
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Computational Analysis and Design of Structurally
Stable Assemblies with Rigid Parts

Ziqi WANG

Thèse n° 8964

2021

Présentée le 21 décembre 2021

Prof. T. C. Käser Jacober, présidente du jury
Prof. M. Pauly, P. Song, directeurs de thèse
Prof. S. Coros, rapporteur
Prof. C.-W. Fu, rapporteur
Prof. W. Jakob, rapporteur

Faculté informatique et communications
Laboratoire d’informatique géométrique
Programme doctoral en informatique et communications

会当凌绝顶，一览众山小。

—杜甫

Someday may I climb up to its highest summit.

With one sweeping view see how small all other mountains are.

— Fu Du

To my parents

Acknowledgements

First, I would like to thank my Ph.D. advisor Mark Pauly for allowing me to do computer

graphics research in this beautiful school. I am grateful that he gives me great freedom to

explore my favorite topics. Thanks for helping me improve the quality of my research and

teaching me how to present my works formally. I am grateful to have his encouragement

and constructive suggestions when I am struggling. It is a pleasant journey that I have been

through under his supervision.

Second, I want to thank my co-supervisor, Peng Song, for introducing me to this amazing topic

of assembly. We first met when I was an undergraduate student. Since then, he has proposed

many interesting ideas, which significantly inspires me, especially when I start my research. I

want to thank him for helping me with my paper writing. I want to express my hope that our

collaboration will go on in the future.

Third, I must thank other professors who provided valuable suggestions during our project

meetings: Stelian Coros, Niloy Mitra, Wenzel Jakob, Fabio Gramazio, and Matthias Kohler.

I am thankful to my thesis committee for finding the time in their busy schedule to review my

thesis and conduct the oral exam: Tanja Käser, Mark Pauly, Peng Song, Chi-Wing Fu, Stelian

Coros, and Wenzel Jakob.

I want to thank my colleagues for sharing the incredible moments at EPFL: Madeleine Robert,

Anastasia Tkach, Mina Konakovic, Julian Panetta, Liane Makatura, Samara Ren, Quentin

Becker, Florin Isvoranu, Tim Chen, Ulysse Martel, Robin Jodon, Uday Kusupati, Davide Pellis,

Filip Goč, Seiichi Suzuki. I especially want to thank Quentin Becker for helping me translate

my thesis abstraction into French.

I want to thank NCCR digital fabrication (# 51NF40-141853) for offering my funding and thank

my colleagues at ETH for discussing with me during my time at ETH: Tom Van Mele, Ania

Apolinarska, Gene Ting-Chun Kao, Simon Duenser, Victor Leung, Gonzalo Casas, Matteo

Pacher, and Davide Tanadini.

I also want to thank other researchers for providing helpful suggestions for my research: Yijiang

Huang and Hao Xu.

I want to thank my friends for their support: Zhao Ma, Yijiang Liu, Yu Zhang, Tin Yin, Meng

Zhao, Qinkun Bao, and others.

Finally, my biggest thanks go to my parents for their love and support.

v

Acknowledgements

Lausanne, 8 Oct 2021 Ziqi Wang

vi

Abstract
An assembly refers to a collection of parts joined together to achieve a specific form and/or

functionality. Assemblies make it possible to fabricate large and complex objects with several

small and simple parts. Such parts can be assembled and disassembled repeatedly, benefiting

the transportation and maintenance of the assembly. Due to these advantages, assemblies are

ubiquitous in our daily lives, including most furniture, household appliances, and architecture.

The recent advancement in digital fabrication lowers the hurdles for fabricating objects with

complex shapes. However, designing physically plausible assemblies is still a non-trivial

task as a slight local modification on a part’s geometry could have a global impact on the

structural and/or functional performance of the whole assembly. New computational tools are

developed to enable general users involved in the design process exploiting their imagination.

This thesis focuses on static assemblies with rigid parts. We develop computational methods

for analyzing and designing assemblies that are structurally stable and assemblable. To address

this problem, we use integral joints i.e., tenon and mortise, that are historically used because

of their reversibility which simplifies the disassembly process significantly. Properly arranged

integral joints can restrict parts’ relative movement for improved structural stability. However,

manually finding the right joints’ geometry is a tedious and error-prone task. Inspired by

the kinematic-static duality, we first propose a new kinematic-based method for analyzing

the structural stability of assemblies. We then develop a two-stage computational design

framework based on this new analyzing method. The kinematic design stage determines

the amount of motion restrictions imposed by joints to make a given assembly stable in the

motion space. The geometric design stage searches for proper shapes of the joints to satisfy

the motion restriction requirements computed from the previous stage. To solve the problem

numerically, we propose the joint motion cones to measure the motion restriction capacity of

given joints. Compared with previous works, our framework can efficiently handle inputs with

complex geometry. Besides, our design framework is very flexible and can easily be adapted to

various applications:

1. First, we focus on designing globally interlocking assemblies that can withstand arbitrary

external forces and torques. Our method abstracts the contacts between parts into a set

of base directional blocking graphs and leverages efficient graph analysis tools to test

for globally interlocking. These graphs can also be used to guide our kinematic design.

Our method supports a wider range of assembly forms compared to previous methods

and provides significantly more design flexibility.

vii

Abstract

2. Second, we are interested in designing assemblies of rigid convex blocks to approximate

freeform surfaces. The convexity of our parts simplifies the fabrication though it brings

a considerable challenge for design due to the blocks’ loose planar joints. Our design

framework can optimize the blocks’ shape to generate assemblies with good resistance

against lateral forces, and in some cases, globally interlocking assemblies.

3. Lastly, we present a method for designing complex assemblies with cone joints. Cone

joints generalize the classic single-direction joints with a cone of disassembling direc-

tions. By optimizing the shapes of cone joints, our design framework can find the best

trade-off between structural stability and assemblability.

We validate our computational tools by fabricating a series of physical prototypes. Our al-

gorithms have great potential to be applied for solving various assembly design problems

ranging from small-scale such as toys and furniture to large-scale such as art installation and

architecture. For example, the proposed techniques could be applied for designing discrete

architecture that can be automatically constructed with robots.

Keywords: 3D assembly, interlocking assembly, topological interlocking assembly, cone

joint, structural stability, assemblability, computational design

viii

Résumé
Un assemblage est un ensemble de pièces combinées pour obtenir une forme et/ou une

fonctionnalité spécifique. Les assemblages permettent de fabriquer des objets volumineux et

complexes à partir de plusieurs petites pièces simples. De telles pièces peuvent être assem-

blées et démontées de manière répétée, ce qui facilite le transport et favorise la maintenance

de l’assemblage. En raison de ces avantages, les assemblages sont omniprésents dans notre

vie quotidienne, que ce soit pour la conception de meubles d’intérieur, d’appareils électromé-

nagers ou autres œuvres architecturales. Les récents progrès dans le domaine de la fabrication

numérique abaissent les barrières quant à la fabrication d’objets aux formes complexes. Ce-

pendant, la conception d’assemblages physiquement réalisables reste une tâche non triviale

car une légère modification locale de la géométrie d’une pièce pourrait avoir un impact global

sur les performances structurelles et/ou fonctionnelles de l’assemblage. De nouveaux outils

informatiques sont développés pour permettre aux utilisateurs non-experts impliqués dans le

processus de conception de laisser libre court à leur imagination.

Cette thèse porte sur les assemblages statiques avec des pièces rigides. Nous développons des

méthodes informatiques pour analyser et concevoir des assemblages structurellement stables

et assemblables. Pour résoudre ce problème, nous considérons des jonctions intégrées i.e.,

mortaise, historiquement choisies pour leur réversibilité qui simplifient considérablement le

processus de démontage. Correctement disposées, ces jonctions intégrées peuvent restreindre

les mouvements relatifs des pièces pour améliorer la stabilité structurelle de l’ensemble. Ce-

pendant, trouver manuellement la bonne géométrie des jonctions est une tâche fastidieuse

et sujette aux erreurs. Inspirés par la dualité cinématique-statique, nous proposons dans

un premier temps une nouvelle méthode cinématique pour analyser la stabilité structurelle

des assemblages. Nous développons ensuite une méthode de conception informatique en

deux étapes basée sur cette nouvelle technique d’analyse. L’étape de conception cinématique

détermine les restrictions de mouvement imposées par les jonctions nécessaires à la stabilité

de l’assemblage dans l’espace des mouvements. L’étape de conception géométrique consiste

à chercher les formes de jonctions satisfaisant les exigences de restriction de mouvement

calculées lors de l’étape précédente. Pour résoudre le problème numériquement, nous propo-

sons le concept de cônes de mouvement aux jonctions pour mesurer la capacité de restriction

de mouvement des jonctions. Par rapport aux travaux précédents, notre système peut gérer

efficacement des géométries complexes. De plus, notre méthode de conception est très flexible

et peut facilement être adapté à diverses applications :

ix

Résumé

• Premièrement, nous nous concentrons sur la conception d’assemblages globalement

imbriqués pouvant résister à des forces et des couples externes arbitraires. Notre mé-

thode représente les contacts entre les pièces sous la forme d’un ensemble de graphes

orientés de blocage et exploite des outils d’analyse de graphes efficaces pour tester

l’imbrication globale. Ces graphes peuvent également être utilisés pour guider notre

conception cinématique. Notre méthode prend en charge une plus large gamme de

formes d’assemblage par rapport aux méthodes précédentes et offre une flexibilité de

conception nettement supérieure.

• Deuxièmement, nous nous intéressons à la conception d’assemblages de blocs convexes

rigides pour approximer des surfaces de forme libre. La convexité de nos pièces simplifie

la fabrication bien qu’elle pose un défi considérable pour la conception en raison de

l’instabilité des plans de jonction inter-blocs. Notre méthode de conception permet

d’optimiser la forme des blocs pour générer des assemblages présentant une bonne

résistance aux efforts latéraux et pouvant être globalement imbriqués.

• Enfin, nous présentons une méthode de conception d’assemblages complexes à joints

coniques. Les joints coniques généralisent les joints monodirectionnels classiques en

élargissant le champ des directions de démontage à un cône. En optimisant les formes

des joints coniques, notre méthode de conception peut trouver le meilleur compromis

entre stabilité structurelle et facilité d’assemblage.

Nous validons nos outils de calcul en fabricant un ensemble de prototypes physiques. Nos

algorithmes ont un grand potentiel en ce qui concerne la résolution de divers problèmes de

conception d’assemblage de petite à grande échelle. Jouets, meubles, installations artistiques

et architecturales sont autant d’exemples d’applications de notre méthode. En particulier, les

techniques proposées peuvent être appliquées pour concevoir une structure constructible

automatiquement par des robots.

Mots-clés : assemblage 3D, assemblage imbriqué, assemblage topologiquement imbriqué,

jonction conique, stabilité structurelle, facilité d’assemblage, conception informatique

x

Contents
Acknowledgements v

Abstract (English/Français) vii

List of figures xiii

1 Introduction 1

Introduction 1

1.1 Contributions . 5

1.2 Publication . 6

1.3 Overview . 7

2 Related Works 9

2.1 Computational Analysis of Assemblies . 9

2.1.1 Joining Parts . 9

2.1.2 Assembly Planning . 12

2.1.3 Structural Stability . 14

2.2 Computational design of structurally stable assemblies 16

2.2.1 Assemblies in Equilibrium . 16

2.2.2 Interlocking Assemblies . 18

2.2.3 Topological Interlocking Assemblies . 19

3 Kinematic-Based Stability Analysis 21

3.1 Contact Discretization . 21

3.2 Force-based Equilibrium Method . 22

3.3 Kinematic-based Equilibrium Method . 24

3.4 Motion-Based Representation . 26

3.4.1 Motion Space Analysis of Contact . 26

3.4.2 Motion Graph . 29

3.5 Kinematic-Based Interlocking Test . 30

3.5.1 Inequality-based Interlocking Test . 30

3.5.2 DBG-based Interlocking Test . 31

3.5.3 Connection between Interlocking and Equilibrium 34

3.6 Lateral Stability Measure . 35

xi

Contents

4 Computational Design of Interlocking Assemblies 39

4.1 Introduction . 40

4.2 Computational Design Framework . 41

4.2.1 Iterative Design Framework . 41

4.2.2 Generating the key . 44

4.2.3 Generating Pi and Ri (i > 1) . 45

4.3 Results and Discussion . 50

4.3.1 Interlocking Voxelized Structures . 50

4.3.2 Interlocking Plate Structures . 52

4.3.3 Interlocking Frame Structures . 55

4.3.4 Implementation and Performance . 58

4.4 Limitations and Future Work . 59

4.5 Acknowledgments . 60

5 Computational Design of Topological Interlocking Assemblies 61

5.1 Introduction . 62

5.2 Computational Design of TI Assemblies . 65

5.2.1 Parametric Model . 65

5.2.2 Interactive Design . 66

5.3 Structural Optimization of TI Assemblies . 68

5.3.1 Compute Target Force Directions . 69

5.3.2 Optimize TI Assembly . 70

5.4 Results and Discussion . 73

5.5 Limitations and Future Work . 76

5.6 Acknowledgments . 76

6 Modeling and Optimizing Cone-joints for Complex Assemblies 79

6.1 Introduction . 79

6.2 Modeling Assemblies with Cone Joints . 82

6.2.1 Modeling Geometry of Cone Joints . 82

6.2.2 Modeling Assemblies with Cone Joints . 85

6.3 Designing Assemblies with Cone Joints . 86

6.3.1 Overview of our approach . 87

6.3.2 Kinematic Design . 87

6.3.3 Geometric Realization . 90

6.4 Results . 92

6.5 Limitations and Future Work . 99

6.6 Acknowledgments . 99

7 Conclusion & Discussion 101

7.1 Summary . 101

7.2 Future Work . 102

xii

Contents

A Supplementary Material for Interlocking Assemblies 105

A.1 Comparisons and Results . 105

A.2 Proof of Statement on the Parts-graph . 109

A.3 Proof of Statement on the DBG-based Test . 110

B Supplementary Material for TI Assemblies 113

B.1 Optimization of 3D Surface Tessellation . 113

B.2 Compute Target Force Directions . 114

B.3 Gradient-based Structural Optimization . 115

B.3.1 Definition . 116

B.3.2 Face-Face Contact Normal nF
i j . 116

B.3.3 Edge-Edge Contact Normal nE
i j . 117

B.3.4 Block Vertex vh
i . 117

B.3.5 Block Volume Vi . 118

B.3.6 Block Centroid oi . 118

B.3.7 Contact Vertex cg
i j . 118

B.3.8 Contact Area Ai j . 119

C Supplementary Material for Assemblies with Cone Joints 121

C.1 Motion Cone Visualization . 121

C.2 Kinematic Based Infeasibility Measure . 121

C.3 Infeasibility Derivatives
∂E(w ,{V̄i , j })

∂Ψi , j
. 122

C.4 New Interlocking Test . 123

Curriculum Vitae 133

xiii

List of Figures
1.1 Structurally stable assemblies with rigid parts connected by integral joints. . . . 1

1.2 Motion based representation for assemblies with single-direction joints. 3

1.3 Typical types of structural stability. 4

1.4 Typical types of integral joints. 5

2.1 Schematic of three kinds of integral joints with corresponding translational

motion space. 10

2.2 A 5-part assembly, its parts-graph and joints-graph. 11

2.3 Examples of disassembly plans. 11

2.4 Structurally stable assemblies: an assembly in equilibrium, an interlocking

assembly, and an assembly under tilt analysis. 14

2.5 Designing examples of assemblies in equilibrium. 16

2.6 Designing examples of interlocking assemblies. 19

2.7 Building planar assemblies with tilable blocks. 19

3.1 Contact sampling methods. 21

3.2 Symbols for the force-based and kinematic-based equilibrium methods. 22

3.3 Kinematic-based equilibrium method for static analysis. 24

3.4 Motion space analysis. 27

3.5 Motion-based representation for assemblies with curved joints. 29

3.6 Example DBGs and NDBG. 32

3.7 Simultaneous movements of parts which our DBG-based test cannot detect. . . 34

3.8 Spectrum of assembly stability based on the tilt analysis 35

3.9 Gravitational feasible cone. 37

4.1 Various interlocking assemblies designed using our framework. 39

4.2 Overview of our framework on designing a 2D interlocking assembly. 42

4.3 Generate-and-test approach for generating Pi and Ri 44

4.4 Graph Design for Pi and Ri . 45

4.5 Geometry realization of Pi and Ri . 46

4.6 Constructing internal geometric contacts. 47

4.7 Iterative design process for creating a 9-part 4×4×4 interlocking CUBE. 48

4.8 Illustration of the model of [Song et al., 2012] based on our DBG-based represen-

tation. 49

xv

List of Figures

4.9 Comparison between our approach and [Song et al., 2012] in terms of number

of parts. 50

4.10 Design of a 7-part interlocking CABINET by our approach. 51

4.11 Comparison between our approach and [Song et al., 2012] in terms of speed. . 51

4.12 Design a 20-part ISIDORE HORSE with different criteria for ranking {Ai+1}. . . . 52

4.13 Example woodworking joints. 52

4.14 Variants of mortise-and-tenon joints and halved joints that support non-orthogonal

part connections with surface contact. 53

4.15 Design of a 6-part interlocking TABLE with orthogonal joints. 54

4.16 An assembly whose parts-graph has a cut point cannot be globally interlocking. 55

4.17 Design of a 12-part interlocking FRAME CUBE. 55

4.18 Interlocking 1.0m ×0.5m ×0.5m Frame Chair. 57

4.19 A 92-part Scaffold connected with voxel joints. 58

4.20 The assembling sequence of a globally interlocking bench designed by Ulysse

Martel using our software. 59

5.1 A topological interlocking assembly designed with our approach and its 3D

printed prototype. 61

5.2 Stability of cubes. 62

5.3 Example planar TI assemblies described in [Dyskin et al., 2003a]. 62

5.4 The Abeille vault. 63

5.5 Extending topological interlocking concept from planar assemblies to curved

freeform surfaces. 64

5.6 Overview of our approach for designing topological interlocking assemblies. . . 65

5.7 Parameterizing 3D free-form TI assemblies using a 3D surface tessellation T

with augmented vectors. 66

5.8 Assigning augmented vectors {ni j }. 67

5.9 TI assemblies generated with α equals to 0◦, 25◦, 45◦, and 65◦. 68

5.10 An example TI assembly before and after one step of our optimization. 70

5.11 A variety of patterns supported by our tool for designing TI assemblies. 71

5.12 Our method allows creating stable TI assemblies, indicated by the green feasible

cones, even for design surfaces that are not self-supporting. 73

5.13 TI assemblies of various shapes and their corresponding feasible cones. 74

5.14 Tilt analysis experiments on the 3D printed IGLOO to validate its stability. 74

5.15 Assembly sequence of ROOF and IGLOO. 74

5.16 Example shapes for which the optimization does not find an equilibrium under

gravity. 75

6.1 Our computational framework optimizes cone joints for designing assemblable

and stable structures with a variety of geometric forms. 79

6.2 Two parts joined in different ways using a single-direction joint, a planar contact

and cone joints. 81

6.3 Model cone joints, where the principal direction u =+y 82

xvi

List of Figures

6.4 Model cone joints when the principal direction u deviates from the y-axis. . . . 83

6.5 Model cone joints when Pi and/or P j have non-convex shape, resulting multiple

contacts between the two parts. 84

6.6 Model n-type cone joints in 3D. 85

6.7 Model cone joints in an assembly. 85

6.8 Our computational design framework for designing assemblies with cone joints. 86

6.9 The joint motion cone and its polyhedral cone approximation in different coor-

dinate systems. 89

6.10 Geometric realization process for a single joint. 91

6.11 Geometric realization process on a 3-part assembly. 92

6.12 Comparison of stability and assemblability of 4-part SCARECROWs with planar

contacts, single-direction joints, and our optimized cone joints. 94

6.13 Comparison of stability and assemblability of 6-part SPHEREs with planar con-

tacts, standard mortise-and-tenon joints, and our optimized cone joints. 94

6.14 Comparison of our design approach with a baseline approach. 96

6.15 Equilibrium puzzle TREE generated by our approach. 97

6.16 Tilt experiment on an input LEANING TOWER to verify the ability of our designed

cone joints to make an assembly stable. 97

6.17 Support-free equilibrium puzzle LEANING TOWER with 15 degrees tilt angle. . . 98

6.18 Support-free equilibrium puzzle DEER. 98

6.19 An IGLOO shell with lateral stability designed by our approach. 98

A.1 Interlocking Cubes created by [Song et al., 2012] and our approach. 106

A.2 9-part CUBE and 7-part HOLLOWED CUBE designed by our approach and made

with Lego bricks. 106

A.3 Comparison between LIG-based approach [Fu et al., 2015] and our DBG-based

approach. 107

A.4 14-part CARTOON DOG and its base DBGs. 107

A.5 11-part FRAME CHAIR and its base DBGs. 108

A.6 23-part FLOWER and its base DBGs. 108

A.7 A BOOKSHELF, its parts-graph, and an interlocking joint configuration generated

by our approach. 109

B.1 Initial and optimized surface tessellation and their corresponding TI assemblies

with the same α. 113

xvii

1 Introduction

Figure 1.1 – Structurally stable assemblies with rigid parts connected by integral joints, from left
to right: interlocking voxelized puzzle, interlocking bookshelf, spatial timber frame structure,
and topological interlocking assembly.

An assembly refers to a collection of parts joined together to achieve a specific form and/or

functionality. Compared with a monolithic object, parts of an assembly have relatively simple

geometry, which modern digital machines can easily manufacture. During transportation,

parts can be packed tightly into boxes to save storage space. The joints that connect parts

provide structural integrity to the assembly and facilitate an easy (dis)assembly process.

Malfunctioning parts can be replaced without damaging the unimpaired ones. Reconfigurable

assemblies can accomplish multiple functionalities by transforming themselves into different

forms. Dynamic assemblies can perform various mechanisms by transferring motions through

parts. Assemblies are so ubiquitous in our daily lives that most of our consumer products,

machines, and buildings are assemblies.

In general, "assembly" is a very broad concept covered by many research subjects. According

to their functionality, assemblies can be classified as structures that transmit force to carry

loads and mechanisms that transfer motion and force to perform mechanical work. This thesis

limits its scope to static structures with rigid parts and focuses on the computational design

of structurally stable assemblies. An assembly is structurally stable if it can preserve its form

under external forces without collapse [Whiting et al., 2009]. Figure 1.1 illustrates some typical

examples. In most of these applications, our rigidity assumption is a reasonable simplification

1

Chapter 1. Introduction

since parts (i.e., made by stone) often have high material strength. The structural failures are

in consequence of parts’ movements (sliding and rotating at the contact interfaces) rather

than material failure [Shin et al., 2016]. The structural stability of our assemblies can be

independent of the material selection.

With the development in digital fabrication, there are more and more demands from the

general public to make their personalized assemblies. Most state-of-art CAD software is

designed to model parts in a virtual environment. The physical feasibility of the assemblies

is only examined after the modeling process. Not all designs are physically plausible, and

users have to manually correct them, which requires effort and expertise. Therefore, we are

interested in developing a new computational framework that optimizes the parts’ geometry to

satisfy the physical feasibility constraints automatically. In addition to the structural stability,

the assemblability that requires assemblies to be dismantled into parts without deadlocking

[Song et al., 2012] is another fundamental physical requirement that our designs need to

satisfy. Other aspects, including fabricability, aesthetics, and scaffolding, are considered upon

request.

Within the whole modeling process, selecting proper joints is a critical step for obtaining phys-

ically plausible assemblies. Using permanent or irreversible connectors (i.e., glue and nails),

even though they can provide a trial solution to achieve stability, their parts can hardly be

disassembled without any damage on them. Integral joints, on the other hand, connect parts

into a steady structure purely based on geometric blocking. This intriguing property facilitates

repeated assembly and disassembly and significantly simplifies the correct alignment of parts

during construction. However, designing structurally stable assemblies with integral joints is

an extremely challenging task even for experts. The relation between the joints’ geometry and

structural stability is not intuitive since a slight modification on an individual part geometry

could have a global impact on the stability of the whole assembly. Simply adding excessive

joints to an assembly for stability often ends up with deadlocking assemblies. Removing

joints from assemblies until the deadlocking is resolved has no guarantee of maintaining their

structural stability. Structural stability and assemblability are two conflicting design goals that

are hard to be satisfied simultaneously without computational approaches.

To overcome the challenges mentioned above, a previous work [Whiting et al., 2009] proposed

the rigid body equilibrium method (RBE), which analyzes the structural stability of a given

assembly using force equilibrium. Their approach aims to find a network of interactive forces

between parts that can balance the external forces (i.e., gravity). Rather than a binary output,

the RBE method further measures the infeasibility energy by computing the minimal amount

of unrealistic forces (i.e., tension forces for stone) needed to stabilize the assembly. They

set up a gradient-based algorithm to optimize the parts’ geometry for stability based on

this measurement [Whiting et al., 2012]. When assemblies have complicated shapes (i.e.,

curved contacts), the interactive forces in the RBE test have to be densely sampled to obtain

sufficient accuracy. The size of the optimization problem could become enormous, making

the optimization program inefficient and heavily dependent on the initial values.

2

Figure 1.2 – (a) Two parts connected by a single-direction joint whose joint motion cone is just
a vector pointing upward; and (b) a four-part assembly and its motion-based representation
where the arrows at the graph edges are the joint motion cones.

We find that the design space of the joints’ geometry has many redundancies. Both green parts

in the right inset can only move upward though the joints of the two assemblies are geometri-

cally different. We can reduce the size of the design space by clustering joints that have the

same capacity to restrict the relative movements of associated parts.

We invent the joint motion cone to measure the joint’s motion re-

striction capacity. The joint motion cone contains all infinitesimal

rigid motions that can separate the two associated parts without

collision. For a single-direction joint, its motion cone has only one

vector, the joint’s disassembling direction; see Figure 1.2(a). Once

two joints in two assemblies share the same joint motion cone, they can be interchanged

without affecting the structural stability of the two assemblies. Due to the duality between

kinematics and statics, we can derive an equivalent motion-based stability analysis from the

previous forced-based equilibrium method. The method only takes the joint motion cones as

inputs without needing the actual joints’ geometry. We further can represent the assembly

geometry by a lightweight data structure that only contains joint motion cones illustrated in

Figure 1.2(b). Our new motion-based representation is developed from a part graph whose

nodes are parts and edges are joints. We augment this part graph with joint motion cones at its

edges. This new representation discards irrelevant geometric features of the original assembly

without affecting the structural stability measurement. We can perform a gradient-based

optimization on this new representation. Our optimization has two stages, the kinematic and

geometric design stages. At the kinematic design stage, our method optimizes target joint

motion cones to make the motion-based representation conceptually stable. The geometric

design stage then optimizes the shapes of the joints to satisfy the target motion cones. The

separation of motion and geometry design allows us to include many types of structural

stability and joint in a unified framework.

The followings discuss the specific types of structural stability and joint used in this thesis.

Structurally stable assemblies have divergent definitions in different external loading condi-

tions. This thesis mainly discusses three typical types: assemblies being equilibrium under

gravity, assemblies with lateral stability, and globally interlocking assemblies, sorted in the

ascending order by the amount of external forces the structures can resist; see Figure 1.3.

3

Chapter 1. Introduction

Figure 1.3 – The structures from left to right can withstand more external forces. The assemblies
at the two ends are either unstable or not assemblable, making them infeasible in practice.

Being equilibrium under gravity is the minimum requirement when designing architecture

assemblies. A self-supporting structure, as an example, transmits the self-weights of its parts

through the integral joints to the ground to stay equilibrium [Panozzo et al., 2013]. However,

during the assembling process, the partial assemblies may not be stable. Temporary scaffolds

keep the structure in equilibrium before the last part is installed. An interesting extension is to

design the partial assemblies to be stable at as many assembling steps as possible [Gao et al.,

2019]. When an assembly is exposed to different forces (e.g., live loads), the equilibrium under

gravity conditions might be insufficient. This motivates stability measures based on tilting

analysis [Shin et al., 2016,Yao et al., 2017a]. The ground plane of a structure is rotated around a

fixed axis to mimic the effect of unexpected lateral acceleration (i.e., wind or earthquake). The

maximum angle the ground plane can be tilted is denoted as the critical tilt angle, which mea-

sures the structure’s ability to resist against non-gravitational external forces. In the extreme,

some structures can withstand arbitrary external forces. These assemblies are called globally

interlocking assemblies [Song et al., 2012, Fu et al., 2015]. The main challenge of designing

globally interlocking assemblies is to ensure two conflicting properties simultaneously: glob-

ally interlocking and disassemblability. This is because globally interlocking requires strict

joining to restrict relative movement among parts, yet disassemblability demands at least one

collision-free plan to separate the parts (i.e., not deadlocking).

The integral joint is implicitly defined as the portion of each individual part that is in contact

with adjacent parts. Figure 1.4 illustrates three frequently used integral joints (the planar,

curved, and single-direction joints) and their most represented applications. Planar con-

tacts (Figure 1.4(a)) are commonly seen in unreinforced masonry structures. Their simplest

geometry facilitates easy fabrication and reduces stress concentration, which is important

in avoiding material failure for rigid material (i.e., stone). Yet, these joints have the weak-

est capacity to restrict relative part motion. To achieve better structural stability, this thesis

studies the topological interlocking assemblies whose parts have planar faces oriented in an

alternating manner; see Figure 1.4(a). This modeling approach allows the assemblies to have

large tilting angles or even become interlocking. For assemblies with sparse contacts, like

furniture, the single-direction joints are the most reliable choice to provide structural stability;

4

1.1. Contributions

Figure 1.4 – Typical joints studied in this thesis: (a) a planar contact, (b) a cone joint with a
curved contact, and (c) a single-direction joint (contacts are shown in purple). The top row
shows the most represented assemblies where the joints are used.

see Figure 1.4(c). Their strong capacity to strengthen structural stability makes them widely

used in globally interlocking assemblies. However, complex arrangements of single-direction

joints could lead to deadlocking, making the assembly physically unrealizable. Moreover,

these joints may complicate the assembly process as inserting a part precisely along a certain

direction to fit the other could be a challenging task, especially in robotic assembly [Leung

et al., 2021]. Curved joints shown in Figure 1.4(b) generalize single-direction joints and planar

contacts in terms of restricting relative part motion. Structures made by curved joints can have

balanced assemblability and stability. Curved joints are also called cone joints because they

allow one part to be separated/inserted relative to the other by translation along any direction

within a motion cone. Cone joints have been demonstrated to have good mechanical proper-

ties such as reduced stress concentration in building structurally stable assemblies [Dyskin

et al., 2003b,Javan et al., 2016]. Parts with cone joints can be easily fabricated with 3D printing,

CNC milling, and even hot-wire cutting for large-scale objects [Duenser et al., 2020].

1.1 Contributions

Contributions for analyzing structural stability:

• We establish a connection between the geometry of a joint and its motion space based

5

Chapter 1. Introduction

on convexity theory. We show that the joint motion space is always convex and present

a sampling-based approach to compute the motion space of curved-contact joints. We

further derive a motion-based method for static analysis of assemblies with cone joints

from the existing force-based method due to the duality between static and kinematic.

The strength of this new method is to quantify structural stability and assemblability

coherently in the motion space.

• We demonstrate two methods to test for global interlocking. For assemblies made

by voxels, we represent them with a set of base Directional Blocking Graphs (DBGs)

and implement an efficient graph analysis algorithm that can test for global interlock-

ing in polynomial time complexity. For assemblies with general contacts, our second

test algorithm is based on solving a system of linear inequalities considering not only

part translation but also rotation, avoiding false positives that can occur with existing

methods.

• We formalize a theoretical link between static equilibrium conditions and a globally

interlocking property with a mathematical proof. We show that global interlockings are

the most stable assemblies that can withhold arbitrary external forces and torques. We

utilize the tilting test to quantitatively measure the stability of the assemblies, which

can withstand more than gravity.

Contributions for designing structurally stable assemblies:

• We introduce a general iterative framework for designing interlocking assemblies that

can explore the full search space of all possible interlocking configurations by utilizing all

existing part blocking relations described in the graphs. We demonstrate the flexibility

of our framework for designing different classes of assemblies, including new types of

interlocking forms that have not been explored in previous works.

• We develop an interactive design tool that allows a real-time preview and efficient

exploration of a wide range of design parameters of topological interlocking assemblies.

We present a gradient-based method that optimizes the geometry of blocks to maximize

the tilting stability measure for topological interlocking assemblies.

• We develop an optimization approach to construct cone joints for designing structures

that are assemblable and stable, assuming the assembly sequence is given. Our frame-

work iterates between a kinematic design stage that determines the required motion

cone for each part contact and a geometric realization stage that finds the geometry of

each joint to match this motion cone.

1.2 Publication

This thesis mainly covers the following peer-reviewed publications:

6

1.3. Overview

• Ziqi Wang, Peng Song, and Mark Pauly. DESIA: A General Framework for Designing

Interlocking Assemblies. ACM Trans. on Graph. (SIGGRAPH Asia 2018).

• Ziqi Wang, Peng Song, Florin Isvoranu, and Mark Pauly. Design and Structural Optimiza-

tion of Topological Interlocking Assemblies. ACM Trans. on Graph. (SIGGRAPH Asia

2019).

• Ziqi Wang, Peng Song, and Mark Pauly. MOCCA: modeling and optimizing cone-joints

for complex assemblies. ACM Trans. on Graph. (SIGGRAPH 2021).

• Ziqi Wang, Peng Song, and Mark Pauly. State of the Art on Computational Design of

Assemblies with Rigid Parts. Computer Graphics Forum (Eurographics STAR 2021).

In addition, the following publications were published during the same time period but are

not explicitly addressed in this thesis:

• Yang Xu, Ziq Wang, Siyu Gong, Yong Chen. Reusable support for additive manufacturing.

Additive Manufacturing 2021.

1.3 Overview

We present computational methods of analyzing and designing structurally stable assemblies

with rigid parts. The remainder of the thesis is organized as follows:

• In Chapter 2, we review the state-of-art methods for joint analysis, assembly planning,

and structural stability measurement. We further discuss previous design methods

for self-supporting assemblies, interlocking assemblies, and topological interlocking

assemblies.

• In Chapter 3, we summarize the computational methods for analyzing different types of

structural stability. We first review the previous force-based equilibrium test, followed

by our motion-based equilibrium test. Then, we introduce the concept of joint motion

cones and use it to construct the new motion-based representation. Next, we propose

two ways of testing global interlocking assemblies, the directional blocking graph, and

the inequality-based test. Both methods can be derived from our motion-based repre-

sentation. Lastly, we formalize a measurement for lateral stability, which together with

other stability tests can measure where an assembly with rigid parts is located in the

stability spectrum.

• Chapter 4 focuses on designing global interlocking assemblies. An assembly is defined

as global interlocking if only if any part and subset of parts is immobilized except

a key part. The classic interlocking test method, which examines the immobility of

every subset of parts has exponential time complexity. Introduced in Chapter 3, the

7

Chapter 1. Introduction

directional blocking graphs (DBGs) can test for the global interlocking in a polynomial

time complexity, which motivates us to utilize these DBGs for designing interlocking

assemblies. In Section 4.2, our computational framework starts with the full input

model, then iteratively extracts successive parts for disassembly. We carefully design

the split process such that the interlocking property of each DBG is maintained at

every iteration. In Section 4.3 we show different types of assemblies generated with our

approach, compare with previous works, and highlight several application examples.

• Chapter 5 discusses the algorithm to design topological interlocking assemblies. A topo-

logical interlocking (TI) assembly is an ensemble of convex blocks, arranged in a regular

topology, to approximate a freeform surface. The internal blocks of TI assemblies are

immobilized by a fixed periphery to obtain tilting stability. Section 5.2 introduces a

parametric model for TI assemblies that facilitates a constructive approach for design

exploration. Section 5.3 presents a gradient-based optimization to improve the struc-

tural stability of an assembly with respect to the measure. In Section 5.4 we show and

discuss a variety of TI assemblies designed by our approach.

• Chapter 6 makes use of the cone joints described in Chapter 3 to design assemblies for

both structural stability and assemblability. Unlike the single-direction joints (Chapter 4)

mainly for stability and the planar joints (Chapter 5) mainly for assemblability, the cone

joints can interpolate between the two extremes to have a balanced trade-off between

our two design objectives. Section 6.2 discusses the method of modeling the 2D/3D

cone joints in a parametric way. Each part geometry is constructed by combining the

cone joints with non-contact features. The motion-based representation explained in

Chapter 3 naturally becomes the most suitable abstraction for measuring the structural

stability of assemblies with cone joints. Section 6.3 conducts the two-stage optimization

approach on this motion-based representation to construct the geometry of cone joints

such that the resulting assemblies can satisfy our two design goals. In Section 6.4,

we show various 2D and 3D assemblies with cone joints designed by our technique,

compare with previous works and highlight several application examples.

• Finally, Chapter 7 summarizes the main contributions of this thesis and includes a

discussion of future work.

8

2 Related Works

2.1 Computational Analysis of Assemblies

Computational analysis of assemblies evaluates different aspects of assemblies with given

geometry, including joining parts of an assembly (Section 2.1.1), planning of the assembly

process (Section 2.1.2), and structural stability of the whole assembly (Section 2.1.3)

2.1.1 Joining Parts

To form an assembly that can be used in practice, component parts need to be joined together

to restrict relative movements among the parts. This (potentially additional) geometry or

material used to connect parts defines the joining method, or simply the joint.

Joint classification. Joints can be classified as permanent joints and non-permanent joints.

Typical permanent joints include adhesive material (e.g., glue, mortar) and permanent me-

chanical fasteners (e.g., rivets). Although assemblies connected with permanent joints can

be structurally very stable, a significant drawback is that the assembly cannot be disassem-

bled without potential damage to the parts. In contrast, non-permanent joints encourage

parts disassembly and reassembly, facilitating storage, transportation, maintenance, and

reconfiguration of assemblies.

Non-permanent joints can be classified as external joints and integral joints, depending on

whether the joint geometry is integrated on each individual part. Screws and pins are conven-

tionally used external joints. To satisfy specific needs on parts joining in digital fabrication,

customized external joints have been designed and used in practice [Magrisso et al., 2018].

These external joints are independent from the parts. Hence, they can be abstracted as

“conceptual parts” in the analysis of assemblies, e.g., assembly planning.

Integral joints are implicitly defined as the portion of each individual part that is in contact

with adjacent parts. The simplest integral joints would be planar contacts between neigh-

boring parts [Whiting et al., 2009, Wang et al., 2019]. More complex integral joints include

9

Chapter 2. Related Works

curved contacts between parts [Krishnamurthy et al., 2021] and conventional woodworking

joints [Fairham, 2013]; see Figure 2.1 for examples. Integral joints can significantly simplify

the assembly process by assisting parts alignment and reducing the total number of assembly

steps (i.e., no external fasteners need to be applied). Integral joints can also add to an assem-

bly’s structural durability (e.g., woodworking joints in architecture) and visual appeal (e.g.,

decorative joints in furniture [Yao et al., 2017a]). Due to this reason, integral joints are more

and more widely used in digital fabrication of assemblies [Zheng et al., 2017, Larsson et al.,

2020].

Joint analysis identifies contacts between each pair of parts in an assembly by computing

the minimum distance between them and checking if this minimum distance is less than a

given threshold (very small positive number). Figure 2.1 highlights part contacts as purple

lines or curves. Based on the identified part contacts, joint analysis can obtain the following

information of an assembly:

• Parts connectivity. Two parts are connected if they have at least one contact. All contacts

between the two parts define joints that connect the two parts. A parts-graph [Fu et al.,

2015] is typically used to represent parts connectivity in an assembly, where each node

represents a part and each edge represents joints connecting the two associated parts.

The dual of a parts-graph is a joints-graph. See Figure 2.2.

• Parts mobility. The contacts between two parts enforce constraints on their relative

movement as collisions have to be avoided when moving one part relative to the other.

These contact constraints typically can be formulated as a linear system [Wilson and

Matsui, 1992], whose solution space corresponds to the infinitesimal motion space of

one part relative to the other. See Figure 2.1 for examples, in which only translational

motion is considered.

• Joints strength. Conceptually, arbitrarily small contacts or thin joints can constrain the

relative movement between two rigid parts. However, in practice such joints should

be avoided to reduce the risk of structural failure. To detect such issues, finite element

methods can be used to analyze joint strength under external loads [Yao et al., 2017b].

Figure 2.1 – Schematic of three kinds of integral joints with corresponding translational motion
space of the green part illustrated on top. (a) Planar contact joint; (b) curved contact joint;
and (c) mortise and tenon joint.

10

2.1. Computational Analysis of Assemblies

Figure 2.2 – (a) A 5-part assembly, where part contacts (i.e., joints) are highlighted in purple;
(b) parts-graph; and (c) joints-graph.

Figure 2.3 – Examples of disassembly plans, where the orange part is fixed as a reference.
(a) A three-handed disassembly plan: the green and cyan parts translate along different
directions simultaneously. (b) A non-monotone disassembly plan: intermediate placement of
the green part is necessary.(c) A non-linear disassembly plan: the first disassembly operation
is to translate the green and cyan parts together along the same direction. (d) A sequential,
monotone, and linear disassembly plan.

11

Chapter 2. Related Works

2.1.2 Assembly Planning

Widely used in automated manufacturing, robotics, and architecture, assembly planning is

the process of creating detailed instructions to combine separate parts into the final structure.

The goal of assembly planning is to find a sequence of operations to assemble the parts

(assembly sequencing [Jiménez, 2013]), determine the motions that bring each part to its target

pose (assembly path planning [Ghandi and Masehian, 2015]), and propose the utilization of

additional resources such as supports and tools to assist the assembly process.

A closely related problem is disassembly planning, which creates a plan for disassembling

component parts from an installed assembly. An important strategy of assembly planning is

assembly-by-disassembly, where an assembly plan is obtained by disassembling an installed

product into its component parts and then reversing the order and path of disassembly. This

strategy is feasible as there is a bijection between assembly and disassembly sequences and

paths when only geometric constraints are concerned and all parts are rigid [Halperin et al.,

2000]. The advantage of this strategy is that it can drastically reduce the size of the solution

space (i.e., valid assembly plans), since parts in an assembled state have far more precedence

and motion constraints than in a disassembled state. However, when physical constraints

are taken into consideration, e.g., supports of incomplete assemblies [Deuss et al., 2014], this

strategy is not directly applicable to compute assembly plans.

The complexity of assembly planning is measured generally in terms of the number of parts

and their shape complexity. However, this measure alone does not express how difficult it is to

obtain a valid assembly plan. Other involved features are:

• The number of hands: the maximum number of moving subassemblies with respect to

one another in any assembly operation.

• Monotonicity: whether or not operations of intermediate placement of subassemblies

are required.

• Linearity: whether all assembly operations involve the insertion of a single part in the

rest of the assembly.

Figure 2.3 shows disassembly plans to illustrate the above features. The simplest (dis)assembly

plans are sequential (two-handed), monotone, and linear. Due to the simplicity, they are the

most widely used (dis)assembly plans in computational design of assemblies.

Assembly planning problems can be broadly classified into two classes. The first aims to find

a valid assembly plan to ensure assemblability of designed assemblies such as 3D puzzles.

The second is to find a desired assembly plan to satisfy some objectives on the assembly

process such as reducing usage of additional resources (e.g., formwork for construction of

architecture). This thesis reviews existing works in the graphics community to address these

problems. Readers are referred to [Ghandi and Masehian, 2015] for a more comprehensive

survey on (dis)assembly planning problems and approaches.

12

2.1. Computational Analysis of Assemblies

Search for a valid assembly plan. Given a 3D assembly, there could exist a number of valid

plans to assemble the parts. Here, we consider only geometric constraints, i.e., an assembly

plan is defined as valid if there is no collision when assembling each part. As mentioned

above, assemblies can be naturally represented as graphs. Graph data structures can also

guide us in finding valid disassembly plans by maintaining a dynamic graph corresponding to

the remaining assembly as parts are successively removed.

Parts-graph based approach. In this approach, a valid assembly plan is computed by using

the assembly-by-disassembly strategy. The idea is to identify removable parts guided by

the parts-graph (see Figure 2.2(b)) since a part with fewer neighbors in the parts-graph has

higher chance to be removable. First, we compute mobility for each part in the parts-graph,

e.g., using the joint analysis approach in Section 2.1. Next, we choose one movable part

(usually with few neighbors in the parts-graph), remove it from the assem-

bly using the computed motion, and update the parts-graph accordingly.

Since the first step only ensures collision-free infinitesimal rigid motion

for the movable part, we still need to check collision with the remaining

parts when taking out the movable part in the second step; e.g., the cyan

part in the inset can be removed along the translational direction yet

the green part has to translate one more step to avoid collision with the

orange part. We iterate the above two steps until there is only one part

remaining in the parts-graph.

The above approach assumes sequential, monotone, and linear disassembly plans. Thus,

finding a valid disassembly plan is a sufficient but not necessary condition of assemblability.

To support non-linear disassembly plans, the approach should check mobility not just for

each individual part but also for each subassembly. However, this extension will increase

complexity of the approach from linear to exponential in the number of parts.

Blocking graph based approach. Finding an assembly plan requires identifying movable parts

and part groups at each intermediate assembly state, often leading to a combinatorial search

problem. To solve this task more efficiently, Wilson [Wilson, 1992] invented a Directional Block-

ing Graph and a Non-Directional Blocking Graph to represent blocking relations among parts

in an assembly. The detailed description of Directional Blocking Graph and Non-Directional

Blocking Graph is discussed in Section 3.5.2.

Search for a desired assembly plan. Assembly planning can be formulated as an optimiza-

tion to find a desired assembly plan. Typical optimization objectives include minimizing

assembly complexity (e.g., short assembly path, simple assembly motion), minimizing us-

age of additional resources (e.g., supports to maintain stability of incomplete architectural

structures [Deuss et al., 2014]), and maximizing parts visibility for creating visual assembly

instructions [Agrawala et al., 2003, Heiser et al., 2004]. Please refer to [Jones and Wilson, 1996]

for an exhaustive list of objectives on searching assembly plans.

13

Chapter 2. Related Works

Figure 2.4 – Structurally stable assemblies: (a) an assembly in equilibrium; (b) an interlocking
assembly, where the green part is the key; and (c) an assembly under tilt analysis, in which the
assembly’s stability is measured using the critical tilt angle φ.

To find an optimal assembly plan, we need to enumerate and evaluate all possible assembly

plans based on a selected objective. Although this is possible for assemblies with a small

amount of parts, e.g., by using AND/OR tree data structure [de Mello and Sanderson, 1990],

the complexity increases exponentially with the number of parts. Due to this reason, various

practical algorithms were developed to find sub-optimal solutions, e.g., using a greedy algo-

rithm [Deuss et al., 2014, Mellado et al., 2014], a heuristic search [Agrawala et al., 2003], or an

adaptive sampling followed by user editing [Kerbl et al., 2015].

The above existing works mainly focus on sequential and monotone assembly plans. Although

these plans are relatively easy to execute, it is an open problem to study more complex

assembly plans. One good example is a recent work [Zhang et al., 2020] that finds non-

coherent assembly plans to solve two-part disentanglement puzzles, where a part that is

inserted may not touch the other previously placed part. Other complex assembly plans

include non-sequential plans (see Figure 2.3(a)) to stabilize parts in an assembly by making

them harder to be taken out, and non-monotone plans [Masehian and Ghandi, 2020] (see

Figure 2.3(b)) to resolve cases where already-assembled parts impede the movements of

subsequent parts.

2.1.3 Structural Stability

An assembly with rigid parts is structurally stable if it can preserve its form under external

forces without collapse. Instability of assemblies can lead to catastrophic failure, e.g., in

architecture, and thus must be analyzed and accounted for in the design process. Assemblies

joined by permanent joints are usually very stable; e.g., certain glue is stronger than the part

material. Such assemblies can then be analysed as a monolithic object using the finite element

method. This thesis focuses on stability analysis of assemblies joined by non-permanent

joints, which have intriguing property of encouraging disassembly. To analyze stability of

assemblies, two critical conditions, static equilibrium and global interlocking, are defined

14

2.1. Computational Analysis of Assemblies

mathematically and identified computationally; see Figure 2.4(a&b). We review these two

stability conditions below.

Static analysis. To identify whether an assembly is in equilibrium state under external forces

or loads, there are two classes of static analysis methods: linear elasticity analysis using finite

element method (FEM) and rigid block equilibrium (RBE) method. Shin et al. [Shin et al., 2016]

proved that a small modification to the linear elastic FEM makes it equivalent to the RBE

method to get the same answer to the same static analysis problem.

Given the geometry of a 3D assembly, a static equilibrium state means that there exists a

network of interaction forces between the parts that can balance the external forces acting on

each part; i.e., net force and net torque for each part equal zero [Whiting et al., 2009]. The RBE

method combines equilibrium constraints for each part to build up a large linear system. An

assembly is considered in static equilibrium if a solution of the linear system is found. Please

refer to Section 3.2 for more details.

One limitation of the above method [Whiting et al., 2009] is its inability to accurately predict

when parts will slide against one another, i.e., sliding failures [Yao et al., 2017a]; see the inset

for a 2D example. A set of interface forces (see the dark blue arrows) can be found by [Whiting

et al., 2009] to balance the gravity of the green part. However, the correct solution is that

the green part should always fall under gravity with no resis-

tance, no matter what coefficient of friction is used in this ex-

ample. To address this limitation, Yao et al. [Yao et al., 2017a]

proposed a variational static analysis method that amends the

above method [Whiting et al., 2009] with a pair of variational

principles from classical mechanics to exclude physically unre-

alizable forces.

The stability of masonry structures under lateral acceleration

also can be analyzed based on static equilibrium [Ochsendorf, 2002, Zessin, 2012], which can

be simulated with a tilt analysis that rotates the ground plane of the structure to apply both a

horizontal and vertical acceleration to the structure; see Figure 2.4(c). For a given rotation axis,

the critical tilt angle φ gives the minimum value of lateral acceleration to cause the structure

to collapse, providing a measure of the structure’s lateral stability [Shin et al., 2016, Yao et al.,

2017a].

Interlocking test. In an interlocking assembly (with at least three parts), there is only one

movable part, called the key, while all other parts as well as any subset of parts are immobilized

relative to one another by their geometric arrangement [Song et al., 2012]; see Figure 2.4(b)

for 2D examples. Starting from the key, the assembly can be gradually disassembled into

individual parts by following a specific order. An assembly is called recursive interlocking if it

has a unique (dis)assembly order, meaning that the assembly remains interlocking after the

sequential removal of parts [Song et al., 2012]. An assembly is called deadlocking if there is no

part that can be taken out from the assembly without collision (i.e., non-disassemblable). The

15

Chapter 2. Related Works

test for global interlocking essentially tries to identify if there exists a motion configuration that

allows taking out any part(s) except the key from the assembly without collision. An assembly

is considered to be interlocking if such a motion configuration does not exist. To test whether

a given assembly is global interlocking by definition requires examining the immobilization

of every subset of parts, which has exponential time complexity with respect to the number

of parts. In this thesis, we introduce two polynomial-time methods that can efficiently test

global interlocking. Please refer to Section 3.5 for more details.

2.2 Computational design of structurally stable assemblies

Computational design of assemblies generates different types of assemblies, including self-

supporting assemblies (Section 2.2.1), global interlocking assemblies (Section 2.2.2), and

topological interlocking assemblies (Section 2.2.3)

Figure 2.5 – Designing assemblies in equilibrium: (a) masonry building [Whiting et al., 2009],
and (b) equilibrium puzzle [Frick et al., 2015]

2.2.1 Assemblies in Equilibrium

An assembly is in static equilibrium if interaction forces between the parts can balance ex-

ternal forces acting on the assembly, mainly the gravity. These assemblies are common in

architecture, furniture, and puzzles; see Figure 2.5. However, designing them is a non-trivial

task as an equilibrium state depends on not only the parts (with integral joints) geometry, but

also their geometric arrangement as well as the material property (i.e., friction coefficient).

The RBE method introduced in [Whiting et al., 2009] aims to test whether an assembly is

in equilibrium, and to provide a quantitative measure about how unstable the structure is.

Hence, a general way to design assemblies in equilibrium is using the RBE method to guide

the search of a feasible configuration of parts geometry and arrangement. The other class of

methods is more specific and focuses on designing free-form architectural assemblies like

pavilion and dome, which relies on designing a self-supporting surface.

16

2.2. Computational design of structurally stable assemblies

Design guided by the RBE method. The rigid body equilibrium (RBE) method described in

Section 3.2 can not only test if a given assembly is in equilibrium under known external forces,

but also provide a measure of the assembly’s infeasibility to be in equilibrium when it fails the

test. Whiting et al. [Whiting et al., 2009] integrated the RBE method with procedural modeling

to design masonry structures that are in equilibrium under gravity, and they used a heuristic

algorithm to search the parameter space such that the infeasibility measure can be decreased

to zero; see Figure 2.5(a). Later, Whiting et al. [Whiting et al., 2012] extended this approach by

using a gradient descent algorithm to explore the parameter space, in which a closed-form of

the infeasibility measure’s derivative with respect to the parts geometry variation is devised.

Frick et al. [Frick et al., 2015] developed an interactive tool to design assemblies in equilibrium

by decomposing a given 3D shape into a set of parts with planar cuts; see Figure 2.5(b). The

tool keeps visualizing required tension forces computed by the RBE method and allows users

to edit the planar cuts interactively until all the tension forces are removed.

Design based on self-supporting surfaces. According to the safety theorem [Heyman, 1966],

an assembly is self-supporting (i.e., equilibrium under grav-

ity) if there exists a thrust surface contained within the struc-

ture that forms a compressive membrane resisting the load

applied to the assembly. Once the thrust surface, also called

self-supporting surface, is ready, a self-supporting assembly can

be easily generated by thickening and partitioning the surface

into parts. Thrust Network Analysis (TNA) developed by Block

and Ochsendorf [Block and Ochsendorf, 2007] is a well-known

graphical approach for form exploration of self-supporting sur-

faces. Inspired by this work, the graphics community has pro-

posed a number of geometry processing methods to approximate free-form surfaces with

self-supporting ones; see [Ma et al., 2019] for an overview of these methods. In particular,

Panozzo et al. [Panozzo et al., 2013] not just generated self-supporting surfaces, but also

fabricated corresponding self-supporting assemblies to verify the stability. The inset figure

shows an example target surface and the resulting self-supporting assembly. Note that a local

geometric feature in the target surface (highlighted by a red arrow) is deformed to make the

surface self-supporting.

In practice, equilibrium under gravity might be insufficient since an assembly could be ex-

posed to different forces (e.g., live loads). This motivates the stability measure based on the

tilt analysis described in Section 2.1.3, where an assembly can be in equilibrium for a cone

of gravity directions, as well as the work of optimizing free-form architectural assemblies to

maximize the stability.

17

Chapter 2. Related Works

2.2.2 Interlocking Assemblies

Compared with assemblies in equilibrium, interlocking assemblies are more structurally sta-

ble under unpredictable external forces yet enforce higher complexity on the parts geometry

and their joining. The main challenge of designing interlocking assemblies is to ensure two

conflicting properties simultaneously: interlocking and disassemblable. This is because inter-

locking requires strict joining to restrict relative movement among parts yet disassemblability

demands at least one collision-free plan to separate the parts (i.e., not deadlocking).

A straightforward way to design interlocking assemblies is to exhaustive search all possible

configurations and perform the interlocking test. This method has been tried by Cutler [Cutler,

1978] in the late 1970s to discover new six-piece interlocking configurations, which took

almost three years to search a cubical volume of less than 43 voxels due to the combinatorial

complexity. Later, Xin et al. [Xin et al., 2011] developed a retargeting approach to create 3D

interlocking puzzles by replicating and connecting multiple instances of an existing six-piece

interlocking burr structure within a given target shape. Until recently, a few computational

methods have been developed to design new interlocking assemblies, making it possible to

increase the number of parts and to enrich geometric forms of assemblies significantly; see

Figure 2.6. The design problem in these works is formulated as, shape decomposition or joint

planning, according to the given input.

Shape decomposition. When the input is a target shape, computational design of interlock-

ing assemblies can be formulated as a shape decomposition problem. A typical approach to

address this problem is to construct Local Interlocking Groups (LIGs), which are a subset of

connected parts that are locked by a specific key in the group, and to enforce dependency

among these LIGs. The advantage of this approach is that the resulting assemblies are guar-

anteed to be globally interlocking. Yet, the limitation is that the explored search space is

restricted to a small subset of all possible interlocking configurations. Song et al. [Song et al.,

2012] first proposed this approach and used it to construct 3D interlocking puzzles. Given a

voxelized 3D shape, their method iteratively extracts pieces while enforcing a local interlocking

condition among every three consecutive pieces; see Figure 2.6(a). This method was later

extended to handle smooth non-voxelized shapes for 3D printing [Song et al., 2015] and to

design 3D steady dissection puzzles [Tang et al., 2019].

Joint planning. When the input is a set of initial parts without joints, designing interlocking

assemblies can be formulated as a joint planning problem. The goal is to plan and construct

a set of predefined joints (e.g., mortise and tenon joint in Figure 2.1(c)) on the initial parts

to make them interlocking. Fu et al. [Fu et al., 2015] focused on plate structures such as

furniture that have been initially partitioned into parts, and computed an interlocking joint

configuration following the LIG-based approach, where each LIG has only 3 or 4 parts and

thus the joint configuration in each LIG can be searched exhaustively; see Figure 2.6(b). This

method has been extended to interlock 2D laser-cut parts into a convex polyhedron [Song

et al., 2016] and to design reconfigurable furniture with multi-key interlocking [Song et al.,

18

2.2. Computational design of structurally stable assemblies

Figure 2.6 – Designing interlocking assemblies: (a) interlocking puzzle [Song et al., 2012], (b)
furniture [Fu et al., 2015], and (c) object shell assembly for 3D printing [Yao et al., 2017b].

Figure 2.7 – Building planar assemblies with tilable blocks: (a) the Abeille flat vault; (b) a
topological interlocking assembly with cubes [Dyskin et al., 2003a], where the boundary is
highlighted in black; and (c) an assembly with bi-axial weaving patterns built with a single
tileable block (in orange) [Krishnamurthy et al., 2021]

2017]. Yao et al. [Yao et al., 2017b] designed interlocking shell assemblies for 3D printing

by using a randomized search with pruning to generate candidate joint configurations and

verifying their global interlocking by using physically based simulation; see Figure 2.6(c).

Global interlocking might impose too strict constraints on the assembly’s geometry, as real

assemblies usually do not have to experience arbitrary external forces. Hence, some research

works relax the constraint of global interlocking, e.g., by allowing multiple keys in the final as-

sembly [Song et al., 2017] or allowing parts to be immobilized by using geometric arrangement

together with friction [Tang et al., 2019].

2.2.3 Topological Interlocking Assemblies

Constructing structurally stable assemblies with tileable blocks is intriguing in engineering

and architecture, and has recently attracted great interest in the graphics community. At

the end of 17th century, Joseph Abeille discovered that identical tetrahedrons truncated at

two opposite edges can be arranged to form a planar stable assembly, known as Abeille flat

vaults; see Figure 2.7(a). Since then, several variants of these structures have been invented

and studied under the name of topological interlocking (TI) assemblies [Dyskin et al., 2003a].

19

Chapter 2. Related Works

Physical experiments conducted on TI assemblies have shown that they possess interesting

and unusual mechanical properties such as high strength and toughness [Mirkhalaf et al.,

2018] and damage confinement [Siegmund et al., 2016].

TI assemblies typically consist of a single tileable element that can be repeatedly arranged in

such a way that the whole structure can be held together by a fixed boundary, while elements

are kept in place by mutual blocking. Kanel-Belov et al. [Kanel-Belov et al., 2010] proposed a

constructive approach to generate TI assemblies based on a tiling of the middle plane, where

the single tileable block could be one of the five platonic solids; see Figure 2.7(b) for an example.

Weizmann et al. [Weizmann et al., 2017] extended this approach and explored different 2D

tessellations (regular, semi-regular and non-regular tessellations) to discover new TI blocks for

building floors. Rather than relying on 2D tessellations, other researchers [Krishnamurthy et al.,

2021,Akleman et al., 2020] made a connection between planar assemblies and bi-axial weaving

patterns. They generated tileable blocks (with curved faces) by Voronoi partitioning of space

using curve segments whose arrangement follows the weaving patterns; see Figure 2.7(c).

20

3 Kinematic-Based Stability Analysis

Several computational methods for testing various types of structural stability of assemblies

with rigid parts are discussed in this chapter. Section 3.1 defines the notations used in the

contact computation that are prerequisites for all tests. Section 3.2 reviews the previous

force-based equilibrium method and Section 3.3 presents our new kinematic-based equilib-

rium method. The joint motion cones and motion-based representation which are used to

accelerate our shape optimization algorithm in Chapter 6 are discussed in Section 3.4. We

propose two distinct globally interlocking tests and establish a connection between globally

interlocking and static equilibrium in Section 3.5. Lastly, Section 3.6 presents the lateral

stability measurement and depicts a full picture of the stability spectrum. We ignore friction

in all of our tests, which makes our test more conservative and independent from material

selection.

3.1 Contact Discretization

We assume that our assembly P has N component parts and M contacts. This thesis mainly

covers three contact types: the planar, piecewise planar, and curved contacts. To test structural

stability numerically, we sample points on the continuous contact surface Cl between Pi and

Figure 3.1 – Contact sampling methods for (a) the planar contact, (b) the piecewise planar
contact and (c) the curved contact.

21

Chapter 3. Kinematic-Based Stability Analysis

P j . The sampled points are named {c k
l } where 1 ≤ k ≤ vl , and nk

l is the normal of the contact

surface at the point c k
l . We enforce that nk

l always points towards the part with the larger

index. To simplify notation, we assume i < j and thus nk
l always points towards P j . We apply

different sampling strategies for different contact types to obtain faithful analyzing results.

• Planar contact: The contact surface is basically a planar polygon. We set the vertices of

the polygon to be the sampled contact points. The contact normals are all equal to the

face normal of the polygon; see Figure 3.1(a).

• Piecewise planar contact: We decompose the contact surface into a set of planar contacts

and sample each planar contact using the above mentioned method. Figure 3.1(b).

• Curved contact: We approximate the curved contact surface as a piecewise planar

surface. In practice, our method simply sample points uniformly on the contact to

obtain the contact points and normals. To obtain a good approximation, we typically

require 50 (200) sample points per 2D (3D) joint; see Figure 3.1(c).

Note that the number of sample points per curved contact is much higher than the number of

vertices (typically 4) per planar contact, increasing the computational cost significantly for

our numerical tests.

3.2 Force-based Equilibrium Method

Figure 3.2 – Supposed that two parts Pi and P j have a planar contact Cl , c k
l is a sampled

contact point and nk
l is the contact normal at c k

l . (a) Pi and P j should not collide with each
other at the contact during their movement, e.g., translation t i and rotation ωi of Pi . (b)
Each block Pi is in equilibrium if there exists a system of interaction forces (e.g., −nk

l f k
l) that

balance the external force g i and torque τi acting on it.

Test of equilibrium Let g i be the external force and τi the torque acting on part Pi of an

assembly P ; see Figure 3.2(b). Noted that in the original paper [Whiting et al., 2009] the rotation

center of part Pi is chosen to be the Pi ’s center of gravity since the torque τi = 0 when gravity

22

3.2. Force-based Equilibrium Method

is the only external force. To have a unified definition with our kinematic-based equilibrium

method, we choose the world origin O to be the rotation centers of all parts. We show that this

definition leads to a symmetric formulation for our kinematic-based equilibrium method in

Section 3.3. Because of our new rotation center, the gravity G can generals torque τi = R i ×G

for part Pi where R i is the Pi ’s center of mass.

Let’s consider the general case where the external force w i = [g T
i ,τT

i]T acting on Pi . Given all

the external forces and torques w = [w T
1 , . . . , w T

n]T , The goal of the force-based equilibrium

method [Whiting et al., 2009] is to find a network of interaction forces between the parts that

can balance the external forces and torques acting on each part. In Section 3.1, the contact

Cl is represented by a set of contact points and normals {(c k
l ,nk

l)}. The interaction forces

therefore are discretized as a finite number of forces at each contact points c k
l . Since we

assume rigid parts and ignore friction, interaction forces only include compression forces

along the contact normal direction; see Figure 3.2-b.

For a vertex c k
l in Cl between Pi and P j (i < j), we denote the contact force size as f k

l (f k
l ≥ 0).

Hence, the contact force applied on Pi is − f k
l nk

l , and consequently f k
l nk

l on P j . Static

equilibrium conditions require that the net force and the net torque for each block Pi are

equal to zero:
M∑

l=1

vl∑
k=1

−nk
l f k

l = −g i (3.1)

M∑
l=1

vl∑
k=1

−(c k
l ×nk

l) · f k
l = −τi (3.2)

Combining the equilibrium constraints in Equation 3.1 and 3.2 for each block gives a linear

system of equations:

Aeq f =−w s.t. f ≥ 0 (3.3)

where f represents the unknown interaction forces in the assembly (i.e., contact force sizes

at each vertex of each contact Cl), Aeq is the matrix of coefficients for the equilibrium equa-

tions [Whiting et al., 2009], and w represents the external forces and torques acting on the

system. The system has a solution meaning the assembly P is stable against the external

forces w . Commonly, finding a feasible solution for a linear system is formulated as a convex

optimization [Whiting et al., 2009] that inspires the measure of infeasibility.

Measure of infeasibility When an assembly is not in equilibrium, Whiting et al. [Whiting et al.,

2009] proposed a method to measure its distance to a feasible solution (i.e., an equilibrium

state) by introducing tension forces that act as “glue" at part contact interfaces to hold the

23

Chapter 3. Kinematic-Based Stability Analysis

Figure 3.3 – Kinematic-based equilibrium method for static analysis. In these examples,
external forces are gravity (in orange) and ground supporting forces only, and friction is
ignored. (a) The assembly is in equilibrium as we cannot find any parts motion that satisfies
Equations 3.9 and 3.10. (b&c) The two assemblies are not in equilibrium, where a parts motion
solution that satisfies Equations 3.9 and 3.10 is shown as a dashed boundary and a black arrow.

assembly together and penalizing these tension forces:

min
f +, f −

1

2
f − · f −

s.t. Aeq (f +− f −) =−w ,

f +, f − ≥ 0

(3.4)

where f + is the positive parts (i.e., compression forces) of the contact forces f , and f − is

the negative parts (i.e., tension forces) of f . The quadratic programming in Equation 3.4

enables to measure infeasibility and to test equilibrium in a unified way, since an assembly

is in equilibrium if the infeasibility measure equals zero. Existing algorithms to solve the

quadratic programming typically have a polynomial complexity with respect to the number of

its variables (i.e., M).

Remark on assemblies with curved contacts As mentioned in Section 3.1, for assemblies

with curved contacts, we approximate its contacts with in conscience planar faces. If there

exists a solution f for Equation 3.3, the assembly is considered as in equilibrium. However,

non-existence of such a solution does not mean that the assembly is not in equilibrium since

our interaction forces are only samples of the actual forces.

3.3 Kinematic-based Equilibrium Method

As an alternative to the force-based approach, we propose a motion-based equilibrium

method, inspired by static-kinematic duality.

Test of equilibrium Suppose each part Pi can translate and rotate 1 freely in 3D space. We

denote the linear velocity of Pi as t i , the angular velocity of Pi asωi , and the local motion of

Pi as a 6D spatial vector v̂ i = [t T
i ,ωT

i]T ; see Figure 3.2-a. For an arbitrary contact point c k
l on

1The center of rotation of part Pi is chosen to be the world origin O

24

3.3. Kinematic-based Equilibrium Method

the contact Cl between Pi and P j , v̂ i and v̂ j will cause c k
l to undergo an infinitesimal motion

together with Pi and P j respectively:

v c
i = t i +ωi ×c k

l (3.5)

v c
j = t j +ω j ×c k

l (3.6)

During the parts movement, the constraint is to avoid collision at their contacts. Since our

interlocking test considers only infinitesimal motions of each block, we assume that the

contact normal nk
l remain fixed during the test. Hence, the collision-free constraint between

Pi and P j at contact point c k
l can be modeled as:

(v c
j −v c

i) ·nk
l ≥ 0 (3.7)

By substituting Equations 3.5&3.6 in Equation 3.7, we obtain:

[
−(nk

l)T −(c k
l ×nk

l)T (nk
l)T (c k

l ×nk
l)T

][
v̂ i

v̂ j

]
≥ 0 (3.8)

Equation 3.8 describes the constraint of a point-plane contact between Pi and P j . By stacking

the point-plane constraint in Equation 3.8 for each vertex of each contact in the assembly P ,

we obtain a system of linear inequalities:

B in · v̂ ≥ 0 (3.9)

where v̂ is the generalized velocity of assembly P , and B in is the matrix of coefficients for

the non-penetration constraints among the blocks in the system. The parts that touch the

ground are fixed by setting their velocities to be zero. Note that the coefficient matrix Bin in

Equation 3.9 and Aeq in Equation 3.3 are transposed to each other, according to the well-known

close relation between velocity kinematics and statics [Davidson and Hunt, 2004].

When the inequality system in Equation 3.9 does not have any non-zero solution, the assembly

is considered as deadlocking, meaning no part can move in the assembly. Otherwise, parts

are movable. If the part movement is driven by the given external forces (e.g., gravity), the

assembly should not be in equilibrium; see Figure 3.3(b&c) for two examples. Inspired by this

observation, we add an additional constraint for the equilibrium test:

w T · v̂ > 0 (3.10)

where w is the generalized external forces defined in Equation 3.3, and w T · v̂ can be under-

stood as the total power created by the external forces w for a given motion configuration

v̂ .

For an assembly to be in equilibrium, there should not exist any solution v̂ that satisfies the

25

Chapter 3. Kinematic-Based Stability Analysis

two linear constraints described in Equations 3.9 and 3.10; see Figure 3.3(a) for an example.

This statement can be proved by showing that it is actually equivalent to the force-based

equilibrium test (Equations 3.3) using Farkas’ lemma [Farkas, 1902].

Measure of infeasibility Similar to our test of equilibrium, we propose a measure of infeasibil-

ity based on the parts motion v̂ :

max
v̂

w T v̂ − 1

2
v̂ T v̂

s.t. B int v̂ ≥ 0

(3.11)

where the second term in the objective function is a regularization to prevent the energy from

becoming infinity. The assembly should be in equilibrium when the infeasibility measure

equals zero.

To understand the relation between our measure (Equation 3.11) and that of [Whiting et al.,

2009] (Equation 3.4), we apply the strong duality theorem [Boyd and Vandenberghe, 2004] to

our measure, and obtain the following formulation:

min
f , s

1

2
sT s

s.t. Aeq f + s =−w ,

f ≥ 0

(3.12)

where s is additional forces/torques required to make each part in balance; see the supple-

mentary material for a proof (Appendix C). This dual formulation of our measure can be

understood as an alternative of the measure in [Whiting et al., 2009].

3.4 Motion-Based Representation

In this section, we reformulated the non-penetration constraints (Equation 3.9) as a motion-

based representation used by shape optimization framework discussed in Chapter 6. The

abstract representation is a part graph enhanced by the motion cones. Section 3.4.1 describes

the way of analyzing the motion space of contacts, and Section 3.4.2 illustrates the construction

of the motion-based graph.

3.4.1 Motion Space Analysis of Contact

Assuming part Pi is fixed, our motion space analysis of contact Cl considers all possible

infinitesimal rigid motion to take out P j from Pi without collision on contact Cl . This motion

space of part P j , denoted as V (C j) (abbreviated as V in the following equations), abstracts the

ability of contact Cl to restrict relative part motion.

26

3.4. Motion-Based Representation

Figure 3.4 – Motion space analysis of (a) a contact Cl in a local coordinate frame. (b) Gen-
eralized normal curve N̂ (in black) and its minimum convex cone envelope (in light cyan).
(c) Motion cone V . (d) Sampling the curved contact with five points. (e) Minimum convex
cone envelope (dark cyan) of the sampled generalized normals is contained in the original
minimum cone envelope. (f) Motion cone allowed by the sampled points (pyramid with four
colored faces) contains the original motion cone, where the color of each face matches that of
the corresponding sampled contact point and generalized normal. (g) Conic sections of the
two cone envelopes in (e) by cut plane y = 1. (h) Conic sections of the two motion cones in (f)
by cut plane y = 1.

We express the infinitesimal rigid motion of part P j using the generalized velocity v̂ j , which is

composed of both linear velocity t j and angular velocityω j . For any contact point c on the

curved contact of Cl and its contact normal as n; see Figure 3.4(a). The motion space V can

be obtained by solving a linear inequality system that represents non-collision constraints for

every point on the contact of Cl [Wilson and Matsui, 1992]

V = {v̂ | n̂ · v̂ ≥ 0, ∀n̂ ∈ N̂ }

n̂ =
[

n

c ×n

]
(3.13)

27

Chapter 3. Kinematic-Based Stability Analysis

where n̂ is the generalized normal of contact point c with normal n, and N̂ is the generalized

normal space of contact Cl .

For a smooth 2D contact, the generalized normal space N̂ is a curve in 3D space (2 dimensions

for normal n and 1 dimension for c ×n); and the motion space V is a cone in 3D space (2

dimensions for translation and 1 dimension for rotation); see Figure 3.4(b&c). We make a

connection between the generalized normal space N̂ of contact Cl and the motion space V

of part P j based on the dual cone concept in convexity theory, and formulate the following

theorems and lemma; please refer to Section 2.6.1 in [Boyd and Vandenberghe, 2004] for a

derivation.

Theorem 1 (Dual Cone) The dual cone C∗ of a set C in Rn , defined as

C∗ = {
y ∈ Rn : y · x ≥ 0, ∀x ∈C

}
,

is always convex, even when the original set C is not.

According to Theorem 1 and Equation 3.13, the motion space V can be viewed as the dual

cone of the generalized normal space N̂ , i.e., V = N̂
∗

. Hence, the motion space V must be

convex no matter whether the generalized normal space N̂ is convex or not; see Figure 3.4(c).

Replacing the generalized normal space N̂ with its minimum convex cone envelope (see the

cyan cone in Figure 3.4(b)) will not affect its dual cone. This minimum convex cone envelope

of N̂ is called the generalized normal cone, or simply cone(N̂).

A motion cone can be exactly defined by a cut plane and a cross section from that cut (called the

conic section); see Figure 3.4(h). For a symmetric 2D contact like Figure 3.4(a), the cut plane is

simply chosen as y = 1. However, for general motion cones, it is critical to choose a proper

cut plane such that the conic section is finite; please refer to the supplementary material for

details (Appendix B). Similarly, the generalized normal cone cone(N̂) also can be represented

and visualized by a cut plane and the corresponding conic section; see Figure 3.4(b&g).

Theorem 2 (Sampling) If Ñ is a subset of space N̂ , the corresponding dual cone Ṽ of Ñ should

contain N̂
∗

or equivalently V :

Ñ ⊆ N̂ ⇒ V ⊆ Ṽ

Theorem 2 enables us to compute an approximation Ṽ of the motion space V numerically.

First, we sample the generalized normal space N̂ to obtain a finite subset Ñ ; see the five colored

points in Figure 3.4(d&e). Next, an approximated motion cone Ṽ is computed by intersecting

a finite number of half-spaces described by Equation 3.13; see the pyramid with four colored

planes in Figure 3.4(f). Note that the half-space corresponding to the dark blue point is not

shown since it does not contribute to the approximated motion cone Ṽ . Theorem 2 guarantees

that the approximated motion cone Ṽ must cover all possible motions in the original motion

28

3.4. Motion-Based Representation

Figure 3.5 – (a) The 3D joint motion cone of a 2D curved joint and (b) the motion-based
representation of a four-part assembly where the 3D cones at graph edges are the joint motion
cones.

cone V ; see Figure 3.4(f). In our experiments, we find that 50 (200) sample points per 2D (3D)

contact provide a good approximation of the motion cone V .

Lemma 1 If a motion cone V is contained in a given space V 0, it is equivalent to require that

cone(N̂) includes the dual cone of V 0:

V ⊆V 0 ⇔V ∗
0 ⊆ cone(N̂)

Lemma 1 can be used to generate joint geometry that have a bounded motion cone V 0.

For instance, if the motion cone V 0 is chosen to be a circular cone with an angle α (i.e.,

{(x , y) : ‖x‖ ≤ tan(α)y}), then its dual cone V ∗
0 is simply {(x , y) : ‖x‖ ≤ y

tanα }, which is also a

circular cone with an angle π
2 −α. Classic geometric processing algorithms can be applied to

find joint geometry whose generalized normal cone contains the dual circular cone V ∗
0 .

3.4.2 Motion Graph

We can reformulate the non-penetration constraints Equation 3.11 to a symmetric form.

[
−nT −(c ×n)T nT (c ×n)T

][
v̂ i

v̂ j

]
≥ 0 (3.14)

⇔
[

n

c ×n

]T

(v̂ j − v̂ i) ≥ 0 (3.15)

Collecting all inequalities for all the contact points c k
l (k = 1, · · · , vk), the inequality system is

equivalent to:

v̂ j − v̂ i ∈V (Cl) (3.16)

Hence, the infeasibility measure (Equation 3.11) can be reformulated as:

E(w , {V (Cl)}) = max
v̂ i

w T v̂ − 1

2
v̂ T v̂

s.t. v̂ j − v̂ i ∈V (Cl), for each Cl

(3.17)

29

Chapter 3. Kinematic-Based Stability Analysis

The part graph of an assembly is an undirected graph representing the connectivity between

parts. Each part Pi is a node and the contact Cl is an edge between node Pi and P j . Our

motion graph, which is a directed graph, regards the constraint (Equation 3.16) as an direct

edge from P j to Pi associated with the motion cone V (Cl); see Figure 3.5. In some assemblies,

the contacts between two parts could be more than one, and thus the edges between two

nodes could be more than one as well. To simplify our motion graph, we often use one direct

edge with the motion space Vi , j , which is the intersection of all motion spaces V (Cl) between

part Pi and P j , to replace the many edges between Pi and P j .

3.5 Kinematic-Based Interlocking Test

In a globally interlocking assembly, parts must follow specific orders to be assembled into the

target object. Once assembled, there is only one movable part, called the key, while all other

parts, as well as any subset of parts, are immobilized relative to one another [Song et al., 2012].

Assumed that the parts are sorted in an ascending way by their assembling orders, Pn refers to

the last part to be assembled, which is the key part.

To test whether a given assembly is globally interlocking by definition requires examining the

immobilization of every subset of parts, which has exponential time complexity with respect

to the number of parts. In this section, we will introduce two polynomial-time interlocking

testing methods, both can be derived from our motion-based representation. The method

discussed in Section 3.5.1 utilizes the inequalities in Equation 3.9 that is applicable for testing

most assemblies. The method presented in Section 3.5.2 is based on the directional blocking

graphs, a simplified version of our motion-based representation, which is only applicable for

testing voxelized assemblies or assemblies with single-direction joints. Finally, we establish a

connection between globally interlocking with static equilibrium in Section 3.5.3.

3.5.1 Inequality-based Interlocking Test

If parts can be disassembled by rigid motions without causing collision among themselves,

even the motions are infinitesimal, the structure is not global interlocking. Equation 3.9

formulates these collision constraints as a linear inequality system, which has non-zero

solutions if the assembly is not globally interlocking. However, the linear system always has

trivial non-zero solutions (i.e., the key part must be movable). To exclude these obvious

solutions, we fix the key part PN as well as any of the rest parts, saying PN−1, by setting their

velocities to be zero.

B inv̂ ≥ 0, v̂ N = v̂ N−1 = 0 (3.18)

30

3.5. Kinematic-Based Interlocking Test

The assembly P is globally interlocking if Equation 3.18 does not have any non-zero solution.

We solve the Equation 3.18 using a linear programming.

max
t = {ti }, v̂

∑
ti

s.t. 0 ≤ ti ≤ 1,

B inv̂ ≥ t ,

v̂ N = v̂ N−1 = 0

(3.19)

If the optimal solution of Eq. 3.19 is non-zero, the assembly is not globally interlocking.

Otherwise, the assembly is globally interlocking except for one special case where the optimal

solution of Eq. 3.19 is zero yet B in · v̂ = 0 actually has non-zero solutions. The inset shows such

an example. In this assembly, each component part can move

vertically (i.e., not interlocking) without any collision among

the parts (i.e., the optimal solution of Eq. 3.19 is zero) since the

translation vector of each component part is always perpendic-

ular to the contact normals. To identify this special case, we

compute the rank of first N −2 columns of B in after solving the

linear program. The equation B inv̂ = 0, where v̂ N = v̂ N−1 = 0

has non-zero solutions if and only if rank of the first N −2 columns of B in is smaller than N −2

according to the theorem of homogeneous linear equations.

3.5.2 DBG-based Interlocking Test

The kinematic-based interlocking test, though can handle a variety of inputs, is less intuitive

since it requires solving a linear inequality system. For those assemblies with only planar or

piecewise planar contacts, we assume that the assembly P can be disassembled by single-

part translational motions, i.e., part rotation is not required and all other parts remain fixed

when removing a part. We propose a graph-based interlocking test which relates the globally

interlocking with strong connectivity property in graph theory. Due to its simplicity, the

graph-based test is used for designing globally interlocking assemblies discussed in Chapter4.

Directional Blocking Graph (DBG). We denote as G(d ,P) the directional blocking graph of

assembly P for translation along direction d . This directed graph has nodes representing the

parts of P and directed edges ei→ j from Pi to P j if and only if P j prevents any translational

motion of Pi along d . In other words, ei→ j can be read as “Pi is blocked by P j " in direction

d .See Figure 3.6(c&d) for two examples.

The G(d ,P) can be derived from our motion-based representation (Section 3.4). Supposed

that Vi , j is the motion cone between Pi and P j , if d 6∈ −Vi , j , there must be an edge from Pi to

P j (i.e., ei→ j) in the directional blocking graph G(d ,P). The directional blocking graph is just

a projection of the motion based representation onto the direction of d .

31

Chapter 3. Kinematic-Based Stability Analysis

Figure 3.6 – Example DBGs and NDBG. (a&b) A 2D interlocking assembly and its parts-graph,
where the key P1 is movable along d2; (c&d) Two DBGs of the assembly; and (e) NDBG of the
assembly. A part with zero out-degree or in-degree in a DBG is highlighted with a red circle.

If G(d ,P) is strongly connected, i.e. if every node can be reached from every other node, no

part or part group is movable along d ; see Figure 3.6(c). A part group S of P is locally free to

translate in direction d (−d), if and only if the out-degree (in-degree) of P in G(d ,P) is zero;

see P1 in Figure 3.6(d).

Non-directional Blocking Graph (NDBG). We represent the set of all translation directions in

2D by the unit circle denoted as C . For every pair of parts in contact in P , we draw the diameter

that is parallel with the contact line. The drawn diameters partition C into an arrangement

of regions, for which the corresponding DBG G(d ,P) remains con-

stant when d varies over a region. For any pair of parts in contact

(e.g., P1 and P2 in the inset), if there are more than two contact

lines, we only retain the two diameters of C (e.g., two contact lines

in blue) which bound the cone of directions in which one part is

free to translate relative to the other. The arrangement of points and intervals on C , and the

associated DBGs form the non-directional blocking graph of P ; see Figure 3.6(e). An NDBG of a

3D assembly can be built similarly by constructing DBGs for each point and regular region on

a unit sphere that represents all possible translation directions in 3D; please refer to [Wilson

and Latombe, 1994] for more details.

Base Directional Blocking Graphs. An NDBG represents the parts blocking relations with

32

3.5. Kinematic-Based Interlocking Test

redundancy in two aspects. First, the DBG corresponding to an arc in C can be derived by

performing union operations on the DBGs associated with the two end points of the arc;

see again Figure 3.6(e). Second, we can obtain G(−d ,P) from G(d ,P) easily by reversing the

direction of every edge in G(d ,P) due to the reciprocity of blocking relations among the parts.

Therefore, it is sufficient to model the blocking relations in P by using only a set of base

DBGs denoted as {G(d ,P)}, which we select as the DBGs corresponding to the end points in a

half circle of C . For example, two DBGs in Figure 3.6(c&d) form {G(d ,P)}. We call the set of

directions corresponding to the base DBGs as base directions, denoted as {d }. The number of

base DBGs (as well as base directions) is O(N 2) since every pair of parts provides at most two

diameters in C .

DBG-based Testing Approach. To test immobilization of a part group S, we need to compute

blocking relations between S and P −S: the part group S is immobilized if S is blocked by P −S

in all translation directions. Explicitly testing interlocking by checking immobilization of every

part and every part group has exponential time complexity. However, treating each part group

S independently ignores significant redundancies in the blocking relations across the parts.

We exploit these redundancies and propose a more efficient approach to test interlocking.

The key idea is to utilize the blocking relations encoded in the set of base DBGs to implicitly

test immobilization of every part and every part group along a finite number of translation

directions, i.e., the base directions {d }.

In detail, an assembly with at least three parts is interlocking, if all base DGBs are either

1. strongly connected, or

2. have only two strongly connected components one of which has a single part that is

identical across all DGBs.

Here the strongly connected component with a single part is the key of the assembly. Direction

d associated with each DBG with two strongly connected components is the key’s (reversed)

movable direction according to the in-edge (out-edge) of the key in the DBG; e.g., the assembly

in Figure 3.6(a) is interlocking since its two base DBGs in Figure 3.6(c&d) satisfy the above

requirement.

In our implementation, we use Tarjan’s algorithm [Tarjan, 1972] to find strongly connected

components in each DBG. Runtime complexity is linear in the number of edges and nodes in

the graph, i.e., O(N 2) since there are at most N 2 edges in the graph. As the set of base DBGs

has O(N 2) graphs, the worst-case complexity of our interlocking testing algorithm is O(N 4),

which is much lower than O(2N) of the previous approach [Song et al., 2012]. In particular,

the complexity to test interlocking of a well-structured assembly, where each part connects

with at most L ¿ N parts, is O(L2N 2) since the number of base DBGs is O(LN) and running

33

Chapter 3. Kinematic-Based Stability Analysis

Figure 3.7 – A 2D assembly for which translating two parts along different directions (black
arrows) simultaneously is the only way to disassemble it.

Tarjan’s algorithm on each DBG is also O(LN).

Remark. This DBG-based approach is sufficient for testing interlocking of 3D assemblies

where parts are orthogonally connected; see supplementary material (Appendix A.3) for a

proof. However, it is only necessary but not sufficient for testing interlocking of 3D assemblies

with non-orthogonal part connections. Figure 3.7 shows a counter example. The DBG-based

approach identifies this assembly as deadlocking yet two parts actually can move along

different directions simultaneously. To address this issue, we suggest to use inequality-based

approach described in Section 3.5.1.

3.5.3 Connection between Interlocking and Equilibrium

Interlocking and equilibrium describe two specific structural states of 3D assemblies. We

make a formal connection between interlocking and equilibrium as follows:

An interlocking assembly is an assembly that is in equilibrium under arbitrary

external forces and torques.

This connection relies on the fact that the coefficient matrix B in in Equation 3.9 and Aeq in

Equation 3.3 are transposed to each other, according to the well-known close relation between

velocity kinematics and statics [Davidson and Hunt, 2004].

The above statement can be formally proved based on a solvability theorem for a finite system

of linear inequalities, in particular Farkas’ lemma [Farkas, 1902]:

Lemma 2 (Farkas’ Lemma) Let A ∈Rn×m and b ∈Rn . Then the following two statements are

equivalent:

(1) There exists an x ∈Rm such that Ax = b and x ≥ 0.

(2) There does not exist a y ∈Rn such that AT y ≥ 0 and bT y < 0.

Our observation is that the mathematical formulations of equilibrium and interlocking in Sub-

34

3.6. Lateral Stability Measure

Figure 3.8 – Spectrum of assembly stability in which the stability increases from left to right,
i.e., non-equilibrium (under single load, e.g., gravity), equilibrium but not interlocking that
can be quantified by our stability measureΦ, and global interlocking. The gap between our
stability measure and interlocking in the spectrum represents stability conditions where an
assembly is in equilibrium under all possible gravity directions but not an arbitrary w .

section 3.3 and 3.9 correspond to the first and second statement in Farkas’ lemma, respectively.

In particular, A = Aeq, x = f , and b =−w relate statement 1 to Equation 3.3 while AT = B in

and y = v̂ relate statement 2 to Equation 3.9.

By assuming that b =−w can be an arbitrary vector (i.e., arbitrary external forces and torques),

we can see that the condition of bT y < 0 in statement 2 is equivalent to y 6= 0. Statement 2

then becomes exactly consistent with the formulation of interlocking in Equation 3.18 and the

formal connection between interlocking and equilibrium is proved.

3.6 Lateral Stability Measure

Our analysis shows that static equilibrium means that the assembly is stable under a con-

stant external force and torque configuration w , while global interlocking indicates that the

structure is stable under an arbitrary w . Equilibrium and interlocking are two binary states of

structural stable 3D assemblies. In practice, ensuring static equilibrium for a single w might

be insufficient since the assembly could be exposed to different forces (e.g., live loads). On

the other hand, a global interlocking requirement might impose too strict constraints on the

assembly’s geometry, as real assemblies usually do not have to experience arbitrary external

forces.

This motivates us to consider stability conditions that are more strict than single-load equi-

librium; see Figure 3.8. Our idea for quantifying these stability conditions is based on the

set of external force and torque configurations w ∈ R6N under which the assembly P is in

equilibrium, denoted as the feasible set G(P), which has the following properties:

1. If w ∈G, then λw ∈G (λ≥ 0), since we can multiply both sides of Equation 3.3 with λ.

2. If w 1 ∈G and w 2 ∈G, thenλw 1+(1−λ)w 2 ∈G (λ≥ 0) due to the linearity of Equation 3.3.

35

Chapter 3. Kinematic-Based Stability Analysis

Hence, G(P) forms a convex cone in R6N . The case where G(P) = R6N indicates that the

assembly is global interlocking.

Similar to [Whiting et al., 2009], we consider a specific class of external force and torque

configurations for the analysis and design of TI assemblies, in which each part Pi experiences

a force g i that passes through Pi ’s center of mass (τi = R i ×g i) and has a constant size (i.e.,

‖g i‖ equals to Pi ’s weight). Moreover, we assume that all g i have the same direction, denoted

by the unit vector d . This assumption is motivated by the tilt analysis for measuring lateral

stability of masonry structures in architecture [Zessin, 2012, Ochsendorf, 2002]; see Figure 3.8

By this, we reduce the degrees of freedom of w from 6N to 2 (i.e., a normalized vector d).

We represent each normalized force direction d in spherical coordinates as d (θ,φ), where

θ ∈ [0◦,360◦) is the azimuthal angle and φ ∈ [0◦,180◦] is the polar angle (relative to −z, the

gravity direction). To compute G(P) we need to find all d (θ,φ) ∈ G(P). Here, we check if

d (θ,φ) ∈G(P) by testing whether the assembly P is in equilibrium under external forces with

direction d (θ,φ) by solving Equation 3.3. Assuming that an assembly P is in equilibrium

under gravity (i.e., d g = (0,0,−1) ∈G(P)), we approximate G(P) by uniformly sampling θ and

finding the critical φ for each sampled θ using binary search, thanks to the convexity of G.

Figure 3.9 shows an example feasible cone G(P) computed using our approach, as well as its

cross section with plane z =−1, called the feasible section S(P).

Given the feasible cone G(P), we define our stability measure as:

Φ(P) = min{ φ | d (θ,φ) ∈ ∂G(P) } (3.20)

where ∂G(P) denotes boundary of the feasible cone G(P). Our measure is actually the min-

imum critical tilt angle among all possible azimuthal tilt axes, which can be considered as

a generalization of the critical tilt angle for a fixed axis [Zessin, 2012]; see Figure 3.9-b&c.

Figure 3.8 shows how our stability measure is embedded in the whole stability spectrum,

whereΦ= 0◦,90◦,180◦ highlight some special stability states. Specifically, the stability states

corresponding to Φ= 90◦ andΦ= 180◦ are adjacent in the spectrum since the feasible cone

G(P) cannot be in-between a half sphere and a whole sphere due to the property of convexity.

36

3.6. Lateral Stability Measure

Figure 3.9 – (a) A assembly P and (b) its feasible coneG(P). (c) We visualizeG(P) as the feasible
section S(P) by intersecting it with the cyan plane (z =−1) in (b). The external force direction
corresponding to our stability measureΦ is shown as a purple vector in (b) and a purple dot in
(c). Note that the purple dot is the point of tangency between the feasible section S(P) and its
largest inner circle (in red) centered at the origin.

37

4 Computational Design of Interlocking
Assemblies

Figure 4.1 – Various interlocking assemblies designed using our framework, from left to
right: voxelized puzzle, plate structure, furniture, and frame structure. Our method supports
different types of joints as highlighted in the zooms. Please refer to the accompanying video
for assembly sequences and the supplementary material for the blocking graphs defining the
interlocking configurations.

Interlocking assemblies have a long history in the design of puzzles, furniture, architecture,

and other complex geometric structures. The key defining property of interlocking assemblies

is that all component parts are immobilized by their geometric arrangement, preventing the

assembly from falling apart. Computer graphics research has recently contributed design

tools that allow creating new interlocking assemblies. However, these tools focus on specific

kinds of assemblies and explore only a limited space of interlocking configurations, which

restricts their applicability for design.

In this chapter, we propose a new general framework for designing interlocking assemblies.

The core idea is to represent part relationships with a family of base Directional Blocking

Graphs and leverage efficient graph analysis tools to compute an interlocking arrangement of

parts. This avoids the exponential complexity of brute-force search. Our algorithm iteratively

constructs the geometry of assembly components, taking advantage of all existing blocking

relations for constructing successive parts. As a result, our approach supports a wider range

of assembly forms compared to previous methods and provides significantly more design

flexibility.

39

Chapter 4. Computational Design of Interlocking Assemblies

We show that our framework facilitates efficient design of complex interlocking assemblies,

including new solutions that cannot be achieved by state of the art approaches.

4.1 Introduction

3D assemblies refer to objects that combine multiple component parts into a structure with a

specific form and/or functionality. Connection mechanisms are usually required to prevent

the parts from moving relative to one another and make the assembly steady for practical use.

However, these connectors can be irreversible (e.g., glue), impair the structural integrity of

parts (e.g., nails), or degrade the external appearance of the assembly (e.g., clamps).

Rather than relying on additional explicit connectors, interlocking assemblies connect parts

into a steady structure based only on the geometric arrangement of the parts. This intriguing

property facilitates repeated assembly and disassembly and significantly simplifies the correct

alignment of parts during construction. Consequently, interlocking assemblies have been

used in a variety of applications, including puzzles [Stegmann, 2018], furniture [Fu et al., 2015],

architecture [Deepak, 2012], and 3D printing [Yao et al., 2017b].

In an interlocking assembly, parts need to follow certain orders to be assembled into the target

object. Once assembled, there is only one movable part, called the key, while all other parts as

well as any subset of parts are immobilized relative to one another [Song et al., 2012]. How-

ever, this defining property of parts immobilization makes designing interlocking assemblies

highly challenging. Explicitly testing the immobilization of every subset of parts requires

costly computations; optimizing for the geometry of parts that satisfy these immobilization

requirements, while avoiding dead-locking, is even more complex.

Recently, several computational approaches have been developed to address this problem [Xin

et al., 2011, Song et al., 2012, Fu et al., 2015, Song et al., 2016, Zhang and Balkcom, 2016, Song

et al., 2017, Yao et al., 2017b]. The common idea is to directly guarantee global interlocking

by constructing and connecting multiple local interlocking groups (LIGs), which avoids the

overhead of testing all part subsets for immobilization. While these methods show success-

ful results, they only focus on specific sub-classes of interlocking assemblies, e.g., recursive

interlocking puzzles [Song et al., 2012], but do not explore the full search space of all pos-

sible interlocking configurations. As a consequence, these approaches are restricted in the

kind of input shapes they can handle and have limited flexibility to satisfy additional design

requirements besides interlocking, e.g., related to aesthetics or functional performance.

Contributions In this chapter, we propose a new general framework for DESigning Inter-

locking Assemblies, called DESIA, that avoids the restrictions of previous LIG-based methods.

Specifically, we make the following contributions:

1. We represent interlocking assemblies with a set of base Directional Blocking Graphs

40

4.2. Computational Design Framework

(DBGs) and implement an efficient graph analysis algorithm that can test for global

interlocking in polynomial time complexity.

2. We introduce a general iterative framework for designing interlocking assemblies that

can explore the full search space of all possible interlocking configurations by utilizing

all existing part blocking relations described in the graphs.

3. We demonstrate the flexibility of our framework for designing different classes of assem-

blies, including new types of interlocking forms that have not been explored in previous

works.

The rest of the chapter is organized as follows. Section 4.2 describes our computational

framework for designing interlocking assemblies. In Section 4.3 we show different types of

assemblies generated with our approach, compare with previous works, and highlight several

application examples. We conclude with a discussion of limitations of our approach and some

thoughts on future research problems.

4.2 Computational Design Framework

In Section 3.5.2, we have demonstrated our efficient algorithms to test for interlocking. Our

main goal now is to provide effective algorithms for designing interlocking assemblies. We

first provide a high-level overview of our framework before presenting the conceptual and

algorithmic details.

As input we expect the final shape of the assembly, from which the component parts are

either constructed from scratch as in [Xin et al., 2011, Song et al., 2012, Song et al., 2015] or

explicitly initialized as in [Fu et al., 2015,Song et al., 2016,Yao et al., 2017b]. Our computational

process for creating an interlocking assembly starts with the full input model, then iteratively

splits off successive parts for disassembly. At each iteration, we first identify a set of suitable

blocking relations to be generated between the current assembly and the new part such that

the interlocking property is maintained. Then we search for the part geometry that satisfies

these blocking relations. The selection of a new part is guided by a ranking function that

takes into account certain geometric properties, e.g. part size, or other requirements, e.g.

on part fabrication. The search space is then explored in a tree traversal process that uses

automatic backtracking when no interlocking solution could be found in a specific iteration;

see Figure 4.2. We also provide a user interface to interactively explore different options

for part decomposition, allowing the user to overwrite the generic ranking function for part

selection; see Figure 4.12.

4.2.1 Iterative Design Framework

Given the input shape denoted as R0, we iteratively construct the geometry of each part (or

introduce appropriate joints in the geometry of each initialized part; see Section 4.3.2), one by

41

Chapter 4. Computational Design of Interlocking Assemblies

Figure 4.2 – Overview of our framework on designing a 2D interlocking assembly. (a) Given a
5×5 square as input, (b-i) our framework tries to generate a 5-part interlocking 2D assembly,
where each part should have at least two pixels. Top row: construction tree, where each node
at depth i represents a candidate of Ai . Here we show the m = 3 highest ranked options at
each level with the top-ranked on the left. The blue arrows indicate the procedure to visit
the nodes for generating parts. If the framework cannot find any child for the current node
(in dashed circle, denoted as A∗

i), it will backtrack to (c) its siblings or (f) ancestors. Middle
row: geometric examples corresponding to the dashed node in the tree. Bottom row: base
DBGs of the geometric examples, where the key is indicated by a red circle. For simplicity, we
show nodes P j (j ≤ i) as j , and Ri as R in (a-h), and show the last part R4 as P5 in the final
assembly(i).

one. This forms a sequence of constructed parts, P1, P2, ..., Pn , with Rn , the remaining part of

R0, as the last part:

[R0] → [P1,R1] → [P1,P2,R2] → ... → [P1, ...Pn ,Rn] .

Here we denote each intermediate assembly [P1, ...,Pi ,Ri] as Ai (0 ≤ i ≤ n), and its base DBGs

as {G(d , Ai)}. Figure 4.2 shows an example where the parts are constructed from scratch.

To guarantee that the resulting assembly An = [P1, · · · ,Pn ,Rn] is interlocking and disassem-

blable, we have the following requirements when decomposing Ri−1 into Pi and Ri :

(i) Connected. The geometries of Pi and Ri should each be connected, making Ai a valid

assembly.

(ii) Interlocking. Ai (i ≥ 2) is interlocking with P1 as the key. In other words, {G(d , Ai)} should

satisfy the interlocking requirement described in Section 3.5.2.

(iii) Disassemblable. Pi can be removed from [Pi ,Ri], so we can disassemble Ai in the order

of P1, P2, ..., Pi , Ri .

The advantage of this iterative design framework is that we achieve the goal of global in-

42

4.2. Computational Design Framework

Algorithm 1 Algorithm to design an interlocking assembly An from a given shape R0.

1: function CREATEINTERLOCKASSEMBLY(R0)
2: i ← 0
3: A∗

i ← [R0]
4: while i < n do
5: if i =0 then
6: {Ai+1} ← GenerateKey(A∗

i) . See Subsection 4.2.2
7: if {Ai+1} =; then
8: return NULL
9: end if

10: else
11: {Ai+1} ← GenerateParts(A∗

i) . See Subsection 4.2.3
12: end if

13: if {Ai+1} 6= ; then
14: RankCandidates({Ai+1}) . In descending order
15: if i +1 = n then
16: return A1

n

17: else
18: i ← i +1
19: A∗

i ← A1
i

20: end if
21: else if A∗

i .si bl i ng 6= NU LL then
22: A∗

i ← A∗
i .si bl i ng . A∗

i .si bl i ng is the one second to A∗
i in the ranked {Ai }

23: else
24: while A∗

i .par ent 6= NULL &&
25: A∗

i .par ent .si bl i ng = NULL do
26: A∗

i ← A∗
i .par ent

27: i ← i −1
28: if i = 0 then . Quit if backtrack to A0

29: return NULL
30: end if
31: end while
32: if A∗

i .par ent 6= NULL &&
33: A∗

i .par ent .si bl i ng 6= NULL then
34: A∗

i ← A∗.par ent .si bl i ng
35: else
36: return NULL
37: end if
38: end if
39: end while
40: end function

terlocking by satisfying a set of local requirements when constructing each pair of Pi and

43

Chapter 4. Computational Design of Interlocking Assemblies

Ri .

Tree Traversal. Since we cannot guarantee that the construction of Pi and Ri succeeds at every

iteration, we propose an iterative approach with backtracking to construct An ; see Figure 4.2

and Algorithm 1. The key idea is to build and maintain a construction tree, where each node

represents a candidate of Ai . For each node, we generate a set of children denoted as {Ai+1},

among which the only different parts are Pi+1 and Ri+1. Our approach ranks these candidate

assemblies at each iteration to facilitate the construction of successive parts. For example, we

rank {Ai+1} according to the compactness of Ri+1 measured by using the accessibility in [Song

et al., 2012], since parts extracted from a compact Ri+1 are more likely to be connected;

compare R1 in Figure 4.2(c&f). In case the user has other design goals besides interlocking,

e.g., regarding the appearance of the assembly, we support user intervention to adjust the

ranking; see again Figure 4.12. In case we cannot generate any valid result from the selected

candidate in {Ai+1}, we can backtrack the tree to try other nodes without restarting the whole

design process. The size of {Ai+1} is denoted as m. A large m requires more time for generating

{Ai+1}, but also provides more choices for ranking and backtracking. We set m = 30 by default

in our experiments but it can be adjusted, depending on the input model.

Below we explain our approach to generate the key part (Subsection 4.2.2) and the remaining

parts of the assembly (Subsection 4.2.3). These steps can be customized to design different

kinds of interlocking assemblies as discussed in Section 4.3. Here, we take 2D interlocking

puzzle design as an example for illustration.

4.2.2 Generating the key

We first partition the input model R0 into P1 and R1, where P1 is the key and R1 is the remaining

part. We construct the geometry of P1 following the procedure in [Song et al., 2012], i.e., select

a seed pixel, ensure its blocking and mobility, and expand the key part. Recall that the key is

Figure 4.3 – (a) An intermediate assembly A2 and (b) its base DBG G(+x, A2), where the in-edge
and out-edge of R2 are colored in dark and light orange respectively; (c) all cases of distributing
existing blocking relations (dark and light orange edges) to P3 and R3; (d) the interlocking
graph designs that require the fewest internal blocking relations (blue edges) between P3 and
R3; and (e) the corresponding geometric examples.

44

4.2. Computational Design Framework

Figure 4.4 – (a) Given G(d , Ai−1), (b-e) we ensure that G(d , Ai) is strongly connected by con-
structing a cycle that includes both Pi and Ri . A dashed ellipse in (a-e) indicates a subset
of parts, i.e., Si n , Sout , and {Pi ,Ri }, where Si n (Sout) denotes the set of parts with an edge to
(from) Ri−1. The directed edges from (to) a dashed circle in (b) indicate that the edge can be
from (to) any part in the associated subset. The dashed green edges in (c-e) indicate that a part
can reach the other part in G(d , Ai−1) without passing through Ri−1. (f-i) Geometric examples
corresponding to (a-e), where d =+x, Si n = {P A}, and Sout = {PC }.

the only movable (thus unstable) part in an interlocking assembly. Therefore, we restrict P1 to

have a single movable direction in A1 denoted as d1, and usually select d1 being upward to

stabilize P1 with gravity; see Figure 4.2(b&c) for two examples. We rank the candidates in {A1}

according to the compactness of R1.

4.2.3 Generating Pi and Ri (i > 1)

Next, we construct Pi and Ri from Ri−1 in two stages: graph design and geometry realization.

The first stage constructs base DBGs {G(d , Ai)} that satisfy the interlocking requirement con-

ceptually. And the second stage aims at realizing the blocking relations described in {G(d , Ai)}

in the embedded geometry while satisfying the part connectivity and disassemblability re-

quirements defined in Subsection 4.2.1. Note that geometric constraints (e.g., supported joint

types) can be used to simplify graph design by eliminating potential graph edges that cannot

be realized geometrically anyway.

Graph Design for Pi and Ri . Starting from Ai−1 (i ≥ 2), the goal is to find blocking relations

for Pi and Ri such that the updated assembly Ai is still interlocking. In other words, after

splitting Ri−1 into Pi and Ri in {G(d , Ai−1)} to form {G(d , Ai)}, we need to construct a set of

new edges for Pi and Ri in each G(d , Ai) such that the graph remains strongly connected,

except the key; see Figure 4.2. To achieve this goal, we first classify blocking relations to be

constructed into two classes:

(i) External blocking relations between {P1, ..,Pi−1} and Pi , as well as those between {P1, ..,Pi−1}

and Ri are inherited from those between {P1, ..,Pi−1} and Ri−1. We need to distribute

these existing blocking relations to Pi and Ri ; see Figure 4.3(c).

45

Chapter 4. Computational Design of Interlocking Assemblies

Figure 4.5 – Geometry realization of {G(d , A3)}. (a&b) Identify geometric contacts between
{P1,P2} and R2 in A2. (c-f) Distribute external geometric contacts between P3 (shows as
triangles) and R3 (shown as squares) for (c) G(+x, A3) and (d-f) G(+y, A3), where (d&e) show
two failure examples. (g) Realize internal blocking relation between P3 and R3 in G(+y, A3).
(h) Construct initial geometry of P3 and R3. (i) Resulting A3.

(ii) Internal blocking relations between Pi and Ri . For each case of distributing external

blocking relations, we may need to construct internal blocking relations between Pi and

Ri such that each G(d , Ai) remains strongly connected1; see Figure 4.3(d).

Given these observations, we could find all valid graph designs by enumerating the distribution

of external blocking relations, constructing the corresponding internal blocking relations,

and testing the strongly connected property of the DBGs. However, this generate-and-test

approach could be very inefficient. The number of choices to distribute external blocking

relations is 3l , where l is the number of edges of Ri−1 in G(d , Ai−1), since each edge of Ri−1

can be distributed to Pi , Ri , or both. Figure 4.3 shows an example with 32 = 9 graph designs,

where l = 2.

Rather than enumerating all possible graph designs, we propose an efficient approach to find a

desired number of designs that are interlocking conceptually; see Figure 4.4. The key idea is to

directly guarantee that each G(d , Ai) is strongly connected by constructing a cycle in the graph

that includes both Pi and Ri , given that G(d , Ai−1) is already strongly connected. Denote Si n

(Sout) as the set of parts with an edge to (from) Ri−1, and Pi n (Pout) as an arbitrary part in

Si n (Sout); see Figure 4.4(a&f). According to the number of internal blocking relations to be

constructed between Pi and Ri denoted as K , we have the following three cases to construct

the cycle that we can choose independently for each DBG.

(i) K=2. Pi → Ri → Pi forms a cycle, i.e., any distribution of external blocking relations

works for this case; see Figure 4.4(b).

(ii) K=1. Pi → Ri → Pout 99K Pi n → Pi (Ri → Pi → Pout 99K Pi n → Ri) forms a cycle if

the single directed edge is from Pi to Ri (from Ri to Pi); see Figure 4.4(c&d). Here,

Pout 99K Pi n means that Pout can reach Pi n in G(d , Ai−1) without passing through Ri−1,

or Pout and Pi n are the same part.

1If the key is movable along d , G(d , Ai) is strongly connected without considering the key. Otherwise, the whole
graph of G(d , Ai) should be strongly connected.

46

4.2. Computational Design Framework

(iii) K=0. Pi → Pout 99K Pi n → Ri → P
′
out 99K P

′
i n → Pi forms a cycle, where Pi n and P

′
i n (as

well as Pout and P
′
out) are possible to be the same part; see Figure 4.4(e).

Compared with case 1, cases 2 and 3 rely more on external blocking relations than on internal

blocking relations to immobilize Pi and Ri . As a consequence, these two cases impose fewer

constraints on the subsequent geometry construction of Pi and Ri , resulting in a higher chance

to be successfully realized in the embedded geometry; compare the geometric examples in

Figure 4.4(g-j).

Besides interlocking, we also need to ensure that Pi is disassemblable in [Pi ,Ri]. Thus, we

require that there are fewer than two directed edges between Pi and Ri (i.e., case 2 and 3) in at

least one base DBG. The output of this stage is a set of {G(d , Ai)} that satisfy the interlocking

requirement, denoted as Ci .

Geometry Realization of Pi and Ri . In order to realize {G(d , Ai)} ∈ Ci in the embedded

geometry, we perform the following steps, each corresponding to a counterpart of the graph

design stage:

i) Identify external geometric contacts between {P1, ...,Pi−1} and Ri−1. Recall that a directed

edge ei→ j from Pi to P j in G(d , A) means that P j blocks the translation of Pi along d . This

indicates that Pi contacts P j along d , and P j locates further than Pi along d ; see again

Figure 3.6. In an assembly Ai−1, we identify such blocking contacts between Pl (1 ≤ l ≤ i −1)

and Ri−1 for each base direction d by computing the overlap of the respective boundaries

Figure 4.6 – (a) Internal blocking relations between Pi and Ri in G(+x, Ai). (b) Find blocking
and blockee pixels in Ri−1 (in orange) according to the blocking relations, where blocking and
blockee pixels in (b) and their associated blocking relation in (a) are colored the same (light or
dark blue). (c) Initial geometry of Pi and Ri . (d) Final geometry of Pi and Ri . (e&f) Two failure
examples due to disconnectivity of Pi or Ri (see the red cross).

47

Chapter 4. Computational Design of Interlocking Assemblies

Figure 4.7 – (a) Starting from a 4×4×4 voxel grid, (b-g) our framework iteratively constructs 9
parts of an interlocking CUBE. Three DBGs are drawn for each intermediate assembly at the
bottom. Our approach allows immobilizing Pi and Ri by constructing cycles of various sizes
(examples colored in purple).

along d (−d), see Figure 4.5(a&b).

ii) Distribute external geometric contacts. An external blocking relation, say between Pl

and Ri−1, in a DBG G(d , Ai−1) can be distributed to Pi , Ri , or both. For the first two cases,

the corresponding geometric contacts need to be all assigned to Pi or Ri respectively; see

Figure 4.5(f). For the last case, the geometric contacts need to be partitioned into two subsets

and assigned to Pi and Ri separately; see Figure 4.5(c).

However, this step could fail for two reasons. First, the external geometric contact could be too

small to be partitioned. For example, R2 contacts P2 along +y with a single pixel in Figure 4.5

(b). Yet, this single pixel (marked with a red circle in Figure 4.5(d)) needs to be assigned to

both P3 and R3 according to the computed blocking relations, which is not feasible. Second,

the assignment of geometric contacts may conflict with one another across multiple DBGs.

For example, two pixels marked with red circles in Figure 4.5(c) need to be assigned to R3 to

realize G(+x, A3). However, these two pixels also need to be assigned to P3 to realize G(+y, A3)

in Figure 4.5(e), leading to a conflict.

iii) Construct internal geometric contacts. If G(d , Ai) has K ∈ {1,2} internal blocking relations,

we need to construct geometric contacts between Pi and Ri . Here, we take as an example

the case of realizing a single directed edge from Pi to Ri to illustrate our approach; see

Figure 4.6(top). Inspired by [Song et al., 2012], we find among all unassigned pixels in Ri−1

a pair of blocking and blockee pixels that contact each other along d , denoted as Bg and Be

48

4.2. Computational Design Framework

Figure 4.8 – Illustration of the model of [Song et al., 2012] based on our DBG-based repre-
sentation. Their approach achieves global interlocking of An by requiring every [Pi−1,Pi ,Ri]
(2 ≤ i ≤ n) to form a local interlocking group with Pi−1 as the key. In detail, Pi−1 and Ri−1 in
G(d , Ai−1) are possible to have (a) zero, (b) one, and (c) two directed edges. (a&b) Pi and Ri

are immobilized in a 2-part cycle [Pi ,Ri]; (c) Pi and Ri are immobilized in either a 2-part cycle
[Pi ,Ri], [Pi−1,Pi], [Pi−1,Ri], or a 3-part cycle [Pi−1,Pi ,Ri].

respectively. We then assign Be to Pi and Bg to Ri . Other cases of realizing internal blocking

relations can be handled similarly; see Figure 4.6.

iv) Construct initial parts geometry. By now, we have identified all the pixels in Ri−1 that need

to be assigned to Pi or Ri to make Ai interlocking. To form an initial Pi (Ri), we connect these

pixels into a single part using the shortest path; see Figure 4.5(h) and 4.6(c). Note that this

connection process can fail since we may not be able to find such a shortest path without

disconnecting parts; see Figure 4.6(e&f) for examples.

v) Ensure disassemblability. To make Pi movable in [Pi ,Ri], we first identify all possible mov-

ing directions of Pi in {G(d , Ai)}, i.e., the directions where Pi is unblocked by Ri ; e.g., P3 could

be movable along {−x,+x,+y} in [Pi ,Ri] according to the blocking graph in Figure 4.5(c&g)

. We try each possible moving direction of the initial Pi and discard those that cannot be

achieved in the embedded geometry. We consider that Pi is disassemblable in [Pi ,Ri] if we

can find one movable direction of Pi , along with a disassembly path. Lastly, we assign those

remaining pixels in Ri−1 (see orange pixels in Figure 4.6(c)) to Pi and Ri respectively according

to geometric proximity with preference to Ri , while maintaining the disassemblability of Pi in

[Pi ,Ri]; see Figure 4.5(i) and 4.6(d).

A graph design is realized if all above steps succeed. Otherwise, we discard this design and

try another one in Ci . If all candidates in Ci fail, we backtrack to the other nodes in the

construction tree following the procedure in Algorithm 1.

49

Chapter 4. Computational Design of Interlocking Assemblies

4.3 Results and Discussion

In this section we show how our framework can be used to design various kinds of interlock-

ing assemblies, with example applications as puzzles, furniture, sculptures, or architectural

designs. We highlight differences to previous approaches to show how our method improves

the state of the art and enables new kinds of interlocking assemblies not possible before. For

more detailed comparisons and results, we refer to the supplementary material (Appendix A).

4.3.1 Interlocking Voxelized Structures

Given a voxelized shape and a desired number of parts N as input, our goal here is to decom-

pose the voxel set into a collection of parts that form an interlocking assembly [Song et al.,

2012]. Figure 4.7 shows our iterative design process for creating a 9-part 4×4×4 interlocking

CUBE.

The major difference between our approach and [Song et al., 2012] is the graph design of Pi and

Ri to ensure interlocking of Ai . Our approach makes use of all previous parts {P1, ...,Pi−1} to

immobilize Pi and Ri . (i.e., form a cycle in each {G(d , Ai)}; see Figure 4.4 and 4.7), while [Song

et al., 2012] only relies on Pi−1 to immobilize Pi and Ri (i.e., form a 2-part or a 3-part cycle in

the DBGs; see Figure 4.8). Note that our approach can easily generate recursive interlocking

puzzles as [Song et al., 2012] by constraining our graph design as shown in Figure 4.8.

Exploiting all existing blocking relations to immobilize Pi and Ri provides significantly more

Figure 4.9 – (a&b) Interlocking Bunnies (966 voxels). (a) The method of [Song et al., 2012]
can find an assembly with maximally 40 parts while (b) our approach can find one with 80
parts. (c&d) Interlocking 35×35×35 Cubes. (c) The method of [Song et al., 2012] can find an
assembly with maximally 1250 parts while (d) our approach can find one with 1500 parts.

50

4.3. Results and Discussion

Figure 4.10 – Design of a 7-part interlocking CABINET by our approach. (a) Input design and
parts-graph. (b-g) The iterative procedure to plan the joints, where the removal direction di of
Pi is shown in the top row and the active DBG G(di , Ai) is shown at the bottom row. All orange
nodes in each DBG form Ri and the node with dashed boundary is Pi . (h) Interlocking result
and the corresponding parts.

Figure 4.11 – Our approach is much faster than [Song et al., 2012] when generating 10-, 75-,
and 150-part 30×29×23 BUNNIES.

degrees of freedom for designing interlocking assemblies. This allows us to incorporate

additional design goals, for example, on object appearance as for the CARTOON DOG in

Figure 4.1. Here we impose constraints that avoid cutting seams across geometric features, so

that eyes, ears, nose, and tail are each assigned to a single assembly part. Second, as shown in

Figure 4.9, our approach can find interlocking assemblies with more parts than [Song et al.,

2012] for the same input. Given the same input model and the same N , our approach also

takes a much shorter time than [Song et al., 2012] to generate results, even though we explore

a much richer space of possible assemblies; see Figure 4.11. Lastly, our approach gives users

more control for generating results by allowing them to select their desired criteria for ranking

{Ai+1}; see Figure 4.12 for an example.

51

Chapter 4. Computational Design of Interlocking Assemblies

Figure 4.12 – Design a 20-part ISIDORE HORSE with different criteria for ranking {Ai+1}: (a)
compactness of Ri+1 (default criteria); (b) X-coordinate of Pi+1; and (c) Y-coordinate of Pi+1.
The ranking criteria could affect the assembly sequence; e.g., parts are disassembled from left
to right for (b) and from top to bottom for (c), starting from the green key part (see the green
arrow).

4.3.2 Interlocking Plate Structures

Figure 4.13 – Example woodworking joints. From left to right: mortise-and-tenon, halved
joint, and dovetail joint, where the black arrow shows the single movable direction of the part
allowed by the joint.

A second class of assemblies that we can create with our approach are interlocking plate

structures that have applications in furniture design or architecture, for example. These

assemblies differ in two main ways from the voxelized assemblies described above. First,

the geometry of parts and their connections are predefined. We model part connections

with an undirected parts-graph, in which nodes represent parts, and edges connect two

contacting/intersecting parts; see Figure 4.10(a). Blocking relations can only be constructed

between parts connected in the parts-graph. The dual of a parts-graph is a joints-graph,

where nodes represent joints and edges represent parts; see

Figure 4.17(a). Second, we use a set of predefined joint geome-

tries to impose blocking relations between each pair of adja-

cent parts in the structure. Specifically, we consider mortise-

and-tenon, halved, and dovetail joints that restrict each part

to move along a single direction; see Figure 4.13. To support

non-orthogonal part connections, we consider suitable vari-

ants of mortise-and-tenon and halved joints; see Figure 4.14.

In plate structures, the edge vectors shared between each part Pi and its adjacent parts indi-

cate the base directions {d} (see the arrows in the inset for examples), which degenerate into

52

4.3. Results and Discussion

six axial directions for structures where parts are orthogonally connected; see Figure 4.15(a).

To address the above specifics of interlocking plate structures, we have the following adapta-

tions compared to the voxelized structures. First, instead of decomposing Ri−1 into Pi and Ri ,

we iteratively select a single part Pi from the input, and consider the set of unselected parts as

Ri ; see Figure 4.10(b-g). Second, rather than constructing geometry of Pi and Ri , we construct

joints between Pi and each part in Ri that are connected with Pi in the parts-graph denoted

as R
′
i such that Ai (i ≥2) is interlocking. Since all our employed joints allow a single removal

direction of the parts, the removal direction of Pi in [Pi ,Ri] denoted as di completely defines

the joints to be constructed between Pi and each part in R
′
i . Third, to achieve interlocking,

we only need to ensure that the active base DBG G(di , Ai) is strongly connected; see DBGs

in Figure 4.10(b-g). The other base DBGs should remain strongly connected since the newly

introduced joints only allow part moving along di but not the other base directions.

Our iterative approach is detailed as follows:

1. Iterative Design Framework. Starting from the key P1, we iteratively select a single

part Pi from parts in Ri−1. We avoid selecting Pi that is a cut point in the remaining

parts-graph of Ri−1 to keep the geometry of Ri connected. Once Pi is selected, our task

is to select di from the edge vectors {ei } shared between Pi and its adjacent parts.

2. Generating the key. Generally, we select P1 as the part with the most parallel edge

vectors, and use this direction as P1’s removal direction d1 to facilitate joint construction

on the key; see Figure 4.10(b). This is because we create a halved joint for the edge that is

parallel to d1, a mortise-tenon joint for the edge that is nearly perpendicular to d1 (angle

within [45◦,135◦]), and an empty joint for the other edges. After selecting P1 and d1, we

plan a joint between P1 and each part in R
′
1 (e.g., R

′
1 = {P2,P4,P5,P7} in Figure 4.10(b))

such that P1 is only movable along d1.

3. Generating Pi and Ri (i > 1). At the graph design stage, we need to select di from {ei }

such that G(di , Ai) is strongly connected, which can be classified into two cases. The

first case is that ±di ∉ {d1, ...,di−1}. For this case, we build G(di , Ai) by converting each

undirected edge among {P1, ...,Pi−1,Ri−1} in the parts-graph into two directed edges

and adding a single directed edge between Pi and each part in R
′
i . The G(di , Ai) should

Figure 4.14 – Variants of (a) mortise-and-tenon joints and (b) halved joints that support
non-orthogonal part connections with surface contact.

53

Chapter 4. Computational Design of Interlocking Assemblies

Figure 4.15 – Design of a 6-part interlocking TABLE with orthogonal joints. (a) Input design
and parts-graph. (b-f) The iterative procedure to plan the joints. (g) Interlocking result and
the corresponding parts.

be strongly connected by default; see Figure 4.10(c). The second case is that di or −di

∈ {d1, ...,di−1}, say di = dk (1 ≤ k ≤ i −1). G(di , Ai) inherits all blocking directions from

G(dk , Ai−1) and we add a single directed edge between Pi and each part in R
′
i . We

try each of ±di and accept di (−di) if G(di , Ai) (G(−di , Ai)) is strongly connected; see

Figure 4.10(g).

At the geometry realization stage, we use constructive solid geometry to create the joint

geometry on Pi and each part in R
′
i according to the joint type planned at the graph

design stage. We rank the resulting candidates of Ai in ascending order of the number

of empty joints in Ai .

Figure 4.10(h) shows an interlocking CABINET designed by our approach. Besides furniture,

plate structures also can be used to approximate a free form shape; see the 33-part LIZARD in

Figure 4.1 for an example. Since the DBG-based approach is not sufficient to test interlocking

for these plate structures with non-orthogonal part connections (see Subsection 3.5.1), we

verify the two results by running the inequality-based interlocking test and find that both

results pass the test.

In the special case of orthogonal joints, our approach generalizes the furniture design work

of [Fu et al., 2015]; see Figure 4.15 for an example. In particular, Fu et al. [Fu et al., 2015]

focus on furniture with 3- or 4-part cyclic substructures since their approach requires these

substructures to construct LIGs. In contrast, our approach does not have such a limitation;

see the BOOKSHELF with four 6-part cyclic substructures in Figure 4.1.

Lastly, inspired by our DBG-based representation, we find that a parts-graph with a cut point

cannot be interlocking, no matter what kinds of joints are used; see Figure 4.16(left) for an

example and supplementary material for a proof (Appendix A.2). This observation allows us

to modify a given input to make it possible to be interlocking by adding a minimal number

of new parts in the parts-graph in order to remove the cut point; see Figure 4.16(right) for an

example.

54

4.3. Results and Discussion

Figure 4.16 – Left: a Chair and its parts-graph, where a cut point (i.e., P5) exists. Right: after
adding a new part (i.e., P9), our approach can generate an interlocking joint configuration,
where the axial removal direction allowed by each joint is shown in the corresponding edge in
the parts-graph.

Figure 4.17 – Design of a 12-part interlocking FRAME CUBE. (a) Input frame design, parts-
graph, and joints-graph. (b-f) The iterative procedure to construct the voxel joints, where the
dashed ellipses highlight the set of parts in Ri that connect with P j (j ≤ i) using voxel joints.
(g) The interlocking result.

4.3.3 Interlocking Frame Structures

As a new class of interlocking assembly, we propose interlocking frame structures that can be

considered as a hybrid of the voxelized and the plate assemblies. A frame structure is a network

of beams joined to represent a desired target shape. As input we assume a 3D polygonal mesh,

where each edge represents a beam and each vertex represents a joint.

Compared with the plate assemblies, frame structures have two more challenges. First, frame

structures require connecting more than two parts at a joint, making traditional woodworking

55

Chapter 4. Computational Design of Interlocking Assemblies

joints unsuitable; see the joints-graph in Figure 4.17(a). Thus, we propose to connect the

beams with cube-shaped voxel joints. To make the problem tractable, we assume that each

face of the joint connects to at most one beam at the center voxel, and thus each joint connects

at most six beams (i.e., valence of the input mesh should be at most 6). Second, we need

to individually optimize the geometry of each voxel joint. We place an axis-aligned 3×3×3

cube at each joint location and partition the cubes into partial joints to restrict the relative

movement of the connected beams; see the eight corners of the FRAME CUBE in Figure 4.17(a).

Compared to the plate structures, these specifics require the following adaptations to our

framework:

1. Generating the key. For the voxel joint at each end of P1, we take the voxel preassigned

to P1 as a seed and include more voxels to P1 such that it is movable along a singe

axial direction following Subsection 4.2.2. Denote the subset of parts that connect with

P1 at each end as Sk
1 = {Pl }, where k ∈ {1,2}; see the dashed circles in Figure 4.17(b).

After constructing P1, we draw directed edges between P1 and each Sk
1 in the DBGs

accordingly.

2. Generating Pi and Ri (i > 1). At the graph design stage, we classify parts in each Sk
i into

two groups: {P̀l } where each part is from {P1, ...,Pi−1} and {Ṕl } where each part is from

Ri . If {Ṕl } is empty, the blocking relations within this voxel joint are completely defined.

So the graph design of Pi and Ri can be skipped for this joint; see joint J(1,2,5) in

Figure 4.17(f), where Pi = P5, {P̀l } = {P1,P2}. If {P̀l } is empty, we do not need to distribute

external blocking relations in this joint; see joint J(2,4,7) in Figure 4.17(c), where Pi =

P2, {Ṕl } = {P4,P7}. Otherwise, we distribute external blocking relations associated with

{P̀l } to Pi and parts in {Ṕl } respectively; see joint J (1,2,5) in Figure 4.17(c). Constructing

internal blocking relations is restricted to Pi and parts in {Ṕl } for each Sk
i . To ensure that

Pi is disassemblable in [Pi ,Ri], say along di , we construct a single directed edge between

Pi and each part in {Ṕl } for both Sk
i in at least one DBG; see G(+x, A2) in Figure 4.17(c)

for an example.

The geometry realization of Pi and Ri is conducted within the voxel joint at each end

of Pi following the approach in Subsection 4.2.3; see corners of the FRAME CUBE in

Figure 4.17(c-f).

Figure 4.17(g) shows the resulting interlocking FRAME CUBE, in which every three beams

joining at a corner are connected by a carefully constructed three-way voxel joint. Note that

all joints are distinct even though all corners are symmetric. This illustrates how the assembly

order dictates the geometry of the joints, more so than the geometry of the parts.

Our approach can generate frame structures with different joint valence, e.g., the valence in

the FRAME CHAIR in Figure 4.18 can be 2, 3 or 4. We fabricate this result using wooden pillars

and small wooden cubes to validate its steadiness; see video https://youtu.be/Pqwo3GbxBEo

for the live demo. The FLOWER in Figure 4.1 shows another result, where curved beams are

56

https://youtu.be/Pqwo3GbxBEo

4.3. Results and Discussion

Figure 4.18 – Interlocking 1.0m ×0.5m ×0.5m Frame Chair. The voxel joints are fabricated by
gluing wooden cubes in the spatial arrangement computed by our algorithm. When attached
to the corresponding wooden pillars, all pillars can be connected into a steady interlocking
assembly.

connected by the voxel joints to form an appealing structure. Our approach can generate

frame structures with a large number of parts; see Figure 4.19. To the best of our knowledge,

these are the first single-key interlocking frame structures.

Table 4.1 – Statistics of results generated by our framework. The labels in 4rd to 6th columns
refer to the number N of parts, the number M of base directions, and the time for generating
the result.

57

Chapter 4. Computational Design of Interlocking Assemblies

Figure 4.19 – A 92-part Scaffold connected with voxel joints.

4.3.4 Implementation and Performance

Our C++ implementation runs on an iMac with a 4.2GHz CPU and 32GB memory. In general,

the timing performance depends on the input model, the number of parts N , and additional

design requirements; see Table 4.1. The computation time to create interlocking voxelized

structures highly depends on the number of desired parts. For example, the interlocking

4×4×4 CUBEs (Figure 4.7) with 7, 8, and 9 parts take 0.3 seconds, 12 seconds, and 1.13 hours

respectively. For larger N , it becomes increasingly difficult to find an interlocking assem-

bly since smaller parts have fewer potential blocking contacts. Enforcing additional design

requirements can also increase the computation time substantially. For example, creating

CARTOON DOG (Figure 4.1) without constraints takes 23.3 seconds, while incorporating the

appearance constraints increases computation to 1.06 hours, since significantly more back-

tracking is required to ensure that the constructed parts align with the features. For more

details on the implementation of our approach, we refer to the source code in our github

https://github.com/KIKI007/DESIA.

Our approach creates interlocking plate structures very efficiently due to the relatively small

search space. For example, it takes 0.07 seconds to compute CABINET in Figure 4.10. Due to

58

https://github.com/KIKI007/DESIA

4.4. Limitations and Future Work

Figure 4.20 – The assembling sequence of a globally interlocking bench designed by Ulysse
Martel using our software.

the non-orthogonal part connections in the CABINET, it further takes 0.02 seconds to verify

interlocking by performing the inequality-based test. Hence, the total time to generate this

result is 0.09 seconds; see Table 4.1. The other result with non-orthogonal part connections

(i.e., LIZARD in Figure 4.1) takes 0.03 seconds to verify its interlocking. Designing frame

structures is also fast since the 3×3×3 cubes that are optimized at each joint location have

only 27 voxels. In particular, it takes much longer time to generate the FRAME CHAIR than the

FRAME CUBE although they have similar number of parts; see Table 4.1. This is mainly due to

the lower number of cycles in the parts-graph of the FRAME CHAIR, which makes it harder to

find interlocking configurations.

4.4 Limitations and Future Work

Our work has several limitations that open up interesting directions for future research. First,

the DBG-based representation models only the infinitesimal translational motions of the parts.

Finding a conceptual representation that supports extended translational motions (e.g., for

avoiding global collision) would be helpful for testing interlocking and disassemblability in a

unified manner. Currently we assume planar inter-part contact and translational assembly

motion. While this simplifies the conceptual representation as well as the fabrication and

construction of interlocking assemblies, generalizations to non-planar contact and more

59

Chapter 4. Computational Design of Interlocking Assemblies

complex assembly motions [Zhang et al., 2018] could lead to new types of assemblies. We

currently do not analyze the structural implications of the way individual parts are connected.

As a future work, it would be valuable to optimize the stress distribution to avoid local stress

concentrations in the assembly. Another important aspect that is currently not covered in our

work is tolerance handling. Fabrication imprecisions lead to deviations in the part geometries

that can accumulate and negatively impact the stability of the assembly. How to design for

robustness against such error accumulation is an exciting future research problem. The frame

structure that we introduce in this chapter is just one instance of a broader class of possible

assemblies where joint geometries are optimized together with the assembly, instead of being

selected from a set of predefined joint types. Voxelized cube joints do not necessarily provide

the most appropriate connection and novel joint typologies could be discovered in the future

that are better suited for the kind of multi-part joints that we studied in this chapter. Other

potential directions for future work include assemblies of deformable parts [Skouras et al.,

2015] or reconfigurable assemblies.

4.5 Acknowledgments

We thank the reviewers for the valuable comments, Zhe Chen and Fengyuan Yang for their help

in fabricating the frame chair, and Mina Konaković-Luković for proofreading the paper. This

work was supported by the NCCR Digital Fabrication, funded by the Swiss National Science

Foundation, NCCR Digital Fabrication Agreement #51NF40-141853.

60

5 Computational Design of Topological
Interlocking Assemblies

Figure 5.1 – A topological interlocking assembly (a) designed with our approach to conform to
an input freeform design surface (b). The 3D printed prototype (c-e) is stable under different
orientations.

We study assemblies of convex rigid blocks regularly arranged to approximate a given freeform

surface. Our designs rely solely on the geometric arrangement of blocks to form a stable

assembly, neither requiring explicit connectors or complex joints, nor relying on friction

between blocks. The convexity of the blocks simplifies fabrication, as they can be easily cut

from different materials such as stone, wood, or foam. However, designing stable assemblies

is challenging, since adjacent pairs of blocks are restricted in their relative motion only in the

direction orthogonal to a single common planar interface surface. We show that despite this

weak interaction, structurally stable, and in some cases, globally interlocking assemblies can

be found for a variety of freeform designs. Our optimization algorithm is based on a theoretical

link between static equilibrium conditions and a geometric, global interlocking property of the

assembly—that an assembly is globally interlocking if and only if the equilibrium conditions

are satisfied for arbitrary external forces and torques. Inspired by this connection, we define a

measure of stability that spans from single-load equilibrium to global interlocking, motivated

by tilt analysis experiments used in structural engineering. We use this measure to optimize

the geometry of blocks to achieve a static equilibrium for a maximal cone of directions,

as opposed to considering only self-load scenarios with a single gravity direction. In the

limit, this optimization can achieve globally interlocking structures. We show how different

61

Chapter 5. Computational Design of Topological Interlocking Assemblies

Figure 5.2 – Stability of cubes. Assuming the dark gray cubes are fixed and no friction forces
act on the contact surfaces, the light gray cube is supported for a single gravity direction (a),
an arc of directions (b), a patch of directions (c), and all directions (d).

Figure 5.3 – Example planar TI assemblies described in [Dyskin et al., 2003a] composed of (a)
tetrahedrons, (b) cubes, and (c) octahedrons.

geometric patterns give rise to a variety of design options and validate our results with physical

prototypes.

5.1 Introduction

This chapter is about assemblies of convex rigid blocks. More specifically, we study how an

ensemble of convex blocks, arranged in a regular topology to approximate a freeform surface,

can form stable assemblies. Consider the two cubes of Figure 5.2-a. Assuming no friction

forces act on the interface, a necessary condition for the cubes to form a stable stack is that

the contact plane is orthogonal to the direction of gravity. In addition, we require that the

center of gravity of the top block projects down into the contact polygon. This arrangement is

in static equilibrium, but this equilibrium itself is not stable. Even the slightest tilt of the stack

in any direction will cause the top block to slide and topple off.

Now let us consider three blocks (Figure 5.2-b). The light gray block on top has two contacts,

each constraining its motion in the direction orthogonal to the contact plane. In this case, we

can tilt the ensemble around the axis defined by the intersection of the contact planes and

retain an equilibrium state. Effectively, the space of tilt directions under which the assembly is

in equilibrium has been expanded from a single point to a 1D arc.

62

5.1. Introduction

Figure 5.4 – The Abeille vault (sketch from 1734 on the left) is a globally interlocking assembly
composed of identical convex blocks that form a planar roof structure (right).

Adding a third support block allows creating a 2D set of equilibrium directions (Figure 5.2-

c). The top block is now in a stable configuration when tilting the ground plane around an

arbitrary axis in some limited angle range. For a single cube to be completely immobilized

no matter how the ensemble is rotated, we would need to constrain all six contact planes

(Figure 5.2-d). In fact, this arrangement can be extended to form a regular assembly of cubes

that cover the plane (see Figure 5.3-b). This specific pattern forms a so-called topological

interlocking (TI) assembly [Dyskin et al., 2019]. Assuming the boundary is fixed, all interior

cubes are mutually blocking each other. More specifically, this arrangement also forms a

globally interlocking structure, where each part and each subset of parts is immobilized [Song

et al., 2012].

Do we always need six neighbors to completely immobilize a convex element? The answer is

no, because we can construct a non-empty polytope by intersecting four planes, hence a block

constructed in this way can be completely immobilized by four neighbors. This construction is

well known and has been used, for example, in the Abeille vault structure shown in Figure 5.4.

These types of planar regular assemblies composed of identical blocks have been extensively

studied in material science and mechanical engineering, where they have proven to have

superior structural properties; see detailed discussion in Section 2.2.3.

So can we extend this concept from planar assemblies to curved freeform surfaces? And can

we retain the advantageous structural properties of planar TI assemblies, in particular the

global interlocking property? It is clear that we cannot use identical elements if we want to

closely approximate a double curved surface. However, we can easily modify the shapes of

the blocks so that the assembly conforms well to a given design surface [Fallacara et al., 2019].

For example, the assembly shown in Figure 5.5, created by a constructive method detailed

later, well approximates a spherical design surface. Each block in this assembly is immobilized

by its neighbors, i.e., no block can move if we assume each adjacent block is fixed. With the

global peripheral constraint given by a complete ring of fixed boundary blocks shown in dark

gray, the assembly should then be globally interlocking.

Unfortunately, this reasoning is flawed. While it is true that no block can move individually,

63

Chapter 5. Computational Design of Topological Interlocking Assemblies

Figure 5.5 – A globally interlocking assembly following Abeille’s construction (a) is lifted onto
a spherical surface (b). While each block is still immobilized with respect to its neighbors, a
subset of blocks can move simultaneously along different trajectories (c). The purple lines
in (b) indicate the instantaneous velocity of each block for this disassembly motion. As a
consequence, the assembly is not globally interlocking.

sub-groups of blocks can move simultaneously along different trajectories. This kind of

multi-part instability is not captured by existing methods and provides a first indication that

globally interlocking TI assemblies are difficult to obtain for curved surfaces. Motivated by

this observation, we focus on designing TI assemblies that are as close to global interlocking

as possible.

Contributions. Our goal is to design structurally stable assemblies with convex rigid blocks

that closely conform to a given design surface. We focus in this chapter on convex elements

with planar faces because they can easily be fabricated by blade or wire cutting, but also

because of their superior structural integrity [Alexandrov, 2005]. Geometrically, however, the

convexity of blocks poses the biggest challenge in terms of creating stable assemblies, because

two adjacent parts are only constrained in one direction by their mutual contact. To address

this challenge, we make the following contributions:

1. We introduce a new, general algorithm to test for global interlocking that considers not

only part translation, but also rotation, thus avoiding false positives that can occur with

existing methods.

2. We formalize a theoretical link between static equilibrium conditions and a global

interlocking property with a mathematical proof.

3. We propose a quantitative measure for structural stability of assemblies and present a

gradient-based method that optimizes the geometry of blocks to maximize this measure.

4. We develop an interactive design tool that allows a real-time preview and efficient

exploration of a wide range of design parameters of TI assemblies.

64

5.2. Computational Design of TI Assemblies

Figure 5.6 – Overview of our approach. (a) Input reference surface and 2D tessellation. (b)
3D surface tessellation with augmented vectors. (c) Initial TI assembly. (d) Stability analysis
computes the cone of stable directions. (e) Structural optimization improves stability, i.e., the
cone becomes larger. (f) 3D printed prototype.

Overview. The rest of the chapter is organized as follows: Section 5.2 introduces a paramet-

ric model for TI assemblies that facilitates a constructive approach for design exploration.

Section 5.3 presents a gradient-based optimization to improve the structural stability of an

assembly with respect to the measure. In Section 5.4 we show and discuss a variety of TI

assemblies designed by our approach. We conclude with a discussion of limitations of our

approach and identify opportunities for future research.

5.2 Computational Design of TI Assemblies

Given a reference surface S as input, our goal is to design a structurally stable TI assembly P

that closely conforms to S. To make this problem tractable, we first define a parametric model

that facilitates a constructive approach for design exploration of TI assemblies. We then show

in Section 5.3 how to optimize for the structural stability of a designed assembly. Figure 5.6

gives a high-level overview of our computational design pipeline.

5.2.1 Parametric Model

Dyskin et al. [Dyskin et al., 2013] proposed a parametric model for planar TI assemblies

based on a 2D polygonal tessellation T in which the edges are augmented with normalized

vectors. We extend this model to parameterize 3D free-form TI assemblies using a 3D surface

tessellation T with augmented vectors.

Parameter space Specifically, we represent T as a polygon mesh using a half-edge data

structure, where each face is denoted as Ti and each pair of half-edges shared by Ti and T j

is denoted as ei j on Ti and e j i on T j . The 3D directional vector defined by each half-edge

ei j is denoted as ei j with ‖ei j‖ = 1. We assign to each Ti a normal vector Ni defined by the

least-squares plane of the polygon’s vertices. We further augment each half-edge ei j with a 3D

vector ni j where ‖ni j‖ = 1 and ni j ⊥ ei j ; see Figure 5.7-a. Each half-edge ei j together with the

augmented vector ni j defines a 3D plane.

Block geometry We intersect all 3D planes associated with the half-edges of each Ti to con-

struct the (convex) geometry of the corresponding block Pi in P; see Figure 5.7-b. Sometimes,

65

Chapter 5. Computational Design of Topological Interlocking Assemblies

Figure 5.7 – A TI assembly is created from a 3D surface tessellation and a set of augmented
vectors (a) by intersecting the half-spaces defined by each tessellation polygon (b). Each vertex
of the tessellation corresponds to the joining point of neighboring blocks; see the red circle
(c). Blocks can be additionally trimmed with surface offset planes (d). Zooming views of the
faces/blocks highlighted with green dots are shown on the top row.

the intersected block geometry could be infinite (or simply too bulky), so we optionally trim

the blocks using offset planes with normal ±Ni ; see Figure 5.7-d. Blocks corresponding to faces

Ti in T that contain a boundary edge will be merged to form the boundary frame, shown in

darker shading in the figures. The resulting boundary frame can also be clamped to a smooth

outline; see for example Figure 5.11.

Valid assemblies For the above construction method to produce a geometrically and struc-

turally valid assembly, we restrict T to only contain convex faces that are not triangles as

these would produce pyramid-shaped elements that cannot properly "interlock" with other

blocks. We require ni j =−n j i to ensure a proper planar contact face between adjacent blocks.

We further require that each face Ti is in the half-space (v− vi j) ·ni j ≤ 0 defined by each

augmented half-edge of Ti , where v is an arbitrary point and vi j is a point on the edge ei j .

This will ensure that the intersected geometry of Pi defined by the 3D planes {ei j ,ni j } is not

empty and encompasses the face Ti ; see the zooming views in Figure 5.7-b&c.

5.2.2 Interactive Design

To initialize a design, the user selects a tessellation pattern, adapts global alignment and

scaling, and assigns initial augmented vectors. An automatic procedure that checks the

above geometric requirements then provides immediate feedback on the assembly’s validity.

Specifically, our computational approach proceeds as follows:

66

5.2. Computational Design of TI Assemblies

Figure 5.8 – (a) Initialize ni j (in purple), where the red vector is (Ni +N j)/‖Ni +N j‖. (b)
Determine orientations of ni j , where + (−) indicates clockwise (counterclockwise) rotation
around ei j . (c) Compute range for each ni j (visualized as green sectors). (d) Example {ni j }
generated with user-specified α= 35◦. (e) Two resulting blocks.

Initialize tessellation Given a reference surface S, there are many different ways to create a

surface tessellation T, including remeshing, surface Voronoi diagrams, or parameterization

approaches. Our tool mainly uses conformal maps to lift a planar tessellation onto the surface;

see Figure 5.11 for examples. The user can interactively adjust the location, orientation, and

scale of the tessellation. We further optimize the vertex positions using a projection-based

optimization [Bouaziz et al., 2012, Deuss et al., 2015] to improve planarity and regularity of the

3D polygons and to ensure proper contacts among blocks by avoiding small dihedral angles.

Please refer to the supplementary material (Appendix B.1) for details about this optimization.

Assign vectors {ni j } For each half-edge ei j in the tessellation T, we initialize ni j as ei j ×
(Ni +N j) after normalization (see Figure 5.8-a). We then rotate ni j around ei j by an angle

xi jαi j , where each αi j is initialized as a user-specified rotation angle α and xi j ∈ {−1,1}

specifies rotational direction (i.e., clockwise or counterclockwise). The goal here is to obtain

alternating directions for adjacent edges of a polygon to improve the interlocking capabilities

of blocks [Dyskin et al., 2019]. For this purpose, we use a simple flood-fill algorithm that

starts with a random edge and traverses the half-edge data structure to assign {xi j } that locally

maximize adjacent sign alternations. If all polygons have an even number of edges, this

strategy can achieve global alternation (see Figure 5.8-b), which cannot be guaranteed in

general, i.e., when the tessellation contains polygons with odd number of edges.

Select rotation angle α The global parameter α can be interactively controlled by the user.

For each edge we compute an allowable range [αmin
i j ,αmax

i j] that ensures a valid block geometry

as defined above and clamp the applied rotation accordingly. Figure 5.9 shows 3D tessellations

generated with different values of α. Due to the efficiency of this construction approach, the

user can interactively create and preview TI assemblies while adjusting the design parameters,

i.e. the 2D tessellation and its mapping onto the reference surface, the rotation angle α, and

67

Chapter 5. Computational Design of Topological Interlocking Assemblies

Figure 5.9 – TI assemblies generated with α equals to (a) 0◦, (b) 25◦, (c) 45◦, and 65◦. From
top to bottom: 3D surface tessellation with augmented vectors, TI assemblies with originally
constructed blocks, and with trimmed blocks. Note that the originally constructed blocks in
the TI assembly with α= 0◦ have infinite geometry and thus are not shown.

the thickness of the blocks.

5.3 Structural Optimization of TI Assemblies

The interactive design stage generates a TI assembly P as input to the subsequent stages of our

computational pipeline (Figure 5.6-d&e). If our analysis algorithm of Section 3.19 reveals that

P is globally interlocking, no further optimization is required. Otherwise, we run a structural

optimization that distinguishes several cases; see Algorithm 2. To make these computations

tractable, we only optimize the augmented vectors {ni j } while fixing the tessellation T.

In detail, if the initial design is not in static equilibrium under gravity, we first run an opti-

mization to find a stable state (Section 5.3.2). If a stable configuration is found, we evaluate its

stability score as discussed in Section 3.6. IfΦ= 180◦, then no further optimization is required.

IfΦ= 90◦, then finding a static equilibrium for any force direction in the upper hemisphere

without breaking equilibrium for the directions in the lower hemisphere will result inΦ= 180◦

due to convexity of the feasible set G(P). We therefore simply run our optimization for all the

six axial directions. Finally, ifΦ ∈ [0◦,90◦), we optimize stability for an incrementally growing

cone of directions (Section 5.3.1).

68

5.3. Structural Optimization of TI Assemblies

Algorithm 2 Algorithm of structural optimization on a TI assembly P to improve its stability.

1: function STRUCTURALOPTIMIZATION(P)

2: S ← StabilityAnalysis(P) . See Section 3.5.1

3: if S = Interlocking then
4: return

5: else if S = NonEquilibrium then
6: if OptimizeAssembly(P, −z) 6= Success then
7: return
8: end if
9: end if

10: Φ← ComputeStabilityMeasure(P) . See Section 3.6

11: if Φ= 180◦ then
12: return

13: else if Φ= 90◦ then
14: if OptimizeAssembly(P, {±x,±y,±z}) 6= Success then
15: return
16: end if

17: else

18: ω←ωc . ωc = 1.2 in our experiments

19: while ω>ωt do . ωt = 1.01 in our experiments

20: Φtagt ←ωΦ

21: {dk } ← ComputeTargetDirections(Φtagt, P)

22: if OptimizeAssembly(P, {dk }) = Success then
23: ω←ωc

24: P ← P∗ . P∗ is the optimized assembly
25: else
26: ω← δ ω . δ= 0.95 in our experiments
27: end if
28: end while
29: return
30: end if
31: end function

5.3.1 Compute Target Force Directions

Given a TI assembly P with stability measure Φ(P) ∈ [0◦,90◦), the radius of the largest inner

circle (centered at the origin) of the feasible section S(P) is tan(Φ); see again Figure 3.9(c). To

improve the stability measure from Φ to Φtagt =ωΦ (ω> 1), we need to modify the feasible

section and enlarge the radius of its largest inner circle from tan(Φ) to tan(Φtagt). To this end,

we approximate the target feasible section Stagt(P) with a convex polygon that completely

contains the target circle with radius tan(Φtagt). The vertices {vk },1 ≤ k ≤ K , of the polygon

should be as close as possible to the current feasible section S(P) to require minimal change

69

Chapter 5. Computational Design of Topological Interlocking Assemblies

Figure 5.10 – An example TI assembly before (top) and after (bottom) one step of our optimiza-
tion. (b&f) Histograms of vector rotation angles {αi j }, where each αi j = α (i.e., 20◦) before
the optimization. (c&d) Target force directions (in purple) in the feasible section and cone,
where current and target circles are colored in red. (g&h) The optimization goal is achieved by
including the target force directions in the optimized feasible section and cone.

to the geometry of the blocks. In our experiments, we choose K = 6 as a trade-off between

computation efficiency and approximation accuracy.

We initialize the vertices as a regular K -sided polygon that encloses the target circle and

optimize their positions to minimize their distances to the current feasible section S(P); see

supplementary material for details about the optimization (Appendix B.2). Figure 5.10-c

shows an example target feasible section Stagt(P) approximated with a hexagon using our

approach, together with the current and target inner circles. Each vertex of the target feasible

section (i.e., the hexagon) corresponds to a 3D force direction that is usually outside of the

current feasible cone G(P); see the purple lines in Figure 5.10-d. We denote these target force

directions corresponding to {vk } as {dk }.

5.3.2 Optimize TI Assembly

Given the set of target force directions {dk }, the goal of our optimization is to include each

direction dk in the feasible cone G(P∗) of the optimized assembly P∗. If this optimization

succeeds, we enlargeΦtagt, recompute the target force directions {dk }, and repeat the optimiza-

tion. Otherwise, we have to lower the optimization goal by decreasing Φtagt, and repeat the

optimization. Our optimization terminates when the stability measure Φ cannot be improved

any more; see again Algorithm 2.

70

5.3. Structural Optimization of TI Assemblies

Figure 5.11 – A variety of patterns supported by our tool for designing TI assemblies. The
surface tessellations can be generated by lifting 2D tessellations (see the boxed images) using
conformal maps (the left four columns), manually designed by users (top two patterns in the
rightmost column), or created as a surface Voronoi diagram (bottom pattern in the rightmost
column).

Problem Formulation. Our optimization can be formulated as:

{α∗
i j } = argmin

{αi j }

K∑
k=1

E(P, dk) (5.1)

s.t. Area(Cl) ≥ Athres, ∀ contact Cl

max(αmin,αmin
i j) ≤αi j ≤ min(αmax,αmax

i j)

where E(P,dk) quantifies the assembly’s infeasibility to be in equilibrium under external

forces along direction dk ; Athres is the minimum allowable contact size among the blocks (for

face-face contacts only); and [αmin,αmax] is the user-specified range for every αi j to preserve

the assembly appearance while [αmin
i j ,αmax

i j] is the range for constructing blocks with valid

geometry (see again Figure 5.8-c).

We compute the energy E(P, dk) following the approach in [Whiting et al., 2012], where the

key idea is to allow tension forces to act as “glue” at block interfaces to hold the assembly

together, to penalize the tension forces, and to use their magnitude to quantify the infeasibility

to be in static equilibrium.

In detail, we first express each contact force f c
l at vertex c of contact Cl in terms of compression

71

Chapter 5. Computational Design of Topological Interlocking Assemblies

and tension forces using the difference of two non-negative variables:

f c
l = f c+

l − f c−
l f c+

l , f c−
l ≥ 0 (5.2)

where f c+
l and f c−

l are the positive and negative parts of f c
l , representing the compression and

tension forces, respectively. Our objective is to minimize tension forces between the blocks in

the assembly P under external forces along direction dk , subject to the equilibrium constraint:

E(P, dk) = min
{fk }

fT
k Hfk (5.3)

s.t. Aeq ·Fk = Wk

where fk is the vector of contact forces represented as { f c+
l , f c−

l }, H is a diagonal weighting

matrix for the tension (large weights) and compression (small weights) forces, Wk is the vector

of external forces acting on each block along direction dk , and Fk is the vector of contact

forces.

Optimization Solver. Our optimization in Equation 5.1 is very similar to the equilibrium

optimization of 3D masonry structures [Whiting et al., 2012]. Hence, we solve our optimiza-

tion following the gradient-based approach in [Whiting et al., 2012] with several important

differences:

1. Our optimization aims to achieve static equilibrium under forces along each target force

direction in {dk } respectively, rather than along a single gravitational direction.

2. Our assemblies do not rely on friction, so we eliminate the friction constraints in the

equilibrium condition in Equation 5.3.

3. We compute the gradient of the energy E (P,dk) with respect to the vector rotation angles

{αi j }, while [Whiting et al., 2012] computes it with respect to the positions of the block

vertices; see the supplementary material for derivations of our gradients (Appendix B.3).

Figure 5.10 shows example TI assemblies before and after our optimization for a set of fixed

target force directions {dk }. The histograms of the vector rotation angles {αi j } show that our

optimization adaptively adjusts these angles to make the assembly in static equilibrium for

each of these force directions.

72

5.4. Results and Discussion

Figure 5.12 – Our method allows creating stable TI assemblies, indicated by the green feasible
cones, even for design surfaces that are not self-supporting.

5.4 Results and Discussion

We implemented our tool in C++ and OpenGL, and employed MOSEK [ApS, 2019] and Kni-

tro [Artelys, 2019] for solving our optimizations. We conducted all experiments on an iMac

with a 4.2GHz CPU and 32GB memory. Our tool supports a variety of patterns as illustrated

in Figure 5.11. We tested our design and optimization pipeline on a wide range of surfaces

in Figure 5.13, e.g., FREE HOLES with high genus, FLOWER with zero mean curvature (i.e.,

minimal surface), and SURFACE VOUGA with both positive and negative Gaussian curvature.

Figure 5.12 shows that our tool allows generating structurally stable TI assemblies from non-

self-supporting surfaces, i.e. with a flat part or even an inverted bump on the top.

Table 5.1 summarizes the statistics of all the results presented in this chapter. The third to

sixth columns list the total number of parts, the total number of contacts, and the number of

contacts for each specific type, respectively. As can be seen, face-face contacts are dominant in

all the results. The seventh to ninth columns show the stability measureΦ before and after the

optimization, and the interlocking test result on the assembly. In general, stability improves

significantly; e.g., from non-equilibrium to Φ = 53.8◦ for SURFACE VOUGA, from Φ = 33.8◦

to global interlocking for HYPERBOLIC. One interesting observation in our experiments is

that TI assemblies constructed from a minimal surface are easy to be globally interlocking,

even without structural optimization, e.g., ROOF in Figure 5.1 and FLOWER in Figure 5.13. The

tenth and eleventh columns show timing statistics of the TI geometry initialization from given

parameters (in milliseconds) and the complete structural optimization on the geometry (in

minutes), respectively.

Fabricated Prototypes. We fabricated two TI assemblies designed by our tool, ROOF in

Figure 5.1 and IGLOO in Figure 5.6, using an SLS 3D printer with PA 2200 polyamide material.

To ensure assemblability of the structure, we break the boundary frame into two separated

components. We compute the assembly sequence based on disassembly. Starting from one

boundary component as the key, we iteratively identify blocks that can be taken out from

the structure, until the remaining boundary component. Figure 5.15 shows the assembly

73

Chapter 5. Computational Design of Topological Interlocking Assemblies

Figure 5.13 – TI assemblies of various shapes and their corresponding feasible cones (except
those that are globally interlocking). From left to right and then top to bottom: BLOB, SPINDLE,
FLOWER, TORUS, HYPERBOLIC, PEANUT, PENTAGON, SIX, BUGA PAVILION, VASE, SURFACE

VOUGA, and FREE HOLES.

Figure 5.14 – Tilt analysis experiments on the 3D printed IGLOO to validate its stability.

Figure 5.15 – Assembly sequence of (top) ROOF and (bottom) IGLOO, where the blocks and the
boundary frame (in two components) are shown on the left. 3D printed formworks are used to
support incomplete structures during the assembly.

74

5.4. Results and Discussion

Table 5.1 – Statistics of the resulting TI assemblies in this chapter.

Figure 5.16 – Example shapes for which the optimization does not find an equilibrium under
gravity.

sequence of the two structures. Once all blocks are assembled, we close the boundary frame by

adding the key boundary component, which is connected to its counterpart using integrated

magnets. Figure 5.1 and 5.14 show physical experiments, including the tilt analysis, conducted

75

Chapter 5. Computational Design of Topological Interlocking Assemblies

on the two fabricated models, which validate their stability under different gravity directions.

In particular, ROOF in Figure 5.1 is stable under arbitrary orientations as predicted by its global

interlocking property. Please watch video https://youtu.be/EUm6IIdk2XM for demos.

5.5 Limitations and Future Work

Our work has several limitations that open up interesting directions for future research.

First, not all input designs are suitable for our method. For certain models, for example,

closed surfaces or surfaces with a significant concave cavity, our method does not find an

equilibrium under gravity; see Figure 5.16 for two examples. In addition, we make a number

of idealized assumptions. We model the boundary frame as a single part yet break the frame

into two subparts for fabrication and assembly, which might affect prediction accuracy of our

computational method. We also assume rigidity and perfect accuracy of the assembly blocks.

For practical applications, questions related to fabrication tolerances and their effect on the

global assembly are important, as accumulation of fabrication errors could lead to structural

failure of a supposedly stable assembly.

Our stability measure considers load-induced external forces acting on the center of gravity

of each block. As a consequence, our optimization only aims for static equilibrium under all

possible gravity directions yet not under all possible force and torque configurations. This also

means that we currently do not directly optimize for globally interlocking assemblies (see also

Figure 3.8). Formulating a stability measure and corresponding optimization to support all

possible force and torque configurations would be an interesting future work.

Our structural optimization adapts the rotation angles {αi j } of the augmented vectors while

keeping the surface tessellation fixed. Extending the method to also optimize the tessellation

is an interesting research challenge. Another possible extension is to also consider non-convex

blocks or curved contact surfaces. Other interesting future work is on finding optimal assembly

sequences, e.g. with respect to the required support structure, improving the computational

performance of the optimization, or analyzing and optimizing structural stability under

element failure. Finally, interesting theoretical questions emerge. For example, what is the

class of surfaces for which a globally interlocking assembly with convex blocks is possible? We

expect minimal surfaces to be in this class, but we do not yet have a proof of this conjecture.

5.6 Acknowledgments

We thank the reviewers for their valuable comments, Martin Kilian for providing surface

models of BLOB, PENTAGON, and FREE HOLES, Daniele Panozzo for providing the SURFACE

VOUGA model, and Julian Panetta, Mina Konaković-Luković for proofreading the paper. This

work was supported by the Swiss National Science Foundation (NCCR Digital Fabrication

76

https://youtu.be/EUm6IIdk2XM

5.6. Acknowledgments

Agreement #51NF40-141853) and the SUTD Start-up Research Grant (Award Number: SRG

ISTD 2019 148).

77

6 Modeling and Optimizing Cone-joints
for Complex Assemblies

Figure 6.1 – Our computational framework optimizes cone joints for designing assemblable
and stable structures with a variety of geometric forms: (a) planar, (b) volumetric, (c) frame,
and (d) shell structures.

We present a computational framework for modeling and optimizing complex assemblies

using cone joints. Cone joints are integral joints that generalize traditional single-direction

joints such as mortise and tenon joints to support a general cone of directions for assembly.

This additional motion flexibility not just reduces the risk of deadlocking for complex joint

arrangements, but also simplifies the assembly process, in particular for automatic assembly

by robots. On the other hand, compared to planar contacts, cone joints restrict relative part

movement for improved structural stability. Cone joints can be realized in the form of curved

contacts between associated parts, which have demonstrated good mechanical properties

such as reduced stress concentration. To find the best trade-off between assemblability and

stability, we propose an optimization approach that first determines the optimal motion cone

for each part contact and subsequently derives a geometric realization of each joint to match

this motion cone. We demonstrate that our approach can optimize cone joints for assemblies

with a variety of geometric forms, and highlight several application examples.

6.1 Introduction

An assembly is a collection of parts that are deliberately arranged to have a specific functional-

ity and/or form. The majority of man-made objects are designed as assemblies to accomplish

a certain task (machines, vehicles), to make fabricating large objects feasible or cheaper (build-

79

Chapter 6. Modeling and Optimizing Cone-joints for Complex Assemblies

ings, furniture), or simply to entertain (puzzles, toys). A necessary condition for an assembly

to be practically used is structural stability. To this end, adjacent parts in an assembly have to

be properly joined such that no unwanted relative part motions will happen under external

forces.

Parts in an assembly are typically joined by glue, nails, screws, or some standard connec-

tors. However, these joining methods do not encourage disassembly and re-assembly, and

sometimes harm the external appearance of the assembly. With the advance of digital fabri-

cation techniques, integral joints are more and more widely used for designing and making

assemblies with intricate geometry. Integral joints are implicitly defined as the portion of each

individual part that is in contact with adjacent parts. These joints can simplify the assembly

process significantly as a sequence of operations to insert individual parts, without the need

of installing external connectors with tools [Fairham, 2013].

Integral joints are typically designed in a way that two parts can be separated by translating

one part along a single direction, e.g., mortise and tenon joints and dovetail joints. We call

these joints single-direction joints; see Figure 6.2(a). Single-direction joints are widely used

in furniture, timber structures, and 3D printed assemblies due to their strong capacity to

strengthen structural stability. However, complex arrangements of single-direction joints

could lead to deadlocking, making the assembly physically unrealizable. Moreover, these

joints may complicate the assembly process as inserting a part precisely along a certain

direction to fit the other could be a challenging task, especially in robotic assembly.

On the other end of the spectrum are integral joints with planar contacts (see Figure 6.2(b)),

which are very common in unreinforced masonry structures [Whiting et al., 2009, Panozzo

et al., 2013]. Advantages of planar contacts include simple geometry, ease of fabrication,

avoidance of local stress concentration. Yet, these joints have the weakest capacity to restrict

relative part motion. Incomplete assemblies with planar contacts usually require additional

supports for being stable (i.e., in equilibrium) [Deuss et al., 2014].

In this chapter we study integral joints that generalize single-direction joints in terms of

restricting relative part motion. We focus on making use of these joints for designing structures

that are assemblable and stable. We call these joints cone joints since they allow one part to be

separated/inserted relative to the other by translation along any direction within a motion

cone. A cone joint is a single-direction joint if its translational motion cone contains a single

direction. And a cone joint degenerates into a planar contact if its translational motion cone

becomes a half sphere. Cone joints are typically realized in the form of curved or piecewise-

planar contacts between two parts (see Figure 6.2(c&d)), which have been demonstrated to

have good mechanical properties such as reduced stress concentration in building structurally

stable assemblies [Dyskin et al., 2003b, Javan et al., 2016]. Parts with cone joints can be

easily fabricated with 3D printing, CNC milling, and even hot-wire cutting for large-scale

objects [Duenser et al., 2020].

Although cone joints have been successfully used in stable planar structures (e.g., brick-based

80

6.1. Introduction

Figure 6.2 – Two parts joined in different ways using: (a) a single-direction joint, (a) a planar
contact, and cone joints with (c) a curved or (d) a piecewise-planar contact (contacts are
shown in purple). The four assemblies are all in equilibrium under gravity yet the translational
motion space of taking out the green part varies (see cones on the top).

flooring systems [Weizmann et al., 2017]), assembly-based 3D printing [Araújo et al., 2019], and

space-filling blocks [Akleman et al., 2020], little is known about how the variation in geometry

of cone joints affects a structure’s assemblability and stability, not to mention optimizing the

geometry of cone joints for these two design goals. In this chapter, assemblability has a two-

fold meaning: 1) parts can be assembled into the final structure without collision; and 2) each

part can be inserted by translating along any direction within a sufficiently large circular cone,

aiming to simplify the assembly process. Stability means a structure is in equilibrium under

known external forces such as gravity. To address the challenge of modeling and optimizing

complex assemblies with cone joints, we make the following technical contributions:

1. We establish a connection between the geometry of a joint and its motion space based

on convexity theory. We show that the joint motion space is always convex and present

a sampling-based approach to compute the motion space of curved-contact joints.

2. We present a motion-based method for static analysis of assemblies with cone joints,

which is dual to existing force-based methods. The strength of this new method is to

quantify structural stability and assemblability coherently in motion space.

3. We develop an optimization approach to construct cone joints for designing structures

that are assemblable and stable, assuming the assembly sequence is given. Our frame-

work iterates between a kinematic design stage that determines the required motion

cone for each part contact and a geometric realization stage that finds the geometry of

each joint to match this motion cone.

In this chapter, we model the geometry of cone joints using a simple parametric model to

demonstrate the core functionality of our computational framework. Other parametric models

can be easily integrated into our framework since they affect only the geometric realization

81

Chapter 6. Modeling and Optimizing Cone-joints for Complex Assemblies

Figure 6.3 – Model cone joints, where the principal direction u = +y . (a) An initial linear
contact between two parts Pi and P j ; (b) an n-type cone joint; and (c) a z-type cone joint. The
curved contact of each cone joint is modeled as a cubic spline defined by a few parameters
(e.g., w1, h, and w2 in (b)).

stage, but not the motion space computation, motion-based static analysis, and kinematic

design stage.

6.2 Modeling Assemblies with Cone Joints

In this section, we first present a parametric model to represent the geometry of cone joints

with curved contacts. Next, we introduce a method to model assemblies with cone joints.

6.2.1 Modeling Geometry of Cone Joints

We define a contact as a curve segment (in 2D) or surface patch (in 3D) that lies exactly on

two adjacent parts in an assembly. Each contact is initialized as a linear segment (in 2D) or

a planar surface (in 3D). Starting from each initial contact, a cone joint can be modeled by

modifying the geometry of the contact (i.e., making it curved). We propose a parametric model

to represent the geometry of these cone joints. To facilitate understanding, we illustrate our

parametric model mainly on 2D examples, and briefly explain how it can be extended to 3D.

One joint between two parts Given two 2D parts, Pi and P j , with an initial linear contact

defined by two endpoints p1 and p2, a local coordinate system is defined in a way that the

82

6.2. Modeling Assemblies with Cone Joints

Figure 6.4 – Model cone joints when the principal direction u deviates from the y-axis. (a&b)
Define a new local coordinate system such that +y∗ = u. (c) Model the joint geometry in the
new local coordinate system following the same method as u =+y.

origin is at p1 and the +x-axis is along vector p2−p1; see Figure 6.3(a). We model the geometry

of the cone joint between the two parts as a continuous curved contact. We parametrize the

curved contact by using a cubic spline that interpolates the two endpoints p1 and p2 (see

Figure 6.3(b&c)). According to the shape of the curved contact, joints can be classified into

two classes:

1. n-type joint involves a concavity on one part and an extrusion on the other part, similar

to the mortise-and-tenon joint. The joint shape is adjustable by three control points q1,

q2, and q3 inserted between the two endpoints p1 and p2; see Figure 6.3(b).

2. z-type joint can be considered a combination of two n-type joints with opposite orien-

tations. The joint shape is adjustable by four control points q1, q2, q3, and q4 inserted

between the two endpoints p1 and p2; see Figure 6.3(c).

Compared with n-type joints, z-type joints generally have stronger capacity to restrict rel-

ative part motion, at the cost of more complex joint geometry and higher chance of stress

concentration. In our experiments, we set bounds for the joint parameters to preserve their

appearance and structural soundness.

To ensure that P j can translate along a principal direction u while Pi is fixed, the contact curve

has to be a height field along u, taking the initial contact p1p2 as the base. Figure 6.3(b&c)

shows example cone joints where P j is removable along u =+y. When the principal direction

u deviates from the y-axis, we need to define a new local coordinate system where the origin is

still at p1 yet +y∗ = u; see Figure 6.4(a&b). Next, we transform the endpoint p1 and p2 into this

new coordinate system, and follow the same method as u =+y to model the joint geometry as

a cubic spline; see Figure 6.4(c).

83

Chapter 6. Modeling and Optimizing Cone-joints for Complex Assemblies

Multiple joints between two parts Two initial parts may have more than one linear contact

when the parts have non-convex shape (see Figure 6.5(a-c)). Ideally, we construct a cone

joint for each linear contact. To this end, we assign a principal direction uk to each contact

C k , and follow the above method to model the joint. To ensure that the two parts always can

be separated, all assigned uk ’s should have the same value; see Figure 6.5(d&e). Sometimes,

some initial contact could be unsuitable for modeling a joint, e.g., when the contact is too

small. In this case, we simply skip the joint modeling for that contact; see Figure 6.5(c&f) for

an example.

Cone joints in 3D The parametric model for cone joints in 2D can be easily extended to 3D.

In the following, we take a 3D n-type joint as an example to illustrate the extension, for which

the initial contact is a 3D polygon and the principal direction is u =+z. We model the 3D joint

geometry as a parametric surface based on bivariate polynomials of degree 3 defined on a 3D

rectangular region (l1 × l2) within the initial contact. Hence, we first find a large rectangular

region inside the initial contact (Figure 6.6(a)). Next, we divide the rectangular region into 9

rectangles with 16 interpolation points {pi j } in total (Figure 6.6(b)). We assign the middle four

points a height value h and the remaining points zero height, and apply bicubic interpolation

to find the joint contact surface passing through these control points (Figure 6.6(c)). We show

in Section 6.3 how our simple parametric model is well suited for optimization.

Figure 6.5 – Model cone joints when (a) Pi , (b) P j , or (c) both Pi and P j have non-convex
shape, resulting multiple contacts between the two parts. (d&e) The principal directions of
the two contacts should be the same to ensure P1 and P2 can be separated. (f) It is possible to
skip joint modeling for some initial contacts that are too small, e.g., the orange one.

84

6.2. Modeling Assemblies with Cone Joints

Figure 6.6 – Model n-type cone joints in 3D. (a) Identify a large rectangular region inside an
initial 3D planar contact (i.e., the dashed polygon). (b) Compute sixteen control points, where
h is the height of the four points in the middle. (c) Joint geometry modeled as a bicubic surface.

6.2.2 Modeling Assemblies with Cone Joints

In an assembly with n ≥ 2 parts, we denote the parts as {Pi }, 1 ≤ i ≤ n. We assume a user-

specified assembly sequence, and name each part according to its assembly order (i.e., Pi is

the i th assembled part). In the initial assembly with planar contacts, we model each part as a

polyhedron. Faces in each part can be classified as contact and non-contact faces, according

to whether the part is in contact with its neighbors through that face. Non-contact faces are

allowed to be augmented with geometric features to enrich the assembly’s appearance.

Figure 6.7 – Model cone joints in an assembly. (a) An initial assembly with three parts. (b) A
modeled assembly that is disassemblable by taking out P3 first. Examples of three cases that
should be avoided: (c) cone joints intersect with one another; (d) cone joints are too close to
one another, leading to structurally weak parts; and (e) motion cones of the joints are not well
planned, leading to a deadlocking assembly.

85

Chapter 6. Modeling and Optimizing Cone-joints for Complex Assemblies

Figure 6.8 – Our computational design framework. (a) Our input is an initial assembly with pla-
nar contacts. (b) Motion-based representation of the initial assembly, where the joint motion
cones (3D) and part motion cones (2D) are colored in magenta and gray respectively. (c&d)
Kinematic design satisfies the two design goals by iteratively finding the required joint motion
cones (colored in blue). (e-h) Geometric realization finds joints geometry independently to
satisfy the corresponding joint motion cone. (i) The resulting assembly.

The initial planar contacts between each pair of adjacent parts, say Pi and P j , are denoted

as {C k
i , j }. Each {C k

i , j } typically contains one contact, especially when initial parts are convex;

see Figure 6.7(a) for an example. The cone joints modeled from the initial contacts {C k
i , j } are

denoted as {J k
i , j }. The geometry of each joint J k

i , j is parameterized by a small set of parameters

Φk
i , j , which include the joint J k

i , j ’s principal direction uk
i , j (see Figure 6.7(b)) and the geometric

parameters illustrated in Figure 6.3(b&c).

To ensure that parts (with cone joints) are fabricable and assemblable, several cases of joint

configurations should be avoided by a careful selection of the joint parameters {Φk
i , j }. First,

intersection among the cone joints should be strictly avoided to ensure that the assembly

is physically realizable. For example, the extrusion portions of J1,2 and J1,3 in P1 should not

intersect with each other like in Figure 6.7(c). Second, when a part has multiple cone joints,

those cone joints should maintain a certain distance to one another to ensure structural

soundness of the part. For example, part P2 in Figure 6.7(d) is structurally weak since joints

J2,3 and J1,2 are too close. Lastly, deadlocking should be avoided to ensure that parts can be

physically assembled; compare Figure 6.7(b&e).

6.3 Designing Assemblies with Cone Joints

Taking an assembly with planar contacts as an input, our goal is to make it structurally stable

and assemblable by constructing cone joints among the parts; see Figure 6.8(a&i). Here,

structural stability means that the assembly is in equilibrium under known external forces

{wi } (e.g., gravity of each part) while assemblability means that each individual part can be

inserted without colliding with assembled parts, by translation along any direction within

86

6.3. Designing Assemblies with Cone Joints

a sufficiently large cone. We model this required assemblability cone for each part Pi as a

circular cone K (di ,α) for simplicity, where di is the cone’s axis and α is the cone angle.

To obtain a structurally stable assembly, we prefer that each constructed cone joint can restrict

the relative motion between the associated parts as much as possible. In the limit, each joint

becomes a single-direction joint. However, to satisfy the goal of assemblability, single-direction

joints should be strictly avoided and each constructed joint should have enough tolerance in

the insertion direction of associated parts. Hence, our challenge is to find the geometry of cone

joints that satisfy these two conflicting goals (i.e., stability and assemblability) simultaneously.

6.3.1 Overview of our approach

To address this problem, one straightforward approach is to directly search parameters that

define the geometry of cone joints, e.g., by using a gradient-based method similar to [Whiting

et al., 2012]. However, this approach has several limitations. First, the test of equilibrium could

be very slow due to the dense sampling of cone joints; see Section 3.2. Second, the approach

heavily relies on the initial geometry of the joints. Changing joint geometry significantly or

even joint type requires restarting the whole search process.

Inspired by our motion-based equilibrium method in Section 3.3, we propose a new com-

putational approach that is able to search the joint parameters efficiently and flexibly; see

Figure 6.8. The key idea is to separate the search process into two stages: kinematic design

and geometric realization, by introducing an intermediate motion-based representation of the

assembly. In the kinematic design stage, we aim to satisfy the two design goals kinematically,

by searching the motion cone required for each cone joint; see Figure 6.8(c&d). In the geomet-

ric realization stage, we compute for each joint suitable geometric parameters to satisfy the

required motion cone; see Figure 6.8(e-h). The strength of our approach is that the kinematic

design stage converts the two high-level design goals into a set of local requirements on the

geometry of each individual joint. This allows us not just to search geometric parameters

independently for each joint, but also to try as many initial joint parameters/types as possible

to avoid local minima. Moreover, the kinematic design stage itself is very efficient since it

purely works in motion space and focuses on the required motion cones with very few faces.

6.3.2 Kinematic Design

To facilitate discussion, we assume a single planar contact Ci , j between each pair of adjacent

parts Pi and P j in an assembly, from which our approach will construct a cone joint Ji , j by

optimizing its parameters Φi , j defined in Section 6.2.2. The kinematic design stage aims at

finding a required motion cone V̄i , j for each cone joint Ji , j such that the two design goals can

be satisfied kinematically. In the following, we first present a motion-based representation of a

given assembly and then describe an optimization to search {V̄i , j } based on this representation.

87

Chapter 6. Modeling and Optimizing Cone-joints for Complex Assemblies

Motion-based representation An assembly {Pi } can be represented by a parts-graph, where

each node represents a part and each edge represents the contact/joint between the two

associated parts. The known part assembly order can be easily encoded in the parts-graph by

adding a direction for each edge. More precisely, each directed edge from P j to Pi indicates

that Pi will be assembled before P j (i.e., i < j according to our notation); see Figure 6.8(b).

Our motion-based representation augments this directed parts-graph with two pieces of

information. We associate to each edge from P j to Pi a motion cone Vi , j allowed by the

contact Ci , j or joint Ji , j . The geometry of the motion cone Vi , j is defined by all possible

infinitesimal rigid motions of P j to separate it from a fixed Pi ; see again Figure 3.4(a&c). For

each node P j , we define a motion cone V j of all possible infinitesimal translational motion to

take out P j from the partial assembly {P1, ...,P j−1}. Denote the indices of P j ’s adjacent parts

in the given assembly as A(j). The motion cone V j for taking out P j can be represented as:

V j =
⋂

i< j , i∈A(j)
T (Vi , j) (6.1)

where T (·) is an operator that converts a rigid motion cone into a translational motion cone

by ignoring the rotational component. This is because we assume translational motion for

assembling the parts due to its simplicity of execution. V j is called the part motion cone and

used for checking (dis)assemblability while Vi , j is called the joint motion cone and used for

static analysis.

Given the motion-based representation, we are able to easily test whether the two design goals

are satisfied. For equilibrium, we run the optimization in Equation 3.17, in which each joint

motion cone Vi , j is defined in a global coordinate system associated with the assembly rather

than the joint local coordinate system. To verify assemblability, we search whether each part

motion cone V j contains a circular cone K (−d j ,α), where the cone angle α is a constant and

the cone direction d j is unknown. Note that the circular cone K (−d j ,α) is a disassemblability

cone, which is actually a reflection of the assemblability cone K (d j ,α) in the motion space.

Search for required joint motion cones {V̄i , j } We model each required joint motion cone

V̄i , j as a polyhedral cone with a small number of faces to speed up the static analysis process.

In particular, the conic section of each required joint motion cone V̄i , j is a rectangle (4 faces)

for 2D joints and 5D cuboid (10 faces) for 3D joints, defined in the joint local coordinate

system; see Figure 6.9(top). When transformed to the global coordinate system, these conic

sections will not be rectangle/cuboid any more; see Figure 6.9(bottom). We parameterize the

geometry of each motion cone V̄i , j in 2D (3D) with a few variables denoted as Ψi , j = {ψi , j }.

Based on the required joint motion cones {V̄i , j }, we compute the corresponding part motion

cones {V̄ j } according to Equation 6.1.

Given the required joint motion cones {V̄i , j } as well as the known external forces {wi }, we

compute the assembly’s infeasibility measure for equilibrium by solving Equation 3.17. Based

88

6.3. Designing Assemblies with Cone Joints

Figure 6.9 – (a&d) Given a joint, (b&e) its actual and required joint motion cones as well as
(c&f) their conic sections are colored in magenta and blue, respectively. When changing from
(top) the joint local coordinate system to (bottom) the assembly global coordinate system, the
motion cones change accordingly. An example bound of the required joint motion cone is
colored in grey in (c&f), for the joint’s principal direction u =+y .

on our modeling, each required joint motion cone V̄i , j can be converted back to 4 (10) lin-

ear constraints in our infeasibility energy optimization for each 2D (3D) joint. With very

few constraints, the optimization can be performed efficiently. We also satisfy the goal of

assemblability by requiring the following constraint for each part motion cone V̄ j :

K (−d j ,α) ⊆ V̄ j (6.2)

To this end, the kinematic design can be formulated as a problem to search for the required

joint motion cones {V̄i , j } by solving the following optimization:

min
Ψi , j ,d j

E(w, {V̄i , j })

s.t. K (−d j ,α) ⊆ V̄ j ,
(6.3)

where E is the motion-based infeasibility measure in Equation 3.17. In practice, we avoid too

small motion cones for the cone joints such that the motion cones can be realized by joint

geometry later. Hence, we set a bound for the parametersΨi , j of each required joint motion

cone V̄i , j ; see Figure 6.9(c&f). The above optimization can be solved by using an off-the-shelf

interior-point method. Please refer to the supplementary material for details (Appendix C).

Once we have obtained the required joint motion cones {V̄i , j }, we should require Vi , j ⊆ V̄i , j ,

89

Chapter 6. Modeling and Optimizing Cone-joints for Complex Assemblies

where Vi , j is the actual joint motion cone, to ensure the resulting assembly is in equilibrium. To

satisfy the goal of assemblability, we should require K̂ (−d j ,α) ⊆ V j ⊆ Vi , j , where K̂ (−d j ,α) =
K (−d j ,α)× {0}2m−3, m = 2,3 is the circular cone K (d j ,α) of a mD joint represented in a

higher dimensional space (i.e., represent translational motion cone in the rigid motion space).

In summary, the kinematic design stage converts the two design goals into a set of local

requirements for each cone joint Ji , j to be constructed at the geometric realization stage:

K̂ (−d j ,α) ⊆ Vi , j ⊆ V̄i , j , for each Ji , j (6.4)

6.3.3 Geometric Realization

Geometric realization aims to construct the geometry of each cone joint to satisfy the con-

straint on the joint motion cone Vi , j in Equation 6.4. According to Theorem 2, Vi , j can be

approximated by sampling the joint’s generalized normal space Ñi , j = {nl (Φi , j)} and comput-

ing the dual cone, i.e., Vi , j ≈ Ñ∗
i , j .

To achieve our goal, we could optimize the joint shape (i.e., search the joint design parameters

Φi , j) such that the joint motion cone Vi , j satisfies the constraint in Equation 6.4. However,

computing the joint motion cone is already very time-consuming, let alone doing shape opti-

mization for it. A better way is to perform the shape optimization in the generalized normal

space Ñi , j , which is directly controlled by the joint parameters Φi , j . Lemma 1 provides a strat-

egy to transform the constraints from the motion space (see Equation 6.4) to the generalized

normal space:

V̄∗
i , j ⊆ cone(Ni , j) ⊆ K̂ (−d j ,α)∗ (6.5)

in which the direction of the subset symbol "⊆" is reversed due to the dual operator.

In particular, the dual of the required joint motion cone V̄i , j , a polyhedral cone, is just the

minimum convex cone envelope of the polyhedral cone’s face normals {fk (Ψi , j)}:

V̄∗
i , j = cone({fk (Ψi , j)}) (6.6)

And the dual of the circular cone K̂ (−d j ,α) is still a circular cone, just with a cone angle π
2 −α:

K̂ (−d j ,α)∗ = (K (−d j ,α)× {0}2m−3)∗

= K (−d j ,
π

2
−α)×R2m−3

(6.7)

We illustrate the relation between the dual cones using their conic sections for 2D assemblies

in Figure 6.10. The required disassemblability cone is an infinitely long strip, and the required

joint motion cone is the minimum convex cone envelope of face normals {fk }. The minimum

convex cone envelope of Ni , j has to stay in between the conic sections of these two required

cones. To this end, we formulate our joint shape optimization as an energy minimization

90

6.3. Designing Assemblies with Cone Joints

Figure 6.10 – Geometric realization process for a single joint. From left to right, initial planar
contact, intermediate joints, and resulting joint. From top to bottom, joints represented
in geometric space, motion space, and generalized normal space, respectively. The conic
sections of the required joint motion cones are shown in blue, the required disassemblability
cones in orange, and the actual joint motion cones in magenta.

problem:
min
Φi , j

∑
l ,k

dist(cone({nl }), fk)

s.t. nl ∈ K (−d j ,
π

2
−α)×R2m−3

(6.8)

where dist(cone({nl }), fk) is the distance between the minimum convex cone envelope cone({nl })

and the face normal fk . In particular, dist(cone({nl }), fk) = 0 when the face normal fk is inside

the cone({nl }). We compute the distance using quadratic programming:

dist(cone({nl }), fk) = min
λl ≥ 0

‖fk −
∑

l
λl nl‖2

(6.9)

One additional constraint is to maintain a certain distance between each joint Ji , j and the

boundary of parts Pi and P j to ensure validity and structural soundness of these two parts;

see again Figure 6.7(c&d). To this end, we combine the shape of parts Pi and P j , and compute

a signed distance function to the shape boundary; see Figure 6.11(b&d). The constraint is

satisfied by requiring the distance value of each point on the joint Ji , j to be larger than a

threshold; see Figure 6.11.

The initial values of joint parametersΦi , j can profoundly influence the result. Fortunately, the

91

Chapter 6. Modeling and Optimizing Cone-joints for Complex Assemblies

geometric realization is performed independently among the joints (see again Figure 6.11), and

each joint optimization problem only has a few variables. Hence, for each joint, we try as many

initial values as possible to avoid local minima by uniformly sampling the variables. Similar

to the optimization at the kinematic design stage, the joint optimization at the geometric

realization stage can be solved by an off-the-shelf interior-point method.

In practice, we need to iterate between the kinematic design and geometric realization stages

several times. This is because each part’s centroid and weight (i.e., volume) are assumed to be

fixed at the kinematic design stage, yet are subject to change after joints are constructed in the

geometric realization stage. To alleviate this issue, our approach prefers not to have dramatic

changes on the joint geometry at each iteration. Occasionally, the geometric realization stage

may not be able to find any joint geometry that satisfies the required motion cone computed

at the kinematic design stage. To this end, updating the lower bound for the required joint

motion cones according to the current joint geometry (i.e., the new bound is the same as the

joint motion cone) would facilitate the search of joint geometry in the next iteration.

6.4 Results

We implemented our tool in C++ and libigl [Jacobson et al., 2018], and employed Knitro [Artelys,

2020] for solving our optimizations. We conducted all experiments on a Linux workstation

Figure 6.11 – Geometric realization process on a 3-part assembly. Starting from (a) an initial
assembly, we (b) compute a distance function for the boundary of parts P1 and P2 to (c)
construct joint J1,2. Next, we (d) compute a distance function for the boundary of parts P2 and
P3 to (e) construct joint J2,3. (f) The resulting assembly. In (b&d) the distance functions, green
and red indicate small and large distance values, respectively.

92

6.4. Results

with an AMD Ryzen Threadripper 3990X 64-Core Processor and 128GB of RAM. We show

that our approach can handle assemblies with a variety of geometric forms, including planar,

volumetric, frame, and shell structures; see Figure 6.1. Thanks to the flexibility offered by

our cone joints, our approach can compute assemblies that are stable to different degrees,

e.g., equilibrium under gravity, stable under lateral forces, and single-key interlocking. Our

approach can also consider stability not just for the final assembly but also for intermediate

stages of the assembly process. By this, we can generate support-free structures that can be

assembled without using any support.

Statistics Table 6.1 summarizes the statistics of all the results presented in this chapter.

The third to seventh columns show if the result is 2D or 3D, the total number of parts, the

total number of joints, angle α of the required assemblability cone, one of the four features

mentioned above, and optimization time, respectively. The angle α is typically set as 5 degrees,

which is sufficient for inserting parts easily. We set a larger α for making the cone joints less

sharp (Figures 6.12(right) and 6.15) and a smaller α for making the assembly more stable

(Figure 6.13(c)). We can also not consider assemblability as a design goal by not setting any

value for angle α (Figure 6.14). Our approach typically takes less than 1 minute to generate 2D

results yet may take hours for 3D results due to the larger number of joints as well as more

variables to define the geometry of each joint.

Table 6.1 – Statistics of the results shown in this chapter.

93

Chapter 6. Modeling and Optimizing Cone-joints for Complex Assemblies

Figure 6.12 – Comparison of stability and assemblability of 4-part SCARECROWs with (left)
planar contacts, (middle) single-direction joints, and (right) our optimized cone joints.

Evaluation of cone joints We compare our optimized cone joints with planar contacts and

single-direction joints by designing three 2D puzzles; see Figure 6.12. To verify stability and

assemblability of these puzzles, we fabricate them with laser-cutting. Our experiment shows

that the puzzle with planar contacts is not in equilibrium under gravity; see Figure 6.12(left). To

assemble the puzzle with single-direction joints, we need to align each part with the partially

completed puzzle carefully before it can be successfully inserted; see Figure 6.12(middle).

Compared with these two puzzles, our puzzle with cone joints avoids the two issues by

achieving a good balance between stability and assemblability; see Figure 6.12(right). Please

watch the accompanying video for demos.

We compare our cone joints with planar contacts and standard mortise-and-tenon joints by

designing four 6-part SPHEREs. The sphere with planar contacts cannot be in equilibrium

under gravity, and the sphere with standard mortise-and-tenon joints are deadlocking; see

Figure 6.13 – Comparison of stability and assemblability of 6-part SPHEREs with (a) planar
contacts, (b) standard mortise-and-tenon joints, (c) our optimized cone joints, and (d) tilted
mortise-and-tenon joints derived from our result. The assembly in (a) is not stable while the
one in (b) is deadlocking.

94

6.4. Results

Figure 6.13(a&b). We show that our approach can make the sphere single-key interlocking

by constructing cone joints; see Figure 6.13(c). This is achieved by applying an external force

configuration on the assembly, where at each contact the external force tries to push the two

associated parts and separate them. The assembly is single-key interlocking if it passes our

equilibrium test under this external force configuration, assuming the key is held by other

means; see the supplementary material (Appendix C for a proof. Our design result can be

easily modified to derive some variants, e.g., to facilitate fabrication. For example, we can

replace each curved-contact joint with a tilted mortise-and-tenon joint based on the principal

direction u of the joint; see Figures 6.13(d) and 6.4. The resulting assembly is guaranteed to

be interlocking since a tilted mortise-and-tenon joint has a smaller motion cone than any

curved-contact joint.

Evaluation of our optimization To show the benefits of our design approach, we compare

it with a baseline approach that directly searches parameters of cone joints using a gradient-

based method, similar to [Whiting et al., 2012]. Both approaches take the same assembly

with planar contacts as input (Figure 6.14(a)), and generate curved-contact joints to make the

assembly be in equilibrium (Figure 6.14(b&c)). Figure 6.14(d) shows the computation time of

the two approaches with respect to the number of parts. When the number of parts is small,

the computation time of the two approaches are comparable. However, the computation

time of the baseline increases dramatically when the number of parts is more than 16 since

the computation cost becomes dominated by the equilibrium test, which is expensive for

assemblies with many curved-contact joints. Thanks to the kinematic design stage, our

approach avoids executing the expensive equilibrium test frequently whenever changing

joints geometry. During the experiment, we find that the baseline approach sometimes can

find better solutions than ours, especially when the number of parts is small. For example,

when there are only two parts where the bottom one is fixed, the baseline creates a cone joint

that makes the assembly in equilibrium yet our approach fails to do so; see Figure 6.14(e). This

is because our kinematic design stage assumes the parts’ centroids are fixed, which actually

may change after joints have been constructed in the geometric realization stage.

Equilibrium puzzles We have used our approach to generate 2D/3D equilibrium puzzles.

Figure 6.1(a&b) shows two puzzles, M and HORSE, which cannot be in equilibrium if we simply

use planar contacts. This is because planar contacts cannot prevent the motion (e.g., sliding)

of some parts caused by gravity such as the two parts at the middle of M and the head part of

HORSE. Figures 6.15 shows a puzzle TREE as well as the fabricated result. Our designed cone

joints not only make the puzzle stable under gravity, but also provide a hint to find puzzle

pieces that should match with one another.

Given input assemblies that are far from an equilibrium state, our approach can still make it

stable. To demonstrate this, we create a sequence of input assemblies, where parts have the

same shape (except bottom ones) but have been tilted for a certain angle; see Figure 6.16(left)

95

Chapter 6. Modeling and Optimizing Cone-joints for Complex Assemblies

for an example input. Due to the parts arrangement, the larger the tilt angle is, the further

the assembly is from an equilibrium state. We construct cone joints for each input assembly

to make it be in equilibrium using our approach; see Figure 6.16 for three example results.

We observe that our optimized cone joints become more and more sharp when the tilt angle

increases since a sharp joint corresponds to a small motion cone. A drawback of these sharp

cone joints is that they may fail due to stress concentration. To alleviate this issue, additional

constraints on the joint shape can be enforced during the geometric realization stage.

Our approach can be extended to design support-free puzzles; see Figures 6.17 and 6.18. These

puzzles are in equilibrium for each intermediate assembly state, and thus can be assembled

Figure 6.14 – Comparison of our design approach with a baseline approach: (a) an example
input assembly; (b&c) a result generated by our approach; (d) computation time of the two
approaches with respect to the number of parts; and (e) an example case where the baseline
performs better.

96

6.4. Results

Figure 6.15 – Equilibrium puzzle TREE generated by our approach. From left to right: input
assembly, our result, and laser-cut puzzle.

without using any support. To generate these puzzles, we assume a predefined assembly

sequence, and take all the intermediate assemblies and the final assembly as input of our

kinematic design. We obtain the required joint motion cones by summing the infeasibility

energy in Equation 6.3 for all the input assemblies and solving the optimization. The geometric

realization is performed without any change.

Shell structures Shell structures with planar contacts can be used as masonries in architec-

ture. These structures are self-supporting if they can be in equilibrium under gravity [Panozzo

et al., 2013]. Shell structures with an inverted bump on the top usually cannot be self-

supporting; see LILIUM TOWER in Figure 6.1(d). Taking such a structure as input, our ap-

proach can make it self-supporting by creating cone joints for some of the planar contacts.

Our approach only modifies a small subset of the planar contacts since our gradient-based

optimization changes contact geometry only if it can reduce the infeasibility energy in Equa-

Figure 6.16 – Tilt experiment on (left) an input LEANING TOWER to verify the ability of our
designed cone joints to make an assembly stable. From left to right: the tilt angles of the three
results are 10, 20, and 30 degrees, respectively.

97

Chapter 6. Modeling and Optimizing Cone-joints for Complex Assemblies

Figure 6.17 – Support-free equilibrium puzzle LEANING TOWER with 15 degrees tilt angle (see
also Figure 6.16).

Figure 6.18 – Support-free equilibrium puzzle DEER. The input assembly is shown on the left
and parts that are fixed during the assembly process are colored in gray.

Figure 6.19 – An IGLOO shell with lateral stability designed by our approach.

tion 6.3.

In some applications (e.g., architecture), a shell structure should be in equilibrium under

not just gravity but also lateral forces (e.g., from wind). This lateral stability can be evaluated

by simulating a tilt analysis experiment, where the ground plane of the structure is tilted to

apply a lateral force to the structure caused by gravity. The lateral stability is measured by the

largest angle of tilting the ground plane without collapse of the structure [Wang et al., 2019].

Our approach can generate shell structures with lateral stability by a slight change on the

kinematic design stage. In detail, we sum the infeasibility energy E in Equation 6.3 for multiple

external force configurations (i.e., gravity, and lateral forces from different directions). The

assembly is considered as laterally stable if it is in equilibrium under any of the external force

configurations. Figure 6.19 shows a shell structure IGLOO that cannot be in equilibrium under

gravity if only planar contacts are used. By using our cone joints, we show that the structure

can be tilted for at most 35 degrees.

98

6.5. Limitations and Future Work

Frame structures Frame structures composed of rod-like parts are widely used in architec-

ture and furniture. In these structures, each part contacts others at its two ends and each

contact area is usually quite small. Our approach can optimize cone joints to make these

structures stable. The resulting cone joints look similar to single-direction joints; see PAVILION

in Figure 6.1(c). This is perhaps because these structures with planar contacts are far away

from an equilibrium state, and thus joints with a small motion cone are needed to make them

stable.

6.5 Limitations and Future Work

Our work has several limitations that open up interesting directions for future research. First,

the geometry of 2D/3D cone joints that can be supported by our current parametric model

is quite limited. Exploring more complex parametric models and studying their impact on

the motion cones would be an interesting future work. Second, we plan to include friction

in our motion-based equilibrium method as well as the design approach. Third, our geo-

metric realization stage focuses on generating geometry of cone joints to match optimized

motion cones. Taking other aspects such as appearance and structural soundness of joints

into consideration would make the designed cone joints more practical for use. Lastly, we

approximate the required motion cones in the kinematic design stage as a pyramid with 4 (10)

faces for 2D (3D) joints to speed up the static analysis. In the future, we may try more accurate

approximations to see if they are helpful to improve the design performance.

6.6 Acknowledgments

We thank the reviewers for their valuable comments, Tian Chen for fabricating the physical

models, Héloïse Dupont de Dinechin and Mingyang Li for implementing some experiment

code. This research was supported by the NCCR Digital Fabrication, funded by the Swiss

National Science Foundation (NCCR Digital Fabrication Agreement #51NF40-141853), the

TL@SUTD Seed Research Project Grant (Number: RTDS S 1907 011), and the SUTD Start-up

Research Grant (Number: SRG ISTD 2019 148).

99

7 Conclusion & Discussion

7.1 Summary

When solving complicated problems, humans tend to decompose them into small sub-

problems and tackle them separately. The assembly perfectly exploits this divide-and-conquer

strategy making them so ubiquitous in our society. However, most assembly design problems

have multiple objectives. Some objectives, such as structural stability and assemblability,

though essential for assemblies to be practical, can distract designers from other important

factors like aesthetics and functionality. We formulate the assembly design problems as multi-

objective optimization and propose interactive design tools that benefit both experts and DIY

enthusiasts.

This thesis has demonstrated several computational methods for analyzing and designing

structurally stable assemblies with rigid parts. We have shown that kinematics is the key

element to establish the connection between parts’ geometry and structural stability measure-

ment. With the help of the joint motion cones, we can directly measure the structural stability

of assemblies in the kinematic domain without knowing detailed geometric features. The

separation of geometric and kinematic design stages makes our design framework capable of

handling complex inputs and adaptable to various applications.

In Chapter 3, we summarize the structural stability analysis for rigid body assemblies. We

review the forced-based stability measurement and establish an equivalent kinematic-based

stability measurement using the duality between statics and kinematics. We show that the non-

penetration constraints in our new stability measurement are the key components to construct

the based directional blocking graphs and the linear inequality system for testing global

interlocking. We prove that globally interlocking assemblies are the most stable assemblies

which can withstand arbitrary forces and torques. For assemblies with lateral stability, we

measure their stability by using tilting analysis.

In Chapter 4, we present DESIA, a general framework for designing interlocking assemblies.

The foundation is the conceptual representation of interlocking assemblies using a set of

101

Chapter 7. Conclusion & Discussion

directed graph called the base DBGs that encode blocking relations among the parts along

with a finite number of directions. Guided by these graphs, DESIA constructs interlocking

assemblies iteratively using a two-stage scheme, where the first stage specifies desired blocking

relations among the parts while the second stage realizes them in the embedded geometry.

Rather than focusing on each specific kind of assembly as previous works, DESIA supports

designing interlocking assemblies of various forms and allows generating interlocking results

according to users’ desires. Compared with previous works, DESIA significantly enhances the

flexibility of designing interlocking assemblies by exploring a significantly enlarged search

space. The achievements of DESIA are evidenced by the various results presented in the thesis

that cannot be designed without using DESIA.

In Chapter 5, we studied how to approximate freeform design surfaces with structurally

stable assemblies of convex rigid pieces. When analyzing their interlocking behavior, we

observed that simultaneous multi-part motions and part rotations need to be considered

when formulating a general algorithm to test for global interlocking. Our new formulation

then utilizes the link between the geometric property of global interlocking and force-based

equilibrium conditions defined in Section 3 . This provided the key insight to formulate a

general stability metric that is suitable for optimization. Our experiments show how this

optimization allows the creation of structurally stable assemblies of convex elements that can

approximate a wide variety of double-curved freeform surfaces.

In Chapter 6, we show that assemblability and stability are two necessary conditions for

using assemblies in the physical world. However, they could be in conflict with each other

when restricting relative part motion with joints. Finding a trade-off between these two

conditions is a challenging task for conventional approaches based on planar contacts or

single-direction joints. We propose cone joints to address this challenge, which interpolate

between planar contacts and single-direction joints in terms of capacity to restrict relative part

motion. We quantify this capacity as a motion cone and present an approach to optimize cone

joints for designing structures that are assemblable and stable. We found the separation into

kinematic and geometric stages essential to make the optimization computationally tractable.

We show the versatility of our approach by designing a variety of 2D/3D assemblies that are

in equilibrium under gravity, stable under lateral forces, interlocking, or support-free for the

assembly process.

7.2 Future Work

Motivated by the advance in technologies of digital fabrication, automatic construction,

and material science, future research effort could be devoted to designing and fabricating

advanced assemblies that are not accessible before such as architectural structures that can be

constructed automatically by using robotic assembly [Eversmann et al., 2017], modular robots

that can be reconfigured autonomously or manually to form different assemblies [Brunete

et al., 2017], and self-assembling systems based on shape memory material [Sun et al., 2021].

102

7.2. Future Work

To design these advanced assemblies, significant challenges remain in this field and should be

addressed in future research:

Analysis with high prediction accuracy. To simplify the computational analysis of assem-

blies, a common assumption is that the fabrication material is rigid and manufacturing

precision is perfect. Yet in practice, materials are not infinitely rigid and fabrication devices

have limited manufacturing precision. As a consequence, structural issues can arise when

the relative motion of two parts is restricted by a small contact or a thin joint. Internal stress

concentrations at the contact or joint can lead to material failure. Similarly, a geometrically

stable design, e.g., a furniture assembly, could become instable when fabricated, due to gaps

among the parts caused by machining tolerances. To improve prediction accuracy, one possi-

ble way is to take these imperfections into consideration in the analysis methods. For example,

tolerance analysis [Chen et al., 2014] can provide insights into the structural performance of an

assembly. Such analysis tasks are particularly challenging as imperfections of each individual

part will propagate within the whole assembly.

Another challenge is functionality analysis of assemblies, which is critical for designing assem-

blies that function as expected by the user. Functionality analysis of given shapes is a relatively

new topic in computer graphics [Hu et al., 2018], and developing methods for analyzing

functionalities of assemblies could be a promising research direction.

Design for multiple objectives. This report has discussed a number of objectives for design-

ing assemblies. To date, however, most publications address and solve a specific objective and

do not consider all aspects relevant for an assembly. For example, for large-scale assemblies

in architecture, combining the objectives of parts fabricability, structural stability of the final

and intermediate assemblies, and automated assembly process planning, would provide

a more complete framework for design. Future research effort could address such design

problems with multiple objectives, which might require a fundamentally new formulation of

the problem, a combination of different representations of assemblies, and new strategies to

search over a rather constrained solution space. Another challenge is to find a good trade-off

among multiple objectives to satisfy users’ high-level preference.

Advanced design methods can be studied by exploring several aspects of assemblies in a

novel way, in particular, assembly plans. Designing assemblies with (dis)assembly plans that

are beyond sequential, monotone, and linear is a promising research topic, as these complex

plans are possible to be precisely realized by robots nowadays. Such (dis)assembly plans could

be useful in terms of entertaining people (e.g., disassembly puzzles) or enhancing structural

stability (e.g., complex coordinated motion to take out parts).

Machine learning for searching the design space. Machine learning methods offer poten-

tial benefits for solving non-linear and non-convex problems. In recent years, tremendous

research efforts have been devoted to solve traditional graphics problems such as shape syn-

thesis and mesh segmentation using machine learning methods [Mitra et al., 2019]. However,

developing learning methods to solve design and fabrication problems is challenging due to

103

Chapter 7. Conclusion & Discussion

various hard constraints (e.g., fabricability) and/or global constraints (e.g., assemblability)

involved in these problems. Another challenge is the lack of datasets to train the learning

algorithms, as the design problem could be too specific or there is no existing way to gen-

erate desired designs. One possible way to address this challenge is to use reinforcement

learning, which has been shown to be good at adaptively sampling the search space. We see

a high potential for reinforcement learning to help solve challenging problems of designing

assemblies.

104

A Supplementary Material for Interlock-
ing Assemblies

This supplementary material presents comparisons with [Song et al., 2012] and [Fu et al., 2015]

and more details about results generated by our approach (Section 4.3), and provides a proof

of the statement that an assembly whose parts-graph has a cut point cannot be interlocking

(Section A.2), as we as a proof of the statement that our DBG-based approach is sufficient to

test interlocking for 3D assemblies with orthogonal part connections (Section A.3).

A.1 Comparisons and Results

Comparison with [Song et al. 2012]. Given the same voxelized model, designing an N -piece

interlocking puzzle becomes significantly harder when we increase N . This is because the

fewer number of voxels each piece has, the more difficult is to construct blocking relations

among the pieces. Thanks to our framework that allows to achieve interlocking with fewer

blocking relations, we can create interlocking puzzles with a much larger N than [Song et al.,

2012]. Figure A.1 shows several interlocking CUBEs designed by [Song et al., 2012] and our ap-

proach, from which we can see that the more voxels the input model has, the larger difference

is on N between our approach and [Song et al., 2012].

We fabricate the 9-part 4× 4× 4 CUBE with Lego bricks to validate its steadiness; see Fig-

ure A.2(top) and the video https://youtu.be/Pqwo3GbxBEo. Besides solid objects, our ap-

proach works also on hollowed objects; see the 7-part 4× 4× 4 HOLLOWED CUBE in Fig-

ure A.2(bottom).

Compared with [Song et al., 2012], our approach allows imposing additional constraint when

designing interlocking assemblies, e.g., avoid cutting seams on geometric features of the final

assembly. This ability is demonstrated on the 14-part CARTOON DOG shown in Figure A.4,

which avoids cutting seams on its ears, nose and tail (i.e., P10, P13, P9, and P2). In particular,

the two eyes of the model is actually from the same part (i.e., P12).

Comparison with [Fu et al. 2015]. Fu et al. [Fu et al., 2015] design interlocking furniture by

breaking all furniture parts into a set of small groups and achieving global interlocking by

105

https://youtu.be/Pqwo3GbxBEo

Appendix A. Supplementary Material for Interlocking Assemblies

Figure A.1 – Interlocking Cubes created by [Song et al., 2012] (top) and our approach (bottom).
From left to right: the Cubes are 4×4×4 (8 vs 9 parts), 5×5×5 (13 vs 16 parts), and 6×6×6
(20 vs 27 parts).

making each group interlocking (i.e., LIG) and enforcing dependency across the LIGs; see

Figure A.3(top). Here, a LIG is a connected sub-graph (i.e., 3- or 4-part cycles) in the parts-

graph, such that only a specific part (local key) is mobile in the LIG. The dependency between

LIGs, say G j depending on Gi , means that Gi immobilizes G j if the key of G j is a non-key

Figure A.2 – (Top) 9-part CUBE and (bottom) 7-part HOLLOWED CUBE designed by our ap-
proach and made with Lego bricks.

106

A.1. Comparisons and Results

Figure A.3 – (a) The LIG-based approach of [Fu et al., 2015] to design a 9-piece interlocking
Bench, where the LIGs are denoted as Gi and the local key in each LIG is highlighted with
a dashed circle. Interlocking results generated by [Fu et al., 2015] (b) and our approach (c),
where the part disassembly sequence is shown at the bottom and the number of dovetail joints
are 10 and 1 respectively (see examples in red circles). Note that dovetail joint is generally
weaker than mortise-and-tenon due to smaller contact surface between the joint and the part
body.

Figure A.4 – 14-part CARTOON DOG and its base DBGs. The key part P1 (in green) is movable
along +y ; see the red circle in G(+y, A).

part of Gi . By successively forming LIGs in a parts-graph with carefully-planned joints, a

dependency tree can be built over all the LIGs (see Figure A.3(top right)), thus interlocking all

the parts in the entire assembly.

Although this LIG-based approach can generate promising results, it restricts the generation of

interlocking configurations by constraining the part construction order; i.e., successive parts

need to be from the same LIG or neighboring LIGs in the dependency tree (see Figure A.3(b)).

In sharp contrast, our approach has much more flexibility on selecting Pi for construction,

as long as parts in Ri remain connected in the parts-graph. For example, our approach can

107

Appendix A. Supplementary Material for Interlocking Assemblies

Figure A.5 – 11-part FRAME CHAIR and its base DBGs. The key part P1 (in green) is movable
along +y ; see the red circle in G(+y, A).

Figure A.6 – 23-part FLOWER and its base DBGs. The key part P1 (in green) is movable along
+x; see the red circle in G(+x, A).

generate a result with P1 as the key (see Figure A.3(c)), which cannot be achieved by [Fu et al.,

2015]. This is because after taking out P1, there is no more 3- or 4-part cycle for [Fu et al., 2015]

to construct LIGs. This advantage enables us to explore a larger space of interlocking joint

configurations and generate results that satisfy additional requirement(s), e.g., an interlocking

solution with more structurally strong joints such as mortise-and-tenon; compare the joints

in Figure A.3(b&c).

Moreover, this LIG-based approach focuses on furniture with 3- or 4-part cyclic substructures

108

A.2. Proof of Statement on the Parts-graph

Figure A.7 – From left to right, a BOOKSHELF, its parts-graph, and an interlocking joint configu-
ration generated by our approach.

only since they require these substructures to make LIGs. Thus, this approach does not

suitable for furniture that has very few such substructures; e.g., the BOOKSHELF shown in

Figure A.7(left) has only two 4-part substructures (i.e., [P6,P7,P10,P5] and [P1,P9,P12,P3]) but

four 6-part substructures (e.g., [P1,P2,P6,P5,P4,P3]). In contrast, our approach does not have

such a limitation and can generate an interlocking joint configuration; see Figure A.7(right).

Interlocking Frame Structures. Figure A.5 shows the 11-part FRAME CHAIR designed by our

approach. The interlocking property of this result can be easily verified since the three base

DBGs are strongly connected except the key. This validates the efficiency of our interlocking

testing approach. Figure A.6 shows the 23-part FLOWER designed by our approach, along with

its three base DBGs.

A.2 Proof of Statement on the Parts-graph

To prove the statement about the requirement on an assembly’s parts-graph to make it inter-

locking, we first present a lemma and then prove the statement by contradiction.

Lemma. For any single-key interlocking assembly An , there always exists a disassembly

sequence, say P1 → P2 →···→ Pn , such that {P1, ..,Pk } and {Pk+1, ..,Pn} are both connected in

the parts-graph G respectively.

Statement. If the parts-graph of an assembly An has a cut point, then An cannot be interlock-

ing, no matter what kinds of joints are constructed between the parts in An .

Proof. Suppose An is an interlocking assembly and P1 → P2 → ··· → Pn is a sequence to

disassemble An that satisfies the condition in the lemma.

Case 1: Cut point is P1. {P1,P2, . . . ,Pn} must be connected in G according to the lemma, which

contradicts with the condition that P1 is a cut point.

Case 2: Cut point is Pn . {P1,P2, . . . ,Pn−1} must be connected in G according to the lemma,

which contradicts with the condition that Pn is a cut point.

109

Appendix A. Supplementary Material for Interlocking Assemblies

Case 3: Cut point is Pk (1 < k < n). Pk and P j , (j > k) must be in the same strongly connected

component in all the DBGs. Thus, simple paths from Pk to P j and P j to Pk exist in all DBGs.

These paths could not go through {P1,P2, . . . ,Pk−1} in any DBG since Pk is a cut point of the

parts-graph G . Therefore, in any DBG, there exists an in-edge from Pl (l > k) to Pk and

an out-edge from Pk to Pm (m > k). This makes Pk immobilized in all base directions in

[Pk , . . . ,Pn], and thus Pk should not be the first part to be taken out in [Pk , . . . ,Pn]. This leads

to a contradiction with the assumption on the disassembly order.

By summarizing above three cases, we prove that the parts-graph of an interlocking assembly

cannot have a cut point.

A.3 Proof of Statement on the DBG-based Test

To prove the statement that the DBG-based approach is sufficient for testing interlocking of

3D assemblies where parts are orthogonally connected, we only need to prove the following

statement:

Statement. For 3D assemblies with orthogonal part connections, if there exists a part group in

which parts can translate along different directions simultaneously, there must exist a subset

of the group in which part(s) can translate along the same direction simultaneously.

Proof. Since parts are orthogonally connected, the contact normal ni j from Pi to P j must

be one of {±ex ,±ey ,±ez }. Denote the velocity of part Pi as vi = (v x
i , v y

i , v z
i) and assume ni j =

ex = (1,0,0) without loss of generality. The inequality (v j − vi) ·ni j ≥ 0, which is used to test

interlocking in Section 3.2, is simplified to:

v x
j − v x

i ≥ 0 (A.1)

By summarizing this simplified constraint for every ni j =±ex , we have the following system

of linear inequalities:

AX X ≥ 0 (A.2)

where X is a vector of x-component of part velocities, and AX is the matrix specifying the

coefficients given by the normals of all interfaces that are ±ex .

Similarly, we can have another two systems of linear inequalities:

AY Y ≥ 0

AZ Z ≥ 0
(A.3)

Therefore, the original system of linear inequalities AV ≥ 0 can be separated into three inde-

110

A.3. Proof of Statement on the DBG-based Test

pendent linear systems:
AX X ≥ 0

AY Y ≥ 0

AZ Z ≥ 0

(A.4)

where V = [X T ,Y T , Z T]T .

For any valid solution V = [X T ,Y T , Z T]T that allows a group of parts translating along different

directions, one of the vectors X ,Y , Z have to be none-zero. Here, we assume Y 6= 0 without

loss of generality. Y = [y1, y2, · · · , yn]T can be further separated into Y + and Y − in which every

element y+
i (y−

i) is positive (negative) or zero. Hence,

AV ≥ 0

=⇒ AY Y ≥ 0

=⇒ y j − yi ≥ 0

=⇒ y j − yi ≥ |y j − yi | ≥ |yi |− |y j |
=⇒ 1

2
[(y j +|y j |)− (yi +|yi |)] ≥ 0

=⇒ y+
j − y+

i ≥ 0

=⇒ AY Y + ≥ 0

(A.5)

Denoting V ′ = [0, (Y +)T ,0]T , it is obvious that V ′ satisfies the three independent linear systems.

Hence, V ′ is a valid solution of AV ≥ 0. Here, the validity of V ′ implies that a subset of parts

can move along the same direction +ey (i.e., +y axial direction) simultaneously.

111

B Supplementary Material for TI Assem-
blies

This supplementary material is composed of three parts. The second part formulates the opti-

mization on the 3D surface tessellation (Section 5.2). The third part describes the optimization

to find the vertices of the target feasible section (Section 5.3.1). The last part presents the

gradient-based approach to solve the structural optimization on the topological interlocking

(TI) assemblies (Section 5.3.2).

B.1 Optimization of 3D Surface Tessellation

Taking a surface tessellation T using the conformal maps as a good initialization, we further

optimize its vertices while fixing their connectivity for desirable properties described in the

paper (i.e., planarity and regularity of each face, and small dihedral angles between adjacent

Figure B.1 – (a) Input reference surface and 2D tessellation. (b) Initial surface tessellation
using conformal maps. (c) Optimized surface tessellation. (d&e) Corresponding TI assemblies
with the same α.

113

Appendix B. Supplementary Material for TI Assemblies

faces). We formulate this optimization as an energy minimization problem:

E =ω1Esurf + ω2Ebound +ω3Eplanar + ω4Eregular + ω5Ecoplanar (B.1)

where Esurf aims to make the tessellation T resemble the reference surface S; Ebound aims to

preserve boundary of the tessellation T; Eplanar and Eregular aim to make faces in T planar and

regular, respectively; and Ecoplanar aims to ensure sufficient dihedral angles among adjacent

faces in the tessellation T.

In particular, the surface term Esurf is a summation of the distance from each vertexvi of the

tessellation T to the surface S:

Esurf =
∑

vi∈T
d 2(vi ,S) (B.2)

The boundary term Ebound evaluates the distance from each boundary vertex vbi of T to its

initial position vinit
bi

:

Ebound =∑ ||vbi −vinit
bi

||2 (B.3)

The Eplanar and Eregular terms for each face and Ecoplanar term for each pair of adjacent faces in

the tessellation T are computed following the projection-based approach in [Bouaziz et al.,

2012].

Figure B.1 shows an example surface tessellation T before and after our optimization, as

well as the corresponding TI assemblies. Thanks to the desirable properties of the optimized

tessellation, the resulting TI assembly have more coherent arrangement of the blocks; compare

Figure B.1-d&e.

B.2 Compute Target Force Directions

Given a feasible section S(P) of an assembly P, the radius r0 of its largest inner circle centered

at the origin is equal to tan(Φ), whereΦ is the stability measure of the assembly P. The distance

between a 2D point vk and S(P) is denoted as:

dist(vk ,S(P)) =
min

s∈∂S
||vk −s|| v ∉S

0 v ∈S
(B.4)

where ∂S denotes all vertices on the boundary of S(P).

Our goal is to compute a K -gon with vertices {vk } that contains the target circle with r1 =
tan(ωΦ) and is close to the feasible sectionS(P). We formulate this as an optimization problem:

min
{vk }

K∑
k=1

dist(vk ,S(P)) (B.5)

114

B.3. Gradient-based Structural Optimization

s.t. dist(vk vk+1,0) >= r1,∀k ∈ 1, · · · ,K

where the line segment vk vk+1 is kth edge of the K-gon and vK+1 = v0. The constraints ensure

that the target feasible polygon always contains the target circle. Since this optimization has

non-convex constraints, we solve it by using the interior conjugate gradient algorithm from

knitro.

B.3 Gradient-based Structural Optimization

In the paper, structural optimization on the TI assemblies is formulated as:

{α∗
i j } = argmin

{αi j }

K∑
k=1

fT
k Hfk (B.6)

s.t. Area(Cl) ≥ Athres, ∀contact Cl

max(αmin,αmin
i j) ≤αi j ≤ min(αmax,αmax

i j)

Aeq ·Fk = Wk

We solve above optimization following the gradient-based approach in [Whiting et al., 2012].

Given the optimization problem formulated as a quadratic program (QP) with inequality

constraints, it can be transformed into QP with only equality constraints by considering active

constraints at a local intermediate solution f∗k , leading to a closed-form force solution:

f∗k = H−1CT (CH−1CT)−1bk (B.7)

where

C =
[

Aeq

Ĩlb

]
, bk =

[
Wk

0

]
and the active lower bounds are denoted as Ĩl b · f∗k = 0, which contains the contact forces in f∗k
that are exactly at zero.

We assume that the topology of each block and that of the block contact polygons remain the

same for the differential movement of {αi j }, and derive an analytic gradient for f∗k with respect

to the vector rotation angles {αi j }. Among the components of f∗k in Equation B.7, only Aeq and

Wk are the functions of {αi j } while H and Ĩlb are constants. Hence, we compute the gradient

of each element in Aeq, Wk , as well as Cl with respect to {αi j } using chain rule. In particular,

the variables in Aeq include block centroid, block contact normal and contact vertex, while the

variables in Wk are only about block volume. In the followings, we describe the derivations of

each variable’s gradient with respect to the vector rotation angles {αi j }.

115

Appendix B. Supplementary Material for TI Assemblies

B.3.1 Definition

Following the constructive procedure to generate TI blocks, our differentiation pipeline for

the variables in Aeq, Wk , and Cl is shown as follows

The meaning of each variable in the pipeline is described as below and our goal is to calculate

the derivatives of each variable with respect to αi j :

1. nF
i j : normal of a face-face contact between Pi and P j (pointing towards P j).

2. nE
i j : normal of an edge-edge contact between Pi and P j (pointing towards P j).

3. vh
i : h th vertex of Pi .

4. cg
i j : g th vertex of the contact interface between Pi and P j .

5. Ai j : area of contact interface between Pi and P j .

6. oi : center of mass of Pi .

7. Vi : volume of Pi .

In our differentiation, most elements of gradients ∇X (X = ni j ,vk
i , ...) are zero due to the

fact that ∇X only depends on a few vector angles {αi j }. Hence, we only need to compute

the potentially non-zero partial derivatives. We use the notation ∂X
∂α to represent one of the

non-zero derivatives ∂X
∂αi j

for writing simplicity.

B.3.2 Face-Face Contact Normal nF
i j

The initial face-face contact normal ninit
i j (αi j = 0) between Pi and P j is:

ninit
i j = Normalized(ei j × (Ni +N j)) (B.8)

While Normalized is a function which normalizes the input vector and ei j is the halfedge

vector between Pi and P j . Rotating initial contact normal by xi jαi j around the halfedge vector

ei j gives the expression of nF
i j :

Ei j =


0 −ez

i j e y
i j

ez
i j 0 −ex

i j

−e y
i j ex

i j 0

 (B.9)

116

B.3. Gradient-based Structural Optimization

nF
i j = [cos(xi jαi j)Ei j + sin(xi jαi j)I3×3]ninit

i j (B.10)

Thus, its derivative is:

∂nF
i j

∂αi j
= [−xi j sin(xi jαi j)Ei j +xi j cos(xi jαi j)I3×3]ninit

i j (B.11)

B.3.3 Edge-Edge Contact Normal nE
i j

The normal of edge-edge contact is involved four face normals associated to the contact point,

the two normals n0,n1 from Pi and the two normals n2,n3 from P j . Then the normal of its

edge-edge contact is:

nE
i j =

(n0 ×n1)× (n2 ×n3)

||(n0 ×n1)× (n2 ×n3)|| (B.12)

In case of the nE
i j pointing toward Pi instead of P j , we will reverse the direction of nE

i j . Its

derivative can be computed by applying the chain rules.

B.3.4 Block Vertex vh
i

In section 5 of the paper, the geometry of Pi is constructed by intersecting several 3D half

spaces (planes). A valid part vertex vh
i are on at least three of these half spaces(planes):

(n
vh

i

j ,d
vh

i
0), j = 0,1,2 (B.13)

The normal vector n
vh

i

j , a.k.a n j , is one of the face-face contact normals associated to Pi vertex

vh
i . The d

vh
i

j , a.k.a d j , is the inner product of any point on j th plane in Eq.B.13 and the normal

n j . Solving the following linear system gives the vertex vh
i :

vh
i =

nT
0

nT
1

nT
2


−1 d0

d1

d2


= (N h

i)−1Dh
i

(B.14)

According to the derivative formulation of inverse matrix:

∂N−1

∂α
=−N−1 ∂N

∂α
N−1 (B.15)

117

Appendix B. Supplementary Material for TI Assemblies

substitute Eq. B.15 into Eq. B.14 gives:

∂vh
i

∂α
=−(N h

i)−1
∂N h

i

∂α
(N h

i)−1Dh
i + (N h

i)−1
∂Dh

i

∂α
(B.16)

B.3.5 Block Volume Vi

Triangulating the faces of Pi gives a set of triangles At (at ,bt ,ct), t = 0, · · · ,T −1 which is ordered

counter clockwise on its corresponding face of Pi . Suppose

n̂t = (bt −at)× (ct −at) (B.17)

The formulation of block volume is:

Vi = 1

6

T−1∑
t=0

at · n̂t (B.18)

Its derivative can be computed by applying the chain rules. Please refer to [Nurnberg, 2013]

for more details.

B.3.6 Block Centroid oi

Denoting the standard basis in R3 by e1,e2,e3, the centroid oi of Pi is:

eu ·oi = 1

48Vi

T−1∑
t=0

(n̂t ·eu)([(at +bt) ·eu]2

+[(ct +bt) ·eu]2

+[(ct +at) ·eu]2),u = 1,2,3

(B.19)

Its derivative can be computed by applying the chain rules. Please refer to [Nurnberg, 2013]

for more details.

B.3.7 Contact Vertex cg
i j

The paper lists two kinds of contact vertices, we only give the derivatives expression for the

face-face contact case while the vertex of an edge-edge contact is a constant point of the

surface tessellation.

The contact polygon Cl are the result of boolean intersection between two overlap faces of

neighboring Pi and P j , The vertices of this polygon are either 1) a vertex of the two neighboring

part (vh
i or vh

j) ; or 2) the intersection of two non-parallel edges of Pi and P j , which called cg
i j

(g th point of the Cl). Suppose the two lines are:

(v
cg

i j

0 ,v
cg

i j

1), (v
cg

i j

2 ,v
cg

i j

3) (B.20)

118

B.3. Gradient-based Structural Optimization

a.k.a as:

(v0,v1), (v2,v3) (B.21)

The contact vertex cg
i j satisfies the following equations

cg
i j = v0 + (v1 −v0)s = v2 + (v3 −v2)t (B.22)

Denote the va,b = va −vb . The solution of linear equation s, t is:[
s

t

]
=

[
v1,0 ·v1,0 −v1,0 ·v2,3

v1,0 ·v2,3 −v2,3 ·v2,3

]−1 [
v1,0 ·v2 −v1,0 ·v0

v3,2 ·v2 −v3,2 ·v0

]
(B.23)

Substituting the solution into Equation B.22, its derivative can be computed by applying the

chain rules.

B.3.8 Contact Area Ai j

The contact polygon Cl is a list of points cg
i j (g = 0, ..., |Cl |−1) which are in the same orientation

of contact normal ni j . The area of the polygon is:

Ai j = 1

2

|Cl |−2∑
g=1

[(cg
i j −c0

i j)× (cg+1
i j −c0

i j)] ·ni j (B.24)

Its derivative can be computed by applying the chain rules.

119

C Supplementary Material for Assem-
blies with Cone Joints

The paper has mentioned supplementary material four times. We explain each of them

following its order in the paper content.

C.1 Motion Cone Visualization

Choosing a proper cutting plane is needed to illustrate the 3D

cone by its conic section. The inset shows a failure case where

the conic section is an unbound region. Supposed that the

plane has the form {x|n·x = 1}, the normal n should be chosen to

make the half-space {n ·x ≥ 0} contain the cones. More precisely,

for cones in motion space, we choose the n to be the initial

planar contact’s normal appended with zeros. For cones in

generalized normal space, we choose the n to be one of the

part’s translational disassembling directions appended with zeros.

C.2 Kinematic Based Infeasibility Measure

Computing the kinematic based infeasibility measure in Equation C.1 is a dual problem of

computing the forced-based infeasibility measure in Equation C.2.

Dual Problem:

max
v

w T v − 1

2
v T v

s.t. Binv ≥ 0
(C.1)

121

Appendix C. Supplementary Material for Assemblies with Cone Joints

Primal Problem:

min
f , s

1

2
sT s

s.t. Aeq f + s =−w ,

f ≥ 0

(C.2)

Proof:

The Lagrange function of Equation C.2 is:

L(f , s,µ,λ) = 1

2
sT s +µT (Aeq f + s +w)−λT f (C.3)

The dual Lagrange function g (µ,λ) is defined as the infimum of the Lagrange function

L(f , s,µ,λ) in variables f , s.

g (µ,λ) = inf
f ,s

L(f , s,µ,λ) (C.4)

The Lagrange function L is a quadratic function which reaches its minimum when both its

derivatives with respect to f , s are zero.

∂L

∂ f
= AT

eqµ−λ= 0 (C.5)

∂L

∂s
= s +µ= 0 (C.6)

Substitute Equation C.5 and C.6 into the Lagrange function (Equation C.3).

g (µ,λ) =−1

2
µTµ+µT w (C.7)

where the lagrange multipliers λmust be non-negative. Due to the strong duality theorem,

the dual of the optimization problem (Equation C.2) is:

max
µ

− 1

2
µTµ+µT w

s.t. AT
eqµ−λ= 0,

λ≥ 0

(C.8)

Since Bin = AT
eq, by renaming µ to v in Equation C.8, we prove that Equation C.1 is a dual

problem of Equation C.2.

C.3 Infeasibility Derivatives
∂E(w ,{V̄i , j })

∂Ψi , j

This section explains how to compute the first order derivatives of infeasibility energy E (w , {V̄i , j })

with respect to the approximated motion cones’ variables Ψi , j .

122

C.4. New Interlocking Test

Our kinematic design uses an off-the-shelf interior point method to solve the optimization

problem. Common solvers like BFGS require the first-order derivatives. The infeasibility

energy E(w, {V̄i , j }) is formulated as Equation C.1, where the matrix Bin is a function of Ψi , j

and the vector w is constant. Amos et al. [Amos and Kolter, 2019] proposed a sensitive analysis

tool that computes the derivatives for series of quadratic programming problems including

Equation C.1. Their core idea is that any optimal solution of Equation C.1 must satisfy the

following KKT conditions.

µ≥ 0 positive multipliers

−µT (Bintv) = 0 complementary

w −v −µT Bint = 0 stationarity

(C.9)

where the µ is the Lagrange multipliers of the constraints Bintv ≥ 0. Let’s ignore the inequality

constraints µ≥ 0 and take partial derivatives on both sides of the equalities in Equation C.9:(
∂µ

∂Ψi , j

)T

Bintv∗+µ∗T Bint
∂v

∂Ψi , j
=−µ∗T ∂Bin

∂Ψi , j
v∗

∂v

∂Ψi , j
+

(
∂µ

∂Ψi , j

)T

Bint =−µ∗T ∂Bin

∂Ψi , j

(C.10)

where v∗ and µ∗ are the optimal solutions for the optimization problem. We can solve this

large sparse linear system (Equation C.10) to obtain the derivatives ∂µ
∂Ψi , j

and ∂v
∂Ψi , j

. In practice,

this system is pre-factorized to reduce solving time. The derivatives of infeasibility energy

then are:

∂E(w , {V̄i , j })

∂Ψi , j
= (w −v∗)T ∂v

∂Ψi , j
(C.11)

Moreover, we can adpot the same strategy to solve the optimization problem in geometric

realization whose objective is also a quadratic function. Its derivatives can be computed by

the same sensitive analysis approach.

C.4 New Interlocking Test

Supposed that all cone joints used in an assembly are not degenerated, we use a special

external force w int =−∑
i< j (v j −v i)·d i , j to verify the assembly’s globally interlocking property.

Here, d i , j is chosen such that (v j − v i) ·d i , j ≥ 0 and (v j − v i) ·d i , j = 0 if only if v j = v i . The

assembly is globally interlocking if only if the infeasibility energy (Equation C.1) under the

external force w int is zero.

Proof:

To avoid all parts in the assembly moving together, let’s assume the key part and one of the

123

Appendix C. Supplementary Material for Assemblies with Cone Joints

remaining parts are fixed. The assembly is globally interlocking if no part can move in this

circumstance.

For each cone joint whose motion space is Vi , j , the associated two parts’ velocities satisfy

v j −v i ∈ Vi , j . There always exists a constant vector d i , j , often chosen to be the initial planar

contact normal appended with extra zeros, such that (v j −v i) ·d i , j ≥ 0.

Moreover, if the cone Vi , j is not degenerated, the condition (v j −v i) ·d i , j = 0 holds if only if

v j = v i . This constant vector −d i , j acts like a repulsive force, which pushes the two adjacent

parts away from each other. Since the external force w int is set to be the summation of

all repulsive forces −∑
i , j (v j − v i) ·d i , j . The infeasibility energy is zero if only if each term

(v j −v i) ·d i , j = 0. All parts must have the same velocity (i.e., zero) and therefore the assembly

is globally interlocking.

Implementing this special external force w int into our kinematic-geometric optimization

framework allows designing new globally interlocking assemblies.

124

Bibliography

[Agrawala et al., 2003] Agrawala, M., Phan, D., Heiser, J., Haymaker, J., Klingner, J., Hanrahan,

P., and Tversky, B. (2003). Designing effective step-by-step assembly instructions. ACM

Trans. on Graph. (SIGGRAPH), 22(3):828–837.

[Akleman et al., 2020] Akleman, E., Krishnamurthy, V. R., Fu, C.-A., Subramanian, S. G., Ebert,

M., Eng, M., Starrett, C., and Panchal, H. (2020). Generalized Abeille Tiles: Topologically

interlocked space-filling shapes generated based on fabric symmetries. Comp. & Graph.

(SMI), 89:156–166.

[Alexandrov, 2005] Alexandrov, A. D. (2005). Convex Polyhedra. Springer.

[Amos and Kolter, 2019] Amos, B. and Kolter, J. Z. (2019). Optnet: Differentiable optimization

as a layer in neural networks.

[ApS, 2019] ApS, M. (2019). Mosek software package. https://www.mosek.com/.

[Araújo et al., 2019] Araújo, C., Cabiddu, D., Attene, M., Livesu, M., Vining, N., and Sheffer,

A. (2019). Surface2Volume: Surface segmentation conforming assemblable volumetric

partition. ACM Trans. on Graph. (SIGGRAPH), 38(4):1:1–1:16.

[Artelys, 2019] Artelys (2019). Knitro software package. https://www.artelys.com/solvers/knitro/.

[Artelys, 2020] Artelys (2020). Knitro software package. https://www.artelys.com/solvers/knitro/.

[Block and Ochsendorf, 2007] Block, P. and Ochsendorf, J. (2007). Thrust Network Analy-

sis: A new methodology for three-dimensional equilibrium. Journal of the International

Association for Shell and Spatial Structures, 48(3):167 – 173.

[Bouaziz et al., 2012] Bouaziz, S., Deuss, M., Schwartzburg, Y., Weise, T., and Pauly, M. (2012).

Shape-up: Shaping discrete geometry with projections. Comp. Graph. Forum (SGP),

31(5):1657–1667.

[Boyd and Vandenberghe, 2004] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization.

Cambridge University Press.

[Brunete et al., 2017] Brunete, A., Ranganath, A., Segovia, S., de Frutos, J. P., Hernando, M., and

Gambao, E. (2017). Current trends in reconfigurable modular robots design. International

Journal of Advanced Robotic Systems, pages 1–21.

125

https://www.mosek.com/
https://www.artelys.com/solvers/knitro/
https://www.artelys.com/solvers/knitro/

Bibliography

[Chen et al., 2014] Chen, H., Jin, S., Li, Z., and Lai, X. (2014). A comprehensive study of three

dimensional tolerance analysis methods. Computer-Aided Design, 53:1–13.

[Cutler, 1978] Cutler, W. H. (1978). The six-piece burr. Journal of Recreational Mathematics,

10(4):241–250.

[Davidson and Hunt, 2004] Davidson, J. K. and Hunt, K. H. (2004). Robots and Screw Theory:

Applications of Kinematics and Statics to Robotics. Oxford University Press.

[de Mello and Sanderson, 1990] de Mello, L. S. H. and Sanderson, A. C. (1990). AND/OR

graph representation of assembly plans. IEEE Transactions on Robotics and Automation,

6(2):188–199.

[Deepak, 2012] Deepak, B. (2012). Sustainable dry interlocking block masonry construction.

In 15th International Brick and Block Masonry Conference.

[Deuss et al., 2015] Deuss, M., Deleuran, A. H., Bouaziz, S., Deng, B., Piker, D., and Pauly,

M. (2015). Shapeop - a robust and extensible geometric modelling paradigm. In Design

Modelling Symposium, pages 505–515. https://www.shapeop.org/.

[Deuss et al., 2014] Deuss, M., Panozzo, D., Whiting, E., Liu, Y., Block, P., Sorkine-Hornung,

O., and Pauly, M. (2014). Assembling self-supporting structures. ACM Trans. on Graph.

(SIGGRAPH Asia), 33(6):214:1–214:10.

[Duenser et al., 2020] Duenser, S., Poranne, R., Thomaszewski, B., and Coros, S. (2020). Robo-

Cut: Hot-wire cutting with robot-controlled flexible rods. ACM Trans. on Graph. (SIG-

GRAPH), 39(4):98:1–98:15.

[Dyskin et al., 2013] Dyskin, A., Pasternak, E., and Estrin, Y. (2013). Topological interlocking

as a design principle for hybrid materials. In Proceedings of the 8th Pacific Rim International

Congress on Advanced Materials and Processing, pages 1525–1534.

[Dyskin et al., 2003a] Dyskin, A. V., Estrin, Y., Kanel-Belov, A. J., and Pasternak, E. (2003a).

Topological interlocking of platonic solids: A way to new materials and structures. Philo-

sophical Magazine Letters, 83(3):197–203.

[Dyskin et al., 2019] Dyskin, A. V., Estrin, Y., and Pasternak, E. (2019). Topological interlocking

materials. In Estrin, Y., Bréchet, Y., Dunlop, J., and Fratzl, P., editors, Architectured Materials

in Nature and Engineering, chapter 2, pages 23—49. Springer International Publishing.

[Dyskin et al., 2003b] Dyskin, A. V., Estrin, Y., Pasternak, E., Khor, H. C., and Kanel-Belov, A. J.

(2003b). Fracture resistant structures based on topological interlocking with non-planar

contacts. Advanced Engineering Materials, 5(3):116–119.

[Eversmann et al., 2017] Eversmann, P., Gramazio, F., and Kohler, M. (2017). Robotic prefabri-

cation of timber structures: Towards automated large-scale spatial assembly. Construction

Robotics, 1:49–60.

126

https://www.shapeop.org/

Bibliography

[Fairham, 2013] Fairham, W. (2013). Woodwork Joints: How to Make and Where to Use Them.

Skyhorse.

[Fallacara et al., 2019] Fallacara, G., Barberio, M., and Colella, M. (2019). Topological inter-

locking blocks for architecture: From flat to curved morphologies. In Estrin, Y., Bréchet,

Y., Dunlop, J., and Fratzl, P., editors, Architectured Materials in Nature and Engineering,

chapter 14, pages 423–445. Springer International Publishing.

[Farkas, 1902] Farkas, J. (1902). Theorie der einfachen ungleichungen. Journal für die Reine

und Angewandte Mathematik, (124):1 – 27.

[Frick et al., 2015] Frick, U., Mele, T. V., and Block, P. (2015). Decomposing three-dimensional

shapes into self-supporting, discrete-element assemblies. In Proc. the Design Modelling

Symposium, pages 187–201.

[Fu et al., 2015] Fu, C.-W., Song, P., Yan, X., Yang, L. W., Jayaraman, P. K., and Cohen-Or, D.

(2015). Computational interlocking furniture assembly. ACM Trans. on Graph. (SIGGRAPH),

34(4):91:1–91:11.

[Gao et al., 2019] Gao, Y., Wu, L., Yan, D.-M., and Nan, L. (2019). Near support-free multi-

directional 3D printing via global-optimal decomposition. Graphical Models (CVM), 104.

Article No. 101034.

[Ghandi and Masehian, 2015] Ghandi, S. and Masehian, E. (2015). Review and taxonomies

of assembly and disassembly path planning problems and approaches. Computer-Aided

Design, 67-68:58–86.

[Halperin et al., 2000] Halperin, D., Latombe, J.-C., and Wilson, R. H. (2000). A general frame-

work for assembly planning: The motion space approach. Algorithmica, 26(3–4):577–601.

[Heiser et al., 2004] Heiser, J., Phan, D., Agrawala, M., Tversky, B., and Hanrahan, P. (2004).

Identification and validation of cognitive design principles for automated generation of

assembly instructions. In Proc. the Working Conference on Advanced Visual Interfaces, pages

311–319.

[Heyman, 1966] Heyman, J. (1966). The stone skeleton. International Journal of Solids and

Structures, 2(2):249–279.

[Hu et al., 2018] Hu, R., Savva, M., and van Kaick, O. (2018). Functionality representations

and applications for shape analysis. Comp. Graph. Forum (Eurographics STAR – State of The

Art Report), 37(2):603–624.

[Jacobson et al., 2018] Jacobson, A., Panozzo, D., et al. (2018). libigl: A simple C++ geometry

processing library. https://libigl.github.io/.

[Javan et al., 2016] Javan, A. R., Seifi, H., Xu, S., and Xie, Y. M. (2016). Design of a new type

of interlocking brick and evaluation of its dynamic performance. In Proceedings of the

International Association for Shell and Spatial Structures Annual Symposium, pages 1–8.

127

Bibliography

[Jiménez, 2013] Jiménez, P. (2013). Survey on assembly sequencing: A combinatorial and

geometrical perspective. Journal of Intelligent Manufacturing, 24(2):235–250.

[Jones and Wilson, 1996] Jones, R. E. and Wilson, R. H. (1996). A survey of constraints in

automated assembly planning. In Proc. IEEE Int. Conf. on Robotics and Automation, pages

1525–1532.

[Kanel-Belov et al., 2010] Kanel-Belov, A. J., Dyskin, A. V., Estrin, Y., Pasternak, E., and Ivanov-

Pogodaev, I. A. (2010). Interlocking of convex polyhedra: Towards a geometric theory of

fragmented solids. Moscow Mathematical Journal, 10(2):337–342.

[Kerbl et al., 2015] Kerbl, B., Kalkofen, D., Steinberger, M., and Schmalstieg, D. (2015). Inter-

active disassembly planning for complex objects. Comp. Graph. Forum (Eurographics),

34(2):287–297.

[Krishnamurthy et al., 2021] Krishnamurthy, V. R., Akleman, E., Subramanian, S. G., Ebert, M.,

Cui, J., an Fu, C., and Starrett, C. (2021). Geometrically interlocking space-filling tiling based

on fabric weaves. IEEE Trans. Vis. & Comp. Graphics. DOI: 10.1109/TVCG.2021.3065457.

[Larsson et al., 2020] Larsson, M., Yoshida, H., Umetani, N., and Igarashi, T. (2020). Tsugite:

Interactive design and fabrication of wood joints. In Proc. ACM UIST, pages 317–327.

[Leung et al., 2021] Leung, P. Y., Apolinarska, A. A., Tanadini, D., Gramazio, F., and Kohler, M.

(2021). Automatic assembly of jointed timber structure using distributed robotic clamps.

In Globa, A., van Ameijde, J., Fingrut, A., Kim, N., and Sky Lo, T. T., editors, ’PROJECTIONS’

– Proceedings of the 26th International Conference of the Association for Computer-Aided

Architectural Design Research in Asia (CAADRIA 2021), volume 1, pages 583 – 592. 26th

International Conference of the Association for Computer-Aided Architectural Design

Research in Asia: Projections (CAADRIA 2021) (virtual); Conference Location: Hong Kong,

China; Conference Date: March 29 – April 1, 2021; Conference lecture held on March 30,

2021. Due to the Coronavirus (COVID-19) the conference was conducted virtually.

[Ma et al., 2019] Ma, L., He, Y., Sun, Q., Zhou, Y., Zhang, C., and Wang, W. (2019). Construct-

ing 3D self-supporting surfaces with isotropic stress using 4D minimal hypersurfaces of

revolution. ACM Trans. on Graph., 38(5):144:1–144:13.

[Magrisso et al., 2018] Magrisso, S., Mizrahi, M., and Zoran, A. (2018). Digital joinery for

hybrid carpentry. In Proc. ACM CHI, pages 167:1–167:11.

[Masehian and Ghandi, 2020] Masehian, E. and Ghandi, S. (2020). ASPPR: A new assembly

sequence and path planner/replanner for monotone and nonmonotone assembly planning.

Computer-Aided Design, 123:102828:1–102828:22.

[Mellado et al., 2014] Mellado, N., Song, P., Yan, X., Fu, C.-W., and Mitra, N. J. (2014). Computa-

tional design and construction of notch-free reciprocal frame structures. In Proc. Advances

in Architectural Geometry, pages 181–197.

128

Bibliography

[Mirkhalaf et al., 2018] Mirkhalaf, M., Zhou, T., and Barthelat, F. (2018). Simultaneous im-

provements of strength and toughness in topologically interlocked ceramics. Proceedings

of the National Academy of Sciences of the United States of America, 115(37):9128–9133.

[Mitra et al., 2019] Mitra, N. J., Kokkinos, I., Guerrero, P., Thuerey, N., Kim, V., and Guibas, L.

(2019). CreativeAI: Deep learning for graphics. In SIGGRAPH Courses.

[Nurnberg, 2013] Nurnberg, R. (2013). http://wwwf.imperial.ac.uk/ rn/centroid.pdf.

[Ochsendorf, 2002] Ochsendorf, J. A. (2002). Collapse of Masonry Structures. PhD thesis,

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

[Panozzo et al., 2013] Panozzo, D., Block, P., and Sorkine-Hornung, O. (2013). Designing

unreinforced masonry models. ACM Trans. on Graph. (SIGGRAPH), 32(4):91:1–91:11.

[Shin et al., 2016] Shin, H. V., Porst, C. F., Vouga, E., Ochsendorf, J., and Durand, F. (2016).

Reconciling elastic and equilibrium methods for static analysis. ACM Trans. on Graph.,

35(2):13:1–13:16.

[Siegmund et al., 2016] Siegmund, T., Barthelat, F., Cipra, R., Habtour, E., and Riddick, J.

(2016). Manufacture and mechanics of topologically interlocked material assemblies.

Applied Mechanics Reviews, 68(4). Article No. 040803.

[Skouras et al., 2015] Skouras, M., Coros, S., Grinspun, E., and Thomaszewski, B. (2015). Inter-

active surface design with interlocking elements. ACM Trans. on Graph. (SIGGRAPH Asia),

34(6). Article No. 224.

[Song et al., 2016] Song, P., Deng, B., Wang, Z., Dong, Z., Li, W., Fu, C.-W., and Liu, L. (2016).

CofiFab: Coarse-to-fine fabrication of large 3D objects. ACM Trans. on Graph. (SIGGRAPH),

35(4):45:1–45:11.

[Song et al., 2012] Song, P., Fu, C.-W., and Cohen-Or, D. (2012). Recursive interlocking puzzles.

ACM Trans. on Graph. (SIGGRAPH Asia), 31(6):128:1–128:10.

[Song et al., 2017] Song, P., Fu, C.-W., Jin, Y., Xu, H., Liu, L., Heng, P.-A., and Cohen-Or, D.

(2017). Reconfigurable interlocking furniture. ACM Trans. on Graph. (SIGGRAPH Asia),

36(6):174:1–174:14.

[Song et al., 2015] Song, P., Fu, Z., Liu, L., and Fu, C.-W. (2015). Printing 3D objects with

interlocking parts. Comp. Aided Geom. Des. (GMP), 35-36:137–148.

[Stegmann, 2018] Stegmann, R. (2018). Rob’s puzzle page - interlocking puzzles. http://www.

robspuzzlepage.com/interlocking.htm.

[Sun et al., 2021] Sun, Y., Ouyang, W., Liu, Z., Ni, N., Savoye, Y., Song, P., and Liu, L. (2021).

Computational design of self-actuated deformable solids via shape memory material. IEEE

Trans. Vis. & Comp. Graphics. DOI: 10.1109/TVCG.2020.3039613.

129

http://www.robspuzzlepage.com/interlocking.htm
http://www.robspuzzlepage.com/interlocking.htm

Bibliography

[Tang et al., 2019] Tang, K., Song, P., Wang, X., Deng, B., Fu, C.-W., and Liu, L. (2019). Com-

putational design of steady 3D dissection puzzles. Comp. Graph. Forum (Eurographics),

38(2):291–303.

[Tarjan, 1972] Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM Journal

on Computing, 1(2):146–160.

[Wang et al., 2019] Wang, Z., Song, P., Isvoranu, F., and Pauly, M. (2019). Design and structural

optimization of topological interlocking assemblies. ACM Trans. on Graph. (SIGGRAPH

Asia), 38(6):193:1–193:13.

[Weizmann et al., 2017] Weizmann, M., Amir, O., and Grobman, Y. J. (2017). Topological

interlocking in architecture: A new design method and computational tool for designing

building floors. International Journal of Architectural Computing, 15(2):107–118.

[Whiting et al., 2009] Whiting, E., Ochsendorf, J., and Durand, F. (2009). Procedural mod-

eling of structurally-sound masonry buildings. ACM Trans. on Graph. (SIGGRAPH Asia),

28(5):112:1–112:9.

[Whiting et al., 2012] Whiting, E., Shin, H., Wang, R., Ochsendorf, J., and Durand, F. (2012).

Structural optimization of 3d masonry buildings. ACM Trans. on Graph. (SIGGRAPH Asia),

31(6):159:1–159:11.

[Wilson, 1992] Wilson, R. H. (1992). On Geometric Assembly Planning. PhD thesis, Stanford

University.

[Wilson and Latombe, 1994] Wilson, R. H. and Latombe, J.-C. (1994). Geometric reasoning

about mechanical assembly. Artificial Intelligence, 71(2):371–396.

[Wilson and Matsui, 1992] Wilson, R. H. and Matsui, T. (1992). Partitioning an assembly for

infinitesimal motions in translation and rotation. In Proc. IEEE/RSJ Intl. Conf. on Intelligent

Robots and Systems, pages 1311–1318.

[Xin et al., 2011] Xin, S.-Q., Lai, C.-F., Fu, C.-W., Wong, T.-T., He, Y., and Cohen-Or, D. (2011).

Making burr puzzles from 3D models. ACM Trans. on Graph. (SIGGRAPH), 30(4):97:1–97:8.

[Yao et al., 2017a] Yao, J., Kaufman, D. M., Gingold, Y., and Agrawala, M. (2017a). Interactive

design and stability analysis of decorative joinery for furniture. ACM Trans. on Graph.,

36(2):20:1–20:16.

[Yao et al., 2017b] Yao, M., Chen, Z., Xu, W., and Wang, H. (2017b). Modeling, evaluation

and optimization of interlocking shell pieces. Comp. Graph. Forum (Pacific Graphics),

36(7):1–13.

[Zessin, 2012] Zessin, J. F. (2012). Collapse Analysis of Unreinforced Masonry Domes and Curv-

ing Walls. PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts,

USA.

130

Bibliography

[Zhang et al., 2020] Zhang, X., Belfer, R., Kry, P. G., and Vouga, E. (2020). C-space tunnel

discovery for puzzle path planning. ACM Trans. on Graph. (SIGGRAPH), 39(4):104:1–104:14.

[Zhang and Balkcom, 2016] Zhang, Y. and Balkcom, D. (2016). Interlocking structure assembly

with voxels. In Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, pages 2173–2180.

[Zhang et al., 2018] Zhang, Y., Whiting, E., and Balkcom, D. (2018). Assembling and disas-

sembling planar structures with divisible and atomic components. IEEE Transactions on

Automation Science and Engineering, 15(3):945–954.

[Zheng et al., 2017] Zheng, C., Do, E. Y.-L., and Budd, J. (2017). Joinery: Parametric joint

generation for laser cut assemblies. In Proc. ACM SIGCHI Conference on Creativity and

Cognition, pages 63–74.

131

Ziqi Wang | Curriculum Vitae
BC346, EPFL – 1015 Lausanne – Switzerland

Æ +41-21-693-7533 • Q ziqi.wang@epfl.ch • � kiki007.github.io

Education
EPFL Lausanne
PhD Candidate, Switzerland 2017 - 2021.12(Expected)
Geometric Computing Laboratory
School of Computer and Communication Sciences
Advisor: Prof.Dr.Mark Pauly (EPFL, Switzerland)
Co-Adviosr: Prof.Dr.Peng Song (SUTD, Singapore)
University of Science and Technology of China Hefei
Bachelor, China 2013 - 2017
Information & Computational Science
Department of Mathematics
Rank: 9/145 (Top 6%)

Publications
[1] Ziqi Wang, Peng Song, and Mark Pauly. Mocca: Modeling and optimizing cone-joints for
complex assemblies. ACM Transactions on Graphics (SIGGRAPH 2021), 2021.

[2] Ziqi Wang, Peng Song, and Mark Pauly. State of the art on computational design of assemblies
with rigid parts. Computer Graphics Forum (Proc. of Eurographics), 2021.

[3] Yang Xu, Ziqi Wang, Siyu Gong, and Yong Chen. Reusable support for additive manufacturing.
Additive Manufacturing, 39:101840, 2021.

[4] Ziqi Wang, Peng Song, Florin Isvoranu, and Mark Pauly. Design and structural optimization
of topological interlocking assemblies. ACM Transactions on Graphics (SIGGRAPH Asia 2019),
38(6), 2019.

[5] Ziqi Wang, Peng Song, and Mark Pauly. DESIA: A general framework for designing interlocking
assemblies. ACM Transactions on Graphics (SIGGRAPH Asia 2018), 37(6), 2018. Article No. 191.

[6] Ziqi Wang, Jack Szu-Shen Chen, Jimin Joy, and Hsi-Yung Feng. Machined sharp edge
restoration for triangle mesh workpiece models derived from grid-based machining simulation.
Computer-Aided Design and Applications, 15(6):905–915, 2018.

[7] Peng Song, Bailin Deng, Ziqi Wang, Zhichao Dong, Wei Li, Chi-Wing Fu, and Ligang Liu.
CofiFab: Coarse-to-fine fabrication of large 3d objects. ACM Transactions on Graphics (SIGGRAPH
2016), 35(4), 2016. Article 45.

1/3
133

Professional experience
EPFL Lausanne
Teaching Assistant, Switzerland Sep 2017 - present
MATH-111(E) Linear Algebra (Fall 2020)
CS-341 Introduction to Computer Graphics (Spring 2019, 2020)
CS-446 Digital 3D Geometry Processing (Fall 2018, 2019)
CS-457 Geometric Computing (Fall 2021)
ETH Zurich Zurich
Academic Visiting, Switzerland 2021 Summer
Gramazio Kohler Research
University of Southern California Los Angeles
Academic Visiting, USA 2017 Spring
Host: Prof.Dr.Yong Chen
Project for designing supports-free 3D FDM printer.
The University of British Columbia Vancouver
Research Assistant, Canada 2016 Summer
Host: Prof.Dr.Hsi-Yung Feng
Worked on topics in CNC machining simulation.

Talks
DESIA: A General Framework for Designing Interlocking Assemblies (with Peng Song) 2018.12
ACM SIGGRAPH Asia
Design and Structural Optimization of Topological Interlocking Assemblies 2019.12
ACM SIGGRAPH Asia
Computational Assembly for Fabrication: Shape Optimization 2021.3
Computational Fabrication Seminar
Invited by Peng Song

State of the Art on Computational Design of Assemblies with Rigid Parts 2021.5
Eurographics State of The Art Report

MOCCA: Modeling and Optimizing Cone-joints for Complex Assemblies 2021.8
ACM SIGGRAPH

Professional service
+ Reviewer, TVCG, TOG
+ Reviewer, Computer Aided Geometric Design

Professional skills
Programming: C/C++, Python, C#
Software: Rhino/Grasshopper
Language: Chinese(native), English(fluent), Japanese(beginner)

2/3
134

Honors
2016: The Baogang Scholarship, top 5%
2015: USTC Outstanding Student Scholarship(Grade 1), top 10%

3/3
135

	Acknowledgements
	Abstract (English/Français)
	List of figures
	Introduction
	Introduction
	Contributions
	Publication
	Overview

	Related Works
	Computational Analysis of Assemblies
	Joining Parts
	Assembly Planning
	Structural Stability

	Computational design of structurally stable assemblies
	Assemblies in Equilibrium
	Interlocking Assemblies
	Topological Interlocking Assemblies

	Kinematic-Based Stability Analysis
	Contact Discretization
	Force-based Equilibrium Method
	Kinematic-based Equilibrium Method
	Motion-Based Representation
	Motion Space Analysis of Contact
	Motion Graph

	Kinematic-Based Interlocking Test
	Inequality-based Interlocking Test
	DBG-based Interlocking Test
	Connection between Interlocking and Equilibrium

	Lateral Stability Measure

	Computational Design of Interlocking Assemblies
	Introduction
	Computational Design Framework
	Iterative Design Framework
	Generating the key
	Generating PiRi

	Results and Discussion
	Interlocking Voxelized Structures
	Interlocking Plate Structures
	Interlocking Frame Structures
	Implementation and Performance

	Limitations and Future Work
	Acknowledgments

	Computational Design of Topological Interlocking Assemblies
	Introduction
	Computational Design of TI Assemblies
	Parametric Model
	Interactive Design

	Structural Optimization of TI Assemblies
	Compute Target Force Directions
	Optimize TI Assembly

	Results and Discussion
	Limitations and Future Work
	Acknowledgments

	Modeling and Optimizing Cone-joints for Complex Assemblies
	Introduction
	Modeling Assemblies with Cone Joints
	Modeling Geometry of Cone Joints
	Modeling Assemblies with Cone Joints

	Designing Assemblies with Cone Joints
	Overview of our approach
	Kinematic Design
	Geometric Realization

	Results
	Limitations and Future Work
	Acknowledgments

	Conclusion & Discussion
	Summary
	Future Work

	Supplementary Material for Interlocking Assemblies
	Comparisons and Results
	Proof of Statement on the Parts-graph
	Proof of Statement on the DBG-based Test

	Supplementary Material for TI Assemblies
	Optimization of 3D Surface Tessellation
	Compute Target Force Directions
	Gradient-based Structural Optimization
	Definition
	Face-Face Contact Normal
	Edge-Edge Contact Normal
	Block Vertex
	Block Volume
	Block Centroid
	Contact Vertex
	Contact Area

	Supplementary Material for Assemblies with Cone Joints
	Motion Cone Visualization
	Kinematic Based Infeasibility Measure
	Infeasibility Derivatives
	New Interlocking Test

	Curriculum Vitae

