
Self-Supervised Shape and
Appearance Modeling via Neural

Differentiable Graphics

Philipp Henzler

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

Feb 16, 2023

ii

iii

I, Philipp Henzler, confirm that the work presented in this thesis is my own. Where in-

formation has been derived from other sources, I confirm that this has been indicated

in the work.

Philipp Henzler

Abstract

Inferring 3D shape and appearance from natural images is a fundamental challenge

in computer vision. Despite recent progress using deep learning methods, a key

limitation is the availability of annotated training data, as acquisition is often very

challenging and expensive, especially at a large scale. This thesis proposes to incor-

porate physical priors into neural networks that allow for self-supervised learning. As

a result, easy-to-access unlabeled data can be used for model training. In particular,

novel algorithms in the context of 3D reconstruction and texture/material synthesis

are introduced, where only image data is available as supervisory signal.

First, a method that learns to reason about 3D shape and appearance solely from

unstructured 2D images, achieved via differentiable rendering in an adversarial

fashion, is proposed. As shown next, learning from videos significantly improves

3D reconstruction quality. To this end, a novel ray-conditioned warp embedding is

proposed that aggregates pixel-wise features from multiple source images.

Addressing the challenging task of disentangling shape and appearance, first a method

that enables 3D texture synthesis independent of shape or resolution is presented.

For this purpose, 3D noise fields of different scales are transformed into stationary

textures. The method is able to produce 3D textures, despite only requiring 2D

textures for training. Lastly, the surface characteristics of textures under different

illumination conditions are modeled in the form of material parameters. Therefore, a

self-supervised approach is proposed that has no access to material parameters but

only flash images. Similar to the previous method, random noise fields are reshaped

to material parameters, which are conditioned to replicate the visual appearance of

the input under matching light.

Acknowledgements

The work presented in this thesis would not have been possible without the support

of the many wonderful people who helped me along the way. First and foremost, I

am extremely grateful to my supervisor, Tobias Ritschel. He provided me with the

best possible guidance I could have hoped for. His vision, creativity and passion for

research have helped me to become the researcher that I am today.

I would also like to extend a special thank you to Niloy J. Mitra for constantly sharing

invaluable research insights and demonstrating endless enthusiasm and dedication. I

am grateful for all the time he dedicated to salvaging seemingly lost projects and the

plethora of great ideas he provided for this thesis.

A big thank you goes out to Timo Ropinski. His advice and guidance have been

pivotal in my early research career. I would not have written these words without

Timo, as he was the one who introduced me to and sparked my passion for computer

vision and graphics.

David Novotny also deserves my deepest gratitude for being a role model with a

relentless work ethic, mentality to never give up and for fixing many of my bugs

during the deadline crunch. Chapter 4 would have never made it into this thesis

without him and the incredible help from Andrea Vedaldi and Roman Shapovalov.

A special thanks to Valentin Deschaintre. His exceptional material expertise and

dedication were instrumental in saving Chapter 6 and bringing it to fruition.

I express my sincere gratitude to everyone at UCL. I would like to extend a special

thanks to the people across the vision and graphics groups at UCL for the many

lunches, reading group meetings, and fruitful discussions we have had over the years.

I am especially grateful to Mohamed, Preddy, David and Stephan, who have stood

viii Acknowledgements

by me through all the ups and downs.

I cannot express how much I owe to my amazing flatmates and friends in London.

Lucas, Elise, Vincenzo, Oli, Felix, and Matthieu, thank you for being there for

me through thick and thin, cheering me up during stressful times and keeping me

grounded. Our dinners, sports activities, and fun conversations were the ideal ways

to unwind and take a break from the PhD stress.

Finally, I am incredibly thankful to my parents, siblings, and of course, my dear

Ramessa for your constant support, love, and encouragement throughout my entire

academic journey. Your sacrifices, patience, and understanding mean the world to

me. Thank you for being my rock, cheerleaders, and best friends.

Impact Statement

In this thesis, four novel approaches for self-supervised shape and appearance

modeling via neural differentiable graphics are proposed. All contributions are

published at CVPR, ICCV or SIGGRAPH Asia, the premier venues for scholarly

work in computer vision and graphics. To encourage further academic work, code,

datasets and additional results for all methods have been released.

Philipp Henzler, Niloy Mitra, and Tobias Ritschel. Escaping plato’s cave using

adversarial training: 3d shape from unstructured 2d image collections. In Proc.

ICCV, 2019, Chapter 3

Philipp Henzler, Jeremy Reizenstein, Patrick Labatut, Roman Shapovalov, Tobias

Ritschel, Andrea Vedaldi, and David Novotny. Unsupervised learning of 3d object

categories from videos in the wild. In Proc. CVPR, 2021, Chapter 4

Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. Learning a neural 3d texture

space from 2d exemplars. In Proc. CVPR, 2020, Chapter 5

Philipp Henzler, Valentin Deschaintre, Niloy J Mitra, and Tobias Ritschel. Gen-

erative modelling of brdf textures from flash images. ACM Trans Graph (Proc.

SIGGRAPH Asia), 40(6):195–206, 2021, Chapter 6

Contents

Abstract v

Acknowledgments viii

1 Introduction 1

1.1 Goal . 2

1.2 Contributions . 3

1.2.1 3D Reconstruction . 4

1.2.2 Texture and material synthesis 5

1.2.3 Self-supervised learning via differentiable physical priors . . 6

2 Background and Previous Work 9

2.1 Deep Learning . 9

2.1.1 Multilayer perceptron . 10

2.1.2 Convolutional Neural Networks 11

2.1.3 Generative Adversarial Networks 11

2.1.4 Neural Style Transfer . 12

2.2 Basics of Computer Graphics . 14

2.2.1 Geometry . 14

2.2.2 Lighting . 15

2.2.3 Material . 16

2.2.4 Rendering equation . 18

2.3 View Synthesis . 19

2.3.1 Structure-from-Motion . 20

xii Contents

2.3.2 Multi-view-Stereo . 20

2.3.3 Image-Based-Rendering 21

2.4 3D Reconstruction . 22

2.4.1 3D supervision . 22

2.4.2 Pose supervision . 23

2.4.3 Keypoint supervision . 24

2.4.4 Multi-view supervision . 25

2.4.5 Template supervision . 26

2.4.6 Minimal supervision . 26

2.5 Texture Synthesis . 27

2.5.1 Traditional texture synthesis 28

2.5.2 Texture synthesis meets deep learning 29

2.5.3 Space of Textures . 30

2.6 Material Modeling . 30

2.6.1 Spaces-of . 32

3 PlatonicGAN 35

3.1 Overview . 35

3.2 3D Shape From 2D Photo Collections 37

3.2.1 Optimization . 39

3.3 Rendering Layers . 40

3.4 Evaluation . 42

3.4.1 Datasets . 42

3.4.2 Baselines and comparison 43

3.4.3 Evaluation Metrics . 44

3.4.4 Quantitative evaluation . 44

3.4.5 Qualitative . 46

3.5 Discussion . 48

3.6 Conclusion . 49

Contents xiii

4 3D Learning from Videos 51

4.1 Overview . 51

4.2 Method . 53

4.2.1 Implicit surface rendering 54

4.2.2 Neural implicit surface . 56

4.2.3 Warp-conditioned ray embedding 56

4.2.4 Overall learning objective 59

4.3 Experiments . 59

4.3.1 AMT Objects and other benchmarks 59

4.3.2 Baselines . 61

4.3.3 Quantitative Results . 62

4.3.4 Qualitative Results . 63

4.4 Discussion and conclusions . 64

5 Neural Textures 65

5.1 Overview . 65

5.2 Method . 67

5.3 Learning stochastic space coloring 70

5.4 Evaluation . 73

5.4.1 Protocol . 73

5.4.2 Quantitative results . 74

5.4.3 Qualitative results . 76

5.4.4 User study . 79

5.4.5 Method properties . 79

5.5 Conclusion . 80

6 Neural materials 81

6.1 Overview . 81

6.2 Background . 84

6.3 Method . 87

6.3.1 Encoder . 88

xiv Contents

6.3.2 Decoder . 88

6.3.3 Images Comparison . 89

6.3.4 Training . 90

6.3.5 Fine-tuning . 90

6.3.6 Material model . 91

6.3.7 Alignment . 91

6.4 Results . 92

6.4.1 Dataset . 92

6.4.2 Quantitative Evaluation . 92

6.4.3 Qualitative Evaluation . 95

6.4.4 Ablation Experiments . 99

6.5 User experiment . 100

6.6 Limitations . 101

6.7 Conclusion . 101

7 Conclusion 103

7.1 Limitations . 104

7.2 Future Work . 108

7.2.1 Platonic Way . 108

7.2.2 Representation invariance 109

Appendices 110

A PatlonicGan Supplemental 111

A.1 Network architectures . 111

A.2 Evaluation Details . 111

B 3D Learning from Videos Supplemental 115

B.1 Additional implementation details 115

B.1.1 Dense image descriptors 116

B.1.2 Training details . 117

B.2 Additional qualitative results . 117

Contents xv

B.3 Test-time view ablation . 118

C Neural Textures Supplemental 121

C.1 Network Architecture . 121

C.1.1 Encoder . 121

C.1.2 Sampler . 121

C.1.3 CNN . 122

C.2 Results . 123

Bibliography 148

Chapter 1

Introduction

We, humans, have the ability to perceive our 3D world from 2D observations,

captured by our eyes and processed by the human visual system at a remarkable ease.

In our daily lives, we constantly interact with 3D objects and reason about their shape

and appearance intuitively. Teaching machines to reason about our 3D world from

visual observations such as images, similar to humans, is a common goal in scientific

fields ranging from computer vision to computer graphics to robotics. Extracting 3D

information from 2D images is a highly underconstrained and ill-posed problem. An

image is a projection of our 3D world onto a 2D plane from a given camera pose

which can be explained by an infinite amount of 3D variations. The interplay of

geometry, material and illumination influences the incoming amount of radiance for

each 2D location. Geometry determines the 2D location in the image plane where

any 3D point along a ray is mapped onto. The material characteristics describe

the surface of the geometry and its interaction with illumination. Thus, extracting

meaningful 3D information from a given image requires knowledge of camera pose,

geometry, material and illumination, which are referred to as scene parameters in

this thesis, see Fig. 1.1.

Machines perform tasks more consistently than humans by their very nature, however,

have failed to surpass human-level performance up until the deep learning era.

Early works on image classification [5], semantic segmentation [6, 7] or object

detection [8, 9] have demonstrated impressive results while relying on large amounts

of annotated 2D data [10] for supervised learning.

2 CHAPTER 1. INTRODUCTION

Visual observations y Scene parameters x

Shape and
appearance

modeling
f(y)

Rendering
R(x)

Pose

Material Light

Geometry

Figure 1.1: Shape and appearance modeling is the task of inferring meaningful 3D infor-
mation from visual observations. The inverse process is physically modeled by
rendering, i. e., mapping higher-dimensional data in the form of scene parame-
ters x to lower-dimensional data such as natural images y.

Efforts have been made to acquire datasets providing 3D information, e. g., synthetic

datasets [11, 12] or 3D scans [13, 14], which allowed to train algorithms that reason

about 3D in a supervised manner. However, their performance is bound by the

limitations of current annotated 3D datasets, which lack size, realism and diversity.

Furthermore, only limited supervision is provided. This leads to restricted general-

ization and expressiveness of supervised algorithms. Currently, no real-world dataset

exists that provides full information about scene parameters at a large scale. As a

result, overcoming the need for supervised learning is crucial, as large annotated 3D

datasets may never exist. Images or videos, on the other hand, are easily accessible

as vast amounts already are available on the internet and can also be easily captured

at a low cost.

“Will he not fancy that the shadows which he formerly saw are truer

than the objects which are now shown to him?” — PLATO;

Inspired by Plato, it seems desirable to learn from visual observations only. Doing

so would consequently reduce the required amount of supervision significantly.

1.1 Goal
This thesis addresses the challenging task of shape and appearance modeling where

only images as supervisory signals are available. Given a visual observation y, the

goal is to predict the underlying 3D scene parameters x without having access to 3D

information, i. e., no supervised training is possible. This is achieved by incorporating

1.2. CONTRIBUTIONS 3

physical priors in the method pipeline that map the 3D scene parameters back to

the original input domain. Even though this physical process, which we know as

rendering [15] is well understood and capable of producing photorealistic results

as demonstrated in Hollywood films [16, 17], it is not directly applicable to predict

scene parameters. The reason is that this task is highly ambiguous, i. e., many

different combinations of pose, geometry, material and lighting can map to the same

2D image.

Currently, simplifying assumptions are made to constrain those ambiguities in order

to make the task feasible, e. g., camera poses are known, access to template shapes

is given, or key points are required. Unfortunately, these assumptions do not only

simplify the task but also prevent the underlying algorithm from fully solving the

problem, as part of it is already solved, i. e., provided in terms of supervision. The

goal of this thesis is to limit the amount of supervision as much as possible and

therefore make the task at hand harder in order to increase the ability of the method

to learn a full 3D understanding.

Furthermore, neural networks follow the principle of Occam’s razor, i. e., they

converge to the most simple explanation that satisfies the objective function. This

means that ambiguous solutions cannot be resolved by carefully designed objective

functions. In this thesis, we will see that explicitly constraining neural networks to

adhere to known mathematical concepts helps to reduce aforementioned ambiguities

and in some cases can even turn these to an advantage. Several contributions that

share the same underlying principle are discussed next.

1.2 Contributions

In this thesis, neural network architectures that incorporate physical priors as interme-

diate differentiable building blocks are introduced. Such architectures can be trained

end-to-end in a self-supervised fashion which allows tapping into easy-to-access data

such as image collections or videos. Four contributions addressing different tasks

in the space of shape and appearance modeling are proposed and divided into two

parts. The first part discusses single-image 3D reconstruction challenges in Chapter

4 CHAPTER 1. INTRODUCTION

3 and Chapter 4, where only images or videos are available as supervision. In the

second part, approaches that focus on texture and material synthesis are explored.

A 3D texture synthesis method that lifts 2D textures to solid 3D textures without

explicit supervision is presented in Chapter 5. In Chapter 6, the acquired knowledge

from the previous chapter is used to additionally explain the surface characteristics

of textures in order to synthesize material maps from flash images.

1.2.1 3D Reconstruction

In Chapter 3 PLATONICGAN is introduced, which aims to discover the 3D structure

and appearance of a specific object class from an unstructured collection of 2D

images, i. e., where no relation between photos is known. The key idea is to train

a deep neural network to generate 3D shapes which, when rendered to images,

are indistinguishable from ground truth images (for a discriminator) under various

camera poses. To establish constraints between 2D image observation and their

3D interpretation, a family of rendering layers that are effectively differentiable is

suggested, which enables a self-supervised design (see Fig. 1.2). Discriminating 2D

images instead of 3D shapes allows tapping into unstructured 2D photo collections

instead of relying on curated (e.g., aligned, annotated, etc.) 3D datasets or assuming

the availability of 2D primitives such as key points. At test time, this method is

capable of reconstructing shape and appearance from a single image.

Rendering
D(x)

Images
yGT

Neural Network
f
θ
(y)

Loss
L(yGT , yOUT)

Geometry and texture xImage y

Figure 1.2: Given an image y of an object, a neural network f is trained to extract the 3D
geometry and texture x without having access to 3D data. This is achieved by
incorporating a differentiable rendering module that maps higher-dimensional
3D data back to the original 2D domain, enabling self-supervised training.

1.2. CONTRIBUTIONS 5

The goal in Chapter 4 is to train a deep neural network that, given a small number of

images of an object of a given category, will reconstruct its 3D shape and appearance.

Similar to the previous chapter, challenging real data with no manual annotations

is used for training. Instead of relying on unstructured image collections, a new

large dataset of object-centric videos suitable for multi-view training is introduced.

Exploiting multi-view data, a novel neural network design, called warp-conditioned

ray embedding (WCE), is proposed. It allows us to aggregate information from an

arbitrary number of views to aid 3D reconstruction and again makes use of differen-

tiable rendering which enables self-supervised training, as relative camera poses can

be extracted from multi-view data using Structure-from-Motion. In comparison with

the single-view method proposed in Chapter 3, this method significantly improves

reconstruction quality.

1.2.2 Texture and material synthesis

Slicing
D(x)

Images
yGT

Neural Network
f
θ
(y)

Loss
L(yGT , yOUT)

Image y 3D texture x

Figure 1.3: Given an image y of an object, a neural network f is trained to extract the 3D
geometry and texture x without having access to 3D data. This is achieved by
incorporating a differentiable rendering module that maps higher-dimensional
3D data back to the original 2D domain, enabling self-supervised training.

A generative model of 3D natural textures with diversity, visual fidelity and high

computational efficiency is proposed in Chapter 5. For a given texture exemplar in

2D, the goal is to produce a 3D texture with the same visual characteristics. The main

challenge is that no access to real-world 3D textures is possible whereas 2D textures

can be casually captured using mobile phones. Solving such a task seems impossible,

however, under the assumption of stationarity, i. e., image statistics are the same for

6 CHAPTER 1. INTRODUCTION

every part of the image, it becomes feasible. The idea is to use a hard-coded slicing

operation that extracts 2D slices from 3D textures, see Fig. 1.3. This way, a statistical

comparison can be performed in 2D rather than 3D which allows us to produce 3D

textures without 3D supervision in a self-supervised fashion. In order to generate

high-fidelity textures, random 3D noise fields of different frequencies are mapped to

3D textures using a neural network.

Shading
D(x)

Images
yGT

Neural Network
f
θ
(y)

Loss
L(yGT , yOUT)

Image y Material parameters x

Di!use

Specular

Normal

Roughn.

Figure 1.4: Given a natural texture y, e. g., wood, a neural network f is trained to produce a
3D texture with the same statistics x where no access to 3D textures is available.
This is achieved by incorporating a slicing module that maps higher-dimensional
3D textures back to the original 2D domain, enabling self-supervised training.

In Chapter 6, which builds upon the previous approach, additionally models the

surface characteristics of textures under different illuminations by synthesizing

materials (e. g., leather, wood, etc.) from flash images. When users provide a photo

of a natural material captured under flash light illumination, the presented method

produces an infinite and diverse spatial field of material parameters. This is achieved

without having access to material parameters at all. As presented in Fig. 1.4, the

produced material parameters are mapped back to the flash image domain through a

shading operation that is differentiable. This enables the use of a loss function in a

lower-dimensional domain.

1.2.3 Self-supervised learning via differentiable physical priors
Overall, a family of methods that follow the same underlying self-supervised design,

illustrated in Fig. 1.5, are proposed. Each method is based on an easy-to-acquire

dataset which can be captured using a smartphone and does not require any data an-

notation. Either unstructured image or video collections of category-specific objects,

1.2. CONTRIBUTIONS 7

a) Supervised Learning

b) Self-Supervised Learning

Visual observations
yGT

Di!erentiable function
D(x)

Scene parameters
xOUT

Dataset
xGT , yGT

Loss
L(xGT , xOUT)

Dataset
yGT

Neural Network
f
θ
(yGT)

Loss
L(yGT , yOUT)

yGT

x

Figure 1.5: Shape and appearance modeling is the task of inferring meaningful 3D infor-
mation from visual observations. The inverse task is rendering, i. e., mapping
higher-dimensional data, in the form of scene parameters, to lower-dimensional
data such as images.

texture collections or flash images of materials are used. During training, individ-

ual visual observations yGT from the dataset are sampled. Note that a supervised

approach would additionally provide the corresponding scene parameter information

xGT . This two-dimensional input data is then lifted to higher dimensions xOUT , such

as 3D geometry, 3D textures or material parameters, through a non-linear function

in the form of a neural network xOUT = f(yGT). This is achieved by using Convo-

lutional Neural Networks (CNNs) or Multilayer Perceptrons (MLPs) depending on

the desired representation. In a second step, differentiable functions D, which map

the higher-dimensional data back to the original input domain xOUT = D(f(yGT)),

are carefully incorporated as discussed above. This enforces the representation to

be explicit, i. e., in a human-readable format rather than a neural representation that

cannot be interpreted. Finally, the output of the differentiable function is compared

to the original input image through an objective function. This stands in contrast to

supervised methods that perform comparison in the higher-dimensional space, which

requires hard-to-acquire annotated data.

Chapter 2

Background and Previous Work

This thesis addresses tasks at the intersection of computer vision, graphics and deep

learning. More specifically, the focus lies on modeling shape and appearance from

images only, using inverse differentiable graphics. This requires knowledge in several

distinct areas which will be discussed in this section. Firstly, core deep learning

techniques are introduced before diving into how synthetic scenes are represented

and visualized (rendered) in computer graphics. Further, an overview of related work

in the context of 3D reconstruction algorithm is provided, specifically focusing on

the importance of deep learning for inverse rendering. Secondly, relevant concepts

for texture and material synthesis are addressed. Therefore, classical methods as

well as modern deep learning methods are presented before focusing on material

capture from flash images.

2.1 Deep Learning
Deep learning (DL) is a type of machine learning (ML) and artificial intelligence

(AI) that teaches neural networks to solve complex problems by learning from large

amounts of data.

A common deep neural network consists of an input and output layer with multiple

hidden layers in between. Each layer is represented by a mathematical function

that extracts features from incoming data, passes them through non-linearities and

uses the output as the input to the next layer. Overall the goal is to approximate any

desired function which is parameterized by learnable network weights. To achieve

10 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

this, the network weights are optimized such that the network best maps the input

data to the desired output. This process is referred to as training a neural network

and is outlined below.

First, the input data is processed by the neural network to make a prediction (forward

pass). An objective function then determines the error (loss) between the predicted

output and the target output (ground truth). Next, the network weights are updated

following the backpropagation algorithm introduced by Rumelhart et al. [18]. Hence,

the gradient of the loss with respect to the weights, using the chain rule, is calculated

backwards starting from the last layer to the first (backward pass). Finally, each

weight is updated according to the direction of the gradient. This process is repeated

until convergence. In practice, many different optimization algorithms can be used,

e. g., Stochastic Gradient Descent (SGD) [19] or Adam [20].

2.1.1 Multilayer perceptron

One of the earliest forms of AI, the perceptron, dates back to 1957 when Rosenblatt

[21] introduced a binary classification model. A perceptron takes as input a vector

x = (x1, ...,xn), multiplies it with a weight q = (q1, ...,qn), adds a bias b and returns

the weighted sum before passing the value through an activation function s .

s(
n

Â
1

qi⇥ xi +b) (2.1)

A single perceptron can only learn linearly separable patterns. For instance, it

cannot learn to approximate an XOR function as no single straight line exists that

can separate the input vectors with respect to their output value. However, when

stacking up multiple perceptrons as is the case for MLPs, any continuous non-linear

function can be approximated [22]. In practice, the Rectified Linear Unit (ReLU)

[23] activation function is widely used. However, any non-linear function can be

used as an activation function.

There are two major drawbacks of MLPs with regard to image processing. Firstly,

each perceptron is connected to every other perceptron, which exponentially increases

the number of learnable network weights with image resolution. This leads to

2.1. DEEP LEARNING 11

memory problems in higher resolutions. Secondly, MLPs are not translation invariant,

resulting in redundant operations for image processing.

2.1.2 Convolutional Neural Networks

A different type of architecture, that addresses these drawbacks, are Convolutional

Neural Networks (CNNs). These were first introduced by LeCun et al. [24], before

AlexNet [5] marked a major breakthrough by winning the ImageNet [10] competi-

tion in 2012. An important component in that success was the use of convolutional

layers as those address the main drawbacks of MLPs. Convolutional layers slide

local trainable filters, defined by kernel size and stride, over input images in order

to extract local features. In comparison with MLPs, each filter has access to a

spatial local neighbourhood instead of processing the entire image at once. This has

several advantages. The same filter is applied across spatial regions of the image,

which makes CNNs translation invariant. Moreover, higher resolution inputs can be

processed, as the number of filter elements is independent of the image size.

Another important concept, which cannot be exploited by MLPs, are pooling layers,

which reduce the dimensions of feature maps. To this end, a region, defined by width

and height, is compressed to a single value through a pooling operation. The two

most common operations are max pooling and average pooling.

Stacking many convolutional layers followed by non-linearities and pooling opera-

tions allows the extraction of increasingly complex features [25]. The first few layers

of a CNN learn lower-level features such as edges and circles. Deeper layers operate

on lower-level features and extract complex textures and patterns. Eventually, objects

or parts of objects can be represented at even deeper levels.

2.1.3 Generative Adversarial Networks

Generative adversarial networks were introduced by Goodfellow et al. [27] and

extend the aforementioned single-network approaches by introducing an additional

critic network. Two networks, a generator and a discriminator compete with each in

order to produce new synthetic instances of a given data distribution. The generator

aims to produce images that fool the discriminator, which, in turn, tries to detect

12 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

Figure 2.1: Synthetic images generated by a state-of-the-art generative adversarial network.
[26]

whether a provided image is real or fake. The goal is to play a min-max game

where both networks try to outperform each other. If training is successful both

networks learn from each other, become better and eventually the generator is able to

produce new synthetic images that cannot be distinguished from the real data, even

for humans as depicted in Fig. 2.1. In Chapter 3, PlatonicGAN exploits adversarial

training in order to produce 3D shape and appearance that when rendered to synthetic

2D images are not distinguishable from real images.

2.1.4 Neural Style Transfer
Another important concept that this Chapter 5 and Chapter 6 are inspired by is Style

transfer [28]. It is an optimization technique that, given a content and a style image,

optimizes an output image that finds the minimum distance between content and

style. In other words, the aim is to transfer the style from the style image to the

content image as illustrated in Fig. 2.2. This is achieved by a two-fold loss term,

one that minimizes the content and another that minimizes the style. Style transfer

leverages the fact that CNNs provide low-level pixel information in higher layers

2.1. DEEP LEARNING 13

Figure 2.2: Given a content image (top-left) and a style image (thumbnail images), the
method proposed by Gatys et al. [28] produces new images combining content
and style.

while deeper layers represent more global features [29]. Features of intermediate

layers l are defined as Fl 2 RCl⇥Nl where C are the number of filters and N is the

spatial size. The content loss is then defined as the squared error between features of

the content image F and the target image F̂ .

Lcontent = Â
l

Â
i
(Fl

i � F̂ l
i)

2 (2.2)

The style is represented as the correlation between learned feature maps, in particular,

their gram matrices. The gram matrix is calculated as dot product between flattened

features:

G = FT ·F (2.3)

The final style loss is measured by comparing the squared error between gram

matrices:

14 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

Lstyle = Â
i, j
(Gl

i, j� Ĝl
i, j)

2 (2.4)

The gram matrix serves as a statistical texture representation for stationary textures

(see Sec. 2.5). Other statistical measures such as mean and variance could be used as

well, however, empirically do not perform as well. Style transfer commonly uses a

pre-trained VGG network [29], as also used in this thesis, for feature extraction.

2.2 Basics of Computer Graphics
Fundamental to computer graphics is the interplay of geometry, material and lighting

as briefly discussed in Chapter 1. Each of these components influences the process of

generating a synthetic image, formally known as rendering. In the following section,

the rendering equation along with each component will be discussed in greater detail.

2.2.1 Geometry

Point cloud Voxel grid Mesh SDF

Figure 2.3: Visualisation of different 3D shape representations.

Geometry can be represented in many different ways, as illustrated in Fig. 2.3.

Polygon meshes are the most common representation for rendering-type applications

such as computer games or movies and have been an established industry standard

for the past decades. A mesh is defined as a collection of vertices, edges and faces

(polygons) that describe the surface of an object with a fixed topology. However,

for reconstruction tasks meshes are not the preferred choice as they rely on initial

template shapes that are deformed to match a desired output shape. Due to the fixed

topology, it is not possible to deform any template shape to a specific target shape,

e. g., chairs with a different number of legs require different template shapes.

A more flexible way of representing arbitrary shapes are voxel grids and point clouds.

2.2. BASICS OF COMPUTER GRAPHICS 15

A point cloud, similarly to a mesh, consists of a set of vertices where each point is

specified by a 3D location and can further contain attributes such as colour, normal,

etc. Point clouds are usually produced by 3D scanners or retrieved from multi-view

imagery (see Sec. 2.3). Unlike meshes, neither any connectivity between points

exists nor any surface information is provided, which causes several drawbacks.

Firstly, no trivial local neighbourhood relations can be established which is crucial

for feature extraction via neural networks as explained above. Secondly, capturing

accurate surface texture information is nearly impossible, especially for sparse point

clouds.

Voxel grids on the other hand are a discretized version of point clouds that subdivide

a bounded 3D space into a regular grid of 3D cells (similar to 2D pixels), which are

referred to as voxels. The geometry of a voxel grid is represented as density values

where 0 equals empty space and 1 means fully occupied. Due to their regular form,

accessing spatial neighbourhoods is straightforward and therefore convolutional

layers can directly be applied, which makes them very attractive for Deep Learning.

However, voxel grids are usually restricted to lower resolutions as small increases in

resolution cubically increase memory consumption.

Growing in popularity, neural 3D shape representations are defined as continuous

functions parameterized by neural networks. They are either represented as signed

distance functions (SDFs) or occupancy functions. An SDF determines the distance

to the surface at a given point. Concretely, the surface is represented as a zero-level

set of a neural network: S = {x 2 R3 | f (x;q) = 0}. The function returns negative

values if the given point lies outside the surface and positive values if the point lies

inside. On the other hand, an occupancy function returns a density value o 2 R1 for

each location x 2 R3 similarly to voxel grids. In this thesis, voxel grids as well as

neural representations in the form of occupancy functions are used as these provide

the most flexibility.

2.2.2 Lighting

The second component which is inevitable for scene understanding is lighting [30].

In computer graphics, light is represented in the form of light rays that are comprised

16 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

of an origin and direction. During simulation, a light ray is cast into a scene where

it interacts with geometry. Incoming light at a surface is absorbed and/or scattered.

Physically correct models require to trace light rays bouncing off geometry multiple

times. This process is computationally very expensive and will be described in more

detail in Sec. 2.2.4. How light interacts with geometry requires knowledge of surface

characteristics, as explained next.

2.2.3 Material

Material properties define how light is reflected or refracted on the surface of ge-

ometry. For this thesis, it is sufficient to only model the reflective property in the

form of a bidirectional reflectance distribution function (BRDF) [31]. Given an

incoming light direction wi and outgoing light direction wo at a surface point x, the

function calculates the amount of reflected energy. Different material models have

been proposed over the years that aim to approximate this function. Traditionally,

sophisticated hardware was used to capture the complex behaviour of materials by

densely sampling over lighting and viewing directions [32]. Such hardware is very

expensive and requires accurate calibration to achieve good results. An example of

such hardware is shown in Fig. 2.4.

For each light/view combination the material properties have to be stored in a lookup

table and when querying new light/view directions interpolation is required. Storing

each light-view combination for each different material is not feasible in practice

and therefore simplified mathematical models have been proposed that approximate

material parameters in a more compact manner.

Originally, a non-physical model was introduced by Phong [33]. This model is

very simple and parameterized by three parameters: diffuse albedo, specular albedo

and glossiness. The diffuse and specular albedos describe the reflected colours of

materials. The diffuse part reflects the colour evenly in all directions (lambertian

reflection) whereas the specular part reflects the light in a single direction, assuming

a perfectly smooth surface. The glossiness parameter controls how rough or smooth

a surface behaves. A very high glossiness value produces mirror-like behaviours

whereas lower values simulate scattering of light into different directions.

2.2. BASICS OF COMPUTER GRAPHICS 17

Figure 2.4: A hardware design for material acquisition. [32]

Given the incoming light direction wi and the surface normal n the diffuse part is

calculated by taking the dot product between them. The specular part additionally

requires the outgoing viewing direction wo and calculates the dot product between

wo and the reflected direction r (negative values are clamped to 0) before raising it

to the power of a , which represents glossiness. An illustration is provided in Fig. 2.5.

n

ωi

ωo

r

Setup BRDF Di!use Specular

Figure 2.5: Illustration of the parameters that define a BRDF.

A few years later this model was slightly improved by Blinn [34], however, yet not

physically accurate. In order to adhere to physical laws, the material model needs

to be reciprocal and energy conserving which neither of the proposed methods is.

Helmholtz-reciprocity [35] states that incoming and outgoing light directions must

18 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

be interchangeable without changing the output of the material model. The energy

conservation requirement is met if the total amount of energy of outgoing reflected

light is equal (or less) to the energy of incoming light.

Physically realistic models that comply with both conditions are commonly based

on microfacet models [36]. The microfacet theory at a macro level assumes a flat

surface which at the micro level is comprised of different tiny microfacets with

varying surface normals. The aim is to simulate how incoming light at the geometric

surface is reflected and scattered given the different orientations of microfacets.

Simple material models such as Phong do not model those variations, but microfacets

models approximate them in the form of a normal (microfacet) distribution function

D. Further, self-shadowing and self-masking effects among microfacets are modeled

via a geometric term G.

In this thesis, the Cook-Torrance microfacet BRDF model [37] is used in Chapter

6. It is parameterized by three parameters: diffuse albedo, specular albedo and

roughness. While the computation of the diffuse part is mostly identical to Phong,

the specular part is based on the microfacet theory and requires to compute D and

G as well as a Fresnel term F . The Fresnel term returns the reflectance ratio on

the surface for different incident angles. While for each of these parts numerous

alternatives exist, the GGX [38] microfacet distribution, a revised version of Smith’s

geometric function [39] and Schlick’s Fresnel term [40] are used in this thesis.

2.2.4 Rendering equation
Calculating the final reflectance value per pixel for a rendered image is achieved by

solving the rendering equation [41].

Lo(x,wo,l , t) = Le(x,wo,l , t)| {z }
light source

+
Z

W
fr(x,wo,wi,l , t)| {z }

BRDF

Li(x,wi,l , t)| {z }
incoming light

(wi ·n)| {z }
attenuation

dwi

(2.5)

The rendering equation describes the total amount of reflected radiance at a point

in space x, representing the geometry, along a particular viewing direction wo,

wavelength l and time t. For static scenes, which are the focus in this thesis, t can

2.3. VIEW SYNTHESIS 19

be neglected and assumed to be constant. l describes the perceived colour and is

usually discretized to the RGB (red, green and blue) colour spectrum. Le is the

emitted radiance at a given point and direction and is only relevant if there exists

a light source at this location. The remaining part of the equation is an integral

over all incoming light directions W. It is defined by calculating the BRDF fr,

representing material properties as explained in Sec. 2.2.3. Li is a function returning

the incoming light at a given point x and incoming direction wi. The last part is

the attenuation factor decreasing the radiance based on the incident angle between

incoming direction wi and surface normal n defined by geometry. It becomes clear

that manipulating either geometry, material or lighting will change the final rendered

image. However, solving global illumination with such a recursive equation is very

computationally expensive and cannot be solved in real-time yet. Usually, it is

approximated using Monte Carlo methods [42] or other simplifying assumptions

are made such as pre-computing environment maps [43]. In this thesis, simplifying

assumptions are made with a focus on BRDF estimation in Chapter 6 and volume

rendering [44] in Chapter 3 and Chapter 4, instead of solving the entire rendering

equation. Volume rendering is the process of casting rays through a volumetric

density field while simulating the absorption of light along the ray [44]. Different

image formation models exist which will be explained in detail in Sec. 3.3.

2.3 View Synthesis

Reconstructing shape and appearance from multiple images has a long history in

computer vision. Over the years, various methods such as Structure-from-Motion

[45, 46], Multi-View-Stereo [47, 48, 49, 50], Image-Based-Rendering (IBR) [51,

52, 53] and the more recent Neural Radiance Fields (NeRF) [54] approach have

emerged.

Under the assumption that input images are unstructured, most Multi-View-Stereo,

Image-Based-Rendering and NeRF methods are built on Structure-from-Motion to

extract relative camera poses.

20 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

2.3.1 Structure-from-Motion

Structure-from-Motion (SfM) consists of two main stages. The first stage finds fea-

ture correspondences between images. This requires to detect unique features such

as corners and edges before finding point correspondences between pairs of images.

A widely used approach for feature extraction is Scale-invariant feature transform

(SIFT) [55] which is invariant to scale, rotation and changes in illumination.

The second stage in SfM uses these correspondences for joint 3D reconstruction

and camera pose estimation. The relation between two images of the same scene

from different camera views imposes geometric constraints (epipolar geometry)

which along with known point correspondences allow to infer relative camera

poses between two images. Once the relative poses are known, the corresponding

3D location of any correspondence pair can then be estimated using triangulation.

However, not all computed point correspondences will be correct due to noisy data.

To remove outliers a well-established method called Random Sampling Consensus

or RANSAC in short is commonly used [56]. While estimated relative camera poses

might be accurate for individual image pairs, it does not necessarily mean that the

estimates are consistent for all combinations. Especially, since the same features

might exist across multiple images. To this end, all camera parameters and 3D points

are optimized simultaneously to minimize reprojection errors in all images. This

step is referred to as bundle adjustment [57].

2.3.2 Multi-view-Stereo

Even though SfM is able to extract relative camera poses and a sparse point cloud,

it is desired to obtain dense reconstructions, i. e., to obtain depth information for

each pixel and therefore maximum utilization of the available input. Multi-View-

Stereo (MVS) complements SfM towards this goal. It requires camera parameters

as input which can be provided by SfM and unlike SfM returns a dense 3D re-

construction. This is achieved by finding dense correspondences between images.

More specifically, the key is to determine the depth for each pixel such that when

re-projecting it into another view the appearance matches. To do so, a metric is

2.3. VIEW SYNTHESIS 21

required that measures the photo-consistency, i. e., the probability of a pixel being

the potential match. Commonly, local pixel neighbourhoods rather than single pixels

are compared as this allows for a more robust and invariant measure under different

illuminations and noisy cameras. For instance, the Sum-of Squared-Differences

(SSD) or Normalized Cross-Correlation (NCC) could be used as a measure. Find-

ing photo-consistent correspondences has its limitations. For example, texture-less

surfaces are ambiguous to photo-consistency and thus cannot be uniquely identified.

Furthermore, glossy surfaces even when textured are difficult to be matched due to

view-dependent changes.

2.3.3 Image-Based-Rendering

Image-Based-Rendering (IBR) aims to produce photo-realistic re-rendering of a

scene given a collection of images from different views. While SfM and MVS

explicitly model the geometry, IBR requires a full understanding of a scene that

also includes material and lighting. Unlike classical rendering geometry, material

and lighting do not necessarily have to be modeled explicitly for IBR. Over the

years, different scene representations have been proposed that provide shortcuts to

classical rendering. For instance, under the assumption that input images only differ

in rotational changes, image stitching techniques [58] allow to blend overlapping

regions without knowledge of explicit geometry. Another representation that does

not model geometry explicitly are light fields [59]. Unlike image stitching, which

does not allow for view-dependent changes, light fields model the radiance in

every direction at every location in space, which is represented by a 5-dimensional

plenoptic function [60]. Storing and sampling this function is not only memory

expensive but also computationally infeasible. In practice, it is often reduced to 4

dimensions under the assumption that empty space such as air is transparent, i. e.,

radiance stays constant when travelling through empty space along a certain viewing

direction [61] and therefore does not need to be modeled. Many more representations

that go beyond the scope of this thesis exist and are discussed in more detail by [62].

Closely related to this thesis, the seminal work by Mildenhall et al. [54] (NeRF)

proposes to approximate a radiance field using an MLP that given a spatial location

22 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

and direction returns the opacity and colour. It further approximates the behaviour

of the plenoptic function by using differentiable volume rendering to produce the

corresponding colour values for a given camera pose. Despite the stunning result

quality, rendering an image is computationally very expensive and can take up to

several minutes.

Follow-up methods such as NSVF [63] combine NeRF and voxel grids to improve

the scalability and expressivity of the model whereas Yariv et al [64] use sphere

tracing to render signed distance fields.

2.4 3D Reconstruction
While SfM, MVs and NeRF require many views of the same scene, this thesis focuses

on 3D reconstruction from only a few or even single images. This task requires

training neural networks that are capable of learning a prior over an entire dataset in

order to make accurate predictions for unseen objects at test time.

In this section, related methods that provide different levels of supervision will be

reviewed and sorted in decreasing order by the level of supervision they receive.

When reconstructing category-specific objects silhouette supervision is assumed to

be a mandatory requirement in this thesis. Currently, very few approaches exist

that seek to perform object-specific single-view reconstruction without silhouette

supervision [65]. Therefore, silhouettes are assumed to be available as supervision,

unless stated otherwise.

2.4.1 3D supervision

Full supervision in the form of annotated 3D datasets such as Shapenet [11] allows for

supervised learning in 3D. Several methods suggest learning 3D voxel representations

conditioned on single images. The general design of such networks is based on an

encoder that generates a latent code which is then fed into a generator to produce a 3D

representation (i. e., a voxel grid). Wu et al. [66], Yang et al. [67], Varley et al. [68]

learn binary 3D voxel grids from 2.5D depth maps. Given a 2D natural image, [69]

predict 2.5D sketches (depth maps, normals and silhouettes) in a supervised manner,

before feeding these into a 3D decoder to estimate the full 3D shape. In a similar

2.4. 3D RECONSTRUCTION 23

fashion, Wang et al. [70] first predict a coarse shape, followed by a 3D refinement

decoder. Wu et al. [71] directly predict 3D shapes from single images which is

accomplished by adversarial training using a 3D discriminator in combination with a

supervised 3D loss. Girdhar et al. [72] propose a joint embedding of 3D voxels and

2D images. [73] recursive design takes multiple images as input and refines the 3D

reconstructions in a recurrent manner. Kar et al. [74] also require multiple images

and propose a simple “unprojection” network component to establish a relation

between 2D pixels and 3D voxels without resolving occlusion. Addressing the

problem of limited voxel resolutions, Mescheder et al. [75] propose to predict binary

per-point occupancies in a continuous manner. Alternatively, [76, 77] reconstruct

meshes from single views and Fan et al. [78] produce points instead of voxel grids

from 2D images.

All aforementioned methods require full supervision in the form of images and

corresponding 3D CAD models. In order for this to work, the models in the dataset

are required to have the same scale and to be canonically aligned, e. g., all cars

are up-right and face forward. The reason being, that predicting scale and pose of

objects from images is ambiguous. Currently, annotated 3D datasets that provide

full supervision suffer from a domain gap to real-world data and further lack in

size. Thus, approaches that do not require supervision in the form of 3D, but rather

learn to reason about 3D from 2D images were proposed. The key to success is to

simultaneously predict the pose and shape from images which is highly ambiguous.

2.4.2 Pose supervision

To simplify the problem, several methods have been proposed that provide images

with corresponding camera poses. In that case, one can follow the general design of

fully 3D supervised methods. First, the input image is embedded into a global latent

space before estimating the 3D geometry using a decoder network. Additionally,

the 3D shape is then projected back to 2D given the camera pose and the objective

function is defined in 2D rather than 3D. In order for it to work, the objects with

respect to the camera poses have to be canonically aligned and of the same scale,

similar to fully 3D supervised methods. If that was not the case, the shape and pose

24 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

ambiguity would not be resolved as the decoder has neither any knowledge about

the alignment of the object nor the size. Another requirement is that the projection

step has to be differentiable for backpropagation.

The pioneering work by Rezende et al. [79] proposes a black box renderer for meshes

which relies on REINFORCE [80] to approximate gradients. A generalization from

visual hull maps to full 3D voxel grids is proposed by Yan et al. [81]. OpenDR

proposes [82] the first differentiable renderer for meshes that is limited to surface

orientation and shading. The key difficulty here is to make the rasterization step

differentiable as all other steps in the common graphics pipeline are differentiable.

Several methods are proposed to do so [83, 84]. They all learn to deform an initial

mesh template shape while also learning textures in the form of UV maps. Empiri-

cally, the preferred choice for the template is a sphere. This thesis focuses on voxels

and neural representations which can express arbitrary topology, e. g., chairs with

drastically different layouts, which are not a mere deformation of a base shape. Chen

et al. [85] improve existing methods while additionally estimating lighting. Tul-

siani et al. [86] enable differentiable volume rendering, allowing for reconstruction

of voxel grids from images only.

Unfortunately, pose supervision is hard to acquire in real-world scenarios, due to

the reasons explained above. Thus, the aforementioned methods rely on synthetic

datasets which contain 3D shapes. These can be rendered from random poses to

generate training data. To circumvent the need for direct pose supervision, cues

such as key points, template shapes or multi-view data are exploited, which will be

discussed in the next sections.

2.4.3 Keypoint supervision

Manual pose labeling is a task that humans are not capable of. One of the early

works to tackle single-image 3D reconstruction on natural images that aims to require

as little supervision and user input as possible was developed by Cashman and

Fitzgibbon [87]. The idea is to fit a morphable template model to given silhouettes

and key points [87]. First, a user has to position the template shape roughly over the

desired object to reconstruct. Then the method optimizes shape and poses jointly

2.4. 3D RECONSTRUCTION 25

based on given silhouettes and key points. Another line of work [88, 89] first exploit

SfM to estimate rough camera poses using keypoint and silhouette information. In

a second step, shape surrogates, i. e., similar object shapes from a 3D dataset, are

sampled and the best matching shape is chosen based on visual hull. In a similar

fashion, CMR [90] first use SfM and 2D key points to initialize camera poses on

the CUB [91] dataset. They then train a neural network to predict refined camera

poses, template deformations and texture maps. With the use of differentiable mesh

rendering [83] they optimize for silhouette, projected 2D key points and textured

renderings. These methods still access 3D shape templates and 2D key points, despite

not requiring any explicit 3D supervision.

2.4.4 Multi-view supervision

Multi-view information can help to alleviate the need for pose and key point infor-

mation. Inter-view constraints can be used to estimate depth maps [92, 93] using

reprojection constraints: If the depth label is correct, re-projecting one image into

the other view has to produce the other image. Tulsiani et al. [94] propose a method

that is supervised by multi-view pairs of the same object category with an associ-

ated verification image for the second image. They use the first image to predict

the shape as a voxel grid while the second image is used to predict the pose. The

predicted shape is then rendered from the estimated pose, which enables the resulting

image to be compared to the verification image, ultimately enforcing multi-view

consistency. As a consequence, the predicted shape is aligned canonically. In a

similar fashion, Insafutdinov and Dosovitskiy [95] enforce multi-view consistency,

however, instead of using a voxel grid as shape representation they predict a point

cloud. Using object-specific video data, Novotny et al.[96, 97] canonically align

point clouds. They predict poses of multiple images of the same object and then

enforce the relative poses to be consistent. Training on multiple different objects

enforces the pose predictor to predict absolute poses.

Recent works produce pixel-wise feature encodings per input view, which are then

aggregated in different ways using knowledge of relative poses [98, 99, 100, 101,

102]. Yu et al. [101] averages features over multiple views. However, simply

26 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

averaging features from significantly different viewpoints hurts performance due

to bleeding artefacts. Wang et al. [102] learn to interpolate between views in an

IBR fashion, which prevents inpainting in unseen areas. Similar to those works,

an aggregation function that prioritizes features based on their relative angles is

proposed in Chapter 4.

2.4.5 Template supervision

Multi-view data curation is feasible, however, unstructured image data is easier to

retrieve and hence more appealing. In the following, methods that solely receive

template supervision are presented. This is desired as manual annotation of key

points is very time-consuming and does not scale whereas in the case of template

supervision, only a single template is required for a specific class of objects. Kulkarni

et al. [103] predict a pixel-to-surface mappings that are consistent across a canonical

3D template. As a result, pose prediction does not require keypoint information,

however, the shape itself is not learned explicitly as it is given by the template.

Kulkarni et al. [104] extend this idea by also learning articulations.

Goel et al. [105] jointly predict pose and deform a 3D template. In a first pass, shape,

texture as well as multiple camera poses are estimated for a single input image.

During training, each proposed view is rendered and compared to a reconstruction

loss. Once the network is converged, the best possible camera for a single image is

trained by another network such that at test time the approach is able to predict a

single pose. Due to the rough shape template only small intra-class variations are

possible, i. e., different articulations of a bird such as closed and open wings are not

possible.

2.4.6 Minimal supervision

In the previous sections, we have seen approaches that require more than just images

as supervision. Since large amounts of data are key for machine learning techniques it

is desirable to only rely on unstructured image collections as these exist in abundance.

Exploiting the StyleGAN [106] latent space, Zhang et al. [107] extract camera poses

that can be used for self-supervision when rendering. However, a few manual pose

2.5. TEXTURE SYNTHESIS 27

annotations are required for bootstrapping. Wu et al. [108] propose a fully self-

supervised approach that exploits shading to extract albedo, pose, and lighting. This

has only been demonstrated for limited viewpoint variation and does not reconstruct

a full 3D model but rather 2.5D in the form of a depth map. Li et al. [109], use self-

supervised semantic features of [110] as a proxy for 2D key points as well as further

constraints such as symmetry to help the reconstruction. Similar to the approach in

Chapter 3, Gadelha et al. [111] tackle the problem at hand in an adversarial fashion.

They train a 3D voxel generator whose 2D projections are not distinguishable

from a 2D discriminator. The method receives three sources of supervision: view

information gets explicitly encoded as a dimension in the latent vector; views come

from a manually-chosen 1D subspace (circle); and there are only 8 discrete views.

Those constraints are alleviated in Chapter 3, as PlatonicGAN works on completely

unstructured image collections in a fully self-supervised manner. Extending this idea,

GRAF [112] propose the use of neural representation in the form of an MLP instead

of a voxel-grid, allowing for higher resolutions. Unlike the aforementioned methods

that exploit explicit differentiable rendering, HoloGAN [113] learns a 3D voxel

feature grid that is mapped to 2D via reshaping and the final images are rendered

using 2D convolutions. While this method can ‘hallucinate’ high-quality images, the

resulting images from different poses are not multi-view consistent as no explicit 3D

model is enforced.

2.5 Texture Synthesis

Given an image, the goal of texture synthesis is to generate a new image that has the

same statistics but is different pixel-wise. A classic definition of texture is defined by

Julesz [114]: a texture is an image full of features that in some representation have

the same statistics.

Traditionally, textures have been classified as either deterministic or stochastic. A

deterministic texture is usually composed of small and easily identifiable compo-

nents that form a regular pattern whereas a stochastic texture is comprised of less

recognisable components as they appear to be more random. A few examples of

28 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

Figure 2.6: Examples of textures.

different textures are shown in Fig. 2.6 [115].

Another property that textures can be distinguished by is stationarity. An image

fulfils the stationarity constraint if the statistics of two random crops of an image

are identical, see Fig. 2.7. In this thesis, textures are assumed to be stochastic and

stationary.

Stationary Non-Stationary

Figure 2.7: A visualisation of a stationary (left) and a non-stationary (right) texture.

2.5.1 Traditional texture synthesis
Capturing the variations of nature using stochastic textures has a long history [116].

Making noise useful for graphics and vision is due to Perlin’s 1995 work [117]. Here,

textures are generated by computing noise at different frequencies and mixing it with

linear weights. A key benefit is that this noise can be evaluated in 2D as well as in 3D

making it popular for many graphics applications. Portilla and Simoncelli [118] have

provided a practical method to compute representations in which to do statistics on,

2.5. TEXTURE SYNTHESIS 29

using linear filters on multiple scales. Wavelet noise [119] moved this idea further

by band-limiting the noise that is combined. Such methods can be used for materials,

e. g., gloss maps, bump maps, etc. It however does not provide a solution to acquire

a texture from an exemplar, which is left to manual adjustment.

Computer vision typically had looked into generating textures from exemplars, such

as by non-parametric sampling [120], vector quantization [121], optimization [122]

or nearest-neighbour field synthesis (PatchMatch [123]) with applications in in-

painting and also (3D) graphics. However, achieving spatial coherence and details as

well as computational scalability remains a challenge and limits their adoption in

production rendering or games.

The word “texture” can be ambiguous to mean stochastic variation, as well as images

attached on surfaces to localize colour features. This thesis focuses on stochastic

variation in the sense of Julesz [114] or Portilla and Simoncelli [118].

2.5.2 Texture synthesis meets deep learning

The next level of quality was achieved when representations became learned, such

as the internal activations of the VGG network [29]. Neural style transfer [124] as

explained in Sec. 2.1.4 played a key role. VGG was also used for optimization-based

multi-scale texture synthesis [125]. Such methods require optimizations for each

individual exemplar.

Ulyanov et al. [126] and Johnson et al. [127] have proposed networks that directly

produce the texture without optimization. While now a network generated the texture,

it was still limited to one exemplar, and no diversity was demonstrated. However,

noise at different resolutions [117] is input to these methods, as well as inspiration

to the approach presented in Chapter 5. Follow-up work [128] has addressed exactly

this difficulty by introducing an explicit diversity term i. e., asking all results in

a batch to be different. Unfortunately, this frequently introduces mid-frequency

oscillations of brightness that appear admissible to VGG instead of producing true

diversity. In this thesis, diversity is achieved, by restricting the network input to

stochastic values only, i. e., diversity-by-construction.

In the human vision [114] and computer vision literature [120, 129], texture synthesis

30 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

exclusively refers to stochastic variation. In computer graphics, e. g., OpenGL,

“texture” can model both stochastic and non-stochastic variations of colour. For

example, Visual Object Networks [130] generate a voxel representation of shape and

diffuse albedo and refer to the localized colour appearance, e. g., wheels of a car are

dark, the rim is silver, etc., as “texture”. Similarly, Oechsle et al. [131] and Saito

et al. [132] use an implicit function to model variation of appearance beyond voxel

resolutions.

The comparisons in Sec. 5.4 will show how methods tackling space of non-stochastic

texture variation [131, 130], are not suitable to model stochastic appearance. This

thesis makes progress towards learning spaces of stochastic and non-stochastic

textures.

Some work has used adversarial training to capture the essence of textures [133, 134],

including the non-stationary case [135] or even inside a single image [133]. In

particular, StyleGAN [136] generates images with details by transforming noise

in adversarial training. These challenges of adversarial training can be avoided by

training a neural network to match VGG statistics as shown in Chapter 5.

2.5.3 Space of Textures

At any rate, none of the texture works in graphics or vision [117, 124, 126, 120,

123, 137, 138] generate a space of stochastic textures, as is suggested in Chapter 5.

Current methods work on a single texture while the ones that work on a space of

exemplars [130, 131] do not create stochastic textures. Chapter 5 closes this gap, by

creating a space of stochastic textures.

Finally, all these methods require learning the texture in the same space it will be

used, while the approach in Chapter 5 can operate in any dimension and across

dimensions, including the important case of generating procedural 3D solid textures

from 2D observations [139] or slices [140] only.

2.6 Material Modeling
In Chapter 6, the physical surface characteristics of textures are modeled in the

form of BRDFs (Bidirectional Reflectance Distribution Function) [31]. Representing

2.6. MATERIAL MODELING 31

appearance in simulation-based graphics has been an active research field for decades.

The survey by Guarnera et al. [141] presents detailed discussion of the many different

material models and BRDF acquisition approaches.

Many methods have been proposed to acquire materials using data-driven approaches.

Matusik [142] proposed a data-driven BRDF linear model. More recently, Rematas

et al. [143] extract reflectance maps from 2D images using a CNN trained in a

supervised manner. Material and illumination acquisition was further explored by

Georgoulis et al. [144]. Deschaintre et al. [145] proposed a rendering loss to capture

svRBDFs from flash images.

Nam et al. [146] jointly reconstructed Spatially-varying Bi-directional Reflectance

Distribution Function (svBRDF), normals, and 3D geometry in an iterative inverse-

rendering setup towards a practical acquisition setup, while different methods relied

on deep learning to estimate object shape and svBRDF from one or multiple images

[147, 148, 149]. Li et al. [150] propose a weakly supervised learning-based method

for generating novel category-specific 3D shapes and demonstrate that it can help in

learning material-class specific svBRDFs from image distributions. Ye et al. [151]

use a mixture of images and procedural material maps to train a network for modeling

svBRDFs. Hu et al. [152] developed a reduced svBRDF model, using only diffuse

and normal channels, towards solving inverse procedural textures matching from

reference, while Guo et al. [153] used Bayesian inference for material synthesis.

Recently, Shi et al. [154] developed a differentiable material graph nodes library to

optimize material parameters to match an input material, given material graphs.

U-net [155] inspired many approaches for image-to-image translation to translate

RGB pixels to material attributes [147, 156, 157, 145].

Most work now includes a differentiable shading step [158, 147, 145, 159, 160],

which is a key component for self-supervised material synthesis as demonstrated in

Chapter 6. Gao et al. [161] and Guo et al. [160] propose to use a post-optimization

in an encoded latent space, improving an initial material estimation, and comparing

renderings of their results directly to their input pictures. Deschaintre et al. [162]

propose to fine-tune their material acquisition network on svBRDF parameter exam-

32 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

ples to transfer them to a larger scale. Zhou and Kalantari [163] propose a partially

unsupervised approach, which requires real image pairs under different illumina-

tion conditions. The approach presented in Guo et al. [164] addresses the issue of

strong highlights baked into svBRDF maps through highlight-aware convolutions

and an attention-based feature selection module. Chapter 6 exploits the stationarity

of textures, which inherently prevents any flash residual to be left in the results.

All these approaches focus on capturing a single instance of a svBRDF map, but

with little or no editing options across materials (space) or generalization across the

spatial domain (diversity). For rapid materials generation, Zsolnai-Fehér et al. [165]

propose to use Gaussian process regression.

Most of these methods require synthetic svBRDF supervision for training, while

directly learning from flash images without access to channel-level supervision is

demonstrated in Chapter 6. In particular, this removes the risk of a domain gap

between synthetic and real materials and enables fine-tuning as we will see.

Chapter 6 builds upon the work by Aittala et al. [166] who extended the approach

of Gatys et al. [124] to generate svBRDF parameter maps from a single picture

of a stationary material exemplar and propose an approach for improved diversity,

generation and quality.

2.6.1 Spaces-of

Spaces of colour [167], materials [142, 160, 161], textures [168], faces [169], human

bodies [170], and more have been useful in graphics for content creation and edition.

Matusik et al. [168] has devised a space of textures. Here, users can interpolate

combinations of visually similar textures. They warp all pairs of exemplars to each

other and construct graph edges for interpolation when there is evidence that the

warping is admissible. To blend between them, histogram adjustments are made.

Consequently, interpolation between exemplars does not take a straight path in pixel

space from one to the other but traverses only valid regions. Photoshape [171]

learns the relation of given material textures over a database of 3D objects. Serrano

et al. [172] allow users to semantically control captured BRDF data. They represent

BRDFs using the derived principal component basis [142] and map the first five

2.6. MATERIAL MODELING 33

PCA components to semantic attributes through learned radial basis functions. Guo

et al. [160] and Gao et al. [161] produce spaces of materials that can be interpolated.

Chapter 6 takes inspiration from this body of work and builds a latent space allowing

svBRDFs generation and interpolation.

Chapter 3

Escaping Plato’s Cave: 3D Shape

From Adversarial Rendering

3.1 Overview

In this chapter, we suggest a method to learn 3D structure from 2D images only

(Fig. 3.1). Reasoning about the 3D structure from 2D observations without assuming

anything about their relation is challenging as illustrated by Plato’s Allegory of

the Cave [173]: How can we hope to understand higher dimensions from only

ever seeing projections? If multiple views (maybe only two [92, 93]) of the same

object are available, multi-view analysis without 3D supervision has been successful.

Regrettably, most photo collections do not come in this form but are now and will

remain unstructured: they show random instances under random poses, uncalibrated

lighting in unknown relations, and multiple views of the same objects are not

available.

Our first main contribution (Sec. 3.2) is to use adversarial training of a 3D generator

with a discriminator that operates exclusively on widely available unstructured

collections of 2D images, which we call platonic discriminator. Here, during

training, the generator produces a 3D shape that is projected (rendered) to 2D and

presented to the 2D Platonic discriminator. Making a connection between the 3D

generator and the 2D discriminator, our second key contribution is enabled by a

family of rendering layers that can account for occlusion and colour (Sec. 3.3).

36 CHAPTER 3. PLATONICGAN

Input: 2D image collec on (different object, view, light, camera, etc.)

Output: Genera ve 3D model

Figure 3.1: PLATONICGANs allow converting an unstructured collection of 2D images of a
rare class (subset shown on top) into a generative 3D model (random samples
below).

These layers do not need any learnable parameters and allow for backpropagation

[18]. From these two key blocks we construct a system that learns the 3D shapes of

common classes such as chairs and cars, but also exotic classes from unstructured

2D photo collections.

We demonstrate 3D reconstruction from a single 2D image as a key application

(Sec. 3.4). While recent works focus on using as little explicit supervision [174,

83, 175, 86, 94, 111] as possible, they all rely on either annotations, 3D templates,

known camera poses, specific views or multi-view images during training. Our

approach takes it a step further by receiving no such supervision, see Tbl. 3.1.

Table 3.1: Taxonomy of different methods that learn 3D shapes with no explicit 3D supervi-
sion. We compare Kanazawa et al. [174], Kato et al. [83], Eslami et al. [175],
Tulsiani et al. [86], Tulsiani et al. [94], PrGan [111] with our method in terms of
degree of supervision.

Supervision at training time [1
74

]

[8
3]

[1
75

]

[8
6]

[9
4]

[1
11

]

O
ur

s

Annotation-free 5 X X X X X X
3D template-Free 5 5 X X X X X
Unknown camera pose X 5 5 5 X X X
No pre-defined camera poses X X X X 5 5 X
Only single view required X 5 5 5 5 X X
Color X X X X 5 5 X

3.2. 3D SHAPE FROM 2D PHOTO COLLECTIONS 37

Real / Fake?

2D rendered image
2D unstructured

samples
Image formation

model

View sampling

2D input 3D volume

Rendering layer
R

Encoder
E

Generator
Gz Discriminator

D

Figure 3.2: Overview: We encode a 2D input image using an encoder E into a latent code z
and feed it to a generator G to produce a 3D volume. This 3D volume is inserted
into a rendering layer R to produce a 2D rendered image which is presented
to a discriminator D. The rendering layer is controlled by an image formation
model: visual hull (VH), absorption-only (AO) or emission-absorption (EA)
and view sampling. The discriminator D is trained to distinguish such rendered
imagery from an unstructured 2D photo collection, i. e., images of the same
class of objects, but not necessarily having repeated instances, view or lighting
and with no assumptions about their relation (e.g., annotated feature points, view
specifications).

3.2 3D Shape From 2D Photo Collections
We now introduce PLATONICGAN (Fig. 3.2). The rendering layers used here will

be introduced in Sec. 3.3.

Common GAN Our method is a classic (generative) adversarial design [27] with

two main differences: The discriminator D operates in 2D while the 3D generator G

produces 3D output. The two are linked by a fixed-function projection operator, i. e.,

non-learnable (see Sec. 3.3).

Let us recall the classic adversarial learning of 3D shapes [71], which is a min-max

game

min
Q

max
Y

cDis(Y)+ cGen0(Q) (3.1)

between the discriminator and the generator cost, respectively cDis and cGen0 .

The discriminator cost is

cDis(Y) =EpData(x)[log(DY(x))] (3.2)

where DY is the discriminator with learned parameters Y which is presented with

samples x from the distribution of real 3D shapes x ⇠ pData. Here Ep denotes the

38 CHAPTER 3. PLATONICGAN

expected value of the distribution p.

The generator cost is

cGen0(Q) = EpGen(z)[log(1�DY(GQ(z))] (3.3)

where GQ is the generator with parameters Q that maps the latent code z⇠ pGen to

the data domain.

PLATONICGAN The discriminator cost is calculated identically to the common

GAN with the only difference that the input samples are rendered 2D images with

generation cost

cGen(Q) = EpGen(z)EpView(w)[log(1�DY(R(w,GQ(z)))], (3.4)

where R projects the generator result GQ(z) from 3D to 2D along the sampled view

direction w . See Sec. 3.2.1 for details.

While many parameterizations for views are possible, we choose an orthographic

camera with fixed upright orientation that points at the origin from a Euclidean

position w 2 S2 on the unit sphere. EpView(w) is the expected value across the

distributions w ⇠ pView of views.

PLATONICGAN3D Reconstruction Two components in addition to our Platonic

concept are required to allow for 3D reconstruction, resulting in

min
Y

max
Q,F

cDisc(Y)+ cGen(Q,F)+lcRec(Q,F), (3.5)

where cGen includes an encoding step and cRec encourages the encoded generated-

and-projected result to be similar to the encoder input where l = 100. We detail

both of these steps in the following paragraphs:

Generator The generator GQ does not directly work on a latent code z, but allows

for an encoder EF with parameters F that encodes a 2D input image I to a latent

3.2. 3D SHAPE FROM 2D PHOTO COLLECTIONS 39

code z = EF(I). The cost becomes,

cGen(Q,F) =

EpDat(I)EpView(w)[log(1�DY(R(w,GQ(EF(I))))]. (3.6)

Reconstruction We encourage the encoder EF and generator GQ to reproduce the

input in the L2 sense: by convention the input view is w0 = (0,0),

cRec(Q,F) = ky�R(w0,GQ(EF(I)))k2
2 (3.7)

where y represents the ground truth image. While this step is not required for

generation it is mandatory for reconstruction. Furthermore, it adds stability to the

optimization as it is easy to find an initial solution that matches this 2D cost before

refining the 3D structure.

3.2.1 Optimization

Two key properties are essential to successfully optimize our PLATONICGAN: First,

maximizing the expected value across the distribution of views pView and second,

back-propagation through the projection operator R. We extend the classic GAN

optimization procedure in Alg. 1.

Algorithm 1 PLATONICGANReconstruction Update Step
1: IDat SAMPLEIMAGE(pDat)
2: w SAMPLEVIEW(pView)
3: z E(IDat)
4: v G(z)
5: IView R(w,v)
6: IFront R(w0,v)
7: cDis logD(IDat)+ log(1�D(IView))
8: cGen log(1�D(IView))
9: cRec L2(IDat� IFront)

10: Y MAXMIZE(cDis)
11: Q,F MINIMIZE(cGen +lcRec)

40 CHAPTER 3. PLATONICGAN

Projection We focus on the case of a 3D generator on a regular voxel grid vnc⇥n3
p

and a 2D discriminator on a regular image Inc⇥n2
p where nc denotes the number of

channels and np = 64 corresponds to the resolution. In section Sec. 3.3, we discuss

three different projection operators. We use R(w,v) to map a 3D voxel grid v under

a view direction w 2 S2 to a 2D image I.

We further define R(w,v) := r(T(w)v) with rotation matrix T(w) according to the

view direction w and an image formation function r(v) that is view-independent.

The same transformation is shared by all implementations of the rendering layer,

so we will only discuss the key differences of r in the following. Note that a

rotation and a linear resampling are back-propagatable and typically provided in

a deep learning framework, e. g., as torch.nn.functional.grid sample

in PyTorch [176]. While we work in orthographic space, r could also model a

perspective transformation.

View sampling We assume uniform view sampling.

3.3 Rendering Layers

3D generator result Transformation c)b)a)

T

Rendering layer

v1

p1
p2
p3
p4
p5
p6
p7
p8

p10
p11
p12

p9

v2v1v3v4v5v6v7v8v9

ω
ω

 ρ

Figure 3.3: Rendering layers (Please see text).

Rendering layers (Fig. 3.3) map 3D information to 2D images so they can be

presented to a discriminator. We first assume the 3D volume to be rotated (Fig. 3.3, a)

into camera space from view direction w (Fig. 3.3, b), such that the pixel value p is to

be computed from all voxel values vi and only those (Fig. 3.3, c). The rendering layer

maps a sequence of nz voxels to a pixel value r(v) 2 Rnc⇥n3
p ! Rnc⇥n2

p . Composing

the full image I just amounts to executing r for every pixel p resp. all voxels

v = v1, . . . ,vnz at that pixel.

3.3. RENDERING LAYERS 41

Note, that the rendering layer does not have any learnable parameters. We will now

discuss several variants of r , implementing different forms of volume rendering [44].

Fig. 3.4 shows the image formation models we currently support.

Visual hull (VH) Visual hull [177] is the simplest variant (Fig. 3.4). It converts

scalar density voxels into binary opacity images. A voxel value of 0 means empty

space and a value of 1 means fully occupied, i. e., vi 2 [0,1]. Output is a binary value

indicating if any voxel blocked the ray. It is approximated as

rVH(v) = 1� exp(Â
i
�vi). (3.8)

Note that the sum operator can both be back-propagated and is efficiently computable

on a GPU using a parallel scan. We can apply this to learn 3D structure from binary

2D data such as segmented 2D images.

Absorption-only (AO) The absorption-only model is the gradual variant of visual

hull. This allows for “softer” attenuation of rays. It is designed as:

rAO(v) = 1�’
i
(1� vi). (3.9)

If vi are fractional the result is similar to an x-ray, i. e., vi 2 [0,1]. This image

formation allows learning from x-rays or other transparent 2D images. Typically,

these are single-channel images, but a coloured variant (e. g., x-ray at different

wavelength or RGB images of coloured transparent objects) could technically be

done.

Emission-absorption (EA) Emission-absorption allows the voxels not only to absorb

light coming towards the observer but also to emit new light at any position. This

a)VH a)AO a)EA

Figure 3.4: Different image formation models visual hull (VH), absorption-only (AO) and
emission-absorption (EA).

42 CHAPTER 3. PLATONICGAN

interplay of emission and absorption can model occlusion, which we will see is

useful to make 3D sense of a 3D world. Fig. 3.3 uses emission-absorption with high

absorption, effectively realizing an opaque surface with visibility.

A typical choice is to have the absorption va monochromatic and the emission ve

chromatic.

The complete emission-absorption equation is

rEA(v) =
nz

Â
i=1

(
i

’
j=1

(1� va, j))

| {z }
Transmission ti

ve,i (3.10)

While such equations are typically solved using ray-marching [44], they can be

rewritten to become differentiable in practice: First, we note that the transmission

ti to voxel i is a product of one minus the density of all voxels before i. Similar

to a sum such a cumulative product can be back-propagated and computed effi-

ciently using parallel scans, e. g., using torch.cumprod. A numerical alternative,

that performed similar in our experiments, is to work in the log domain and use

torch.cumsum.

3.4 Evaluation
Our evaluation comprises of a quantitative (Sec. 3.4.4) and a qualitative analysis

(Sec. 3.4.5) that compares different previous techniques and ablations to our work

(Sec. 3.4.2).

3.4.1 Datasets

Synthetic We evaluate on two synthetic datasets: (a) ShapeNet [178] and (b) mam-

malian skulls [179]. For our quantitative analysis, we use ShapeNet models as 3D

ground truth is required, but strictly only for evaluation, never in our training. 2D

images of 3D shapes are rendered for the three image formation models VH, AO,

EA. Each shape is rendered from a random view (50 per object), with random natural

illumination. ShapeNet only provides 3D density volumes, which is not sufficient

for EA analysis. To this end, we use volumetric projective texturing to propagate the

3.4. EVALUATION 43

appearance information from thin 3D surface crust as defined by ShapeNet’s textures

into the 3D voxelization in order to retrieve RGBA volumes where A corresponds

to density. We use shapes from the classes airplane, car, chair, rifle and

lamp. The same train / validation / test split as proposed by [178] is adopted.

We also train on a synthetic x-ray dataset that consists of 466,200 mammalian skull

x-rays [179]. We used the monkey skulls subset of that dataset (⇠30k x-rays).

Real We use two datasets of rare classes: (a) chanterelle (60 images) and

(b) tree (37 images) (not strictly rare, but difficult to 3D-model). These images

are RGBA, masked, on white background. Note, that results on these input data has

to remain qualitative, as we lack the 3D information to compare to and do not even

have a second view of the same object to even perform an image comparison.

3.4.2 Baselines and comparison
2D supervision First, we compare the publicly available implementation of PrGAN

[111] with our Platonic method. PrGAN is trained on an explicitly created dataset

adhering to their view restrictions (8 views along a single axis). Compared to our

method, it is only trained on visual hull images, however for evaluation purposes

absorption-only and emission-absorption (in the form of luminance) images are

used as input images at test time. Note that PrGAN allows for object-space view

reconstruction due to view information in the latent space whereas our method

performs reconstruction in view-space. Due to the possible ambiguities in the

input images (multiple images can belong to the same 3D volume), the optimal

transformation into object space is found using a grid search across all rotations.

3D supervision The first baseline with 3D supervision is MULTI-VIEW, which has

training-time access to multiple images of the same object [81] in a known spatial

relation. Note, that this is a stronger requirement than for PLATONICGANthat does

not require any structure in the adversarial examples: geometry, view, light – all

change, while in this method only the view changes in a prescribed way.

The second competitor is a classic 3DGAN [71] trained with a Wasserstein loss [180]

and gradient penalty [181].

To compare PLATONICGANagainst methods having access to 3D information, we

44 CHAPTER 3. PLATONICGAN

also propose a variant PLATONIC3D by adding the PLATONICGANadversarial loss

term (for all images and shapes) to the 3DGAN framework.

3.4.3 Evaluation Metrics
2D evaluation measures Since lifting 2D information to 3D can be ambiguous,

absolute 3D measures might not be the best suitable measures for evaluation on

our task. For instance, a shift in depth of an object under an orthographic camera

assumption will result in a higher error for metrics in 3D, but the shift would not

have any effect on a rendered image. Thus, we render both the reconstructed and the

reference volume from the same 10 random views and compare their images using

SSIM / DSSIM [182] and VGG16 [29] features. For this re-rendering, we further

employ four different rendering methods: the original (i. e., r) image formation (IF),

volume rendering (VOL), iso-surface rendering with an iso-value of .1 (ISO) and a

voxel rendering (VOX), all under random natural illumination.

3D evaluation measures We report root-mean-squared-error (RMSE), intersection-

over-union (IoU) and chamfer distance (CD). For the chamfer distance, we compute

a weighted directional distance:

dCD(T,O) =
1
N Â

pi2T
min
p j2O

w jkpi�p jk2
2,

where T and O correspond to output and target volumes respectively, and w j denotes

the density value of the voxel at location p j. The weighting makes intuitive sense as

our results have scalar values rather than binary values, i. e., higher densities get pe-

nalized more, and N is the total number of voxels in the volume. We give preference

to such a weighting as opposed to finding a threshold value for binarization.

3.4.4 Quantitative evaluation
Tbl. 3.2 summarizes our main results for the airplane class. Concerning the

image formation models, we see that the overall values are best for AO, which is

expected: VH asks for scalar density but has only a binary image; AO provides

internal structures but only needs to produce scalar density; EA is hardest, as it needs

to resolve both density and colour. Nonetheless, the differences between us and

3.4. EVALUATION 45

Table 3.2: Performance of different methods with varying degrees of supervision (superv.)
(rows) on different metrics (columns) for the class airplane. Evaluation
is performed on all three image formations (IF): visual hull (VH), absorption-
only (AO) and emission-absorption (EA). Note, DSSIM and VGG values are
multiplied by 10, RMSE by 102 and CD by 103. Lower is better except for IoU.

Method IF Superv. 2D Image Re-synthesis 3D Volume FID

VH AO EA VOX ISO EA

2D 3D DSSIM VGG DSSIM VGG DSSIM VGG DSSIM VGG DSSIM VGG RMSE IoU CD

PrGAN [111]

V
H

X 5 1.55 6.57 1.37 4.85 1.41 4.63 1.68 5.41 1.83 6.15 7.46 0.11 3.59 207
Ours X 5 1.14 5.37 1.16 4.93 1.12 4.68 1.33 5.22 1.28 5.96 9.16 0.20 11.77 55

Mult.-View [81] X 5 0.87 4.89 0.80 4.31 0.90 4.07 1.38 4.83 1.21 5.56 5.37 0.36 9.31 155
3DGAN [71] X 5 0.83 5.01 0.75 4.02 0.86 3.83 1.30 4.73 1.17 5.82 4.97 0.46 14.60 111
Ours 3D X 5 0.81 4.82 0.77 3.98 0.83 3.83 1.18 4.59 1.09 5.50 5.20 0.44 12.33 98

PrGAN [111]

A
O

X 5 1.41 6.40 1.27 4.80 1.27 4.52 1.53 5.32 1.63 6.00 7.11 0.09 2.78 190
Ours X 5 0.94 5.35 0.93 4.46 0.91 4.26 1.11 4.96 1.09 5.75 5.70 0.27 6.98 90

Mult.-View [81] X 5 0.95 4.99 0.78 4.23 0.91 4.01 1.51 4.92 1.29 5.39 4.89 0.34 9.47 165
3DGAN [71] X 5 0.67 4.37 0.69 3.77 0.72 3.57 0.99 4.25 0.97 4.92 5.08 0.43 14.92 58
Ours 3D X 5 0.66 4.36 0.66 3.73 0.70 3.52 0.98 4.28 0.96 4.94 5.17 0.37 15.43 64

PrGAN [111]

EA

X 5 1.31 6.22 1.15 4.77 1.16 5.37 1.36 6.71 1.47 7.07 6.80 0.08 2.36 196
Ours X 5 2.18 6.53 1.99 5.38 1.89 6.00 2.21 7.43 2.36 7.92 14.13 0.13 10.53 181

Mult.-View [81] X 5 1.62 6.21 1.53 4.58 1.63 5.48 1.95 6.97 1.94 7.41 15.05 0.12 32.07 172
3DGAN [71] X 5 0.89 5.28 0.78 3.93 0.98 4.79 1.29 6.76 1.30 7.09 5.24 0.46 13.66 110
Ours 3D X 5 0.82 4.71 0.82 3.96 0.97 4.77 1.12 6.12 1.16 6.47 7.43 0.04 18.82 73

competitors are similar across the image formation models.

2D supervision We see that overall, our 2D supervised method outperforms PrGAN

for VH and AO. Even though PrGAN was not trained on EA it wins for all metrics

against our 2D supervised method. However, it even outperforms the 3D supervised

methods 3DGAN and MULTI-VIEW which demonstrates the complexity of the task

itself. However, PrGAN for EA only produces density volumes, unlike all other

methods that produce RGBA volumes. Comparing our 2D supervised method against

the 3D supervised methods we see that overall our method produces competitive

results. Regarding MULTI-VIEW we sometimes even perform better.

3D supervision Comparing our PLATONIC3D variant to the 3D baselines we observe

our method to mostly outperform them for 2D metrics. Not surprisingly our method

performs worse for 3D metrics as our approach only operates in 2D.

In Tbl. 3.3 we investigate the performance across different classes. rifle performs

best: the approach learns quickly that a gun has an outer 3D shape that is a revolute

structure. chair performs worst, likely due to its high intra-class variation.

46 CHAPTER 3. PLATONICGAN

Table 3.3: Reconstruction performance of our method for different image formation models
(columns) on different classes (rows). The error metric is SSIM (higher is better).

Class VH AO EA

VOL ISO VOX VOL ISO VOX VOL ISO VOX

plane 0.93 0.92 0.93 0.94 0.93 0.93 0.85 0.76 0.77
rifle 0.95 0.94 0.95 0.95 0.94 0.95 0.90 0.78 0.80
chair 0.86 0.85 0.85 0.86 0.85 0.86 0.80 0.61 0.63
car .841 .846 .851 .844 .846 .850 .800 .731 .743
lamp .920 .915 .920 .926 .914 .920 .883 .790 .803

In Tbl. 3.4 we compare the mean VGG error of a vanilla 3D GAN trained only

on 3D shapes, a Platonic approach accessing only 2D images, and PLATONIC3D

that has access to both. We keep the number of 2D images fixed, and increase the

number of 3D shapes available; the horizontal axis in Tbl. 3.4. Without making use

of 3D supervision, the error of PLATONICGANremains constant, independent of the

number of 3D models. Like this, we see that a PLATONICGAN(red line) can beat

both other approaches in a condition where little 3D data is available (left). When

more 3D data is available, PLATONICGAN(green line) wins over a pure 3D GAN

(blue line). We conclude that adding 2D image information to a 3D corpus helps,

and when the corpus is small enough even outperforms 3D-only supervised methods.

3.4.5 Qualitative
Synthetic Fig. 3.5 shows typical results for the reconstruction task. We see that our

reconstruction can produce airplane, chair and rifle 3D models representa-

tive of the input 2D image. Most importantly, these 3D models look plausible for

Table 3.4: Effect of number of 3D shapes and 2D images on learning different methods in
terms of mean DSSIM error. Lower is better.

.10

.14

More 3D Shapes

D
SS

IM

2D images 70k 70k 70k 70k
3D shapes 5 50 250 1.5k

2D-3D ratio 14k 1.4k 280 47

• 3D .135 .108 .106 .101
• Ours .125 .125 .125 .125
• Ours 3D .134 .108 .102 .099

3.4. EVALUATION 47

Figure 3.5: Visual results for 3D reconstruction of three classes (airplane, chair,
rifle) from multiple views.

multiple views, not only from the input one. The results on the chair category also

show that the model captures the relevant variation, ranging from straight chairs over

club chairs to armchairs. For gun, the results turn out almost perfect, in agreement

with the numbers reported before. In summary, our quality is comparable to GANs

with 3D supervision.

2D vs. 3D vs. 2D+3D Qualitative comparison of 2D-only, 3D-only and mixed 2D-3D

training can be seen in Fig. 3.6.

Synthetic rare We explored reconstructing skulls from x-ray (i. e., the AO IF model)

images [179] in Fig. 3.7. We find the method to recover both external and internal

Input Platonic Platonic 3D GT3D GAN

Figure 3.6: Comparison of 3D reconstruction results using the class plane between dif-
ferent forms of supervision (columns) for two different input views (rows).
PLATONICGAN, in the second column, can reconstruct a plausible plane, but
with errors such as a wrong number of engines. The 3D GAN in the third column
fixes this error but at the expense of slight mode collapse where instances look
similar and slightly “fat”. Combining a 3D GAN with adversarial rendering as
in the fourth row is closest to the reference in the fifth row.

48 CHAPTER 3. PLATONICGAN

a) 2D Input X-ray b) X-ray c) Volume render

Figure 3.7: PlatonicGANs trained on 2D x-rays (i. e., AO IF) of mammalian skulls (a). The
resulting 3D volumes can be rendered from novel views using x-ray (b) and
under novel views in different appearance, here, using image-based lighting (c).

structures.

Real rare Results for rare classes are seen in Fig. 3.1 and Fig. Fig. 3.8. We see

that our method produces plausible details from multiple views while respecting the

input image, even in this difficult case. No metric can be applied to these data as no

3D volume is available to compare in 3D or re-project.

3.5 Discussion
Why not have a multi-view discriminator? It is tempting to suggest a discriminator

that does not only look at a single image but at multiple views at the same time to

judge if the generator result is plausible holistically. But while we can generate “fake”

images from multiple views pData, the set of “real” natural images does not come in

such a form. As a key advantage, our method only expects unstructured data: online

repositories hold images with unknown camera, 3D geometry or illumination.

Failure cases are depicted in Fig. 3.9. Our method struggles to reconstruct the correct

pose as lifting 2D images to 3D shapes is ambiguous for view-space reconstruction.

Supplemental More analysis, videos, training data and network definitions

are available at https://geometry.cs.ucl.ac.uk/projects/2019/

https://geometry.cs.ucl.ac.uk/projects/2019/platonicgan/

3.6. CONCLUSION 49

Figure 3.8: 3D Reconstruction of different trees using the emission-absorption image forma-
tion model, seen from different views (columns). The small images were used
as input. We see that PLATONICGANhas understood the 3D structure, including
a distinctly coloured stem, fractal geometry and structured leave textures.

platonicgan/.

3.6 Conclusion
In this chapter, we have presented PLATONICGAN, a new approach to learning 3D

shapes from unstructured collections of 2D images. The key to our “escape plan”

is to train a 3D generator outside the cave that will fool a discriminator into seeing

projections inside the cave.

We have shown a family of rendering operators that can be GPU-efficiently back-

propagated and account for occlusion and colour. These support a range of input

modalities, ranging from binary masks, over opacity maps to RGB images with

transparency. Our 3D reconstruction application is built on top of this idea to capture

varied and detailed 3D shapes, including colour, from 2D images. Training is

exclusively performed on 2D images, enabling 2D photo collections to contribute to

generating 3D shapes.

Future work could include shading that is related to gradients of density [44] into

classic volume rendering. Furthermore, any sort of differentiable rendering operator

r can be added. Devising such operators is a key future challenge. Other adversarial

applications such as 2D supervised completion of 3D shapes seem worth exploring.

Enabling object-space as opposed to view-space reconstruction would help to prevent

https://geometry.cs.ucl.ac.uk/projects/2019/platonicgan/
https://geometry.cs.ucl.ac.uk/projects/2019/platonicgan/

50 CHAPTER 3. PLATONICGAN

Input PlatonicGAN

Figure 3.9: Failure cases of a chair (top) and an airplane (bottom). The encoder is unable to
estimate the correct camera pose due to view ambiguities in the input image and
symmetries in the shapes. The generator then tries to satisfy multiple different
camera poses.

failure cases as shown in Fig. 3.9.

While we combine 2D observations with 3D interpretations, similar relations might

exist in higher dimensions, between 3D observations and 4D (3D shapes in motion)

but also in lower dimensions, such as for 1D row scanners in robotics or 2D slices of

3D data such as in tomography.

Chapter 4

Unsupervised Learning of 3D Object

Categories from Videos in the Wild

While the method presented in Chapter 3 is able to reconstruct shape and appearance

of objects in a self-supervised manner without 3D data annotations, the result quality

is limited by the voxel resolution and reconstruction was performed in camera space.

Our goal in this chapter is to address these limitations and instead of single-image

reconstruction, we seek to train a deep network that, given a small number of images

of an object of a given category, recovers its shape and appearance in world space.

Again, we are interested in working with challenging real data and with no manual

annotations. We show that existing techniques leveraging meshes, voxels, or implicit

surfaces, which work well for reconstructing isolated objects, fail on this challenging

data. Finally, we propose a new neural network design, called warp-conditioned ray

embedding (WCE), which significantly improves reconstruction while obtaining a

detailed implicit representation of the object surface and texture.

4.1 Overview
Our first contribution is to introduce a new dataset of videos collected ‘in the wild’ by

Amazon Mechanical Turk workers (Fig. 4.3). These videos capture a large number

of object instances from the viewpoint of a moving camera, with an effect similar to

a turntable. Viewpoint changes are estimated with high accuracy using off-the-shelf

Structure from Motion (SfM) techniques. Hundreds of videos of several different

52 CHAPTER 4. 3D LEARNING FROM VIDEOS

Training data: Object-centric videos Output: Monocular 3D reconstruction
NN

NN

NN

Test input

Figure 4.1: We present a novel deep architecture that contributes Warp-conditioned Ray Em-
bedding (WCE) to reconstruct and render new views (right) of object categories
from one or few input images (middle). Our model has learned automatically
from videos of the objects (left) and works on difficult real data where competi-
tor architectures fail to produce good results.

categories were collected and provided by collaborators.

Our second contribution is to assess current reconstruction technology on our new

‘in the wild’ data. For example, since each video provides several views of a single

object with known camera parameters, it is suitable for an application of recent

methods such as NeRF [54], and we find that learning individual videos works very

well, as expected. However, we show that a direct application of such models to

several videos of different but related objects is much harder. In fact, we experiment

with related representations such as voxels and meshes and find that they also do not

work well if applied naı̈vely to this task. This is true even though reconstructions

are focused on a single object at a time — thus disregarding the background —

suggesting that these architectures have a difficult time handling even relatively mild

geometric variability.

Our final contribution is to propose a novel deep neural network architecture to

better learn 3D object categories in such difficult conditions. We hypothesize that the

main challenge in extending high-quality reconstruction techniques, that work well

for single objects, to object categories is the difficulty of absorbing the geometric

variability that comes with tackling many different objects together. An obvious

but important source of variability is viewpoint: given only real images of different

objects, it is not obvious how these should align in 3D space, and a lack of alignment

adds to the variability that the model must cope with. We address this issue with a

4.2. METHOD 53

Color loss +
Mask loss

view aggregation

warp-conditioned ray
embedding z(x, {Isrc})

neural radiance !eld
 Ψ

learned
!xed
variables

σ(x)
c(x, rtgt)

γ(x) γ(rtgt(x))

sampled features: [zsrc(x), ..., zsrc(x)]
ray directions: [rsrc(x), ..., rsrc(x)]n

1 n

d
σ

raymarching
d

target ray: rtgt(x)
Isrc

Îtgt

zsrc x
zsrc

rtgt

rsrc

Ф

1

Isrc
2

rsrc
2

2

11

Figure 4.2: Our method takes as input an image and produces per pixel features using a U-
Net F. We then shoot rays from a target view and retrieve per-pixel features from
one or multiple source images. Once all spatial feature vectors are aggregated
into a single feature vector (see Sec. 4.2.3 for more details), we combine them
with their harmonic embeddings and pass them to an MLP yielding per location
colours and opacities. Finally, we use differentiable raymarching to produce a
rendered image.

novel idea of Warp-Conditioned Ray Embeddings (WCE), a new neural rendering

approach that is far less sensitive to inaccurate 3D alignment in the input data. Our

method modifies previous differentiable ray marchers to pool information at variable

locations in input views, conditioned on the 3D location of reconstructed points.

With this, we are able to train deep neural networks that, given as input a small

number of images of new object instances in a given target category, can reconstruct

them in 3D, including generating high-quality new views of the objects. Compared

to existing state-of-the-art reconstruction techniques, our method achieves better

reconstruction quality in challenging datasets of real-world objects.

4.2 Method
Overview. The goal of our method is to learn a model of a 3D object category from

a dataset {V p}Nvideo
p=1 of video sequences. Each video V p = (I p

t)0t<T p consists of

T p 2 N color frames I p
t 2 R3⇥H⇥W . While we do not use any manual annotations

for the videos, we do pre-process them using a Structure-from-Motion algorithm

(COLMAP [183]). In this manner, for each video frame I p
t , we obtain sequence-

specific camera poses gp
t 2 SE(3) and the camera instrinsics K p

t 2 R3⇥3. We further

obtain a segmentation mask mp
t 2 R1⇥H⇥W of the given category using Mask-RCNN

[184].

The model parametrizes the appearance and geometry of the object in each video

54 CHAPTER 4. 3D LEARNING FROM VIDEOS

with an implicit surface map Y:

Y : R3⇥S2⇥Z ! R3⇥R+ Y(x,r,z) = (c,s),

which labels each 3D scene point x 2 R3 and viewing direction r 2 S2 with an

RGB triplet c(x,r,z) 2 R3 and an occupancy value s(x,z) 2 (0,1] representing the

opaqueness of the 3D space. Furthermore, the implicit function Y is conditioned on

a latent code z 2Z that captures the factors of variation of the object. By changing z

we can adjust the occupancy field to represent shapes of different objects of a visual

category. As described in Sec. 4.2.3, the design of the latent space Z is crucial for

the success of the method.

While we use video sequences to train the model, at test time we would like to

reconstruct any new object instance from a small number of images. To this end, we

learn an encoder function

F : R3⇥H⇥W⇥Nsrc !Z ,

that takes a number of input source images {Isrc
1 , . . . , Isrc

Nsrc
} of the new instance and

produces the latent code z 2Z .

Given a known target view (different view than the source images) we render the

implicit surface to form a colour image Îtgt 2R3⇥H⇥W and minimize the discrepancy

between the rendered Îtgt and the masked ground truth image Itgt.

In the following, we describe the main building blocks of our method. The ren-

dering step follows Emission-Absorption raymarching [185, 1, 54, 94] as detailed

in Sec. 4.2.1. Sec. 4.2.2 describes the specifics of the surface function Y, and

Sec. 4.2.3 introduces the main technical contribution — a novel Warp-Conditioned

Ray Embedding that defines the image encoder F.

4.2.1 Implicit surface rendering
In order to render a target image Îtgt, we emit a ray from the camera center through

each pixel, assigning the colour of the ray’s first ‘intersection’ with the surface to

the respective pixel. Formally, let W = {0, . . . ,W �1}⇥{0, . . . ,H�1} be an image

4.2. METHOD 55

grid, u 2 W the index of a pixel, and Z 2 R+ a depth value. Following the ray

from the camera center through u to depth Z � 0 results in the 3D point: x̄(u,Z) =

Z ·K�1[u> 1]>, where K 2 R3⇥3 are the camera intrinsics. The camera’s pose is

given by an Euclidean transformation gtgt 2 SE(3), where we use the convention

that x̄ = gtgt(x) maps points x expressed in the world reference frame to points x̄ in

camera coordinates.

In order to determine the colour of a pixel u 2 W, we then ‘shoot’ a ray seeking

the surface intersection. To do so, we sample points Xu = (x(u,Zi))
NZ+1
i=0 for depth

values Z0 · · · ZNZ obtaining their colors and occupancies:

(ci,si) = Y(x(u,Zi),r,z), i = 0, . . . ,NZ. (4.1)

The probability of the ray not intersecting the surface in the interval (Zi+1,Zi] is set

to Ti = e�(Zi+1�Zi)si(x(u,Zi),z) (transmission probability). Summing over all possible

intersections Z0, . . . ,Zi, the probability p(Z = Zi|u) of a ray terminating at depth Zi

is thus defined as:

p(Z = Zi|u) =

i�1

’
j=0

Tj

!
(1�Ti) , m̂u = 1�

NZ�1

’
i=0

Ti,

with the overall probability of intersection m̂u. Given the distributions of ray-

termination probabilities p(Z|u), the rendered color ĉu(Xu,r,z) 2 R3 and opacity

ŝu(Xu,z) 2 R are defined as an expectation over the outputs of the implicit function

within the range [0, . . . ,NZ�1]:

ĉu =
NZ�1

Â
i=0

p(Z = Zi|u)ci, ŝu =
NZ�1

Â
i=0

p(Z = Zi|u)si.

Since we are only interested in rendering the interior of the object, the colours cu are

softly masked with m̂u leading to the final target image render Îtgt 2 R3⇥H⇥W :

Îtgt = I(gtgt,z) = m̂� ĉ. (4.2)

56 CHAPTER 4. 3D LEARNING FROM VIDEOS

Note that the reconstruction depends on the target viewpoint gtgt and the object code

z, which is viewpoint independent.

4.2.2 Neural implicit surface

Next, we detail the implicit surface function Y. Similar to previous methods [54, 186,

75], we exploit the representational power of deep neural networks and define Y as a

deep multi-layer perceptron (MLP): (c,s) = Ynr(x,r,z). The network Ynr follows a

design similar to [54]. In particular, the world-coordinates x are preprocessed with

the harmonic encoding gNx
f
(x) = [sin(x),cos(x), . . . ,sin(2Nx

f x),cos(2Nx
f x)] 2 R2Nx

f

before being input to the first layer of the MLP. In order to enable modeling of

viewpoint-dependent colour variations, we further use the harmonic encoding of the

target ray direction gNr
f
(rtgt(x)) 2 R2Nr

f as input (see Fig. 4.2).

4.2.3 Warp-conditioned ray embedding

An important component of our method is the design of the latent code z. A

naı̈ve solution is to first map a source image Isrc to a D-dimensional vector zCNN =

FCNN(Isrc) 2 RD with a deep convolutional neural network FCNN, followed by

appending a copy of zCNN to each positional embedding g(x) to form an input to the

neural occupancy function Ynr. This approach, successfully utilized in [94, 84] for

synthetic datasets where the training shapes are approximately rigidly aligned, is

however insufficient when facing more challenging in-the-wild scenarios.

To show why there is an issue here, recall that our inputs are videos V p of different

object instances, each consisting of a sequence (I p
t)0t<T p of video frames, together

with viewpoint transformations gp
t 2 SE(3) recovered by SfM. Crucially, due to

the global coordinate frame and scaling ambiguity of the SfM reconstructions [48],

there is no relationship between the camera positions gp and gq reconstructed for

two different videos p 6= q. Even two identical videos V p = V q, reconstructed

using SfM from two different random initializations, will result in two different

sets of cameras (gp
t)0t<T p , (gq

t = g?gp
t)0t<T p , related by an unknown similarity

transformation g? 2 S(3). Since the frames I p
t = Iq

t are identical, the reconstruction

network FCNN must assign to them identical codes: zCNN,t = zp
CNN,t = FCNN(I

p
t) =

4.2. METHOD 57

FCNN(I
q
t) = zq

CNN,t. Plugging this in Eq. 4.2, means that two identical frames are

reconstructed from the same code zCNN,t but two different viewpoints gp
t 6= gq

t :

Î p
t = I(gp

t ,zCNN,t) = I(gq
t ,zCNN,t) = Îq

t . While of course, we do not work with

identical copies of the same videos, this extreme case demonstrates a fundamental

issue with the naı̈ve model, where different object instances must be reconstructed

with respect to unrelated viewpoints.

We can partially tackle this issue by using a variant of [187] to approximately align

the viewpoint of different video sequences before training (see supplemental).

Next, we introduce a more fundamental change to the model that also helps address-

ing this issue. The idea is to change the implicit surface (4.1)

YWCE(x,z(x)), (4.3)

such that the code z is a function of the queried ray point x in world coordinates.

Given a source image Isrc
t with viewpoint gt , the projection of this point in the image

is: ut(x) = pt(x) = p(Kgtx) where p denotes the perspective projection operator

R3!W. In particular, if x is also a point on the surface of the object, then ut(x) is

the image of the corresponding point in the source view Isrc
t .

More specifically, we task a convolutional neural network F to map the image Isrc
t

to a feature field F(Isrc
t) 2 RD⇥H⇥W (see supplementary for details). In this way,

for each pixel ut in the source view, we obtain a corresponding embedding vector

F(It)[ut(x)] (using differentiable bilinear interpolation [·]):

zt(x) = F(It)[pt(x)] 2 RD, (4.4)

and call it Warp-Conditioned Ray Embedding (WCE).

Intuitively, as shown in Fig. 4.2, by using Eq. 4.3Eq. 4.4 during ray marching,

the implicit surface network YWCE can pool information from relevant 2D lo-

cations ut in the source view Isrc
t . Importantly, this occurs in a manner which

is invariant to the global viewpoint ambiguity. In fact, if the geometry is now

changed by the application of an arbitrary similarity transformation g?, then the

58 CHAPTER 4. 3D LEARNING FROM VIDEOS

3D point changes as x0 = g?x, but the viewpoint also changes as g0t = gt(g?)�1, so

that g0tx0 = g0t(g?)�1g?x = gtx and the encoding of the points x and x0 is the same:

F(It)[pt(x)] = F(It)[p 0t (x0)] Finally, note that the network Eq. 4.3 combines two

sources of information: (1) codes z(x) that capture the appearance of each point in a

manner which is invariant from the global coordinate transforms; and (2) the absolute

location of the 3D point x (internally encoded by using position-sensitive coding

g(x)). The combination of 1) and 2) above allows us to resolve misalignments by

localizing the implicit surface equivariantly with changes of the global coordinates.

Multi-view aggregation. Having described WCE for a single source image we now

extend to the more common case with multiple source images. For a set of source

views {Isrc
t }Nsrc

t=1 with their warp-conditioned embeddings zsrc
t (x), source rays rsrc

t (x),

and the target ray rtgt(x) (see Fig. 4.2), we calculate the aggregate WCE z(x,{Isrc
t }):

z(x,{Isrc
t }) = cat

�
zµ(x,{Isrc

t }),zs (x,{Isrc
t }),zCNN({Isrc

t })
�
,

as a concatenation (cat) of the angle-weighted mean and variance embedding zµ 2RD

and zs 2 R+ respectively, and a plain average zCNN = N�1
src Ât zCNN,t over global

source embeddings zCNN,t .

The mean zµ(x,{Isrc
t }) = ÂNsrc

t=1 wt(x)zsrc
t (x) is a weighted average of the source

embeddings zsrc
t (x) with the weight wt(x) defined as

wt(x) =W (x)�1(1+ rsrc
t (x) · rtgt(x)).

W (x) = ÂNsrc
t=1 wt(x) is a normalization constant ensuring the weights integrate to

1. This gives more weight to the source-view features that are imaged from a

viewpoint which is closer to the target view. The variance embedding zs 2 R+ is

defined analogously as an average over dimension-specific wt(x)-weighted standard

deviations of the source embedding set {zsrc
t (x)}Nsrc

t=1.

4.3. EXPERIMENTS 59

4.2.4 Overall learning objective
For training, we optimize the loss L = lLmask +Lrgb where l = 0.05. Lmask is

defined as the binary cross-entropy between the rendered opacity and ground truth

mask. For the appearance loss Lrgb we use the mean-squared error between the

masked target view and our rendering.

4.3 Experiments
We discuss implementation details, data and evaluation protocols (Sec. 4.3.1) and

assess our method and baselines on the tasks of novel-view synthesis and depth

prediction.

Implementation details. As noted in Sec. 4.2.3, although WCE is in principle

capable of dealing with the scene misalignments by itself, we found it beneficial to

approximately “synchronize” the viewpoints of different videos in pre-processing,

using a modified version of the method from [187]. First, we use the scene point

clouds from SfM to register translation and scale by centering (subtracting the mean)

and dividing by average per-dimension variance, resulting in adjusted viewpoints ḡt .

We then proceed with training the rotation part of the viewpoint factorization branch

of the VpDR network from [187], in order to align the rotational components of the

viewpoints.

4.3.1 AMT Objects and other benchmarks

Figure 4.3: In order to study learning 3D object categories in the wild, we crowd-sourced a
large collection of object-centric videos from Amazon Mechanical Turk. The
top row shows frames from three example videos, the bottom two rows show
SfM reconstructions of the videos together with tracked cameras.

60 CHAPTER 4. 3D LEARNING FROM VIDEOS

One of our main contributions is to introduce the AMT Objects dataset, a large

collection of object-centric videos that we collected (Fig. 4.3) using Amazon Mechan-

ical Turk. The dataset contains 7 object categories from the MS COCO classes [188]:

apple, sandwich, orange, donut, banana, carrot and hydrant. For each class, we

ask Turkers to collect a video by looking ‘around’ a class instance, resulting in a

turntable video. For reconstruction, we uniformly sampled 100 frames from each

video, discarding any video where COLMAP pre-processing was unsuccessful. The

dataset contains 169-457 videos per class. For each class, we randomly split videos

into training and testing videos in an 8:1 ratio.

We also consider the Freiburg Cars [189], consisting of 45 training and 5 testing

videos of various parked cars.

For every video, we define three disjoint sets of frames on which we either train

or evaluate: (1) train-train, (2) train-test and (3) test. For each training video, we

form the train-test set by randomly selecting 16 frames and a disjoint train-train set

containing the complement of train-test. While the train-train frames are utilized

for training, the train-test frames are never seen during training and only serve for

evaluation. The evaluation on the test set is the most challenging since it is conducted

with views of previously unseen object instances.

Evaluation protocol. Recall that, at test time, our network takes as input a certain

number of source images Isrc and reconstructs a target image Îtgt seen from a different

viewpoint. We assess the view synthesis and depth reconstruction quality of this

prediction. To this end, for each object category, we randomly extract a batch of 8

different images from the train-test and test respectively. To increase view variability

we repeat this process 5 times for every object. For each batch one of the images is

picked as a target image Itgt and from the remaining images we individually select

1,3,5,7 images and perform the forward pass to generate Îtgt for each selection.

In order to assess the quality of view synthesis, we calculate the `RGB
1 error, between

the target and predicted image. We also use the `VGG
1 perceptual metric, which

computes the `1 distance between the two images encoded by means of the VGG-19

network [25] pretrained on ImageNet. For depth reconstruction, we compute the

4.3. EXPERIMENTS 61

`Depth
1 distance between ground truth depth map (obtained from COLMAP SfM) and

the predicted one in the target view. Finally, we report Intersection-over-Union (IoU)

between the predicted object mask and the object mask obtained by Mask-RCNN in

the target view.

4.3.2 Baselines

In this section, we detail the baselines we compare with. The first is MLP, corre-

sponding to a naı̈ve version of the latent global encoding zCNN already discussed in

Sec. 4.2.3. Here, the Nsrc source images {Isrc
t }Nsrc

t=1 are first independently mapped to

embedding vectors {zt 2 R256}Nsrc

t=1 by a ResNet50 [190] encoder and subsequently

averaged to form an encoding of the object zCNN = 1
Nsrc ÂNsrc

t=1 zt . A copy of zCNN

is then concatenated to each positional embedding g(x) of each target ray point x.

MLP renders with the EA ray marcher (Sec. 4.2.1).

The second baseline is Voxel, which closely resembles [86]. This uses the same

encoding scheme as MLP, but differs by the fact that the object is represented by a

voxel grid. Specifically, zCNN is decoded with a series of 3D convolution-transpose

layers to a 1283 voxel grid containing RGB and opacity values. Voxel also renders

with EA.

Next, Voxel+MLP is inspired by Neural Sparse Voxel fields [63] and marries

NeRF [54] with voxel grids. As in Voxel, zCNN is first 3D-deconvolved into a

1283 volume of 32-dimensional features. Each target view ray point x is then de-

scribed with a positional embedding g(x), and a latent feature zg(x) 2R32 trilinearly

sampled at the voxel grid location x. The rest is the same as in MLP.

Finally, the Mesh baseline uses the soft-rasterization of [85] as implemented in

PyTorch3D [191] with the top-k face accumulation. The scene encoding zCNN is

converted with a pair of linear layers to: (1) a set {vi(z) 2 R3}Nvertex
i=1 of 3D vertex

locations of the object mesh, and (2) a 128⇥128 UV map of the texture mapped to

the surface of the mesh, which is rendered in order to evaluate the reconstruction

losses from Sec. 4.2.4. The mesh is initialized with an icosahedral sphere with 642

vertices.

62 CHAPTER 4. 3D LEARNING FROM VIDEOS

Table 4.1: Novel-view synthesis on AMT Objects and Freiburg Cars. Each row evaluates
either a baseline or our method. Results are reported for two perceptual metrics
`RGB

1 , `VGG
1 , depth error `Depth

1 , and intersection-over-union (IoU). For training
we randomly selected between 1 and 7 source images. For testing we separately
calculated the error metrics for 1, 3, 5 and 7 source images respectively and
provide the average among those. For a more detailed evaluation we refer to
the supplemental. Lower is better for `RGB

1 , `VGG
1 , and `Depth

1 , whereas higher is
better for IoU. The best result is bolded.

AMT Freiburg Cars

Train-test Test Train-test Test

Method `RGB
1 `VGG

1 IoU `Depth
1 `RGB

1 `VGG
1 IoU `Depth

1 `RGB
1 `VGG

1 IoU `Depth
1 `RGB

1 `VGG
1 IoU `Depth

1

Mesh 0.10 1.17 0.60 5.13 0.10 1.16 0.60 5.09 0.14 2.03 0.60 1.19 0.17 2.17 0.56 1.06
Voxel 0.06 1.05 0.78 2.14 0.09 1.13 0.66 3.07 0.05 1.58 0.89 0.59 0.16 2.05 0.51 2.18
Voxel+MLP 0.06 1.04 0.78 1.95 0.09 1.13 0.65 2.87 0.05 1.47 0.88 0.48 0.16 2.06 0.54 1.97
MLP 0.04 0.90 0.87 1.38 0.09 1.13 0.65 3.59 0.04 1.39 0.87 0.59 0.15 2.03 0.47 2.52
Ours 0.03 0.86 0.88 1.31 0.05 0.93 0.83 1.90 0.04 1.39 0.90 0.48 0.12 1.89 0.62 1.60

4.3.3 Quantitative Results

Tbl. 4.1 presents quantitative results on Freiburg Cars and the AMT Objects, respec-

tively. In terms of all perceptual metrics (`RGB
1 , `VGG

1) as well as depth and IoU, our

method is on par with the MLP on the train-test split. On the test split, we outper-

form all other baselines in `RGB
1 , `VGG

1 and IoU on all 7 classes of AMT Objects and

Freiburg Cars. This indicates significantly better ability of our warp-conditioned

embedding to generalize to previously unseen object instances.

We further find that our method is better at leveraging multiple source views Nsrc > 1,

outperforming all baselines for the `RGB
1 error, see Tbl. 4.2. When increasing the

number of source images our method performance for all metrics improves whereas

for all baselines it stays more or less constant. This further shows the effectiveness

of the warp-conditioned embedding (WCE).

Table 4.2: We evaluate the impact of increasing the number of source views during test time
for the `RGB

1 metric. Target renders and the corresponding metrics are produced
for 1, 3, 5 and 7 source images. The best result is bolded where lower is better.

AMT Freiburg Cars

Train-test Test Train-test Test

Method 1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7

`R
G

B
1

Mesh .096 .096 .096 .096 .102 .102 .102 .102 .141 .141 .140 .140 .166 .166 .166 .166
Voxel .062 .061 .061 .061 .091 .091 .091 .091 .055 .055 .055 .054 .159 .159 .158 .158
Voxel+MLP .059 .059 .058 .059 .090 .090 .090 .090 .045 .045 .045 .045 .158 .157 .158 .157
MLP .037 .036 .036 .036 .088 .088 .088 .088 .041 .041 .041 .041 .152 .152 .152 .152
Ours .038 .032 .031 .030 .058 .046 .043 .042 .046 .041 .041 .040 .130 .120 .115 .114

4.3. EXPERIMENTS 63

Source image Mesh Voxel Voxel+MLP MLP Ours Target image

Figure 4.4: Monocular reconstruction on Freiburg Cars and AMT Objects. In each
row, a single source image (1st column) is processed by one of the evaluated
methods (Mesh, Voxel, MLP+Voxel, MLP, Ours - columns 2 to 6) to generate a
prescribed target view (last column). We show results on the test split.

Regarding depth reconstruction (`Depth
1), our method outperforms all alternatives on

all datasets except the test split of Freiburg Cars, where we are 2nd after Mesh. Here,

we note that `Depth
1 is only an approximate measure because: 1) the predicted depth

is compared to the COLMAP-MVS estimate of depth [50], which tends to be noisy

and; 2) the scale ambiguity in SfM reconstructions that supervise learning leads to a

significantly unconstrained problem of estimating the scale of a testing scene given a

small number of source views, which is challenging to resolve for any method.

4.3.4 Qualitative Results

Fig. 4.4 provides qualitative comparisons for monocular novel-view synthesis. It

shows that our method produces significantly more detailed novel views, probably

due to its ability to retrieve spatial encodings from the given source view. Fig. 4.5

further demonstrates the reconstruction improvement when multiple source views

Nsrc > 1 are available.

64 CHAPTER 4. 3D LEARNING FROM VIDEOS

Target imageSrc. image #1 #2 #4 #5#3 #6 #7

Tgt. render w/ #1 src. image Tgt. render w/ #3 src. images Tgt. render w/ #5 src. images Tgt. render w/ #7 src. images

Tgt. render w/ #1 src. image Tgt. render w/ #3 src. images Tgt. render w/ #5 src. images Tgt. render w/ #7 src. images

Target imageSrc. image #1 #2 #4 #5#3 #6 #7

Figure 4.5: Reconstruction with multiple source views. For each object, the top row
shows all available source images (columns 1-7) for a given target image (top
right). The bottom row contains results conditioned on 1, 3, 5 or 7 source images.
In addition to the rendered new RGB views we also provide shaded surface
renderings.

4.4 Discussion and conclusions
Limitations. Even though our method outperforms baselines on the vast majority

of metrics and datasets, there are still several limitations. First, the execution of the

deep MLP at every 3D ray-location in a rendered frame is relatively slow (depending

on the number of source views rendering takes between 3 and 8 sec for a 128⇥256

image on average), which makes a real-time deployment challenging. Secondly, due

to our template-free approach, the object silhouettes can be blurry. Lastly, despite no

manual labelling being necessary, our method still relies on segmentation masks that

were automatically generated with Mask-RCNN.

Conclusions. In this chapter, we have presented a method that is able to reconstruct

category-specific 3D shape and appearance from videos of object categories in

the wild alone, without requiring manual annotations. We demonstrated that our

main contribution, Warp-Conditioned Ray Embedding, can successfully deal with

the inherent ambiguities present in the video SfM reconstructions that provide our

supervisory signal, outperforming alternatives on a novel dataset of crowd-sourced

object videos. Future work could include decomposition of shape, appearance and

lighting allowing for more control over the rendered images.

Chapter 5

Learning a Neural 3D Texture Space

from 2D Exemplars

In the previous chapters, we have seen two methods that given a single or a few

images of an object perform 3D reconstruction of shape and appearance. In the next

part of this thesis, a different aspect of appearance modeling is addressed: texture

synthesis.

5.1 Overview
Textures are stochastic variations of attributes over 2D or 3D space with applications

in both image understanding and synthesis. This chapter suggests a generative model

of natural textures. Previous texture models either capture a single exemplar (e. g.,

wood) alone or address the non-stochastic (stationary) variation of appearance across

space: Which location on a chair should have a wood colour? Which should be

cloth? Which metal? Our work combines these two complementary views.

Requirements We design the family of methods with several requirements in mind:

completeness, generativeness, compactness, interpolation, infinite domains, diversity,

infinite zoom, and high speed.

A space of textures is complete if every natural texture has a compact code z in that

embedding. To be generative, every texture code should map to a useful texture.

This is important for an intuitive design where a user manipulates the texture code

and expects the outcome to be a texture. Compactness is achieved if codes are low-

66 CHAPTER 5. NEURAL TEXTURES

Casual 2D capture

Interpola on

Space of
textures

3D texturing

Texture exemplar set

Figure 5.1: Our approach allows casually-captured 2D textures (blue) to be mapped to latent
texture codes and support interpolation (blue-to-red), projection, or synthesis of
volumetric textures.

dimensional. We also demand the method to provide interpolation: texture generated

at coordinates between z1 and z2 should also be valid. This is important for design or

when storing texture codes into a (low-resolution) 2D image, 3D volume or at mesh

vertices with the desire to interpolate. The first four points are typical for generative

modelling; achieving them jointly while meeting more texture-specific requirements

(stochasticity, efficiency) is our key contribution.

First, we want to support infinite domains: Holding the texture code e fixed, we want

to be able to query this texture so that a patch around any position x has the statistics

of the exemplar. This is important for querying textures in graphics applications for

extended virtual worlds, i. e., grass on a football field where it extends the size of the

texture.

Second, for visual fidelity, the statistics under which textures are similar to the

exemplar. The Gram matrix of VGG activations is one established metric for this

similarity [124].

5.2. METHOD 67

z

e

x

Ti

ξi

h(
z)

Stats
loss

Exemplars y

Position

Encoder g

f(n|e)

 s(x|z)

n
o
i
s
e
(T
ix,

 ξ
i)

n

Figure 5.2: Overview of our approach as explained in Sec. 5.1.

Third, infinite zoom means each texture should have variations on a wide range of

scales and not be limited to any fixed resolution that can be held in memory. This

is required to zoom into details of geometry and appreciate the fine variation such

as wood grains, etc. In practice, we are limited by the frequency content of the

exemplars we train on, but the method should not impose any limitations across

scales.

Fourth and finally, our aim is computational efficiency: the texture needs to be

queryable without requiring prohibitive amounts of memory or time, in any dimen-

sion. Ideally, it would be constant in both and parallel. This rules out simple CNNs,

that do not scale favourably in memory consumption to 3D.

5.2 Method
Our approach has two steps. The first embeds the exemplar into a latent space using

an encoder. The second provides sampling at any position by reading noise fields at

that position and combining them using a learned mapping to match the exemplar

statistics. We now detail both steps.

Encoder The encoder g maps a 2D texture exemplar image y to a latent texture code

z = g(y). We use a convolutional neural network to encode the high number of

exemplar pixels into a compact latent texture code z.

Sampler Sampling s(x|z) of a texture with code z at individual 2D or 3D positions x

has two steps: a translator and a decoder, which are both described next.

68 CHAPTER 5. NEURAL TEXTURES

Ti2i

ξi

x

*
noise

Teye

noise(Tix, ξi)

Ti+12i +1

ξi+1

*
noise

Teye

noise(Ti+1x, ξi+1)

Figure 5.3: Noise field for different octaves and transformations T.

Decoder Our key idea is to prevent the decoder f (n|e) to access the position x

and to use a vector of noise values n instead. Each ni = noise(Ti2i�1x|xi) is read

at different linear transformations Ti2i�1x of that position x from random fields

with different seeds xi. The random field noise(x|xi) is implemented as an infinite,

single-channel 2D or 3D function that has the same random value for all continuous

coordinates x in each integer lattice cell for one seed xi. The factors of 2i�1 initialize

the decoder to behave similarly to Perlins’s octaves for identity Ti. Applying Ti2i�1

to x is similar to Spatial Transformer Networks [192]. (Fig. 5.3).

These noise values are combined with the extended texture code e in a learned way.

It is the task of the translator, explained next, to control, given the exemplar, how

noise is transformed and to generate an extended texture code.

z

a

b
c

d
e

f
g

h

z1

z2

z3

T1

a

b

c

d

e

g

f

h

h(z)

=

=

Fixed
Learned

T2

xx

n
o
i
s
e

(T
1,
ξ 1

),
...

ξi

Figure 5.4: Translator.

Translator The translator h(z)= {e,T}

maps the texture code z to a tuple of pa-

rameters required by the decoder: the

vector of transformation matrices T and

an extended texture code vector e. The

matrices T are used to transform the co-

ordinates before reading the noise as ex-

plained before. The extended texture

parameter code e is less compact than

the texture code z, but allows the sampler to execute more effectively, i. e., do not

repeat computations required for different x as they are redundant for the same z.

5.2. METHOD 69

=

=

=

a) b) c)

2D exemplar3D result 3D result slices

x
y

z

Figure 5.5: Sliced loss for learning 3D procedural textures from 2D exemplars: Our method,
as it is non-convolutional, can sample the 3D texture (a) at arbitrary 3D positions.
This enables to also sample arbitrary 2D slices (b). For learning, this allows us
to simply slice 3D space along the three major axes (red, yellow, blue) and ask
each slice to have the same VGG statistics as the exemplar (c).

See Fig. 5.4 where for example two 2⇥2 transformation matrices with 8 DOF are

parameterized by three parameters.

Training For training, the encoder is fed with a random 128⇥ 128 patch Pe of a

random exemplar y, followed by the sampler evaluating a regular grid of 128⇥128

points x in random 2D slices of the target domain to produce a “slice” image Ps

(Fig. 5.5). The seed x is held constant per train step, as one lattice cell will map to

multiple pixels, and the decoder f relies on these being consistent. During inference

changing the seed x and keeping the texture code e will yield diverse textures.

The loss is the L2 distance of Gram matrix of VGG feature activations [124, 127,

128, 126, 166] of the patches Pe and Ps.

If the source and target domain are the same (synthesizing 2D textures from 2D

exemplars) the slicing operation is the identity. However, it also allows for the

important condition in which the target domain has more dimensions than the source

domain, such as learning 3D from 2D exemplars.

Spaces-of Our method can be used to either fit a single exemplar or an entire space

of textures. In the single mode, we directly optimize for the trainable parameters

q = {qd} of the decoder. When learning the entire space of textures, the full cascade

of encoder g, translator h and sampler s parameters are trained, i. e., q = {qg,qh,qd}

jointly.

70 CHAPTER 5. NEURAL TEXTURES

5.3 Learning stochastic space coloring
Here we will introduce different implementations of samplers s : Rn! R3 which

“colour” 2D or 3D space at position x. We discuss the pros and cons with respect to

the requirements from the introduction, ultimately leading to our approach.

Perlin noise is a simple and effective method to generate natural textures in 2D or

3D [117], defined as

s(x|z) =
m

Â
i=1

noise(2i�1x,xi)⌦wi, (5.1)

where h(z) = {w1,w2, . . .} are the RGB weights for m different noise functions

noisei which return bilinearly-sampled RGB values from an integer grid. ⌦ is

channel-wise multiplication. Here, e is a list of all linear per-layer RGB weights

e. g., an 8⇥3 vector for the m = 8 octaves we use. This is a simple latent code, but

we will see increasingly complex ones later. Also, our encoder g is designed such

that it can cater to all decoders, even Perlin noise i. e., we can also create a space of

textures with a Perlin noise back-end.

Coordinates x are multiplied by factors of two (octaves), so with increasing i, in-

creasingly smooth noises are combined. This is motivated well in the spectra of

natural signals [116, 117], but also limiting. Perlin’s linear scaling allows the noise

to have different colours, yet no linear operation can reshape a distribution to match

a target. Our work seeks to overcome these two limitations but tries to retain the

desirable properties of Perlin noise: simplicity and computational efficiency as well

as generalization to 3D.

Transformed Perlin relaxes the scaling by powers of two

s(x|z) =
m

Â
i=1

noise(Ti2i�1x,xi)⌦wi (5.2)

by allowing each noise i to be independently scaled by its own transformation matrix

Ti since h(z) = {w1,T1,w2,T2, . . .}. Please note, that the choice of noise frequency

is now achieved by scaling the coordinates reading the noise. This allows us to make

use of anisotropic scaling for elongated structures, different orientations or multiple

5.3. LEARNING STOCHASTIC SPACE COLORING 71

random inputs at the same scale.

CNN utilizes the same encoder g as our approach to generate a texture code that is

fed in combination with noise to a convolutional decoder similar to [128].

s(x|z) = cnn(x|e,noise(x)) (5.3)

The CNN is conditioned on e without additional translation. Their visual quality is

stunning, CNNs are powerful and the loss is able to capture perceptually important

texture features, hence CNNs are a target to chase for us in 2D in terms of quality.

However, there are two main limitations of this approach we seek to lift: efficiency

and diversity.

CNNs do not scale well to 3D in high resolutions. To compute intermediate features

at x, they need to have access to neighbours. While this is effective and output-

sensitive in 2D, it is not in 3D: we need results for 2D surfaces embedded in 3D, and

do so in spatial high resolution (say 1024⇥1024), but this requires CNNs to compute

a full 3D volume with the same order of pixels. While in 2D partial outputs can be

achieved with sliding windows, it is less clear how to slide a window in 3D, such that

it covers all points required to cover all 3D points that are part of the visible surface.

The second issue is diversity: CNNs are great for producing a re-synthesis of the

input exemplar, but it has not been demonstrated that changing the seed x will lead to

variation in the output in most classic works [126, 127] and in classic style transfer

[124] diversity is eventually introduced due to the randomness in SGD. Recent work

by Ulyanov and colleagues [128] explicitly incentivizes diversity in the loss. The

main idea is to increase the pixel variance inside all exemplars produced in one batch.

Regrettably, this often is achieved by merely shifting the same one exemplar slightly

spatially or introducing random brightness fluctuations.

MLP maps a 3D coordinate to appearance:

s(x|z) = mlp(x|e) (5.4)

72 CHAPTER 5. NEURAL TEXTURES

where h(z) = e. Texture-fields [131] have used this approach to produce what they

call “texture”, detailed and high-quality appearance decoration of 3D surfaces, but

what was probably not intended is to produce diversity or any stochastic results. At

least, there is no parameter that introduces any randomness, so all results are identical.

We took inspiration from their work, as it makes use of 3D point operations, that

do not require accessing any neighbours and no intermediate storage for features

in any dimensions, including 3D. It hence reduces bandwidth compared to CNN

and is perfectly data-parallel and scalable. The only aspect missing to make it our

colourization operator, required to create a space and evolve from 2D exemplars to

3D textures, is stochasticity.

Ours combines the noise from transformed Perlin for stochasticity, the losses used

in style and texture synthesis CNNs for quality as well as the point operations in

MLPs for efficiency as follows:

s(x|z) = f (noise(T120x,x1), . . . ,noise(Tm2m�1x,xm)|e) (5.5)

Different from MLPs that take the coordinate x as input, the position itself is hidden.

Instead of position, we take multiple copies of spatially smooth noise noise(x) as

input, with explicit control of how the noise is aligned in space expressed by the

transformations T. Hence, the MLP requires to map the entire distribution of noise

values such that it suits the loss, resulting in build-in diversity. We chose number

of octaves m to be 8, i. e., the transformation matrices T1, . . . ,Tm require 8⇥4 = 32

values in 2D. The texture code size e is 64 and the compact code z is 8. The decoder

f consists of four stacked linear layers, with 128 units each followed by ReLUs. The

last layer is 3-valued RGB.

Non-stochastic ablation seeks to investigate what happens if we do not limit our

approach to random variables, but also provide access to deterministic information x:

s(x|z) = f (x,noise(20x,x1), . . . ,noise(2m�1x,xm)|e) (5.6)

5.4. EVALUATION 73

is the same as MLP, but with access to noise. We will see that this effectively removes

diversity.

Non-transformed ablation evaluates if our method were to read only from multi-

scale noise without control over how it is transformed. Its definition

s(x|z) = f (noise(20x,x1), . . . ,noise(2m�1x,xm)|e) (5.7)

5.4 Evaluation
Our evaluation covers qualitative (Sec. 5.4.3) and quantitative (Sec. 3.4.5) aspects as

well as a user study (Sec. 5.4.4). We further discuss and compare the capabilities of

our method with respect to the requirements introduced in Sec. 5.1.

5.4.1 Protocol

We suggest a data set that for which we explore the relation of different methods,

according to different metrics to quantify texture similarity and diversity.

Data set Our data set contains four classes (WOOD, MARBLE, GRASS and RUST) of

2D textures, acquired from internet image sources. Each class contains 100 images.

Methods We compare eight different methods that are competitors, ablations and

ours. As five competitors we study variants of Perlin noise, CNNs and MLPs.

perlin implements Perlin noise (Eq. 5.1, [117]) and perlinT our variant extend-

ing it by a linear transformation (Eq. 5.2). Next, cnn is a classic TextureNet [126]

and cnnD the extension to incentivise diversity ([128], Eq. 5.3). mlp uses an MLP

following Eq. 5.4.

We study three ablations. First, we compare to oursP which is our method, but

with the absolute position as input and no transform. Second, oursNoT omits the

absolute position as input and transformation but still uses Perlin’s octaves (Eq. 5.7).

The final method is ours method (Eq. 5.5).

Metrics We evaluate methods with respect to three metrics: similarity and diversity

and a joint measure, success.

Similarity is high, if the result produced has the same statistics as the exemplar in

74 CHAPTER 5. NEURAL TEXTURES

terms of L2 differences of VGG Gram matrices. This is identical to the loss used.

The similarity is measured on a single exemplar.

Diversity is not part of the loss but can be measured on a set of exemplars produced

by a method. We measure diversity by looking at the VGG differences between all

pairs of results in a set produced for a different random seed. Note, that this does not

utilize any reference. Diversity is maximized by generating random VGG responses,

yet without similarity.

Success of the entire method is measured as the product of diversity and the maximum

style error minus the style error. We apply this metric, as it combines similarity and

diversity which are conflicting goals we jointly want to maximize.

Memory and speed are measured at a resolution of 128 pixels/voxels on an Nvidia

Titan Xp.

5.4.2 Quantitative results

Table 5.1: Efficiency in terms of compute time and memory usage in 2D and 3D (columns)
for different methods (rows).

Method Time Memory

2D 3D 2D 3D
perlin • 0.18 ms 0.18 ms 65 k 16 M

perlinT • 0.25 ms 0.25 ms 65 k 16 M
cnn • 1.45 ms 551.59 ms 8,000 k 646 M
cnnD • 1.45 ms 551.59 ms 8,000 k 646 M
mlp • 1.43 ms 1.43 ms 65 k 16 M

oursP • 1.44 ms 1.44 ms 65 k 16 M
oursNoT • 1.24 ms 1.24 ms 65 k 16 M

ours • 1.55 ms 1.50 ms 65 k 16 M

Memory 2D [log KB]

1000

10

100

Memory 3D [log KB]

10000
100000

1
100

1000

Time 2D [ms]

1.5

0

Time 3D [ms]

500

0

10

Efficiency We first look at computational efficiency in Tbl. 5.1. We see that our

method shares the speed and memory efficiency with Perlin noise and MLPs / Texture

Fields [131]. Using a CNN [126, 128] to generate 3D textures as volumes is not

practical in terms of memory, even at a modest resolution. Ours scales linearly with

pixel resolution as an MLP is a point-estimate in any dimension that does not require

any memory other than its output. A CNN has to store the internal activations of all

layers in memory for information exchange between neighbours.

5.4. EVALUATION 75

Si
m

ila
ri

ty
 e

rr
or

(le
ss

 is
 b

et
te

r)

Average

200

300

30k

200

300

30k

200

300

30k

200

300

30k

D
iv

er
si

ty
(m

or
e

is
be

tt
er

)

Wood Marble Grass

perlin

perlinT

cnn

cnnD

mlp

oursNoT

oursP

ours

Su
cc

es
s

(m
or

e
is

be
tt

er
)

Figure 5.6: Quantitative evaluation. Each plot shows the histogram of a quantity (from top
to bottom: success, style error and diversity) for different data sets (from left to
right: all space together, WOOD, MARBLE, GRASS). For a discussion, see the
last paragraph in Sec. 5.4.2.

Fidelity Fig. 5.6 and Tbl. 5.2 summarize similarity, diversity and success of all

methods in numbers. ours method (black) comes best in diversity and success

on average across all sets (first column in Tbl. 5.2 and top first plot in Fig. 5.6).

cnn (yellow) and cnnd (green) have better similarity than any of our methods.

However, no other method combines similarity with diversity as well as ours. This is

visible from the overall leading performance in the final measure, success. This is a

substantial achievement, as maximizing for only one goal is trivial: an identity

method has zero similarity error while a random method has infinite diversity.

When looking at the similarity, we see that both a cnn and its diverse variant

cnnD can perform similarly. Perlin noise produces the largest error. In particular,

perlinT has a large error, indicating it is not sufficient to merely add a transform.

Similarly, mlp alone cannot solve the task, as it has no access to noise and needs to fit

exactly, which is doable for single exemplars, but impossible for a space. oursNoT

has error similar to ours, but less diversity.

When looking at diversity, it is clear that both cnn and mlp have no diversity as

they either do not have the right loss to incentivize it or have no input to generate it.

perlin and perlinT both create some level of diversity, which is not surprising

as they are simple remappings of random numbers. However, they do not manage to

76 CHAPTER 5. NEURAL TEXTURES

Table 5.2: Similarity and diversity for methods on different textures.

Method ALL WOOD GRASS MARBLE

Sim Div Suc Sim Div Suc Sim Div Suc Sim Div Suc
perlin • 20.6 48.0 7.0 23.8 37.9 4.9 24.6 72.8 18.1 13.3 31.8 7.84

perlinT • 19.6 48.2 7.2 18.4 39.6 5.02 25.9 65.6 13.8 14.2 38.4 8.03
cnn • 5.4 0.5 7.5 13.4 0.5 0.07 1.9 0.5 0.14 1.1 0.3 0.08
cnnD • 3.9 48.2 7.75 3.9 35.2 5.19 4.8 59.2 20.9 3.6 48.8 8.5
mlp • 14.1 0.0 7.98 15.7 0.0 0.0 16.7 0.0 0.0 9.6 0.0 0.0

oursP • 5.4 93.4 8.23 9.7 67.4 5.33 4.8 126 21.5 1.8 84.5 9.0
oursNoT • 8.4 94.5 8.54 18.3 74.7 5.40 5.1 120 21.7 1.9 87.0 9.3

ours • 12.1 99.7 8.82 13.3 72.5 5.48 13.6 127 22.1 9.4 98.2 9.6

Si
m
ila
rit
y

0

25

0

130

0

20

All

D
iv
er
sit
y

Wood Grass Marble

Su
cc
es
s

span the full VGG space, which only ours and its ablations can do.

Generating 3D textures from the exemplars in Fig. 5.7, we find that our diversity and

similarity are 44.5 and 1.48, which compares favorable to Perlin 3D Noise at 14.9

and 7.11.

5.4.3 Qualitative results

Visual examples from the quantitative evaluation on a single exemplar for different

methods can be seen in Fig. 5.7. We see that some methods have diversity when the

seed is changed (rows one vs. two and three vs. four) and some do not. Diversity is

clear for Perlin and its variant, CNNs with a diversity term and our approach. No

diversity is found for MLPs and CNNs. We also note, that CNNs with diversity

produce typically shifted copies of the same exemplar, so their diversity is over-

estimated by the metric.

5.4. EVALUATION 77

Se
ed

 1

Wood

Se
ed

 2
Se

ed
 1

Grass

Se
ed

 2

cnn cnnD oursPmlpperlin perlinT oursourNoT

Figure 5.7: Different methods and the exemplar (columns), as defined in Sec. 5.4.2, applied
to different exemplars (rows). Each row shows, arranged vertically, two re-
synthesises with different seeds. Please see the text for discussion.

Fig. 5.8 shows a stripe re-synthesized from a single exemplar. We note that the

pattern captures the statistics, but does not repeat.

Figure 5.8: Stripes of re-synthesized textures from exemplars on the left. See the supple-
mental for more examples.

Our system can construct textures and spaces of textures in 3D from 2D exemplars

alone. This is shown in Fig. 5.9. We first notice that the textures have been transferred

to 3D faithfully, inheriting all the benefits of procedural textures in image synthesis.

We can now take any shape without a texture parametrization and, by simply running

the NN at each pixel’s 3D coordinate, produce a colour. We compare to a 2D

Ru
st

Sphere Cube Figurine

2D

3D (ours)2D

3D (ours)

Figure 5.9: 3D texturing of different 3D shapes. Insets (right) compare ours to 2D texturing.
See supplemental for 3D spin.

78 CHAPTER 5. NEURAL TEXTURES
Ex

em
pl

ar
 R

e-
sy

nt
he

sis
 1

Re
-s

yn
th

es
is

2

Figure 5.10: Our reconstruction of WOOD, GRASS, RUST, and MARBLE. The first row
shows different input exemplars. The second and third rows show our recon-
struction with different seeds.

approach by loading the objects in Blender and applying its state-of-the-art UV

mapping approach [193]. Inevitably, a sphere will have discontinuities and poles

that can not be resolved in 2D, which are no issue to our 3D approach while both

take the same 2D as input.

Fig. 5.10 documents the ability to reproduce the entire space. We mapped exemplars

unobserved at training time to texture codes, from which we reconstruct them, in 2D.

We find that our approach reproduces the exemplars faithfully, albeit totally different

on the pixel level.

Figure 5.11: Zoom.

Our method does not work on an explicit pixel grid but

rather a continuous function, which allows zooming into

arbitrary fine details as depicted in Fig. 5.11, which com-

pares favorable to cubic upsampling. This is particularly

useful in the 3D domain, where storing a complete vol-

ume to span multiple levels of detail requires prohibitive amounts of memory, while

ours is output-sensitive.

5.4. EVALUATION 79

O
ur
s

O
ur
s

O
ur
s

Li
ne

ar

Figure 5.12: Interpolation of one exemplar (left) into another one (right) in latent space
(first three rows) and linear (last row).

A meaningful latent texture code space should also allow for interpolation as seen in

Fig. 5.12, where we took pairs of texture codes (left and right-most exemplar) and

interpolated rows in-between. We see, that different paths produce plausible blends,

with details appearing and disappearing, which is not the case for a linear blend.

5.4.4 User study

Presenting M = 144 pairs of images produced by either perlinT, cnnD, mlp,

oursP, oursNoT and ours for one exemplar texture to N = 28 subjects and

asking which result “they prefer” in a two-alternative forced choice, we find that

16.7% prefer ground truth, 4.9% perlin, 7.7% perlinT, 14.3% cnn, 8.8%

cnnD, 9.4% mlp, 10.8% oursNoT, 12.9% oursP and 14.5% ours (statistical

significance; p < .1, binomial test). Given ground truth and cnn are not diverse, our

results are preferred over all others methods that synthesize infinite textures.

5.4.5 Method properties

We compare different properties of our method and competitors. An overview is

depicted in Tbl. 5.3. Rows list different methods while columns address different

aspects of each method. A method is “Diverse” if more than a single exemplar can be

produced. MLP [131] is not diverse as the absolute position allows overfitting. We

80 CHAPTER 5. NEURAL TEXTURES

Table 5.3: Comparison of texture synthesis methods. Please see text for refined definition of
the rows and columns.

Method D
iv

er
se

D
et

ai
ls

Sp
ee

d
3D Q

ua
lit

y

Sp
ac

e
2D

-to
-3

D

• Perlin perlin X X X X 5 5 5

• Perlin + transform perlinT X X X X 5 5 5

• CNN cnn 5 5 5 5 X 5 5

• CNN + diversity cnnD X 5 5 5 5 5 5

• MLP mlp 5 5 X X 5 5 X
• Ours + position oursP 5 X X X 5 X X
• Ours - transform oursNoT 5 5 X X X X X
• Ours ours X X X X X X X

denote a method to have “Detail” if it can produce features on all scales. CNN does

not have details, as, in particular in 3D, it needs to represent the entire domain in

memory, while MLPs and ours are point operations. “Speed” refers to computational

efficiency. Due to high bandwidth and lacking data parallelism, a CNN, in particular

in 3D, is less efficient than ours. This prevents application to “3D”. “Quality” refers

to visual fidelity, a subjective property. CNN, MLP and ours achieve this, but Perlin

is too simple a model. CNN with diversity [128] have decent quality, but is a step

back from [126]. Our approach creates a “Space” of a class of textures, while all

others only work with single exemplars. Finally, our approach allows us to learn

from a single 2D observation i. e., 2D-to-3D. MLP [131] also learn from 2D images,

but have multiple images of one exemplar, and pixels are labelled with depth.

5.5 Conclusion
We have proposed a generative model of natural 3D textures. It is trained on 2D

exemplars only and provides interpolation, synthesis and reconstruction in 3D. The

key inspiration is Perlin Noise – now more than 30 years old – revisited with NNs to

match complex colour relations in 3D according to the statistics of VGG activations

in 2D. The approach has the best combination of similarity and diversity compared

to a range of published alternatives, that are less computationally efficient.

Reshaping noise to match VGG activations using MLPs can be a scalable solution to

other problems in even higher dimensions, such as time, that are difficult for CNNs.

Chapter 6

Generative Modelling of BRDF

Textures from Flash Images

While the previous chapter presented a method that synthesizes 3D textures, it does

not capture the surface characteristics of textures. In this chapter, we learn a latent

space for easy capture, consistent interpolation, and efficient reproduction of visual

material appearance. When users provide a photo of a stationary natural material

captured under flashlight illumination, first it is converted into a latent material code.

Then, in the second step, conditioned on the material code, our method produces an

infinite and diverse spatial field of BRDF model parameters (diffuse albedo, normals,

roughness, specular albedo) that subsequently allows rendering in complex scenes

and illuminations, matching the appearance of the input photograph. supervision.

6.1 Overview
Rendering realistic images for feature films or computer games requires adequate

simulation of light transport. Besides geometry and illumination, an important factor

is material appearance.

Material appearance has three aspects of variation: First, when view or light direction

changes, reflected light changes. The physics of this process is well-understood and

can be simulated provided the input parameters are available. Second, behaviour

changes across materials. For example, leather reacts differently to light or view

changes than paper would, yet, different forms of leather clearly share visual prop-

82 CHAPTER 6. NEURAL MATERIALS

Figure 6.1: Results from our generative model of BRDF maps, assigned to a 3D object of a
shoe. Circular insets show diffuse, normal, roughness and specular maps. Our
model outputs a space of BRDF materials that can be sampled from, projected
to, and interpolated across. The BRDF generative model is trained exclusively
from a set of (306) RGB flash images (example shown in the lower left inset)
without any BRDF supervision, and shortly fine-tuned in the case of material
capture to best match the input picture.

erties, i. e., form a (material) space. Third, appearance details depend on spatial

position. Different locations in the same leather exemplar behave differently but

share the same visual statistics [118], i. e., they form a texture.

Classic computer graphics captures appearance by reflection models, which predict

for a given i) light-view configuration, ii) material, and iii) spatial position, how much

light is reflected. Typically, the first variation (light and view direction) is covered

by BRDF models, analytic expressions, such as Phong [33] which map the light and

view direction vector to scalar reflectance. The second variation (material) is covered

by choosing BRDF model parameters, such as specularity or roughness. In practice,

it can be difficult, given a desired appearance, to choose those parameters e. g., how

to make a leather look more like the one on a nice jacket. One can measure BRDF

model parameters, but it traditionally requires complex capture hardware for accurate

results. The third variation (spatial) is addressed by storing multiple BRDF model

parameters in images of finite size –often referred to as svBRDF maps– or writing

functional expressions to reproduce their behaviour. It is even more challenging to

choose these parameters to produce something coherent like leather, in particular

over a large spatial extent. Additionally, storing all these values requires substantial

6.1. OVERVIEW 83

View
Light

Materia
l

Sp
at

ia
l Latent code

z, θ«

Material texture
synthesis

Sh
ad

in
g

Materia
l

morp
h

Material
generation

View
Light

Materia
l

Sp
at

ia
l

Figure 6.2: BRDF space. From a flash image, which contains sparse observations across
material, space and view-light (left) we map to a latent code z / q ? (middle) so
that changes in these codes can be decoded to enable (right) material synthesis
(holding material fixed and moving spatially), material morphing (holding space
and view/light fixed and changing material), or classical shading and material
generation (points in the latent space).

memory and programming functional expressions to mimic their statistics requires

expert skills and time. Capturing the spatial variation of BRDF model parameters

over space using sensors requires even more complex hardware [32].

Addressing those issues, we provide a reflectance model to jointly generalize across

all of these three axes. Instead of using analytic parameters, we parameterize

appearance by latent codes from a learned space and our decoder weights, allowing

for acquisition, interpolation and generation. Without involved capture equipment,

these codes are produced by presenting the system with a simple 2D flash image,

which is then embedded into the latent space. Avoiding to store any finite image

texture, we learn a second mapping to produce svBRDF maps from the infinite

random field (noise) on-the-fly, conditioned on the latent material code and decoder

weights. Instead of using any advanced capture device for learning, flash images will

be the only supervision we use. This unsupervised approach allows us to consider

our decoder weights as part of the latent representation, which we fine-tune at test

time in a few minutes.

A use case of our approach is shown in Fig. 6.1. First, a user provides a “flash image”,

a photo of a flat material sample under flash illumination. This sample is embedded

as a code into a latent space using a CNN and used to fine-tune our decoders’ weights.

This code and weights can then be manipulated, e. g., interpolated with a different

84 CHAPTER 6. NEURAL MATERIALS

material. Conditioned on this code, our fine-tuned decoder can generate an infinite

field of BRDF to be directly used in rendering.

For training, we solely rely on real flash images. The key insight, inspired by Aittala

et al. [166], is that these flash images reveal the same material at different image

locations –they are stationary– but under different view and light angles. Using this

constraint, Aittala et al. [166] were able to decompose a small patch of a single input

image to capture the parameters of a material model that could then be rendered under

novel view or light directions. However, this covers only part of the generalization

we are targeting: it generalizes across view and light, but not across location or

material. Further, they perform an optimization for every exemplar, requiring time in

the order of an hour, while ours takes minutes only.

In summary, our main contributions are

• a generative model of a BRDF material texture space;

• generation of maps that are diverse over the infinite plane;

• a flash image dataset of materials enabling our training with no BRDF parame-

ter supervision or synthetic data

Our implementation as well as an interactive webpage are publicly available: https:

//henzler.github.io/publication/neuralmaterial/.

6.2 Background
Aittala et al. [166] leveraged the fact that a single flash image of a stationary material

reveals multiple realizations of the same reflectance statistics under different light

and view angles. We will now recall a simplified definition of their approach.

A flash image is an RGB image of a material, taken in conditions where a mobile

phone’s flashlight is the dominant light source. We write L(x) to denote the RGB

radiance value at every image location x. The illumination is expected to be an

isotropic point light collocated with the camera. Further, the geometry is assumed

to be flat and captured in a fronto-parallel setting, so that the direction from light to

https://henzler.github.io/publication/neuralmaterial/
https://henzler.github.io/publication/neuralmaterial/

6.2. BACKGROUND 85

every image location in 3D is known. Self-occlusion and parallax are assumed to be

negligible.

Reflectance is parameterized by a material, represented as a function f (x) mapping

image location x to shading model parameters, including the shading normal. Under

these conditions, the reflected radiance is L = R f , where R is the differentiable

rendering operator, mapping shading model parameters to radiance.

A material f explains a flash image L if it is visually similar to L when rendered.

Unfortunately, without further constraints, there are many materials to explain the

flash image. This ambiguity can be resolved when assuming that the material f is

stationary. We say a material is stationary if local statistics of the shading model

parameters f do not change across the image.

Putting both –visual similarity and stationarity– together, the best material from a

family fq of material mapping functions parameterized by a vector q , can be found

by minimizing a loss:

L 0(q) := T (L,R fq)+lS (fq), (6.1)

where T (L,R fq) is a metric of visual similarity between a flash image L and a

differentiable rendering R fq , and S (f) is a measure of stationarity of a material

map f .

Comparison, T , of two textures is not trivial. Pixel-by-pixel comparison is typically

not suitable to evaluate visual statistical similarity. Instead, images are mapped to a

feature space in which images that are perceived as similar textures, map to similar

points [118]. Different mappings are possible here. Classic texture synthesis [195]

uses moments of linear multi-scale filter responses. Gatys et al. [124] proposed to

use Gram matrices of non-linear multi-scale filter responses such as those of the

VGG [29] detection network. Such a characterization of textures was also used by

Aittala et al. [166] and, without loss of generality, will be used and extended in this

work as well.

While f is stationary, L is not –due to the lighting– and has features at different

86 CHAPTER 6. NEURAL MATERIALS

Table 6.1: Comparison of features between different previous methods. We distinguish
methods producing RGB from those generating BRDF or svBRDF, whether
those can be Non-Stationary and Infinitely sampled. We also distinguish if their
results for one input can be Diverse if they form a Space which can be queried
and how Fast direct sampling is.

Method Supervision B
R

D
F

sv
B

R
D

F

N
on

-S
ta

t.

In
fin

ite

D
iv

er
se

Sp
ac

e

Fa
st

G
en

.

Classic texture synth RGB 5 5 X X X 5 X
Matusik et al. [168] RGB 5 5 X X X X 5

Matusik [142] BRDF X 5 5 5 X X X
Georgoulis et al. [144] BRDF X 5 5 5 5 X X

Deschaintre et al. [145] svBRDF X X 5 5 5 5 X
Zhao et al. [194] Flash image X X X 5 5 5 5

Aittala et al. [166] Flash image X X X 5 5 5 5

Gao et al. [161] svBRDF X X X 5 5 5 5

Guo et al. [160] svBRDF X X X 5 5 X 5

Ours Flash image X X 5 X X X X

random positions x which are compared as

T 0(L1,L2) := Ex⇠(0,1)2,s⇠(0,1)[|P(L1,x,s)�P(L2,x,s)|1], (6.2)

where P 0(L,x) crops a patch of randomly chosen scale s at the location x and

resamples it to the input resolution of VGG [29], computes the filter responses and

their Gram matrices:

P(L,x,s) := gram(vgg(resample(crop(L,x,s)))). (6.3)

Minimizing q with respect to Eq. 6.1 for a given L results in a material. fq can

represent different approaches. Aittala et al. [166] directly use the pixel basis and

optimize discrete material maps for q using a single input flash image L. With their

approach, optimizing for both visual similarity and stationarity is challenging. In

particular, the reflectance stationarity term S , requires a “spectral preconditioning”

step as explained in their paper. Instead, we propose an approach in the form of

a neural model f that is (i) defined on the infinite domain and (ii) stationary by

6.3. METHOD 87

L1 norm

Re
sN

et

32 64
128 256 128

AdaIN

T

μ,б

z

64
8

Rendering

Re-rendering

Ra
nd

om
 in

!n
ite

 !
el

d

Flash image

Ra
nd

om
 m

at
er

ia
l

μ,бμ,б μ,б μ,б μ,б μ,б μ,б

Random crop

GramPower Spectrum GramPower SpectrumVGG VGG

T T T T T T T

Fixed for !ne-tuning svBRDF maps

Figure 6.3: Our architecture. Starting from an exemplar (top-left) our trained encoder
encodes the image to a compact latent space variable z. Additionally, a random
infinite field is cropped with the same spatial dimensions as the flash input image.
The noise crop is then reshaped based on a convolutional U-Net architecture.
Each convolution in the network is followed by an Adaptive Instance Normaliza-
tion (AdaIN) layer [196] reshaping the statistics (mean µ and standard deviation
s) of features. A learned affine transformation T -s per layer maps z to the de-
sired µ-s and s -s. The output of the network are the diffuse, specular, roughness,
normal parameters of an svBRDF that, when rendered using a camera colocated
flash light, look the same as the input. Our unsupervised setting allows us to
fine-tune our trained network on materials to acquire.

construction. Thus, our loss does not need to include a stationarity term. To further

demonstrate the capabilities of our method, we summarize the design space of current

methods in Tbl. 6.1.

6.3 Method
An overview of our approach is shown in Fig. 6.3. We train a neural network which

acts as a decoder fq (x|z) that generalizes across spatial positions x as well as across

materials, expressed as latent material codes z. The material codes z are produced by

an encoder g with z = g(L). Both encoder and decoder are trained jointly over a set

of flash images using the loss:

L (q) := EL[T (L,R fq (·|gq (L)))]. (6.4)

This equation is an adapted version of Eq. 6.1 to fit our objectives. In particular,

we propose a neural network-based fq , leveraging the expectation EL over all flash

images in our training set and removing the stationarity term as it is enforced by

construction in our network architecture. We describe the flash image encoder g

(Sec. 6.3.1), the material texture decoder f (Sec. 6.3.2), the texture comparison

88 CHAPTER 6. NEURAL MATERIALS

model T (Sec. 6.3.3) and our fine tuning approach (Sec. 6.3.5), next.

6.3.1 Encoder

The encoder g maps a flash image L to a latent code z. The flash images used by

our method are similar to those of recent svBRDF acquisition papers [166, 145]: we

use a phone with a flash collocated with the camera and capture surface in a fronto-

parallel way. Our encoder is implemented using ResNet-50 [190]. The ResNet starts

at a resolution of 512⇥ 384 and maps to a compact latent code. Empirically, we find

a nz = 64-dimensional latent space to work best for our data and present all results

using this number.

6.3.2 Decoder

The decoder f maps location x, conditioned on a material code z to a set of material

parameter maps. The key idea is to provide the architecture with access to noise, as

previously done for style transfer [196], generative modelling [136] or 3D texturing

proposed in Chapter 5. In particular, we sample rectangular patches with edge length

of n⇥m pixels from an infinite random field and convert them to material maps

using a U-net architecture [155]. The U-net starts at the desired output resolution

n⇥m and reduces resolution four times using max-pooling before upsampling back

to n⇥m through a series of bi-linear upsampling and convolutions. Let F be the

array of input features. For i = 0, the first level, in full resolution, these features are

sampled from the random field at x. Then, output features are

F 0 := adaIN(convq (F),Tq z), (6.5)

where adaIN is Adative Instance Normalization (AdaIN) [196], conv a convolution

(including up- or down-sampling and ReLU non-linearity), z is a latent material code

and T is an affine transformation. Components with learned parameters are denoted

with subscript q .

6.3. METHOD 89

We use AdaIN as defined by Huang and Belongie [196] as

adaIN(xxx ,{µµµ,sss2}) = sss
sssF

(xxx �µµµF)+µµµ (6.6)

and remaps the input features with mean µµµF and variance sss2
F to a distribution with

mean µµµ and variance sss2.

The affine mapping T is implemented as (nz +1)⇥ (2⇥ ci) matrices multiplied with

the latent code z. Here 2⇥ci represent a different mean and variance for each channel

dimension ci of a layer. It provides the link between the material code and the noise

statistics. Each material code z is mapped to a mean and variance to control how the

statistics of features are shaped at every channel on every layer of the decoder.

Our control of noise statistics from latent codes is similar to StyleGAN [136], with

the key difference that we do not sample noise at different scales, but learn how to

produce noise with different, complex, characteristics at different scales by repeatedly

filtering it from high resolutions.

6.3.3 Images Comparison

As mentioned in Sec. 6.2, we want to evaluate visual similarity and stationarity. To

this end, we propose to compare images based on a loss that accounts both for the

statistics of activations [124] and their spectrum [197] on multiple scales across the

infinite spatial field,

T (L1,L2) := Ex⇠R2,s⇠(smin,smax)[|P(L1,x,s)�P(L2,x,s)|1]. (6.7)

P(L,x,s) := gram(V (L,x,s))+l ·powerSpectrum(V (L,x,s)) (6.8)

V (L,x,s) := vgg(resample(crop(L,x,s))) (6.9)

Spectrum VGG Gram matrices capture the frequency of a feature appearance, unless

it forms a regular pattern Liu et al. [2016]. Liu et al. [197] proposed to include the

L1 norm of the power spectra of RGB images into the texture metric for texture

synthesis. We combine both ideas and use VGG, but do not limit ourselves to its

Gram matrix statistics, and also leverage its spectrum. We set l = 1e�3.

90 CHAPTER 6. NEURAL MATERIALS

Scale As VGG works at a specific scale of features it was trained for, it behaves

differently at different scales. As the material should be visually plausible regardless

of its scale we include multiple scales s, ranging from smin = 0.1 to smax = 8 in the

loss computation.

Infinity Expectation over the infinite plane is implemented by simply training with

different random seeds for the noise field. This results in the generation of statistically

similar, but locally different variations of materials. As, given a seed, every generated

patch is a coherent material, combinations of multiple patches remains coherent as

well. This allows us to query an endless, seamless and diverse stream of patches

without repetition. It also prevents over-fitting and is crucial to guarantee stationarity

by design.

6.3.4 Training

To enforce a generalizable material prior, we first train the system as a Variational

Auto-encoder (VAE) [198]. Instead of mapping to a single 64-D latent material code,

the encoder g maps to a 64-D mean and variance vector, from which we sample in

training. At test time we use the mean for each 64-D. We have omitted the additional

VAE terms enforcing z to be normally distributed from Eq. 6.4 and Fig. 6.3 for clarity.

We trained our model for 4 days and a batch size of 4 on an NVIDIA Tesla V100

using ADAM optimizer with a learning rate of 1e-4 and weight decay 1e-5.

6.3.5 Fine-tuning

Using the trained encoder-decoder pair we can instantaneously compress a 2D RGB

flash image to a latent code and decompress it into an infinite svBRDF field. The

quality of the decoding can further be improved by adapting the decoder weights

to a specific exemplar L? with a short one-shot training. To this end, all weights q

are held fixed, except for the decoder weights q ? ⇢ q , which are further trained to

reproduce a single flash image L? at material code z? = g(L?). This is made possible

by our completely unsupervised approach, allowing us to fine-tune any flash image,

without requiring ground truth maps. Note that unlike [160] we use a style loss

rather than a pixel-wise loss for fine-tuning, preserving the diversity properties of

6.3. METHOD 91

our results. In practice, we fine-tune for 1000 steps with an increased learning rate

by a factor of 10, for about 5 minutes.

Fine-tuning of two materials will result in two different decoders f1 and f2 as well as

two latent codes z1 and z2 produced by the same encoder. We show that despite being

a more complex space, interpolating both the latent code and decoder parameters, as

in lerp(f1, f2)(lerp(z1,z1)) works well in practice, Unless otherwise specified, we

show fine-tuned results in the remainder of this paper and ablate several variants in

Sec. 6.4.4.

6.3.6 Material model

We use the Cook-Torrance Cook and Torrance [1982] micro-facet BRDF Model, with

Smith’s geometric term [39], Schlick’s Schlick [1994] Fresnel and GGX [38]. Hence,

the parameters are diffuse RGB albedo, monochromatic specular albedo, roughness

and height, i. e., six dimensions. Instead of learning a normal map, a height field

is generated from which normals are computed using finite differences. During

our differentiable rendering step, we assume a FOV of 45� to simulate smartphone

cameras.

6.3.7 Alignment

Many flash images entail a slight rotation as it can be difficult to take a completely

fronto-parallel image. This was handled by Aittala et al. [166] by locating the

brightest pixel and cropping, but we found our, more abstract, training to struggle

with such a solution.

Instead, we add a horizontal and a vertical rotation angle to the parameter vector

generated from the latent code (not shown in Fig. 6.3 for clarity). During training,

these are used to rotate the plane, including the normals. During testing, these angles

are not applied meaning that the output is in the local space of the exemplar.

We use a branch of the encoder to perform the alignment task, allowing to jointly

align images based on their visual features.

A byproduct is that the encoder returns angular distance to fronto-parallelity, which

could be used to guide users during capture.

92 CHAPTER 6. NEURAL MATERIALS

6.4 Results

6.4.1 Dataset

We created an extended dataset of flash images for testing and training of our

approach. It comprises 356 images of various types of materials we captured using

four different smartphones. We reserve 50 images for testing, augmented by all

images from Aittala et al. [166]. Hence, no image from Aittala et al. [166] was used

for training.

6.4.2 Quantitative Evaluation

For quantitative analysis, we compare our approach to a range of alternative methods

with respect to different metrics.

Methods We compare to five methods by (i) Aittala et al. [166], (ii) Deschaintre

et al. [145], (iii) Gao et al. [161], (iv) Guo et al. [160], and (v) Zhao et al. [194].

All renderings of these methods are done with the material model described in their

respective paper. While Gao et al. [161] and Guo et al. [160] were designed to

be compatible with multiple image acquisition with known light positions, in our

comparisons we provide the same input as to our method: a single input image and

an approximate light position.

Metrics We quantify style, diversity, and computational speed. Style is captured by

L1 difference of the VGG Gram matrices of rendered images. A good agreement

in style has a low number i. e., less is better. We also evaluate XYZ histogram

L1 difference and find that all methods have below 1% of difference with Ground

Truth renderings, indicating good colour matching for all. Histogram difference

does not however capture the complex visual difference when comparing materials

(as can be seen in Fig. 6.5). Diversity is captured as the mean pairwise VGG L1

across all realizations. Here, more is better. The idea behind this diversity metric

is, that for a diverse method, two realizations should have a high difference. A

direct pixel metric would be sensitive to noise which generates small perturbations

resulting in false-positive differences. Hence, the choice of VGG features detects

whether realizations are indeed perceivably different. Note that we do not evaluate

6.4. RESULTS 93

Table 6.2: We compare to recent material acquisition approaches on the L1 difference be-
tween VGG Gram matrices (VGG Style, lower is better) on both real and synthetic
results as described in Sec. 6.4.2. Additionally we evaluate each method’s capac-
ity to generate diverse realizations of a material with the mean pairwise VGG L1
across all realizations (Div, higher is better). We see that ours outperforms others
on perceived similarity with the VGG style metric. Additionally, ours is the only
one generating diverse material variations from a single image.

Method Style err. # Div. "
Flash Relit

Aittala et al. [166] 0.922 0.512 0.00
Deschaintre et al. [145] 0.943 0.653 0.00
Gao et al. [161] 0.738 0.556 0.00
Zhao et al. [194] 0.545 0.618 0.00
Guo et al. [160] 0.843 0.582 0.00
Ours 0.597 0.439 2.08

pixel-wise metrics such as L1 or SSIM as these enforce local coherence, which is,

by construction, not targeted by our method.

Comparisons We use the described metrics to compare against multiple state-of-

the-art methods in material acquisition and report the results on real (Flash) and

synthetic materials (Relit) in Tbl. 6.2. For real results, we only have access to the

frontal flash-illuminated material and therefore compare the picture to a rendering of

each method’s result also under frontal illumination.

This, however, does not evaluate well the appearance under novel illumination, which

is a key property of svBRDFs. To validate the generalization across light directions,

we acquire 30 random stationary synthetic svBRDFs from CC0 Texture and render

them to simulate a frontal-flash capture setup using Mitsuba2 [199]. All methods

are then run with this simulated flash image as input. We report the average of the

re-lighting error, against ground truth renderings, for all methods under 10 random

point light illuminations.

As shown in Tbl. 6.2, our approach is the only one to target diverse results, i. e., we

produce infinitely many realizations of a texture while all other approaches produce

only one. Thus, diversity (Div.) is zero for compared methods, while our approach

can generate varied realizations for each material.

In terms of computational speed, Aittala et al. [166] and Zhao et al. [194] both

94 CHAPTER 6. NEURAL MATERIALS

Input image Normal Di!use Roughness SpecularResynthesis Relight

[Z
ha

o2
0]

[A
itt

al
a1

6]
[D

es
ch

ai
nt

re
18

]
[G

ao
19

]
[G

uo
20

]
O

ur
s

Figure 6.4: Comparison with other methods. Each method (rows) decomposes an image
into svBRDF parameters (columns). The first column shows the flash image
input and the second column the rendering of the results under a similar fronto-
parrallel lighting. The third column is the material relit from the top, showing
the generalization capacity across light. Our method’s quality is particularly
visible under a novel illumination (see also Fig. 6.5). This is because other
methods leave a trace of the flash in the svBRDF maps, as can be seen in the
decomposed channels (four right-most columns). These results are obtained
with our single image setting, compared methods Gao et al. [161] and Guo et al.
[160] could benefit from additional aligned images or accurate light calibration
when available. Please see the supplemental material for similar results on many
more materials.

require long –between 1 and 3 hours– per-exemplar optimization to produce a

stationary texture. Our approach requires around 500 ms to generate a material and

a few minutes to fine-tune it to a given input. This is in the same order of speed as

Deschaintre et al. [145] for generation and Gao et al. [161] and Guo et al. [160] for

the fine-tuning. Once fine-tuned, our method can generate new realizations and high

resolutions versions of the targeted material in around 500 ms.

6.4. RESULTS 95

6.4.3 Qualitative Evaluation

Decomposition A qualitative example of our svBRDF decomposition (Normal, Dif-

fuse Roughness and Specular maps) and re-renderings under different lights are

depicted in Fig. 6.4. Please see our supplemental material for all results decomposi-

tion and comparison. We see that our method captures best the material behaviour

and does not suffer from artefact in the over-exposed area of the input image, which

can be seen in previous work. As our method uses materials statistics rather than

direct pixel-aligned image to material transformation, it is immune to such artefacts.

Relighting In Fig. 6.5, we show qualitative rendering comparisons on real materials

with illumination coming from the top. In this more challenging setting, it is clear

that existing works struggle to remove the highlight from the center of the flash

image, which does not affect our method. As Aittala et al. [166] reconstruct a small

(representative) patch of the large input picture, their method is also immune to flash

artefacts, but results in a very zoomed representation of the material. To compensate

for this ”zoom factor”, we tile the results in each direction. We empirically found

that 3 times works best for most materials.

Seeds In Fig. 6.6, we show the variation of our results when changing the seed. The

overall appearance of the material remains the same, but the details (such as the rust

or the leather normals and colour variation) vary.

Overall, we see in Fig. 6.4, Fig. 6.5 and Fig. 6.6 that our approach can capture a large

range of different stationary materials, reproducing their style, yet being diverse.

This enables different properties described next.

Infinite We show in Fig. 6.7 the ”infinite” resolution capacity of our approach

against the common approach of tiling. Our result (top image) shows no sign of

repetitiveness even for a very large resolution (4096⇥256).

Interpolation We show results of interpolation between materials, as described in

Sec. 6.3.5, in Fig. 5.12 and Supplemental Material. We compare against the linear

interpolation baseline and Guo et al. [160], which also allows interpolation. We find

our method to provide smoother interpolation than the Linear approach and to better

preserve intermediate material color than Guo et al. [160]. We additionally evaluate

96 CHAPTER 6. NEURAL MATERIALS

Flash input [Zhao20][Aittala16] [Deschaintre18] [Gao19] [Guo20] Ours

Figure 6.5: Relighting of different materials (rows) using material maps extracted by dif-
ferent methods (columns). The first column shows the input flash image where
light is fronto-parallel. The light in all other images comes from the top. While
no reference is available for this task, it is apparent that all the methods except
ours struggle to generalize to novel light conditions. Note that Deschaintre et al.
[145], Gao et al. [161] and Guo et al. [160] leave a dark residual of the flash
in the material maps. Zhao et al. [194] and Aittala et al. [166] fare slightly
better and avoid the residual, but the structures do not match. These results are
obtained with our single image setting, compared methods Gao et al. [161] and
Guo et al. [160] could benefit from additional aligned images or accurate light
calibration when available.

interpolation if we directly train on material individually (without the training step

described in Sec. 6.3.4). This confirms that this pre-training forms a coherent latent

space in which we can navigate.

Texturing Fig. 3.1 shows examples of applying maps produced by our approach to

a complex 3D shape. Thanks to our generative model, we can easily texture many

sneakers, without spatial or material repetition. At any point, a user can randomize

6.4. RESULTS 97

Seed1 Seed 2 Seed 3

Figure 6.6: Seeds variation. We vary the seed for the generation of different realizations
for acquired materials while preserving their overall appearance. The zoomed-in
insets all show the same region of the material, allowing us to better appreciate
the variations.

O
ur

s
G

uo
 e

t a
l.

Figure 6.7: Infinite spatial extent. The top result is sampled at high resolution (256⇥4096)
from our BRDF space, while the bottom result is a result from Guo et al. [160]
at 256⇥256 resolution and horizontally tiled 16 times to achieve high resolution.
The absence of repetitiveness in the top result demonstrates that our learned
BRDF space can be sampled at any query (x,y) location without producing a
visible repetition artefact. By construction, our network architecture does not
require any special boundary alignment to avoid tiling artefacts.

the generated material, generate new materials from pictures or interpolate between

new materials and old ones.

Generation Our z space can be sampled to generate new materials as shown in

Fig. 6.9 with a variety of examples.

98 CHAPTER 6. NEURAL MATERIALS

Exemplar ExemplarInterpolation

O
ur

s
[G

uo
20

]
O

ur
s (

ab
la

tio
n)

Li
ne

ar

Figure 6.8: Interpolation of latent BRDF texture codes. In each row, a left and a right
latent code and generator weights z1, z2, g1, g2 are obtained by encoding
two flash images, respectively. The intermediate, continuous field of BRDF
parameters is computed by interpolating, in the learned BRDF space, from z1
& g1 to z2 & g2 and conditioning the decoder Convolutional Neural Network
(CNN) with the intermediate codes. The result is lit with a fronto-parallel light
source to demonstrate the changes in appearance. For comparison, the first row
shows image space linear interpolation, the second compares to Guo et al. [160].
The third row shows an ablation of our approach trained on a single material
(without previous full dataset training). This lack of training prevents it from
creating a cohesive space in which to interpolate. Overall our approach allows
for interpolation, progressively changing both structure and reflectance.

Interactive demo The visual quality is best inspected from our interactive WebGL

demo in the supplemental material. It allows exploring the space by relighting,

changing the random seed and visualizing individual BRDF model channels and

their combinations. The same package contains all channels of all materials as images

as well as compared methods. See the accompanying video for a demonstration of

our interactive interface.

Fine-tuning We show the results improve in quality when using the proposed fine-

tuning approach in Fig. 6.10. We can see that the structure and details better match

the input picture.

6.4. RESULTS 99

Figure 6.9: Generation. Random samples from our space. We generate new materials by
sampling the z space and render them with a frontal flash. See supplemental
materials for more generated materials.

Input Ours (non-tuned) Ours

Figure 6.10: Fine-tuning. We show results on two results of real materials reproduced
using our pre-trained network (ours non-tuned) and the same material using
our fine-tuning approach. We can see that our fine-tuned results match the
input material appearance significantly better. Note that fine-tuning is only
with image supervision and does not have access to any underlying BRDF
supervision.

6.4.4 Ablation Experiments

We study several variants of our approach to evaluate the relevance of individual

contributions to our FULL method.

We report the results of this evaluation in Tbl. 6.3 with VGG Style error in Sec. 6.4.2.

We did not find the diversity of our method to be affected by these ablations.

SINGLE describes our method trained on a single example without the previous

100 CHAPTER 6. NEURAL MATERIALS

training step. The results are slightly better than our FULL method but requires twice

as much time per material training and does not generalize to a space, preventing

interpolation and generation of materials.

NONTUNED is our method without the fine-tuning step from Sec. 6.3.5, confirming

that it significantly improves the match to the acquired material. DECODERONLY

describes the change of our generator to a decoder-only architecture. We show that

removing the encoder part of the generator slightly degrades the results. FOURIER

and LIGHT respectively result from the removal of the Fourier component (power

spectrum) of our loss (Sec. 6.3.3) and the removal of the light alignment branch of

our encoder (described in Sec. 6.3.7), which both lead to slightly worse results.

Table 6.3: VGG style error for ablations relative to our FULL. For reference, our full method
has an absolute score of 0.44.

Ablation Error #
SINGLE -0.5%

NONTUNED +24.0%
DECODERONLY +2.0%

FOURIER +0.9%
LIGHT +1.7%

6.5 User experiment
We perform a user study to better understand the capabilities of different methods.

Our main aim is to provide material maps that robustly generalize to all light condi-

tions so they can be deployed in production rendering. Hence we study a relighting

task: given an input image in one light condition, we ask humans to pick the method

that looks most plausible “in a different light”.

Methods Subjects anonymously completed an online form without a time limit. At

the start of the user study, participants were shown two photos of a marble material

taken under two different lighting conditions to exemplify what a valid relighting

could look like. They performed 10 trials, each corresponding to one material. In

each trial, they were presented a reference image rendered in one light condition

(“flash”) and six relit images in another light condition (“top”). Relit images were

6.6. LIMITATIONS 101

Table 6.4: User preferences per method.

Method Freq.
Aittala et al. [166] 21

Deschaintre et al. [145] 10
Gao et al. [161] 4
Guo et al. [160] 11

Zhao et al. [194] 30
Ours 314

displayed in a randomized spatial 2D layout. We consider six different methods:

Aittala et al. [166], Deschaintre et al. [145], Gao et al. [161], Guo et al. [160], Zhao

et al. [194] and ours. Samples of those stimuli are seen in Fig. 6.5. Participants were

asked to pick the image (images were not named) that, according to them, was the

best faithful relighting of the source (flash) image. Note that no relit reference was

shown.

Analysis A total of N = 39 participants completed the experiment as summarized

in Tbl. 6.4. A c2 test rejects (p < 0.0001) the hypothesis that choices were random.

Pairwise binomial post-hoc tests further show that our method is different from any

other method at the same significance level. Most importantly, subjects choose our

method in 314 out of 390 total answers 80.5 %). We did not analyze the relation of

other methods relative to each other.

6.6 Limitations
Our method relies on fronto-parallel flash acquisition. While we propose a mitigation

solution in Sec. 6.3.7, we show in Fig. 6.11 that we are not completely invariant to

large light and plane rotations. Our approach is also limited to stationary isotropic

materials and relies on the planarity of the captured surface.

6.7 Conclusion
We have presented an approach to generate a space of BRDF textures using a small

set of flash images in an unsupervised way. Comparing this approach to the literature

shows competitive metrics for re-renderings with the unique advantage of being able

102 CHAPTER 6. NEURAL MATERIALS

Fronto-parallel Non-parallel Side-lit Non-parallel & side-lit

Fl
as

h
im

ag
e

Re
sy

nt
he

sis

Figure 6.11: Flash acquisition assumption. We show examples of how our results degrade
when fronto-parrallel, collocated flash assumptions are broken. The recovered
material appearance varies (roughness, high frequency normal) but maintains
the overall appearance of the input image.

to generate an infinite and diverse field of BRDF parameters.

In the future, it would be interesting to increase the complexity of supported material

whether in terms of shading or non-stationarity. Also, not relying on fine-tuning to

increase the network expressiveness would allow to create an even more cohesive

space. Further, more refined differentiable rendering material models could be used

to derive stochastic textures, including shadows, displacement, or scattering as well

as volumetric or time-varying textures. We believe that our framework will represent

a stepping stone for more complex, infinite and diverse BRDF acquisition.

Chapter 7

Conclusion

Self-supervised learning is an essential part of artificial intelligence. As we have

seen in this thesis, the combination of AI and differentiable inverse graphics allows

us to explicitly model higher-dimensional data without direct supervision during

training time.

3D reconstruction Acquiring large amounts of annotated 3D data is expensive and

tedious. In Chapter 3, hard-coded differentiable image formation models enabled

self-supervised 3D reconstruction from unstructured image collections through

adversarial rendering. However, the resulting quality of the proposed approach is

limited by low voxel resolutions and camera poses were not explicitly modelled,

i. e., 3D reconstructions are not canonically aligned as they are forced to be in

camera space. These limitations were addressed in Chapter 4. A large-scale dataset

consisting of object-centric videos is introduced providing multi-view data. Camera

poses are extracted automatically by an off-the-shelf SfM algorithm, providing

additional supervision without human effort. Exploiting multi-view data, a novel

warp-conditioned ray embedding (WCE) facilitates aggregation of multiple input

images and enables single- or multi-view reconstruction. The limiting voxel grid

representation was replaced with a neural field leading to results with higher fidelity.

Unlike the method in Chapter 3, reconstruction can be performed in world space

instead of camera space, due to known camera poses, which further helps to improve

the results.

104 CHAPTER 7. CONCLUSION

Texture and material synthesis Disentangling shape, material and lighting is an

important aspect towards controllable 3D content generation. The second part of the

thesis focused on the disentanglement of material and lighting, for which modeling

the material parameters as stationary textures was crucial. In Chapter 5, a self-

supervised 3D texture synthesis method only relying on stationary 2D texture images

is introduced. It features a generative model producing diverse 2D and 3D natural

textures. A major advantage of the proposed method is the use of an encoder that

can be used to map any given exemplar into a compact latent space while previous

texture models need to be re-trained for each exemplar. Furthermore, it allows for

3D texturing independent of shape or resolution without the need for UV mapping.

However, the method only captures RGB textures rather than material properties

which are required for physically-based rendering.

Building upon the previous idea, the proposed method in Chapter 6 alleviates this

by synthesizing material parameters from flash images. For a given stationary flash

image, the method is trained to produce material parameters, that when re-rendered,

resemble the input flash image under a statistical loss. Such a design does not

require access to the underlying svBRDF decompositions and can be trained in a self-

supervised fashion. Unlike prior work, an easy-to-acquire real-world dataset only

consisting of flash images is used for training rather than relying on synthetic data

containing pairs of flash images and svBRDF decompositions. Towards generative

texture modeling, the method generates a space of svBRDF textures, which can be

sampled from and produces diverse and infinite svBRDF textures.

7.1 Limitations

Even though methods advancing the progress towards shape and appearance mod-

eling from single or few observations have been presented, they all lack individual

control over camera pose, geometry, material and lighting. The two methods pre-

sented in Chapter 3 and Chapter 4 combine geometry, material and lighting into a

single representation where only camera pose can be controlled. In Chapter 5, 2D

textures are lifted to solid 3D textures, which decouples texturing from geometry,

7.1. LIMITATIONS 105

Pose Geometry

Material

Light

Figure 7.1: Examples of changing individual scene parameters are depicted. Beginning on
the top left, pose, geometry, material and light are changed consecutively. First,
the pose is tilted to the right, before moving the table from right to left. Next,
the material of the couch and the chairs is changed from green to orange fabric.
Lastly, the light is dimmed.

lighting and camera pose. However, this is accomplished in a well-defined setting

where no 3D geometry, lighting or camera pose is modeled. Material and lighting are

disentangled in Chapter 6, but again no 3D geometry or lighting are inferred as both

were known at training time. Even though not all scene parameters can be controlled,

each method provides a different subset of control. Ultimately, the question arises

whether it is possible to disentangle all scene parameters from just a single or a

few observations of a scene. An example of a potential pipeline to achieve this is

presented in Fig. 7.1.

To gain a better understanding of the limitations prevailing in current methods, let us

consider an abstract model. The aim of the model is to demonstrate the capabilities

of current methods. These are defined by the type of data that is required for training

as well as inference and the achieved amount of disentanglement. We start off with a

model of an ideal world as illustrated in Fig. 7.2.

In an ideal world, no limitations, in terms of annotated data, exist as knowledge of

an infinite amount of disentangled camera poses, geometry, materials and light is

assumed. In deep learning terms, this is equivalent to fully annotated training data.

Taking a snapshot of this world in the form of an image consequently produces an

106 CHAPTER 7. CONCLUSION

World Image Method Representation

∞
1

Projection

Entangled Disentangled

∞

∞

∞

∞

∞

∞

∞

Test Train

Figure 7.2: An abstract model that illustrates training a supervised algorithm that is capable
of disentangling scene parameters from a single image. See text for more details.

entangled version, which we seek to disentangle into its original parameters. In this

instance, supervised learning could be used to address the task, as full supervision

would be available. However, as discussed in Chapter 1, realistic and large-scale

annotated 3D datasets do currently not exist and potentially never will.

In the following, we will see how current methods relate to our abstract model,

as illustrated in Fig. 7.3. Recently, NeRF [54] has exploited multi-view data of a

single scene for novel-view synthesis and has shown results of impressive quality.

Multi-view data provides several poses of the same geometry, material and light

and thus provides partially disentangled supervision. NeRF provides full control of

the camera pose, however, only for a single scene and static light, which prevents

generalization. Following up on this idea, several methods have been proposed to

further disentangle the parameter space by accounting for lighting changes. Some of

these require different poses under different lighting conditions of the same geometry

and material [200, 201]. Others either rely on a material database as supervision

[202] or cannot disentangle shadows from diffuse albedo [203]. Although they

are able to disentangle camera poses, light and some even materials, this is only

possible for a single scene. Therefore, control is limited to single scenes where many

hundreds of images are required for good quality which means there is no potential

for scalability or extrapolation.

In comparison, PlatonicGAN has only access to unstructured and completely en-

tangled images. Despite this challenge, the method disentangles camera poses in a

7.1. LIMITATIONS 107

Supervision Image Method RepresentationMulti-view

NeRF

Supervision Image Method Representation

1

Single-view

Test Train

N

Platonic GAN

Supervision Image Method Representation

1

Single-view

WCE

N

1

N

1

∞

1

Multi-view

Multi-view

N

N

∞

N

∞

N

Multi-view

Figure 7.3: Current methods (NerF, PlatonicGAN, WCE) provide limited capabilities for
scene parameter disentanglement. Following an abstract model required training
and test supervision, the level of disentanglement and scalability potential are
illustrated.

platonic way from only a single image. This is possible as the method is trained on

an unstructured image collection containing images of different scenes. As a result,

it is able to extrapolate to unseen scenes which is a desired property, especially with

respect to disentanglement. Unfortunately, the resulting quality is very poor.

In Chapter 4, WCE is proposed, a method that significantly increases the resulting

quality at the cost of multi-view data as supervision. Nevertheless, it still allows for

generalization while being scalable. It would be interesting to see if this method setup

can be extended for more disentanglement. Inspired by those insights, prospective

future research directions are discussed in the next section.

108 CHAPTER 7. CONCLUSION

7.2 Future Work

7.2.1 Platonic Way

Real/Fake?

Real/Fake?

Figure 7.4: Disentangling scene parameters from images could be achieved by ensuring that
arbitrary combinations of individual scene parameters of different scenes are
not distinguishable from realistic images when rendered.

One way to achieve more disentanglement could be to revisit PlatonicGAN from

Chapter 3. The key idea is to generate a 3D model that when rendered from a random

pose looks natural, i. e., cannot be distinguished from real images by a discriminator

network. Previously, geometry, material and illumination were predicted jointly

which prevents disentanglement by construction. For a better disentanglement of the

scene parameters, a novel method could model them individually. This would allow

swapping of different parts between different scenes. For instance, geometry and

lighting could be switched between two scenes as illustrated in Fig. 7.4. This way,

arbitrary combinations of scene parameters can be rendered. In PlatonicGAN fashion,

the resulting images could be enforced to look natural by a discriminator. Note that

previously only one scene parameter, the camera pose, was changed. This setup does

not explicitly resolve ambiguities that are caused by rendering, but incentivizes the

individual elements to be plausible and therefore possibly allows for disentanglement.

To further enforce disentanglement, each individual component could be embedded

into a global latent space by an encoder network. After reconstruction, a single

parameter could be changed multiple times and re-rendered. By feeding the re-

rendered images into the encoder network, a self-supervised loss on the unchanged

parameters could be applied, which should further reduce ambiguities.

7.2. FUTURE WORK 109

7.2.2 Representation invariance

RGB(103 80 64)

RGB(142 143 142)

RGB(137 135 129)

Brown wood

White paint

Grey stone

Figure 7.5: Instead of directly predicting RGB values of pixels it desired to represent
each pixel as a meaningful latent vector that describes higher-level surface
characteristics.

Current methods mainly use pixel-perfect objective functions such as Euclidean

distances (L1 and L2) or perceptual losses [204] such as VGG [127]. Euclidean

losses compute distances between pixels independently and average these. This

often leads to blurry results and missing high-frequency details. Modern perceptual

losses are based on Euclidean distances between higher-level feature activations

from pre-trained CNNs and visually improve results. Both types of losses struggle to

produce sharp and realistic images. To address these shortcomings, GANs minimize

the distance between the output distribution and original data distribution such that

a discriminator network is not able to distinguish between real and fake images.

Although they generate realistic images [106], they cannot be applied to image

reconstruction tasks without perceptual losses for regularization. Further, they are

notoriously hard to train and suffer from mode collapse [205].

Instead, what if we do not ask for a pixel-perfect loss but rather pose the problem

as local texture synthesis? We have already seen that the gram matrix [28] of

VGG features is capable of representing global image statistics. The goal then

would be to define local regions that share similar statistics and describe them

independently from each other, similar to Park et al. [206]. These local regions can

be represented by smooth segmentation masks in the form of a meaningful latent

space that describes local surface characteristics, e. g., brown wood, white paint,

110 CHAPTER 7. CONCLUSION

grey stone as illustrated in Fig. 7.5. Converting these smooth regions to match local

statistics could be achieved by using stationary textures or materials that are invariant

to local changes. Such an invariant representation could also be applied to geometry

or other parameters in the scene. For instance, instead of applying a loss pointwise

on densities, a statistical measure could take into account the local neighbourhood.

Geometric properties such as round corners or sharp edges could be enforced in such

a manner. Both of these ideas are promising directions for future work.

Appendix A

Escaping Plato’s Cave: 3D Shape

From Adversarial Rendering

A.1 Network architectures
We used PyTorch [176] in version 1.0.0. Our network architectures are shown in

Tbl. A.1, Tbl. A.2, Tbl. A.3, and Tbl. A.4. We trained the networks using a batch

size of 4. We used two Adam optimizers for Encoder + Generator and Discriminator

respectively with b1 = 0.5 and b2 = 0.999. We used learning rates of 0.0025 and

10�5 for encoder + generator and discriminator respectively and a latent space size z

of 200.

Platonic For training stability reasons we only trained the discriminator when

accuracy > 0.8 similar to [71].

3DGAN and Platonic3D We used l = 104 for the 3D groundtruth reconstruction

term.

A.2 Evaluation Details
We evaluated our method on more classes: chair, car, lamp, rifle. See

Tbl. A.5.

112 APPENDIX A. PATLONICGAN SUPPLEMENTAL

Table A.1: Network architecture for the generator model. C corresponds to the number of
channels for the different image formations. (VH, AO:C = 1, EA: C = 4). We use
CONVTRANSPOSE (ConvT) layers for upsampling.

Layer Kernel Activation Shape # params
Input — — 200 —
ConvT 4x4x4 BN+ReLU 1024 x 4 x 4 x 4 ⇠13M
ConvT 4x4x4 BN+ReLU 512 x 8 x 8 x 8 ⇠34M
ConvT 4x4x4 BN+ReLU 256 x 16 x 16 x 16 ⇠8M
ConvT 4x4x4 BN+ReLU 128 x 32 x 32 x 32 ⇠2M
ConvT 1x1x1 — c x 64 x 64 x 64 ⇠c*8k
Sigmoid — — c x 64 x 64 x 64 —
params — — ⇠75.2M

Table A.2: Network architecture for the encoder model. C corresponds to the number of
channels for the different image formations. (VH, AO:C = 1, EA: C = 4).We use
LeakyReLU with negative slope = 0.2.

Layer Kernel Activation Shape # params
Input — — c x 64 x 64 —
Conv 4x4 BN+LReLU 128 x 32 x 32 ⇠ c * 2k
Conv 4x4 BN+LReLU 256 x 16 x 16 ⇠ 525k
Conv 4x4 BN+LReLU 512 x 8 x 8 ⇠ 2M
Conv 4x4 BN+LReLU 1024 x 4 x 4 ⇠ 8M
Conv 4x4 BN+LReLU 2048 x 1 x 1 ⇠ 34M
Linear — — 200 ⇠ 400k
params — — 45M

Table A.3: Network architecture for the discriminator model (2D). C corresponds to the
number of channels for the different image formations. (VH, AO:C = 1, EA: C =
4).We use LeakyReLU with negative slope = 0.2.

Layer Kernel Activation Shape # params
Input — BN+LReLU c x 64 x 64 —
Conv 4x4 BN+LReLU 128 x 32 x 32 ⇠ c * 2k
Conv 4x4 BN+LReLU 256 x 16 x 16 ⇠ 525k
Conv 4x4 BN+LReLU 512 x 8 x 8 ⇠ 2M
Conv 4x4 BN+LReLU 1024 x 4 x 4 ⇠ 8M
Linear — — 1 ⇠ 16k
params — — 11M

A.2. EVALUATION DETAILS 113

Table A.4: Network architecture for the discriminator model (3D). C corresponds to the
number of channels for the different image formations. (VH, AO:C = 1, EA: C =
4).We use LeakyReLU with negative slope = 0.2.

Layer Kernel Activation Shape # params
Input — BN+LReLU c x 64 x 64 —
Conv 4x4x4 BN+LReLU 128 x 32 x 32 ⇠ c * 4k
Conv 4x4x4 BN+LReLU 256 x 16 x 16 ⇠ 2M
Conv 4x4x4 BN+LReLU 512 x 8 x 8 ⇠ 8M
Conv 4x4x4 BN+LReLU 1024 x 4 x 4 ⇠ 33M
Linear — — 1 ⇠ 65k
params — — 44M

Table A.5: Performance of different methods with varying degrees of supervision (superv.)
(rows) on different metrics (columns) for the different classes: chair, car,
lamp, rifle (200 shapes from the test set are used). Evaluation is performed
on absorption-only (AO). Note, DSSIM and VGG values are multiplied by 10,
RMSE by 102 and CD by 103. Lower is better except for IoU where higher is
better.

Method Class Superv. 2D Image Re-synthesis 3D Volume

VH AO EA VOX ISO

DSSIM VGG DSSIM VGG DSSIM VGG DSSIM VGG DSSIM VGG RMSE IoU CD

Ours

ch
ai

r 2D 1.58 6.48 1.66 5.37 1.46 5.64 1.71 6.31 1.59 6.79 9.24 0.25 10.31
3DGAN [71] 3D 0.99 5.80 1.36 4.88 1.35 5.23 1.79 5.85 1.62 6.30 9.56 0.33 36.67
Ours 3D 2D+3D 0.95 5.58 1.31 4.84 1.29 5.17 1.72 5.81 1.52 6.15 9.51 0.39 35.60

Ours

ca
r 2D 1.01 4.56 1.45 3.88 1.20 4.38 1.56 4.96 1.45 5.52 12.17 0.39 17.32

3DGAN [71] 3D 0.41 2.95 0.59 2.93 0.73 3.36 1.40 4.00 1.20 4.39 13.76 0.55 93.64
Ours 3D 2D+3D 0.44 3.08 0.66 3.01 0.78 3.45 1.43 4.09 1.23 4.48 13.58 0.26 88.01

Ours

la
m

p 2D 1.21 5.92 1.14 4.78 0.97 5.21 1.17 5.74 1.11 6.16 7.14 0.26 5.07
3DGAN [71] 3D 1.00 6.17 1.14 4.84 1.15 5.29 1.42 5.85 1.39 6.45 8.13 0.28 24.95
Ours 3D 2D+3D 0.92 5.87 1.07 4.74 1.11 5.23 1.37 5.69 1.31 6.21 8.45 0.24 22.74

Ours

rifl
e 2D 0.65 4.41 0.65 3.73 0.64 3.75 0.73 4.13 0.73 4.74 3.95 0.22 2.97

3DGAN [71] 3D 0.50 3.78 0.50 3.26 0.54 3.26 0.64 3.67 0.64 4.10 3.74 0.39 5.35
Ours 3D 2D+3D 0.57 4.04 0.57 3.37 0.60 3.40 0.71 3.80 0.70 4.30 4.01 0.16 5.94

Appendix B

Unsupervised Learning of 3D Object

Categories from Videos in the Wild

Table B.1: We complement the evaluation of the impact of the number of source views
during test time for the metrics: `VGG

1 , `Depth
1 , IoU. We report results for 1, 3, 5

and 7 source images. The best result is bolded where lower is better for `VGG
1 ,

`Depth
1 and higher is better for IoU.

AMT Freiburg Cars

Train-test Test Train-test Test

Method 1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7

`V
G

G
1

Mesh 1.163 1.167 1.168 1.169 1.160 1.161 1.163 1.163 2.030 2.029 2.028 2.023 2.170 2.168 2.166 2.167
Voxel 1.052 1.051 1.051 1.051 1.127 1.127 1.127 1.127 1.581 1.581 1.580 1.580 2.050 2.050 2.046 2.046
Voxel+MLP 1.041 1.040 1.040 1.040 1.131 1.130 1.130 1.130 1.469 1.468 1.468 1.468 2.067 2.063 2.063 2.064
MLP 0.900 0.899 0.899 0.899 1.130 1.130 1.130 1.131 1.391 1.389 1.389 1.389 2.027 2.025 2.024 2.025
Ours 0.905 0.846 0.837 0.832 1.007 0.921 0.896 0.883 1.450 1.381 1.372 1.359 1.945 1.897 1.874 1.863

Io
U

Mesh 0.599 0.599 0.599 0.598 0.598 0.598 0.598 0.598 0.601 0.604 0.605 0.606 0.556 0.556 0.556 0.556
Voxel 0.776 0.777 0.777 0.777 0.660 0.660 0.660 0.661 0.891 0.892 0.892 0.893 0.517 0.511 0.509 0.510
Voxel+MLP 0.775 0.776 0.777 0.776 0.652 0.654 0.654 0.654 0.878 0.878 0.878 0.878 0.540 0.541 0.542 0.541
MLP 0.871 0.871 0.872 0.872 0.654 0.653 0.653 0.653 0.872 0.872 0.872 0.872 0.472 0.470 0.472 0.471
Ours 0.866 0.884 0.886 0.889 0.774 0.788 0.787 0.787 0.889 0.897 0.898 0.897 0.600 0.624 0.629 0.632

`D
ep

th
1

Mesh 5.138 5.119 5.128 5.130 5.100 5.101 5.090 5.086 1.202 1.185 1.178 1.177 1.062 1.061 1.063 1.063
Voxel 2.150 2.141 2.140 2.141 3.069 3.064 3.067 3.065 0.591 0.590 0.585 0.583 2.133 2.181 2.207 2.200
Voxel+MLP 1.958 1.942 1.942 1.941 2.881 2.868 2.861 2.864 0.478 0.479 0.479 0.479 1.972 1.979 1.968 1.968
MLP 1.389 1.378 1.377 1.377 3.583 3.587 3.590 3.593 0.595 0.593 0.594 0.593 2.521 2.530 2.519 2.520
Ours 1.593 1.291 1.201 1.172 2.186 1.847 1.802 1.776 0.535 0.467 0.457 0.453 1.606 1.595 1.589 1.603

B.1 Additional implementation details
In this section, we provide more detailed information about the dense image descrip-

tors F as well as the neural radiance field Y. Furthermore, we give more insights

into the training process.

116 APPENDIX B. 3D LEARNING FROM VIDEOS SUPPLEMENTAL

B.1.1 Dense image descriptors
This section describes in more detail the dense pixel-wise embeddings F(It) intro-

duced in Section 3.3 in the main paper.

For a given source image It , the embedding field F(It) is composed of 3 different

types of features: 1) learned 5 ·32-dimensional dense pixel-wise features output by a

deep convolutional encoder network FU-Net, 2) raw image rgb colors It 2 R3⇥H⇥W ,

and 3) the segmentation mask mt 2 R1⇥H⇥W .

Dense feature extractor FU-Net. The architecture of the U-Net inside FU-Net is

defined as follows (a detailed visualisation is present in Fig. B.2). A source image

Isrc 2 R3⇥H⇥W , masked by msrc (retrieved from Mask-RCNN), is fed into a ResNet-

50, which returns spatial features from intermediate convolutional layers (layer1,

layer2, layer3, layer4, layer5), and the final linear ResNet layer, which outputs

global features zCNN, i.e. non-spatial. Each feature layer, including the global one, is

then passed through a 1x1 convolution to equalize the size of all feature channels

to 32. The spatial features are further bilinearly upsampled to the spatial size of

the source image and concatenated along the channel dimension to create a dense

embedding field FU-Net(It) 2 R5·32⇥H⇥W .

z(x, Isrc)
197

γ(x)
63

γ(r)
27

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

σ(x)

c(x, r)

1

3

Figure B.1: The neural radiance field Y is represented by an MLP. It takes as input the
warp-conditioned embedding z(x), the harmonic positional embedding g(x)
and to account for viewpoint variations, the harmonic directional embedding
g(r). It returns the rgb and opacity values.

Neural radiance field Y. Our scene is represented by a neural radiance field Y

similar to [54] with the only difference that we additionally condition the field with

our warp-conditioned ray embedding, see Fig. B.1.

B.2. ADDITIONAL QUALITATIVE RESULTS 117

B.1.2 Training details

We trained both the U-Net encoder FU-Net and the neural radiance field Y with

Adam optimizer. We set the batch size to 8 and the learning rate to 1e-4. Our method

as well as all baselines were trained on an NVIDIA Tesla V100 for 7 days. For all

raymarching baselines and our method, we shoot 1024 rays per iteration through

random image pixels in Monte-Carlo fashion. For each ray, we first uniformly sample

128 times along the ray in order to retrieve a coarse rendering (voxel or mlp based

depending on the method used). In the second pass, we sample each ray 128 times

based on probabilistic importance sampling following [54].

For the mesh baseline, we shoot rays for each pixel per iteration and use soft

rasterization to predict the surface intersection. In addition to the losses used for the

other baselines as well as our method, we additionally use a negative IoU loss Liou, a

Laplacian loss Llap and smoothness loss Lsm according to [191] and weighted them

with 1.0, 19.0, 1.0 respectively.

1x1Conv, Up

643 25
6

51
2

10
24 2048 256 3 132 32 32 32 32 32

ResNet-50

zsrc(x), rtgt, rsrc(x)Itgt
t tt

Ф(Isrc)ФU-Net
zCNN w

ar
p-

co
nd

iti
on

ed
 ra

y
em

be
dd

in
g

z(
x,

 {I
sr

c }
)

t

vi
ew

 a
gg

re
ga

tio
n

Isrc

Figure B.2: The input to the dense feature extractor F is a source image from a given view.
It first makes use of a ResNet-50 (FU-Net) to retrieve the layer-wise features.
Then, each layer is independently fed to a 1x1 convolution followed by bilinear
upsampling to the original input resolution. The resulting feature blocks are
concatenated with the input image Isrc and its corresponding object mask msrc.
In case there are multiple source images available, this process is repeated for
each of them. Once all per-view features are obtained, the warp-conditioned ray
embedding is retrieved after applying the view-aggregation.

B.2 Additional qualitative results
Additional qualitative results are available and presented in Fig. B.4 and Fig. B.3.

Also, we provide more qualitative results on our project webpage: https://

henzler.github.io/publication/unsupervised_videos/. The

https://henzler.github.io/publication/unsupervised_videos/
https://henzler.github.io/publication/unsupervised_videos/

118 APPENDIX B. 3D LEARNING FROM VIDEOS SUPPLEMENTAL

page contains comparison of our method to baselines by showing the scenes from

the train-test or test subsets rendered from a viewpoint that rotates around the object

of interest.

B.3 Test-time view ablation
Furthermore, we also provide a view ablation of our method at test time. Recall

that we randomly sample between 1 and 7 source images during training. During

test time we evaluated our method separately on 1, 3, 5 and 7 views as input. In

Chapter 4, we provide an average of those numbers. In Tbl. B.1 we give insight into

how changing the number of source views affects performance. Not surprisingly,

increasing the number of source views consistently improves all metrics.

B.3. TEST-TIME VIEW ABLATION 119

Source image Mesh Voxel Voxel+MLP MLP Ours Target image

Figure B.3: In each row, a single source image (1st column) is processed by one of the
evaluated methods (Mesh, Voxel, MLP+Voxel, MLP, Ours - columns 2 to 6)
to generate a prescribed target view (last column). We show results on the test
split.

120 APPENDIX B. 3D LEARNING FROM VIDEOS SUPPLEMENTAL

Target imageSrc. image #1 #2 #4 #5#3 #6 #7

Tgt. render w/ #1 src. image Tgt. render w/ #3 src. images Tgt. render w/ #5 src. images Tgt. render w/ #7 src. images

Figure B.4: Reconstruction with multiple source views. The top row for each object
shows all available source images (columns 1-7) for a given target image (top
right). The bottom row contains results conditioned on 1, 3, 5 or 7 source
images. In addition to the rendered new RGB views we also provide shaded
surface renderings.

Appendix C

Learning a Neural 3D Texture Space

from 2D Exemplars

C.1 Network Architecture

C.1.1 Encoder
The architecture for the encoder network remains consistent for both ours and

competitor methods. Depending on training for space, single, w/o transform the

parameter N changes accordingly.

Table C.1: Network architecture for encoder.

Layer Kernel Activation Shape # params
Input — — 3 x 128 x 128 —
Conv 3x3 IN+LReLU 32 x 128 x 128 ⇠1k
Conv 4x4 IN+LReLU 64 x 64 x 64 ⇠32k
Conv 4x4 IN+LReLU 128 x 32 x 32 ⇠130k
Conv 4x4 IN+LReLU 256 x 16 x 16 ⇠524k
Conv 4x4 IN+LReLU 256 x 8 x 8 ⇠1M
Conv 4x4 IN+LReLU 256 x 4 x 4 ⇠1M
Linear — — 8 ⇠32k
Linear — — N ⇠0.5k
params — — ⇠2.8M

C.1.2 Sampler
The sampler architecture used for both our and the mlp [131] method consists of

following convolutional architecture with 1x1 kernels emulating Linear layers:

122 APPENDIX C. NEURAL TEXTURES SUPPLEMENTAL

Table C.2: Network architecture for sampler.

Layer Kernel Activation Shape # params
Input — — N x 128 x 128 —
Conv 1x1 ReLU 128 x 128 x 128 ⇠10k
Conv 1x1 ReLU 128 x 128 x 128 ⇠16.5k
Conv 1x1 ReLU 128 x 128 x 128 ⇠16.5k
Conv 1x1 ReLU 128 x 128 x 128 ⇠16.5k
Conv 1x1 ReLU 128 x 128 x 128 ⇠16.5k
Conv 1x1 ReLU 3 x 128 x 128 ⇠400
params — — ⇠77k

C.1.3 CNN
For cnn and cnnD competitors we use a similar architecture to the proposed method

of [128]:

Table C.3: Network architecture for convolutional methods.

Layer Kernel Activation Shape # params
Input — — (32) + 256 —
Linear — — (32) + 256 ⇠80k
Linear — — 256 ⇠70k
Reshape — — 16 x 4 x 4 —
ConvT 4x4 ReLU 128 x 8 x 8 ⇠32k
ConvT 4x4 ReLU 128 x 16 x 16 ⇠260k
ConvT 4x4 ReLU 128 x 32 x 32 ⇠260k
Upsample — — 128 x 64 x 64 —
Conv 3x3 ReLU 64 x 64 x 64 ⇠70k
Upsample — — 64 x 128 x 128 —
Conv 3x3 ReLU 3 x 128 x 128 ⇠2k
params — — ⇠790k

C.2. RESULTS 123

C.2 Results
Additional results of stripe images and interpolations are displayed below.

A webpage containing more results for all four classes (WOOD, MARBLE, GRASS

and RUST) including competitors can be accessed online: https://geometry.

cs.ucl.ac.uk/projects/2020/neuraltexture. Additionally, videos

of rotating shapes textured by our method are provided. Our code is available at:

https://github.com/henzler/neuraltexture

Figure C.1: Results derived from the encoded WOOD space.

Figure C.2: Results derived from the encoded MARBLE space.

https://geometry.cs.ucl.ac.uk/projects/2020/neuraltexture
https://geometry.cs.ucl.ac.uk/projects/2020/neuraltexture
https://github.com/henzler/neuraltexture

124 APPENDIX C. NEURAL TEXTURES SUPPLEMENTAL

Figure C.3: Results derived from the encoded GRASS space.

Figure C.4: Results derived from the encoded RUST space.

C.2. RESULTS 125

Figure C.5: Latent space interpolation from one ground truth wood exemplar (left) into
secondary ground truth exemplar (right). Each row corresponds to independent
interpolations.

Figure C.6: Latent space interpolation from one ground truth grass exemplar (left) into
secondary ground truth exemplar (right). Each row corresponds to independent
interpolations.

126 APPENDIX C. NEURAL TEXTURES SUPPLEMENTAL

Figure C.7: Latent space interpolation from one ground truth marble exemplar (left) into
secondary ground truth exemplar (right). Each row corresponds to independent
interpolations.

Figure C.8: Latent space interpolation from one ground truth rust exemplar (left) into
secondary ground truth exemplar (right). Each row corresponds to independent
interpolations.

Bibliography

[1] Philipp Henzler, Niloy Mitra, and Tobias Ritschel. Escaping plato’s cave

using adversarial training: 3d shape from unstructured 2d image collections.

In Proc. ICCV, 2019.

[2] Philipp Henzler, Jeremy Reizenstein, Patrick Labatut, Roman Shapovalov,

Tobias Ritschel, Andrea Vedaldi, and David Novotny. Unsupervised learning

of 3d object categories from videos in the wild. In Proc. CVPR, 2021.

[3] Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. Learning a neural 3d

texture space from 2d exemplars. In Proc. CVPR, 2020.

[4] Philipp Henzler, Valentin Deschaintre, Niloy J Mitra, and Tobias Ritschel.

Generative modelling of brdf textures from flash images. ACM Trans Graph

(Proc. SIGGRAPH Asia), 40(6):195–206, 2021.

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classi-

fication with deep convolutional neural networks. In Advances in neural

information processing systems, pages 1097–1105, 2012.

[6] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional

networks for semantic segmentation. In Proc. CVPR, 2015.

[7] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Region-based semantic

segmentation with end-to-end training. In Proc. ECCV, 2016.

[8] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature

hierarchies for accurate object detection and semantic segmentation. In Proc.

CVPR, 2014.

128 BIBLIOGRAPHY

[9] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Region-

based convolutional networks for accurate object detection and segmentation.

PAMI, 2015.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

Imagenet: A large-scale hierarchical image database. In Proc. CVPR, 2009.

[11] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing

Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al.

Shapenet: An information-rich 3d model repository. arXiv:1512.03012, 2015.

[12] Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit Kumar, Miguel An-

gel Bautista, Nathan Paczan, Russ Webb, and Joshua M. Susskind. Hypersim:

A photorealistic synthetic dataset for holistic indoor scene understanding. In

Proc. ICCV, 2021.

[13] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias

Niessner, Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Mat-

terport3d: Learning from rgb-d data in indoor environments. International

Conference on 3D Vision (3DV), 2017.

[14] Sungjoon Choi, Qian-Yi Zhou, Stephen Miller, and Vladlen Koltun. A large

dataset of object scans. arXiv:1602.02481, 2016.

[15] Robert L Cook, Thomas Porter, and Loren Carpenter. Distributed ray tracing.

In ACM SIGGRAPH computer graphics, 1984.

[16] Per H Christensen, Wojciech Jarosz, et al. The path to path-traced movies.

Foundations and Trends® in Computer Graphics and Vision, 10(2):103–175,

2016.

[17] Per Christensen, Julian Fong, Jonathan Shade, Wayne Wooten, Brenden Schu-

bert, Andrew Kensler, Stephen Friedman, Charlie Kilpatrick, Cliff Ramshaw,

Marc Bannister, et al. Renderman: An advanced path-tracing architecture for

movie rendering. ACM Transactions on Graphics (TOG), 37(3):30, 2018.

BIBLIOGRAPHY 129

[18] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning

representations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[19] Sebastian Ruder. An overview of gradient descent optimization algorithms.

arXiv preprint arXiv:1609.04747, 2016.

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980, 2014.

[21] Frank Rosenblatt. The perceptron: a probabilistic model for information

storage and organization in the brain. Psychological review, 65(6):386, 1958.

[22] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedfor-

ward networks are universal approximators. Neural networks, 2(5):359–366,

1989.

[23] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted

boltzmann machines. In Icml, 2010.

[24] Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard

Howard, Wayne Hubbard, and Lawrence Jackel. Handwritten digit recognition

with a back-propagation network. Advances in neural information processing

systems, 2, 1989.

[25] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. In Proc. ICLR, 2015.

[26] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten,

Jaakko Lehtinen, and Timo Aila. Alias-free generative adversarial networks.

Advances in Neural Information Processing Systems, 34, 2021.

[27] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-

sarial nets. In NIPS, pages 2672–80, 2014.

130 BIBLIOGRAPHY

[28] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm

of artistic style. arXiv preprint arXiv:1508.06576, 2015.

[29] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[30] Ruo Zhang, Ping-Sing Tsai, James Edwin Cryer, and Mubarak Shah. Shape-

from-shading: a survey. IEEE transactions on pattern analysis and machine

intelligence, 21(8):690–706, 1999.

[31] Fred E Nicodemus. Directional reflectance and emissivity of an opaque

surface. Applied optics, 4(7):767–775, 1965.

[32] Christopher Schwartz, Ralf Sarlette, Michael Weinmann, and Reinhard Klein.

Dome ii: A parallelized btf acquisition system. In MAM, pages 25–31, 2013.

[33] Bui Tuong Phong. Illumination for computer generated pictures. Communica-

tions of the ACM, 18(6):311–317, 1975.

[34] James F Blinn. Models of light reflection for computer synthesized pictures.

In Proceedings of the 4th annual conference on Computer graphics and

interactive techniques, pages 192–198, 1977.

[35] Hermann Von Helmholtz. Handbuch der physiologischen Optik: mit 213 in

den Text eingedruckten Holzschnitten und 11 Tafeln, volume 9. Voss, 1867.

[36] Kenneth E Torrance and Ephraim M Sparrow. Theory for off-specular reflec-

tion from roughened surfaces. Josa, 57(9):1105–1114, 1967.

[37] Robert L Cook and Kenneth E Torrance. A reflectance model for computer

graphics. ACM Trans Graph, 1(1):7–24, 1982.

[38] Bruce Walter, Stephen R Marschner, Hongsong Li, and Kenneth E Torrance.

Microfacet models for refraction through rough surfaces. In Proc. EGSR,

pages 195–206, 2007.

BIBLIOGRAPHY 131

[39] Eric Heitz. Understanding the masking-shadowing function in microfacet-

based brdfs. Journal of Computer Graphics Techniques, 2014.

[40] Christophe Schlick. An inexpensive brdf model for physically-based rendering.

In Comp Graph Forum, 1994.

[41] James T Kajiya. The rendering equation. In Proceedings of the 13th annual

conference on Computer graphics and interactive techniques, pages 143–150,

1986.

[42] Eric Lafortune. Mathematical models and monte carlo algorithms for physi-

cally based rendering. Department of Computer Science, Faculty of Engineer-

ing, Katholieke Universiteit Leuven, 20:74–79, 1996.

[43] James F Blinn and Martin E Newell. Texture and reflection in computer

generated images. Communications of the ACM, 19(10):542–547, 1976.

[44] Robert A Drebin, Loren Carpenter, and Pat Hanrahan. Volume rendering. In

Siggraph Computer Graphics, 1988.

[45] Shimon Ullman. The interpretation of structure from motion. Proceedings

of the Royal Society of London. Series B. Biological Sciences, 203(1153):

405–426, 1979.

[46] Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion

revisited. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4104–4113, 2016.

[47] Bruce D Lucas, Takeo Kanade, et al. An iterative image registration technique

with an application to stereo vision. In Proc. IJCAI, 1981.

[48] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer

vision. Cambridge university press, 2003.

[49] Andreas Geiger, Julius Ziegler, and Christoph Stiller. Stereoscan: Dense 3d

reconstruction in real-time. In 2011 IEEE Intelligent Vehicles Symposium

(IV), pages 963–968. Ieee, 2011.

132 BIBLIOGRAPHY

[50] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael

Frahm. Pixelwise View Selection for Unstructured Multi-View Stereo. In

European Conference on Computer Vision (ECCV), 2016.

[51] Shenchang Eric Chen and Lance Williams. View interpolation for image

synthesis. In Proceedings of the 20th annual conference on Computer graphics

and interactive techniques, pages 279–288, 1993.

[52] Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-based

rendering system. In Proceedings of the 22nd annual conference on Computer

graphics and interactive techniques, pages 39–46, 1995.

[53] Andrew Fitzgibbon, Yonatan Wexler, and Andrew Zisserman. Image-based

rendering using image-based priors. International Journal of Computer Vision,

63(2):141–151, 2005.

[54] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron,

Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance

fields for view synthesis. Proc. ECCV, 2020.

[55] David G Lowe. Distinctive image features from scale-invariant keypoints.

International journal of computer vision, 60(2):91–110, 2004.

[56] Martin A Fischler and Robert C Bolles. Random sample consensus: a

paradigm for model fitting with applications to image analysis and automated

cartography. Communications of the ACM, 24(6):381–395, 1981.

[57] Bill Triggs, Philip F McLauchlan, Richard I Hartley, and Andrew W Fitzgib-

bon. Bundle adjustment—a modern synthesis. In International workshop on

vision algorithms, pages 298–372. Springer, 1999.

[58] Richard Szeliski et al. Image alignment and stitching: A tutorial. Foundations

and Trends® in Computer Graphics and Vision, 2(1):1–104, 2007.

BIBLIOGRAPHY 133

[59] Marc Levoy and Pat Hanrahan. Light field rendering. In Proceedings of the

23rd annual conference on Computer graphics and interactive techniques,

pages 31–42, 1996.

[60] James R Bergen and Edward H Adelson. The plenoptic function and the

elements of early vision. Computational models of visual processing, 1:8,

1991.

[61] Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F Cohen.

The lumigraph. In Proceedings of the 23rd annual conference on Computer

graphics and interactive techniques, pages 43–54, 1996.

[62] Sing Bing Kang, Yin Li, Xin Tong, Heung-Yeung Shum, et al. Image-based

rendering. Foundations and Trends® in Computer Graphics and Vision, 2(3):

173–258, 2007.

[63] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt.

Neural sparse voxel fields. In Proc. NeurIPS, 2020.

[64] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan Atzmon, Basri

Ronen, and Yaron Lipman. Multiview neural surface reconstruction by disen-

tangling geometry and appearance. Proc. NIPS, 2020.

[65] Christopher Xie, Keunhong Park, Ricardo Martin-Brualla, and Matthew

Brown. Fig-nerf: Figure-ground neural radiance fields for 3d object cat-

egory modelling. In 2021 International Conference on 3D Vision (3DV),

pages 962–971. IEEE, 2021.

[66] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xi-

aoou Tang, and Jianxiong Xiao. 3D Shapenets: A deep representation for

volumetric shapes. In CVPR, pages 1912–20, 2015.

[67] Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, and Niki

Trigoni. 3d object reconstruction from a single depth view with adversarial

learning. arXiv preprint arXiv:1708.07969, 2017.

134 BIBLIOGRAPHY

[68] Jacob Varley, Chad DeChant, Adam Richardson, Joaquı́n Ruales, and Peter

Allen. Shape completion enabled robotic grasping. In Intelligent Robots

and Systems (IROS), 2017 IEEE/RSJ International Conference on, pages

2442–2447. IEEE, 2017.

[69] Jiajun Wu, Yifan Wang, Tianfan Xue, Xingyuan Sun, Bill Freeman, and Josh

Tenenbaum. MarrNet: 3D shape reconstruction via 2.5D sketches. In NIPS,

pages 540–550, 2017.

[70] Hanqing Wang, Jiaolong Yang, Wei Liang, and Xin Tong. Deep single-view

3D object reconstruction with visual hull embedding. arXiv:1809.03451,

2018.

[71] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum.

Learning a probabilistic latent space of object shapes via 3D generative-

adversarial modeling. In NIPS, pages 82–90, 2016.

[72] Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Abhinav Gupta. Learn-

ing a predictable and generative vector representation for objects. In ECCV,

pages 484–99, 2016.

[73] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio

Savarese. 3D-R2N2: A unified approach for single and multi-view 3D object

reconstruction. In ECCV, pages 628–44, 2016.

[74] Abhishek Kar, Christian Häne, and Jitendra Malik. Learning a multi-view

stereo machine. In NIPS, pages 365–376, 2017.

[75] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin,

and Andreas Geiger. Occupancy networks: Learning 3d reconstruction in

function space. In Proc. CVPR, pages 4460–4470, 2019.

[76] Georgia Gkioxari, Justin Johnson, and Jitendra Malik. Mesh R-CNN. In Proc.

ICCV, 2019.

BIBLIOGRAPHY 135

[77] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang

Jiang. Pixel2mesh: Generating 3d mesh models from single rgb images. In

Proc. ECCV, 2018.

[78] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network

for 3d object reconstruction from a single image. In CVPR, 2017.

[79] Danilo Jimenez Rezende, SM Ali Eslami, Shakir Mohamed, Peter Battaglia,

Max Jaderberg, and Nicolas Heess. Unsupervised learning of 3D structure

from images. In NIPS, pages 4996–5004, 2016.

[80] Ronald J Williams. Simple statistical gradient-following algorithms for con-

nectionist reinforcement learning. Machine learning, 8(3):229–256, 1992.

[81] Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and Honglak Lee. Perspec-

tive transformer nets: Learning single-view 3D object reconstruction without

3D supervision. In NIPS, pages 1696–1704, 2016.

[82] Matthew M. Loper and Michael J. Black. OpenDR: An approximate differen-

tiable renderer. In ECCV, volume 8695, pages 154–69, 2014.

[83] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3D mesh

renderer. In CVPR, pages 3907–16, 2018.

[84] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft rasterizer: A differen-

tiable renderer for image-based 3d reasoning. In Proc. ICCV, 2019.

[85] Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith, Jaakko Lehtinen,

Alec Jacobson, and Sanja Fidler. Learning to predict 3d objects with an

interpolation-based differentiable renderer. In Proc. NeurIPS, pages 9609–

9619, 2019.

[86] Shubham Tulsiani, Tinghui Zhou, Alexei A Efros, and Jitendra Malik. Multi-

view supervision for single-view reconstruction via differentiable ray consis-

tency. In CVPR, 2017.

136 BIBLIOGRAPHY

[87] Thomas J Cashman and Andrew W Fitzgibbon. What shape are dolphins?

building 3D morphable models from 2D images. PAMI, 35(1):232–44, 2013.

[88] Sara Vicente, Joao Carreira, Lourdes Agapito, and Jorge Batista. Reconstruct-

ing PASCAL VOC. In Proc. CVPR, 2014.

[89] Joao Carreira, Sara Vicente, Lourdes Agapito, and Jorge Batista. Lifting

object detection datasets into 3d. IEEE PAMI, 38(7):1342–55, 2016.

[90] Angjoo Kanazawa, Shubham Tulsiani, Alexei A. Efros, and Jitendra Malik.

Learning category-specific mesh reconstruction from image collections. In

Proc. ECCV, 2018.

[91] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-

UCSD Birds-200-2011 Dataset. Technical Report CNS-TR-2011-001, Cali-

fornia Institute of Technology, 2011.

[92] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G Lowe. Unsuper-

vised learning of depth and ego-motion from video. In CVPR, 2017.

[93] Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. Unsupervised

monocular depth estimation with left-right consistency. In CVPR, pages

6602–6611, 2017.

[94] Shubham Tulsiani, Alexei A Efros, and Jitendra Malik. Multi-view consis-

tency as supervisory signal for learning shape and pose prediction. In CVPR,

pages 2897–2905, 2018.

[95] Eldar Insafutdinov and Alexey Dosovitskiy. Unsupervised learning of shape

and pose with differentiable point clouds. In Proc. NeurIPS, pages 2802–2812,

2018.

[96] David Novotny, Diane Larlus, and Andrea Vedaldi. Learning 3d object

categories by looking around them. In Proc. ICCV, 2017.

BIBLIOGRAPHY 137

[97] David Novotný, Diane Larlus, and Andrea Vedaldi. Capturing the geometry

of object categories from video supervision. PAMI, 2018.

[98] Zeng Huang, Tianye Li, Weikai Chen, Yajie Zhao, Jun Xing, Chloe LeGendre,

Linjie Luo, Chongyang Ma, and Hao Li. Deep volumetric video from very

sparse multi-view performance capture. In Proc. ECCV, pages 336–354, 2018.

[99] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo

Kanazawa, and Hao Li. Pifu: Pixel-aligned implicit function for high-

resolution clothed human digitization. In Proc. ICCV, October 2019.

[100] Shunsuke Saito, Tomas Simon, Jason Saragih, and Hanbyul Joo. Pifuhd:

Multi-level pixel-aligned implicit function for high-resolution 3d human digi-

tization. In Proc. CVPR, June 2020.

[101] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf:

Neural radiance fields from one or few images. arXiv, 2020.

[102] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srinivasan, Howard

Zhou, Jonathan T Barron, Ricardo Martin-Brualla, Noah Snavely, and Thomas

Funkhouser. Ibrnet: Learning multi-view image-based rendering. arXiv, 2021.

[103] Nilesh Kulkarni, Abhinav Gupta, and Shubham Tulsiani. Canonical surface

mapping via geometric cycle consistency. In Proc. ICCV, 2019.

[104] Nilesh Kulkarni, Abhinav Gupta, David F. Fouhey, and Shubham Tulsiani.

Articulation-aware canonical surface mapping. In Proc. CVPR, 2020.

[105] Shubham Goel, Angjoo Kanazawa, and Jitendra Malik. Shape and viewpoint

without keypoints. Proc. ECCV, 2020.

[106] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architec-

ture for generative adversarial networks. In Proc. CVPR, 2019.

[107] Yuxuan Zhang, Wenzheng Chen, Huan Ling, Jun Gao, Yinan Zhang, Antonio

Torralba, and Sanja Fidler. Image gans meet differentiable rendering for

inverse graphics and interpretable 3d neural rendering. In Proc. ICLR, 2021.

138 BIBLIOGRAPHY

[108] Shangzhe Wu, Christian Rupprecht, and Andrea Vedaldi. Unsupervised

learning of probably symmetric deformable 3d objects from images in the

wild. In Proc. CVPR, 2020.

[109] Xueting Li, Sifei Liu, Kihwan Kim, Shalini De Mello, Varun Jampani, Ming-

Hsuan Yang, and Jan Kautz. Self-supervised single-view 3d reconstruction

via semantic consistency. In Proc. ECCV, 2020.

[110] Wei-Chih Hung, Varun Jampani, Sifei Liu, Pavlo Molchanov, Ming-Hsuan

Yang, and Jan Kautz. Scops: Self-supervised co-part segmentation. In Proc.

CVPR, 2019.

[111] Matheus Gadelha, Subhransu Maji, and Rui Wang. 3d shape induction from

2d views of multiple objects. In 3DV, 2016.

[112] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. Graf:

Generative radiance fields for 3d-aware image synthesis. In Proc. NeurIPS,

2020.

[113] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and Yong-

Liang Yang. HoloGAN: Unsupervised learning of 3D representations from

natural images. In Proc. ICCV, 2019.

[114] Bela Julesz. Texture and visual perception. Scientific American, 212(2), 1965.

[115] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi. Describing

textures in the wild. In Proc. CVPR, 2014.

[116] Benoit B Mandelbrot. The fractal geometry of nature, volume 173. WH

Freeman New York, 1983.

[117] Ken Perlin. An image synthesizer. SIGGRAPH Comput. Graph., 19(3), 1985.

[118] Javier Portilla and Eero P Simoncelli. A parametric texture model based on

joint statistics of complex wavelet coefficients. Int J Comp Vis, 40(1):49–70,

2000.

BIBLIOGRAPHY 139

[119] Robert L Cook and Tony DeRose. Wavelet noise. ACM Trans Graph, 24(3):

803–11, 2005.

[120] Alexei A Efros and Thomas K Leung. Texture synthesis by non-parametric

sampling. In ICCV, 1999.

[121] Li-Yi Wei and Marc Levoy. Fast texture synthesis using tree-structured vector

quantization. In Proc. SIGGRAPH, 2000.

[122] Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra. Texture opti-

mization for example-based synthesis. In ACM Trans. Graph., 2005.

[123] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman.

Patchmatch: A randomized correspondence algorithm for structural image

editing. ACM Trans. Graph. (Proc. SIGGRAPH), 28(3):24, 2009.

[124] Leon Gatys, Alexander S Ecker, and Matthias Bethge. Texture synthesis using

convolutional neural networks. In NIPS, 2015.

[125] Omry Sendik and Daniel Cohen-Or. Deep correlations for texture synthesis.

ACM Trans. Graph., 36(5):161, 2017.

[126] Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor S Lempitsky.

Texture networks: Feed-forward synthesis of textures and stylized images. In

ICML, 2016.

[127] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-

time style transfer and super-resolution. In ECCV, 2016.

[128] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Improved texture

networks: Maximizing quality and diversity in feed-forward stylization and

texture synthesis. In CVPR, 2017.

[129] Aaron Hertzmann, Charles E Jacobs, Nuria Oliver, Brian Curless, and David H

Salesin. Image analogies. In Proc. SIGGRAPH, 2001.

140 BIBLIOGRAPHY

[130] Jun-Yan Zhu, Zhoutong Zhang, Chengkai Zhang, Jiajun Wu, Antonio Torralba,

Josh Tenenbaum, and Bill Freeman. Visual object networks: Image generation

with disentangled 3D representations. In NIPS, 2018.

[131] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo Strauss, and

Andreas Geiger. Texture fields: Learning texture representations in function

space. In ICCV, 2019.

[132] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo

Kanazawa, and Hao Li. PiFu: Pixel-aligned implicit function for high-

resolution clothed human digitization. In CVPR, pages 2304–2314, 2019.

[133] Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. SinGAN: Learning a

generative model from a single natural image. In ICCV, 2019.

[134] Urs Bergmann, Nikolay Jetchev, and Roland Vollgraf. Learning texture

manifolds with the periodic spatial gan. In J MLR, pages 469–477, 2017.

[135] Yang Zhou, Zhen Zhu, Xiang Bai, Dani Lischinski, Daniel Cohen-Or, and

Hui Huang. Non-stationary texture synthesis by adversarial expansion.

arXiv:1805.04487, 2018.

[136] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator archi-

tecture for generative adversarial networks. In CVPR, pages 4401–4410,

2019.

[137] Wenqi Xian, Patsorn Sangkloy, Varun Agrawal, Amit Raj, Jingwan Lu, Chen

Fang, Fisher Yu, and James Hays. TextureGAN: Controlling deep image

synthesis with texture patches. In CVPR, 2018.

[138] Ning Yu, Connelly Barnes, Eli Shechtman, Sohrab Amirghodsi, and Michal

Lukac. Texture Mixer: A network for controllable synthesis and interpolation

of texture. In CVPR, 2019.

BIBLIOGRAPHY 141

[139] Johannes Kopf, Chi-Wing Fu, Daniel Cohen-Or, Oliver Deussen, Dani Lischin-

ski, and Tien-Tsin Wong. Solid texture synthesis from 2D exemplars. ACM

Trans. Graph. (Proc. SIGGRAPH), 26(3):2, 2007.

[140] Nico Pietroni, Miguel A Otaduy, Bernd Bickel, Fabio Ganovelli, and Markus

Gross. Texturing internal surfaces from a few cross sections. In Comp. Graph.

Forum, 2007.

[141] Darya Guarnera, Giuseppe Claudio Guarnera, Abhijeet Ghosh, Cornelia Denk,

and Mashhuda Glencross. Brdf representation and acquisition. In Comp Graph

Forum, 2016.

[142] W Matusik. A data-driven reflectance model. ACM Trans Graph, 22(3):

759–769, 2003.

[143] K. Rematas, T. Ritschel, M. Fritz, E. Gavves, and T. Tuytelaars. Deep

reflectance maps. In CVPR, 2016.

[144] Stamatios Georgoulis, Konstantinos Rematas, Tobias Ritschel, Efstratios

Gavves, Mario Fritz, Luc Van Gool, and Tinne Tuytelaars. Reflectance and

natural illumination from single-material specular objects using deep learning.

PAMI, 40(8):1932–1947, 2017.

[145] Valentin Deschaintre, Miika Aittala, Fredo Durand, George Drettakis, and

Adrien Bousseau. Single-image svbrdf capture with a rendering-aware deep

network. ACM Trans Graph (Proc. SIGGRAPH), 2018.

[146] Giljoo Nam, Joo Ho Lee, Diego Gutierrez, and Min H. Kim. Practical svbrdf

acquisition of 3d objects with unstructured flash photography. ACM Trans.

Graph., 37(6), 2018.

[147] Zhengqin Li, Zexiang Xu, Ravi Ramamoorthi, Kalyan Sunkavalli, and Man-

mohan Chandraker. Learning to reconstruct shape and spatially-varying

reflectance from a single image. In SIGGRAPH Asia 2018, page 269. ACM,

2018.

142 BIBLIOGRAPHY

[148] Mark Boss, Varun Jampani, Kihwan Kim, Hendrik P.A. Lensch, and Jan

Kautz. Two-shot spatially-varying brdf and shape estimation. In Proc. CVPR,

2020.

[149] Valentin Deschaintre, Yiming Lin, and Abhijeet Ghosh. Deep polarization

imaging for 3d shape and svbrdf acquisition. In Proc. CVPR, 2021.

[150] Xiao Li, Yue Dong, Pieter Peers, and Xin Tong. Synthesizing 3d shapes from

silhouette image collections using multi-projection generative adversarial

networks. In Proc. CVPR, 2019.

[151] Wenjie Ye, Xiao Li, Yue Dong, Pieter Peers, and Xin Tong. Single image sur-

face appearance modeling with self-augmented cnns and inexact supervision.

Comp Graph Forum, 37(7):201–11, 2018.

[152] Yiwei Hu, Julie Dorsey, and Holly Rushmeier. A novel framework for inverse

procedural texture modeling. ACM Trans. Graph., 38(6), 2019. ISSN 0730-

0301.

[153] Yu Guo, Miloš Hašan, Lingqi Yan, and Shuang Zhao. A bayesian inference

framework for procedural material parameter estimation. Comp Graph Forum,

39(7), 2020.

[154] Liang Shi, Beichen Li, Miloš Hašan, Kalyan Sunkavalli, Tamy Boubekeur,

Radomir Mech, and Wojciech Matusik. Match: Differentiable material graphs

for procedural material capture. ACM Trans. Graph., 39(6), 2020.

[155] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional

networks for biomedical image segmentation. In MICCAI, pages 234–41,

2015.

[156] Xiao Li, Yue Dong, Pieter Peers, and Xin Tong. Modeling surface appearance

from a single photograph using self-augmented convolutional neural networks.

ACM Trans Graph, 36(4):45, 2017.

BIBLIOGRAPHY 143

[157] Zhengqin Li, Kalyan Sunkavalli, and Manmohan Chandraker. Materials for

masses: Svbrdf acquisition with a single mobile phone image. In ECCV,

pages 72–87, 2018.

[158] Guilin Liu, Duygu Ceylan, Ersin Yumer, Jimei Yang, and Jyh-Ming Lien.

Material editing using a physically based rendering network. In ICCV, pages

2261–2269, 2017.

[159] Valentin Deschaintre, Miika Aittala, Frédo Durand, George Drettakis, and

Adrien Bousseau. Flexible svbrdf capture with a multi-image deep network.

Comp Graph Forum, 38(4):1–13, 2019.

[160] Yu Guo, Cameron Smith, Miloš Hašan, Kalyan Sunkavalli, and Shuang Zhao.

Materialgan: Reflectance capture using a generative svbrdf model. ACM

Trans Graph, 39(6), 2020.

[161] Duan Gao, Xiao Li, Yue Dong, Pieter Peers, Kun Xu, and Xin Tong. Deep

inverse rendering for high-resolution svbrdf estimation from an arbitrary

number of images. ACM Trans Graph (Proc. SIGGRAPH Asia), 38(4):134,

2019.

[162] Valentin Deschaintre, George Drettakis, and Adrien Bousseau. Guided fine-

tuning for large-scale material transfer. Comp Graph Forum (Proc. EGSR),

39(4), 2020.

[163] Xilong Zhou and Nima Khademi Kalantari. Adversarial Single-Image

SVBRDF Estimation with Hybrid Training. Computer Graphics Forum

(Proc. Eurographics), 2021.

[164] Jie Guo, Shuichang Lai, Chengzhi Tao, Yuelong Cai, Lei Wang, Yanwen

Guo, and Ling-Qi Yan. Highlight-aware two-stream network for single-image

svbrdf acquisition. ACM Trans Graph (Proc. SIGGRAPH), 40(4), 2021.

[165] Károly Zsolnai-Fehér, Peter Wonka, and Michael Wimmer. Gaussian material

synthesis. ACM Trans. Graph., 37(4), 2018.

144 BIBLIOGRAPHY

[166] Miika Aittala, Timo Aila, and Jaakko Lehtinen. Reflectance modeling by

neural texture synthesis. ACM Trans. Graph. (Proc. SIGGRAPH), 35(4):65,

2016.

[167] Chuong H Nguyen, Tobias Ritschel, and Hans-Peter Seidel. Data-driven color

manifolds. ACM Trans Graph, 34(2):20, 2015.

[168] Wojciech Matusik, Matthias Zwicker, and Frédo Durand. Texture design

using a simplicial complex of morphable textures. ACM Trans. Graph. (Proc.

SIGGRAPH), 24(3), 2005.

[169] Volker Blanz, Thomas Vetter, et al. A morphable model for the synthesis of

3d faces. In Siggraph, 1999.

[170] Brett Allen, Brian Curless, and Zoran Popović. The space of human body

shapes: reconstruction and parameterization from range scans. ACM Trans

Graph (Proc. SIGGRAPH), 22(3):587–94, 2003.

[171] Keunhong Park, Konstantinos Rematas, Ali Farhadi, and Steven M Seitz.

Photoshape: photorealistic materials for large-scale shape collections. ACM

Transactions on Graphics (TOG), 37(6):192, 2019.

[172] Ana Serrano, Diego Gutierrez, Karol Myszkowski, Hans-Peter Seidel, and

Belen Masia. An intuitive control space for material appearance. ACM Trans

Graph (Proc. SIGGRAPH Asia), 35(6), 2016.

[173] Eric H Warmington, Philip G Rouse, and WHD Rouse. Great dialogues of

Plato. New American Library, 1956.

[174] Angjoo Kanazawa, Shubham Tulsiani, Alexei A Efros, and Jitendra Malik.

Learning category-specific mesh reconstruction from image collections. In

Proc. ECCV, pages 371–386, 2018.

[175] SM Ali Eslami, Danilo Jimenez Rezende, Frederic Besse, Fabio Viola, Ari S

Morcos, Marta Garnelo, Avraham Ruderman, Andrei A Rusu, Ivo Danihelka,

BIBLIOGRAPHY 145

Karol Gregor, et al. Neural scene representation and rendering. Science, 360

(6394):1204–10, 2018.

[176] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-

bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,

Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De-

Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,

high-performance deep learning library. In Advances in Neural Information

Processing Systems, 2019.

[177] Aldo Laurentini. The visual hull concept for silhouette-based image under-

standing. AMI, 16(2):150–62, 1994.

[178] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing

Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su,

Jianxiong Xiao, Li Yi, and Fisher Yu. ShapeNet: An information-rich 3D

model repository. arXiv:1512.03012, 2015.

[179] Philipp Henzler, Volker Rasche, Timo Ropinski, and Tobias Ritschel. Single-

Image Tomography: 3D Volumes from 2D Cranial X-Rays. Computer Graph-

ics Forum (Proceedings of Eurographics 2018), 2018.

[180] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv

preprint arXiv:1701.07875, 2017.

[181] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and

Aaron C Courville. Improved training of wasserstein gans. In NIPS, pages

5767–5777, 2017.

[182] Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simoncelli, et al. Im-

age quality assessment: from error visibility to structural similarity. IEEE

transactions on image processing, 13(4):600–612, 2004.

146 BIBLIOGRAPHY

[183] Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion

revisited. In Proc. CVPR, 2016.

[184] K. He, G. Gkioxari, and P. Dollár and. R. Girshick. Mask R-CNN. In Proc.

ICCV, 2017.

[185] Nelson L. Max. Optical models for direct volume rendering. IEEE Trans. Vis.

Comput. Graph., 1995.

[186] Michael Niemeyer, Lars M. Mescheder, Michael Oechsle, and Andreas Geiger.

Occupancy flow: 4d reconstruction by learning particle dynamics. In Proc.

ICCV, 2019.

[187] David Novotný, Diane Larlus, and Andrea Vedaldi. Learning the semantic

structure of objects from web supervision. In Proceedings of the ECCV

workshop on Geometry Meets Deep Learning, 2016.

[188] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona,

Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO:

common objects in context. In Proc. ECCV, 2014.

[189] Nima Sedaghat and Tomas Brox. Unsupevised generation of a viewpoint

annotated car dataset from videos. In Proc. ICCV, 2015.

[190] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proc. CVPR, 2016.

[191] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen

Lo, Justin Johnson, and Georgia Gkioxari. Accelerating 3d deep learning with

pytorch3d. arXiv:2007.08501, 2020.

[192] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial trans-

former networks. In NIPS, pages 2017–2025, 2015.

[193] Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. Least squares

conformal maps for automatic texture atlas generation. In ACM Trans Graph.,

2002.

BIBLIOGRAPHY 147

[194] Yezi Zhao, Beibei Wang, Yanning Xu, Zheng Zeng, Lu Wang, and Nicolas

Holzschuch. Joint SVBRDF recovery and synthesis from a single image using

an unsupervised generative adversarial network. In EGSR, 2020.

[195] David J Heeger and James R Bergen. Pyramid-based texture analysis/synthesis.

In Proc. SIGGRAPH, pages 229–38, 1995.

[196] Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with

adaptive instance normalization. In ICCV, pages 1501–10, 2017.

[197] Gang Liu, Yann Gousseau, and Gui-Song Xia. Texture synthesis through

convolutional neural networks and spectrum constraints. In ICPR, pages

3234–9, 2016.

[198] Diederik P Kingma and Max Welling. Auto-encoding variational Bayes.

arXiv:1312.6114, 2013.

[199] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. Mitsuba

2: A retargetable forward and inverse renderer. ACM Trans Graph (Proc.

SIGGRAPH Asia), 38(6), 2019.

[200] Pratul P Srinivasan, Boyang Deng, Xiuming Zhang, Matthew Tancik, Ben

Mildenhall, and Jonathan T Barron. Nerv: Neural reflectance and visibility

fields for relighting and view synthesis. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 7495–7504,

2021.

[201] Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Mildenhall, Kalyan Sunkavalli,

Miloš Hašan, Yannick Hold-Geoffroy, David Kriegman, and Ravi Ramamoor-

thi. Neural reflectance fields for appearance acquisition. arXiv preprint

arXiv:2008.03824, 2020.

[202] Xiuming Zhang, Pratul P Srinivasan, Boyang Deng, Paul Debevec, William T

Freeman, and Jonathan T Barron. Nerfactor: Neural factorization of shape and

148 BIBLIOGRAPHY

reflectance under an unknown illumination. ACM Transactions on Graphics

(TOG), 40(6):1–18, 2021.

[203] Mark Boss, Raphael Braun, Varun Jampani, Jonathan T Barron, Ce Liu,

and Hendrik Lensch. Nerd: Neural reflectance decomposition from image

collections. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 12684–12694, 2021.

[204] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver

Wang. The unreasonable effectiveness of deep features as a perceptual met-

ric. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 586–595, 2018.

[205] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive grow-

ing of GANs for improved quality, stability, and variation. arXiv:1710.10196,

2017.

[206] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic

image synthesis with spatially-adaptive normalization. In Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, pages

2337–2346, 2019.

	Abstract
	Acknowledgments
	Introduction
	Goal
	Contributions
	3D Reconstruction
	Texture and material synthesis
	Self-supervised learning via differentiable physical priors

	Background and Previous Work
	Deep Learning
	Multilayer perceptron
	Convolutional Neural Networks
	Generative Adversarial Networks
	Neural Style Transfer

	Basics of Computer Graphics
	Geometry
	Lighting
	Material
	Rendering equation

	View Synthesis
	Structure-from-Motion
	Multi-view-Stereo
	Image-Based-Rendering

	3D Reconstruction
	3D supervision
	Pose supervision
	Keypoint supervision
	Multi-view supervision
	Template supervision
	Minimal supervision

	Texture Synthesis
	Traditional texture synthesis
	Texture synthesis meets deep learning
	Space of Textures

	Material Modeling
	Spaces-of

	PlatonicGAN
	Overview
	3D Shape From 2D Photo Collections
	Optimization

	Rendering Layers
	Evaluation
	Datasets
	Baselines and comparison
	Evaluation Metrics
	Quantitative evaluation
	Qualitative

	Discussion
	Conclusion

	3D Learning from Videos
	Overview
	Method
	Implicit surface rendering
	Neural implicit surface
	Warp-conditioned ray embedding
	Overall learning objective

	Experiments
	AMT Objects and other benchmarks
	Baselines
	Quantitative Results
	Qualitative Results

	Discussion and conclusions

	Neural Textures
	Overview
	Method
	Learning stochastic space coloring
	Evaluation
	Protocol
	Quantitative results
	Qualitative results
	User study
	Method properties

	Conclusion

	Neural materials
	Overview
	Background
	Method
	Encoder
	Decoder
	Images Comparison
	Training
	Fine-tuning
	Material model
	Alignment

	Results
	Dataset
	Quantitative Evaluation
	Qualitative Evaluation
	Ablation Experiments

	User experiment
	Limitations
	Conclusion

	Conclusion
	Limitations
	Future Work
	Platonic Way
	Representation invariance

	Appendices
	PatlonicGan Supplemental
	Network architectures
	Evaluation Details

	3D Learning from Videos Supplemental
	Additional implementation details
	Dense image descriptors
	Training details

	Additional qualitative results
	Test-time view ablation

	Neural Textures Supplemental
	Network Architecture
	Encoder
	Sampler
	CNN

	Results

	Bibliography

