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Abstract

Inferring 3D shape and appearance from natural images is a fundamental challenge
in computer vision. Despite recent progress using deep learning methods, a key
limitation is the availability of annotated training data, as acquisition is often very
challenging and expensive, especially at a large scale. This thesis proposes to incor-
porate physical priors into neural networks that allow for self-supervised learning. As
a result, easy-to-access unlabeled data can be used for model training. In particular,
novel algorithms in the context of 3D reconstruction and texture/material synthesis
are introduced, where only image data is available as supervisory signal.

First, a method that learns to reason about 3D shape and appearance solely from
unstructured 2D images, achieved via differentiable rendering in an adversarial
fashion, is proposed. As shown next, learning from videos significantly improves
3D reconstruction quality. To this end, a novel ray-conditioned warp embedding is
proposed that aggregates pixel-wise features from multiple source images.
Addressing the challenging task of disentangling shape and appearance, first a method
that enables 3D texture synthesis independent of shape or resolution is presented.
For this purpose, 3D noise fields of different scales are transformed into stationary
textures. The method is able to produce 3D textures, despite only requiring 2D
textures for training. Lastly, the surface characteristics of textures under different
illumination conditions are modeled in the form of material parameters. Therefore, a
self-supervised approach is proposed that has no access to material parameters but
only flash images. Similar to the previous method, random noise fields are reshaped
to material parameters, which are conditioned to replicate the visual appearance of

the input under matching light.
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Chapter 1

Introduction

We, humans, have the ability to perceive our 3D world from 2D observations,
captured by our eyes and processed by the human visual system at a remarkable ease.
In our daily lives, we constantly interact with 3D objects and reason about their shape
and appearance intuitively. Teaching machines to reason about our 3D world from
visual observations such as images, similar to humans, is a common goal in scientific
fields ranging from computer vision to computer graphics to robotics. Extracting 3D
information from 2D images is a highly underconstrained and ill-posed problem. An
image is a projection of our 3D world onto a 2D plane from a given camera pose
which can be explained by an infinite amount of 3D variations. The interplay of
geometry, material and illumination influences the incoming amount of radiance for
each 2D location. Geometry determines the 2D location in the image plane where
any 3D point along a ray is mapped onto. The material characteristics describe
the surface of the geometry and its interaction with illumination. Thus, extracting
meaningful 3D information from a given image requires knowledge of camera pose,
geometry, material and illumination, which are referred to as scene parameters in
this thesis, see Fig. 1.1.

Machines perform tasks more consistently than humans by their very nature, however,
have failed to surpass human-level performance up until the deep learning era.
Early works on image classification [5], semantic segmentation [6, 7] or object
detection [8, 9] have demonstrated impressive results while relying on large amounts

of annotated 2D data [10] for supervised learning.
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Visual observations y Scene parameters x

Shape and y
_,  appearance . @ .
modeling
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Figure 1.1: Shape and appearance modeling is the task of inferring meaningful 3D infor-
mation from visual observations. The inverse process is physically modeled by
rendering, i. e., mapping higher-dimensional data in the form of scene parame-
ters x to lower-dimensional data such as natural images y.

Efforts have been made to acquire datasets providing 3D information, e. g., synthetic
datasets [11, 12] or 3D scans [13, 14], which allowed to train algorithms that reason
about 3D in a supervised manner. However, their performance is bound by the
limitations of current annotated 3D datasets, which lack size, realism and diversity.
Furthermore, only limited supervision is provided. This leads to restricted general-
ization and expressiveness of supervised algorithms. Currently, no real-world dataset
exists that provides full information about scene parameters at a large scale. As a
result, overcoming the need for supervised learning is crucial, as large annotated 3D
datasets may never exist. Images or videos, on the other hand, are easily accessible
as vast amounts already are available on the internet and can also be easily captured

at a low cost.

“Will he not fancy that the shadows which he formerly saw are truer

than the objects which are now shown to him?” — PLATO;

Inspired by Plato, it seems desirable to learn from visual observations only. Doing

so would consequently reduce the required amount of supervision significantly.

1.1 Goal

This thesis addresses the challenging task of shape and appearance modeling where
only images as supervisory signals are available. Given a visual observation y, the
goal is to predict the underlying 3D scene parameters x without having access to 3D

information, 1. e., no supervised training is possible. This is achieved by incorporating
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physical priors in the method pipeline that map the 3D scene parameters back to
the original input domain. Even though this physical process, which we know as
rendering [15] is well understood and capable of producing photorealistic results
as demonstrated in Hollywood films [16, 17], it is not directly applicable to predict
scene parameters. The reason is that this task is highly ambiguous, i.e., many
different combinations of pose, geometry, material and lighting can map to the same
2D image.

Currently, simplifying assumptions are made to constrain those ambiguities in order
to make the task feasible, e. g., camera poses are known, access to template shapes
is given, or key points are required. Unfortunately, these assumptions do not only
simplify the task but also prevent the underlying algorithm from fully solving the
problem, as part of it is already solved, i. e., provided in terms of supervision. The
goal of this thesis is to limit the amount of supervision as much as possible and
therefore make the task at hand harder in order to increase the ability of the method
to learn a full 3D understanding.

Furthermore, neural networks follow the principle of Occam’s razor, i.e., they
converge to the most simple explanation that satisfies the objective function. This
means that ambiguous solutions cannot be resolved by carefully designed objective
functions. In this thesis, we will see that explicitly constraining neural networks to
adhere to known mathematical concepts helps to reduce aforementioned ambiguities
and in some cases can even turn these to an advantage. Several contributions that

share the same underlying principle are discussed next.

1.2 Contributions

In this thesis, neural network architectures that incorporate physical priors as interme-
diate differentiable building blocks are introduced. Such architectures can be trained
end-to-end in a self-supervised fashion which allows tapping into easy-to-access data
such as image collections or videos. Four contributions addressing different tasks
in the space of shape and appearance modeling are proposed and divided into two

parts. The first part discusses single-image 3D reconstruction challenges in Chapter
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3 and Chapter 4, where only images or videos are available as supervision. In the
second part, approaches that focus on texture and material synthesis are explored.
A 3D texture synthesis method that lifts 2D textures to solid 3D textures without
explicit supervision is presented in Chapter 5. In Chapter 6, the acquired knowledge
from the previous chapter is used to additionally explain the surface characteristics

of textures in order to synthesize material maps from flash images.

1.2.1 3D Reconstruction

In Chapter 3 PLATONICGAN is introduced, which aims to discover the 3D structure
and appearance of a specific object class from an unstructured collection of 2D
images, i. €., where no relation between photos is known. The key idea is to train
a deep neural network to generate 3D shapes which, when rendered to images,
are indistinguishable from ground truth images (for a discriminator) under various
camera poses. To establish constraints between 2D image observation and their
3D interpretation, a family of rendering layers that are effectively differentiable is
suggested, which enables a self-supervised design (see Fig. 1.2). Discriminating 2D
images instead of 3D shapes allows tapping into unstructured 2D photo collections
instead of relying on curated (e.g., aligned, annotated, etc.) 3D datasets or assuming
the availability of 2D primitives such as key points. At test time, this method is

capable of reconstructing shape and appearance from a single image.

Image y Geometry and texture x
Images Neural Network
— —
yGT f(;(y)
Loss - - Rendering -
L(yGT’ yOUT) D(x)

Figure 1.2: Given an image y of an object, a neural network f is trained to extract the 3D
geometry and texture x without having access to 3D data. This is achieved by
incorporating a differentiable rendering module that maps higher-dimensional
3D data back to the original 2D domain, enabling self-supervised training.
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The goal in Chapter 4 is to train a deep neural network that, given a small number of
images of an object of a given category, will reconstruct its 3D shape and appearance.
Similar to the previous chapter, challenging real data with no manual annotations
is used for training. Instead of relying on unstructured image collections, a new
large dataset of object-centric videos suitable for multi-view training is introduced.
Exploiting multi-view data, a novel neural network design, called warp-conditioned
ray embedding (WCE), is proposed. It allows us to aggregate information from an
arbitrary number of views to aid 3D reconstruction and again makes use of differen-
tiable rendering which enables self-supervised training, as relative camera poses can
be extracted from multi-view data using Structure-from-Motion. In comparison with
the single-view method proposed in Chapter 3, this method significantly improves

reconstruction quality.
1.2.2 Texture and material synthesis

Image y 3D texture x

Images Neural Network
Yer 5,0
Loss Slicing -
Ly Your) D(x)

Figure 1.3: Given an image y of an object, a neural network f is trained to extract the 3D
geometry and texture x without having access to 3D data. This is achieved by
incorporating a differentiable rendering module that maps higher-dimensional
3D data back to the original 2D domain, enabling self-supervised training.

A generative model of 3D natural textures with diversity, visual fidelity and high
computational efficiency is proposed in Chapter 5. For a given texture exemplar in
2D, the goal is to produce a 3D texture with the same visual characteristics. The main
challenge is that no access to real-world 3D textures is possible whereas 2D textures
can be casually captured using mobile phones. Solving such a task seems impossible,

however, under the assumption of stationarity, i. e., image statistics are the same for
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every part of the image, it becomes feasible. The idea is to use a hard-coded slicing
operation that extracts 2D slices from 3D textures, see Fig. 1.3. This way, a statistical
comparison can be performed in 2D rather than 3D which allows us to produce 3D
textures without 3D supervision in a self-supervised fashion. In order to generate
high-fidelity textures, random 3D noise fields of different frequencies are mapped to

3D textures using a neural network.

Imagey Material parameters x

Images Neural Network
Yer 1)
l Diffuse
Loss Shading -
Lysrs Your) D(x)

Specular

Figure 1.4: Given a natural texture y, e. g., wood, a neural network f is trained to produce a
3D texture with the same statistics X where no access to 3D textures is available.
This is achieved by incorporating a slicing module that maps higher-dimensional
3D textures back to the original 2D domain, enabling self-supervised training.

In Chapter 6, which builds upon the previous approach, additionally models the
surface characteristics of textures under different illuminations by synthesizing
materials (e. g., leather, wood, etc.) from flash images. When users provide a photo
of a natural material captured under flash light illumination, the presented method
produces an infinite and diverse spatial field of material parameters. This is achieved
without having access to material parameters at all. As presented in Fig. 1.4, the
produced material parameters are mapped back to the flash image domain through a
shading operation that is differentiable. This enables the use of a loss function in a

lower-dimensional domain.

1.2.3 Self-supervised learning via differentiable physical priors

Overall, a family of methods that follow the same underlying self-supervised design,
illustrated in Fig. 1.5, are proposed. Each method is based on an easy-to-acquire
dataset which can be captured using a smartphone and does not require any data an-

notation. Either unstructured image or video collections of category-specific objects,
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Dataset Loss a) Supervised Learning
—_ X —
xGT’ yGT L(xGT’ xOUT)
Visual observations Neural Network Scene parameters
Yer fe(yGT) Xour
Dataset Loss - Differentiable function
Yer L Your) e b) Self-Supervised Learning

Figure 1.5: Shape and appearance modeling is the task of inferring meaningful 3D infor-
mation from visual observations. The inverse task is rendering, i. e., mapping
higher-dimensional data, in the form of scene parameters, to lower-dimensional
data such as images.

texture collections or flash images of materials are used. During training, individ-
ual visual observations ygr from the dataset are sampled. Note that a supervised
approach would additionally provide the corresponding scene parameter information
Xgr. This two-dimensional input data is then lifted to higher dimensions xpy 7, such
as 3D geometry, 3D textures or material parameters, through a non-linear function
in the form of a neural network xoyt = f(ygr). This is achieved by using Convo-
lutional Neural Networks (CNNs) or Multilayer Perceptrons (MLPs) depending on
the desired representation. In a second step, differentiable functions D, which map
the higher-dimensional data back to the original input domain xpy7 = D(f(yer)),
are carefully incorporated as discussed above. This enforces the representation to
be explicit, i. e., in a human-readable format rather than a neural representation that
cannot be interpreted. Finally, the output of the differentiable function is compared
to the original input image through an objective function. This stands in contrast to
supervised methods that perform comparison in the higher-dimensional space, which

requires hard-to-acquire annotated data.






Chapter 2

Background and Previous Work

This thesis addresses tasks at the intersection of computer vision, graphics and deep
learning. More specifically, the focus lies on modeling shape and appearance from
images only, using inverse differentiable graphics. This requires knowledge in several
distinct areas which will be discussed in this section. Firstly, core deep learning
techniques are introduced before diving into how synthetic scenes are represented
and visualized (rendered) in computer graphics. Further, an overview of related work
in the context of 3D reconstruction algorithm is provided, specifically focusing on
the importance of deep learning for inverse rendering. Secondly, relevant concepts
for texture and material synthesis are addressed. Therefore, classical methods as
well as modern deep learning methods are presented before focusing on material

capture from flash images.

2.1 Deep Learning

Deep learning (DL) is a type of machine learning (ML) and artificial intelligence
(AI) that teaches neural networks to solve complex problems by learning from large

amounts of data.

A common deep neural network consists of an input and output layer with multiple
hidden layers in between. Each layer is represented by a mathematical function
that extracts features from incoming data, passes them through non-linearities and
uses the output as the input to the next layer. Overall the goal is to approximate any

desired function which is parameterized by learnable network weights. To achieve
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this, the network weights are optimized such that the network best maps the input
data to the desired output. This process is referred to as training a neural network
and is outlined below.

First, the input data is processed by the neural network to make a prediction (forward
pass). An objective function then determines the error (loss) between the predicted
output and the target output (ground truth). Next, the network weights are updated
following the backpropagation algorithm introduced by Rumelhart et al. [18]. Hence,
the gradient of the loss with respect to the weights, using the chain rule, is calculated
backwards starting from the last layer to the first (backward pass). Finally, each
weight is updated according to the direction of the gradient. This process is repeated
until convergence. In practice, many different optimization algorithms can be used,

e. g., Stochastic Gradient Descent (SGD) [19] or Adam [20].

2.1.1 Multilayer perceptron

One of the earliest forms of Al, the perceptron, dates back to 1957 when Rosenblatt
[21] introduced a binary classification model. A perceptron takes as input a vector
x = (x1,...,X, ), multiplies it with a weight 8 = (0, ..., 6,), adds a bias b and returns

the weighted sum before passing the value through an activation function ©.
n
c() 6 xx;+b) (2.1)
1

A single perceptron can only learn linearly separable patterns. For instance, it
cannot learn to approximate an XOR function as no single straight line exists that
can separate the input vectors with respect to their output value. However, when
stacking up multiple perceptrons as is the case for MLPs, any continuous non-linear
function can be approximated [22]. In practice, the Rectified Linear Unit (ReLU)
[23] activation function is widely used. However, any non-linear function can be
used as an activation function.

There are two major drawbacks of MLPs with regard to image processing. Firstly,
each perceptron is connected to every other perceptron, which exponentially increases

the number of learnable network weights with image resolution. This leads to
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memory problems in higher resolutions. Secondly, MLPs are not translation invariant,

resulting in redundant operations for image processing.

2.1.2 Convolutional Neural Networks

A different type of architecture, that addresses these drawbacks, are Convolutional
Neural Networks (CNNs). These were first introduced by LeCun et al. [24], before
AlexNet [5] marked a major breakthrough by winning the ImageNet [10] competi-
tion in 2012. An important component in that success was the use of convolutional
layers as those address the main drawbacks of MLPs. Convolutional layers slide
local trainable filters, defined by kernel size and stride, over input images in order
to extract local features. In comparison with MLPs, each filter has access to a
spatial local neighbourhood instead of processing the entire image at once. This has
several advantages. The same filter is applied across spatial regions of the image,
which makes CNNs translation invariant. Moreover, higher resolution inputs can be
processed, as the number of filter elements is independent of the image size.
Another important concept, which cannot be exploited by MLPs, are pooling layers,
which reduce the dimensions of feature maps. To this end, a region, defined by width
and height, is compressed to a single value through a pooling operation. The two
most common operations are max pooling and average pooling.

Stacking many convolutional layers followed by non-linearities and pooling opera-
tions allows the extraction of increasingly complex features [25]. The first few layers
of a CNN learn lower-level features such as edges and circles. Deeper layers operate
on lower-level features and extract complex textures and patterns. Eventually, objects

or parts of objects can be represented at even deeper levels.

2.1.3 Generative Adversarial Networks

Generative adversarial networks were introduced by Goodfellow et al. [27] and
extend the aforementioned single-network approaches by introducing an additional
critic network. Two networks, a generator and a discriminator compete with each in
order to produce new synthetic instances of a given data distribution. The generator

aims to produce images that fool the discriminator, which, in turn, tries to detect



12 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

Figure 2.1: Synthetic images generated by a state-of-the-art generative adversarial network.
(26]

whether a provided image is real or fake. The goal is to play a min-max game
where both networks try to outperform each other. If training is successful both
networks learn from each other, become better and eventually the generator is able to
produce new synthetic images that cannot be distinguished from the real data, even
for humans as depicted in Fig. 2.1. In Chapter 3, PlatonicGAN exploits adversarial
training in order to produce 3D shape and appearance that when rendered to synthetic

2D images are not distinguishable from real images.

2.1.4 Neural Style Transfer

Another important concept that this Chapter 5 and Chapter 6 are inspired by is Style
transfer [28]. It is an optimization technique that, given a content and a style image,
optimizes an output image that finds the minimum distance between content and
style. In other words, the aim is to transfer the style from the style image to the
content image as illustrated in Fig. 2.2. This is achieved by a two-fold loss term,
one that minimizes the content and another that minimizes the style. Style transfer

leverages the fact that CNNs provide low-level pixel information in higher layers
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Figure 2.2: Given a content image (top-left) and a style image (thumbnail images), the
method proposed by Gatys et al. [28] produces new images combining content
and style.

while deeper layers represent more global features [29]. Features of intermediate
layers [ are defined as F! € R*M where C are the number of filters and N is the
spatial size. The content loss is then defined as the squared error between features of

the content image F and the target image £

Lcontent = ZZ(F,Z - F‘;])Z (22)
I i

The style is represented as the correlation between learned feature maps, in particular,
their gram matrices. The gram matrix is calculated as dot product between flattened

features:

G=F".F (2.3)

The final style loss is measured by comparing the squared error between gram

matrices:
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Lyye =) (Gi;— Gl ))* (2.4)
L]

The gram matrix serves as a statistical texture representation for stationary textures
(see Sec. 2.5). Other statistical measures such as mean and variance could be used as
well, however, empirically do not perform as well. Style transfer commonly uses a

pre-trained VGG network [29], as also used in this thesis, for feature extraction.

2.2 Basics of Computer Graphics

Fundamental to computer graphics is the interplay of geometry, material and lighting
as briefly discussed in Chapter 1. Each of these components influences the process of
generating a synthetic image, formally known as rendering. In the following section,

the rendering equation along with each component will be discussed in greater detail.

2.2.1 Geometry

6 e

Voxel grid Mesh SDF

Figure 2.3: Visualisation of different 3D shape representations.

Geometry can be represented in many different ways, as illustrated in Fig. 2.3.
Polygon meshes are the most common representation for rendering-type applications
such as computer games or movies and have been an established industry standard
for the past decades. A mesh is defined as a collection of vertices, edges and faces
(polygons) that describe the surface of an object with a fixed topology. However,
for reconstruction tasks meshes are not the preferred choice as they rely on initial
template shapes that are deformed to match a desired output shape. Due to the fixed
topology, it is not possible to deform any template shape to a specific target shape,
e. g., chairs with a different number of legs require different template shapes.

A more flexible way of representing arbitrary shapes are voxel grids and point clouds.
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A point cloud, similarly to a mesh, consists of a set of vertices where each point is
specified by a 3D location and can further contain attributes such as colour, normal,
etc. Point clouds are usually produced by 3D scanners or retrieved from multi-view
imagery (see Sec. 2.3). Unlike meshes, neither any connectivity between points
exists nor any surface information is provided, which causes several drawbacks.
Firstly, no trivial local neighbourhood relations can be established which is crucial
for feature extraction via neural networks as explained above. Secondly, capturing
accurate surface texture information is nearly impossible, especially for sparse point
clouds.

Voxel grids on the other hand are a discretized version of point clouds that subdivide
a bounded 3D space into a regular grid of 3D cells (similar to 2D pixels), which are
referred to as voxels. The geometry of a voxel grid is represented as density values
where 0 equals empty space and 1 means fully occupied. Due to their regular form,
accessing spatial neighbourhoods is straightforward and therefore convolutional
layers can directly be applied, which makes them very attractive for Deep Learning.
However, voxel grids are usually restricted to lower resolutions as small increases in
resolution cubically increase memory consumption.

Growing in popularity, neural 3D shape representations are defined as continuous
functions parameterized by neural networks. They are either represented as signed
distance functions (SDFs) or occupancy functions. An SDF determines the distance
to the surface at a given point. Concretely, the surface is represented as a zero-level
set of a neural network: . = {x € R | f(x;0) = 0}. The function returns negative
values if the given point lies outside the surface and positive values if the point lies
inside. On the other hand, an occupancy function returns a density value o € R! for
each location x € R? similarly to voxel grids. In this thesis, voxel grids as well as
neural representations in the form of occupancy functions are used as these provide

the most flexibility.

2.2.2 Lighting

The second component which is inevitable for scene understanding is lighting [30].

In computer graphics, light is represented in the form of light rays that are comprised



16 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

of an origin and direction. During simulation, a light ray is cast into a scene where
it interacts with geometry. Incoming light at a surface is absorbed and/or scattered.
Physically correct models require to trace light rays bouncing off geometry multiple
times. This process is computationally very expensive and will be described in more
detail in Sec. 2.2.4. How light interacts with geometry requires knowledge of surface

characteristics, as explained next.

2.2.3 Material

Material properties define how light is reflected or refracted on the surface of ge-
ometry. For this thesis, it is sufficient to only model the reflective property in the
form of a bidirectional reflectance distribution function (BRDF) [31]. Given an
incoming light direction @; and outgoing light direction @, at a surface point x, the
function calculates the amount of reflected energy. Different material models have
been proposed over the years that aim to approximate this function. Traditionally,
sophisticated hardware was used to capture the complex behaviour of materials by
densely sampling over lighting and viewing directions [32]. Such hardware is very
expensive and requires accurate calibration to achieve good results. An example of
such hardware is shown in Fig. 2.4.

For each light/view combination the material properties have to be stored in a lookup
table and when querying new light/view directions interpolation is required. Storing
each light-view combination for each different material is not feasible in practice
and therefore simplified mathematical models have been proposed that approximate
material parameters in a more compact manner.

Originally, a non-physical model was introduced by Phong [33]. This model is
very simple and parameterized by three parameters: diffuse albedo, specular albedo
and glossiness. The diffuse and specular albedos describe the reflected colours of
materials. The diffuse part reflects the colour evenly in all directions (lambertian
reflection) whereas the specular part reflects the light in a single direction, assuming
a perfectly smooth surface. The glossiness parameter controls how rough or smooth
a surface behaves. A very high glossiness value produces mirror-like behaviours

whereas lower values simulate scattering of light into different directions.
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Figure 2.4: A hardware design for material acquisition. [32]

Given the incoming light direction @; and the surface normal n the diffuse part is
calculated by taking the dot product between them. The specular part additionally
requires the outgoing viewing direction @, and calculates the dot product between
@, and the reflected direction r (negative values are clamped to 0) before raising it

to the power of &, which represents glossiness. An illustration is provided in Fig. 2.5.

Vet ' <
Vet <.> “’ @&

Y Y
i M’ M x / |

Setup BRDF Diffuse Specular

Figure 2.5: Illustration of the parameters that define a BRDF.

A few years later this model was slightly improved by Blinn [34], however, yet not
physically accurate. In order to adhere to physical laws, the material model needs
to be reciprocal and energy conserving which neither of the proposed methods is.

Helmbholtz-reciprocity [35] states that incoming and outgoing light directions must
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be interchangeable without changing the output of the material model. The energy
conservation requirement is met if the total amount of energy of outgoing reflected
light is equal (or less) to the energy of incoming light.

Physically realistic models that comply with both conditions are commonly based
on microfacet models [36]. The microfacet theory at a macro level assumes a flat
surface which at the micro level is comprised of different tiny microfacets with
varying surface normals. The aim is to simulate how incoming light at the geometric
surface is reflected and scattered given the different orientations of microfacets.
Simple material models such as Phong do not model those variations, but microfacets
models approximate them in the form of a normal (microfacet) distribution function
D. Further, self-shadowing and self-masking effects among microfacets are modeled
via a geometric term G.

In this thesis, the Cook-Torrance microfacet BRDF model [37] is used in Chapter
6. It is parameterized by three parameters: diffuse albedo, specular albedo and
roughness. While the computation of the diffuse part is mostly identical to Phong,
the specular part is based on the microfacet theory and requires to compute D and
G as well as a Fresnel term F. The Fresnel term returns the reflectance ratio on
the surface for different incident angles. While for each of these parts numerous
alternatives exist, the GGX [38] microfacet distribution, a revised version of Smith’s

geometric function [39] and Schlick’s Fresnel term [40] are used in this thesis.

2.2.4 Rendering equation

Calculating the final reflectance value per pixel for a rendered image is achieved by

solving the rendering equation [41].

i
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light source BRDF incoming light attenuation

(2.5)
The rendering equation describes the total amount of reflected radiance at a point
in space X, representing the geometry, along a particular viewing direction @,,

wavelength A and time ¢. For static scenes, which are the focus in this thesis, ¢ can
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be neglected and assumed to be constant. A describes the perceived colour and is
usually discretized to the RGB (red, green and blue) colour spectrum. L, is the
emitted radiance at a given point and direction and is only relevant if there exists
a light source at this location. The remaining part of the equation is an integral
over all incoming light directions Q. It is defined by calculating the BRDF f,,
representing material properties as explained in Sec. 2.2.3. L; is a function returning
the incoming light at a given point X and incoming direction @;. The last part is
the attenuation factor decreasing the radiance based on the incident angle between
incoming direction ®; and surface normal n defined by geometry. It becomes clear
that manipulating either geometry, material or lighting will change the final rendered
image. However, solving global illumination with such a recursive equation is very
computationally expensive and cannot be solved in real-time yet. Usually, it is
approximated using Monte Carlo methods [42] or other simplifying assumptions
are made such as pre-computing environment maps [43]. In this thesis, simplifying
assumptions are made with a focus on BRDF estimation in Chapter 6 and volume
rendering [44] in Chapter 3 and Chapter 4, instead of solving the entire rendering
equation. Volume rendering is the process of casting rays through a volumetric
density field while simulating the absorption of light along the ray [44]. Different

image formation models exist which will be explained in detail in Sec. 3.3.

2.3 View Synthesis

Reconstructing shape and appearance from multiple images has a long history in
computer vision. Over the years, various methods such as Structure-from-Motion
[45, 46], Multi-View-Stereo [47, 48, 49, 50], Image-Based-Rendering (IBR) [51,
52, 53] and the more recent Neural Radiance Fields (NeRF) [54] approach have
emerged.

Under the assumption that input images are unstructured, most Multi-View-Stereo,
Image-Based-Rendering and NeRF methods are built on Structure-from-Motion to

extract relative camera poses.
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2.3.1 Structure-from-Motion

Structure-from-Motion (SfM) consists of two main stages. The first stage finds fea-
ture correspondences between images. This requires to detect unique features such
as corners and edges before finding point correspondences between pairs of images.
A widely used approach for feature extraction is Scale-invariant feature transform
(SIFT) [55] which is invariant to scale, rotation and changes in illumination.

The second stage in SfM uses these correspondences for joint 3D reconstruction
and camera pose estimation. The relation between two images of the same scene
from different camera views imposes geometric constraints (epipolar geometry)
which along with known point correspondences allow to infer relative camera
poses between two images. Once the relative poses are known, the corresponding
3D location of any correspondence pair can then be estimated using triangulation.
However, not all computed point correspondences will be correct due to noisy data.
To remove outliers a well-established method called Random Sampling Consensus
or RANSAC in short is commonly used [56]. While estimated relative camera poses
might be accurate for individual image pairs, it does not necessarily mean that the
estimates are consistent for all combinations. Especially, since the same features
might exist across multiple images. To this end, all camera parameters and 3D points
are optimized simultaneously to minimize reprojection errors in all images. This

step is referred to as bundle adjustment [57].

2.3.2 Multi-view-Stereo

Even though SfM is able to extract relative camera poses and a sparse point cloud,
it is desired to obtain dense reconstructions, i.e., to obtain depth information for
each pixel and therefore maximum utilization of the available input. Multi-View-
Stereo (MVS) complements SfM towards this goal. It requires camera parameters
as input which can be provided by SfM and unlike SfM returns a dense 3D re-
construction. This is achieved by finding dense correspondences between images.
More specifically, the key is to determine the depth for each pixel such that when

re-projecting it into another view the appearance matches. To do so, a metric is
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required that measures the photo-consistency, i. e., the probability of a pixel being
the potential match. Commonly, local pixel neighbourhoods rather than single pixels
are compared as this allows for a more robust and invariant measure under different
illuminations and noisy cameras. For instance, the Sum-of Squared-Differences
(SSD) or Normalized Cross-Correlation (NCC) could be used as a measure. Find-
ing photo-consistent correspondences has its limitations. For example, texture-less
surfaces are ambiguous to photo-consistency and thus cannot be uniquely identified.
Furthermore, glossy surfaces even when textured are difficult to be matched due to

view-dependent changes.

2.3.3 Image-Based-Rendering

Image-Based-Rendering (IBR) aims to produce photo-realistic re-rendering of a
scene given a collection of images from different views. While SfM and MVS
explicitly model the geometry, IBR requires a full understanding of a scene that
also includes material and lighting. Unlike classical rendering geometry, material
and lighting do not necessarily have to be modeled explicitly for IBR. Over the
years, different scene representations have been proposed that provide shortcuts to
classical rendering. For instance, under the assumption that input images only differ
in rotational changes, image stitching techniques [58] allow to blend overlapping
regions without knowledge of explicit geometry. Another representation that does
not model geometry explicitly are light fields [59]. Unlike image stitching, which
does not allow for view-dependent changes, light fields model the radiance in
every direction at every location in space, which is represented by a 5-dimensional
plenoptic function [60]. Storing and sampling this function is not only memory
expensive but also computationally infeasible. In practice, it is often reduced to 4
dimensions under the assumption that empty space such as air is transparent, i. e.,
radiance stays constant when travelling through empty space along a certain viewing
direction [61] and therefore does not need to be modeled. Many more representations
that go beyond the scope of this thesis exist and are discussed in more detail by [62].
Closely related to this thesis, the seminal work by Mildenhall et al. [54] (NeRF)

proposes to approximate a radiance field using an MLP that given a spatial location
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and direction returns the opacity and colour. It further approximates the behaviour
of the plenoptic function by using differentiable volume rendering to produce the
corresponding colour values for a given camera pose. Despite the stunning result
quality, rendering an image is computationally very expensive and can take up to
several minutes.

Follow-up methods such as NSVF [63] combine NeRF and voxel grids to improve
the scalability and expressivity of the model whereas Yariv et al [64] use sphere

tracing to render signed distance fields.

2.4 3D Reconstruction

While StM, MVs and NeRF require many views of the same scene, this thesis focuses
on 3D reconstruction from only a few or even single images. This task requires
training neural networks that are capable of learning a prior over an entire dataset in
order to make accurate predictions for unseen objects at test time.

In this section, related methods that provide different levels of supervision will be
reviewed and sorted in decreasing order by the level of supervision they receive.
When reconstructing category-specific objects silhouette supervision is assumed to
be a mandatory requirement in this thesis. Currently, very few approaches exist
that seek to perform object-specific single-view reconstruction without silhouette
supervision [65]. Therefore, silhouettes are assumed to be available as supervision,

unless stated otherwise.

2.4.1 3D supervision

Full supervision in the form of annotated 3D datasets such as Shapenet [11] allows for
supervised learning in 3D. Several methods suggest learning 3D voxel representations
conditioned on single images. The general design of such networks is based on an
encoder that generates a latent code which is then fed into a generator to produce a 3D
representation (i. e., a voxel grid). Wu et al. [66], Yang et al. [67], Varley et al. [68]
learn binary 3D voxel grids from 2.5D depth maps. Given a 2D natural image, [69]
predict 2.5D sketches (depth maps, normals and silhouettes) in a supervised manner,

before feeding these into a 3D decoder to estimate the full 3D shape. In a similar
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fashion, Wang et al. [70] first predict a coarse shape, followed by a 3D refinement
decoder. Wu et al. [71] directly predict 3D shapes from single images which is
accomplished by adversarial training using a 3D discriminator in combination with a
supervised 3D loss. Girdhar et al. [72] propose a joint embedding of 3D voxels and
2D images. [73] recursive design takes multiple images as input and refines the 3D
reconstructions in a recurrent manner. Kar et al. [74] also require multiple images
and propose a simple “unprojection” network component to establish a relation
between 2D pixels and 3D voxels without resolving occlusion. Addressing the
problem of limited voxel resolutions, Mescheder et al. [75] propose to predict binary
per-point occupancies in a continuous manner. Alternatively, [76, 77] reconstruct
meshes from single views and Fan et al. [78] produce points instead of voxel grids
from 2D images.

All aforementioned methods require full supervision in the form of images and
corresponding 3D CAD models. In order for this to work, the models in the dataset
are required to have the same scale and to be canonically aligned, e. g., all cars
are up-right and face forward. The reason being, that predicting scale and pose of
objects from images is ambiguous. Currently, annotated 3D datasets that provide
full supervision suffer from a domain gap to real-world data and further lack in
size. Thus, approaches that do not require supervision in the form of 3D, but rather
learn to reason about 3D from 2D images were proposed. The key to success is to

simultaneously predict the pose and shape from images which is highly ambiguous.

2.4.2 Pose supervision

To simplify the problem, several methods have been proposed that provide images
with corresponding camera poses. In that case, one can follow the general design of
fully 3D supervised methods. First, the input image is embedded into a global latent
space before estimating the 3D geometry using a decoder network. Additionally,
the 3D shape is then projected back to 2D given the camera pose and the objective
function is defined in 2D rather than 3D. In order for it to work, the objects with
respect to the camera poses have to be canonically aligned and of the same scale,

similar to fully 3D supervised methods. If that was not the case, the shape and pose
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ambiguity would not be resolved as the decoder has neither any knowledge about
the alignment of the object nor the size. Another requirement is that the projection
step has to be differentiable for backpropagation.

The pioneering work by Rezende et al. [79] proposes a black box renderer for meshes
which relies on REINFORCE [80] to approximate gradients. A generalization from
visual hull maps to full 3D voxel grids is proposed by Yan et al. [81]. OpenDR
proposes [82] the first differentiable renderer for meshes that is limited to surface
orientation and shading. The key difficulty here is to make the rasterization step
differentiable as all other steps in the common graphics pipeline are differentiable.
Several methods are proposed to do so [83, 84]. They all learn to deform an initial
mesh template shape while also learning textures in the form of UV maps. Empiri-
cally, the preferred choice for the template is a sphere. This thesis focuses on voxels
and neural representations which can express arbitrary topology, e. g., chairs with
drastically different layouts, which are not a mere deformation of a base shape. Chen
et al. [85] improve existing methods while additionally estimating lighting. Tul-
siani et al. [86] enable differentiable volume rendering, allowing for reconstruction
of voxel grids from images only.

Unfortunately, pose supervision is hard to acquire in real-world scenarios, due to
the reasons explained above. Thus, the aforementioned methods rely on synthetic
datasets which contain 3D shapes. These can be rendered from random poses to
generate training data. To circumvent the need for direct pose supervision, cues
such as key points, template shapes or multi-view data are exploited, which will be

discussed in the next sections.

2.4.3 Keypoint supervision

Manual pose labeling is a task that humans are not capable of. One of the early
works to tackle single-image 3D reconstruction on natural images that aims to require
as little supervision and user input as possible was developed by Cashman and
Fitzgibbon [87]. The idea is to fit a morphable template model to given silhouettes
and key points [87]. First, a user has to position the template shape roughly over the

desired object to reconstruct. Then the method optimizes shape and poses jointly
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based on given silhouettes and key points. Another line of work [88, 89] first exploit
SfM to estimate rough camera poses using keypoint and silhouette information. In
a second step, shape surrogates, i. €., similar object shapes from a 3D dataset, are
sampled and the best matching shape is chosen based on visual hull. In a similar
fashion, CMR [90] first use SfM and 2D key points to initialize camera poses on
the CUB [91] dataset. They then train a neural network to predict refined camera
poses, template deformations and texture maps. With the use of differentiable mesh
rendering [83] they optimize for silhouette, projected 2D key points and textured
renderings. These methods still access 3D shape templates and 2D key points, despite

not requiring any explicit 3D supervision.

2.4.4 Multi-view supervision

Multi-view information can help to alleviate the need for pose and key point infor-
mation. Inter-view constraints can be used to estimate depth maps [92, 93] using
reprojection constraints: If the depth label is correct, re-projecting one image into
the other view has to produce the other image. Tulsiani et al. [94] propose a method
that is supervised by multi-view pairs of the same object category with an associ-
ated verification image for the second image. They use the first image to predict
the shape as a voxel grid while the second image is used to predict the pose. The
predicted shape is then rendered from the estimated pose, which enables the resulting
image to be compared to the verification image, ultimately enforcing multi-view
consistency. As a consequence, the predicted shape is aligned canonically. In a
similar fashion, Insafutdinov and Dosovitskiy [95] enforce multi-view consistency,
however, instead of using a voxel grid as shape representation they predict a point
cloud. Using object-specific video data, Novotny et al.[96, 97] canonically align
point clouds. They predict poses of multiple images of the same object and then
enforce the relative poses to be consistent. Training on multiple different objects
enforces the pose predictor to predict absolute poses.

Recent works produce pixel-wise feature encodings per input view, which are then
aggregated in different ways using knowledge of relative poses [98, 99, 100, 101,

102]. Yu et al. [101] averages features over multiple views. However, simply
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averaging features from significantly different viewpoints hurts performance due
to bleeding artefacts. Wang et al. [102] learn to interpolate between views in an
IBR fashion, which prevents inpainting in unseen areas. Similar to those works,
an aggregation function that prioritizes features based on their relative angles is

proposed in Chapter 4.

2.4.5 Template supervision

Multi-view data curation is feasible, however, unstructured image data is easier to
retrieve and hence more appealing. In the following, methods that solely receive
template supervision are presented. This is desired as manual annotation of key
points is very time-consuming and does not scale whereas in the case of template
supervision, only a single template is required for a specific class of objects. Kulkarni
et al. [103] predict a pixel-to-surface mappings that are consistent across a canonical
3D template. As a result, pose prediction does not require keypoint information,
however, the shape itself is not learned explicitly as it is given by the template.
Kulkarni et al. [104] extend this idea by also learning articulations.

Goel et al. [105] jointly predict pose and deform a 3D template. In a first pass, shape,
texture as well as multiple camera poses are estimated for a single input image.
During training, each proposed view is rendered and compared to a reconstruction
loss. Once the network is converged, the best possible camera for a single image is
trained by another network such that at test time the approach is able to predict a
single pose. Due to the rough shape template only small intra-class variations are
possible, i. e., different articulations of a bird such as closed and open wings are not

possible.

2.4.6 Minimal supervision

In the previous sections, we have seen approaches that require more than just images
as supervision. Since large amounts of data are key for machine learning techniques it
is desirable to only rely on unstructured image collections as these exist in abundance.
Exploiting the StyleGAN [106] latent space, Zhang et al. [107] extract camera poses

that can be used for self-supervision when rendering. However, a few manual pose
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annotations are required for bootstrapping. Wu et al. [108] propose a fully self-
supervised approach that exploits shading to extract albedo, pose, and lighting. This
has only been demonstrated for limited viewpoint variation and does not reconstruct
a full 3D model but rather 2.5D in the form of a depth map. Li et al. [109], use self-
supervised semantic features of [110] as a proxy for 2D key points as well as further
constraints such as symmetry to help the reconstruction. Similar to the approach in
Chapter 3, Gadelha et al. [111] tackle the problem at hand in an adversarial fashion.
They train a 3D voxel generator whose 2D projections are not distinguishable
from a 2D discriminator. The method receives three sources of supervision: view
information gets explicitly encoded as a dimension in the latent vector; views come
from a manually-chosen 1D subspace (circle); and there are only 8 discrete views.
Those constraints are alleviated in Chapter 3, as PlatonicGAN works on completely
unstructured image collections in a fully self-supervised manner. Extending this idea,
GRAF [112] propose the use of neural representation in the form of an MLP instead
of a voxel-grid, allowing for higher resolutions. Unlike the aforementioned methods
that exploit explicit differentiable rendering, HoloGAN [113] learns a 3D voxel
feature grid that is mapped to 2D via reshaping and the final images are rendered
using 2D convolutions. While this method can ‘hallucinate’ high-quality images, the
resulting images from different poses are not multi-view consistent as no explicit 3D

model is enforced.

2.5 'Texture Synthesis

Given an image, the goal of texture synthesis is to generate a new image that has the
same statistics but is different pixel-wise. A classic definition of texture is defined by
Julesz [114]: a texture is an image full of features that in some representation have

the same statistics.

Traditionally, textures have been classified as either deterministic or stochastic. A
deterministic texture is usually composed of small and easily identifiable compo-
nents that form a regular pattern whereas a stochastic texture is comprised of less

recognisable components as they appear to be more random. A few examples of
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Figure 2.6: Examples of textures.

different textures are shown in Fig. 2.6 [115].

Another property that textures can be distinguished by is stationarity. An image
fulfils the stationarity constraint if the statistics of two random crops of an image
are identical, see Fig. 2.7. In this thesis, textures are assumed to be stochastic and

stationary.

Stationary Non-Stationary

Figure 2.7: A visualisation of a stationary (left) and a non-stationary (right) texture.

2.5.1 Traditional texture synthesis

Capturing the variations of nature using stochastic textures has a long history [116].
Making noise useful for graphics and vision is due to Perlin’s 1995 work [117]. Here,
textures are generated by computing noise at different frequencies and mixing it with
linear weights. A key benefit is that this noise can be evaluated in 2D as well as in 3D
making it popular for many graphics applications. Portilla and Simoncelli [118] have

provided a practical method to compute representations in which to do statistics on,
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using linear filters on multiple scales. Wavelet noise [119] moved this idea further
by band-limiting the noise that is combined. Such methods can be used for materials,
e. g., gloss maps, bump maps, etc. It however does not provide a solution to acquire
a texture from an exemplar, which is left to manual adjustment.

Computer vision typically had looked into generating textures from exemplars, such
as by non-parametric sampling [120], vector quantization [121], optimization [122]
or nearest-neighbour field synthesis (PatchMatch [123]) with applications in in-
painting and also (3D) graphics. However, achieving spatial coherence and details as
well as computational scalability remains a challenge and limits their adoption in
production rendering or games.

The word “texture” can be ambiguous to mean stochastic variation, as well as images
attached on surfaces to localize colour features. This thesis focuses on stochastic

variation in the sense of Julesz [114] or Portilla and Simoncelli [118].

2.5.2 Texture synthesis meets deep learning

The next level of quality was achieved when representations became learned, such
as the internal activations of the VGG network [29]. Neural style transfer [124] as
explained in Sec. 2.1.4 played a key role. VGG was also used for optimization-based
multi-scale texture synthesis [125]. Such methods require optimizations for each
individual exemplar.

Ulyanov et al. [126] and Johnson et al. [127] have proposed networks that directly
produce the texture without optimization. While now a network generated the texture,
it was still limited to one exemplar, and no diversity was demonstrated. However,
noise at different resolutions [117] is input to these methods, as well as inspiration
to the approach presented in Chapter 5. Follow-up work [128] has addressed exactly
this difficulty by introducing an explicit diversity term i.e., asking all results in
a batch to be different. Unfortunately, this frequently introduces mid-frequency
oscillations of brightness that appear admissible to VGG instead of producing true
diversity. In this thesis, diversity is achieved, by restricting the network input to
stochastic values only, i. e., diversity-by-construction.

In the human vision [114] and computer vision literature [120, 129], texture synthesis
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exclusively refers to stochastic variation. In computer graphics, e. g., OpenGL,
“texture” can model both stochastic and non-stochastic variations of colour. For
example, Visual Object Networks [130] generate a voxel representation of shape and
diffuse albedo and refer to the localized colour appearance, e. g., wheels of a car are
dark, the rim is silver, etc., as “texture”. Similarly, Oechsle et al. [131] and Saito
et al. [132] use an implicit function to model variation of appearance beyond voxel
resolutions.

The comparisons in Sec. 5.4 will show how methods tackling space of non-stochastic
texture variation [131, 130], are not suitable to model stochastic appearance. This
thesis makes progress towards learning spaces of stochastic and non-stochastic
textures.

Some work has used adversarial training to capture the essence of textures [133, 134],
including the non-stationary case [135] or even inside a single image [133]. In
particular, StyleGAN [136] generates images with details by transforming noise
in adversarial training. These challenges of adversarial training can be avoided by

training a neural network to match VGG statistics as shown in Chapter 5.

2.5.3 Space of Textures

At any rate, none of the texture works in graphics or vision [117, 124, 126, 120,
123, 137, 138] generate a space of stochastic textures, as is suggested in Chapter 5.
Current methods work on a single texture while the ones that work on a space of
exemplars [130, 131] do not create stochastic textures. Chapter 5 closes this gap, by
creating a space of stochastic textures.

Finally, all these methods require learning the texture in the same space it will be
used, while the approach in Chapter 5 can operate in any dimension and across
dimensions, including the important case of generating procedural 3D solid textures

from 2D observations [139] or slices [140] only.

2.6 Material Modeling

In Chapter 6, the physical surface characteristics of textures are modeled in the

form of BRDFs (Bidirectional Reflectance Distribution Function) [31]. Representing
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appearance in simulation-based graphics has been an active research field for decades.
The survey by Guarnera et al. [141] presents detailed discussion of the many different

material models and BRDF acquisition approaches.

Many methods have been proposed to acquire materials using data-driven approaches.
Matusik [142] proposed a data-driven BRDF linear model. More recently, Rematas
et al. [143] extract reflectance maps from 2D images using a CNN trained in a
supervised manner. Material and illumination acquisition was further explored by
Georgoulis et al. [144]. Deschaintre et al. [145] proposed a rendering loss to capture
svRBDFs from flash images.

Nam et al. [146] jointly reconstructed Spatially-varying Bi-directional Reflectance
Distribution Function (svBRDF), normals, and 3D geometry in an iterative inverse-
rendering setup towards a practical acquisition setup, while different methods relied
on deep learning to estimate object shape and svBRDF from one or multiple images
[147, 148, 149]. Li et al. [150] propose a weakly supervised learning-based method
for generating novel category-specific 3D shapes and demonstrate that it can help in
learning material-class specific svBRDFs from image distributions. Ye et al. [151]
use a mixture of images and procedural material maps to train a network for modeling
svBRDFs. Hu et al. [152] developed a reduced svBRDF model, using only diffuse
and normal channels, towards solving inverse procedural textures matching from
reference, while Guo et al. [153] used Bayesian inference for material synthesis.
Recently, Shi et al. [154] developed a differentiable material graph nodes library to
optimize material parameters to match an input material, given material graphs.
U-net [155] inspired many approaches for image-to-image translation to translate

RGB pixels to material attributes [147, 156, 157, 145].

Most work now includes a differentiable shading step [158, 147, 145, 159, 160],
which is a key component for self-supervised material synthesis as demonstrated in
Chapter 6. Gao et al. [161] and Guo et al. [160] propose to use a post-optimization
in an encoded latent space, improving an initial material estimation, and comparing
renderings of their results directly to their input pictures. Deschaintre et al. [162]

propose to fine-tune their material acquisition network on svBRDF parameter exam-
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ples to transfer them to a larger scale. Zhou and Kalantari [163] propose a partially
unsupervised approach, which requires real image pairs under different illumina-
tion conditions. The approach presented in Guo et al. [164] addresses the issue of
strong highlights baked into svBRDF maps through highlight-aware convolutions
and an attention-based feature selection module. Chapter 6 exploits the stationarity
of textures, which inherently prevents any flash residual to be left in the results.

All these approaches focus on capturing a single instance of a svBRDF map, but
with little or no editing options across materials (space) or generalization across the
spatial domain (diversity). For rapid materials generation, Zsolnai-Fehér et al. [165]
propose to use Gaussian process regression.

Most of these methods require synthetic svBRDF supervision for training, while
directly learning from flash images without access to channel-level supervision is
demonstrated in Chapter 6. In particular, this removes the risk of a domain gap
between synthetic and real materials and enables fine-tuning as we will see.
Chapter 6 builds upon the work by Aittala et al. [166] who extended the approach
of Gatys et al. [124] to generate svBRDF parameter maps from a single picture
of a stationary material exemplar and propose an approach for improved diversity,

generation and quality.

2.6.1 Spaces-of

Spaces of colour [167], materials [142, 160, 161], textures [168], faces [169], human
bodies [170], and more have been useful in graphics for content creation and edition.
Matusik et al. [168] has devised a space of textures. Here, users can interpolate
combinations of visually similar textures. They warp all pairs of exemplars to each
other and construct graph edges for interpolation when there is evidence that the
warping is admissible. To blend between them, histogram adjustments are made.
Consequently, interpolation between exemplars does not take a straight path in pixel
space from one to the other but traverses only valid regions. Photoshape [171]
learns the relation of given material textures over a database of 3D objects. Serrano
et al. [172] allow users to semantically control captured BRDF data. They represent

BRDFs using the derived principal component basis [142] and map the first five
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PCA components to semantic attributes through learned radial basis functions. Guo
et al. [160] and Gao et al. [161] produce spaces of materials that can be interpolated.
Chapter 6 takes inspiration from this body of work and builds a latent space allowing

svBRDFs generation and interpolation.






Chapter 3

Escaping Plato’s Cave: 3D Shape

From Adversarial Rendering

3.1 Overview

In this chapter, we suggest a method to learn 3D structure from 2D images only
(Fig. 3.1). Reasoning about the 3D structure from 2D observations without assuming
anything about their relation is challenging as illustrated by Plato’s Allegory of
the Cave [173]: How can we hope to understand higher dimensions from only
ever seeing projections? If multiple views (maybe only two [92, 93]) of the same
object are available, multi-view analysis without 3D supervision has been successful.
Regrettably, most photo collections do not come in this form but are now and will
remain unstructured: they show random instances under random poses, uncalibrated
lighting in unknown relations, and multiple views of the same objects are not

available.

Our first main contribution (Sec. 3.2) is to use adversarial training of a 3D generator
with a discriminator that operates exclusively on widely available unstructured
collections of 2D images, which we call platonic discriminator. Here, during
training, the generator produces a 3D shape that is projected (rendered) to 2D and
presented to the 2D Platonic discriminator. Making a connection between the 3D
generator and the 2D discriminator, our second key contribution is enabled by a

family of rendering layers that can account for occlusion and colour (Sec. 3.3).
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Input: 2D image collection (different object, view, light, camera, etc.)

Output: Generative 3D model

Figure 3.1: PLATONICGANS allow converting an unstructured collection of 2D images of a
rare class (subset shown on top) into a generative 3D model (random samples
below).

These layers do not need any learnable parameters and allow for backpropagation
[18]. From these two key blocks we construct a system that learns the 3D shapes of
common classes such as chairs and cars, but also exotic classes from unstructured
2D photo collections.

We demonstrate 3D reconstruction from a single 2D image as a key application
(Sec. 3.4). While recent works focus on using as little explicit supervision [174,
83, 175, 86, 94, 111] as possible, they all rely on either annotations, 3D templates,
known camera poses, specific views or multi-view images during training. Our

approach takes it a step further by receiving no such supervision, see Tbl. 3.1.

Table 3.1: Taxonomy of different methods that learn 3D shapes with no explicit 3D supervi-
sion. We compare Kanazawa et al. [174], Kato et al. [83], Eslami et al. [175],
Tulsiani et al. [86], Tulsiani et al. [94], PrGan [111] with our method in terms of
degree of supervision.

S = 2 g3 = &
Supervision at training time = £ = X & = O
Annotation-free X v v v v v Y
3D template-Free X X v v v v V
Unknown camera pose v X X X v v VY
No pre-defined cameraposes v v v v X X V
Only single view required v X X X X Vv Y
Color v Vv vV vV X X V
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View sampling

_Encoder , Generator Rendering layer _, Discriminator
E G R D
T - Real / Fake?
Image formation - 2D unstructured
2D input 3D volume model 2D rendered image samples

Figure 3.2: Overview: We encode a 2D input image using an encoder E into a latent code z
and feed it to a generator G to produce a 3D volume. This 3D volume is inserted
into a rendering layer R to produce a 2D rendered image which is presented
to a discriminator D. The rendering layer is controlled by an image formation
model: visual hull (VH), absorption-only (AO) or emission-absorption (EA)
and view sampling. The discriminator D is trained to distinguish such rendered
imagery from an unstructured 2D photo collection, i.e., images of the same
class of objects, but not necessarily having repeated instances, view or lighting
and with no assumptions about their relation (e.g., annotated feature points, view
specifications).

3.2 3D Shape From 2D Photo Collections

We now introduce PLATONICGAN (Fig. 3.2). The rendering layers used here will

be introduced in Sec. 3.3.

Common GAN Our method is a classic (generative) adversarial design [27] with
two main differences: The discriminator D operates in 2D while the 3D generator G
produces 3D output. The two are linked by a fixed-function projection operator, i. €.,

non-learnable (see Sec. 3.3).

Let us recall the classic adversarial learning of 3D shapes [71], which is a min-max

game
rrgn max cpis (¥) + cGen' (O) 3.1)

between the discriminator and the generator cost, respectively cpis and cgepy -

The discriminator cost is

cDis (¥) =E () 102 (D ()] (32)

where Dy is the discriminator with learned parameters ¥ which is presented with

samples x from the distribution of real 3D shapes X ~ ppa. Here E;, denotes the
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expected value of the distribution p.

The generator cost is

cGen’(®) = IE:pGen(z) [log(l - D‘P(G® (Z))] 3.3)

where Gg is the generator with parameters ® that maps the latent code z ~ pgep to

the data domain.

PLATONICGAN The discriminator cost is calculated identically to the common
GAN with the only difference that the input samples are rendered 2D images with

generation cost

CGen(®) = ]EPGen(Z)EPView(w) [log(l —Dlp(R(OJ, G@(Z)))], (34)

where R projects the generator result Gg(z) from 3D to 2D along the sampled view

direction . See Sec. 3.2.1 for details.

While many parameterizations for views are possible, we choose an orthographic
camera with fixed upright orientation that points at the origin from a Euclidean
position @ € S? on the unit sphere. E e () 18 the expected value across the

distributions @ ~ pyjew Of views.

PLATONICGAN3D Reconstruction Two components in addition to our Platonic

concept are required to allow for 3D reconstruction, resulting in

II\IIIJIII(I;%( CDisc(lP) + CGen((")acI)) + ACRG:C(('DacI))7 (3.5)

I

where cgepn includes an encoding step and crec €ncourages the encoded generated-
and-projected result to be similar to the encoder input where A = 100. We detail

both of these steps in the following paragraphs:

Generator The generator Gg does not directly work on a latent code z, but allows

for an encoder Eg with parameters @ that encodes a 2D input image I to a latent
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code z = Eg(I). The cost becomes,

CGen(®a (I)) =

E o D E pyiew () 108(1 — Dy (R(®, Go (Eo (1))))]. (3.6)

Reconstruction We encourage the encoder Eg and generator Gg to reproduce the

input in the .% sense: by convention the input view is @y = (0,0),

CRec(®,®) = ||y — R(a, Go (Ea (1)) |13 (3.7)

where y represents the ground truth image. While this step is not required for
generation it is mandatory for reconstruction. Furthermore, it adds stability to the
optimization as it is easy to find an initial solution that matches this 2D cost before

refining the 3D structure.

3.2.1 Optimization

Two key properties are essential to successfully optimize our PLATONICGAN: First,
maximizing the expected value across the distribution of views pyjeyw and second,
back-propagation through the projection operator R. We extend the classic GAN

optimization procedure in Alg. 1.

Algorithm 1 PLATONICGANReconstruction Update Step

Ipat < SAMPLEIMAGE(ppat)

® < SAMPLEVIEW (Pview)

7 E(IDat)

v« G(z)

IView — R((D,v)

IFront — R(w()7v)

cpis < 10g D(Ipat) +10g(1 — D(Iyiew))
CGen < log(l _D<IView>)

CRec < L2 (IDat - IFront)

Y+ MAXMIZE(cpis)

: ©,P < MINIMIZE(CGen + ACRec)

R A A R o e

—_—
— O
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. 3
Projection We focus on the case of a 3D generator on a regular voxel grid v’

and a 2D discriminator on a regular image I"**" where n. denotes the number of
channels and n, = 64 corresponds to the resolution. In section Sec. 3.3, we discuss
three different projection operators. We use R(®,v) to map a 3D voxel grid v under
a view direction @ € S? to a 2D image I.

We further define R(w,v) := p(T(w)v) with rotation matrix T(®) according to the
view direction @ and an image formation function p(v) that is view-independent.
The same transformation is shared by all implementations of the rendering layer,
so we will only discuss the key differences of p in the following. Note that a
rotation and a linear resampling are back-propagatable and typically provided in
a deep learning framework, e. g., as torch.nn. functional.grid sample
in PyTorch [176]. While we work in orthographic space, p could also model a

perspective transformation.

View sampling We assume uniform view sampling.

3.3 Rendering Layers

a) 3D generator result b) Transformation c) Renderinglayer p
1 pi (|
i Y T b

Pps
-« Do
® @ o
Py [ ]
A [ ™ ‘ pol |
Y4 @\ pn
\

V9 Vg V7 Vg V5 V4 V3 V] Vo V)

O0mnm

Figure 3.3: Rendering layers (Please see text).

Rendering layers (Fig. 3.3) map 3D information to 2D images so they can be
presented to a discriminator. We first assume the 3D volume to be rotated (Fig. 3.3, a)
into camera space from view direction @ (Fig. 3.3, b), such that the pixel value p is to
be computed from all voxel values v; and only those (Fig. 3.3, ¢). The rendering layer
maps a sequence of n, voxels to a pixel value p(v) € RMXmp _y R, Composing
the full image I just amounts to executing p for every pixel p resp. all voxels

V ="V1,...,V,, at that pixel.



3.3. RENDERING LAYERS 41

Note, that the rendering layer does not have any learnable parameters. We will now
discuss several variants of p, implementing different forms of volume rendering [44].

Fig. 3.4 shows the image formation models we currently support.

Visual hull (VH) Visual hull [177] is the simplest variant (Fig. 3.4). It converts
scalar density voxels into binary opacity images. A voxel value of 0 means empty
space and a value of 1 means fully occupied, i. e., v; € [0, 1]. Output is a binary value

indicating if any voxel blocked the ray. It is approximated as

pvu(v)=1-— exp(z —Vi). (3.8)

1

Note that the sum operator can both be back-propagated and is efficiently computable
on a GPU using a parallel scan. We can apply this to learn 3D structure from binary

2D data such as segmented 2D images.

Absorption-only (AO) The absorption-only model is the gradual variant of visual

hull. This allows for “softer” attenuation of rays. It is designed as:

pao(v) =1-TT(1—w). (3.9)

1

If v; are fractional the result is similar to an x-ray, i.e., v; € [0,1]. This image
formation allows learning from x-rays or other transparent 2D images. Typically,
these are single-channel images, but a coloured variant (e. g., x-ray at different
wavelength or RGB images of coloured transparent objects) could technically be

done.

Emission-absorption (EA) Emission-absorption allows the voxels not only to absorb

light coming towards the observer but also to emit new light at any position. This

a)vVH a)AO a)EA

Figure 3.4: Different image formation models visual hull (VH), absorption-only (AO) and
emission-absorption (EA).
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interplay of emission and absorption can model occlusion, which we will see is
useful to make 3D sense of a 3D world. Fig. 3.3 uses emission-absorption with high
absorption, effectively realizing an opaque surface with visibility.

A typical choice is to have the absorption v, monochromatic and the emission ve
chromatic.

The complete emission-absorption equation is

ny i

pea) = ¥ (TT(1—va ) ves (3.10)

i=1 j=1
—_——

Transmission ¢;

While such equations are typically solved using ray-marching [44], they can be
rewritten to become differentiable in practice: First, we note that the transmission
t; to voxel i is a product of one minus the density of all voxels before i. Similar
to a sum such a cumulative product can be back-propagated and computed effi-
ciently using parallel scans, e. g., using torch . cumprod. A numerical alternative,
that performed similar in our experiments, is to work in the log domain and use

torch.cumsum.

3.4 Evaluation

Our evaluation comprises of a quantitative (Sec. 3.4.4) and a qualitative analysis
(Sec. 3.4.5) that compares different previous techniques and ablations to our work

(Sec. 3.4.2).

3.4.1 Datasets

Synthetic We evaluate on two synthetic datasets: (a) ShapeNet [178] and (b) mam-
malian skulls [179]. For our quantitative analysis, we use ShapeNet models as 3D
ground truth is required, but strictly only for evaluation, never in our training. 2D
images of 3D shapes are rendered for the three image formation models VH, AO,
EA. Each shape is rendered from a random view (50 per object), with random natural
illumination. ShapeNet only provides 3D density volumes, which is not sufficient

for EA analysis. To this end, we use volumetric projective texturing to propagate the
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appearance information from thin 3D surface crust as defined by ShapeNet’s textures
into the 3D voxelization in order to retrieve RGBA volumes where A corresponds
to density. We use shapes from the classes airplane, car, chair, rifle and
lamp. The same train / validation / test split as proposed by [178] is adopted.

We also train on a synthetic x-ray dataset that consists of 466,200 mammalian skull

x-rays [179]. We used the monkey skulls subset of that dataset (~30k x-rays).

Real We use two datasets of rare classes: (a) chanterelle (60 images) and
(b) tree (37 images) (not strictly rare, but difficult to 3D-model). These images
are RGBA, masked, on white background. Note, that results on these input data has
to remain qualitative, as we lack the 3D information to compare to and do not even

have a second view of the same object to even perform an image comparison.

3.4.2 Baselines and comparison

2D supervision First, we compare the publicly available implementation of PrGAN
[111] with our Platonic method. PrGAN is trained on an explicitly created dataset
adhering to their view restrictions (8 views along a single axis). Compared to our
method, it is only trained on visual hull images, however for evaluation purposes
absorption-only and emission-absorption (in the form of luminance) images are
used as input images at test time. Note that PrGAN allows for object-space view
reconstruction due to view information in the latent space whereas our method
performs reconstruction in view-space. Due to the possible ambiguities in the
input images (multiple images can belong to the same 3D volume), the optimal

transformation into object space is found using a grid search across all rotations.

3D supervision The first baseline with 3D supervision is MULTI-VIEW, which has
training-time access to multiple images of the same object [81] in a known spatial
relation. Note, that this is a stronger requirement than for PLATONICGANthat does
not require any structure in the adversarial examples: geometry, view, light — all
change, while in this method only the view changes in a prescribed way.

The second competitor is a classic 3DGAN [71] trained with a Wasserstein loss [180]
and gradient penalty [181].

To compare PLATONICGANagainst methods having access to 3D information, we
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also propose a variant PLATONIC3D by adding the PLATONICG A Nadversarial loss

term (for all images and shapes) to the 3DGAN framework.

3.4.3 Evaluation Metrics

2D evaluation measures Since lifting 2D information to 3D can be ambiguous,
absolute 3D measures might not be the best suitable measures for evaluation on
our task. For instance, a shift in depth of an object under an orthographic camera
assumption will result in a higher error for metrics in 3D, but the shift would not
have any effect on a rendered image. Thus, we render both the reconstructed and the
reference volume from the same 10 random views and compare their images using
SSIM / DSSIM [182] and VGG16 [29] features. For this re-rendering, we further
employ four different rendering methods: the original (i. e., p) image formation (IF),
volume rendering (VOL), iso-surface rendering with an iso-value of .1 (ISO) and a

voxel rendering (VOX), all under random natural illumination.

3D evaluation measures We report root-mean-squared-error (RMSE), intersection-
over-union (IoU) and chamfer distance (CD). For the chamfer distance, we compute

a weighted directional distance:

1
den(T,0) = - Y minw;|pi—p;3
’ N P;T p;i€0 ’
where T and O correspond to output and target volumes respectively, and w; denotes
the density value of the voxel at location p;. The weighting makes intuitive sense as
our results have scalar values rather than binary values, i. e., higher densities get pe-
nalized more, and N is the total number of voxels in the volume. We give preference

to such a weighting as opposed to finding a threshold value for binarization.

3.4.4 Quantitative evaluation

Tbl. 3.2 summarizes our main results for the airplane class. Concerning the
image formation models, we see that the overall values are best for AO, which is
expected: VH asks for scalar density but has only a binary image; AO provides
internal structures but only needs to produce scalar density; EA is hardest, as it needs

to resolve both density and colour. Nonetheless, the differences between us and
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Table 3.2: Performance of different methods with varying degrees of supervision (superv.)
(rows) on different metrics (columns) for the class airplane. Evaluation
is performed on all three image formations (IF): visual hull (VH), absorption-
only (AO) and emission-absorption (EA). Note, DSSIM and VGG values are
multiplied by 10, RMSE by 10% and CD by 10°. Lower is better except for IoU.

Method IF Superv. 2D Image Re-synthesis 3D Volume FID
VH AO EA VOX ISO EA
2D 3D DSSIM VGG DSSIM VGG DSSIM VGG DSSIM VGG DSSIM VGG RMSE ToU CD

PrGAN [111] v X 155 657 137 485 141 463 1.68 541 183 6.15 7.46 0.11 3.59 207
Ours - v x 114 537 116 493 112 468 133 522 128 596 9.16 0.20 11.77 55
Mult.-View [81] 7 v x 087 489 080 431 090 407 138 4.83 121 556 537 036 931 155
3DGAN [71] v x 083 501 075 4.02 0.86 3.83 130 473 1.17 5.82 497 046 1460 111
Ours 3D v x 081 4.82 0.77 398 0.83 3.83 1.18 4.59 1.09 550 520 044 1233 98
PrGAN [111] v X 141 640 127 480 1.27 452 153 532 163 600 7.11 009 278 190
Ours o vV ox 094 535 093 446 091 426 1.11 496 1.09 575 570 0.27 698 90
Mult.-View [81] </ x 095 499 078 423 091 401 151 492 129 539 489 034 947 165
3DGAN [71] v X 067 437 0.69 3.77 0.72 3.57 0.99 4.25 097 492 5.08 043 1492 58
Ours 3D v x 0.66 436 0.66 3.73 0.70 3.52 0.98 4.28 0.96 494 5.17 037 1543 64
PrGAN [111] v x 131 622 1.15 4.77 1.16 537 136 6.71 147 7.07 6.80 0.08 236 196
Ours < v X 218 653 199 538 1.89 6.00 221 743 236 7.92 14.13 0.13 10.53 181
Mult.-View [81] MU x 162 621 1.53 458 1.63 548 195 697 194 741 1505 0.12 32.07 172
3DGAN [71] v x 089 528 0.78 3.93 098 479 129 6.76 130 7.09 5.24 046 13.66 110
Ours 3D v x 082 471 0.82 396 097 4.77 112 6.12 1.16 647 7.43 0.04 1882 73

competitors are similar across the image formation models.

2D supervision We see that overall, our 2D supervised method outperforms PrGAN
for VH and AO. Even though PrGAN was not trained on EA it wins for all metrics
against our 2D supervised method. However, it even outperforms the 3D supervised
methods 3DGAN and MULTI-VIEW which demonstrates the complexity of the task
itself. However, PrGAN for EA only produces density volumes, unlike all other
methods that produce RGBA volumes. Comparing our 2D supervised method against
the 3D supervised methods we see that overall our method produces competitive

results. Regarding MULTI-VIEW we sometimes even perform better.

3D supervision Comparing our PLATONIC3D variant to the 3D baselines we observe
our method to mostly outperform them for 2D metrics. Not surprisingly our method
performs worse for 3D metrics as our approach only operates in 2D.

In Tbl. 3.3 we investigate the performance across different classes. rifle performs
best: the approach learns quickly that a gun has an outer 3D shape that is a revolute

structure. chair performs worst, likely due to its high intra-class variation.
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Table 3.3: Reconstruction performance of our method for different image formation models
(columns) on different classes (rows). The error metric is SSIM (higher is better).

VH AO EA

VOL ISO VOX VOL ISO VOX VOL ISO VOX

plane 0.930.92 0.93 0.94 0.93 0.93 0.850.76 0.77
rifle 0.950.94 0.95 0.950.94 0.95 0.90 0.78 0.80
chair 0.86 0.85 0.85 0.86 0.85 0.86 0.80 0.61 0.63
car  .841.846 .851 .844 .846 .850 .800 .731 .743
lamp .920 .915 .920 .926 914 .920 .883 .790 .803

Class

In Tbl. 3.4 we compare the mean VGG error of a vanilla 3D GAN trained only
on 3D shapes, a Platonic approach accessing only 2D images, and PLATONIC3D
that has access to both. We keep the number of 2D images fixed, and increase the
number of 3D shapes available; the horizontal axis in Tbl. 3.4. Without making use
of 3D supervision, the error of PLATONICGANremains constant, independent of the
number of 3D models. Like this, we see that a PLATONICGAN(red line) can beat
both other approaches in a condition where little 3D data is available (left). When
more 3D data is available, PLATONICGAN(green line) wins over a pure 3D GAN
(blue line). We conclude that adding 2D image information to a 3D corpus helps,

and when the corpus is small enough even outperforms 3D-only supervised methods.

3.4.5 Qualitative

Synthetic Fig. 3.5 shows typical results for the reconstruction task. We see that our
reconstruction can produce airplane, chair and rifle 3D models representa-

tive of the input 2D image. Most importantly, these 3D models look plausible for

Table 3.4: Effect of number of 3D shapes and 2D images on learning different methods in
terms of mean DSSIM error. Lower is better.

A
14
2D images 70k 70k 70k 70k
\ 3D shapes 5 50 250 1.5k
=
a \ 2D-3Dratio 14k 1.4k 280 47
fa)
*3D .135.108 .106 .101
10 \\ * Ours 125 125 125 .125

> Ours 3D .134 .108 .102 .099

More 3D Shapes
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Figure 3.5: Visual results for 3D reconstruction of three classes (airplane, chair,
rifle) from multiple views.

multiple views, not only from the input one. The results on the chair category also
show that the model captures the relevant variation, ranging from straight chairs over
club chairs to armchairs. For gun, the results turn out almost perfect, in agreement
with the numbers reported before. In summary, our quality is comparable to GANs

with 3D supervision.

2D vs. 3D vs. 2D+3D Qualitative comparison of 2D-only, 3D-only and mixed 2D-3D

training can be seen in Fig. 3.6.

Synthetic rare We explored reconstructing skulls from x-ray (i. e., the AO IF model)

images [179] in Fig. 3.7. We find the method to recover both external and internal

Input Platonic 3D GAN : Platonic 3D = GT

Figure 3.6: Comparison of 3D reconstruction results using the class plane between dif-
ferent forms of supervision (columns) for two different input views (rows).
PLATONICGAN, in the second column, can reconstruct a plausible plane, but
with errors such as a wrong number of engines. The 3D GAN in the third column
fixes this error but at the expense of slight mode collapse where instances look

similar and slightly “fat”. Combining a 3D GAN with adversarial rendering as
in the fourth row is closest to the reference in the fifth row.
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a) 2D Input X-ray b) X-ray ¢) Volume render

Figure 3.7: PlatonicGANSs trained on 2D x-rays (i. e., AO IF) of mammalian skulls (a). The
resulting 3D volumes can be rendered from novel views using x-ray (b) and
under novel views in different appearance, here, using image-based lighting (c).

structures.

Real rare Results for rare classes are seen in Fig. 3.1 and Fig. Fig. 3.8. We see
that our method produces plausible details from multiple views while respecting the
input image, even in this difficult case. No metric can be applied to these data as no

3D volume is available to compare in 3D or re-project.

3.5 Discussion

Why not have a multi-view discriminator? It is tempting to suggest a discriminator
that does not only look at a single image but at multiple views at the same time to
judge if the generator result is plausible holistically. But while we can generate “fake”
images from multiple views ppaa, the set of “real” natural images does not come in
such a form. As a key advantage, our method only expects unstructured data: online

repositories hold images with unknown camera, 3D geometry or illumination.

Failure cases are depicted in Fig. 3.9. Our method struggles to reconstruct the correct

pose as lifting 2D images to 3D shapes is ambiguous for view-space reconstruction.

Supplemental More analysis, videos, training data and network definitions

are available at https://geometry.cs.ucl.ac.uk/projects/2019/
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Figure 3.8: 3D Reconstruction of different trees using the emission-absorption image forma-
tion model, seen from different views (columns). The small images were used
as input. We see that PLATONICGANhas understood the 3D structure, including
a distinctly coloured stem, fractal geometry and structured leave textures.

platonicgan/.

3.6 Conclusion

In this chapter, we have presented PLATONICGAN, a new approach to learning 3D
shapes from unstructured collections of 2D images. The key to our “escape plan”
is to train a 3D generator outside the cave that will fool a discriminator into seeing
projections inside the cave.

We have shown a family of rendering operators that can be GPU-efficiently back-
propagated and account for occlusion and colour. These support a range of input
modalities, ranging from binary masks, over opacity maps to RGB images with
transparency. Our 3D reconstruction application is built on top of this idea to capture
varied and detailed 3D shapes, including colour, from 2D images. Training is
exclusively performed on 2D images, enabling 2D photo collections to contribute to
generating 3D shapes.

Future work could include shading that is related to gradients of density [44] into
classic volume rendering. Furthermore, any sort of differentiable rendering operator
p can be added. Devising such operators is a key future challenge. Other adversarial

applications such as 2D supervised completion of 3D shapes seem worth exploring.

Enabling object-space as opposed to view-space reconstruction would help to prevent


https://geometry.cs.ucl.ac.uk/projects/2019/platonicgan/
https://geometry.cs.ucl.ac.uk/projects/2019/platonicgan/
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Input PlatonicGAN

Figure 3.9: Failure cases of a chair (top) and an airplane (bottom). The encoder is unable to
estimate the correct camera pose due to view ambiguities in the input image and
symmetries in the shapes. The generator then tries to satisfy multiple different
camera poses.

failure cases as shown in Fig. 3.9.

While we combine 2D observations with 3D interpretations, similar relations might
exist in higher dimensions, between 3D observations and 4D (3D shapes in motion)
but also in lower dimensions, such as for 1D row scanners in robotics or 2D slices of

3D data such as in tomography.



Chapter 4

Unsupervised Learning of 3D Object
Categories from Videos in the Wild

While the method presented in Chapter 3 is able to reconstruct shape and appearance
of objects in a self-supervised manner without 3D data annotations, the result quality
is limited by the voxel resolution and reconstruction was performed in camera space.
Our goal in this chapter is to address these limitations and instead of single-image
reconstruction, we seek to train a deep network that, given a small number of images
of an object of a given category, recovers its shape and appearance in world space.
Again, we are interested in working with challenging real data and with no manual
annotations. We show that existing techniques leveraging meshes, voxels, or implicit
surfaces, which work well for reconstructing isolated objects, fail on this challenging
data. Finally, we propose a new neural network design, called warp-conditioned ray
embedding (WCE), which significantly improves reconstruction while obtaining a

detailed implicit representation of the object surface and texture.

4.1 Overview

Our first contribution is to introduce a new dataset of videos collected ‘in the wild” by
Amazon Mechanical Turk workers (Fig. 4.3). These videos capture a large number
of object instances from the viewpoint of a moving camera, with an effect similar to
a turntable. Viewpoint changes are estimated with high accuracy using off-the-shelf

Structure from Motion (SfM) techniques. Hundreds of videos of several different
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put  Output: Monocular 3D reconstruction

G NN / g % 3

Figure 4.1: We present a novel deep architecture that contributes Warp-conditioned Ray Em-
bedding (WCE) to reconstruct and render new views (right) of object categories
from one or few input images (middle). Our model has learned automatically
from videos of the objects (left) and works on difficult real data where competi-
tor architectures fail to produce good results.

categories were collected and provided by collaborators.

Our second contribution is to assess current reconstruction technology on our new
‘in the wild’ data. For example, since each video provides several views of a single
object with known camera parameters, it is suitable for an application of recent
methods such as NeRF [54], and we find that learning individual videos works very
well, as expected. However, we show that a direct application of such models to
several videos of different but related objects is much harder. In fact, we experiment
with related representations such as voxels and meshes and find that they also do not
work well if applied naively to this task. This is true even though reconstructions
are focused on a single object at a time — thus disregarding the background —
suggesting that these architectures have a difficult time handling even relatively mild

geometric variability.

Our final contribution is to propose a novel deep neural network architecture to
better learn 3D object categories in such difficult conditions. We hypothesize that the
main challenge in extending high-quality reconstruction techniques, that work well
for single objects, to object categories is the difficulty of absorbing the geometric
variability that comes with tackling many different objects together. An obvious
but important source of variability is viewpoint: given only real images of different
objects, it is not obvious how these should align in 3D space, and a lack of alignment

adds to the variability that the model must cope with. We address this issue with a
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Figure 4.2: Our method takes as input an image and produces per pixel features using a U-
Net ®. We then shoot rays from a target view and retrieve per-pixel features from
one or multiple source images. Once all spatial feature vectors are aggregated
into a single feature vector (see Sec. 4.2.3 for more details), we combine them
with their harmonic embeddings and pass them to an MLP yielding per location
colours and opacities. Finally, we use differentiable raymarching to produce a
rendered image.

novel idea of Warp-Conditioned Ray Embeddings (WCE), a new neural rendering
approach that is far less sensitive to inaccurate 3D alignment in the input data. Our
method modifies previous differentiable ray marchers to pool information at variable

locations in input views, conditioned on the 3D location of reconstructed points.

With this, we are able to train deep neural networks that, given as input a small
number of images of new object instances in a given target category, can reconstruct
them in 3D, including generating high-quality new views of the objects. Compared
to existing state-of-the-art reconstruction techniques, our method achieves better

reconstruction quality in challenging datasets of real-world objects.

4.2 Method

Overview. The goal of our method is to learn a model of a 3D object category from
a dataset {7/ }];fv:‘“‘f" of video sequences. Each video ¥? = (I )o<;<7» consists of
TP € N color frames I € R¥*#*W While we do not use any manual annotations
for the videos, we do pre-process them using a Structure-from-Motion algorithm
(COLMAP [183]). In this manner, for each video frame I”, we obtain sequence-
specific camera poses g’ € SE(3) and the camera instrinsics K/ € R3*3. We further
obtain a segmentation mask m? € R*#*W of the given category using Mask-RCNN
[184].

The model parametrizes the appearance and geometry of the object in each video
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with an implicit surface map V:
YR xS?x ¥ R xRy ¥(x,r,z) = (c,0),

which labels each 3D scene point x € R3 and viewing direction r € S? with an
RGB triplet ¢(x,r,z) € R and an occupancy value 6 (x,z) € (0, 1] representing the
opaqueness of the 3D space. Furthermore, the implicit function ¥ is conditioned on
a latent code z € 2 that captures the factors of variation of the object. By changing z
we can adjust the occupancy field to represent shapes of different objects of a visual
category. As described in Sec. 4.2.3, the design of the latent space Z is crucial for
the success of the method.

While we use video sequences to train the model, at test time we would like to
reconstruct any new object instance from a small number of images. To this end, we

learn an encoder function
q) . R?)XHXWXNsrC N gﬂ’

that takes a number of input source images {1}, ..., Iy } of the new instance and
produces the latent code z € 2.
Given a known target view (different view than the source images) we render the

implicit surface to form a colour image /'€t € R3*H#*W

and minimize the discrepancy
between the rendered '€ and the masked ground truth image I'€'.

In the following, we describe the main building blocks of our method. The ren-
dering step follows Emission-Absorption raymarching [185, 1, 54, 94] as detailed
in Sec. 4.2.1. Sec. 4.2.2 describes the specifics of the surface function ¥, and

Sec. 4.2.3 introduces the main technical contribution — a novel Warp-Conditioned

Ray Embedding that defines the image encoder ®.

4.2.1 Implicit surface rendering
In order to render a target image /¢, we emit a ray from the camera center through
each pixel, assigning the colour of the ray’s first ‘intersection’ with the surface to

the respective pixel. Formally, let Q = {0,...,W — 1} x {0,...,H — 1} be an image
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grid, u € Q the index of a pixel, and Z € Ry a depth value. Following the ray
from the camera center through u to depth Z > 0 results in the 3D point: X(u,Z) =
Z-K~'[u" 1]7, where K € R**3 are the camera intrinsics. The camera’s pose is
given by an Euclidean transformation g'¢' € SE(3), where we use the convention
that X = g'®'(x) maps points x expressed in the world reference frame to points X in

camera coordinates.

In order to determine the colour of a pixel u € Q, we then ‘shoot’ a ray seeking
the surface intersection. To do so, we sample points 2, = (x(u,Z,‘))f.V:Z(;r ! for depth

values Zy < --- < Zy, obtaining their colors and occupancies:
(ci,0;)) =¥ (x(u,Z;),r,z), i=0,...,Nz. 4.1)

The probability of the ray not intersecting the surface in the interval (Z;,Z;] is set
to T; = ¢~ (Zit1=2)0i(x(u.Z).2) (transmission probability). Summing over all possible
intersections Zy, ..., Z;, the probability p(Z = Z;|u) of a ray terminating at depth Z;

is thus defined as:

i—1
P(Z=Zilu) = <HOT_,~> (=), =1 [] T
]:

with the overall probability of intersection 7iz,. Given the distributions of ray-
termination probabilities p(Z|u), the rendered color &,(2;,r,z) € R* and opacity
6.(Z,,z) € R are defined as an expectation over the outputs of the implicit function
within the range [0,...,Nz — 1]

Nz—1 Nz—1

i=0 =0

Since we are only interested in rendering the interior of the object, the colours ¢, are

softly masked with 771, leading to the final target image render /'8t € R3*H*W.

' =1(g"¢2) =moe. 4.2)
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Note that the reconstruction depends on the target viewpoint g'¢' and the object code

z, which is viewpoint independent.

4.2.2 Neural implicit surface

Next, we detail the implicit surface function . Similar to previous methods [54, 186,
75], we exploit the representational power of deep neural networks and define W as a
deep multi-layer perceptron (MLP): (¢,0) = Wy (X,1,z). The network ¥y, follows a
design similar to [54]. In particular, the world-coordinates x are preprocessed with
the harmonic encoding ’}/Nj)g(X) = [sin(x),cos(x),...,sin(2"7x),cos(2V7x)] € R*
before being input to the first layer of the MLP. In order to enable modeling of
viewpoint-dependent colour variations, we further use the harmonic encoding of the

target ray direction Yy (r'¢Y(x)) e R/ as input (see Fig. 4.2).

4.2.3 Warp-conditioned ray embedding

An important component of our method is the design of the latent code z. A
naive solution is to first map a source image /' to a D-dimensional vector zcnn =
®denn(I5€) € RP with a deep convolutional neural network ®cny, followed by
appending a copy of zcny to each positional embedding y(x) to form an input to the
neural occupancy function W,,,. This approach, successfully utilized in [94, 84] for
synthetic datasets where the training shapes are approximately rigidly aligned, is
however insufficient when facing more challenging in-the-wild scenarios.

To show why there is an issue here, recall that our inputs are videos #? of different
object instances, each consisting of a sequence (I )o<;<7» of video frames, together
with viewpoint transformations g/ € SE(3) recovered by SfM. Crucially, due to
the global coordinate frame and scaling ambiguity of the SfM reconstructions [48],
there is no relationship between the camera positions g” and g4 reconstructed for
two different videos p # ¢g. Even two identical videos #” = ¥, reconstructed
using SfM from two different random initializations, will result in two different
sets of cameras (g7)o<;<7r, (g = g*87 )o<t<7», related by an unknown similarity
transformation g* € S(3). Since the frames I/’ = I/ are identical, the reconstruction

network ®cnn must assign to them identical codes: zenn; = zéNN’t = dcenN (I,p )=
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PenN(I) = Z{ - Plugging this in Eq. 4.2, means that two identical frames are
reconstructed from the same code zcnn, but two different viewpoints gl # gl
I =1(g0 ,zenny) = 1(g],zenny) = . While of course, we do not work with
identical copies of the same videos, this extreme case demonstrates a fundamental
issue with the naive model, where different object instances must be reconstructed

with respect to unrelated viewpoints.

We can partially tackle this issue by using a variant of [187] to approximately align

the viewpoint of different video sequences before training (see supplemental).

Next, we introduce a more fundamental change to the model that also helps address-

ing this issue. The idea is to change the implicit surface (4.1)

lIIWCE(X7Z<X>)7 (43)

such that the code z is a function of the queried ray point X in world coordinates.
Given a source image [ with viewpoint g;, the projection of this point in the image
is: u;(x) = m(x) = m(Kg,x) where 7 denotes the perspective projection operator
R? — Q. In particular, if x is also a point on the surface of the object, then u;(x) is

the image of the corresponding point in the source view ;.

More specifically, we task a convolutional neural network ® to map the image I}
to a feature field ®(IF¢) € RP*#*W (see supplementary for details). In this way,
for each pixel ; in the source view, we obtain a corresponding embedding vector

®(I;)[us(x)] (using differentiable bilinear interpolation [-]):
7 (X) = q)(lt) [ﬁt(X)] € RD, (44)

and call it Warp-Conditioned Ray Embedding (WCE).

Intuitively, as shown in Fig. 4.2, by using Eq. 4.3Eq. 4.4 during ray marching,
the implicit surface network Wwcg can pool information from relevant 2D lo-
cations u, in the source view [}'°. Importantly, this occurs in a manner which
is invariant to the global viewpoint ambiguity. In fact, if the geometry is now

changed by the application of an arbitrary similarity transformation g*, then the
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3D point changes as X' = g*x, but the viewpoint also changes as g/ = g;(g*) !, so

that g/x’ = ¢/(¢*) ~'g*x = g;x and the encoding of the points x and x’ is the same:

®(I)[m (x)] = ®(I;)[n](x")] Finally, note that the network Eq. 4.3 combines two
sources of information: (1) codes z(x) that capture the appearance of each point in a
manner which is invariant from the global coordinate transforms; and (2) the absolute
location of the 3D point x (internally encoded by using position-sensitive coding
¥(x)). The combination of 1) and 2) above allows us to resolve misalignments by

localizing the implicit surface equivariantly with changes of the global coordinates.

Multi-view aggregation. Having described WCE for a single source image we now
extend to the more common case with multiple source images. For a set of source

ISI‘C } Nere

views {I; with their warp-conditioned embeddings z;™(x), source rays r;"(x),

and the target ray r'¢'(x) (see Fig. 4.2), we calculate the aggregate WCE z(x, {7 }):

2(x, {1;"}) = cat(z" (x, {I}),2° (x {["}) zenn ({£7}))

as a concatenation (cat) of the angle-weighted mean and variance embedding z* € RP
and z° € R, respectively, and a plain average zcnn = Ny Y ZcNN, over global

source embeddings Zcnn ;-

The mean z*(x,{I;"}) = ¥, w:(x)z"“(x) is a weighted average of the source

embeddings z}"“(x) with the weight w;(x) defined as
wi(x) = W(x) " (1+17°(x) - r'¥(x)).

W(x) = Zi\’“f w;(X) is a normalization constant ensuring the weights integrate to
1. This gives more weight to the source-view features that are imaged from a
viewpoint which is closer to the target view. The variance embedding z° € R, is
defined analogously as an average over dimension-specific w;(x)-weighted standard

deviations of the source embedding set {z;"(x)},5.
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4.2.4 Opverall learning objective

For training, we optimize the loss £ = A Z ek + Lrop Where 4 = 0.05. L s
defined as the binary cross-entropy between the rendered opacity and ground truth
mask. For the appearance loss £}, we use the mean-squared error between the

masked target view and our rendering.

4.3 Experiments

We discuss implementation details, data and evaluation protocols (Sec. 4.3.1) and
assess our method and baselines on the tasks of novel-view synthesis and depth

prediction.

Implementation details. As noted in Sec. 4.2.3, although WCE is in principle
capable of dealing with the scene misalignments by itself, we found it beneficial to
approximately “synchronize” the viewpoints of different videos in pre-processing,
using a modified version of the method from [187]. First, we use the scene point
clouds from SfM to register translation and scale by centering (subtracting the mean)
and dividing by average per-dimension variance, resulting in adjusted viewpoints g;.
We then proceed with training the rotation part of the viewpoint factorization branch
of the VpDR network from [187], in order to align the rotational components of the

viewpoints.

4.3.1 AMT Objects and other benchmarks

Figure 4.3: In order to study learning 3D object categories in the wild, we crowd-sourced a
large collection of object-centric videos from Amazon Mechanical Turk. The
top row shows frames from three example videos, the bottom two rows show
SfM reconstructions of the videos together with tracked cameras.
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One of our main contributions is to introduce the AMT Objects dataset, a large
collection of object-centric videos that we collected (Fig. 4.3) using Amazon Mechan-
ical Turk. The dataset contains 7 object categories from the MS COCO classes [188]:
apple, sandwich, orange, donut, banana, carrot and hydrant. For each class, we
ask Turkers to collect a video by looking ‘around’ a class instance, resulting in a
turntable video. For reconstruction, we uniformly sampled 100 frames from each
video, discarding any video where COLMAP pre-processing was unsuccessful. The
dataset contains 169-457 videos per class. For each class, we randomly split videos

into training and testing videos in an 8:1 ratio.

We also consider the Freiburg Cars [189], consisting of 45 training and 5 testing

videos of various parked cars.

For every video, we define three disjoint sets of frames on which we either train
or evaluate: (1) train-train, (2) train-test and (3) test. For each training video, we
form the train-test set by randomly selecting 16 frames and a disjoint train-train set
containing the complement of train-test. While the train-train frames are utilized
for training, the train-test frames are never seen during training and only serve for
evaluation. The evaluation on the test set is the most challenging since it is conducted

with views of previously unseen object instances.

Evaluation protocol. Recall that, at test time, our network takes as input a certain
number of source images /°* and reconstructs a target image /'¢' seen from a different
viewpoint. We assess the view synthesis and depth reconstruction quality of this
prediction. To this end, for each object category, we randomly extract a batch of 8
different images from the train-test and test respectively. To increase view variability
we repeat this process 5 times for every object. For each batch one of the images is
picked as a target image I'¢* and from the remaining images we individually select
1,3,5,7 images and perform the forward pass to generate I'8 for each selection.

In order to assess the quality of view synthesis, we calculate the EII‘GB error, between
the target and predicted image. We also use the EYGG perceptual metric, which

computes the ¢, distance between the two images encoded by means of the VGG-19

network [25] pretrained on ImageNet. For depth reconstruction, we compute the
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Ell)epth distance between ground truth depth map (obtained from COLMAP SfM) and

the predicted one in the target view. Finally, we report Intersection-over-Union (IoU)
between the predicted object mask and the object mask obtained by Mask-RCNN in

the target view.

4.3.2 Baselines

In this section, we detail the baselines we compare with. The first is MLP, corre-
sponding to a naive version of the latent global encoding zcny already discussed in
Sec. 4.2.3. Here, the N*" source images {I;"* }f’zs rlc are first independently mapped to
embedding vectors {z; € R256}§V:S rlc by a ResNet50 [190] encoder and subsequently
averaged to form an encoding of the object zcny = ]\% Zﬁ\’:srf Z;. A copy of zcnn

is then concatenated to each positional embedding y(x) of each target ray point x.

MLP renders with the EA ray marcher (Sec. 4.2.1).

The second baseline is Voxel, which closely resembles [86]. This uses the same
encoding scheme as MLP, but differs by the fact that the object is represented by a
voxel grid. Specifically, zcnn is decoded with a series of 3D convolution-transpose
layers to a 1283 voxel grid containing RGB and opacity values. Voxel also renders

with EA.

Next, Voxel+MLP is inspired by Neural Sparse Voxel fields [63] and marries
NeRF [54] with voxel grids. As in Voxel, zcny is first 3D-deconvolved into a
1283 volume of 32-dimensional features. Each target view ray point X is then de-
scribed with a positional embedding ¥(x), and a latent feature zo(x) € R trilinearly

sampled at the voxel grid location x. The rest is the same as in MLP.

Finally, the Mesh baseline uses the soft-rasterization of [85] as implemented in
PyTorch3D [191] with the top-k face accumulation. The scene encoding zcny 1S
converted with a pair of linear layers to: (1) a set {v;(z) € R? }?ﬁﬁ“ex of 3D vertex
locations of the object mesh, and (2) a 128 x 128 UV map of the texture mapped to
the surface of the mesh, which is rendered in order to evaluate the reconstruction
losses from Sec. 4.2.4. The mesh is initialized with an icosahedral sphere with 642

vertices.
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Table 4.1: Novel-view synthesis on AMT Objects and Freiburg Cars. Each row evaluates
either a baseline or our method. Results are reported for two perceptual metrics
E?GB, ZYGG, depth error E?epth, and intersection-over-union (IoU). For training
we randomly selected between 1 and 7 source images. For testing we separately
calculated the error metrics for 1, 3, 5 and 7 source images respectively and
provide the average among those. For a more detailed evaluation we refer to
the supplemental. Lower is better for KFGB, KYGG, and E?epth, whereas higher is
better for IoU. The best result is bolded.

AMT Freiburg Cars

Train-test Test Train-test Test

Method ~ (RGB (VGG [oy (Depth (RGB VGG poyy (Depth (RGB (VGG poyy (Depth (RGB (VGG popy (Depth

Mesh 0.10 1.17 0.60 5.13 0.10 1.16 0.60 509 0.14 203 060 1.19 0.17 2.17 056 1.06
Voxel 0.06 1.05 0.78 2.14 0.09 1.13 066 3.07 005 158 089 059 0.16 2.05 051 2.18
Voxel+MLP 0.06 1.04 0.78 195 0.09 1.13 0.65 2.87 0.05 147 0.88 048 0.16 206 054 1.97
MLP 0.04 090 0.87 138 0.09 1.13 0.65 359 0.04 139 087 059 0.15 2.03 047 2.52
Ours 0.03 0.86 0.88 131 0.05 093 083 190 0.04 1.39 090 048 0.12 1.89 0.62 1.60

4.3.3 Quantitative Results

Tbl. 4.1 presents quantitative results on Freiburg Cars and the AMT Objects, respec-
tively. In terms of all perceptual metrics (E?GB, KYGG) as well as depth and IoU, our
method is on par with the MLP on the train-test split. On the test split, we outper-
form all other baselines in E{‘GB, EYGG and IoU on all 7 classes of AMT Objects and
Freiburg Cars. This indicates significantly better ability of our warp-conditioned
embedding to generalize to previously unseen object instances.

We further find that our method is better at leveraging multiple source views Ny > 1,

outperforming all baselines for the error, see Tbl. 4.2. When increasing the

RGB
4
number of source images our method performance for all metrics improves whereas
for all baselines it stays more or less constant. This further shows the effectiveness
of the warp-conditioned embedding (WCE).

Table 4.2: We evaluate the impact of increasing the number of source views during test time

for the E?GB metric. Target renders and the corresponding metrics are produced
for 1, 3, 5 and 7 source images. The best result is bolded where lower is better.

AMT Freiburg Cars
Train-test Test Train-test Test
Method 1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7
Mesh 096 .096 .096 .096 .102 .102 .102 .102 .141 .141 .140 .140 .166 .166 .166 .166
o Voxel .062 .061 .061 .061 .091 .091 .091 .091 .055 .055 .055 .054 .159 .159 .158 .158
ET Voxel+MLP .059 .059 .058 .059 .090 .090 .090 .090 .045 .045 .045 .045 .158 .157 .158 .157
= MLP 037 .036 .036 .036 .088 .088 .083 .088 .041 .041 .041 .041 .152 .152 .152 .152

Ours .038 .032 .031 .030 .058 .046 .043 .042 .046 .041 .041 .040 .130 .120 .115 .114
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Figure 4.4: Monocular reconstruction on Freiburg Cars and AMT Objects. In each
row, a single source image (1st column) is processed by one of the evaluated
methods (Mesh, Voxel, MLP+Voxel, MLP, Ours - columns 2 to 6) to generate a
prescribed target view (last column). We show results on the test split.

Regarding depth reconstruction (£2"

), our method outperforms all alternatives on
all datasets except the test split of Freiburg Cars, where we are 2nd after Mesh. Here,
we note that E?epth is only an approximate measure because: 1) the predicted depth
is compared to the COLMAP-MVS estimate of depth [50], which tends to be noisy
and; 2) the scale ambiguity in SfM reconstructions that supervise learning leads to a

significantly unconstrained problem of estimating the scale of a testing scene given a

small number of source views, which is challenging to resolve for any method.

4.3.4 Qualitative Results

Fig. 4.4 provides qualitative comparisons for monocular novel-view synthesis. It
shows that our method produces significantly more detailed novel views, probably
due to its ability to retrieve spatial encodings from the given source view. Fig. 4.5
further demonstrates the reconstruction improvement when multiple source views

N > 1 are available.
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Figure 4.5: Reconstruction with multiple source views. For each object, the top row
shows all available source images (columns 1-7) for a given target image (top
right). The bottom row contains results conditioned on 1, 3, 5 or 7 source images.
In addition to the rendered new RGB views we also provide shaded surface
renderings.

4.4 Discussion and conclusions

Limitations. Even though our method outperforms baselines on the vast majority
of metrics and datasets, there are still several limitations. First, the execution of the
deep MLP at every 3D ray-location in a rendered frame is relatively slow (depending
on the number of source views rendering takes between 3 and 8 sec for a 128 x 256
image on average), which makes a real-time deployment challenging. Secondly, due
to our template-free approach, the object silhouettes can be blurry. Lastly, despite no
manual labelling being necessary, our method still relies on segmentation masks that

were automatically generated with Mask-RCNN.

Conclusions. In this chapter, we have presented a method that is able to reconstruct
category-specific 3D shape and appearance from videos of object categories in
the wild alone, without requiring manual annotations. We demonstrated that our
main contribution, Warp-Conditioned Ray Embedding, can successfully deal with
the inherent ambiguities present in the video SfM reconstructions that provide our
supervisory signal, outperforming alternatives on a novel dataset of crowd-sourced
object videos. Future work could include decomposition of shape, appearance and

lighting allowing for more control over the rendered images.



Chapter 5

Learning a Neural 3D Texture Space

from 2D Exemplars

In the previous chapters, we have seen two methods that given a single or a few
images of an object perform 3D reconstruction of shape and appearance. In the next
part of this thesis, a different aspect of appearance modeling is addressed: texture

synthesis.

5.1 Overview

Textures are stochastic variations of attributes over 2D or 3D space with applications
in both image understanding and synthesis. This chapter suggests a generative model
of natural textures. Previous texture models either capture a single exemplar (e. g.,
wood) alone or address the non-stochastic (stationary) variation of appearance across
space: Which location on a chair should have a wood colour? Which should be

cloth? Which metal? Our work combines these two complementary views.

Requirements We design the family of methods with several requirements in mind:
completeness, generativeness, compactness, interpolation, infinite domains, diversity,
infinite zoom, and high speed.

A space of textures is complete if every natural texture has a compact code z in that
embedding. To be generative, every texture code should map to a useful texture.
This is important for an intuitive design where a user manipulates the texture code

and expects the outcome to be a texture. Compactness is achieved if codes are low-
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3D texturing

Interpolation

Figure 5.1: Our approach allows casually-captured 2D textures (blue) to be mapped to latent
texture codes and support interpolation (blue-to-red), projection, or synthesis of
volumetric textures.

dimensional. We also demand the method to provide interpolation: texture generated
at coordinates between z; and z, should also be valid. This is important for design or
when storing texture codes into a (low-resolution) 2D image, 3D volume or at mesh
vertices with the desire to interpolate. The first four points are typical for generative
modelling; achieving them jointly while meeting more texture-specific requirements

(stochasticity, efficiency) is our key contribution.

First, we want to support infinite domains: Holding the texture code e fixed, we want
to be able to query this texture so that a patch around any position x has the statistics
of the exemplar. This is important for querying textures in graphics applications for
extended virtual worlds, i. e., grass on a football field where it extends the size of the

texture.

Second, for visual fidelity, the statistics under which textures are similar to the
exemplar. The Gram matrix of VGG activations is one established metric for this

similarity [124].
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Figure 5.2: Overview of our approach as explained in Sec. 5.1.

Third, infinite zoom means each texture should have variations on a wide range of
scales and not be limited to any fixed resolution that can be held in memory. This
is required to zoom into details of geometry and appreciate the fine variation such
as wood grains, etc. In practice, we are limited by the frequency content of the
exemplars we train on, but the method should not impose any limitations across
scales.

Fourth and finally, our aim is computational efficiency: the texture needs to be
queryable without requiring prohibitive amounts of memory or time, in any dimen-
sion. Ideally, it would be constant in both and parallel. This rules out simple CNN:ss,

that do not scale favourably in memory consumption to 3D.

5.2 Method

Our approach has two steps. The first embeds the exemplar into a latent space using
an encoder. The second provides sampling at any position by reading noise fields at
that position and combining them using a learned mapping to match the exemplar

statistics. We now detail both steps.

Encoder The encoder g maps a 2D texture exemplar image y to a latent texture code
z = g(y). We use a convolutional neural network to encode the high number of

exemplar pixels into a compact latent texture code z.

Sampler Sampling s(x|z) of a texture with code z at individual 2D or 3D positions x

has two steps: a translator and a decoder, which are both described next.



68 CHAPTER 5. NEURAL TEXTURES

Y poe@E B RN
[ T~ L
' [ >

: ™~ | - noise —»

Toe T~ §

™~ | noise —»
2‘*‘—?—> —>._, T~ 4
L] T | | | |

T _
. eve ] e

Figure 5.3: Noise field for different octaves and transformations T.

Decoder Our key idea is to prevent the decoder f(n|e) to access the position x
and to use a vector of noise values n instead. Each n; = noise(T;2""'x|&;) is read
at different linear transformations T;2/~!x of that position x from random fields
with different seeds &;. The random field noise(x|&;) is implemented as an infinite,
single-channel 2D or 3D function that has the same random value for all continuous
coordinates x in each integer lattice cell for one seed &;. The factors of 2/~ ! initialize
the decoder to behave similarly to Perlins’s octaves for identity T;. Applying T;2/~!

to x is similar to Spatial Transformer Networks [192]. (Fig. 5.3).

These noise values are combined with the extended texture code e in a learned way.
It is the task of the translator, explained next, to control, given the exemplar, how

noise is transformed and to generate an extended texture code.

Translator The translator 4(z) = {e, T}

maps the texture code z to a tuple of pa-
Fixed a a ¢ \/
rameters required by the decoder: the | - |earned | b b d = I
1
vector of transformation matrices T and C
an extended texture code vector e. The 7! h(z) d . _
' 7z > 72 —>» - é
matrices T are used to transform the co- 23 ¢ l
ordinates before reading the noise as ex- g e f _k
plained before. The extended texture h ~ | e
parameter code e is less compact than Figure 5.4: Translator.

the texture code z, but allows the sampler to execute more effectively, i. e., do not

repeat computations required for different x as they are redundant for the same z.
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3D result % 3D result slices 2D exemplar

Figure 5.5: Sliced loss for learning 3D procedural textures from 2D exemplars: Our method,
as it is non-convolutional, can sample the 3D texture (a) at arbitrary 3D positions.
This enables to also sample arbitrary 2D slices (b). For learning, this allows us
to simply slice 3D space along the three major axes (red, yellow, blue) and ask
each slice to have the same VGG statistics as the exemplar (c).

See Fig. 5.4 where for example two 2 x 2 transformation matrices with 8 DOF are

parameterized by three parameters.

Training For training, the encoder is fed with a random 128 x 128 patch P. of a
random exemplar y, followed by the sampler evaluating a regular grid of 128 x 128
points x in random 2D slices of the target domain to produce a “slice” image Ps
(Fig. 5.5). The seed & is held constant per train step, as one lattice cell will map to
multiple pixels, and the decoder f relies on these being consistent. During inference

changing the seed & and keeping the texture code e will yield diverse textures.

The loss is the % distance of Gram matrix of VGG feature activations [124, 127,
128, 126, 166] of the patches P. and F.

If the source and target domain are the same (synthesizing 2D textures from 2D
exemplars) the slicing operation is the identity. However, it also allows for the
important condition in which the target domain has more dimensions than the source

domain, such as learning 3D from 2D exemplars.

Spaces-of Our method can be used to either fit a single exemplar or an entire space
of textures. In the single mode, we directly optimize for the trainable parameters
0 = {64} of the decoder. When learning the entire space of textures, the full cascade
of encoder g, translator 4 and sampler s parameters are trained, i.e., 0 = {Gg, 6h, 04}

jointly.
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5.3 Learning stochastic space coloring

Here we will introduce different implementations of samplers s: R” — R? which
“colour” 2D or 3D space at position x. We discuss the pros and cons with respect to

the requirements from the introduction, ultimately leading to our approach.

Perlin noise is a simple and effective method to generate natural textures in 2D or

3D [117], defined as

m
s(x|z) = Znoise(Z"*lx,ﬁi)@)wi, (5.1)
i=1
where h(z) = {w,ws,...} are the RGB weights for m different noise functions
noise; which return bilinearly-sampled RGB values from an integer grid. ® is
channel-wise multiplication. Here, e is a list of all linear per-layer RGB weights
e. g., an 8x3 vector for the m = 8 octaves we use. This is a simple latent code, but
we will see increasingly complex ones later. Also, our encoder g is designed such
that it can cater to all decoders, even Perlin noise i. e., we can also create a space of
textures with a Perlin noise back-end.
Coordinates x are multiplied by factors of two (octaves), so with increasing i, in-
creasingly smooth noises are combined. This is motivated well in the spectra of
natural signals [116, 117], but also limiting. Perlin’s linear scaling allows the noise
to have different colours, yet no linear operation can reshape a distribution to match
a target. Our work seeks to overcome these two limitations but tries to retain the
desirable properties of Perlin noise: simplicity and computational efficiency as well

as generalization to 3D.

Transformed Perlin relaxes the scaling by powers of two
m .
s(xz) = ¥ noise(T2" 'x,&) @w; (5.2)
i=1

by allowing each noise i to be independently scaled by its own transformation matrix
T; since h(z) = {wy, T1,wz, T2,...}. Please note, that the choice of noise frequency
is now achieved by scaling the coordinates reading the noise. This allows us to make

use of anisotropic scaling for elongated structures, different orientations or multiple
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random inputs at the same scale.

CNN utilizes the same encoder g as our approach to generate a texture code that is

fed in combination with noise to a convolutional decoder similar to [128].

s(x|z) = cnn(x|e,noise(&)) (5.3)

The CNN is conditioned on e without additional translation. Their visual quality is
stunning, CNNs are powerful and the loss is able to capture perceptually important
texture features, hence CNNs are a target to chase for us in 2D in terms of quality.
However, there are two main limitations of this approach we seek to lift: efficiency

and diversity.

CNNs do not scale well to 3D in high resolutions. To compute intermediate features
at x, they need to have access to neighbours. While this is effective and output-
sensitive in 2D, it is not in 3D: we need results for 2D surfaces embedded in 3D, and
do so in spatial high resolution (say 1024 x 1024), but this requires CNNs to compute
a full 3D volume with the same order of pixels. While in 2D partial outputs can be
achieved with sliding windows, it is less clear how to slide a window in 3D, such that

it covers all points required to cover all 3D points that are part of the visible surface.

The second issue is diversity: CNNs are great for producing a re-synthesis of the
input exemplar, but it has not been demonstrated that changing the seed & will lead to
variation in the output in most classic works [126, 127] and in classic style transfer
[124] diversity is eventually introduced due to the randomness in SGD. Recent work
by Ulyanov and colleagues [128] explicitly incentivizes diversity in the loss. The
main idea is to increase the pixel variance inside all exemplars produced in one batch.
Regrettably, this often is achieved by merely shifting the same one exemplar slightly

spatially or introducing random brightness fluctuations.

MLP maps a 3D coordinate to appearance:

s(x|z) = m1p(x|e) (5.4)
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where h(z) = e. Texture-fields [131] have used this approach to produce what they
call “texture”, detailed and high-quality appearance decoration of 3D surfaces, but
what was probably not intended is to produce diversity or any stochastic results. At
least, there is no parameter that introduces any randomness, so all results are identical.
We took inspiration from their work, as it makes use of 3D point operations, that
do not require accessing any neighbours and no intermediate storage for features
in any dimensions, including 3D. It hence reduces bandwidth compared to CNN
and is perfectly data-parallel and scalable. The only aspect missing to make it our
colourization operator, required to create a space and evolve from 2D exemplars to

3D textures, is stochasticity.

Ours combines the noise from transformed Perlin for stochasticity, the losses used
in style and texture synthesis CNNs for quality as well as the point operations in

MLPs for efficiency as follows:
s(x|z) = f(noise(T12°%,&)),...,noise(T,,2" 'x, &) e) (5.5)

Different from MLPs that take the coordinate x as input, the position itself is hidden.
Instead of position, we take multiple copies of spatially smooth noise noise(x) as
input, with explicit control of how the noise is aligned in space expressed by the
transformations T. Hence, the MLP requires to map the entire distribution of noise
values such that it suits the loss, resulting in build-in diversity. We chose number
of octaves m to be 8, i. e., the transformation matrices Ty,..., T,, require 8 x 4 = 32
values in 2D. The texture code size e is 64 and the compact code z is 8. The decoder
f consists of four stacked linear layers, with 128 units each followed by ReLUs. The
last layer is 3-valued RGB.

Non-stochastic ablation seeks to investigate what happens if we do not limit our

approach to random variables, but also provide access to deterministic information x:

s(x|z) = f(x,noise(2°x,&),...,noise(2" 'x,&,)|e) (5.6)
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is the same as MLP, but with access to noise. We will see that this effectively removes
diversity.
Non-transformed ablation evaluates if our method were to read only from multi-

scale noise without control over how it is transformed. Its definition

s(x|z) = f(noise(2°x,&)),...,noise(2™ 'x,&,)|e) (5.7)

5.4 Evaluation

Our evaluation covers qualitative (Sec. 5.4.3) and quantitative (Sec. 3.4.5) aspects as
well as a user study (Sec. 5.4.4). We further discuss and compare the capabilities of

our method with respect to the requirements introduced in Sec. 5.1.

5.4.1 Protocol

We suggest a data set that for which we explore the relation of different methods,

according to different metrics to quantify texture similarity and diversity.

Data set Our data set contains four classes (WOOD, MARBLE, GRASS and RUST) of

2D textures, acquired from internet image sources. Each class contains 100 images.

Methods We compare eight different methods that are competitors, ablations and
ours. As five competitors we study variants of Perlin noise, CNNs and MLPs.
perlin implements Perlin noise (Eq. 5.1, [117]) and per1inT our variant extend-
ing it by a linear transformation (Eq. 5.2). Next, cnn is a classic TextureNet [126]
and cnnD the extension to incentivise diversity ([128], Eq. 5.3). m1p uses an MLP
following Eq. 5.4.

We study three ablations. First, we compare to our sP which is our method, but
with the absolute position as input and no transform. Second, oursNoT omits the
absolute position as input and transformation but still uses Perlin’s octaves (Eq. 5.7).

The final method is ours method (Eq. 5.5).

Metrics We evaluate methods with respect to three metrics: similarity and diversity
and a joint measure, success.

Similarity is high, if the result produced has the same statistics as the exemplar in
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terms of L2 differences of VGG Gram matrices. This is identical to the loss used.
The similarity is measured on a single exemplar.

Diversity is not part of the loss but can be measured on a set of exemplars produced
by a method. We measure diversity by looking at the VGG differences between all
pairs of results in a set produced for a different random seed. Note, that this does not
utilize any reference. Diversity is maximized by generating random VGG responses,
yet without similarity.

Success of the entire method is measured as the product of diversity and the maximum
style error minus the style error. We apply this metric, as it combines similarity and
diversity which are conflicting goals we jointly want to maximize.

Memory and speed are measured at a resolution of 128 pixels/voxels on an Nvidia

Titan Xp.

5.4.2 Quantitative results

Table 5.1: Efficiency in terms of compute time and memory usage in 2D and 3D (columns)
for different methods (rows).

Method Time Memory 1000 15
2D 3D 2D 3D '
perline0.18ms 0.18 ms 65k 16 M 100
perlinT*0.25ms 025ms 65k 16M o B o/mRE
cnn * 1.45ms 551.59ms 8,000k 646 M Memory 2D Time 2D

cnnD ¢ 1.45ms 551.59 ms 8,000k 646 M
mlpe143ms 143ms 65k 16M %%

10000

500
oursP*144ms 144ms 65k 16M 1?82 10
oursNoT+* 1.24ms 124ms 65k 16M : ) M

ourse 1.55ms 150ms 65k 16M  pyemory 3D Time 3D

Efficiency We first look at computational efficiency in Tbl. 5.1. We see that our
method shares the speed and memory efficiency with Perlin noise and MLPs / Texture
Fields [131]. Using a CNN [126, 128] to generate 3D textures as volumes is not
practical in terms of memory, even at a modest resolution. Ours scales linearly with
pixel resolution as an MLP is a point-estimate in any dimension that does not require
any memory other than its output. A CNN has to store the internal activations of all

layers in memory for information exchange between neighbours.
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Figure 5.6: Quantitative evaluation. Each plot shows the histogram of a quantity (from top
to bottom: success, style error and diversity) for different data sets (from left to
right: all space together, WOOD, MARBLE, GRASS). For a discussion, see the
last paragraph in Sec. 5.4.2.

Fidelity Fig. 5.6 and Tbl. 5.2 summarize similarity, diversity and success of all
methods in numbers. ours method (black) comes best in diversity and success
on average across all sets (first column in Tbl. 5.2 and top first plot in Fig. 5.6).
cnn (yellow) and cnnd (green) have better similarity than any of our methods.
However, no other method combines similarity with diversity as well as ours. This is
visible from the overall leading performance in the final measure, success. This is a
substantial achievement, as maximizing for only one goal is trivial: an identity

method has zero similarity error while a random method has infinite diversity.

When looking at the similarity, we see that both a cnn and its diverse variant
cnnD can perform similarly. Perlin noise produces the largest error. In particular,
perlinT has a large error, indicating it is not sufficient to merely add a transform.
Similarly, m1p alone cannot solve the task, as it has no access to noise and needs to fit
exactly, which is doable for single exemplars, but impossible for a space. oursNoT

has error similar to ours, but less diversity.

When looking at diversity, it is clear that both cnn and m1p have no diversity as
they either do not have the right loss to incentivize it or have no input to generate it.
perlin and perlinT both create some level of diversity, which is not surprising

as they are simple remappings of random numbers. However, they do not manage to
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Table 5.2: Similarity and diversity for methods on different textures.

Method ALL WooD GRASS MARBLE

Sim Div Suc Sim Div Suc Sim Div Suc Sim Div Suc

perline 20.6 48.0 7.0 23.8 37.9 4.9 24.6 72.8 18.1 13.3 31.8 7.84
perlinT-= 19.6 48.2 7.2 18.4 39.6 5.02 259 65.6 13.8 14.2 38.4 8.03
cnn* 54 05 75134 05007 19 05014 11 0.3 0.08
cnnDe* 3.9 48.2 7.75 3.9 352 5.19 4.8 59.2 209 3.6 48.8 8.5
mlpe 14.1 0.0 798 157 0.0 0.0 167 0.0 00 9.6 0.0 0.0

oursP+ 54 934 823 9.7 674 533 4.8 126 21.5 1.8 845 9.0
oursNoT - 84 94.5 8.54 183 74.7 540 5.1 120 21.7 19 87.0 9.3
ours-e 12.1 99.7 8.82 13.3 72.5 548 13.6 127 22.1 9.4 98.2 9.6
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span the full VGG space, which only ours and its ablations can do.

Generating 3D textures from the exemplars in Fig. 5.7, we find that our diversity and
similarity are 44.5 and 1.48, which compares favorable to Perlin 3D Noise at 14.9

and 7.11.

5.4.3 Qualitative results

Visual examples from the quantitative evaluation on a single exemplar for different
methods can be seen in Fig. 5.7. We see that some methods have diversity when the
seed is changed (rows one vs. two and three vs. four) and some do not. Diversity is
clear for Perlin and its variant, CNNs with a diversity term and our approach. No
diversity is found for MLPs and CNNs. We also note, that CNNs with diversity
produce typically shifted copies of the same exemplar, so their diversity is over-

estimated by the metric.
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Figure 5.7: Different methods and the exemplar (columns), as defined in Sec. 5.4.2, applied
to different exemplars (rows). Each row shows, arranged vertically, two re-
synthesises with different seeds. Please see the text for discussion.
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Fig. 5.8 shows a stripe re-synthesized from a single exemplar. We note that the

pattern captures the statistics, but does not repeat.

Figure 5.8: Stripes of re-synthesized textures from exemplars on the left. See the supple-
mental for more examples.

Our system can construct textures and spaces of textures in 3D from 2D exemplars
alone. This is shown in Fig. 5.9. We first notice that the textures have been transferred
to 3D faithfully, inheriting all the benefits of procedural textures in image synthesis.

We can now take any shape without a texture parametrization and, by simply running

the NN at each pixel’s 3D coordinate, produce a colour. We compare to a 2D

Figure 5.9: 3D texturing of different 3D shapes. Insets (right) compare ours to 2D texturing.
See supplemental for 3D spin.
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Figure 5.10: Our reconstruction of WOOD, GRASS, RUST, and MARBLE. The first row
shows different input exemplars. The second and third rows show our recon-
struction with different seeds.
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approach by loading the objects in Blender and applying its state-of-the-art UV
mapping approach [193]. Inevitably, a sphere will have discontinuities and poles
that can not be resolved in 2D, which are no issue to our 3D approach while both

take the same 2D as input.

Fig. 5.10 documents the ability to reproduce the entire space. We mapped exemplars
unobserved at training time to texture codes, from which we reconstruct them, in 2D.
We find that our approach reproduces the exemplars faithfully, albeit totally different

on the pixel level.

Our method does not work on an explicit pixel grid but
rather a continuous function, which allows zooming into

arbitrary fine details as depicted in Fig. 5.11, which com-

pares favorable to cubic upsampling. This is particularly
useful in the 3D domain, where storing a complete vol- Figure 5.11: Zoom.
ume to span multiple levels of detail requires prohibitive amounts of memory, while

ours is output-sensitive.
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Figure 5.12: Interpolation of one exemplar (left) into another one (right) in latent space
(first three rows) and linear (last row).

A meaningful latent texture code space should also allow for interpolation as seen in
Fig. 5.12, where we took pairs of texture codes (left and right-most exemplar) and
interpolated rows in-between. We see, that different paths produce plausible blends,

with details appearing and disappearing, which is not the case for a linear blend.

5.4.4 User study

Presenting M = 144 pairs of images produced by either per1inT, cnnD, mlp,
oursP, oursNoT and ours for one exemplar texture to N = 28 subjects and
asking which result “they prefer” in a two-alternative forced choice, we find that
16.7% prefer ground truth, 4.9% perlin, 7.7% perlinT, 14.3% cnn, 8.8%
cnnD, 9.4% mlp, 10.8% oursNoT, 12.9% oursP and 14.5% ours (statistical
significance; p < .1, binomial test). Given ground truth and cnn are not diverse, our

results are preferred over all others methods that synthesize infinite textures.

5.4.5 Method properties

We compare different properties of our method and competitors. An overview is
depicted in Tbl. 5.3. Rows list different methods while columns address different
aspects of each method. A method is “Diverse” if more than a single exemplar can be

produced. MLP [131] is not diverse as the absolute position allows overfitting. We
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Table 5.3: Comparison of texture synthesis methods. Please see text for refined definition of
the rows and columns.

9 a

t2 3 £3¢

Method A& &8 348
* Perlin perlin vV vV vV vV X X X
¢ Perlin + transform perlinT v v v v/ X X X
CNN cnn X X X XV XX
* CNN + diversity cnnD vV X X X X X X
MLP mlp XXV VXXV
Ours + position oursP XV vV vV XV V
Ours - transform  oursNoT X X v v vV v V
* Ours ours VYV VYV VY Y

denote a method to have “Detail” if it can produce features on all scales. CNN does
not have details, as, in particular in 3D, it needs to represent the entire domain in
memory, while MLPs and ours are point operations. “Speed” refers to computational
efficiency. Due to high bandwidth and lacking data parallelism, a CNN, in particular
in 3D, is less efficient than ours. This prevents application to “3D”. “Quality” refers
to visual fidelity, a subjective property. CNN, MLP and ours achieve this, but Perlin
is too simple a model. CNN with diversity [128] have decent quality, but is a step
back from [126]. Our approach creates a “Space” of a class of textures, while all
others only work with single exemplars. Finally, our approach allows us to learn
from a single 2D observation i. e., 2D-to-3D. MLP [131] also learn from 2D images,

but have multiple images of one exemplar, and pixels are labelled with depth.

5.5 Conclusion

We have proposed a generative model of natural 3D textures. It is trained on 2D
exemplars only and provides interpolation, synthesis and reconstruction in 3D. The
key inspiration is Perlin Noise — now more than 30 years old — revisited with NN to
match complex colour relations in 3D according to the statistics of VGG activations
in 2D. The approach has the best combination of similarity and diversity compared
to a range of published alternatives, that are less computationally efficient.

Reshaping noise to match VGG activations using MLPs can be a scalable solution to

other problems in even higher dimensions, such as time, that are difficult for CNNss.



Chapter 6

Generative Modelling of BRDF

Textures from Flash Images

While the previous chapter presented a method that synthesizes 3D textures, it does
not capture the surface characteristics of textures. In this chapter, we learn a latent
space for easy capture, consistent interpolation, and efficient reproduction of visual
material appearance. When users provide a photo of a stationary natural material
captured under flashlight illumination, first it is converted into a latent material code.
Then, in the second step, conditioned on the material code, our method produces an
infinite and diverse spatial field of BRDF model parameters (diffuse albedo, normals,
roughness, specular albedo) that subsequently allows rendering in complex scenes

and illuminations, matching the appearance of the input photograph. supervision.

6.1 Overview

Rendering realistic images for feature films or computer games requires adequate
simulation of light transport. Besides geometry and illumination, an important factor
is material appearance.

Material appearance has three aspects of variation: First, when view or light direction
changes, reflected light changes. The physics of this process is well-understood and
can be simulated provided the input parameters are available. Second, behaviour
changes across materials. For example, leather reacts differently to light or view

changes than paper would, yet, different forms of leather clearly share visual prop-
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Figure 6.1: Results from our generative model of BRDF maps, assigned to a 3D object of a
shoe. Circular insets show diffuse, normal, roughness and specular maps. Our
model outputs a space of BRDF materials that can be sampled from, projected
to, and interpolated across. The BRDF generative model is trained exclusively
from a set of (306) RGB flash images (example shown in the lower left inset)
without any BRDF supervision, and shortly fine-tuned in the case of material
capture to best match the input picture.

erties, 1.e., form a (material) space. Third, appearance details depend on spatial
position. Different locations in the same leather exemplar behave differently but

share the same visual statistics [118], i. e., they form a texture.

Classic computer graphics captures appearance by reflection models, which predict
for a given 1) light-view configuration, ii) material, and iii) spatial position, how much
light is reflected. Typically, the first variation (light and view direction) is covered
by BRDF models, analytic expressions, such as Phong [33] which map the light and
view direction vector to scalar reflectance. The second variation (material) is covered
by choosing BRDF model parameters, such as specularity or roughness. In practice,
it can be difficult, given a desired appearance, to choose those parameters e. g., how
to make a leather look more like the one on a nice jacket. One can measure BRDF
model parameters, but it traditionally requires complex capture hardware for accurate
results. The third variation (spatial) is addressed by storing multiple BRDF model
parameters in images of finite size —often referred to as svBRDF maps— or writing
functional expressions to reproduce their behaviour. It is even more challenging to
choose these parameters to produce something coherent like leather, in particular

over a large spatial extent. Additionally, storing all these values requires substantial



6.1. OVERVIEW 83

5 ' <N Latentcode T ™ =| ,bgo’
I B T View
. Z View Z <7 Light
S @ e ®
¢ ¢ :
N @,5\. Material
) generation

Figure 6.2: BRDF space. From a flash image, which contains sparse observations across
material, space and view-light (left) we map to a latent code z / 8* (middle) so
that changes in these codes can be decoded to enable (right) material synthesis
(holding material fixed and moving spatially), material morphing (holding space
and view/light fixed and changing material), or classical shading and material
generation (points in the latent space).

memory and programming functional expressions to mimic their statistics requires
expert skills and time. Capturing the spatial variation of BRDF model parameters
over space using sensors requires even more complex hardware [32].

Addressing those issues, we provide a reflectance model to jointly generalize across
all of these three axes. Instead of using analytic parameters, we parameterize
appearance by latent codes from a learned space and our decoder weights, allowing
for acquisition, interpolation and generation. Without involved capture equipment,
these codes are produced by presenting the system with a simple 2D flash image,
which is then embedded into the latent space. Avoiding to store any finite image
texture, we learn a second mapping to produce svBRDF maps from the infinite
random field (noise) on-the-fly, conditioned on the latent material code and decoder
weights. Instead of using any advanced capture device for learning, flash images will
be the only supervision we use. This unsupervised approach allows us to consider
our decoder weights as part of the latent representation, which we fine-tune at test
time in a few minutes.

A use case of our approach is shown in Fig. 6.1. First, a user provides a “flash image”,
a photo of a flat material sample under flash illumination. This sample is embedded
as a code into a latent space using a CNN and used to fine-tune our decoders’ weights.

This code and weights can then be manipulated, e. g., interpolated with a different
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material. Conditioned on this code, our fine-tuned decoder can generate an infinite
field of BRDF to be directly used in rendering.

For training, we solely rely on real flash images. The key insight, inspired by Aittala
et al. [166], is that these flash images reveal the same material at different image
locations —they are stationary— but under different view and light angles. Using this
constraint, Aittala et al. [166] were able to decompose a small patch of a single input
image to capture the parameters of a material model that could then be rendered under
novel view or light directions. However, this covers only part of the generalization
we are targeting: it generalizes across view and light, but not across location or
material. Further, they perform an optimization for every exemplar, requiring time in
the order of an hour, while ours takes minutes only.

In summary, our main contributions are
* a generative model of a BRDF material texture space;
 generation of maps that are diverse over the infinite plane;

* a flash image dataset of materials enabling our training with no BRDF parame-

ter supervision or synthetic data

Our implementation as well as an interactive webpage are publicly available: https:

//henzler.github.io/publication/neuralmaterial/.

6.2 Background

Aittala et al. [166] leveraged the fact that a single flash image of a stationary material
reveals multiple realizations of the same reflectance statistics under different light
and view angles. We will now recall a simplified definition of their approach.

A flash image is an RGB image of a material, taken in conditions where a mobile
phone’s flashlight is the dominant light source. We write L(x) to denote the RGB
radiance value at every image location X. The illumination is expected to be an
isotropic point light collocated with the camera. Further, the geometry is assumed

to be flat and captured in a fronto-parallel setting, so that the direction from light to
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every image location in 3D is known. Self-occlusion and parallax are assumed to be

negligible.

Reflectance is parameterized by a material, represented as a function f(x) mapping
image location x to shading model parameters, including the shading normal. Under
these conditions, the reflected radiance is L = Rf, where R is the differentiable

rendering operator, mapping shading model parameters to radiance.

A material f explains a flash image L if it is visually similar to L when rendered.
Unfortunately, without further constraints, there are many materials to explain the
flash image. This ambiguity can be resolved when assuming that the material f is
stationary. We say a material is stationary if local statistics of the shading model

parameters f do not change across the image.

Putting both —visual similarity and stationarity— together, the best material from a
family fg of material mapping functions parameterized by a vector 0, can be found

by minimizing a loss:

Z'(0):= T (L,Rfo) +A7(fo), (6.1)

where .7 (L,Rfy) is a metric of visual similarity between a flash image L and a

differentiable rendering Rfp, and .7 (f) is a measure of stationarity of a material
map f.

Comparison, .7, of two textures is not trivial. Pixel-by-pixel comparison is typically
not suitable to evaluate visual statistical similarity. Instead, images are mapped to a
feature space in which images that are perceived as similar textures, map to similar
points [118]. Different mappings are possible here. Classic texture synthesis [195]
uses moments of linear multi-scale filter responses. Gatys et al. [124] proposed to
use Gram matrices of non-linear multi-scale filter responses such as those of the
VGG [29] detection network. Such a characterization of textures was also used by
Aittala et al. [166] and, without loss of generality, will be used and extended in this
work as well.

While f is stationary, L is not —due to the lighting— and has features at different
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Table 6.1: Comparison of features between different previous methods. We distinguish
methods producing RGB from those generating BRDF or svBRDF, whether
those can be Non-Stationary and Infinitely sampled. We also distinguish if their
results for one input can be Diverse if they form a Space which can be queried
and how Fast direct sampling is.

s E % 2 % V é

A & L 2 8 9 I

. A 5 € =z & 3

Method Supervision R =2 Z S A wvn KL

Classic texture synth RGB X X v v v X V

Matusik et al. [168] RGB X X v v v v X

Matusik [142] BRDF v X X X Vv v VY

Georgoulis et al. [144] BRDF v X X X X Vv VY

Deschaintre et al. [145] svBRDF v V. X X X X V

Zhao et al. [194] Flashimage v v v X X X X

Aittala et al. [166] Flashimage v v v X X X X

Gao et al. [161] svBRDF v vV vV X X X X

Guo et al. [160] svBRDF v VvV Vv X X Vv X

Ours Flashimage v v X v v Vv V

random positions X which are compared as

T (L1,L2) := By 012 501 [| 2 (L1,X,5) = P (La, %, 5) 1], (6.2)

where &?'(L,x) crops a patch of randomly chosen scale s at the location x and
resamples it to the input resolution of VGG [29], computes the filter responses and

their Gram matrices:

P(L,x,s) = gram(vgg(resample(crop(L,X,s)))). (6.3)

Minimizing 6 with respect to Eq. 6.1 for a given L results in a material. fy can
represent different approaches. Aittala et al. [166] directly use the pixel basis and
optimize discrete material maps for 0 using a single input flash image L. With their
approach, optimizing for both visual similarity and stationarity is challenging. In
particular, the reflectance stationarity term ., requires a “spectral preconditioning”
step as explained in their paper. Instead, we propose an approach in the form of

a neural model f that is (i) defined on the infinite domain and (i1) stationary by
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Figure 6.3: Our architecture. Starting from an exemplar (top-left) our trained encoder
encodes the image to a compact latent space variable z. Additionally, a random
infinite field is cropped with the same spatial dimensions as the flash input image.
The noise crop is then reshaped based on a convolutional U-Net architecture.
Each convolution in the network is followed by an Adaptive Instance Normaliza-
tion (AdalN) layer [196] reshaping the statistics (mean y and standard deviation
o) of features. A learned affine transformation 7'-s per layer maps z to the de-
sired t-s and o-s. The output of the network are the diffuse, specular, roughness,
normal parameters of an sSvBRDF that, when rendered using a camera colocated
flash light, look the same as the input. Our unsupervised setting allows us to
fine-tune our trained network on materials to acquire.

construction. Thus, our loss does not need to include a stationarity term. To further
demonstrate the capabilities of our method, we summarize the design space of current

methods in Tbl. 6.1.

6.3 Method

An overview of our approach is shown in Fig. 6.3. We train a neural network which
acts as a decoder fp(x|z) that generalizes across spatial positions x as well as across
materials, expressed as latent material codes z. The material codes z are produced by
an encoder g with z = g(L). Both encoder and decoder are trained jointly over a set

of flash images using the loss:

Z(0) :=EL[7 (L, Rfo(-|go(L)))]- (6.4)

This equation is an adapted version of Eq. 6.1 to fit our objectives. In particular,
we propose a neural network-based fy, leveraging the expectation E; over all flash
images in our training set and removing the stationarity term as it is enforced by
construction in our network architecture. We describe the flash image encoder g

(Sec. 6.3.1), the material texture decoder f (Sec. 6.3.2), the texture comparison
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model .7 (Sec. 6.3.3) and our fine tuning approach (Sec. 6.3.5), next.

6.3.1 Encoder

The encoder g maps a flash image L to a latent code z. The flash images used by
our method are similar to those of recent svBRDF acquisition papers [166, 145]: we
use a phone with a flash collocated with the camera and capture surface in a fronto-
parallel way. Our encoder is implemented using ResNet-50 [190]. The ResNet starts
at a resolution of 512x 384 and maps to a compact latent code. Empirically, we find
a n, = 64-dimensional latent space to work best for our data and present all results

using this number.

6.3.2 Decoder

The decoder f maps location x, conditioned on a material code z to a set of material
parameter maps. The key idea is to provide the architecture with access to noise, as
previously done for style transfer [196], generative modelling [136] or 3D texturing
proposed in Chapter 5. In particular, we sample rectangular patches with edge length
of n x m pixels from an infinite random field and convert them to material maps
using a U-net architecture [155]. The U-net starts at the desired output resolution
n x m and reduces resolution four times using max-pooling before upsampling back
to n X m through a series of bi-linear upsampling and convolutions. Let F' be the
array of input features. For i = 0, the first level, in full resolution, these features are

sampled from the random field at x. Then, output features are

F’:=adalN(convg(F),Tez), (6.5)

where adaIN is Adative Instance Normalization (AdalN) [196], conv a convolution
(including up- or down-sampling and ReLLU non-linearity), z is a latent material code
and T is an affine transformation. Components with learned parameters are denoted

with subscript 6.
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We use AdalN as defined by Huang and Belongie [196] as

adaTl(§. {1.6%)) = (6~ p) + 1 (6.6)

and remaps the input features with mean @ and variance 0‘% to a distribution with

mean W and variance 62,

The affine mapping T is implemented as (n, + 1) X (2 X ¢;) matrices multiplied with
the latent code z. Here 2 X ¢; represent a different mean and variance for each channel
dimension ¢; of a layer. It provides the link between the material code and the noise
statistics. Each material code z is mapped to a mean and variance to control how the
statistics of features are shaped at every channel on every layer of the decoder.

Our control of noise statistics from latent codes is similar to StyleGAN [136], with
the key difference that we do not sample noise at different scales, but learn how to
produce noise with different, complex, characteristics at different scales by repeatedly

filtering it from high resolutions.

6.3.3 Images Comparison

As mentioned in Sec. 6.2, we want to evaluate visual similarity and stationarity. To
this end, we propose to compare images based on a loss that accounts both for the
statistics of activations [124] and their spectrum [197] on multiple scales across the

infinite spatial field,

y(LhLz) = EXNRZ,SN(smm,smaX)H‘@(Ll=X7S) — gz(Lz,X,S)h]. (6.7)
P(L,x,s) = gram(V(L,X,s)) + A - powerSpectrum(V(L,X,s)) (6.8)
V(L,X,s) := vgg(resample(crop(L,X,s))) (6.9)

Spectrum VGG Gram matrices capture the frequency of a feature appearance, unless
it forms a regular pattern Liu et al. [2016]. Liu et al. [197] proposed to include the
L1 norm of the power spectra of RGB images into the texture metric for texture
synthesis. We combine both ideas and use VGG, but do not limit ourselves to its

Gram matrix statistics, and also leverage its spectrum. We set A = le — 3.
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Scale As VGG works at a specific scale of features it was trained for, it behaves
differently at different scales. As the material should be visually plausible regardless
of its scale we include multiple scales s, ranging from sy = 0.1 to spmax = 8 in the

loss computation.

Infinity Expectation over the infinite plane is implemented by simply training with
different random seeds for the noise field. This results in the generation of statistically
similar, but locally different variations of materials. As, given a seed, every generated
patch is a coherent material, combinations of multiple patches remains coherent as
well. This allows us to query an endless, seamless and diverse stream of patches
without repetition. It also prevents over-fitting and is crucial to guarantee stationarity

by design.

6.3.4 Training

To enforce a generalizable material prior, we first train the system as a Variational
Auto-encoder (VAE) [198]. Instead of mapping to a single 64-D latent material code,
the encoder g maps to a 64-D mean and variance vector, from which we sample in
training. At test time we use the mean for each 64-D. We have omitted the additional
VAE terms enforcing z to be normally distributed from Eq. 6.4 and Fig. 6.3 for clarity.
We trained our model for 4 days and a batch size of 4 on an NVIDIA Tesla V100

using ADAM optimizer with a learning rate of le-4 and weight decay 1le-5.

6.3.5 Fine-tuning

Using the trained encoder-decoder pair we can instantaneously compress a 2D RGB
flash image to a latent code and decompress it into an infinite sSvBRDF field. The
quality of the decoding can further be improved by adapting the decoder weights
to a specific exemplar L* with a short one-shot training. To this end, all weights 6
are held fixed, except for the decoder weights 6* C 6, which are further trained to
reproduce a single flash image L* at material code z* = g(L*). This is made possible
by our completely unsupervised approach, allowing us to fine-tune any flash image,
without requiring ground truth maps. Note that unlike [160] we use a style loss

rather than a pixel-wise loss for fine-tuning, preserving the diversity properties of
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our results. In practice, we fine-tune for 1000 steps with an increased learning rate
by a factor of 10, for about 5 minutes.

Fine-tuning of two materials will result in two different decoders f; and f> as well as
two latent codes z; and z, produced by the same encoder. We show that despite being
a more complex space, interpolating both the latent code and decoder parameters, as
in lerp(fi, f»)(lerp(z;,z;)) works well in practice, Unless otherwise specified, we
show fine-tuned results in the remainder of this paper and ablate several variants in

Sec. 6.4.4.

6.3.6 Material model

We use the Cook-Torrance Cook and Torrance [1982] micro-facet BRDF Model, with
Smith’s geometric term [39], Schlick’s Schlick [1994] Fresnel and GGX [38]. Hence,
the parameters are diffuse RGB albedo, monochromatic specular albedo, roughness
and height, i.e., six dimensions. Instead of learning a normal map, a height field
is generated from which normals are computed using finite differences. During
our differentiable rendering step, we assume a FOV of 45° to simulate smartphone

cameras.

6.3.7 Alignment

Many flash images entail a slight rotation as it can be difficult to take a completely
fronto-parallel image. This was handled by Aittala et al. [166] by locating the
brightest pixel and cropping, but we found our, more abstract, training to struggle
with such a solution.

Instead, we add a horizontal and a vertical rotation angle to the parameter vector
generated from the latent code (not shown in Fig. 6.3 for clarity). During training,
these are used to rotate the plane, including the normals. During testing, these angles
are not applied meaning that the output is in the local space of the exemplar.

We use a branch of the encoder to perform the alignment task, allowing to jointly
align images based on their visual features.

A byproduct is that the encoder returns angular distance to fronto-parallelity, which

could be used to guide users during capture.
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6.4 Results

6.4.1 Dataset

We created an extended dataset of flash images for testing and training of our
approach. It comprises 356 images of various types of materials we captured using
four different smartphones. We reserve 50 images for testing, augmented by all
images from Aittala et al. [166]. Hence, no image from Aittala et al. [166] was used

for training.

6.4.2 Quantitative Evaluation

For quantitative analysis, we compare our approach to a range of alternative methods

with respect to different metrics.

Methods We compare to five methods by (i) Aittala et al. [166], (ii) Deschaintre
et al. [145], (iii) Gao et al. [161], (iv) Guo et al. [160], and (v) Zhao et al. [194].
All renderings of these methods are done with the material model described in their
respective paper. While Gao et al. [161] and Guo et al. [160] were designed to
be compatible with multiple image acquisition with known light positions, in our
comparisons we provide the same input as to our method: a single input image and

an approximate light position.

Metrics We quantify style, diversity, and computational speed. Style is captured by
L1 difference of the VGG Gram matrices of rendered images. A good agreement
in style has a low number i.e., less is better. We also evaluate XYZ histogram
L1 difference and find that all methods have below 1% of difference with Ground
Truth renderings, indicating good colour matching for all. Histogram difference
does not however capture the complex visual difference when comparing materials
(as can be seen in Fig. 6.5). Diversity is captured as the mean pairwise VGG L1
across all realizations. Here, more is better. The idea behind this diversity metric
is, that for a diverse method, two realizations should have a high difference. A
direct pixel metric would be sensitive to noise which generates small perturbations
resulting in false-positive differences. Hence, the choice of VGG features detects

whether realizations are indeed perceivably different. Note that we do not evaluate
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Table 6.2: We compare to recent material acquisition approaches on the L1 difference be-
tween VGG Gram matrices (VGG Style, lower is better) on both real and synthetic
results as described in Sec. 6.4.2. Additionally we evaluate each method’s capac-
ity to generate diverse realizations of a material with the mean pairwise VGG L1
across all realizations (Div, higher is better). We see that ours outperforms others
on perceived similarity with the VGG style metric. Additionally, ours is the only
one generating diverse material variations from a single image.

Method Styleerr. |  Div. 1
Flash Relit
Aittala et al. [166] 0.922 0.512 0.00
Deschaintre et al. [145] 0.943 0.653 0.00
Gao et al. [161] 0.738 0.556 0.00
Zhao et al. [194] 0.545 0.618 0.00
Guo et al. [160] 0.843 0.582 0.00
Ours 0.597 0439 2.08

pixel-wise metrics such as L1 or SSIM as these enforce local coherence, which is,

by construction, not targeted by our method.

Comparisons We use the described metrics to compare against multiple state-of-
the-art methods in material acquisition and report the results on real (Flash) and
synthetic materials (Relit) in Tbl. 6.2. For real results, we only have access to the
frontal flash-illuminated material and therefore compare the picture to a rendering of
each method’s result also under frontal illumination.

This, however, does not evaluate well the appearance under novel illumination, which
is a key property of svBRDFs. To validate the generalization across light directions,
we acquire 30 random stationary synthetic svBRDFs from CCO Texture and render
them to simulate a frontal-flash capture setup using Mitsuba2 [199]. All methods
are then run with this simulated flash image as input. We report the average of the
re-lighting error, against ground truth renderings, for all methods under 10 random
point light illuminations.

As shown in Tbl. 6.2, our approach is the only one to target diverse results, i. e., we
produce infinitely many realizations of a texture while all other approaches produce
only one. Thus, diversity (Div.) is zero for compared methods, while our approach
can generate varied realizations for each material.

In terms of computational speed, Aittala et al. [166] and Zhao et al. [194] both
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Figure 6.4: Comparison with other methods. Each method (rows) decomposes an image
into svBRDF parameters (columns). The first column shows the flash image
input and the second column the rendering of the results under a similar fronto-
parrallel lighting. The third column is the material relit from the top, showing
the generalization capacity across light. Our method’s quality is particularly
visible under a novel illumination (see also Fig. 6.5). This is because other
methods leave a trace of the flash in the syBRDF maps, as can be seen in the
decomposed channels (four right-most columns). These results are obtained
with our single image setting, compared methods Gao et al. [161] and Guo et al.
[160] could benefit from additional aligned images or accurate light calibration
when available. Please see the supplemental material for similar results on many
more materials.

require long —between 1 and 3 hours— per-exemplar optimization to produce a
stationary texture. Our approach requires around 500 ms to generate a material and
a few minutes to fine-tune it to a given input. This is in the same order of speed as
Deschaintre et al. [145] for generation and Gao et al. [161] and Guo et al. [160] for
the fine-tuning. Once fine-tuned, our method can generate new realizations and high

resolutions versions of the targeted material in around 500 ms.
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6.4.3 Qualitative Evaluation

Decomposition A qualitative example of our svBRDF decomposition (Normal, Dif-
fuse Roughness and Specular maps) and re-renderings under different lights are
depicted in Fig. 6.4. Please see our supplemental material for all results decomposi-
tion and comparison. We see that our method captures best the material behaviour
and does not suffer from artefact in the over-exposed area of the input image, which
can be seen in previous work. As our method uses materials statistics rather than

direct pixel-aligned image to material transformation, it is immune to such artefacts.

Relighting In Fig. 6.5, we show qualitative rendering comparisons on real materials
with illumination coming from the top. In this more challenging setting, it is clear
that existing works struggle to remove the highlight from the center of the flash
image, which does not affect our method. As Aittala et al. [166] reconstruct a small
(representative) patch of the large input picture, their method is also immune to flash
artefacts, but results in a very zoomed representation of the material. To compensate
for this ”zoom factor”, we tile the results in each direction. We empirically found

that 3 times works best for most materials.

Seeds In Fig. 6.6, we show the variation of our results when changing the seed. The
overall appearance of the material remains the same, but the details (such as the rust
or the leather normals and colour variation) vary.

Overall, we see in Fig. 6.4, Fig. 6.5 and Fig. 6.6 that our approach can capture a large
range of different stationary materials, reproducing their style, yet being diverse.

This enables different properties described next.

Infinite We show in Fig. 6.7 the “infinite” resolution capacity of our approach
against the common approach of tiling. Our result (top image) shows no sign of

repetitiveness even for a very large resolution (4096 x256).

Interpolation We show results of interpolation between materials, as described in
Sec. 6.3.5, in Fig. 5.12 and Supplemental Material. We compare against the linear
interpolation baseline and Guo et al. [160], which also allows interpolation. We find
our method to provide smoother interpolation than the Linear approach and to better

preserve intermediate material color than Guo et al. [160]. We additionally evaluate
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Figure 6.5: Relighting of different materials (rows) using material maps extracted by dif-
ferent methods (columns). The first column shows the input flash image where
light is fronto-parallel. The light in all other images comes from the top. While
no reference is available for this task, it is apparent that all the methods except
ours struggle to generalize to novel light conditions. Note that Deschaintre et al.
[145], Gao et al. [161] and Guo et al. [160] leave a dark residual of the flash
in the material maps. Zhao et al. [194] and Aittala et al. [166] fare slightly
better and avoid the residual, but the structures do not match. These results are
obtained with our single image setting, compared methods Gao et al. [161] and
Guo et al. [160] could benefit from additional aligned images or accurate light
calibration when available.

interpolation if we directly train on material individually (without the training step
described in Sec. 6.3.4). This confirms that this pre-training forms a coherent latent

space in which we can navigate.

Texturing Fig. 3.1 shows examples of applying maps produced by our approach to
a complex 3D shape. Thanks to our generative model, we can easily texture many

sneakers, without spatial or material repetition. At any point, a user can randomize
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Seed 2

Figure 6.6: Seeds variation. We vary the seed for the generation of different realizations
for acquired materials while preserving their overall appearance. The zoomed-in
insets all show the same region of the material, allowing us to better appreciate
the variations.

Figure 6.7: Infinite spatial extent. The top result is sampled at high resolution (256 x4096)
from our BRDF space, while the bottom result is a result from Guo et al. [160]
at 256 x256 resolution and horizontally tiled 16 times to achieve high resolution.
The absence of repetitiveness in the top result demonstrates that our learned
BRDF space can be sampled at any query (x,y) location without producing a
visible repetition artefact. By construction, our network architecture does not
require any special boundary alignment to avoid tiling artefacts.

the generated material, generate new materials from pictures or interpolate between

new materials and old ones.

Generation Our z space can be sampled to generate new materials as shown in

Fig. 6.9 with a variety of examples.
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Exemplar « Interpolation Exemplar

Figure 6.8: Interpolation of latent BRDF texture codes. In each row, a left and a right

latent code and generator weights z;, zp, g, g are obtained by encoding
two flash images, respectively. The intermediate, continuous field of BRDF
parameters is computed by interpolating, in the learned BRDF space, from z;
& g to 7z, & g and conditioning the decoder Convolutional Neural Network
(CNN) with the intermediate codes. The result is lit with a fronto-parallel light
source to demonstrate the changes in appearance. For comparison, the first row
shows image space linear interpolation, the second compares to Guo et al. [160].
The third row shows an ablation of our approach trained on a single material
(without previous full dataset training). This lack of training prevents it from
creating a cohesive space in which to interpolate. Overall our approach allows
for interpolation, progressively changing both structure and reflectance.

Interactive demo The visual quality is best inspected from our interactive WebGL

demo in the supplemental material. It allows exploring the space by relighting,

changing the random seed and visualizing individual BRDF model channels and

their combinations. The same package contains all channels of all materials as images

as well as compared methods. See the accompanying video for a demonstration of

our interactive interface.

Fine-tuning We show the results improve in quality when using the proposed fine-

tuning approach in Fig. 6.10. We can see that the structure and details better match

the input picture.
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Figure 6.9: Generation. Random samples from our space. We generate new materials by
sampling the z space and render them with a frontal flash. See supplemental
materials for more generated materials.

Ours (non-tuned) Ours

Figure 6.10: Fine-tuning. We show results on two results of real materials reproduced
using our pre-trained network (ours non-tuned) and the same material using
our fine-tuning approach. We can see that our fine-tuned results match the
input material appearance significantly better. Note that fine-tuning is only
with image supervision and does not have access to any underlying BRDF
supervision.

6.4.4 Ablation Experiments

We study several variants of our approach to evaluate the relevance of individual
contributions to our FULL method.

We report the results of this evaluation in Tbl. 6.3 with VGG Style error in Sec. 6.4.2.
We did not find the diversity of our method to be affected by these ablations.

SINGLE describes our method trained on a single example without the previous



100 CHAPTER 6. NEURAL MATERIALS

training step. The results are slightly better than our FULL method but requires twice
as much time per material training and does not generalize to a space, preventing
interpolation and generation of materials.

NONTUNED is our method without the fine-tuning step from Sec. 6.3.5, confirming
that it significantly improves the match to the acquired material. DECODERONLY
describes the change of our generator to a decoder-only architecture. We show that
removing the encoder part of the generator slightly degrades the results. FOURIER
and LIGHT respectively result from the removal of the Fourier component (power
spectrum) of our loss (Sec. 6.3.3) and the removal of the light alignment branch of
our encoder (described in Sec. 6.3.7), which both lead to slightly worse results.

Table 6.3: VGG style error for ablations relative to our FULL. For reference, our full method
has an absolute score of 0.44.

Ablation Error |

SINGLE -0.5%
NONTUNED +24.0%
DECODERONLY +2.0%
FOURIER +0.9%
LIGHT +1.7%

6.5 User experiment

We perform a user study to better understand the capabilities of different methods.
Our main aim is to provide material maps that robustly generalize to all light condi-
tions so they can be deployed in production rendering. Hence we study a relighting
task: given an input image in one light condition, we ask humans to pick the method

that looks most plausible “in a different light”.

Methods Subjects anonymously completed an online form without a time limit. At
the start of the user study, participants were shown two photos of a marble material
taken under two different lighting conditions to exemplify what a valid relighting
could look like. They performed 10 trials, each corresponding to one material. In
each trial, they were presented a reference image rendered in one light condition

(“flash™) and six relit images in another light condition (“top”). Relit images were
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Table 6.4: User preferences per method.

Method Freq.

Aittala et al. [166] 21
Deschaintre et al. [145] 10
Gao et al. [161] 4

Guo et al. [160] 11

Zhao et al. [194] 30

Ours 314

displayed in a randomized spatial 2D layout. We consider six different methods:
Aittala et al. [166], Deschaintre et al. [145], Gao et al. [161], Guo et al. [160], Zhao
et al. [194] and ours. Samples of those stimuli are seen in Fig. 6.5. Participants were
asked to pick the image (images were not named) that, according to them, was the
best faithful relighting of the source (flash) image. Note that no relit reference was

shown.

Analysis A total of N = 39 participants completed the experiment as summarized
in Tbl. 6.4. A x? test rejects (p < 0.0001) the hypothesis that choices were random.
Pairwise binomial post-hoc tests further show that our method is different from any
other method at the same significance level. Most importantly, subjects choose our
method in 314 out of 390 total answers 80.5 %). We did not analyze the relation of

other methods relative to each other.

6.6 Limitations

Our method relies on fronto-parallel flash acquisition. While we propose a mitigation
solution in Sec. 6.3.7, we show in Fig. 6.11 that we are not completely invariant to
large light and plane rotations. Our approach is also limited to stationary isotropic

materials and relies on the planarity of the captured surface.

6.7 Conclusion

We have presented an approach to generate a space of BRDF textures using a small
set of flash images in an unsupervised way. Comparing this approach to the literature

shows competitive metrics for re-renderings with the unique advantage of being able
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Fronto-parallel Non-parallel Side-lit Non-parallel & side-lit

Flash image

Resynthesis

Figure 6.11: Flash acquisition assumption. We show examples of how our results degrade
when fronto-parrallel, collocated flash assumptions are broken. The recovered
material appearance varies (roughness, high frequency normal) but maintains
the overall appearance of the input image.

to generate an infinite and diverse field of BRDF parameters.

In the future, it would be interesting to increase the complexity of supported material
whether in terms of shading or non-stationarity. Also, not relying on fine-tuning to
increase the network expressiveness would allow to create an even more cohesive
space. Further, more refined differentiable rendering material models could be used
to derive stochastic textures, including shadows, displacement, or scattering as well
as volumetric or time-varying textures. We believe that our framework will represent

a stepping stone for more complex, infinite and diverse BRDF acquisition.



Chapter 7

Conclusion

Self-supervised learning is an essential part of artificial intelligence. As we have
seen in this thesis, the combination of Al and differentiable inverse graphics allows
us to explicitly model higher-dimensional data without direct supervision during

training time.

3D reconstruction Acquiring large amounts of annotated 3D data is expensive and
tedious. In Chapter 3, hard-coded differentiable image formation models enabled
self-supervised 3D reconstruction from unstructured image collections through
adversarial rendering. However, the resulting quality of the proposed approach is
limited by low voxel resolutions and camera poses were not explicitly modelled,
i.e., 3D reconstructions are not canonically aligned as they are forced to be in
camera space. These limitations were addressed in Chapter 4. A large-scale dataset
consisting of object-centric videos is introduced providing multi-view data. Camera
poses are extracted automatically by an off-the-shelf SfM algorithm, providing
additional supervision without human effort. Exploiting multi-view data, a novel
warp-conditioned ray embedding (WCE) facilitates aggregation of multiple input
images and enables single- or multi-view reconstruction. The limiting voxel grid
representation was replaced with a neural field leading to results with higher fidelity.
Unlike the method in Chapter 3, reconstruction can be performed in world space
instead of camera space, due to known camera poses, which further helps to improve

the results.
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Texture and material synthesis Disentangling shape, material and lighting is an
important aspect towards controllable 3D content generation. The second part of the
thesis focused on the disentanglement of material and lighting, for which modeling
the material parameters as stationary textures was crucial. In Chapter 5, a self-
supervised 3D texture synthesis method only relying on stationary 2D texture images
is introduced. It features a generative model producing diverse 2D and 3D natural
textures. A major advantage of the proposed method is the use of an encoder that
can be used to map any given exemplar into a compact latent space while previous
texture models need to be re-trained for each exemplar. Furthermore, it allows for
3D texturing independent of shape or resolution without the need for UV mapping.
However, the method only captures RGB textures rather than material properties

which are required for physically-based rendering.

Building upon the previous idea, the proposed method in Chapter 6 alleviates this
by synthesizing material parameters from flash images. For a given stationary flash
image, the method is trained to produce material parameters, that when re-rendered,
resemble the input flash image under a statistical loss. Such a design does not
require access to the underlying svBRDF decompositions and can be trained in a self-
supervised fashion. Unlike prior work, an easy-to-acquire real-world dataset only
consisting of flash images is used for training rather than relying on synthetic data
containing pairs of flash images and svBRDF decompositions. Towards generative
texture modeling, the method generates a space of svBRDF textures, which can be

sampled from and produces diverse and infinite svBRDF textures.

7.1 Limitations

Even though methods advancing the progress towards shape and appearance mod-
eling from single or few observations have been presented, they all lack individual
control over camera pose, geometry, material and lighting. The two methods pre-
sented in Chapter 3 and Chapter 4 combine geometry, material and lighting into a
single representation where only camera pose can be controlled. In Chapter 5, 2D

textures are lifted to solid 3D textures, which decouples texturing from geometry,
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Geometry

7 N\

Material

Light

Figure 7.1: Examples of changing individual scene parameters are depicted. Beginning on
the top left, pose, geometry, material and light are changed consecutively. First,
the pose is tilted to the right, before moving the table from right to left. Next,
the material of the couch and the chairs is changed from green to orange fabric.
Lastly, the light is dimmed.

lighting and camera pose. However, this is accomplished in a well-defined setting
where no 3D geometry, lighting or camera pose is modeled. Material and lighting are
disentangled in Chapter 6, but again no 3D geometry or lighting are inferred as both
were known at training time. Even though not all scene parameters can be controlled,
each method provides a different subset of control. Ultimately, the question arises
whether it is possible to disentangle all scene parameters from just a single or a
few observations of a scene. An example of a potential pipeline to achieve this is

presented in Fig. 7.1.

To gain a better understanding of the limitations prevailing in current methods, let us
consider an abstract model. The aim of the model is to demonstrate the capabilities
of current methods. These are defined by the type of data that is required for training
as well as inference and the achieved amount of disentanglement. We start off with a

model of an ideal world as illustrated in Fig. 7.2.

In an ideal world, no limitations, in terms of annotated data, exist as knowledge of
an infinite amount of disentangled camera poses, geometry, materials and light is
assumed. In deep learning terms, this is equivalent to fully annotated training data.

Taking a snapshot of this world in the form of an image consequently produces an
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Figure 7.2: An abstract model that illustrates training a supervised algorithm that is capable
of disentangling scene parameters from a single image. See text for more details.

entangled version, which we seek to disentangle into its original parameters. In this
instance, supervised learning could be used to address the task, as full supervision
would be available. However, as discussed in Chapter 1, realistic and large-scale

annotated 3D datasets do currently not exist and potentially never will.

In the following, we will see how current methods relate to our abstract model,
as illustrated in Fig. 7.3. Recently, NeRF [54] has exploited multi-view data of a
single scene for novel-view synthesis and has shown results of impressive quality.
Multi-view data provides several poses of the same geometry, material and light
and thus provides partially disentangled supervision. NeRF provides full control of
the camera pose, however, only for a single scene and static light, which prevents
generalization. Following up on this idea, several methods have been proposed to
further disentangle the parameter space by accounting for lighting changes. Some of
these require different poses under different lighting conditions of the same geometry
and material [200, 201]. Others either rely on a material database as supervision
[202] or cannot disentangle shadows from diffuse albedo [203]. Although they
are able to disentangle camera poses, light and some even materials, this is only
possible for a single scene. Therefore, control is limited to single scenes where many
hundreds of images are required for good quality which means there is no potential

for scalability or extrapolation.

In comparison, PlatonicGAN has only access to unstructured and completely en-

tangled images. Despite this challenge, the method disentangles camera poses in a
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Figure 7.3: Current methods (NerF, PlatonicGAN, WCE) provide limited capabilities for
scene parameter disentanglement. Following an abstract model required training
and test supervision, the level of disentanglement and scalability potential are
illustrated.

platonic way from only a single image. This is possible as the method is trained on
an unstructured image collection containing images of different scenes. As a result,
it is able to extrapolate to unseen scenes which is a desired property, especially with
respect to disentanglement. Unfortunately, the resulting quality is very poor.

In Chapter 4, WCE is proposed, a method that significantly increases the resulting
quality at the cost of multi-view data as supervision. Nevertheless, it still allows for
generalization while being scalable. It would be interesting to see if this method setup
can be extended for more disentanglement. Inspired by those insights, prospective

future research directions are discussed in the next section.
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7.2 Future Work

7.2.1 Platonic Way

VIR

S, e
- -~
7\

— Real/Fake?

.' —— Real/Fake?

Figure 7.4: Disentangling scene parameters from images could be achieved by ensuring that
arbitrary combinations of individual scene parameters of different scenes are
not distinguishable from realistic images when rendered.

One way to achieve more disentanglement could be to revisit PlatonicGAN from
Chapter 3. The key idea is to generate a 3D model that when rendered from a random
pose looks natural, i. e., cannot be distinguished from real images by a discriminator
network. Previously, geometry, material and illumination were predicted jointly
which prevents disentanglement by construction. For a better disentanglement of the
scene parameters, a novel method could model them individually. This would allow
swapping of different parts between different scenes. For instance, geometry and
lighting could be switched between two scenes as illustrated in Fig. 7.4. This way,
arbitrary combinations of scene parameters can be rendered. In PlatonicGAN fashion,
the resulting images could be enforced to look natural by a discriminator. Note that
previously only one scene parameter, the camera pose, was changed. This setup does
not explicitly resolve ambiguities that are caused by rendering, but incentivizes the
individual elements to be plausible and therefore possibly allows for disentanglement.
To further enforce disentanglement, each individual component could be embedded
into a global latent space by an encoder network. After reconstruction, a single
parameter could be changed multiple times and re-rendered. By feeding the re-
rendered images into the encoder network, a self-supervised loss on the unchanged

parameters could be applied, which should further reduce ambiguities.
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7.2.2 Representation invariance

RGB(103 80 64) ——» Brown wood

RGB(142 143 142) —» White paint

RGB(137 135 129) — Grey stone

Figure 7.5: Instead of directly predicting RGB values of pixels it desired to represent
each pixel as a meaningful latent vector that describes higher-level surface
characteristics.

Current methods mainly use pixel-perfect objective functions such as Euclidean
distances (L1 and L2) or perceptual losses [204] such as VGG [127]. Euclidean
losses compute distances between pixels independently and average these. This
often leads to blurry results and missing high-frequency details. Modern perceptual
losses are based on Euclidean distances between higher-level feature activations
from pre-trained CNNs and visually improve results. Both types of losses struggle to
produce sharp and realistic images. To address these shortcomings, GANs minimize
the distance between the output distribution and original data distribution such that
a discriminator network is not able to distinguish between real and fake images.
Although they generate realistic images [106], they cannot be applied to image
reconstruction tasks without perceptual losses for regularization. Further, they are
notoriously hard to train and suffer from mode collapse [205].

Instead, what if we do not ask for a pixel-perfect loss but rather pose the problem
as local texture synthesis? We have already seen that the gram matrix [28] of
VGG features is capable of representing global image statistics. The goal then
would be to define local regions that share similar statistics and describe them
independently from each other, similar to Park et al. [206]. These local regions can
be represented by smooth segmentation masks in the form of a meaningful latent

space that describes local surface characteristics, €. g., brown wood, white paint,
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grey stone as illustrated in Fig. 7.5. Converting these smooth regions to match local
statistics could be achieved by using stationary textures or materials that are invariant
to local changes. Such an invariant representation could also be applied to geometry
or other parameters in the scene. For instance, instead of applying a loss pointwise
on densities, a statistical measure could take into account the local neighbourhood.
Geometric properties such as round corners or sharp edges could be enforced in such

a manner. Both of these ideas are promising directions for future work.



Appendix A

Escaping Plato’s Cave: 3D Shape

From Adversarial Rendering

A.1 Network architectures

We used PyTorch [176] in version 1. 0. 0. Our network architectures are shown in
Tbl. A.1, Tbl. A.2, Tbl. A.3, and Tbl. A.4. We trained the networks using a batch
size of 4. We used two Adam optimizers for Encoder + Generator and Discriminator
respectively with B; = 0.5 and B, = 0.999. We used learning rates of 0.0025 and
107> for encoder + generator and discriminator respectively and a latent space size 7

of 200.

Platonic For training stability reasons we only trained the discriminator when

accuracy > 0.8 similar to [71].

3DGAN and Platonic3D We used A = 10* for the 3D groundtruth reconstruction

term.

A.2 Evaluation Details

We evaluated our method on more classes: chair, car, lamp, rifle. See

Tbl. AS.
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Table A.1: Network architecture for the generator model. C corresponds to the number of
channels for the different image formations. (VH, AO:C = 1, EA: ¢ =4). We use
CONVTRANSPOSE (ConvT) layers for upsampling.

Layer Kernel Activation Shape # params
Input — — 200 —
ConvT 4x4x4 BN+ReLU 1024 x 4x 4x 4 ~13M
ConvT 4x4x4 BN+ReLU 512x 8x 8x 8 ~34M
ConvT 4x4x4 BN+ReLU 256x 16x16x 16 ~8M
ConvT 4x4x4 BN+ReLU 128 x 32x32x 32 ~2M
ConvT 1IxIx1 — cx64x64x64 ~c*8k
Sigmoid — — cx 64 x 64 x 64 —
# params — — ~75.2M

Table A.2: Network architecture for the encoder model. C corresponds to the number of
channels for the different image formations. (VH, AO:C = 1, EA: ¢ =4).We use
LeakyReLU with negative slope =0.2.

Layer Kernel Activation Shape # params
Input — — cx 64 x64 —
Conv 4x4 BN+LReLU 128 x32x32 ~c*2k
Conv 4x4 BN+LReLU 256x16x 16 ~ 525k
Conv 4x4 BN+LReLU 512x 8x 8 ~ 2M
Conv 4x4 BN+LReLU 1024 x 4x 4 ~ 8M
Conv 4x4 BN+LReLU 2048 x 1x 1 ~34M
Linear — — 200 ~ 400k
# params — — 45M

Table A.3: Network architecture for the discriminator model (2D). C corresponds to the
number of channels for the different image formations. (VH, AO:c =1, EA: C =
4).We use LeakyReLU with negative slope =0.2.

Layer Kernel Activation Shape # params
Input — BN+LReLU cx64x64 —
Conv 4x4  BN+LReLU 128 x32x32 ~c*2k
Conv 4x4  BN+LReLU 256x 16 x 16 ~ 525k
Conv 4x4 BN+LReLU 512x 8x 8 ~ 2M
Conv 4x4 BN+LReLU 1024 x 4x 4 ~ &M
Linear — — 1 ~ 16k
# params — — 11M
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Table A.4: Network architecture for the discriminator model (3D). C corresponds to the
number of channels for the different image formations. (VH, AO:c =1, EA: c =
4).We use LeakyReLU with negative slope =0.2.

Layer Kernel Activation Shape # params
Input — BN+LReLU cx 64 x 64 —
Conv 4x4x4 BN+LReLU 128 x32x32 ~c *4k
Conv 4x4x4 BN+LReLU 256x 16x 16 ~ 2M
Conv 4x4x4 BN+LReLU 512x 8x 8 ~ 8M
Conv 4x4x4 BN+LReLU 1024x 4x 4 ~33M
Linear — — 1 ~ 65k
# params — — 44M

Table A.5: Performance of different methods with varying degrees of supervision (superv.)
(rows) on different metrics (columns) for the different classes: chair, car,
lamp, rifle (200 shapes from the test set are used). Evaluation is performed
on absorption-only (AO). Note, DSSIM and VGG values are multiplied by 10,
RMSE by 10% and CD by 10°. Lower is better except for IoU where higher is

better.
Method Class Superv. 2D Image Re-synthesis 3D Volume
VH AO EA VOX ISO

DSSIM VGG DSSIM VGG DSSIM VGG DSSIM VGG DSSIM VGG RMSE IoU CD
Ours = 2D 1.58 648 1.66 537 146 564 171 631 159 6.79 9.24 0.25 10.31
3DGAN[71] & 3D 099 580 136 4.88 135 523 179 585 1.62 630 9.56 0.33 36.67
Ours 3D © 2D+3D 095 558 131 484 129 517 172 581 152 615 951 0.39 3560
Ours _ 2D 1.01 456 145 3.88 120 438 156 496 145 552 1217 0.39 17.32
3DGAN [71] § 3D 041 295 059 293 0.73 336 140 400 120 439 13.76 0.55 93.64
Ours 3D 2D+3D 044 3.08 0.66 3.01 078 345 143 409 123 448 13.58 0.26 88.01
Ours a 2D 1.21 592 1.14 478 097 521 117 574 111 616 7.14 0.26 5.07
3DGAN [71] E 3D 1.00 6.17 1.14 484 1.15 529 142 585 139 645 8.13 0.28 2495
Ours 3D ~ 2D+3D 092 587 1.07 474 1.11 523 137 569 131 621 845 024 2274
Ours ° 2D 0.65 441 0.65 373 0.64 3775 0.73 413 0.73 474 395 022 297
3DGAN[71] E 3D 050 3.78 050 3.26 0.54 3.26 0.64 3.67 0.64 410 3.74 039 535

Ours 3D 2D+3D  0.57 4.04 057 337 0.60 340 0.71 3.80 0.70 430 4.01 0.16 5.94







Appendix B

Unsupervised Learning of 3D Object

Categories from Videos in the Wild

Table B.1: We complement the evaluation of the impact of the number of source views
during test time for the metrics: EYGG, le)epth, IoU. We report results for 1, 3, 5

and 7 source images. The best result is bolded where lower is better for

E?epth and higher is better for IoU.

VGG
=",

AMT Freiburg Cars
Train-test Test Train-test Test

Method 1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7

Mesh 1.163 1.167 1.168 1.169 1.160 1.161 1.163 1.163 2.030 2.029 2.028 2.023 2.170 2.168 2.166 2.167
» Voxel 1.052 1.051 1.051 1.051 1.127 1.127 1.127 1.127 1.581 1.581 1.580 1.580 2.050 2.050 2.046 2.046
E\_ Voxel+MLP 1.041 1.040 1.040 1.040 1.131 1.130 1.130 1.130 1.469 1.468 1.468 1.468 2.067 2.063 2.063 2.064
= MLP 0.900 0.899 0.899 0.899 1.130 1.130 1.130 1.131 1.391 1.389 1.389 1.389 2.027 2.025 2.024 2.025

Ours 0.905 0.846 0.837 0.832 1.007 0.921 0.896 0.883 1.450 1.381 1.372 1.359 1.945 1.897 1.874 1.863

Mesh 0.599 0.599 0.599 0.598 0.598 0.598 0.598 0.598 0.601 0.604 0.605 0.606 0.556 0.556 0.556 0.556
o Voxel 0.776 0.777 0.777 0.777 0.660 0.660 0.660 0.661 0.891 0.892 0.892 0.893 0.517 0.511 0.509 0.510
S Voxel+MLP 0.775 0.776 0.777 0.776 0.652 0.654 0.654 0.654 0.878 0.878 0.878 0.878 0.540 0.541 0.542 0.541

MLP 0.871 0.871 0.872 0.872 0.654 0.653 0.653 0.653 0.872 0.872 0.872 0.872 0.472 0.470 0.472 0.471

Ours 0.866 0.884 0.886 0.889 0.774 0.788 0.787 0.787 0.889 0.897 0.898 0.897 0.600 0.624 0.629 0.632

Mesh 5.138 5.119 5.128 5.130 5.100 5.101 5.090 5.086 1.202 1.185 1.178 1.177 1.062 1.061 1.063 1.063
5 Voxel 2.150 2.141 2.140 2.141 3.069 3.064 3.067 3.065 0.591 0.590 0.585 0.583 2.133 2.181 2.207 2.200
g‘ﬁ Voxel+MLP 1.958 1.942 1.942 1.941 2.881 2.868 2.861 2.864 0.478 0.479 0.479 0.479 1.972 1.979 1.968 1.968
=~ MLP 1.389 1.378 1.377 1.377 3.583 3.587 3.590 3.593 0.595 0.593 0.594 0.593 2.521 2.530 2.519 2.520

Ours 1.593 1.291 1.201 1.172 2.186 1.847 1.802 1.776 0.535 0.467 0.457 0.453 1.606 1.595 1.589 1.603

B.1 Additional implementation details

In this section, we provide more detailed information about the dense image descrip-

tors @ as well as the neural radiance field . Furthermore, we give more ins

into the training process.

ights
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B.1.1 Dense image descriptors

This section describes in more detail the dense pixel-wise embeddings ®(I;) intro-
duced in Section 3.3 in the main paper.

For a given source image I;, the embedding field ®(/;) is composed of 3 different
types of features: 1) learned 5 - 32-dimensional dense pixel-wise features output by a

deep convolutional encoder network ®y_ne, 2) raw image rgb colors I, € R3XHXW

and 3) the segmentation mask m, € R1>*H*W,

Dense feature extractor ®y.net. The architecture of the U-Net inside Py et 18
defined as follows (a detailed visualisation is present in Fig. B.2). A source image
¢ € R¥>*HXW ‘masked by m*™ (retrieved from Mask-RCNN), is fed into a ResNet-
50, which returns spatial features from intermediate convolutional layers (layer],
layer2, layer3, layerd, layer5), and the final linear ResNet layer, which outputs
global features zcny;, 1.e. non-spatial. Each feature layer, including the global one, is
then passed through a 1x1 convolution to equalize the size of all feature channels
to 32. The spatial features are further bilinearly upsampled to the spatial size of
the source image and concatenated along the channel dimension to create a dense

embedding field @y (I;) € R 32XHXW,

v(X) L

63

Z(X, Isrc)
197

Figure B.1: The neural radiance field W is represented by an MLP. It takes as input the
warp-conditioned embedding z(x), the harmonic positional embedding y(x)
and to account for viewpoint variations, the harmonic directional embedding
y(r). It returns the rgb and opacity values.

Neural radiance field . Our scene is represented by a neural radiance field ¥
similar to [54] with the only difference that we additionally condition the field with

our warp-conditioned ray embedding, see Fig. B.1.
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B.1.2 Training details

We trained both the U-Net encoder ®y.net and the neural radiance field ¥ with
Adam optimizer. We set the batch size to 8 and the learning rate to 1e-4. Our method
as well as all baselines were trained on an NVIDIA Tesla V100 for 7 days. For all
raymarching baselines and our method, we shoot 1024 rays per iteration through
random image pixels in Monte-Carlo fashion. For each ray, we first uniformly sample
128 times along the ray in order to retrieve a coarse rendering (voxel or mlp based
depending on the method used). In the second pass, we sample each ray 128 times
based on probabilistic importance sampling following [54].

For the mesh baseline, we shoot rays for each pixel per iteration and use soft
rasterization to predict the surface intersection. In addition to the losses used for the
other baselines as well as our method, we additionally use a negative IoU loss Ly, a
Laplacian loss L;,, and smoothness loss Ly, according to [191] and weighted them

with 1.0, 19.0, 1.0 respectively.
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Figure B.2: The input to the dense feature extractor @ is a source image from a given view.
It first makes use of a ResNet-50 (Py.net) to retrieve the layer-wise features.
Then, each layer is independently fed to a 1x1 convolution followed by bilinear
upsampling to the original input resolution. The resulting feature blocks are
concatenated with the input image /°”“ and its corresponding object mask m*"“.
In case there are multiple source images available, this process is repeated for
each of them. Once all per-view features are obtained, the warp-conditioned ray
embedding is retrieved after applying the view-aggregation.

B.2 Additional qualitative results

Additional qualitative results are available and presented in Fig. B.4 and Fig. B.3.
Also, we provide more qualitative results on our project webpage: https://

henzler.github.io/publication/unsupervised_videos/. The


https://henzler.github.io/publication/unsupervised_videos/
https://henzler.github.io/publication/unsupervised_videos/
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page contains comparison of our method to baselines by showing the scenes from
the train-test or test subsets rendered from a viewpoint that rotates around the object

of interest.

B.3 Test-time view ablation

Furthermore, we also provide a view ablation of our method at test time. Recall
that we randomly sample between 1 and 7 source images during training. During
test time we evaluated our method separately on 1, 3, 5 and 7 views as input. In
Chapter 4, we provide an average of those numbers. In Tbl. B.1 we give insight into
how changing the number of source views affects performance. Not surprisingly,

increasing the number of source views consistently improves all metrics.
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Figure B.3: In each row, a single source image (1st column) is processed by one of the
evaluated methods (Mesh, Voxel, MLP+Voxel, MLP, Ours - columns 2 to 6)
to generate a prescribed target view (last column). We show results on the test
split.
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Figure B.4: Reconstruction with multiple source views. The top row for each object
shows all available source images (columns 1-7) for a given target image (top
right). The bottom row contains results conditioned on 1, 3, 5 or 7 source

images. In addition to the rendered new RGB views we also provide shaded
surface renderings.



Appendix C

Learning a Neural 3D Texture Space

from 2D Exemplars

C.1 Network Architecture

C.1.1 Encoder

The architecture for the encoder network remains consistent for both ours and
competitor methods. Depending on training for space, single, w/o transform the

parameter N changes accordingly.

Table C.1: Network architecture for encoder.

Layer Kernel Activation Shape # params
Input — — 3x 128 x 128 —
Conv 3x3 IN+LReLU 32x 128 x 128 ~1k
Conv 4x4 IN+LReLU 64x 64x 64 ~32k
Conv 4x4 IN+LReLU 128 x 32x 32 ~130k
Conv 4x4 IN+LReLLU 256 x 16x 16 ~524k
Conv 4x4 IN+LReLU 256x 8x 8 ~1M
Conv 4x4 IN+LReLU 256x 4x 4 ~1M

Linear — — 8 ~32k
Linear — — N ~0.5k
# params — — ~2.8M

C.1.2 Sampler

The sampler architecture used for both our and the mlp [131] method consists of

following convolutional architecture with 1x1 kernels emulating Linear layers:
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Table C.2: Network architecture for sampler.

Layer Kernel Activation Shape # params
Input — — N x 128 x 128 —
Conv 1x1 RelLLU 128 x 128 x 128 ~10k
Conv 1x1 RelLU 128 x 128 x 128 ~16.5k
Conv 1x1 RelLU 128 x 128 x 128 ~16.5k
Conv Ix1 RelLU 128 x 128 x 128 ~16.5k
Conv 1x1 RelLU 128 x 128 x 128 ~16.5k

Conv 1x1  ReLU 3x 128 x 128 ~400
# params — — ~T77k
C.1.3 CNN

For cnn and cnnD competitors we use a similar architecture to the proposed method

of [128]:

Table C.3: Network architecture for convolutional methods.

Layer Kernel Activation Shape # params
Input — — (32) + 256 —
Linear — — (32) + 256 ~80k
Linear — — 256 ~70k
Reshape — — 16x 4x 4 —

ConvT 4x4 ReLLU 128x &8x 8 ~32k
ConvT 4x4 RelLU 128x 16x 16 ~260k
ConvT  4x4 ReLLU 128 x 32x 32 ~260k

Upsample — — 128x 64x 64 —
Conv 3x3  RelU 64x 64x 64 ~70k
Upsample — — 64 x 128 x 128 —
Conv 3x3 RelLU 3x 128 x 128 ~2k

# params — — ~790k
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C.2 Results

Additional results of stripe images and interpolations are displayed below.

A webpage containing more results for all four classes (WOOD, MARBLE, GRASS
and RUST) including competitors can be accessed online: https://geometry.
cs.ucl.ac.uk/projects/2020/neuraltexture. Additionally, videos

of rotating shapes textured by our method are provided. Our code is available at:

https://github.com/henzler/neuraltexture

Figure C.1: Results derived from the encoded WOOD space.

Figure C.2: Results derived from the encoded MARBLE space.


https://geometry.cs.ucl.ac.uk/projects/2020/neuraltexture
https://geometry.cs.ucl.ac.uk/projects/2020/neuraltexture
https://github.com/henzler/neuraltexture
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Figure C.3: Results derived from the encoded GRASS space.

o N;*

o ' '»‘-uf‘ ' ‘

Figure C.4: Results derived from the encoded RUST space.
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Figure C.5: Latent space interpolation from one ground truth wood exemplar (left) into
secondary ground truth exemplar (right). Each row corresponds to independent
interpolations.

Figure C.6: Latent space interpolation from one ground truth grass exemplar (left) into
secondary ground truth exemplar (right). Each row corresponds to independent
interpolations.
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Figure C.7: Latent space interpolation from one ground truth marble exemplar (left) into
secondary ground truth exemplar (right). Each row corresponds to independent
interpolations.

Figure C.8: Latent space interpolation from one ground truth rust exemplar (left) into
secondary ground truth exemplar (right). Each row corresponds to independent
interpolations.
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