs is the Delaunay triangulation, due to
its geometrical properties and theoretical guarantees of including the reconstruction
subject to sampling density [6]. Starting from the Delaunay triangulation, Amenta
et al. [6] filter the edges whose proximity is empty of samples and of Voronoi vertices.
This approach has been improved to take into account Voronoi poles - Voronoi
vertices corresponding to long, skinny Voronoi cells [7].

Using the same Delaunay starting base, a greedy procedure is used to pick a seed
vertex and find the nearest neighbors until the end points are close enough to be
connected or all points have been connected [207]. This is similar to our proposed
work, however, we are not using the Delaunay triangulation as a base, and their
method can be only used for planar curves. Using a similar idea, various criteria
can be applied for creating a connection between two points: the new neighbor has
to be situated in the half-plane (defined using the normal at the current sample)
opposite to the previous connection [72], or in the opposite half-plane defined using
the bisector of the previous edge [196]. Another set of criteria used to filter the
triangulation is based on leveraging the Voronoi poles to approximate the normals
for the half-plane computation, considering the angle and the ratio between the
current edge and its Voronoi counterpart [71]. Various other methods build on
the Delaunay triangulation as a starting base for curve reconstruction [164, 197],
and a comprehensive survey on multiple implicit methods can be found here [198].

6.3 Method 106

Our method lifts the reconstruction of curves from planar surfaces to non-manifold
domains.

Vector graphics on planar surfaces have been thoroughly researched and are
being used in multiple tools[110, 4]. Recently, editing and importing curves on sur-
faces have received interest in the graphics field, due in part to the improvement
in computing geodesic distances efficiently [246]. Users are able to interact with
designs directly on the mesh, by either editing splines on a 2D local projection of
the surface [217], which is usually prone to artifacts due to the projection procedure,
as explored in [297]. Editing splines directly on the surfaces is also possible, by-
passing the projection artefacts, by using geodesic metrics on the surface [188, 162].
However, these editing methods require user input or a predefined ordering of the
samples in order to construct the curves on the surface, which is the missing link
we are providing here. Hence, our method also provides a building block for further
editing of splines on surfaces.

The heat equation describes the intensity with which heat would be dis-
tributed across a surface from an initial starting point. On surfaces, the isolines
corresponding to various intensities relate to the geodesic lines of the same seed
point through Varadhan’s equation [274]. This relation has been explored in order
to obtain improved results for geodesic computation [62] and the procedure is simi-
lar to ours in the sense of greedy expansion across the surface. However, we do not
make use of the heat kernel directly in our computation, it just inspires our method.

6.3 Method

We are given a 2-dimensional manifold M and a set of points P sampled from a
1-dimensional closed curve C ⊂ M (i.e., a curve lying on the surface that is M).
Using the points in P , we want to infer the curve C, or at least some curve C∗ ≈ C
that approximates the original curve.

The manifold M is discretized by means of a triangular mesh M̂ = (V,E, T),
where: (i) V is a set of vertices sampled from M; (ii) E ⊂ V 2 is a set of edges;
(iii) T ⊂ V 3 is a set of triangles. To simplify the formulation of the problem, we
assume that the given points P are vertices of M̂ and that we can safely approximate
the target curve C with a 3D polygon P ⊂ E entirely made of edges of M̂.

6.3.1 TSP on Surfaces

Our approach finds its foundations in classical theory for solving the traveling sales-
man problem (TSP). Clearly, the two problems are different, but there are common
parts. For instance, we do not allow for passing through the same sample point
more than once, and even if we are not explicitly searching for the shortest path, we
highly penalize long walks going back and forth between distant points in favor of
short and smooth paths connecting near vertices. Also, the TSP is not restricted to
Euclidean domains which is a prerequisite for our use case. We use the simple yet
effective nearest-neighbor algorithm for the TSP as a base (from here on, referred
to as TSP-NN) [113]. This choice is dictated by the necessity of heavily modify-
ing the solution to account for the generalization to non-Euclidean domains and
the application of other restrictions that the pure TSP solver does not impose, like

6.3 Method 107

Algorithm 6.1 Curve reconstruction on surfaces.

1: procedure CurveRecon(M̂ = (V,E, T), P = {p1, · · · , pk})
2: pT ← p1
3: P ← P \ {p1}
4: Ĉ ← [p1]
5: while P ̸= ∅ do
6: pN ← NNAvoid(M̂, pT , P, Ĉ)
7: P ← ShortestPathAvoid(M̂, pT , pN , Ĉ)
8: Ĉ ← [Ĉ,P]
9: P ← P \ {pN}

10: pT ← pN

11: end while
12: P ← ShortestPathAvoid(pT , p1, Ĉ)
13: Ĉ ← [Ĉ,P]
14: return Ĉ
15: end procedure

16: procedure NNAvoid(M̂ = (V,E, T), p ∈ V , P ⊂ V , Ĉ ⊂ V)
17: Q← {p}
18: d←∞ ∈ R|V |

19: d[p]← 0
20: while Q ̸= ∅ do
21: q∗ ← arg minq∈Q(d[q])
22: if q∗ ∈ P then
23: return q∗

24: end if
25: Q← Q \ {q∗}
26: for r ∈ adj(q∗) do
27: if r ∈ Ĉ then
28: continue
29: end if
30: if d[r] < d[q∗] + dist(r, q∗) then
31: continue
32: end if
33: d[r]← d[q∗] + dist(r, q∗)
34: Q← Q ∪ {r}
35: end for
36: end while
37: end procedure

6.3 Method 108

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

Figure 6.2. A simple example of our modified nearest neighbor search in 2D. The isotropic
expansion from each sample point allows for finding the closest vertex without the need
of checking the entire mesh. The path is required not to have self-intersections, resulting
in the avoidance of the center vertex p2, which is already connected.

non-intersecting edges. Hence, a simple, versatile, and easily tunable algorithm is
needed.

Working in a non-Euclidean domain is usually an additional challenge, but we
can take advantage of the underlying graph structure to simplify the computation
and reduce the time complexity. TSP-NN usually needs to compute the Euclidean
nearest neighbor for each sample point, resulting in an O

(
n2) complexity. Since

searching for the nearest neighbor forces us to traverse the entire graph, we rather
start from the current point and expand isotropically on the surface along edges until
we reach the first unvisited sample. This optimization prevents us from visiting the
entire triangular mesh for every sample point and searching for the nearest neighbor
since we stop the visit as soon as we find it.

As pointed out earlier in the section, in the TSP, the path is not required to pre-
vent self-intersections,whereas our solution produces a non-self-intersecting curve.
To address this issue, we slightly modify the shortest path search on the mesh graph
to ignore all the vertices already included in the walk and all their incident edges.
This includes the isotropic expansion in search for the nearest neighbor, meaning
that this search must take into account the avoidance of the already constructed
curve. If the surface is bounded, this does not affect our algorithm since it only
considers the mesh graph and does not have to treat edges on the boundary differ-
ently.

Since the resulting curve must be closed, the last visited sample is connected
back to the starting point once all the points have been covered. Since we do not
allow for self-intersections, we close the curve only at the end of the process, meaning
that before the completion of the curve, the surface is never partitioned, allowing
for the path between the last and the first samples to avoid intersections with the
previously computed curve.

The entire process is summarized in Algorithm 6.1, where ShortestPathAvoid
is a routine for searching for the shortest path avoiding the input set of vertices, and
NNAvoid (Lines 16-37) is an algorithm for isotropically expanding from a given
vertex along edges until the nearest sample is found, while avoiding the input set of
vertices. Figure 6.2 provides a basic example of how the algorithm behaves in the
simplified case of a planar domain.

6.3 Method 109

Figure 6.3. A surface curve computed using just the basic nearest neighbor algorithm
(left), compared with the approach augmented by the maximum angle heuristic (right).
With the same input, the heuristic is able to find a better-shaped path with negligible
added computational cost.

6.3.2 Refinements

The example in Figure 6.2 exposes an issue with this approach. Despite the al-
gorithm behaving nicely in most cases, it is sensitive to the choice of the starting
point, producing ill-shaped contours when the placement of the points is adversarial
(e.g., very sparse samplings of thin shapes).

A possible approach could be to select multiple starting points and choose the
best curve by some metric. However, this approach would be highly inefficient in
terms of computation expense, and it also does not provide any structural guarantee.
For instance, in the planar example from Figure 6.2, we would like the curve to be
p1p3p2p4, and only starting from p4 allows for finding that shape.

Instead, we again take inspiration from the existing literature on the TSP. When
dealing with the TSP in a 2-dimensional space, it is possible to find a close approx-
imation by taking the convex hull of all the vertices and refining it iteratively (we
will refer to this algorithm as TSP-CH) [195]. For choosing the next vertex to
visit, TSP-CH sculpts edges trying to maximize the angles of the path. Similar ap-
proaches for angle heuristics have been explored in the field of curve reconstruction
as well [72, 196].

Using this approach directly would be infeasible again since, despite the notion
of convexity being defined on manifolds [271], the computation of a geodesic convex
hull on arbitrary surfaces still represents a difficult open problem. We, therefore,
leverage the idea of picking the largest possible angles and apply it as a heuristic to
refine the choice of the nearest neighbor. Instead of isotropically expanding along
edges until we reach the closest sample, we continue the expansion to cover the ℓ
closest points. Between them, we pick the sample pN that maximizes θ/δ2, where
θ is the surface angle formed by PNpT pL (being pT the current sample and pL

the previous one), and δ is the geodesic distance from the current sample. The

6.3 Method 110

distance at the denominator acts as a corrector when dealing with dense sampling.
When multiple samples are very close, we would ideally connect them in a straight
line, but just maximizing the angle would produce a back-and-forth connection.
Penalizing points that, despite producing large angles, are too distant, solves this
issue. Actually computing the surface angle would require exact geodesic paths
on the surface and an angle computation close to the vertex. However, in our
experiments, approximating the surface angle with the angle in R3 produced good
results, so we use this approach for efficiency. Figure 6.3 shows how by adding this
simple heuristic we can find a much better-shaped path compared to the baseline
nearest neighbor solution.

The heuristic, however, needs to be defined at the starting vertex since there are
no previous samples. To address this issue, we still search for the closest ℓ samples,
and between them, we pick the pair that produces the maximum angle. We then
choose the closest point in this pair and continue with the algorithm. This ensures
that our algorithm is deterministic.

6.3.3 Complexity Analysis

Since our algorithm uses triangular meshes as input, its complexity is not only
related to the number of samples of the curve but also to the density of the mesh.
We refer to the number of vertices of the mesh as n = |V | and to the number of
sample points as k = |P |. We recall that the number of edges and triangles of a
triangular mesh is linear in n, so the spatial complexity of M̂ is O (n). However, for
the sake of simplicity, we will refer to it simply as n. We use the Dijkstra algorithm
for the isotropic expansion from a vertex, which has a well-known complexity of
O (n logn). We decide to use this algorithm because of its high efficiency and a
high degree of approximation for most practical applications, especially when it
comes to highly dense meshes. For studying the overall complexity of our approach,
we distinguish between the case where the sample points are uniformly spaced and
the case where they are not.

Theorem 6.1. Given a triangular mesh M̂ = (V,E, T) with n vertices and a set
P ⊂ V of k samples, Algorithm 6.1 computes a discrete curve Ĉ on the surface of
M̂ passing through the points in P in O (n logn log k) time.

Proof. If the sample points are uniformly spaced, our isotropic expansion to the
closest neighbor covers approximately 1/k of the mesh for each sample, meaning
that each visit takes O (n/k log n/k). Multiplying it by k visits, the overall complexity
becomes O (n log n/k).

If the sample points are not uniformly spaced, we again distinguish between dif-
ferent cases. If all the samples are clustered together, then the isotropic expansions
are all very short and cover a small part of the mesh, meaning the dominant term
is O (k) ≪ O (n). If they are not, then since they cannot be uniformly spaced, we
can group them into h clusters Q1, · · · , Qh. Covering each cluster Qi would require
O (ni logni), where ni is the number of vertices of the mesh surrounding the points
in the cluster Qi. Summing all these contributions results in a O (n logn) time com-
plexity. On top of that, we need to consider the complexity of expanding from each
cluster Qi to its closest cluster Qj . This grouping into clusters reduces the problem

6.4 Results 111

Figure 6.4. From the original curve, which is a dense vertex path, with any two consecutive
vertices connected by an edge, we extract a subset of fixed length. Under the assumption
of a uniform triangulation, we expect the number of vertices on a path to approximate
the distance between them. Hence, for uniform sampling (left), we aim to have the same
number of steps between any two consecutive samples. For random sampling (right),
we use a uniform distribution on the complete curve to extract the required number of
unique vertices.

to the original formulation, where we have h points instead of k. In the worst-case
scenario, we iteratively reduce the problem by a factor of r, which results in logr k
recursions. Since each recursive step is at most O (n logn), the total complexity
results to be O (n logn log k).

6.4 Results

In order to evaluate our method, we programmatically generate a dataset with
7k curves over 10 shapes extracted from Thingi10K [303] with diverse properties:
varying numbers of vertices and triangle sizes, different genus values, and open
boundaries. For a consistent evaluation, we ensure all the shapes have unitary
volume (for shapes with open boundaries, we close them to compute the volume).
We compare the resulting curves obtained using our algorithm with the ground
truth curves, and measure the performance to validate the complexity analysis.

The algorithm is implemented in C++, and all the experiments are carried out
on a machine equipped with an Intel i7-10700K CPU (16 cores and 3.80 GHz clock
frequency) and 32 GB of main memory at 3600 MHz frequency.

6.4.1 Dataset Generation

Starting from a random seed vertex, we mimic a random walk on the surface, along
the edges, with some constraints and store all the visited vertices as the ground
truth curve. We move away from the initial vertex towards a local geodesic distance
maximum. Once this has been reached, we move away from the local maximum,

6.4 Results 112

while trying to keep a constant distance to the seed vertex for a randomly chosen
number of steps. Once this sideways crawl has been completed, we try to reach
the original vertex. We use this procedure to generate 50 curves for each of the
10 meshes in our collection. Furthermore, since the generated curves are densely
sampled, as they include all the vertices traversed in our walk, we extract a subset
of predefined size as our input for the reconstruction algorithm. We employ both
uniformly-spaced sampling and random sampling on that walk using a uniform
distribution as illustrated in Figure 6.4. By uniformly-spaced sampling we mean
a uniform distance between consecutive samples. We define this distance as the
path length (number of vertices on the path), which, assuming a uniformly-sized
triangulation, should approximate the distance between samples. We use 7 different
values for our input sample size (10, 25, 40, 55, 70, 85, 100) to test the method’s
reliability in the presence of sparse sampling.

6.4.2 Evaluation

In order to evaluate our method, we run the algorithm on the entire dataset. For
extensive testing, we run all the experiments with three different values for the size
of the nearest neighbors set to use with the heuristics, bringing the total number of
experiments to 21k. The sizes of the nearest neighbors set that we choose for the
experiments are: 1 (meaning we only select the closest neighbor and we do not use
the heuristic), 3, and 5.

The algorithm manages to output a closed, non-intersecting curve for 83.2% of
the experiments, and for the remaining 16.8% it fails to find a closed non-intersecting
path that passes through all the samples. In Section 6.4.4 we discuss the conditions
of failure in detail.

For the successful experiments, we produce a twofold evaluation. We first ana-
lyze the accuracy of the reconstructed curve, comparing how close the reconstruc-
tion is to the original curve under different error measures and properties of the
input data. Considering the increasing variety of methods for defining curves on
surfaces [62, 162], we notice that in some applications it could be more relevant
to compute the ordered sequence of sample points, and then leaving the task of
defining the actual curve to other methods, especially if they do not depend on the
original triangulation. With this setting in mind, we also analyze the correctness of
the ordered sequence under varying conditions.

Distance Metrics For evaluating the quality of reconstruction, given the ground
truth curve Ĉ∗ and the reconstructed curve Ĉ, we compute the Hausdorff dis-
tance H(Ĉ∗, Ĉ) and the root mean squared error (RMSE) R(Ĉ∗, Ĉ), which are well-
established metrics in curve reconstruction literature [198]. The metrics are defined
in the Euclidean space as

H(Ĉ∗, Ĉ) = max
(

max
x∈Ĉ∗

min
y∈Ĉ
∥x− y∥2, max

y∈Ĉ
min
x∈Ĉ∗

∥x− y∥2

)
,

R(Ĉ∗, Ĉ) =
√√√√ 1
|Ĉ∗|

∑
x∈Ĉ∗

min
y∈Ĉ
∥x− y∥2 .

(6.1)

6.4 Results 113

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

E
x
p
er

im
en

ts
R

a
ti
o

10 Samples
25 Samples
40 Samples
55 Samples

70 Samples
85 Samples
100 Samples

Hausdorff Distance
(a) Evenly spaced sampling.

0 0.5 1 1.5 2

10 Samples
25 Samples
40 Samples
55 Samples

70 Samples
85 Samples
100 Samples

(b) Uniformly random sampling.

Figure 6.5. Hausdorff distance AUC (Area Under the Curve) between the ground truth
input and the reconstructed curve at a varying number of samples of the input curve.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

E
x
p
er

im
en

ts
R

a
ti
o

10 Samples
25 Samples
40 Samples
55 Samples

70 Samples
85 Samples
100 Samples

RMSE
(a) Evenly spaced sampling.

0 0.2 0.4 0.6 0.8 1

10 Samples
25 Samples
40 Samples
55 Samples

70 Samples
85 Samples
100 Samples

(b) Uniformly random sampling.

Figure 6.6. RMSE AUC between the ground truth and the reconstructed curve at varying
of the number of samples.

We partition the dataset along the number of input samples and the type of sampling
(i.e., uniformly spaced sampling or randomly uniform sampling). For each partition,
and for each metric, we compute the corresponding AUC curve, summarizing the
results in Figures 6.5 and 6.6. Overall, for about 90% of the reconstructed curves, we
achieve H(Ĉ∗, Ĉ) ≤ 0.25 and R(Ĉ∗, Ĉ) ≤ 0.07, and examples like the ones presented
in Figures 6.1 and 6.7 show how our method can achieve high fidelity to the original
curve. However, by investigating the results on the different dataset partitions we
can gather more information on how the algorithm behaves under various conditions.
The most evident result is highlighted by the comparison between the values of the
metrics on uniformly spaced input samples (Figure 6.5a and 6.6a) against uniformly
random input samples (Figure 6.5b and 6.6b). We can see how, in both cases,
the algorithm behaves much better when the input samples are uniformly spaced.
Random sampling can generate an increasingly sparse input, and when the sampling

6.4 Results 114

Figure 6.7. The original curve is randomly sampled (left). Our method is fed with the
samples and reconstructs a curve that faithfully traces the original path (right).

Figure 6.8. The original curve is sampled across its length (left). Our method reconstructs
a curve that correctly orders the sequence of samples, but fails to match the original
curve (right).

is very sparse this also increases the algorithm’s chances of wrongly choosing a very
close sample, which is not the next in the ground truth sequence of the original
curve. This also explains the performance increase when varying the number of
samples. This is somehow expected, as increasing the number of input samples also
increases the information on the original curve and allows for less freedom on which
sample to choose next. However, the performance gap shown in Figure 6.5a and 6.6a
between 10 and 25 samples proves how with a random sampling the reconstruction
task is more difficult to address.

6.4 Results 115

NN
Samples

10 25 40 55 70 85 100

1 33.54% 37.63% 43.15% 40.59% 45.88% 40.53% 41.90%
3 41.86% 45.16% 45.54% 42.79% 44.50% 41.78% 39.94%
5 42.83% 46.09% 46.62% 42.69% 45.34% 43.22% 39.71%

Table 6.1. Percentage of curves for which the algorithm produces a correct ordering of the
input samples, when the sampling is evenly spaced. The overall trend is increasing with
the increase in the number of samples and the number of nearest neighbor candidates
for the heuristic.

NN
Samples

10 25 40 55 70 85 100

1 60.69% 14.13% 34.34% 28.90% 34.20% 28.84% 22.57%
3 63.43% 24.88% 39.81% 36.60% 37.88% 41.35% 29.22%
5 63.11% 32.12% 41.72% 39.33% 39.61% 41.62% 30.82%

Table 6.2. Percentage of curves for which the algorithm produces a correct ordering of the
input samples when the sampling is randomly uniform. The overall trend is increasing
with the increase in the number of nearest neighbor candidates for the heuristic but
decreases as the number of samples increases.

Ordering Both the Hausdorff distance and the RMSE take into account the shape
of the curve, and since we deal with vertex paths, the quality of our reconstruction
is strictly bound to the quality of the mesh. Since there are other methods that
define geodesic paths between two consecutive samples, we believe that is of interest
to study our algorithm’s ability to infer the right ordering of the samples, without
considering the actual reconstruction path between samples. Figure 6.8 depicts an
example where the right ordering of the samples does not guarantee fidelity to the
original curve between samples, and hence the reason why this analysis is carried
out separately.

We examined whether our output connects the sample points in the same order
as the ground truth, studying how the ability to compute the correct ordering de-
pends on the number of samples and the number of candidates used by the heuristic
for choosing the next vertex.

Once again, we partition the results separating the uniformly spaced input sam-
plings and the uniformly random samplings. Tables 6.1 and 6.2 summarize the
results of our experiments, showing the percentage of correctly ordered paths at
varying of the number of samples and the number of nearest neighbor used in the
heuristic.

The number of nearest neighbors included in the heuristic resulted to have a
negligible effect on the overall evaluation of the curve using the Hausdorff distance
and the RMSE. However, the effects of the heuristic start to be evident when we
restrict our evaluation to the ordering of the input samples. Table 6.2 shows this
result clearly, especially when dealing with more than 10 samples. Increasing the
number of candidates should increase the percentage of correctly ordered curves as
the correct next sample might not necessarily be the closest one. Our heuristic has

6.4 Results 116

2 4 6 8 10 12

Number of vertices #105

0

50

100

150

200

250

300

350

T
im

e
(m

il
li
se

co
n
d
s)

10 Samples
40 Samples

70 Samples
100 Samples

(a) Average execution time at varying the
number of vertices of the mesh.

20 40 60 80 100

Number of samples

0

50

100

150

200

250

300

350

T
im

e
(m

il
li
se

co
n
d
s)

20k Verts
141k Verts

250k Verts
1265k Verts

(b) Average execution time at varying the
number of input samples.

Figure 6.9. Average execution time of the algorithm at varying the number of vertices
in the input mesh and the number of input curve samples. Despite the outlier spike
explained by the mesh quality, in some instances, the overall trend depending on the
number of vertices is in agreement with the theoretical analysis. Contrarily to the
complexity study, denser samplings result in a more efficient computation.

more chances of picking the correct one if the pool of candidates is larger. This
trend can be noticed in Table 6.1 as well, even if the impact is less appreciable and
there are few exceptions.

Intuitively, increasing the number of input samples should heavily affects the
ability to infer the correct ordering, as the combinatorial complexity of the problem
increases exponentially with the number of input samples, and a greedy algorithm
like ours is more likely to take wrong decisions. Table 6.2 shows this result, pre-
senting a drastic drop from curves with 10 samples to curves with 100 samples.
However, the results presented in Table 6.1 seem to contradict our intuition. Since
the samples are uniformly spaced, for a single candidate, we increase the chance of
first finding the correct one with our geodesic expansion by increasing the number
of samples and implicitly moving the samples closer together. If we increase the
number of candidates, the data follows the expected trend for small numbers of
samples since samples are still far enough to not always have the correct candidate
as the closest encountered sample. For a high enough number of samples, however,
the decrease in distance between samples seems to confuse our heuristic in picking
the correct candidate.

6.4.3 Performance

To analyze the time performance of our algorithm, we time it over the entire dataset.
From the complexity analysis discussed in Section 6.3.3 it emerges that the algo-
rithm depends on the number of vertices of the mesh and the number of input
samples, so we relate the runtime to these values. Overall, more than 95% of the
runs took less than 0.25 seconds, and the longest experiment lasted for 2.2 seconds

6.4 Results 117

on a mesh with 1.25M vertices and 10 input samples, selecting among 5 nearest
neighbors for the heuristic.

Figure 6.9a shows how the execution time is related to the number of vertices of
the mesh, fixing the number of input samples. Despite the sparsity of the samples,
the overall trend is about linear, accordingly to our theoretical analysis. The spike
at 200k is caused by the pumpkin model (see Figure 6.8). This model exhibits a very
heterogeneous distribution of vertices, alternating sparse patches to dense clusters.
This variety increases the overall complexity, as traversing some areas of the mesh
results in a high number of edge traversals.

From the plot we can also notice that the algorithm seems to be slower when
there are less input samples. This fact is confirmed by the results presented in
Figure 6.9b, where we show how increasing the number of samples of the input
curve, the overall execution time decreases. This happens because increasing the
number of samples decreases the spacing between samples, and hence, our geodesic
expansion decreases in size as well. The candidates for the closest sample are found
faster and with fewer queries, since samples are closer to each other on the mesh.
While not invalidating the time complexity analysis, these results show that when
dealing with real curves, the algorithm achieves good performance independently
of the number of input samples, and hence that it is suitable for both sparse and
dense reconstructions.

6.4.4 Limitations

Since our computation is based on the given triangulation and we do not change
the initial mesh in any way, the success and its degree depend on the mesh quality.
This is the reason why most of the failure cases are on the egg, frog, and octocat
meshes, which suffer from poor and non-uniform triangulations, exhibiting low-
quality areas with few vertices and long, skinny triangles. However, our method
still manages to reconstruct most of the curves even for these difficult meshes, as
can be seen in Figure 6.10.

Since the curve reconstruction problem has been only addressed for the planar
case until now, there is no dataset to use for reconstructing curves on surfaces.
In order to obtain quantitative results, we need multiple and variate curves on
multiple models, which can only be obtained programmatically. However, the poor
mesh quality influences the ground truth generation as well, since the original curve
is also defined as a vertex path on the mesh. The generator has to obtain a high
number of samples on a low-poly triangulation which implies a chaotic walk on the
surface, as can be visible in Figure 6.12.

Furthermore, increasing the number of samples affects the reconstruction as well,
since more samples imply more constraints for our method which, due to the greedy
approach, result in cutting off sections of the mesh too early. This trend can be
observed in the aggregated results over all the sample values, visible in Figure 6.11.

Inheriting limitations from the related issue of curve reconstruction in the plane,
our method can only deal with closed non-intersecting curves and it is sensitive to
non-uniform and sparse sampling. Moreover, being an interpolatory method, curves
with noise or outliers would incorporate the noise in the reconstruction instead of
eliminating or modifying the incorrect samples.

6.4 Results 118

dr
ag
on

eg
g

fe
rt
il
it
y

fr
og

lu
cy

lu
cy
ca
t oc
to
ca
t pu
mp
ki
n sa
pp
ho
s
sk
ul
l

0

50
0

10
00

15
00

20
00

Numberoffailures

F
ig

ur
e

6.
10

.
D

ist
rib

ut
io

n
of

fa
ilu

re
ca

se
s

am
on

g
th

e
m

es
he

s
in

th
e

da
ta

se
t.

Ea
ch

m
es

h
is

te
st

ed
on

2.
1k

cu
rv

es
,a

nd
th

e
m

es
he

s
th

at
fa

il
m

os
t

ar
e

th
os

e
w

ith
lo

w
er

re
so

lu
tio

n
or

w
ith

lo
w

-q
ua

lit
y

tr
ia

ng
ul

at
io

n.

6.4 Results 119

10
25

4
0

5
5

7
0

8
5

1
0
0

0

50
0

10
00

15
00

20
00

25
00

30
00

Numberoffailures

F
ig

ur
e

6.
11

.
D

ist
rib

ut
io

n
of

fa
ilu

re
ca

se
s

am
on

g
ru

ns
w

ith
di

ffe
re

nt
sa

m
pl

in
g

re
so

lu
tio

ns
.

Ea
ch

of
th

e
sa

m
pl

es
co

un
t

is
te

st
ed

on
3k

cu
rv

es
.

In
cr

ea
sin

g
th

e
nu

m
be

r
of

sa
m

pl
es

pr
ov

id
es

ad
di

tio
na

lc
on

st
ra

in
ts

,i
nd

uc
in

g
th

e
gr

ee
dy

be
ha

vi
or

of
th

e
al

go
rit

hm
to

ta
ke

th
e

w
ro

ng
de

ci
sio

n
an

d
pa

rt
iti

on
th

e
m

es
h

be
fo

re
cl

os
in

g
th

e
pa

th
.

6.5 Conclusions 120

(a) (b)

(c) (d)

Figure 6.12. Examples of failure cases - samples, illustrated in red, are a subset of the
ground truth black curve on the surface. The poor quality of the mesh, explained by the
non-uniformity of triangles (Subfigures 6.12a, 6.12d) together with the unconstrained
generation of the curve dataset (Subfigure 6.12c), result in ill-defined paths that our
algorithm cannot reconstruct. Sampling density is another factor that prevents our
algorithm from generating a reconstruction - Subfigure 6.12b.

6.5 Conclusions

In this work, we introduced a generalization of the curve reconstruction task on
triangular mesh domains, showing its relevance in different research fields and real-
world applications. We presented an efficient greedy algorithm for solving this
problem, adapting existing solutions for the traveling salesman problem in R2 to
non-Euclidean domains.

For extensive testing, we generated a dataset of curves on surfaces, on shapes

6.5 Conclusions 121

with variable density, genus, connectivity, and topology. The analysis of our results
showed that our method is suitable for addressing curve reconstruction on surfaces,
producing good-looking curves that fit the ground truth well while efficiently dealing
with meshes at very high resolutions. We discussed the ability of our method to
produce the correct ordering of the input samples, which enables our method to
be integrated into more complex pipelines of curve generation and design that are
not bound to the original triangulation, such as splines approximately fitting the
samples.

As a future direction, we intend to explore this task deeper and improve our
method. Curve reconstruction is a well-established field, counting a large variety
of approaches and solutions. Adapting state-of-the-art methods for planar recon-
struction to non-Euclidean geometries could result in more effective and efficient
approaches. Furthermore, we recognize the absence of a dataset as a major limita-
tion in our testing pipeline, leading to extra difficulties in analyzing the quality of
our solution. Finally, dealing with vertex paths bounds us to the mesh quality and
resolution. Addressing the problem on the entire domain of the surface would be a
first step towards producing curves of higher quality.

122

Part III

Parallelization & Optimization

123

Chapter 7

Newton’s Fractals on Surfaces
via Bicomplex Algebra

In this chapter we propose a novel algorithm for decorating surfaces with Newton’s
fractal patterns only relying on a pixel shader. We exploit the properties of the
algebraic field of bicomplex numbers to generalize Newton’s fractals to 4 dimensions
and efficiently evaluate the shader with an iterative solver. This work was realized in
collaboration with Daniele Baieri (MSc.), to whom goes the credit for improving the
smooth gradient formula and producing some of the rendered scenes, prof. Simone
Melzi and prof. Emanuele Rodolà, both of which largely helped in improving the
overall presentation. The results presented in this chapter have been published in
the poster proceedings of the Special Interest Group on Computer Graphics and
Interactive Techniques (SIGGRAPH) [157].

7.1 Introduction

The Newton-Raphson method is a well-known it-
erative method used to find roots of any function
f : C→ C. Nearby points usually converge to the
same solution. Hence one can identify regions
associated with each solution, whose boundaries
describe fractal patterns [212]. This type of pat-
tern is known as Newton’s fractal and is typi-
cally used to generate interesting visualizations
and effects like the one shown in the inset figure.
The usual approach is to define some polynomial
p(z) with roots {ξi}ni=1 and apply the Newton-
Raphson method to all points on the plane. Each

point is associated with an index i corresponding to the solution ξi it converged to
and then colored with some coloration C(i). Despite the beautiful visualizations
that can arise, Newton’s fractals can only be used to generate image patterns.

Bicomplex numbers are a generalization of complex numbers that define a closed
and commutative algebra in four dimensions [64, 65]. The bicomplex field BC is

7.2 Method 124

(a) (b) (c)

Figure 7.1. A bicomplex Newton’s fractal on a surface (a), the map of its convergence
speed (b) and a material built over these two maps (c).

isomorphic to the field of 2× 2 matrices over C spanned by the following basis:

1 =
(

1 0
0 1

)
i =

(
i 0
0 i

)
j =

(
0 1
1 0

)
k =

(
0 i
i 0

)
. (7.1)

Any bicomplex number can always be described as z = x1 + yj, being x, y ∈ C.
Differently from the complex field, bicomplex algebra is isomorphic to a direct sum
of two algebras over C [65]. In fact, one can construct two idempotent, zero divisors
and orthogonal elements e = (1+k)/2 and e† = (1−k)/2 such that every bicomplex
number z can be uniquely decomposed into z = αe+βe†, making effectively {e, e†}
a basis for BC over the scalar field C.

Most of the properties of complex numbers still hold in bicomplex algebra [236].
Bicomplex numbers are commutative and invertible, and the elementary functions
can be easily extended [155]. The derivative of a bicomplex function f : BC→ BC
is well defined, and most of the differentiation rules (e.g., derivatives of elementary
functions, chain rule, product rule, linearity) still apply.

Bicomplex numbers have already been used in abstract mathematics and com-
puter graphics applications for describing fractals [282]. However, previous work
is limited to considering classic escape-time fractals, like the Mandelbrot and Julia
sets. In this work, we show that it is possible to use bicomplex numbers to gener-
alize even the well-known Newton’s fractal. Moreover, we also provide insights for
possible application in procedural texturing and volumetric rendering.

7.2 Method

Since bicomplex functions in the form f : BC → BC can be expanded with Tay-
lor [236], and the Taylor series in BC converges, we can use the classical proof of
the Newton-Raphson method to show that Newton’s iteration converges to the root
of a function: this allows us to generalize Newton’s fractal to bicomplex numbers,
and use it to generate 4-dimensional patterns.

In the complex plane, the roots of the polynomial cn−1 = 0 lie on the unit circle
and are equispaced, and the interesting patterns arising from this particular family
of polynomials are shown in most visualizations of Newton’s fractal. This still holds
in BC, where the roots of zn − 1 = 0 are equispaced on the unitary 4-dimensional

7.3 Implementation 125

(a) (b)

Figure 7.2. An example of bicomplex Newton’s fractal used as decoration (a). A volu-
metric rendering of a region that identifies a solution of z3 − 1 = 0 (b).

hyper-sphere [218]. This polynomial has n2 closed form solutions [218, 155] βij =
αie + αje†, with αk = cos(2k−1

n π) + i sin(2k−1
n π).

Applying the Newton-Raphson method to solve bicomplex polynomials in the
form zn − 1 = 0 produces the same patterns of the complex plane, but it extends
to 4 dimensions. By using the 3D coordinates of the visualized points, we can gen-
erate interesting and complex patterns, as we show in Figures 7.1a and 7.2a, while
using the fourth coordinate either as a tunable parameter or as a time dependency,
allowing for an additional degree of freedom.

7.3 Implementation

We implement the algorithm as a pixel shader, where each thread computes New-
ton’s iteration on the given point. This gives us the possibility to fully exploit GPU
computing.1

We optimize our iteration scheme using ad-hoc algebraic manipulations for the
specific polynomial in use:

zk+1 = zk −
f(zk)
∂f(xk)

∂z

= zk −
zn

k − 1
n zn−1

k

= 1
n

(
(n− 1)zk + z1−n

k

)
. (7.2)

This way we avoid bicomplex division, which usually requires 64 FLOPs. We also
take advantage of the decomposition in the basis {e, e†} to efficiently compute
powers: in fact, since both e and e† are idempotent, and since ee† = 0, then we
have zn = (αe + βe†)n = αne + βne† (for any n ∈ Z), and complex powers can be
computed efficiently using polar coordinates.

We exploit the decomposition to represent bicomplex numbers in the whole
shader. Other than simplifying and speeding up the computation, this representa-
tion also makes it easier to compute which bicomplex solution a number converged

1A sample implementation with Unity surface shaders that achieves real-time performance is
available at https://github.com/filthynobleman/newton-fractals.

https://github.com/filthynobleman/newton-fractals

7.4 Results and Conclusions 126

Figure 7.3. An example of bicomplex Newton’s fractal used as mask for mixing different
materials.

to. If a number converged to some z = αe+βe†, we can reduce the problem to find
to which complex solution α and β converged.

A smooth gradient representing the speed of convergence typically enriches New-
ton’s fractals using it, for example, as a heightmap for additional detail in the
texture. Among the existing approaches, we compute this gradient as

t = P −
P∑

k=0

1
1 + exp(δk + θ)− exp(θ) , (7.3)

where δk = |zk+1 − zk| is the magnitude of each step, P is the number of Newton
iterations and θ is a tunable parameter. The same approach can be easily generalized
to a bicomplex setting, as we show in Figure 7.1b.

7.4 Results and Conclusions

Bicomplex numbers offer an instrument for generalizing Newton’s fractal to 4 di-
mensions. This type of fractal offers a new possibility for procedural generation of
4D textures. We have shown that bicomplex Newton’s fractals generate interesting
and complex patterns, similar to their complex counterpart. Our results prove that
these patterns can fit all the most common applications, from decorating surfaces
(Figure 7.1c) and masking materials (Figure 7.3), to volumetric rendering of fractal
regions (Figure 7.2b).

127

Chapter 8

Efficiently Parallelizable
Strassen-Based Multiplication
of a Matrix by its Transpose

The multiplication of a matrix by its transpose, AT A, appears as an intermediate
operation in the solution of a wide set of problems. In this chapter, we propose a
new cache-oblivious algorithm (AtA) for computing this product, based upon the
classical Strassen algorithm as a sub-routine. In particular, we decrease the compu-
tational cost to 2/3 the time required by Strassen’s algorithm, amounting to 14

3 n
log2 7

floating point operations. AtA works for generic rectangular matrices, and exploits
the peculiar symmetry of the resulting product matrix for saving memory. In ad-
dition, we provide an extensive implementation study of AtA in a shared memory
system, and extend its applicability to a distributed environment. To support our
findings, we compare our algorithm with state-of-the-art solutions specialized in the
computation of AT A. Our experiments highlight good scalability with respect to
both the matrix size and the number of involved processes, as well as favorable per-
formance for both the parallel paradigms and the sequential implementation, when
compared with other methods in the literature. The work presented in this chapter
has been realized in collaboration with Viviana Arrigoni (Ph.D.), who designed the
overall algorithmic scheme and with whom I worked on the algorithmic analysis
and the design details of the distributed algorithm, prof. Annalisa Massini and
prof. Emanuele Rodolà. The results presented in this chapter have been published
at the International Conference on Parallel Processing (ICPP) [12].

8.1 Introduction

Matrix multiplication is a fundamental operation in Linear Algebra and HPC, as
it appears as an intermediate step in a wide set of problems. Many researchers
have devoted their efforts to the algorithmic aspects of matrix multiplication, with
the aim of improving the computational cost of existing algorithms and to devise
and implement new solutions for parallel architectures. Designing a distributed
algorithm for matrix multiplication is a challenging task, due to the inherent de-
pendence of the data scattered in the system’s distributed memory, and due to the

8.1 Introduction 128

overhead due to the communication cost of assembling the resulting product matrix.
The product of a matrix by its transpose, AT A (as well as AAT), is a particu-

lar matrix multiplication involved in several applications. For example, computing
AAT is a straightforward, yet effective, method to check for orthogonality or to
project vectors onto the space spanned by the columns of A. This product, in
fact, is repeatedly computed in the Gram-Schmidt algorithm for vector basis or-
thogonalization, where A is the progressively built projection matrix. One way
to solve the least squares problem of under and over determined linear systems
Ax = b, is to solve the associated system of normal equations, obtained by left-
hand multiplying the original system by AT , thus obtaining a square linear system
AT Ax = AT b. Also, the Singular Value Decomposition (SVD) of a matrix A can
be computed by studying the eigenproblem for AT A and AAT . Furthermore, the
product of a matrix by its transpose commonly arises in discrete exterior calcu-
lus and discrete differential geometry. One example is given by the discrete heat
kernel K(t) = ΦE(t)ΦT , with E(t) = exp(−Λt) being a diagonal matrix, so that
K(t) = (ΦE(t)1/2)(ΦE(t)1/2)T can be efficiently computed [298]. Many other appli-
cations of the product AT A are described in [257], together with its properties such
as positive semi-definiteness. In this work, we consider the multiplication between
AT and A, where A may have any size and shape. We rely on a recursive approach
that, as described in [211], is virtually tuning free and avoids the significant tuning
efforts that are required by iterative blocked algorithms to achieve near-optimal
performance. Our contribution is threefold.

• First, we introduce AtA (Section 8.3), a cache-oblivious algorithm for com-
puting AT A that requires 2/3n(log2 7) + 1/3n2 multiplications. We exploit the
self-similarity of the AT A product with its sub-problems and the Strassen’s al-
gorithm, that is recursively applied to possibly rectangular matrices, without
introducing additional computational and space cost, deriving from dynamic
peeling and padding, as in [108, 267]. In contrast to [75], our algorithm works on
any algebraic field. We prove that AtA exhibits high efficiency for both memory
and time, and show that it is efficiently implementable, as it does not hide large
constant factors. We also describe our implementation of Strassen’s algorithm,
and compare its performance with that of the Intel MKL BLAS gemm routine for
matrix multiplication.

• Second, we describe AtA-S, our multi-threaded implementation of AtA for a
shared memory system, relying on OpenMP (Section 8.4.2). A well-engineered
scheduler that assigns different tasks to each thread in such a way that computa-
tions can be carried out in perfect parallelism by preventing memory collisions.
Performance evaluation shows that our implementation outperforms the multi-
threaded Intel MKL BLAS routines (e.g. syrk for symmetric rank-K update)
on large matrices, even on Intel processors.

• Finally, we extend our approach to distributed systems, leveraging the standard
message-passing paradigm MPI. Our distributed algorithm AtA-D allows the
distribution of the computational effort among a larger number of processes
(Section 8.4.3). This is particularly convenient on very large matrices.

8.2 Related Work 129

To validate the effectiveness of our algorithms, we study their performance by
running a set of tests on dense matrices of variable size (Section 8.5). We analyse
different metrics for evaluating the scalability of our parallel implementation, and
compare our results with benchmark solutions for distributed systems. We run
tests on a cluster of multi-core nodes endowed with 2×8 core Intel Xeon E5-2630v3
processors, 2.4 Ghz, 4 GB RAM/core.

8.2 Related Work

Nowadays, matrix multiplication is still a hot topic in HPC and numerical algorith-
mics. In 1969, Strassen [258] was the first to reduce the computational complexity
of the standard matrix multiplication from O(n3) to O(nlog2 7). More recently, Cop-
persmith and Winograd [59] devised an algorithm for matrix multiplication running
in ∼ O(n2.38) time. In the last decade, many have devoted their efforts to improve
this limit ([256, 288, 89]). These works make use of algebraic tensors that, despite
the elegance of the resulting method, are still hardly used in practice as they come
at the cost of very large hidden constants and frequent memory access.

Several authors have designed hybrid algorithms, deploying Strassen’s multi-
plication in conjunction with conventional matrix multiplication, to overcome the
overhead of Strassen’s algorithm on small matrices, see, e.g., [36, 37, 102, 108, 25].
Huss-Lederman et al. [108] propose two techniques, known as dynamic peeling and
static padding, in order to apply Strassen’s algorithm to odd-sized matrices. Thot-
tethodi et al. [267] propose two strategies to optimize memory efficiency in Strassen
by minimizing padding and peeling operations. Many researchers have proposed a
parallel implementation of Strassen’s algorithm. In [156], Luo and Drake explored
Strassen-based parallel algorithms that use the communication patterns known for
classical matrix multiplication. They considered using a classical 2D parallel algo-
rithm and using Strassen locally and at the highest level. This approach is improved
in [94] by using a more efficient parallel matrix-multiplication algorithm running on
a more communication-efficient machine. In [63], Strassen’s algorithm is extended
to deal with rectangular and arbitrary-size matrices. Their approach leverages on
a suitable combination of Strassen’s with ATLAS and GotoBLAS. Other parallel
approaches [68, 107, 252] have used more complex parallel schemes and commu-
nication patterns, and consider at most two steps of Strassen. In [18], a parallel
algorithm based on Strassen’s fast matrix multiplication, Communication - Avoid-
ing Parallel Strassen (CAPS), is described. The authors show that its complexity
matches the communication lower bounds described in [19]. This work is extended
in [67] to handle rectangular matrices (CARMA). More recently, Kwasniewski et al.
[130] proposed a near optimal algorithm for matrix multiplication that models the
matrix multiplication dependencies by the red-blue pebble game [112] to derive an
I/O optimal schedule, improving the performance of previous works.

Both Strassen’s algorithm and AtA fall into the class of recursive blocked algo-
rithms. The work in [82, 117] proves the effectiveness of this kind of algorithms for
dense Linear Algebra. The work in [81] introduces FRPA, an interface for imple-
menting recursive problems in parallel that gets as an input the recursive problem,
and handles parallelization and auto-tuning automatically. Similarly to our ap-

8.3 AtA 130

proach, Charara et al. [49] propose block recursive matrix multiplication and linear
solver algorithms. They show how recursion enhances data reuse and concurrency
in GPUs. Differently from the work presented in this chapter, they specialize on
triangular matrices. In [48], the authors also adapt this blocking strategy to handle
batched operations on small matrix sizes (up to 256) to stress the register usage
and maintain data locality. In [211], Elmar and Bientinesi introduce ReLAPACK,
a collection of recursive algorithms for dense Linear Algebra. While this work cor-
roborates the recursive approach that we implement in our algorithms, it does not
provide a routine specialized in the AT A product for general matrices. Instead,
they propose a routine for the same multiplication only on triangular matrices. We
highlight that the solutions proposed for the multiplication of a matrix by its trans-
pose on triangular matrices (TRSYRK) is useful for many applications but cannot
be applied on general matrices.

Although much research has been devoted to optimizing the implementation of
parallel matrix multiplication, very few solutions have been proposed for the AT A
multiplication. In [75], Dumas et al. propose an algorithm for the product AAT

whose computational complexity is improved by a constant factor with respect to
previously known reductions. This approach is applicable only to matrices lying
in fields where skew-orthogonal matrices exist (e.g., C and finite fields of prime
characteristics), which is not the case for R and Q, that instead are important in
many applications, such as the study of embedded systems, computational geometry
and system simulations.

Except for some sporadic attempts to implement a method for distributing in
a balanced way the workload for matrix multiplication among processes with the
MapReduce programming model [221, 116], the approach that we implement here
for the distributed parallel model has barely been investigated.

8.3 AtA

In this section, we describe our sequential recursive algorithm for the matrix multi-
plication AT A, dubbed AtA, and we provide implementation details. We remark
that our solution also works for the product AAT . Yet, when row-major order is
the default layout for array storage, the AT A multiplication is in practice harder
to perform, as memory access is inherently column-wise, hence not cache friendly.
Since AtA includes calls to Strassen for generic matrix multiplications, we also
outline a time and space efficient implementation for this algorithm.

8.3.1 AtA in Detail

Let A ∈ Rm×n be a rectangular matrix. The idea behind AtA is the following: at
each recursive step, matrix A is divided into four sub-matrices as follows:

A =
[
A1,1 A1,2
A2,1 A2,2

] A1,1 = A0:m1,0:n1 ∈ Rm1×n1

A1,2 = A0:m1,n1:n ∈ Rm1×n2

A2,1 = Am1:m,0:n1 ∈ Rm2×n1

A2,1 = Am1:m,n1:n ∈ Rm2×n2

(8.1)

8.3 AtA 131

being m1 :=
⌊

m
2
⌋
, m2 :=

⌈
m
2
⌉
, n1 :=

⌊
n
2
⌋
, n2 :=

⌈
n
2
⌉
. We address to sub-matrices

of a matrix A as to indexed sub-blocks (Ai,j) or with line and column intervals
(Ar1:r2,c1:c2). The product matrix C = AT A is also split into four sub-matrices,
resulting in the following:

C1,1 = AT
1,1A1,1 + AT

2,1A2,1 ∈ Rn1×n1 ,

C1,2 = AT
1,1A1,2 + AT

2,1A2,2 ∈ Rn1×n2 ,

C2,1 = AT
1,2A1,1 + AT

2,2A2,1 ∈ Rn2×n1 ,

C2,2 = AT
1,2A1,2 + AT

2,2A2,2 ∈ Rn2×n2 .

(8.2)

Both C1,1 and C2,2 consist of two addends that are, in turn, the left hand product
of a matrix by its transpose. Hence, four recursive calls are employed to compute
the sub-products AT

1,1A1,1 and AT
2,1A2,1 to obtain C1,1, and AT

1,2A1,2 and AT
2,2A2,2

to obtain C2,2.
Since for any matrix A the product AT A is symmetric, at each recursive step

only the lower triangular part of the product matrix is computed, low(Ci,i), i = 1, 2.
As for component C2,1, in order to compute its two terms in the sum, we implement
the generalized Strassen’s algorithm for non-square matrices. The sub-matrix C1,2
is equal to CT

2,1, and therefore must not be explicitly computed. In Algorithm 8.1
we provide the pseudo-code of AtA. The base case occurs when the number of
entries of the sub-matrix fits in the cache. In that case, the multiplication is per-
formed by the BLAS function for AT A, ?syrk, where the character ? represents a
generic data type in accordance with standard notation used in manuals, [86]. In
Algorithm 8.1, we also sketch our implementation of Strassen: before the actual re-
cursive Strassen algorithm is called (Strassen), in FastStrassen we conveniently
prepare an environment for memory efficiency by pre-allocating the memory for
Strassen’s algorithm, as explained in Section 8.3.3. The reduced number of multi-
plications in Strassen’s algorithm is achieved by computing more matrix additions.
In our implementation of Strassen, matrix additions are performed by calling the
BLAS routine ?axpy (for the vector addition y = αx + y). The base-case condition
in Strassen is analogous to the one of AtA. When the base-case condition holds,
we call the BLAS routine ?gemm for the generic AT B multiplication. To handle
odd-sized matrices, we do not implement well-known strategies such as peeling or
padding, since these are known for introducing computational and memory over-
head. Instead, we manage sums between matrices of discordant size by conveniently
applying the BLAS routine ?axpy for array sums, so that it simulates padding of
an extra 0 column or row, by excluding the last row and/or column of a sub-matrix
from the sum.

AtA and FastStrassen are designed to be efficient alternatives to the BLAS
routines ?gemm and ?syrk. Thus, they perform the same operations, respectively
C = αAT B+βC and C = αAT A+βC. However, we avoid introducing the scaling
factor β from our algorithms for clarity of exposure, since C can be simply scaled
before applying the algorithms.

8.3 AtA 132

Algorithm 8.1 AtA- Serial
1: procedure AtA(A ∈ Rm×n,C ∈ Rn×n, α ∈ R)
2: if m× n ≤ cache_size then
3: blas_?syrk(A,C, α)
4: return
5: end if
6: Initialize pointers to Ai,j , Ci,j , i, j = 1, 2
7: AtA(A1,1,C1,1, α)
8: AtA(A2,1,C1,1, α)
9: AtA(A1,2,C2,2, α)

10: AtA(A2,2,C2,2, α)
11: FastStrassen(A1,2,A1,1,C2,1, α)
12: FastStrassen(A2,2,A2,1,C2,1, α)
13: end procedure

14: procedure FastStrassen(A ∈ Rm×n,B ∈ Rm×k,C ∈ Rn×k, α ∈ R)
15: Allocate M = 0n×k/2

16: Allocate P = 0m×n/2

17: Allocate Q = 0m×k/2

18: Strassen(M, P, Q, A, B, C, α)
19: end procedure

8.3.2 Computational Complexity

The idea behind Strassen’s algorithm is to perform a 2 × 2 matrix multiplication
using 7 multiplications instead of 8, as required by naive matrix multiplication
[258]. Nevertheless, Strassen’s algorithm involves 18 sums between sub-matrices,
thus leading to a computational complexity TS(n) ≈ 7nlog2 7. In Algorithm 8.1,
there are four recursive calls to AtA on basically halved dimensions, two calls to
FastStrassen and 3 sums. Thus, we can derive the recurrence function for AtA
runtime depending on the input size n as follows:

T (n) = 4T
(
n

2

)
+ 2TS

(
n

2

)
+ 3

(
n

2

)2
≈ 2

3TS(n). (8.3)

The overall computational complexity of AtA reduces the one of the general matrix
multiplication AT A, amounting to n2(n + 1), and of Strassen’s algorithm naively
applied for computing AT A, that would require the same number of products as
for the general matrix multiplication, and only 16 sums instead of the 18 matrix
additions in the original Strassen’s formulation.

8.3.3 Space Complexity

In AtA, at each recursive step, pointers to the current portions of A and C are
initialized so that, when the condition for the base-case occurs, the matrix mul-
tiplications are carried out on the correct sub-matrices of A, and stored in the
corresponding locations in C.

8.3 AtA 133

Algorithm 8.2 RecursiveGEMM
1: procedure RecursiveGEMM(A ∈ Rm×n,B ∈ Rm×k,C = 0n×k)
2: if m× n+m× k ≤ cache_size then
3: blas_?gemm(AT ,B,C)
4: end if
5: for i = 1, 2 do
6: for j = 1, 2 do
7: for k = 1, 2 do
8: RecursiveGEMM(Ak,i, Bk,j , Ci,j)
9: end for

10: end for
11: end for
12: end procedure

Strassen’s algorithm for general matrix multiplication is called twice. One draw-
back of the naive Strassen implementation is the great amount of memory allocated
at each recursive step to store the results of the intermediate matrix additions
required by the algorithm. In order to avoid frequent memory allocations and re-
leases, we call recursive Strassen (Strassen) on pre-allocated matrices, M, P and
Q (FastStrassen). The size of such matrices is sufficiently large to store all in-
termediate matrix operation results throughout the recursive calls. In fact, given
an n× n matrix, at each recursive step we halve both the dimensions, rounding up
the result to the nearest integer when matrices have odd sizes. By doing so, the
amount of memory used by the algorithm when the base case is reached if

log2 n∑
i=1

(n+ log2 n)2

4i
= (n+ log2 n)2

(1
3 −

4
3n2

)
≤ n2

2 (8.4)

which, multiplied by the three supporting matrices M, P and Q, results in a total
of 3

2n
2. Although the overall space complexity of Strassen does not change, we are

able to save time for memory allocation at each recursive step. Consequently, the
space complexity of AtA is S(n) = 3

2n
2.

In Section 8.5, we show that Strassen’s algorithm benefits from the described
strategy for memory allocation.

8.3.4 Cache Complexity

In this section, we show the cache complexity of AtA. We assume the ideal cache
model and we denote with M the cache size, and with b the size of the cache line.

Proposition 8.1. The cache complexity of AtA, CAtA(n;M, b), is the same as the
cache complexity of Strassen, CS(n;M, b) = Θ(1 + n2/b + nlog2(7)/b

√
M), [88].

Proof. We prove the thesis by induction. First, we observe that CAtA(2;M, b) =
6CS(1;M, b) ≤ 7CS(1;M, b) = CS(2;M, b). Assuming as inductive hypothesis that

8.4 Parallel AtA 134

CAtA(n/2;M, b) ≤ CS(n/2;M, b), it holds that:

CAtA(n;M, b) = 4CAtA(n/2;M, b) + 2CS(n/2;M, b)
≤ 6CS(n/2;M, b) ≤ 7CS(n/2;M, b) = CS(n;M, b).

Furthermore, notice that: CS(n/2;M, b) ≤ CAtA(n;M, b) ≤ CS(n;M, b). Hence, the
thesis holds.

8.4 Parallel AtA

Our algorithm for the AT A product, AtA, can be conveniently parallelized to work
on both shared and distributed-memory systems. We will refer to our shared and
distributed-memory algorithms for AT A as AtA-S and AtA-D, respectively. Our
parallel implementations of AtA take advantage of the recursive nature of AtA to
distribute tasks (and possibly data) to different processes in an efficient way. To
do so, an initial phase that implements a scheduler covering the recursion tree of
AtA is integrated in both parallel algorithms. In this way, we assign a task to
each different parallel process, as we explain in Section 8.4.1. After this preliminary
phase, each process knows which sub-problem it has to solve.

8.4.1 Preliminary Phase: Task Assignment

Usually, recursive algorithms are parallelized with a fork-join paradigm, according to
their natural behaviour: at each recursive call, a new thread is created to accomplish
that call. However, repeatedly creating and killing threads introduces a significant
overhead, especially when it happens as a nested procedure. A parallelized for
loop approach can usually improve this thread start-up overhead. For this reason,
rather than addressing the problem by distributing recursive calls between newly
created threads, we simulate the behaviour of a fork-join algorithm to determine,
for each thread, on which sub-matrices it must work. This is particularly useful to
generalize our approach to both shared memory and distributed settings.

Building the Task Tree

To conveniently distribute tasks among P parallel processes collaborating to com-
pute AT A, in the first phase of our algorithms, each process builds the recursion
tree of a modified version of AtA, that we shall call AtANaive, and explores a
part of it with a breadth-first search (BFS), see Figure 8.1. AtANaive considers
classic recursive general matrix multiplication instead of Strassen, and can be eas-
ily implemented by modifying Algorithm 8.1 to call RecursiveGEMM instead of
Strassen. RecursiveGEMM, summarized in Algorithm 8.2, is a recursive algo-
rithm for the naive general matrix multiplication. The reasons behind this choice
will be explained in Section 8.4.1. We define the task tree, denoted with T , to be
the sub-tree of the recursion tree of AtA, obtained by spanning the latter with a
BFS, that is interrupted as soon as T counts P leaves, labeled from 0 to P − 1.
Both AtA-S and AtA-D implement the task tree, but with some differences con-
cerning data and task division. In AtA-D, each p-th leaf corresponds to the task

8.4 Parallel AtA 135

F
ig

ur
e

8.
1.

A
tr

ee
of

16
pr

oc
es

se
s

di
st

rib
ut

in
g
A
∈
R

n
×

n
.

B
ox

ed
la

be
ls

on
th

e
rig

ht
-h

an
d

sid
e

ar
e

th
e

le
af

no
de

s
of

th
e

tr
ee

ge
ne

ra
te

d
by

A
tA

-S
,

co
rr

es
po

nd
in

g
to

co
m

pu
ta

tio
n

ta
sk

s
as

sig
ne

d
to

co
rr

es
po

nd
in

g
pr

oc
es

se
s

in
th

e
le

ft
-h

an
d

sid
e

le
af

la
be

ls.

8.4 Parallel AtA 136

that process p has to fulfil, and contains directives on both the computational and
communication activity that is due to the corresponding process. Specifically, a leaf
task t provides the following information:

1. t.computationType: Which type of computation process p has to carry out.
It can be either a AT A or a AT B multiplication;

2. t.X.offset and t.X.q, with X ∈ {A,B,C}, q ∈ {m,n}: The row and column
offsets as well as the size of the sub-matrices of A and C process p has to
work on;

3. t.parent: The parent process that sends sub-matrices of A to its children
(during the distribution phase), and to which process p has to send the result
of the task that was assigned to it or, if p is the parent, the information on
its children’ tasks (during result retrieval).

Inner nodes of T instead, represent tasks concerning data distribution and retrieval,
possibly involving sums of sub-matrices of C = AT A, and consequent communi-
cation (point 3 of the previous list), and are executed by a subset of processes. In
contrast, in AtA-S only leaf nodes of T correspond to a task, whereas inner nodes
are ignored, as no communication is involved. For the same reason, leaf tasks only
include information about what kind of computation the corresponding threads have
to carry out and on the sub-matrices they have to work on (points 1 and 2 of the
previous list).

Load Balancing

The task tree of AtA-D is created so that, at each level, given P available processes,
α · P processes compute a general AT B matrix multiplication; for the remaining
(1 − α) · P processes, a task for a AT A multiplication is assigned to them. Here,
α ∈ (0, 1) is a parameter for balancing the workload among distributed processes, as
the computational complexity of a AT A product is lower than the one of AT B. The
task tree T is built by calling RecursiveGEMM (whose computational complexity
is roughly twice the one of AtA, T (n)). Therefore the number of multiplications
carried out in T to perform AT B is twice the one needed to compute AT A. The load
balancing parameter must be such that 4·T (n)/(1−α)P = 2·2T (n)/αP . In accordance, we
set α = 1/2. This task division is repeated recursively at each level, by progressively
decreasing the number of available processes, P . The number of recursive parallel
steps depends on P and α. In particular, for α = 0.5, the number of parallel levels
in the task tree, ℓ is given by the following expression:

ℓ(P = 1) = 0, ℓ(2 ≤ P ≤ 6) = 1

ℓ(P > 6) = 1 + k + sign
(
P

4 mod 8max{k;1}
)
,

(8.5)

where k = max
{
k ∈ N : P/4

8k ≥ 1
}

and sign(x) is the sign function, returning 0 for
x = 0 and 1 for x > 0. Indeed, when AtA-D is called on P processes, P/2 of
them are going to compute C2,1; out of them, P/4 processes compute AT

1,2A1,1,

8.4 Parallel AtA 137

whereas the remaining P/4 are in charge for AT
2,2A2,1 (see Equation 8.2). These

tasks are in turn distributed among 8 processes each, recursively (corresponding to
the eight recursive calls of RecursiveGEMM). This splitting is repeated as long
as it possible (i.e., until P/4/8k ≥ 1). If by doing so, all P/4 processes are used (i.e.,
P/4 is a multiple of 8k, for some k), all processes work on equally sized matrices.
Otherwise, some processes will further split their tasks to smaller matrices, resulting
in an additional parallel level. We say that the last parallel level is complete when
all leaves corresponding to AT A tasks are grouped in bunches of 6 siblings, and
when all leaves corresponding to AT B tasks are grouped in bunches of 8 siblings.

The task tree for AtA-S is quite different. In order to avoid concurrent overlap-
ping writes, input matrices are tiled in horizontal and vertical blocks, as depicted
in Figure 8.2. This way, we ensure that each thread computes a different Ci,j .
With this new scheme, we make three recursive calls to AtA (instead of 6) and four
recursive calls to FastStrassen (instead of 8). Therefore, the number of parallel
levels in AtA-S, given P threads, is the following:

ℓ(P = 1) = 0, ℓ(P = 2, 3) = 1,

ℓ(P > 3) = 1 + k + sign
(
P

2 mod 4max{k;1}
)
,

(8.6)

with k = max
{
k ∈ N : P/2

4k ≥ 1
}

. In Figure 8.1, we show an example of the task
tree with 16 processes for AtA-D, and the leaf nodes of the task tree for AtA-S
(boxed).

Naive Matrix Multiplication over Strassen

In our parallel algorithms, we do not rely on Strassen for general AT B matrix mul-
tiplication when building the recursion tree, that instead is created by simulating
AtANaive. This is done with the goal of optimizing the resources of distributed
architectures, as the naive general matrix-multiplication algorithm does not allocate
the additional memory required by Strassen, resulting in a faster memory manage-
ment. Furthermore, Strassen’s algorithm would possibly cause a hardly manageable
workload unbalance between processes implementing an AT A multiplication, and
those that would be in charge of computing the intermediate matrix sums appearing
in Strassen’s algorithm. However, Strassen’s algorithm can still be used at leaf-level
computation.

8.4.2 Shared Memory AtA

AtA can be implemented with a shared-memory parallel paradigm on multi-core
machines. We rely on OpenMP to efficiently distribute the workload between
threads. Each thread simulates the recursion of AtANaive as described in Sec-
tion 8.4.1. The workload is distributed so that each thread writes in a different
memory location, hence there is no need of handling data collisions of any kind.
Instead, the problem is divided in a fashion that makes it embarrassingly parallel.
We call AtA-S our multi-threaded algorithm for AT A.

8.4 Parallel AtA 138

Algorithm 8.3 AtA-S- Shared
1: procedure AtAS(A ∈ Rm×n,C ∈ Rn×n)
2: Generate tree T
3: end procedure
4: parfor each leaf-node v of T do
5: Get task t from node v
6: if t.computationType = AT A then
7: AtA(At.A.offset, Ct.C.offset, 1)
8: else if t.computationType = AT B then
9: FastStrassen(At.A.offset, At.B.offset, Ct.C.offset, 1)

10: end if
11: end parfor

AtA-S in Detail

Let us denote with P the number of available threads. Our algorithm for multi-
threaded machines, AtA-S, can be divided into two phases. During the first phase,
one task is assigned to each thread by simulating the recursion of AtANaive, as
described in Section 8.4.1. In order to prevent memory collisions and to achieve em-
barrassing parallelism, tasks are organized so that each thread writes on a different
and disjoint memory location. This is done by dividing the resulting matrix C into
four blocks, as shown in Equation 8.2, whereas A is tiled vertically or horizontally,
instead of in 2×2 blocks (see Figure 8.2). This procedure avoids concurrent writing
management, it guarantees data and thread reuse and relies on the equality:

Ci,j = Ai,1B1,j + Ai,2B2,j = Ai,∗B∗,j , (8.7)

for i, j = 1, 2. Such instruction and data assignment allows for a faster execution,
since threads never need to synchronize.

During the second phase of AtA-S, each thread retrieves its task from the
tree T , specifying which routine (either AtA or FastStrassen) the corresponding
thread must call, and on which sub-matrices of A and C it must operate. On
multicore systems, this means that data reuse in both L1 and L2 cache is optimized,
since each thread operates on the same data throughout its entire lifespan. Since
the tasks correspond to disjoint sub-problems, at the end of the computation each
thread only needs to synchronize with the others, then the algorithm stops. In
Algorithm 8.3 we provide the pseudo-code of AtA-S.

Computational Complexity of AtA-S

We study the time complexity T (n, P) of AtA-S to perform the multiplication
AT A on an n× n matrix A and distributing the workload between P processes.

At first, the algorithm needs to generate the task tree and each process has to
retrieve its task. These procedures have the same complexity as a BFS visit on a
tree with P leaves, hence O(P).

The time complexity of the second step corresponds to the one of the most
expensive leaf task, which appears at the end of a path of RecursiveGEMM

8.4 Parallel AtA 139

Figure 8.2. Multiplication with vertical/horizontal tiling.

calls. At level l, the size of the product matrix C is reduced to a block of size
n/2l × n/2l, resulting from a multiplication between n/2l × n and n × n/2l matrices.
Thus, the total complexity is reduced by 4ℓ(P), being ℓ(P) the number of levels in
the task tree. Hence the total complexity of the algorithm is:

T (n, P) = O(P) +O

(1
4ℓ(P)n

log2 7
)
. (8.8)

Notice that ℓ(P) is a discrete, non-injective function. Hence, especially with few
processes, the speed-up behaves like a step function. Despite this behaviour, ℓ(P) ≈
log4 P , meaning with large numbers of processes we achieve a theoretical linear
speed-up.

8.4.3 Distributed Memory AtA

Modern computers are equipped with an ever-increasing number of cores inside
CPU chips. However, when it comes to massive volumes of data, computationally
intensive tasks such as matrix multiplication are simply prohibitive, even for the
most recent 16- or 32-cores chipsets, and even with hyper-threading capabilities.
Distributed parallelism plays a crucial role in this setting, as it allows to distribute
the workload between multiple machines. In such an environment, providing fast
distributed algorithms for operations in Linear Algebra, including AT A multiplica-
tion, is a key task to limit bottlenecks.

In this section, we describe a distributed algorithm for AT A, that works for any
matrix size and with arbitrarily many processes and cores. We shall refer to this
algorithm as AtA-D. AtA-D follows a distribute-compute-retrieve paradigm, as
initially the input matrix A is stored on the root process only, and distributed to
other processes according to their tasks. Finally, the resulting matrix C = AT A is
retrieved back by the root process. We implement a parallel communication scheme
to limit data transfer overhead.

AtA-D in Detail

Let P be the number of distributed processes. In AtA-D, each process p first builds
the task tree T as described in Section 8.4.1. To understand in detail how T is used
in AtA-D, we shall refer to the example of Figure 8.1. As we said, each node
represents a task, but only tasks contained in leaf nodes correspond to an actual
matrix multiplication. Inner nodes instead represent tasks assigned only to the
parents of the nodes branching out of them, and they are necessary to retrieve and

8.4 Parallel AtA 140

Algorithm 8.4 AtA-D- Distributed
1: procedure AtAD(A ∈ Rm×n,C ∈ Rn×n)
2: Generate tree T
3: for each v of T in the path from my leaf to the root do
4: Get my task t from node v
5: if v is a leaf then
6: if t.computationType = AT A then
7: Ct.C.offset = AT A(At.A.offset)
8: else if t.computationType = AT B then
9: Ct.C.offset = AT B(At.A.offset, At.B.offset)

10: end if
11: end if
12: if t.parent ̸= my ID then
13: Send Ct.C.offset to t.parent
14: else
15: Receive Cchildren.t.C.offset from my children
16: Sum over the sub-matrices and store result in C
17: end if
18: end for
19: end procedure

combine the portions of the result matrix scattered among different processes, and
eventually to send them, level by level, up to the root process, p0. In the example of
Figure 8.1, T is the task tree for P = 16 processes on a square matrix. Leaf nodes
are generated so that processes p0, p1 and p6 . . . , p11 share the workload to compute
C2,1. The remaining half of the processes is devoted to compute C1,1 and C2,2.
If the number of distributed processes is not enough to make a complete level, as
in this example, instead of calling multiple tasks on different tiles of the matrices,
processes perform either an AT A or a AT B operation on vertically and horizontally
tiled sub-matrices at the leaf-level. For instance, observe the first batch of sibling-
leaves in Figure 8.1. To compute Cn/2:n,0:n/2 = AT

0:n/2,n/2:nA0:n/2,0:n/2, AtANaive
would perform 8 recursive calls to AT B; in AtA-D, each of these calls is served by
one distributed process, if available. When this is not the case, as in the example
that we are considering, processes p0, p6, p7, p8 divide A0:n/2,n/2:n and A0:n/2,0:n/2 in
vertical tiles so as to compute the related portions of C as depicted in Figure 8.2.
When the computation is over, partial results are collected by the parents of each
group of siblings (processes pi, i = 0, . . . , 5). This operation is iterated by traversing
the tree up to its root, p0, and allows for a convenient parallel communication
reducing data transfer overhead. In order to optimize the communication and to
reduce the exchanged data volume, we encode the sub-matrices resulting from AT A
operations as packed lower triangular matrices. Nevertheless, the entire operation,
once it returns to the root process, still produces a standard square matrix. In
Algorithm 8.4, we provide the pseudocode of AtA-D. In line 13, if the process
has to fulfill a AT B task, it sends to its parent the entire sub-matrix Ct.C.offset;
otherwise, it only sends low(Ct.C.offset). In lines 7 and 9, AT A and AT B may refer

8.4 Parallel AtA 141

to AtA or blas_?syrk, and to FastStrassen or blas_?gemm, respectively. As we
shall see in Section 8.5, the real benefit of using our implementation of AtA and
FastStrassen arises on matrices with larger size, therefore they are favourable
when handling larger volumes of data.

Computational and Communication Complexity of AtA-D

In contrast to parallel algorithms for distributed matrices, AtA-D does not include
any communication between processes at computation time, as the input matrix is
scattered among distributed processes so that they own the exact portions of A on
which they have to operate.

Proposition 8.2. The computational cost of AtA-D (Algorithm 8.4) on a matrix
of size n and with using P processes, C(n, P) is:

C(n, P) = O
(
(n/2ℓ(P))2 · n/2ℓ(P)−1

)
,

if the load balancing parameter α is set to 0.5.

Proof. C(n, P) depends on the number of recursive levels that can be layered with
the available resources and on α. For α = 0.5, the computational complexity
of AtA-D is given by the time for computing AT B on matrices of size at most
n/2ℓ(P)×n/2ℓ(P)−1, that is O

(
(n/2ℓ(P))2 · n/2ℓ(P)−1

)
, where ℓ(P) is the number of parallel

levels defined in Equation 8.5.

We express the communication cost for matrix distribution and result retrieval
in terms of latency and bandwidth costs of a distributed algorithm, denoted with
L(n, P) and BW (n, P), respectively, using the same definitions introduced in [19]
and adopted also in [130]. Latency cost is the communicated-message count, whereas
bandwidth is expressed in terms of communicated-word count. Messages and words
counts are computed along the critical path of the distributed algorithm, as defined
in [294].

Proposition 8.3. The latency of AtA-D on a matrix of size n × n and with P
processes is L(n, P) = O(2[7 · (ℓ(P) − 1) + 5]). Its bandwidth is BW (n, P) ≤
6(n/2)2 + n(n+2)

2 + 7/6n2(1− 1/4ℓ(P)−2).

Proof. In AtA-D, the critical path corresponds to the sequence of communication
operations carried out by the root process p0. After the first parallel level, p0 works
on a AT B task and shares its workload with 7 other processes at each parallel
level. When the compute phase is over, at each level l ∈ {2, . . . , ℓ(P)} process p0
collects partial results from its (at most) seven children; at level l = 1, it retrieves
the entire matrix C = AT A by combining together the results of its five siblings.
This operation is carried out both for data distribution and result collection. Hence,
L(n, P) = O(2[7 · (ℓ(P)− 1) + 5]).
During the data distribution phase, message sizes (i.e., portions of input matrix A)
decrease when descending from the root down to the leaves of T . In the first level,
p0 distributes two matrices of size n/2× n/2 to the other process that is in charge to
carry out AT B tasks, and one sub-matrix of the same size to each of its four siblings

8.5 Performance Evaluation 142

that have to compute AT A. For each level l ∈ {2, . . . , ℓ(P)}, the root process sends
matrices of size n/2l to at most 7 other processes. Hence, during the distribution
phase, BW (n, P) is O(5 (n/2)2 +7 ·

∑ℓ(P)
l=2 (n/2l)2) = O(5(n/2)2 +7/12n2(1−1/4ℓ(P)−2)).

With similar considerations and taking into account the fact that processes sending
symmetric portions of C only store its lower triangular part (low(C)), it holds that
the bandwidth during the result retrieval phase amounts to O((n/2)2 + 4(n(n+2)/8) +
7 ·
∑ℓ(P)

l=2 (n/2l)2) = O((n/2)2 + n(n+2)/2 + 7/12n2(1− 1/4ℓ(P)−2). The thesis follows by
summing together the two components.

From this analysis, we see that computation has the prominent role in time
complexity T (n, P) = C(n, P) + L(n, P) + BW (n, P). This fact will be confirmed
by our experimental results, presented in Section 8.5, where we see how increasing
the matrix sizes provides an always increasing benefit in using the distributed al-
gorithm, proving that communication cost L(n, P) +BW (n, P) is absorbed by the
computational cost, C(n, P), for growing values of n.

8.5 Performance Evaluation

We evaluate the performance of our algorithms with an extensive set of experi-
ments over multiple benchmarks. Our code is available at https://github.com/
filthynobleman/AtA.

8.5.1 Experimental Setup

All tests reported in this section were run on TeraStat1, a cluster of 12 compute
nodes, each equipped with 2 sockets of Intel Xeon E5-2630v3 8 cores, 2.4 Ghz, 4
GB RAM per core.

We test our algorithms and benchmark solutions on square and tall matrices,
generated randomly. We carry out experiments in both single and double floating-
point precision, to highlight the fact that our algorithm achieves good performance
in both settings.

In the tests, we exploit the Intel Math Kernel Library (MKL) both by integrating
BLAS routines for basic matrix operations, and for the validation of the proposed
algorithms through performance comparisons with shared and distributed memory
parallel benchmark solutions. MKL is a framework that includes routines and func-
tions optimized for Intel and compatible processor-based computers, and provides
C/C++ interfaces and the acceleration of libraries for Linear Algebra (including
BLAS and ScaLapack) within several third-party math libraries. [278, 86].

8.5.2 Metrics

To compare the performance of our algorithms against benchmark methods, we use
the average elapsed time in seconds and the effective GFLOPs. Effective GFLOPs
is a measure for comparing classical and fast matrix-multiplication algorithms. For
classical algorithms, which perform 2n3 floating point operations, Equation 8.9 gives

1https://www.dss.uniroma1.it/en/node/6554

https://github.com/filthynobleman/AtA
https://github.com/filthynobleman/AtA

8.5 Performance Evaluation 143

2.
5K 5K

7.
5K 10

K
12
.5
K
15
K
17
.5
K
20
K
22
.5
K
25
K

0

100

200

300

400

? ? ? ? ?
?

?
?

?

?

matrix size

ti
m
e
(s
)

?AtA
MKL dsyrk

(a) Elapsed time.

2.
5K 5K

7.
5K 10

K
12
.5
K

15
K

17
.5
K

20
K

22
.5
K

25
K

45

50

55

60

65

? ? ? ? ? ? ? ? ? ?

matrix size

eff
ec

ti
ve

G
F

L
O

P
s ?AtA

MKL dsyrk

(b) Effective GFLOPs.

Figure 8.3. AtA vs Intel MKL dsyrk

2.
5K 5K

7.
5K 10

K
12
.5
K
15
K
17
.5
K
20
K
22
.5
K
25
K

0

200

400

600

800

? ? ? ? ? ?
?

?
?

?

matrix size

ti
m
e
(s
)

?Strassen
MKL dgemm

(a) Elapsed time.

2.
5K 5K

7.
5K 10

K
12
.5
K

15
K

17
.5
K

20
K

22
.5
K

25
K

45

50

55

60

65

?
?

? ?
?

? ? ?
? ?

matrix size

eff
ec

ti
ve

G
F

L
O

P
s ?Strassen

MKL dgemm

(b) Effective GFLOPs.

Figure 8.4. FastStrassen vs Intel MKL dgemm

the actual GFLOPs; for fast matrix-multiplication algorithms, it gives the perfor-
mance relative to classical algorithms, but does not accurately represent the number
of floating point operations performed [67]. For fair comparisons, we calculate the
metrics as:

effective GFLOPs = rn3

execution time in seconds · 109 (8.9)

where r = 1 when we test algorithms specifically built for the AT A product, whereas
r = 2 when algorithms for the general matrix multiplication are tested.

8.5.3 Sequential

Figures 8.3 and 8.4 show the execution time and effective GFLOPs of the sequential
AtA and FastStrassen routines, respectively. Their performance is compared to
the Intel MKL counterparts: dsyrk and dgemm. The experiments are carried out
on matrices of growing matrix size (from 2.5 · 103 to 2.5 · 104), and run on a single
Intel core. The time difference between our solutions and the ones implemented
by Intel MKL grows with the matrix size, reflecting the lower computational cost
of our approach. Figure 8.4 proves how Strassen’s algorithm benefits from the
pre-memory-allocation strategy described in Section 8.3.3.

8.5 Performance Evaluation 144

2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

140

?
? ?

? ? ? ? ?

number of cores, P

Time (s)

?AtA-S
MKL ssyrk

(a) Elapsed time, A ∈ R30K×30K .

2 4 6 8 10 12 14 16
0

200

400

600

800

1,000

1,200

1,400

?

? ?

? ? ? ? ?

number of cores, P

Effective GFLOPs

?AtA-S
MKL ssyrk

(b) EGs, A ∈ R30K×30K .

2 4 6 8 10 12 14 16
0

50

100

150

200

250

300

350

?
? ? ? ? ? ? ?

number of cores, P

?AtA-S
MKL ssyrk

(c) Elapsed time, A ∈ R40K×40K .

2 4 6 8 10 12 14 16
0

200

400

600

800

1,000

1,200

1,400

?

? ?

? ? ? ? ?

number of cores, P

?AtA-S
MKL ssyrk

(d) EGs, A ∈ R40K×40K .

2 4 6 8 10 12 14 16
0

2

4

6

?

? ?
? ? ? ? ?

number of cores, P

?AtA-S
MKL ssyrk

(e) Elapsed time, A ∈ R60K×5K .

2 4 6 8 10 12 14 16
0

200

400

600

800

1,000

1,200

1,400

?
? ?

? ? ? ? ?

number of cores, P

?AtA-S
MKL ssyrk

(f) EGs, A ∈ R60K×5K .

Figure 8.5. Experimental results of AtA-S and Intel MKL dsyrk in terms of elapsed time
in seconds (left column) and effective GFLOPs (right column), varying the number of
available cores P on fixed matrix sizes with a 16 threads configuration.

8.5.4 Shared Memory

For evaluating the shared memory parallel implementation of the AT A product,
AtA-S, we compare it against the Intel MKL implementation of the BLAS routine
ssyrk, for single precision symmetric rank-K update. For both methods, we always
use a 16 thread setup, and we analyse the execution time and the effective GFLOPs
(Equation 8.9 with r = 1) while varying the number of available cores. In light of
the sequential experiments shown in Figures 8.3 and 8.4, we compare AtA-S and
MKL ssyrk on larger matrices, where tests highlight more interesting results. In
particular, we run experiments on square matrices of size 3·104×3·104, 4·104×4·104

and on tall matrices of size 6 · 104 × 5 · 103. Figure 8.5 summarizes our results. As

8.5 Performance Evaluation 145

anticipated by the study of the computational complexity, the execution time is
reduced by 1/4 at each complete parallel level. Figures 8.5a, 8.5c and 8.5e show how
our algorithm can compete with the MKL implementation when the core availability
is large, and that significantly outperforms the Intel implementation in the P ≤ 10
cores setup. Furthermore, we show in Figures 8.5b, 8.5d and 8.5f that AtA-S is
capable not only of accomplishing a large amount of floating point operations per
second, but also that its performance growth rate is consistent with the step-wise
behaviour of the time complexity studied in Section 8.4.2. This justifies sporadic
thinnings in performance gap between the two methods.

From Figure 8.5, we can observe that the performance of both methods stall
when more than 8 cores are used. Indeed, multi-threaded MKL automatically
chooses the optimal number of threads (in our architecture, this corresponds to
16 threads). For a fair comparison, we use the same setup in AtA-S. Performance
scales with the number of available cores, but, when hyper-threading is enabled, 8
cores are enough to reach the 16-thread plateau. Therefore, performance cannot
increase significantly for P > 8.

8.5.5 Distributed Memory

To complete our performance evaluation, we also compare our implementation for
distributed architectures of AtA, AtA-D, with fast distributed algorithms for ma-
trix multiplication. We recall that AtA-D differs from standard methods for dis-
tributed matrix multiplication, as it does not perform computations on distributed
matrices. Instead, in AtA-D the input matrix A is only stored by the root process,
p0, that first distributes it among other processes cooperating to perform the AT A
product, and then collects the partial result of each process to combine them. This
approach makes our method unsuitable for distributed chains of operations, since
for every operation, the matrix must be repeatedly scattered and gathered back,
thus introducing communication overhead, but our results highlight that it is an
efficient alternative for distributing single AT A operations. At the current state-
of-the-art, there are a variety of methods for multiplying distributed matrices, but
in the most recent literature there are three algorithms which stand out:

1. Intel MKL ScaLapack p?syrk: the Intel Math Kernel libraries (MKL) provide
optimized implementation of ScaLapack routines for high-performance dense
Linear Algebra operations on distributed clusters. In ScaLapack, distributed
processes are organized in 2D grids of size mP × nP = P . For each value
of P , we set optimal mP and nP by calling MPI_Dims_create. We analyse
the execution time required to perform the AT A matrix multiplication by the
built-in ScaLapack function pdsyrk, and the time to retrieve the result of the
operation.

2. CAPS2: the Communication-Optimal Parallel Algorithm for Strassen’s Ma-
trix Multiplication [18] is a distributed algorithm for general square matrix
multiplications AB. Soon after CAPS, the same authors proposed CARMA
[67], that also handles rectangular matrices. Nevertheless, it was not possible

2https://github.com/lipshitz/CAPS/

https://github.com/lipshitz/CAPS/

8.5 Performance Evaluation 146

8 16 24 32 40 48 56 642−2

2−1

1

2

22
23
24
25
26
27

?
?
? ?

? ? ? ? ? ? ? ? ? ?
?

number of processes, P

Time (s)

(a) Time. R10K×10K .

8 16 24 32 40 48 56 64102

103

104

?
?
? ?

? ? ? ? ? ? ? ? ? ?
?

number of processes, P

Effective GFLOPs

(b) EGs. R10K×10K .

8 16 24 32 40 48 56 64
0

0.2

0.4

0.6

0.8

1

?
?

? ?

?
?
? ?

? ? ? ? ? ?

?

number of processes, P

% of Theoretical Peak

(c) TPP R10K×10K .

8 16 24 32 40 48 56 64
2

22
23
24
25
26
27
28
29
210

? ?
? ? ? ? ? ? ? ? ? ? ? ?

?

number of processes, P

(d) Time. R20K×20K .

8 16 24 32 40 48 56 64101

102

103

? ?
? ? ? ? ? ? ? ? ? ? ? ?

?

number of processes, P

(e) EGs. R20K×20K .

8 16 24 32 40 48 56 64
0

0.2

0.4

0.6

0.8

1

? ?

?
? ? ?

? ?
? ? ? ? ? ?

?

number of processes, P

(f) TPP R20K×20K .

8 16 24 32 40 48 56 64
0

2

4

6

8

10

12

14

16

18

20

?

?
? ? ? ? ? ? ? ? ? ? ? ? ?

number of processes, P

(g) Time. R60K×5K .

8 16 24 32 40 48 56 64

103

104

?

?

?
?
? ? ? ? ? ? ? ? ? ?

?

number of processes, P

(h) EGs. R60K×5K .

8 16 24 32 40 48 56 64
0

0.2

0.4

0.6

0.8

1

?
?
?
? ?

? ? ? ? ? ? ? ? ?

?

number of processes, P

(i) TPP R60K×5K .
? AtA-D (ATA)
MKL pdsyrk(ATA)
CAPS(AB)
COSMA(ATB)

Figure 8.6. Experimental results of AtA-D, Intel MKL pdsyrk, CAPS and COSMA in
terms of elapsed time in seconds (left column), effective GFLOPs (central column) and
% of theoretical peak (right column) varying the number of distributed processes P on
fixed matrix sizes.

to test this method as it relies on Cilk Plus, a tool for parallel computing now
marked as deprecated3.

3. COSMA4: differently from CAPS, this communication-optimal algorithm for
general matrix multiplication does not rely on Strassen’s algorithm, instead, it
uses red-blue pebble game to precisely model the matrix-multiplication depen-
dencies. In [130], the authors show that COSMA outperforms all previously
proposed frameworks for general matrix multiplication. It also works for mul-
tiplication on transposed matrices, and therefore we test it to perform AT B
products.

3https://www.cilkplus.org/, Last accessed 07-01-2021
4https://github.com/eth-cscs/COSMA

https://github.com/eth-cscs/COSMA

8.5 Performance Evaluation 147

To simulate massively distributed architectures, in our experiments, we reserve
only one core per distributed process. As a consequence, each process has small
memory availability (4GB RAM/core). The results of our experiments for the
distributed-memory solution are shown in Figure 8.6. In Figures 8.6a, 8.6d and
8.6g, marked lines represent the compute time of all considered methods. The
shaded areas above the curves describing AtA-D and pdsyrk represent the addi-
tional time required for communication, i.e., for retrieving the resulting matrix to
the root process. We consider two groups of square matrices, having size 104 and
2 · 104 (Figures 8.6a, 8.6b, 8.6c and 8.6d, 8.6e, 8.6f respectively), and one set of tall
matrices of size 6 · 104 × 5 · 103 (Figures 8.6g, 8.6h, 8.6i). Because CAPS does not
operate on rectangular matrices, we could not test it on the latter set of experi-
mental configurations. As we can observe from Figure 8.6, scalability of AtA-D is
nonlinear and it rather follows an almost-stepwise trend with respect to P . This is
a consequence of Equation 8.5, that shows how some values of P allow for a more
effective and balanced workload between processes. This is evident for small values
of P (when a greater availability of processes weighs significantly on the workload
of each process), as well as for P = 64. Despite the different nature of the par-
allelism implemented in AtA-D with respect to the benchmark methods analysed
in this section, our experiments corroborate the efficiency of the task distribution
implemented in AtA-D. In Figures 8.6c, 8.6f and 8.6i we show the percentage of
theoretical peak performance (TPP) for all tested algorithms. We compute it as the
effective GFLOPs over the theoretical performance peak of the nodes of our cluster.
For all tested methods, the effective GFLOPs are computed as in Equation 8.9, (as
those reported in Figures 8.6b, 8.6e, 8.6h), except for AtA-D, for which we now
use the complexity of AtA (Equation 8.3). Regarding the percentage of theoretical
peak, we can see how our algorithm has comparable behaviour with respect to the
other solutions on square matrices, but it performs worse on the rectangular case.
The high performance of our method relies on careful ordering and placement of
highly optimized BLAS routines. However, especially when working on tall matri-
ces, we need to perform several calls to BLAS Level 1 routines (i.e., to compute
intermediate sums both in AtA and FastStrassen) and system calls (i.e., mem-
ory copies) on very short rows. This leads to more memory accesses and poorer
vectorization capability than dealing with the same amount of data, distributed in
fewer, longer rows, would entail. As a consequence, the overall performance with
respect to the theoretical peak is worsened. Furthermore, in Figures 8.6c, 8.6f and
8.6i we see that AtA-D loses a bit of efficiency on larger matrices. This is due to
the fact that each process calling the FastStrassen routine needs to allocate 3/2n2

space of memory, hence memory handling slows down the entire process. In addi-
tion, also in the last column of Figure 8.6, we can observe performance peaks after
slow degradations as we did in the first two. We stress that this is a consequence of
the fact that for some values of P , workload among processes is distributed more
efficiently (see Equation 8.5). As a matter of fact, the computational complexity
of AtA-D decreases exponentially at each level, but the number of levels increases
logarithmically with the number of processes, P . Therefore for numbers of pro-
cesses that result in the same number of parallel levels, the improvement is less
appreciable.

Finally, in order to study the scalability of AtA-D with respect to AtA-S, and

8.6 Conclusions 148

n SM (16 cores) DM (96 cores) Speed-up
30K 45.16 s 21.24 s 2.13
40K 106.19 s 43.96 s 2.42
50K 221.63 s 81.77 s 2.71
60K 863.32 s 129.08 s 6.69

Table 8.1. Shared memory (SM) implementation of AT A compared with the distributed
memory (DM) on large square n× n matrices.

to validate the possibility of integrating the two methods, we compare AtA-S and
AtA-D on very large matrices of increasing size and report results in Table 8.1.
AtA-S works on 16 cores with 16 threads, whereas AtA-D works on 6 distributed
nodes, each equipped with 16 cores, for a total of 96 cores. Each node executes a
distributed process calling either AtA-S for AT A-type products, or multi-threaded
MKL dgemm for AT B-type multiplications. The times reported in Table 8.1 for
AtA-D also include communication time (for distributing data and collecting re-
sults). Speed-up is computed as TSM/TDM , where TSM and TDM are the execution
times of the shared and the distributed-memory algorithms, respectively. In ac-
cordance with our computational and communication cost analysis (Section 8.4.3),
the speed-up of AtA-D over AtA-S increases when the size of the input ma-
trix increases, as the computation cost overwhelms the communication overhead.
Furthermore, the shared-memory implementation suffers when considering larger
matrices, since frequent memory access slows down execution (two 60K × 60K ma-
trices require 57 GB out of the 64 GB available on the test machine), consequently
decreasing performance. This is highlighted by the results of Table 8.1, where we
can observe that 60K × 60K matrices require high computation time, dominated
by the time for memory management.

8.6 Conclusions

We propose AtA, an algorithm for the AT A product, that reduces the compu-
tational complexity of commonly employed algorithms, and that is conveniently
implementable in practice on matrices defined on arbitrary domains and of any size
and aspect ratio. The computational cost of AtA benefits from the fast matrix
multiplication introduced by Strassen’s algorithm, and is cache-oblivious. We show
that AtA can be efficiently implemented in shared and distributed memory environ-
ments. In the shared memory implementation of AtA, tasks are assigned to parallel
threads so that they work in perfect parallelism. Our theoretical analysis is sup-
ported by experiments that prove the excellent performance of our implementations
in comparison with state-of-the-art counterparts.

xxi

Conclusions

In this thesis, we covered a variety of computer graphics applications, spanning
from procedural texturing and curve design to shape matching and simulations.
The common ground for all these topics is addressing multiple different tasks from
a geometric perspective and proposing efficient solutions based on the geometry
processing background.

We have proposed a new framework, extending the well-known functional maps
framework, that allows for addressing the reconstruction and transferring of signals
between shapes at a reduced computational complexity, and we have shown that
by adopting machine learning techniques, we can compute non-rigid set operations
between partial manifolds by only knowing the Laplacian eigenvalues. These two
novel solutions convey that spectral geometry techniques can be made to scale and
that steps can be taken to produce more efficient algorithms.

In a procedural texturing setting, we dealt with solutions based on existing
backgrounds and explored new directions. We proved that four-dimensional alge-
braic spaces could be exploited to generate fractal noises on surfaces in real time
and that simulations on non-Euclidean domains produce complex dynamic patterns
that can be used for animating textures. In the same spirit, we provided a solu-
tion for simulating water diffusion in graph-like structures, showing that it can fit
complex pipelines to achieve visually convincing animations of wilting plants.

Furthermore, we explored walks, isotropic expansions, and triangulations under
generalized Riemannian metrics, and we applied these concepts to design algorithms
for fast computation of geodesically uniform remeshing and non-Euclidean curve
reconstruction.

Finally, we explored the idea of improving the mathematical toolbox at the core
of many differential geometry techniques, realizing an efficient and easily paralleliz-
able algorithm for specific matrix multiplications.

In conclusion, this thesis spans different applications in the geometry processing
field, providing fast, scalable, and accurate solutions to a variety of tasks, bringing
them to a suitable state for dealing with industry-standard volumes of data.

xxii

Bibliography

[1] Abdel-Basset, M., Chang, V., and Mohamed, R. HSMA_WOA: A
hybrid novel Slime mould algorithm with whale optimization algorithm for
tackling the image segmentation problem of chest X-ray images. Applied Soft
Computing 95 (2020), 106642.

[2] Abdel-Basset, M., Mohamed, R., Chakrabortty, R. K., Ryan, M. J.,
and Mirjalili, S. An efficient binary slime mould algorithm integrated
with a novel attacking-feeding strategy for feature selection. Computers &
Industrial Engineering 153 (2021), 107078.

[3] Adamatzky, A. Slime mold solves maze in one pass, assisted by gradient of
chemo-attractants. IEEE transactions on nanobioscience 11, 2 (2012), 131–
134.

[4] Adobe Inc. Adobe illustrator.

[5] Aflalo, Y., Brezis, H., and Kimmel, R. On the optimality of shape
and data representation in the spectral domain. SIAM Journal on Imaging
Sciences 8, 2 (2015), 1141–1160.

[6] Amenta, N., Bern, M., and Eppstein, D. The crust and the beta-skeleton:
Combinatorial curve reconstruction. Graphical Models and Image Processing
60 (01 1998), 125–135.

[7] Amenta, N., Choi, S., and Kolluri, R. K. The power crust. In Pro-
ceedings of the Sixth ACM Symposium on Solid Modeling and Applications
(New York, NY, USA, 2001), SMA ’01, Association for Computing Machin-
ery, p. 249–266.

[8] Anastacio, F., Sousa, M. C., Samavati, F., and Jorge, J. A. Modeling
plant structures using concept sketches. NPAR ’06, ACM, p. 105–113.

[9] Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J.,
and Davis, J. Scape: shape completion and animation of people. In ACM
SIGGRAPH 2005 Papers. 2005, pp. 408–416.

[10] Aono, M., and Kunii, T. Botanical tree image generation. IEEE Comput.
Graph. Appl. 4(5) (1984), 10–34.

Bibliography xxiii

[11] Argudo, O., Chica, A., and Andujar, C. Single-picture reconstruction
and rendering of trees for plausible vegetation synthesis. Comput. Graph. 57,
C (2016), 55–67.

[12] Arrigoni, V., Maggioli, F., Massini, A., and Rodolà, E. Efficiently
parallelizable strassen-based multiplication of a matrix by its transpose. In
50th International Conference on Parallel Processing (2021), pp. 1–12.

[13] Attaiki, S., Pai, G., and Ovsjanikov, M. Dpfm: Deep partial functional
maps. In 2021 International Conference on 3D Vision (3DV) (2021), IEEE,
pp. 175–185.

[14] Aubry, M., Schlickewei, U., and Cremers, D. The wave kernel sig-
nature: A quantum mechanical approach to shape analysis. In Proc. ICCV
Workshops (2011), IEEE, pp. 1626–1633.

[15] Aurenhammer, F., Klein, R., and Lee, D. Voronoi Diagrams And De-
launay Triangulations. World Scientific Publishing Company, 2013.

[16] Aygün, M., Lähner, Z., and Cremers, D. Unsupervised dense shape
correspondence using heat kernels. In 2020 International Conference on 3D
Vision (3DV) (2020), IEEE, pp. 573–582.

[17] Azencot, O., and Lai, R. Shape analysis via functional map construction
and bases pursuit. arXiv preprint arXiv:1909.13200 (2019).

[18] Ballard, G., Demmel, J., Holtz, O., Lipshitz, B., and Schwartz, O.
Communication-optimal parallel algorithm for strassen’s matrix multiplica-
tion. In Proc. 24th ACM Symp. Parallelism in Algorithms and Architectures
(SPAA) (2012), pp. 193–204.

[19] Ballard, G., Demmel, J., Holtz, O., and Schwartz, O. Graph expan-
sion and communication costs of fast matrix multiplication. Journal of the
ACM (JACM) 59, 6 (2013), 1–23.

[20] Banerjee, S., Banerjee, D. P., and Mukhopadhyay, A. Implications
of global warming on changing trends in crop productivity - a review. Inter-
national Letters of Natural Sciences 11 (02 2014), 16–29.

[21] Barth, R., IJsselmuiden, J., Hemming, J., and Henten, E. V. Data
synthesis methods for semantic segmentation in agriculture: A capsicum an-
nuum dataset. Computers and Electronics in Agriculture 144 (2018), 284–296.

[22] Belcher, J., and Koleci, C. Using animated textures to visualize electro-
magnetic fields and energy flow. arXiv preprint arXiv:0802.4034 (2008).

[23] Bender, J., Müller, M., and Macklin, M. A survey on position based
dynamics, 2017. In Proceedings of the European Association for Computer
Graphics: Tutorials (Goslar, DEU, 2017), EG ’17, Eurographics Association.

Bibliography xxiv

[24] Benes, B., Andrysco, N., and Št’ava, O. Interactive modeling of virtual
ecosystems. In Proceedings of the Fifth Eurographics Conference on Natural
Phenomena (Goslar, DEU, 2009), NPH’09, Eurographics Association, p. 9–16.

[25] Benson, A., and Ballard, G. A framework for practical parallel fast
matrix multiplication. In Proc. 20th ACM SIGPLAN PPoPP (2015), pp. 42–
53.

[26] Berger, M., Tagliasacchi, A., Seversky, L. M., Alliez, P., Guen-
nebaud, G., Levine, J. A., Sharf, A., and Silva, C. T. A survey of
surface reconstruction from point clouds. Computer Graphics Forum 36, 1
(2017), 301–329.

[27] Bern, M., and Eppstein, D. Mesh generation and optimal triangulation.
In Computing in Euclidean geometry. World Scientific, 1995, pp. 47–123.

[28] Bern, M. W., Eppstein, D., and Gilbert, J. R. Provably good mesh
generation. Proceedings [1990] 31st Annual Symposium on Foundations of
Computer Science (1990), 231–241 vol.1.

[29] Biewald, L. Experiment tracking with weights and biases, 2020. Software
available from wandb.com.

[30] Bogo, F., Romero, J., Loper, M., and Black, M. J. FAUST: Dataset
and evaluation for 3D mesh registration. In Proceedings IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR) (Piscataway, NJ, USA, June
2014), IEEE.

[31] Bogo, F., Romero, J., Pons-Moll, G., and Black, M. J. Dynamic
faust: Registering human bodies in motion. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) (July 2017).

[32] Botsch, M., and Kobbelt, L. A remeshing approach to multiresolution
modeling. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH Sym-
posium on Geometry Processing (New York, NY, USA, 2004), SGP ’04, As-
sociation for Computing Machinery, p. 185–192.

[33] Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., and Lévy, B. Polygon
mesh processing. CRC press, 2010.

[34] Bowyer, A. Computing Dirichlet tessellations*. The Computer Journal 24,
2 (01 1981), 162–166.

[35] Bradley, D., Nowrouzezahrai, D., and Beardsley, P. Image-based
reconstruction and synthesis of dense foliage. TOG 32, 4 (2013), 74:1–74:10.

[36] Brent, R. P. Algorithms for matrix multiplication. Tech. Rep. TR-CS-70-
157, Stanford University, 1970.

[37] Brent, R. P. Error analysis of algorithms for matrix multiplication and
triangular decomposition using winograd’s identity. Numerische Mathematik
16 (1970), 145–156.

Bibliography xxv

[38] Bronstein, A., Bronstein, M., and Kimmel, R. Numerical Geometry of
Non-Rigid Shapes. Springer, New York, NY, 2008.

[39] Bronstein, A. M., Bronstein, M. M., Guibas, L. J., and Ovsjanikov,
M. Shape google: Geometric words and expressions for invariant shape re-
trieval. ACM Transactions on Graphics (TOG) 30, 1 (2011), 1–20.

[40] Brown, B. J., and Rusinkiewicz, S. Non-rigid range-scan alignment us-
ing thin-plate splines. In Proceedings. 2nd International Symposium on 3D
Data Processing, Visualization and Transmission, 2004. 3DPVT 2004. (2004),
IEEE, pp. 759–765.

[41] Brown, B. J., and Rusinkiewicz, S. Global non-rigid alignment of 3-d
scans. In ACM SIGGRAPH 2007 papers. 2007, pp. 21–es.

[42] Burgin, M., and Adamatzky, A. Structural machines and slime mould
computation. International Journal of General Systems 46, 3 (2017), 201–224.

[43] Cacciola, F., Rouxel-Labbé, M., Şenbaşlar, B., and Komaromy,
J. Triangulated surface mesh simplification. In CGAL User and Reference
Manual, 5.5.2 ed. CGAL Editorial Board, 2023.

[44] Cellier, F. E., and Kofman, E. Continuous system simulation. Springer
Science & Business Media, 2006.

[45] Çengel, Y., and Cimbala, J. Fluid Mechanics: Fundamentals and Appli-
cations. McGraw-Hill Education, 2018.

[46] Chang, W., and Zwicker, M. Range scan registration using reduced de-
formable models. In Computer Graphics Forum (2009), vol. 28, Wiley Online
Library, pp. 447–456.

[47] Chang, W., and Zwicker, M. Global registration of dynamic range scans
for articulated model reconstruction. ACM Transactions on Graphics (TOG)
30, 3 (2011), 1–15.

[48] Charara, A., Keyes, D., and Ltaief, H. Batched triangular dense linear
algebra kernels for very small matrix sizes on gpus. ACM Trans Math. Softw.
(TOMS) 45, 2 (2019), 1–28.

[49] Charara, A., Ltaief, H., and Keyes, D. Redesigning triangular dense
matrix computations on gpus. In Euro-Par (2016), Springer, pp. 477–489.

[50] Chavel, I. Riemannian geometry: a modern introduction, vol. 98. Cambridge
university press, 2006.

[51] Chavel, I., Randol, B., and Dodziuk, J. Eigenvalues in Riemannian
Geometry. ISSN. Elsevier Science, 1984.

[52] Chew, L. P. Guaranteed-quality mesh generation for curved surfaces. In
SCG ’93 (1993).

Bibliography xxvi

[53] Chopard, B., and Droz, M. Cellular automata, vol. 1. Springer, 1998.

[54] Choukroun, Y., Shtern, A., Bronstein, A., and Kimmel, R. Hamil-
tonian operator for spectral shape analysis. TVCG 26 (2017).

[55] Coifman, R. R., and Maggioni, M. Diffusion wavelets. Applied and
Computational Harmonic Analysis 21, 1 (2006), 53–94.

[56] Community, B. O. Blender - a 3D modelling and rendering package. Blender
Foundation, Stichting Blender Foundation, Amsterdam, 2018.

[57] Conway, J., and Guy, R. The Book of Numbers. Copernicus Series.
Springer New York, 1998.

[58] Cook, R. L., and DeRose, T. Wavelet noise. ACM Transactions on
Graphics (TOG) 24, 3 (2005), 803–811.

[59] Coppersmith, D., and Winograd, S. Matrix multiplication via arithmetic
progressions. In Proc. 19th ACM Symp. Theory of Computing (STOC) (1987),
pp. 1–6.

[60] Cosmo, L., Panine, M., Rampini, A., Ovsjanikov, M., Bronstein,
M. M., and Rodolà, E. Isospectralization, or how to hear shape, style, and
correspondence. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2019), pp. 7529–7538.

[61] Cosmo, L., Rodolà, E., Masci, J., Torsello, A., and Bronstein, M.
Matching deformable objects in clutter. In Proc. 3D Vision (3DV) (2016),
pp. 1–10.

[62] Crane, K., Weischedel, C., and Wardetzky, M. Geodesics in heat: A
new approach to computing distance based on heat flow. ACM Trans. Graph.
32, 5 (oct 2013).

[63] D’Alberto, P., and Nicolau, A. Adaptive strassen’s matrix multiplica-
tion. In Proc. 21st Int. Conf. on Supercomputing (2007), ACM, pp. 284–292.

[64] Davenport, C. A Commutative Hypercomplex Calculus with Applications to
Special Relativity. Eigenverl., 1991.

[65] Davenport, C. A Commutative Hypercomplex Algebra with Associated Func-
tion Theory. Birkhauser Boston Inc., USA, 1996, p. 213–227.

[66] DeCoro, C., and Tatarchuk, N. Real-time mesh simplification using the
gpu. In Proceedings of the 2007 Symposium on Interactive 3D Graphics and
Games (New York, NY, USA, 2007), I3D ’07, Association for Computing
Machinery, p. 161–166.

[67] Demmel, J., Eliahu, D., Fox, A., Kamil, S., Lipshitz, B., O., O. S.,
and Spillinger. Communication-optimal parallel recursive rectangular ma-
trix multiplication. In IEEE 27th Int. Symp. on Parallel and Distributed
Processing (2013), IEEE, pp. 261–272.

Bibliography xxvii

[68] Desprez, F., and Suter, F. Impact of mixed-parallelism on parallel im-
plementations of the strassen and winograd matrix multiplication algorithms.
Concurr. Comput.: Pract. Exper. 16, 8 (2004), 771–797.

[69] Deul, C., Kugelstadt, T., Weiler, M., and Bender, J. Direct
position-based solver for stiff rods. In Computer Graphics Forum (2018),
vol. 37, Wiley Online Library, pp. 313–324.

[70] Deussen, O., and Lintermann, B. Digital design of nature: computer
generated plants and organics. Springer Science & Business Media, 2005.

[71] Dey, T., and Wenger, R. Fast reconstruction of curves with sharp corners.
Int. J. Comput. Geometry Appl. 12 (10 2002), 353–400.

[72] Dey, T. K., and Kumar, P. A simple provable algorithm for curve re-
construction. In Proceedings of the Tenth Annual ACM-SIAM Symposium
on Discrete Algorithms (USA, 1999), SODA ’99, Society for Industrial and
Applied Mathematics, p. 893–894.

[73] do Carmo, M. Differential Geometry of Curves and Surfaces: Revised and
Updated Second Edition. Dover Books on Mathematics. Dover Publications,
2016.

[74] Du, Q., Faber, V., and Gunzburger, M. Centroidal voronoi tessellations:
Applications and algorithms. SIAM Review 41, 4 (1999), 637–676.

[75] Dumas, J., Pernet, C., and Sedoglavic, A. On fast multiplication of
a matrix by its transpose. In Proc. 45th Int. Symp. Symbolic and Algebraic
Computation (New York, NY, USA, 2020), ISSAC ’20, Association for Com-
puting Machinery, p. 162–169.

[76] Dyke, R. M., Lai, Y.-K., Rosin, P. L., Zappalà, S., Dykes, S., Guo,
D., Li, K., Marin, R., Melzi, S., and Yang, J. SHREC’20: Shape
correspondence with non-isometric deformations. Computers & Graphics 92
(2020), 28–43.

[77] Ebert, D. S., Musgrave, F. K., Peachey, D., Perlin, K., and Wor-
ley, S. Texturing & modeling: a procedural approach. Morgan Kaufmann,
2003.

[78] Eisenberger, M., Lahner, Z., and Cremers, D. Smooth shells: Multi-
scale shape registration with functional maps. In Proc. CVPR (June 2020).

[79] Ekinci, S., Izci, D., Zeynelgil, H. L., and Orenc, S. An application
of slime mould algorithm for optimizing parameters of power system stabi-
lizer. In 2020 4th International Symposium on Multidisciplinary Studies and
Innovative Technologies (ISMSIT) (2020), pp. 1–5.

[80] Elek, O., Burchett, J. N., Prochaska, J. X., and Forbes, A. G.
Polyphorm: structural analysis of cosmological datasets via interactive
physarum polycephalum visualization. IEEE Transactions on Visualization
and Computer Graphics 27, 2 (2020), 806–816.

Bibliography xxviii

[81] Eliahu, D., Spillinger, O., Fox, A., and Demmel, J. Frpa: A frame-
work for recursive parallel algorithms. Tech. Rep. UCB/EECS-2015-28, EECS
Department, University of California, Berkeley, 2015.

[82] Elmroth, E., Gustavson, F., Jonsson, I., and Kågström, B. Recur-
sive blocked algorithms and hybrid data structures for dense matrix library
software. SIAM review 46, 1 (2004), 3–45.

[83] Ezuz, D., and Ben-Chen, M. Deblurring and denoising of maps between
shapes. Computer Graphics Forum 36, 5 (2017), 165–174.

[84] Fanni, F. A., Pellacini, F., Scateni, R., and Giachetti, A. Pavel:
Decorative patterns with packed volumetric elements. ACM Trans. Graph.
41, 2 (jan 2022).

[85] Filoche, M., and Mayboroda, S. Strong localization induced by one
clamped point in thin plate vibrations. Physical review letters 103, 25 (2009),
254301.

[86] for Intel® Math Kernel Library C, D. R.

[87] Frey, P. J., and Borouchaki, H. Surface mesh quality evaluation. Inter-
national journal for numerical methods in engineering 45, 1 (1999), 101–118.

[88] Frigo, M., Leiserson, C. E., Prokop, H., and Ramachandran, S.
Cache-oblivious algorithms. In 40th Symp. Foundations of Computer Science
(FOCS) (1999), IEEE, pp. 285–297.

[89] Gall, F. L. Powers of tensors and fast matrix multiplication. In Proc. 39th
Int. Symp. Symbolic and Algebraic Computation (2014), pp. 296–303.

[90] Garland, M., and Heckbert, P. S. Surface simplification using quadric
error metrics. In Proceedings of the 24th annual conference on Computer
graphics and interactive techniques (1997), pp. 209–216.

[91] Gilboa, A., Tal, A., Shimshoni, I., and Kolomenkin, M. Computer-
based, automatic recording and illustration of complex archaeological arti-
facts. Journal of Archaeological Science 40, 2 (2013), 1329–1339.

[92] Ginzburg, D., and Raviv, D. Cyclic functional mapping: Self-supervised
correspondence between non-isometric deformable shapes. In European Con-
ference on Computer Vision (2020), Springer, pp. 36–52.

[93] Golub, G., and Van Loan, C. Matrix Computations. Johns Hopkins
Studies in the Mathematical Sciences. JHU Press, 2013.

[94] Grayson, B., Shah, A., and van de Geijn, R. A high performance
parallel strassen implementation. Parallel Processing Letters 6 (1995), 3–12.

[95] Greene, N. Detailing tree skeleton with voxel automata. SIGGRAPH’91,
Course Notes on Photorealistic Volume Modeling and Rendering Techniques
(1991).

Bibliography xxix

[96] Habel, R., Kusternig, A., and Wimmer, M. Physically guided animation
of trees. CGF 28, 2 (2009), 523–532.

[97] Hädrich, T., Benes, B., Deussen, O., and Pirk, S. Interactive modeling
and authoring of climbing plants. Comput. Graph. Forum 36, 2 (May 2017),
49–61.

[98] Halimi, O., Imanuel, I., Litany, O., Trappolini, G., Rodolà, E.,
Guibas, L., and Kimmel, R. The whole is greater than the sum of its
nonrigid parts, 2020.

[99] Halimi, O., Litany, O., Rodolà, E., Bronstein, A. M., and Kimmel,
R. Unsupervised learning of dense shape correspondence. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (2019),
pp. 4370–4379.

[100] Hammond, D. K., Vandergheynst, P., and Gribonval, R. Wavelets
on graphs via spectral graph theory. Applied and Computational Harmonic
Analysis 30, 2 (2011), 129–150.

[101] Hart, J. C. Perlin noise pixel shaders. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware (2001), pp. 87–
94.

[102] Higham, N. Exploiting fast matrix multiplication within the level 3 blas.
ACM Trans. Math. Softw. 16, 4 (1990), 352–368.

[103] Hirani, A. N. Discrete exterior calculus. California Institute of Technology,
2003.

[104] Hoppe, H. Progressive meshes. In Proceedings of the 23rd Annual Conference
on Computer Graphics and Interactive Techniques (New York, NY, USA,
1996), SIGGRAPH ’96, Association for Computing Machinery, p. 99–108.

[105] Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle,
W. Surface reconstruction from unorganized points. SIGGRAPH Comput.
Graph. 26, 2 (jul 1992), 71–78.

[106] Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle,
W. Mesh optimization. In Proceedings of the 20th Annual Conference on
Computer Graphics and Interactive Techniques (New York, NY, USA, 1993),
SIGGRAPH ’93, Association for Computing Machinery, p. 19–26.

[107] Hunold, S., Rauber, T., and Runger, G. Combining building blocks
for parallel multi–level matrix multiplication. Parallel Computing 34 (2008),
411–426.

[108] Huss-Lederman, S., Jacobson, E., Tsao, A., Turnbull, T., and
Johnson, J. Implementation of strassen’s algorithm for matrix multipli-
cation. In Proc. ACM/IEEE Conf. on Supercomputing (1996).

Bibliography xxx

[109] Ijiri, T., Owada, S., and Igarashi, T. Seamless integration of initial
sketching and subsequent detail editing in flower modeling. CGF 25, 3 (2006),
617–624.

[110] Inkscape Project. Inkscape.

[111] Jeong, S., Park, S.-H., and Kim, C.-H. Simulation of morphology changes
in drying leaves. In Computer Graphics Forum (2013), vol. 32, Wiley Online
Library, pp. 204–215.

[112] Jia-Wei, H., and Kung, H. T. I/o complexity: The red-blue pebble game.
In Proc. ACM Symp. Theory of Computing (STOC) (1981), ACM, p. 326–333.

[113] Johnson, D. S., and McGeoch, L. A. The traveling salesman problem: A
case study in local optimization. Local search in combinatorial optimization
1, 1 (1997), 215–310.

[114] Jones, J. Characteristics of pattern formation and evolution in approxima-
tions of physarum transport networks. Artificial Life 16 (2010), 127–153.

[115] Kac, M. Can one hear the shape of a drum? The american mathematical
monthly 73, 4P2 (1966), 1–23.

[116] Kadhum, M., Qasem, M. H., Sleit, A., and Sharieh, A. Efficient
mapreduce matrix multiplication with optimized mapper set. In Computer
Science On-line Conference (2017), Springer, pp. 186–196.

[117] Kågström, B. Management of deep memory hierarchies–recursive blocked
algorithms and hybrid data structures for dense matrix computations. In Int.
Workshop on Applied Parallel Computing (2004), Springer, pp. 21–32.

[118] Kazhdan, M., Bolitho, M., and Hoppe, H. Poisson Surface Reconstruc-
tion. In Symposium on Geometry Processing (2006), A. Sheffer and K. Polth-
ier, Eds., The Eurographics Association.

[119] Khan, D., Plopski, A., Fujimoto, Y., Kanbara, M., Jabeen, G.,
Zhang, Y. J., Zhang, X., and Kato, H. Surface remeshing: A systematic
literature review of methods and research directions. IEEE Transactions on
Visualization and Computer Graphics 28, 3 (2022), 1680–1713.

[120] Kider Jr, J. T., Raja, S., and Badler, N. I. Fruit senescence and
decay simulation. In Computer Graphics Forum (2011), vol. 30, Wiley Online
Library, pp. 257–266.

[121] Kim, J. H., and Lee-Stadelmann, O. Y. Water relations and cell wall elas-
ticity quantities in phaseolus vulgaris leaves. Journal of experimental botany
35, 6 (1984), 841–858.

[122] Kirgo, M., Melzi, S., Patanè, G., Rodolà, E., and Ovsjanikov, M.
Wavelet-based heat kernel derivatives: Towards informative localized shape
analysis. Computer Graphics Forum (2020). first online Nov. 2020.

Bibliography xxxi

[123] Klein, J., Waller, R. E., Pirk, S., Pałubicki, W., Tester, M., and
Michels, D. L. Synthetic data at scale: A paradigm to efficiently leverage
machine learning in agriculture. SSRN 4314564 (2023).

[124] Knöppel, F., Crane, K., Pinkall, U., and Schröder, P. Stripe pat-
terns on surfaces. ACM Trans. Graph. 34 (2015).

[125] Kobbelt, L. P., Campagna, S., and Seidel, H.-P. A general framework
for mesh decimation. In Graphics Interface (1998).

[126] Kolomenkin, M., Shimshoni, I., and Tal, A. Demarcating curves for
shape illustration. In ACM SIGGRAPH Asia 2008 papers. 2008, pp. 1–9.

[127] Kovnatsky, A., Bronstein, M., Bronstein, A., Glashoff, K., and
Kimmel, R. Coupled quasi-harmonic bases. Computer Graphics Forum 32,
2pt4 (2013), 439–448.

[128] Kovnatsky, A., Glashoff, K., and Bronstein, M. M. Madmm: a
generic algorithm for non-smooth optimization on manifolds. In Proc. ECCV
(2016), Springer, pp. 680–696.

[129] Kratt, J., Spicker, M., Guayaquil, A., Fišer, M., Pirk, S., Deussen,
O., Hart, J. C., and Benes, B. Woodification: User-controlled cambial
growth modeling. CGF 34, 2 (2015), 361–372.

[130] Kwasniewski, G., Kabić, M., Besta, M., VandeVondele, J., Solcà,
R., and Hoefler, T. Red-blue pebbling revisited: Near optimal parallel
matrix-matrix multiplication. In Proc. Int. Conf. High Performance Comput-
ing, Networking, Storage and Analysis (2019), SC ’19.

[131] Lefebvre, S., and Hoppe, H. Appearance-space texture synthesis. ACM
Trans. Graph. 25, 3 (jul 2006), 541–548.

[132] Lefebvre, S., and Neyret, F. Pattern based procedural textures. In
Proceedings of the 2003 Symposium on Interactive 3D Graphics (New York,
NY, USA, 2003), I3D ’03, Association for Computing Machinery, p. 203–212.

[133] Lescoat, T., Liu, H.-T. D., Thiery, J.-M., Jacobson, A., Boubekeur,
T., and Ovsjanikov, M. Spectral mesh simplification. Computer Graphics
Forum 39, 2 (2020), 315–324.

[134] Lévy, B. Laplace-Beltrami eigenfunctions towards an algorithm that under-
stands geometry. In Proc. SMI (2006), pp. 13–25.

[135] Li, B., Kałużny, J., Klein, J., Michels, D. L., Pałubicki, W., Benes,
B., and Pirk, S. Learning to reconstruct botanical trees from single images.
ACM Transaction on Graphics 40, 6 (12 2021).

[136] Li, C., Deussen, O., Song, Y.-Z., Willis, P., and Hall, P. Modeling
and generating moving trees from video. TOG 30, 6 (2011), 127:1–127:12.

Bibliography xxxii

[137] Li, H., Sumner, R. W., and Pauly, M. Global correspondence optimiza-
tion for non-rigid registration of depth scans. Computer graphics forum 27, 5
(2008), 1421–1430.

[138] Li, J. Y. S., and Zhang, H. Nonobtuse remeshing and mesh decimation.
SGP ’06, Eurographics Association, p. 235–238.

[139] Li, S., Chen, H., Wang, M., Heidari, A. A., and Mirjalili, S. Slime
mould algorithm: A new method for stochastic optimization. Future Gener-
ation Computer Systems 111 (2020), 300–323.

[140] Li, Y., Fan, X., Mitra, N. J., Chamovitz, D., Cohen-Or, D., and
Chen, B. Analyzing growing plants from 4d point cloud data. TOG 32, 6
(2013).

[141] Lintermann, B., and Deussen, O. Interactive modeling of plants. IEEE
Comput. Graph. Appl. 19, 1 (1999), 56–65.

[142] Litany, O., Bronstein, A., Bronstein, M., and Makadia, A. De-
formable shape completion with graph convolutional autoencoders. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition
(2018), pp. 1886–1895.

[143] Litany, O., Remez, T., Rodolà, E., Bronstein, A., and Bronstein,
M. Deep functional maps: Structured prediction for dense shape correspon-
dence. In Proceedings of the IEEE International Conference on Computer
Vision (2017), pp. 5659–5667.

[144] Litany, O., Rodolà, E., Bronstein, A., and Bronstein, M. Fully
spectral partial shape matching. Computer Graphics Forum 36, 2 (2017),
247–258.

[145] Litany, O., Rodolà, E., Bronstein, A. M., Bronstein, M. M., and
Cremers, D. Non-rigid puzzles. In Computer Graphics Forum (2016),
vol. 35, Wiley Online Library, pp. 135–143.

[146] Liu, Y., Guo, J., Benes, B., Deussen, O., Zhang, X., and Huang, H.
Treepartnet: Neural decomposition of point clouds for 3d tree reconstruction.
ACM Transaction on Graphics 40, 6 (Dec. 2021), 1–16.

[147] Liu, Y.-J., Fan, D., Xu, C.-X., and He, Y. Constructing intrinsic delau-
nay triangulations from the dual of geodesic voronoi diagrams. ACM Trans.
Graph. 36, 2 (apr 2017).

[148] Liu, Y.-J., Xu, C.-X., Fan, D., and He, Y. Efficient construction and
simplification of delaunay meshes. ACM Trans. Graph. 34, 6 (nov 2015).

[149] Liu, Y.-J., Xu, C.-X., Yi, R., Fan, D., and He, Y. Manifold differential
evolution (mde): A global optimization method for geodesic centroidal voronoi
tessellations on meshes. ACM Trans. Graph. 35, 6 (dec 2016).

Bibliography xxxiii

[150] Livny, Y., Pirk, S., Cheng, Z., Yan, F., Deussen, O., Cohen-Or, D.,
and Chen, B. Texture-lobes for tree modelling. In ACM SIGGRAPH 2011
Papers (2011), SIGGRAPH ’11, ACM.

[151] Longay, S., Runions, A., Boudon, F., and Prusinkiewicz, P.
Treesketch: Interactive procedural modeling of trees on a tablet. In Proceed-
ings of the International Symposium on Sketch-Based Interfaces and Modeling
(2012), SBIM ’12, p. 107–120.

[152] Loshchilov, I., and Hutter, F. Sgdr: Stochastic gradient descent with
warm restarts, 2017.

[153] Lounsbery, M., DeRose, T. D., and Warren, J. Multiresolution analysis
for surfaces of arbitrary topological type. ACM Trans. on Graphics 16, 1
(1997), 34–73.

[154] Lu, J., Sogge, C. D., and Steinerberger, S. Approximating pointwise
products of laplacian eigenfunctions. Journal of Functional Analysis 277, 9
(2019), 3271–3282.

[155] Luna-Elizarrarás, M., Saphiro, M., Struppa, D., and Vajiac, A.
Bicomplex Numbers and their Elementary Functions. Cubo (Temuco) 14 (00
2012), 61 – 80.

[156] Luo, Q., and Drake, J. A scalable parallel strassen’s matrix multiplication
algorithm for distributed-memory computers. In Proc. ACM Symp. Applied
Computing, SAC’95 (1995), pp. 221–226.

[157] Maggioli, F., Baieri, D., Melzi, S., and Rodolà, E. Newton’s fractals
on surfaces via bicomplex algebra. In ACM SIGGRAPH 2022 Posters. 2022,
pp. 1–2.

[158] Maggioli, F., Baieri, D., and Rodolà, E. Massive uniform mesh
decimation via a fast intrinsic delaunay triangulation. arXiv preprint
arXiv:2305.09274 (2023).

[159] Maggioli, F., Klein, J., Hädrich, T., Rodolà, E., Pałubicki, W.,
Pirk, S., and Michels, D. L. A physically-inspired approach to the simu-
lation of plant wilting. In SIGGRAPH Asia 2023 Conference Papers (2023),
pp. 1–8.

[160] Maggioli, F., Marin, R., Melzi, S., and Rodolà, E. MoMaS: Mold
Manifold Simulation for Real-time Procedural Texturing. Computer Graphics
Forum (2022).

[161] Maggioli, F., Melzi, S., Ovsjanikov, M., Bronstein, M. M., and
Rodolà, E. Orthogonalized fourier polynomials for signal approximation
and transfer. Computer Graphics Forum 40, 2 (2021), 435–447.

[162] Mancinelli, C., Nazzaro, G., Pellacini, F., and Puppo, E. b/surf:
Interactive bezier splines on surface meshes. IEEE Transactions on Visual-
ization & Computer Graphics, 01 (may 2021), 1–1.

Bibliography xxxiv

[163] Marbach, S., Ziethen, N., Bastin, L., Baeuerle, F., and Alim, K.
Network architecture determines vein fate during spontaneous reorganization,
with a time delay. bioRxiv (2021).

[164] Marin, D., Ohrhallinger, S., and Wimmer, M. Sigdt: 2d curve recon-
struction. Computer Graphics Forum 41, 7 (Oct. 2022), 25–36.

[165] Marin, R., Melzi, S., Rodolà, E., and Castellani, U. High-resolution
augmentation for automatic template-based matching of human models. In
2019 International Conference on 3D Vision (3DV) (2019), IEEE, pp. 230–
239.

[166] Marin, R., Melzi, S., Rodolà, E., and Castellani, U. Farm: Func-
tional automatic registration method for 3d human bodies. In Computer
Graphics Forum (2020), vol. 39, Wiley Online Library, pp. 160–173.

[167] Marin, R., Rakotosaona, M.-J., Melzi, S., and Ovsjanikov, M. Cor-
respondence learning via linearly-invariant embedding. Advances in Neural
Information Processing Systems 33 (2020).

[168] Marin, R., Rampini, A., Castellani, U., Rodolà, E., Ovsjanikov,
M., and Melzi, S. Instant recovery of shape from spectrum via latent space
connections. In 2019 International Conference on 3D Vision (3DV) (2019),
IEEE, pp. 37–46.

[169] Marin, R., Rampini, A., Castellani, U., Rodolà, E., Ovsjanikov,
M., and Melzi, S. Spectral shape recovery and analysis via data-driven
connections. International Journal of Computer Vision 129, 10 (2021), 2745–
2760.

[170] Maung, D., Shi, Y., and Crawfis, R. Procedural textures using tilings
with perlin noise. In 2012 17th International Conference on Computer Games
(CGAMES) (2012), IEEE, pp. 60–65.

[171] McGraw, T., and Ferdousi, B. Red versus blue: Slime mold civil war. In
SIGGRAPH Asia 2021 Posters (New York, NY, USA, 2021), SA ’21 Posters,
Association for Computing Machinery.

[172] Melzi, S. Sparse representation of step functions on manifolds. Computers
& Graphics 82 (2019), 117 – 128.

[173] Melzi, S., Marin, R., Musoni, P., Bardon, F., Tarini, M., and
Castellani, U. Intrinsic/extrinsic embedding for functional remeshing of
3D shapes. CAG 88 (2020), 1 – 12.

[174] Melzi, S., Marin, R., Rodolà, E., Castellani, U., Ren, J., Poule-
nard, A., Wonka, P., and Ovsjanikov, M. SHREC 2019: Matching
Humans with Different Connectivity. In Eurographics Workshop on 3D Ob-
ject Retrieval (2019), The Eurographics Association.

Bibliography xxxv

[175] Melzi, S., Ovsjanikov, M., Roffo, G., Cristani, M., and Castellani,
U. Discrete time evolution process descriptor for shape analysis and matching.
ACM Transactions on Graphics (TOG) 37, 1 (Jan. 2018), 4:1–4:18.

[176] Melzi, S., Ren, J., Rodolà, E., Sharma, A., Wonka, P., and Ovs-
janikov, M. Zoomout: Spectral upsampling for efficient shape correspon-
dence. ACM Transactions on Graphics (TOG) 38, 6 (Nov. 2019), 155:1–
155:14.

[177] Melzi, S., Rodolà, E., Castellani, U., and Bronstein, M. Shape anal-
ysis with anisotropic windowed fourier transform. In International Conference
on 3D Vision (3DV) (2016).

[178] Melzi, S., Rodolà, E., Castellani, U., and Bronstein, M. Localized
manifold harmonics for spectral shape analysis. Computer Graphics Forum
37, 6 (2018), 20–34.

[179] Milios, E. E. Shape matching using curvature processes. Computer Vision,
Graphics, and Image Processing 47, 2 (1989), 203–226.

[180] Mishra, S., and Granskog, J. CLIP-based Neural Neighbor Style Transfer
for 3D Assets. In Eurographics 2023 - Short Papers (2023), V. Babaei and
M. Skouras, Eds., The Eurographics Association.

[181] Mitra, N. J., Flöry, S., Ovsjanikov, M., Gelfand, N., Guibas, L. J.,
and Pottmann, H. Dynamic geometry registration. In Symposium on
geometry processing (2007), pp. 173–182.

[182] Mo, K., Zhu, S., Chang, A. X., Yi, L., Tripathi, S., Guibas, L. J., and
Su, H. PartNet: A large-scale benchmark for fine-grained and hierarchical
part-level 3D object understanding. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (June 2019).

[183] Molz, F. J. Models of water transport in the soil-plant system: A review.
Water resources research 17, 5 (1981), 1245–1260.

[184] Morita, S., Society, A. M., Nagase, T., and Nomizu, K. Geome-
try of Differential Forms. Iwanami series in modern mathematics. American
Mathematical Society, 2001.

[185] Moschella, L., Melzi, S., Cosmo, L., Maggioli, F., Litany, O., Ovs-
janikov, M., Guibas, L., and Rodolà, E. Learning spectral unions of
partial deformable 3d shapes. In Computer Graphics Forum (2022), vol. 41,
Wiley Online Library, pp. 407–417.

[186] Nakagaki, T. Smart behavior of true slime mold in a labyrinth. Research
in Microbiology 152, 9 (2001), 767–770.

[187] Nasikun, A., Brandt, C., and Hildebrandt, K. Fast approximation
of laplace-beltrami eigenproblems. Computer Graphics Forum 37, 5 (2018),
121–134.

Bibliography xxxvi

[188] Nazzaro, G., Puppo, E., and Pellacini, F. Geotangle: Interactive design
of geodesic tangle patterns on surfaces. ACM Trans. Graph. 41, 2 (nov 2021).

[189] Neumann, T., Varanasi, K., Theobalt, C., Magnor, M., and
Wacker, M. Compressed manifold modes for mesh processing. Computer
Graphics Forum 33, 5 (2014), 35–44.

[190] Newcombe, R. A., Fox, D., and Seitz, S. M. Dynamicfusion: Recon-
struction and tracking of non-rigid scenes in real-time. In Proc. CVPR (2015),
IEEE, pp. 343–352.

[191] Neyret, F. Animated texels. In Computer Animation and Simulation ’95
(Vienna, 1995), D. Terzopoulos and D. Thalmann, Eds., Springer Vienna,
pp. 97–103.

[192] Neyret, F. Advected textures. In ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation (2003), Eurographics Association, pp. 147–153.

[193] Nogneng, D., Melzi, S., Rodolà, E., Castellani, U., Bronstein, M.,
and Ovsjanikov, M. Improved functional mappings via product preserva-
tion. Computer Graphics Forum 37, 2 (2018), 179–190.

[194] Nogneng, D., and Ovsjanikov, M. Informative descriptor preservation via
commutativity for shape matching. Computer Graphics Forum 36, 2 (2017),
259–267.

[195] Norback, J. P., and Love, R. F. Geometric approaches to solving the
traveling salesman problem. Management Science 23, 11 (1977), 1208–1223.

[196] Ohrhallinger, S., Mitchell, S., and Wimmer, M. Curve reconstruction
with many fewer samples. Computer Graphics Forum 35 (08 2016), 167–176.

[197] Ohrhallinger, S., and Mudur, S. An Efficient Algorithm for Determining
an Aesthetic Shape Connecting Unorganized 2D Points. Computer Graphics
Forum (2013).

[198] Ohrhallinger, S., Peethambaran, J., Parakkat, A. D., Dey, T. K.,
and Muthuganapathy, R. 2d points curve reconstruction survey and
benchmark. In Computer Graphics Forum (2021), vol. 40, Wiley Online Li-
brary, pp. 611–632.

[199] Okabe, M., Owada, S., and Igarashi, T. Interactive design of botanical
trees using freehand sketches and example-based editing. In ACM SIGGRAPH
Courses (2007), ACM.

[200] Olsen, J. Realtime procedural terrain generation.

[201] Oppenheimer, P. E. Real time design and animation of fractal plants and
trees. Proc. of SIGGRAPH 20, 4 (1986), 55–64.

[202] Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., and
Guibas, L. Functional maps: a flexible representation of maps between
shapes. ACM Transactions on Graphics (ToG) 31, 4 (2012), 1–11.

Bibliography xxxvii

[203] Ovsjanikov, M., Corman, E., Bronstein, M., Rodolà, E., Ben-Chen,
M., Guibas, L., Chazal, F., and Bronstein, A. Computing and pro-
cessing correspondences with functional maps. In SIGGRAPH ASIA 2016
Courses (New York, NY, USA, 2016), ACM, pp. 9:1–9:60.

[204] Owens, A., Cieslak, M., Hart, J., Classen-Bockhoff, R., and
Prusinkiewicz, P. Modeling dense inflorescences. ACM Trans. Graph. 35,
4 (jul 2016).

[205] Palubicki, W., Horel, K., Longay, S., Runions, A., Lane, B., Měch,
R., and Prusinkiewicz, P. Self-organizing tree models for image synthesis.
ACM Trans. Graph. 28, 3 (2009), 58:1–58:10.

[206] Pałubicki, W., Makowski, M., Gajda, W., Hädrich, T., Michels,
D. L., and Pirk, S. Ecoclimates: Climate-response modeling of vegetation.
ACM Trans. Graph. 41, 4 (2022).

[207] Parakkat, A. D., and Muthuganapathy, R. Crawl through neighbors:
A simple curve reconstruction algorithm. Computer Graphics Forum 35, 5
(2016), 177–186.

[208] Parberry, I. Designer worlds: Procedural generation of infinite terrain from
real-world elevation data. Journal of Computer Graphics Techniques 3, 1
(2014).

[209] Patanè, G. Laplacian spectral basis functions. Computer-Aided Geometric
Design 65 (2018), 31 – 47.

[210] Patino-Ramirez, F., Arson, C., and Dussutour, A. Substrate and cell
fusion influence on slime mold network dynamics. Scientific reports 11, 1
(2021), 1–20.

[211] Peise, E., and Bientinesi, P. Algorithm 979: recursive algorithms for dense
linear algebra—the relapack collection. ACM Trans. Math. Softw. (TOMS)
44, 2 (2017), 1–19.

[212] Peitgen, H., Saupe, D., Fisher, Y., Barnsley, M., for Computing
Machinery Special Interest Group on Graphics, A., McGuire, M.,
Mandelbrot, B., Devaney, R., and Voss, R. The Science of Fractal
Images. Springer New York, 1988.

[213] Pinkall, U., and Polthier, K. Computing Discrete Minimal Surfaces and
their Conjugates. Exp. Math. 2, 1 (1993), 15–36.

[214] Pirk, S., Jarząbek, M., Hädrich, T., Michels, D. L., and Palubicki,
W. Interactive wood combustion for botanical tree models. ACM Trans.
Graph. 36, 6 (nov 2017), 197:1–197:12.

[215] Pirk, S., Niese, T., Deussen, O., and Neubert, B. Capturing and
animating the morphogenesis of polygonal tree models. TOG 31, 6 (2012),
169:1–169:10.

Bibliography xxxviii

[216] Pirk, S., Stava, O., Kratt, J., Said, M. A. M., Neubert, B., Měch,
R., Benes, B., and Deussen, O. Plastic trees: Interactive self-adapting
botanical tree models. ACM Trans. Graph. 31, 4 (July 2012), 50:1–50:10.

[217] Poerner, M., Suessmuth, J., Ohadi, D., and Amann, V. Adidas tape:
3-d footwear concept design. In ACM SIGGRAPH 2018 Talks (New York,
NY, USA, 2018), SIGGRAPH ’18, Association for Computing Machinery.

[218] Pogorui, A., and Rodríguez-Dagnino, R. On the set of zeros of bi-
complex polynomials. Complex Variables and Elliptic Equations 51, 7 (2006),
725–730.

[219] Potamias, R. A., Ploumpis, S., and Zafeiriou, S. Neural mesh simpli-
fication. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2022), pp. 18583–18592.

[220] Prusinkiewicz, P., and Lindenmayer, A. The Algorithmic Beauty of
Plants. Springer-Verlag New York, Inc., 1990.

[221] Qasem, M. H., Sarhan, A. A., Qaddoura, R., and Mahafzah, B. A.
Matrix multiplication of big data using mapreduce: a review. In 2nd Int.
Conf. Applications of Information Technology in Developing Renewable En-
ergy Processes & Systems (IT-DREPS) (2017), IEEE, pp. 1–6.

[222] Quigley, E., Yu, Y., Huang, J., Lin, W., and Fedkiw, R. Real-time
interactive tree animation. TVCG 24, 5 (2018), 1717–1727.

[223] Radwan, M., Ohrhallinger, S., Eisemann, E., and Wimmer, M. Cut
and paint: Occlusion-aware subset selection for surface processing. In Pro-
ceedings of Graphics Interface 2017 (May 2017), Canadian Human-Computer
Communications Society / Société canadienne du dialogue humain-machine,
pp. 82–89.

[224] Rampini, A., Tallini, I., Ovsjanikov, M., Bronstein, A. M., and
Rodolà, E. Correspondence-free region localization for partial shape simi-
larity via hamiltonian spectrum alignment. In 2019 International Conference
on 3D Vision (3DV) (2019), IEEE, pp. 37–46.

[225] Reche-Martinez, A., Martin, I., and Drettakis, G. Volumetric re-
construction and interactive rendering of trees from photographs. TOG 23, 3
(2004), 720–727.

[226] Reeves, W. T., and Blau, R. Approximate and probabilistic algorithms
for shading and rendering structured particle systems. SIGGRAPH Comput.
Graph. 19, 3 (July 1985), 313–322.

[227] Ren, J., Poulenard, A., Wonka, P., and Ovsjanikov, M. Continu-
ous and orientation-preserving correspondences via functional maps. ACM
Transactions on Graphics (TOG) 37, 6 (2018).

Bibliography xxxix

[228] Reuter, M., Wolter, F.-E., and Peinecke, N. Laplace–beltrami spectra
as ‘shape-dna’ of surfaces and solids. Computer-Aided Design 38, 4 (2006),
342 – 366. Symposium on Solid and Physical Modeling 2005.

[229] Ringham, L., Owens, A., Cieslak, M., Harder, L. D., and
Prusinkiewicz, P. Modeling flower pigmentation patterns. ACM Trans.
Graph. 40, 6 (dec 2021).

[230] Riso, M., Nazzaro, G., Puppo, E., Jacobson, A., Zhou, Q., and
Pellacini, F. Boolsurf: Boolean operations on surfaces. ACM Transactions
on Graphics (TOG) 41, 6 (2022), 1–13.

[231] Rivest, R. L., Adleman, L., and Dertouzos, M. L. On data banks and
privacy homomorphisms. FOUNDATIONS OF SECURE COMPUTATIONS
(1979), 171.

[232] Roberts, M. B. V. Biology: a functional approach. Nelson Thornes, 1986.

[233] Rodolà, E., Cosmo, L., Bronstein, M., Torsello, A., and Cremers,
D. Partial functional correspondence. Computer Graphics Forum 36, 1 (2017),
222–236.

[234] Rodolà, E., Cosmo, L., Litany, O., Bronstein, M., Bronstein, A.,
Audebert, N., Hamza, A. B., Boulch, A., Castellani17, U., Do16,
M., et al. Shrec’17: Deformable shape retrieval with missing parts.

[235] Rolfsen, D. Knots and Links. Mathematics lecture series. Publish or Perish,
1976.

[236] Rönn, S. Bicomplex algebra and function theory. arXiv preprint
math/0101200 (2001).

[237] Roufosse, J.-M., Sharma, A., and Ovsjanikov, M. Unsupervised deep
learning for structured shape matching. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision (2019), pp. 1617–1627.

[238] Runions, A., Lane, B., and Prusinkiewicz, P. Modeling trees with a
space colonization algorithm. EG Nat. Phenom. (2007), 63–70.

[239] Ruppert, J. A new and simple algorithm for quality 2-dimensional mesh
generation. In ACM-SIAM Symposium on Discrete Algorithms (1993).

[240] Rustamov, R. M. Laplace-beltrami eigenfunctions for deformation invari-
ant shape representation. In Proc. SGP (2007), Eurographics Association,
pp. 225–233.

[241] Rustamov, R. M., Ovsjanikov, M., Azencot, O., Ben-Chen, M.,
Chazal, F., and Guibas, L. Map-based exploration of intrinsic shape dif-
ferences and variability. ACM Transactions on Graphics (TOG) 32, 4 (2013),
1–12.

Bibliography xl

[242] Schroeder, W. J., Zarge, J. A., and Lorensen, W. E. Decimation of
triangle meshes. SIGGRAPH Comput. Graph. 26, 2 (jul 1992), 65–70.

[243] Shao, H., Kugelstadt, T., Hädrich, T., Pałubicki, W., Bender, J.,
Pirk, S., and Michels, D. L. Accurately solving rod dynamics with graph
learning. In Advances in Neural Information Processing Systems (NeurIPS)
(2021).

[244] Sharf, A., Alcantara, D. A., Lewiner, T., Greif, C., Sheffer, A.,
Amenta, N., and Cohen-Or, D. Space-time surface reconstruction using
incompressible flow. ACM Transactions on Graphics (TOG) 27, 5 (2008),
1–10.

[245] Sharp, N., and Crane, K. A Laplacian for Nonmanifold Triangle Meshes.
Computer Graphics Forum (SGP) 39, 5 (2020).

[246] Sharp, N., and Crane, K. You can find geodesic paths in triangle meshes
by just flipping edges. ACM Trans. Graph. 39, 6 (nov 2020).

[247] Sharp, N., Gillespie, M., and Crane, K. Geometry processing with
intrinsic triangulations. In ACM SIGGRAPH 2021 Courses (New York, NY,
USA, 2021), SIGGRAPH ’21, Association for Computing Machinery.

[248] Sharp, N., Soliman, Y., and Crane, K. Navigating intrinsic triangula-
tions. ACM Trans. Graph. 38, 4 (jul 2019).

[249] Shtern, A., and Kimmel, R. Spectral gradient fields embedding for non-
rigid shape matching. CVIU 140 (2015), 21–29.

[250] Slavcheva, M., Baust, M., Cremers, D., and Ilic, S. Killingfu-
sion: Non-rigid 3d reconstruction without correspondences. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (2017),
pp. 1386–1395.

[251] Smith, D. M., and Allen, S. J. Measurement of sap flow in plant stems.
Journal of Experimental Botany 47, 305 (1996).

[252] Song, F., Dongarra, J., and Moore, S. Experiments with strassen’s
algorithm: From sequential to parallel. In Proc. Parallel and Distributed
Computing and Systems, (PDCS) (2006).

[253] Stam, J. Flows on surfaces of arbitrary topology. In ACM SIGGRAPH
2003 Papers (New York, NY, USA, 2003), SIGGRAPH ’03, Association for
Computing Machinery, p. 724–731.

[254] Stava, O., Pirk, S., Kratt, J., Chen, B., Měch, R., Deussen, O., and
Benes, B. Inverse procedural modelling of trees. Computer Graphics Forum
(2014), n/a–n/a.

[255] Stewart, G. W. A krylov–schur algorithm for large eigenproblems. SIAM
J. Matrix Anal. Appl. 23, 3 (2002), 601–614.

Bibliography xli

[256] Stothers, A. On the complexity of matrix multiplication. Journal of Com-
plexity 19 (2003), 43–60.

[257] Strang, G. Linear Algebra and Its Applications, Fourth Ed. Thomson
Brooks/Cole, 2006.

[258] Strassen, V. Gaussian elimination is not optimal. Numerische mathematik
13, 4 (1969), 354–356.

[259] Süli, E., and Mayers, D. F. An introduction to numerical analysis. Cam-
bridge university press, 2003.

[260] Sun, J., Ovsjanikov, M., and Guibas, L. A concise and provably in-
formative multi-scale signature based on heat diffusion. Computer graphics
forum 28, 5 (2009), 1383–1392.

[261] Sun, Y., hu, K., Zhang, K., Jiang, L., and Xu, Y. Simulation of nitro-
gen fate for greenhouse cucumber grown under different water and fertilizer
management using the eu-rotaten model. Agricultural Water Management
112 (09 2012), 21–32.

[262] Sung, M., Dubrovina, A., Kim, V. G., and Guibas, L. Learning fuzzy
set representations of partial shapes on dual embedding spaces. In Computer
Graphics Forum (2018), vol. 37, Wiley Online Library, pp. 71–81.

[263] Taiz, L., Zeiger, E., Møller, I. M., Murphy, A., et al. Plant physiol-
ogy and development. No. Ed. 6. Sinauer Associates Incorporated, 2015.

[264] Tan, P., Fang, T., Xiao, J., Zhao, P., and Quan, L. Single image tree
modeling. TOG 27, 5 (2008), 108:1–108:7.

[265] Taubin, G. A signal processing approach to fair surface design. In ACM
SIGGRAPH (1995), pp. 351–358.

[266] Tevs, A., Berner, A., Wand, M., Ihrke, I., Bokeloh, M., Kerber,
J., and Seidel, H.-P. Animation cartography—intrinsic reconstruction of
shape and motion. ACM Transactions on Graphics (TOG) 31, 2 (2012), 1–15.

[267] Thottethodi, M., Chatterjee, S., and Lebeck, A. Tuning strassen’s
matrix multiplication for memory efficiency. In Proc. 1998 ACM/IEEE Conf.
on Supercomputing (SC’98) (1998), IEEE, pp. 36–36.

[268] Tombari, F., Salti, S., and Di Stefano, L. Unique signatures of his-
tograms for local surface description. In Proc. ECCV (2010), Springer,
pp. 356–369.

[269] Turk, G. Generating textures on arbitrary surfaces using reaction-diffusion.
SIGGRAPH Comput. Graph. 25, 4 (jul 1991), 289–298.

[270] Turk, G. Texture synthesis on surfaces. In Proceedings of the 28th annual
conference on Computer graphics and interactive techniques (2001), pp. 347–
354.

Bibliography xlii

[271] Udriste, C. Convex functions and optimization methods on Riemannian
manifolds, vol. 297. Springer Science & Business Media, 1994.

[272] Vallet, B., and Lévy, B. Spectral geometry processing with manifold
harmonics. Computer Graphics Forum 27, 2 (2008), 251–260.

[273] Vallverdú, J., Castro, O., Mayne, R., Talanov, M., Levin, M.,
Baluška, F., Gunji, Y., Dussutour, A., Zenil, H., and Adamatzky,
A. Slime mould: The fundamental mechanisms of biological cognition. Biosys-
tems 165 (2018), 57–70.

[274] Varadhan, S. R. S. On the behavior of the fundamental solution of the
heat equation with variable coefficients. Communications on Pure and Applied
Mathematics 20, 2 (1967), 431–455.

[275] Varol, G., Romero, J., Martin, X., Mahmood, N., Black, M. J.,
Laptev, I., and Schmid, C. Learning from synthetic humans. In CVPR
(2017).

[276] Wand, M., Adams, B., Ovsjanikov, M., Berner, A., Bokeloh, M.,
Jenke, P., Guibas, L., Seidel, H.-P., and Schilling, A. Efficient recon-
struction of nonrigid shape and motion from real-time 3d scanner data. ACM
Transactions on Graphics (TOG) 28, 2 (2009), 1–15.

[277] Wand, M., Jenke, P., Huang, Q., Bokeloh, M., Guibas, L., and
Schilling, A. Reconstruction of deforming geometry from time-varying
point clouds. In Symposium on Geometry processing (2007), pp. 49–58.

[278] Wang, E., Zhang, Q., Zhang, B. S. G., Lu, X., Wu, Q., and Wang,
Y. Intel math kernel library. In High-Performance Computing on the Intel®
Xeon Phi™. Springer, 2014, pp. 167–188.

[279] Wang, H. Y., Kang, M. Z., Hua, J., and Wang, X. J. Modeling plant
plasticity from a biophysical model: Biomechanics. In Proceedings of the 12th
ACM SIGGRAPH Intl. Conf. on VRCAI (2013), ACM, pp. 115–122.

[280] Wang, X. Intrinsic computation of voronoi diagrams on surfaces and its
application, 2015.

[281] Wang, X., Ying, X., Liu, Y.-J., Xin, S.-Q., Wang, W., Gu, X.,
Mueller-Wittig, W., and He, Y. Intrinsic computation of centroidal
voronoi tessellation (cvt) on meshes. Comput. Aided Des. 58, C (jan 2015),
51–61.

[282] Wang, X.-Y., and Song, W. The generalized m–j sets for bicomplex num-
bers. Nonlinear Dynamics 72 (2013), 17–26.

[283] Watson, D. F. Computing the n-dimensional Delaunay tessellation with
application to Voronoi polytopes*. The Computer Journal 24, 2 (01 1981),
167–172.

Bibliography xliii

[284] Webster, N. L. High poly to low poly workflows for real-time rendering.
Journal of visual communication in medicine 40, 1 (2017), 40–47.

[285] Wei, L.-Y., and Levoy, M. Texture synthesis over arbitrary manifold
surfaces. In Proceedings of the 28th annual conference on Computer graphics
and interactive techniques (2001), pp. 355–360.

[286] Weyl, H. Über die asymptotische verteilung der eigenwerte. Nachrichten
von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-
Physikalische Klasse 1911 (1911), 110–117.

[287] Wie, L.-Y., Lefebvre, S., Kwatra, V., and Turk, G. State of the
Art in Example-based Texture Synthesis. In Eurographics 2009 - State of
the Art Reports (2009), M. Pauly and G. Greiner, Eds., The Eurographics
Association.

[288] Williams, V. Multiplying matrices faster than Coppersmith-Winograd. In
Proc. 44th ACM Symp. Theory of Computing (STOC) (2012), p. 887–898.

[289] Wimmer, M., and Wonka, P. Rendering time estimation for real-time
rendering. In Rendering Techniques (2003), pp. 118–129.

[290] Wither, J., Boudon, F., Cani, M.-P., and Godin, C. Structure from
silhouettes: a new paradigm for fast sketch-based design of trees. CGF 28, 2
(2009), 541–550.

[291] Witkin, A., and Kass, M. Reaction-diffusion textures. In Proceedings of
the 18th annual conference on computer graphics and interactive techniques
(1991), pp. 299–308.

[292] Wong, S.-K., and Chen, K.-C. A procedural approach to modelling virtual
climbing plants with tendrils. Comput. Graph. Forum (2015).

[293] Wouter Bac, C., Hemming, J., van Tuijl, B. A. J., Barth, R., Wais,
E., and van Henten, E. J. Performance evaluation of a harvesting robot
for sweet pepper. Journal of Field Robotics 34, 6 (2017), 1123–1139.

[294] Yang, C.-Q., and Miller, B. P. Critical path analysis for the execution
of parallel and distributed programs. In Proc. 8th Int. Conf. on Distributed
Computing Systems (ICDCS) (1988), IEEE, pp. 366–373.

[295] Yi, R., Liu, Y.-J., and He, Y. Delaunay mesh simplification with differen-
tial evolution. ACM Trans. Graph. 37, 6 (dec 2018).

[296] Yin, M., Li, G., Lu, H., Ouyang, Y., Zhang, Z., and Xian, C. Spectral
pose transfer. Computer Aided Geometric Design 35 (2015), 82–94.

[297] Yuksel, C., Lefebvre, S., and Tarini, M. Rethinking texture mapping.
Computer Graphics Forum 38, 2 (2019), 535–551.

[298] Zeng, W., Guo, R., Luo, F., and Gu, X. Discrete heat kernel determines
discrete riemannian metric. Graphical Models 74, 4 (2012), 121–129.

Bibliography xliv

[299] Zhang, Q., Fu, B., Ye, M., and Yang, R. Quality dynamic human body
modeling using a single low-cost depth camera. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2014), pp. 676–683.

[300] Zhao, J., Gao, Z.-M., and Sun, W. The improved slime mould algorithm
with levy flight. Journal of Physics: Conference Series 1617 (aug 2020),
012033.

[301] Zhao, Y., and Barbič, J. Interactive authoring of simulation-ready plants.
ACM Trans. Graph. 32, 4 (2013), 84:1–84:12.

[302] Zhong, M. Harmonic shape analysis: From fourier to wavelets. Master’s
thesis, Stony Brook University, 2012.

[303] Zhou, Q., and Jacobson, A. Thingi10k: A dataset of 10,000 3d-printing
models. arXiv preprint arXiv:1605.04797 (2016).

[304] Zuffi, S., Kanazawa, A., Jacobs, D., and Black, M. J. 3D menagerie:
Modeling the 3D shape and pose of animals. In IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR) (July 2017).

	Introduction to the Thesis
	Overview of Published Results
	Motivations
	Background in Riemannian Geometry
	Riemannian Manifolds
	Curves and Distances
	Differential and Spectral Geometry
	Correspondences and Functional Maps
	Discretization

	I Spectral Geometry
	Orthogonalized Fourier Polynomials for Signal Approximation and Transfer
	Introduction and Related Work
	Background
	Theoretical Results
	Frequency Distribution
	Approximating Eigenproducts
	Orthogonalized Eigenproducts
	Implementation Details

	Experimental Results
	Detail Transfer
	Spectral Filtering
	Function Approximation
	Function Transfer

	Conclusions
	Proofs
	Laplacian of a Product
	Proof of orthoprods:thm:dirichlet-order-n-bounds
	Proof of Corollary 1.1
	Iterative Formula for the Transform O

	Learning Spectral Unions of Partial Deformable 3D Shapes
	Introduction
	Related Work
	Nonrigid Shape Aggregation
	Eigenvalues and Partiality

	Proposed Method
	Network Architecture
	Data and Evaluation
	Applications
	Geometry Reconstruction
	Region Localization
	Shape Retrieval

	Conclusion

	II Non-Euclidean Metric Spaces
	Mold Manifold Simulation for Real-Time Procedural Texturing
	Introduction
	Related Work and Background

	Method
	Movement Over the Surface
	Length Rescaling
	Mold Evolution
	Agent Implementation
	Multiple Species, Obstacles and Attractors

	Results
	Mold Simulation
	Performance
	Families of Patterns
	Evolutive Procedural Texturing
	Limitations

	Conclusions

	A Physically-Inspired Approach to the Simulation of Plant Wilting
	Introduction
	Related Work
	Methodology
	Water Uptake and Loss Process
	Computational Model
	Initial Conditions

	Algorithmics
	Efficient Evaluation
	Handling of Large Plants
	Integration with Physics Simulators

	Results
	Water Model Evaluation
	Environment and Material Calibration
	Descriptive Power
	Performance

	Conclusion, Limitations, and Future Work

	Massive Uniform Mesh Decimation via a Fast Intrinsic Delaunay Triangulation
	Introduction
	Related Work
	Remeshing
	Mesh Decimation and Simplification

	Method
	Delaunay Remeshing
	Voronoi FPS
	Dual Triangulation
	High-Density Sampling

	Results
	Remeshing Quality
	Performance Analysis
	Resampling of Large Triangles

	Limitations and Conclusions

	Reconstructing Curves in Non-Euclidean Domains
	Introduction
	Related Work
	Method
	TSP on Surfaces
	Refinements
	Complexity Analysis

	Results
	Dataset Generation
	Evaluation
	Performance
	Limitations

	Conclusions

	III Parallelization & Optimization
	Newton’s Fractals on Surfaces via Bicomplex Algebra
	Introduction
	Method
	Implementation
	Results and Conclusions

	Efficiently Parallelizable Strassen-Based Multiplication of a Matrix by its Transpose
	Introduction
	Related Work
	AtA
	AtA in Detail
	Computational Complexity
	Space Complexity
	Cache Complexity

	Parallel AtA
	Preliminary Phase: Task Assignment
	Shared Memory AtA
	Distributed Memory AtA

	Performance Evaluation
	Experimental Setup
	Metrics
	Sequential
	Shared Memory
	Distributed Memory

	Conclusions

	Conclusions
	Bibliography

