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Abstract

The complex yarn structure of knitted and woven fabrics gives rise to both a mechanical and
visual complexity. The small-scale interactions of yarns colliding with and pulling on each
other result in drastically different large-scale stretching and bending behavior, introducing
anisotropy, curling, and more. While simulating cloth as individual yarns can reproduce this
complexity and match the quality of real fabric, it may be too computationally expensive for
large fabrics. On the other hand, continuum-based approaches do not need to discretize the
cloth at a stitch-level, but it is non-trivial to find a material model that would replicate the
large-scale behavior of yarn fabrics, and they discard the intricate visual detail. In this thesis,
we discuss three methods to try and bridge the gap between small-scale and large-scale yarn
mechanics using numerical homogenization: fitting a continuum model to periodic yarn simu-
lations, adding mechanics-aware yarn detail onto thin-shell simulations, and quantitatively
fitting yarn parameters to physical measurements of real fabric.

To start, we present a method for animating yarn-level cloth effects using a thin-shell solver.
We first use a large number of periodic yarn-level simulations to build a model of the potential
energy density of the cloth, and then use it to compute forces in a thin-shell simulator. The
resulting simulations faithfully reproduce expected effects like the stiffening of woven fabrics
and the highly deformable nature and anisotropy of knitted fabrics at a fraction of the cost of
full yarn-level simulation.

While our thin-shell simulations are able to capture large-scale yarn mechanics, they lack
the rich visual detail of yarn-level simulations. Therefore, we propose a method to animate
yarn-level cloth geometry on top of an underlying deforming mesh in a mechanics-aware
fashion in real time. Using triangle strains to interpolate precomputed yarn geometry, we are
able to reproduce effects such as knit loops tightening under stretching at negligible cost.

Finally, we introduce a methodology for inverse-modeling of yarn-level mechanics of cloth,
based on the mechanical response of fabrics in the real world. We compile a database from
physical tests of several knitted fabrics used in the textile industry spanning diverse physical
properties like stiffness, nonlinearity, and anisotropy. We then develop a system for approx-
imating these mechanical responses with yarn-level cloth simulation, using homogenized
shell models to speed up computation and adding some small-but-necessary extensions to
yarn-level models used in computer graphics.
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CHAPTER 1
Introduction

Knitted and woven fabrics can be constructed from simple yarns or wires, yet they span a
wide range of material behavior. Fascinating material properties can arise entirely from the
geometric structure. Figure 1.1 demonstrates how a stockinette knit (also called plain knit or
jersey) is more compliant along one direction. This is caused by knit loops tightening and
pulling in material from adjacent rows, bending and moving the yarns instead of stretching
them, and so the fabric as a whole exhibits an anisotropic stiffness purely based on its geometry.
The yarn topology of various patterns may result in dramatically different material behavior
with respect to stiffness, anisotropy, area preservation, and more. See for example Figure 1.2,
where a rib knit exhibits area-preservation behavior, and a stockinette knit curls on the
boundary.

This variety in effective material behavior and the fact that these fabrics can be produced
from simple yarns leads to knitted and woven fabric being ubiquitous in everyday life. Simul-
taneously, the large-scale behavior of yarn-based fabric is difficult to predict without a full
simulation. Consequently, the simulation and analysis of such fabrics generated a great deal
of research in the computer graphics [Kaldor et al. 2008; Cirio et al. 2014; Yuksel et al. 2012;
Narayanan et al. 2018], materials science [Choi and Lo 2003; Fillep et al. 2017], and physics
communities [Poincloux et al. 2018]. However, while simulating fabric as a collection of inter-
acting threads can indeed both reproduce the inherently complex material behavior and also
the beautiful visual complexity, this strategy is computationally expensive. Efficient algorithms
for the handling of yarn-yarn contact [Kaldor et al. 2010], treating contacts as persistent [Cirio
et al. 2014, 2016; Sánchez-Banderas et al. 2020], and GPU-based implementations [Leaf et al.
2018] can mitigate the cost substantially. Regardless, these methods still discretize a fabric
on the scale of yarn crossings or knit loops and are thus fundamentally limited in terms of
scalability.

On the other hand, spring-based [Choi and Ko 2005], constraint-based [Müller et al. 2007], or
continuum-based [Terzopoulos et al. 1987; Baraff andWitkin 1998; Grinspun et al. 2003; Narain
et al. 2012] thin-shell cloth solvers have been widely adopted in graphics research. These
methods are free to discretize fabric at scales much larger than individual stitches, and as a
result they are much more efficient. However, common continuum membrane and bending
models fall short of reproducing the complex nonlinearities, area-preservation behavior, and
even curling behavior that can arise naturally from yarn mechanics, and they also lose the
visual detail carried by individual yarns.
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1. Introduction

Figure 1.1: Photo of a stockinette knit being pulled in different directions. The individual
loops of the knit interact in such a way that the fabric as a whole is compliant along the weft
direction (here: horizontal) and more stiff along other directions.

Figure 1.2: Large-scale phenomena can emerge from simulated yarn-level geometry. The rib
pattern (top) exhibits anisotropy and a tendency to preserve area under tension, while the
stockinette pattern (bottom) exhibits curling.

Thin-shell cloth simulation of knitted and woven fabric is effectively trying to predict the large-
scale behavior emerging from the small-scale yarn structure. Abstracting the local detail into
an average behavior is the essence of homogenization. This area of research has been adopted
in the graphics community, e.g. for the purpose of analyzing rod structures [Schumacher et al.
2018], coarsening multi-material finite-element simulations [Kharevych et al. 2009; Chen et al.
2018a] and designing of metamaterials [Bickel et al. 2010; Schumacher et al. 2015].

1.1 Overview
In this thesis, we present three methods that combine yarn-level and thin-shell simulations
via homogenization, see also Figure 1.3: fitting a continuum model to match the large-scale
behavior of yarn-based fabrics [Sperl et al. 2020], adding back the local yarn-detail to match
the visual complexity of knit loops tightening in real time [Sperl et al. 2021], and fitting yarn
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1.1. Overview

  

yarn pattern simulation

shell simulation yarn detail real fabric measurements

Figure 1.3: Overview of the methods included in this thesis. We use periodic yarn simulations
(top) in three ways to analyze the behavior of yarn fabrics: First, we can compute an average
large-scale elastic behavior by homogenizing a thin-shell model for cloth simulation (left).
Second, we combine thin-shell simulation with data-driven yarn detail to animate millions of
yarn loops in real-time (center). Third, we fit yarn parameters to real fabric measurements in
a quantitative manner (right).

material parameters to match real physical measurements of fabric [Sperl et al. 2022].

Homogenized Yarn-Level Cloth We first address the topic of capturing the material
properties of woven and knitted fabrics by fitting a custom continuum model to periodic
yarn simulations. We introduce a procedure to homogenize the elastic energy of these yarn
simulations under prescribed thin-shell strains using novel co-rotated periodic boundary
conditions. Plugging the resulting continuum model into an off-the-shelf cloth solver, we
manage to reproduce the complex macro-mechanical behavior of several fabrics, including
effects such as anisotropic area-preservation, or even curling under tension. The code for yarn
simulation is available at https://git.ist.ac.at/gsperl/HYLC, and for shell simulation at
https://git.ist.ac.at/gsperl/ARCSim-HYLC.

Mechanics-Aware Deformation of Yarn Pattern Geometry While the previous method
is able to capture the large-scale mechanics in terms of a thin-shell model, this abstraction loses
the visual yarn-level detail. In the framework of homogenizing elastic properties of periodic
yarn patterns, we also automatically capture the deformation-dependent displacements of the
local yarn geometry. We therefore propose a method to interpolate yarn pattern deformations
at run time to enrich a cloth simulationwith detailed yarn geometry. The interpolated geometry
rearranges in accordance with yarn-level mechanics and reproduces salient effects such as
knit loops tightening under tension. It thus effectively approximates full yarn-level animation
at negligible cost over an underlying mesh-based simulation. The code for this project is
available at https://git.ist.ac.at/gsperl/MADYPG.
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1. Introduction

Estimation of Yarn-Level Simulation Models for Production Fabrics Finally, we pro-
pose a method to fit yarn material parameters such that yarn-level simulation matches physical
measurements of real textiles used in production. Simulation of cloth at a yarn-level as dis-
cussed above has demonstrated its outstanding capabilities of matching the behavior of real
fabrics qualitatively, producing animations of extreme detail and mechanical behavior ex-
hibiting structural nonlinearity. However, real textiles often introduce additional mechanical
complexity, e.g. by combining multiple types of yarns in one fabric. Previous work has not
validated whether the yarn models used in computer graphics would be able to reproduce the
behavior of real fabrics quantitatively. We compiled a library of production knit fabrics and
developed a two-step fitting procedure, using an intermediate thin-shell model and homoge-
nized yarn simulation, to also match the quantitative mechanical response. The data set is
available at https://mslab.es/projects/YarnLevelFabrics/.

Modeling Assumptions Woven and knitted fabrics are complex materials with non-trivial
elastic, plastic, hysteretic, and damping behaviors. As a first step toward data-driven yarn-level
cloth simulation, the methods discussed in this thesis assume that these materials exhibit a
purely hyperelastic response to deformation, and we do not explicitly model yarn friction.
Although our current approaches are limited, we show in the following chapters that this
hyperelastic assumption is sufficient to reproduce a number of qualitative and quantitative
effects specific to yarn-level materials. We discuss future extensions in the directions of
data-driven plasticity, hysteresis, and damping in the respective chapters and in Chapter 7.

The remainder of this thesis is organized as follows. In Chapter 2, we discuss related work.
Chapter 3 introduces our approach for thin-shell homogenization and yarn simulation which
subsequent chapters will use. In Chapter 4, we detail our method of fitting continuum shell
models to periodic yarn simulations. Chapter 5 discusses how to use data-driven yarn detail to
animate yarn-level geometry in real-time on top of a continuum cloth simulation. Chapter 6
describes our data set of production knit fabrics and our procedure to fit yarn-level parameters
to fabric-level measurements. Chapter 7 concludes the thesis with a discussion on current
limitations and future work.
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CHAPTER 2
Related Work

In this chapter, we present a brief overview on related work. This thesis incorporates ideas form
a variety of topics, ranging from yarn simulation and yarn-level cloth simulation, continuum
cloth simulation, data-driven cloth, multiscale methods, as well as embedded and example-
based deformation. We focus the discussion mostly on literature from computer graphics.

2.1 Yarn-Level Simulation
Yarn Simulation Simulators approximate the behavior of an individual strand of yarn or
thread using the theory of elastic rods. Early work on simulation of elastic rods includes the
work of Pai [2002], introducing Cosserat rods to the graphics community, as well as spring-
based methods such as [Selle et al. 2008]. Bergou et al. [2008, 2010] present discrete elastic
rods, a discrete model of Kirchhoff rods widely adopted in the graphics community [Kaldor
et al. 2010; Fei et al. 2017; Pérez et al. 2015; Schumacher et al. 2018; Leaf et al. 2018]. Some
works focused on interactive simulation of individual rods [Umetani et al. 2014; Kugelstadt and
Schömer 2016; Angles et al. 2019; Soler et al. 2018] build on the frameworks of position-based
dynamics [Müller et al. 2007; Macklin et al. 2016] or projective dynamics [Bouaziz et al. 2014].
Martin et al. [2010] propose a unified model for rods, shells and volumes.

Yarn-Level Cloth Simulation of fabric at the yarn level was pioneered in computer graphics
by Remion et al. [1999] who simulated knitted fabrics as deformable rods in contact. Later,
Kaldor et al. [2008] demonstrated the ability to simulate full garments at the yarn level, with
subsequent work on improving the treatment of collision handling [Kaldor et al. 2010]. They
showed that such models could reproduce qualitative macroscopic behavior of real-world
knits. To accelerate computation, Cirio et al. [2014] introduced persistent sliding contacts to
simulate woven fabric [Cirio et al. 2014], which was later extended to knitted fabrics [Cirio
et al. 2015, 2016], an improved bending model [Pizana et al. 2020], and robust contact handling
between multiple layers of cloth [Sánchez-Banderas et al. 2020]. Recently, Cirio and Rodríguez
[2022] combined yarn-level garment simulation with mass-spring systems to accurately model
realistic seams between fabric pieces. Jiang et al. [2017] modeled yarn-level simulations within
the Material Point Method (MPM). In this thesis, we rely on the methods of Kaldor et al. [2008]
and Bergou et al. [2010] for the simulation of our periodic yarn patterns. In Chapter 6 we
extend these models to biphasic stretching and collision to fit yarn simulations to real fabric
measurements with difficult nonlinearities.
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As discussed in the introduction, an important gap in yarn-level modeling of fabrics is their
connection to real-world materials. Leaf et al. [2018] propose a method for the interactive
authoring and editing of small periodic yarn patches on GPUs. They showed that varying
the stiffnesses and rest-shape parameters of yarns could lead to the design of yarn patterns
that matched the geometry of complex real-world knits. However, they did not validate the
mechanical behavior of the resulting fabric. In our works, we similarly examine periodic yarn
patches but use them to judge both the qualitative and quantitative mechanical behavior. In
textile engineering, recent works have looked at initializing the yarn geometry for volumetric
finite-element simulation [Wadekar et al. 2020]. In our experience, this leaves many open
unknowns, such as the rest-shape geometry of the yarns and the contact model.

Yarn Friction While we omit treatment of friction in our yarn simulations, recent works
have investigated simulation of rods with friction. Daviet [2020] propose a unified approach for
Coulomb friction of hair, cloth, and elastic bodies. Similarly, Li et al. [2021] extend Incremental
Potential Contact (IPC) [Li et al. 2020] to codimensional objects for interpenetration-free and
stable contact with friction. Other works propose an implicit penalty-based frictional contact
for yarns with penetration [Choi et al. 2021; Tong et al. 2022] or differentiable persistent-contact
models [Gong et al. 2022].

2.2 Continuum-Level Cloth
Researchers in computer graphics often simulate cloth based on continuum mechanics, i.e.
treating it as an elastic solid with a potential energy that increases as it deforms from its rest
state. Typical methods for discretizing such an elastic solid are mass-spring networks [Provot
1995; Choi and Ko 2005], discrete thin shells [Grinspun et al. 2003; Bridson et al. 2003;Wardetzky
et al. 2007], finite differences [Terzopoulos et al. 1987], finite elements [Baraff and Witkin 1998;
Kim 2020; Thomaszewski et al. 2007; Narain et al. 2012], and the material point method [Guo
et al. 2018]. Chen et al. [2018b] develop a discrete Koiter model for thin-shell simulation.
Further work focused on contact [Weidner et al. 2018; Buffet et al. 2019; Li et al. 2021] and on
efficient simulation using multi-grid solvers [Wang et al. 2018; Xian et al. 2019], local-global
schemes [Bouaziz et al. 2014; Overby et al. 2017], and GPU-based implementations [Schmitt
et al. 2013; Wu et al. 2022]. Most recently, Lan et al. [2022] proposed a combined approach
for penetration-free projective dynamics on the GPU. In Chapter 4, we use a finite-element
thin-shell solver with adaptive remeshing to simulate our macroscale cloth (ArcSim [Narain
et al. 2012, 2013]).

2.3 Estimating of Mechanical Cloth Parameters
Many of the methods above use analytically derived material models based on a somewhat
straightforward relationship between deformation and potential energy. However, real mate-
rials can be exhibit hard-to-model nonlinearities, anisotropies and more. As a result, there
is a long line of research trying to estimate thin-shell models for fabric in a data-driven way.
In the textile engineering field early approaches designed mechanical tests that could elicit
mechanical properties in a separable way [Peirce 1930; Kawabata 1980].

In computer graphics, we can distinguish two main directions in the estimation of cloth
simulation models. One direction focuses on the accuracy of the estimation, in particular
trying to address the nonlinear and anisotropic behavior of cloth. Works in this direction entail
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the design of physical tests to produce force-deformation examples, parameterization of the
cloth model, and estimation algorithms [Wang et al. 2011; Miguel et al. 2012]. Some works have
considered the hysteresis behavior in cloth deformations, by estimating models of internal
friction [Miguel et al. 2013]. Further research discusses incremental fitting of separable models
for convex hyperelastic materials [Miguel et al. 2016] and an orthotropic model for woven
fabric based on commercially available tests [Clyde et al. 2017]. When fabric is deformed, it
is challenging to apply uniform stress; therefore, multiple mechanical properties lead to a
complex interplay. We face a similar challenge when trying to circumvent the computational
cost of yarn-level simulations in Chapter 6 by leveraging periodic deformations. For each
update to model parameters, the above methods typically need to recompute quasistatic cloth
equilibria to compare to real-world measurements. They also mention difficulty in accurately
capturing bending. For our homogenized materials (Chapter 4), data-gathering and fitting
are decoupled. We precompute deformation responses once as an inexpensive preprocessing
step and thus do not require simulations during fitting. We also do not require any real-world
measurement setup. Additionally, our method can directly compute the bending resistance for
applied curvatures, allowing for more controlled measurements.

Another direction focuses on estimating simulation models from more casual data, such as
video. The pioneering work of Bhat et al. [2003] used optimization methods to estimate mass,
elasticity and damping parameters from videos of cloth motion. Bouman et al. [2013] used a
machine-learning technique, where they learned a mapping from cloth model parameters to
video features, and then inverted this mapping to fit parameters to new video footage. This
approach has received major thrust with the explosion of deep learning methods [Yang et al.
2017; Runia et al. 2020]. Recent works look at the design of semi-controlled setups where
particular mechanical properties are exposed, e.g., contact friction [Rasheed et al. 2020].

Modern machine learning methods have also posed the problem of efficient simulation-in-the-
loop optimization. To this end, research on differentiable simulation answers how to compute
gradients of (dynamic) equilibrium constraints for cloth simulation [Liang et al. 2019; Li et al.
2022a].

2.4 Multiscale Modeling and Homogenization
In computer graphics, the concept of multiscale modeling covers a wide area of research such
as analytic multiscale models [Fei et al. 2017, 2018, 2019], numerical coarsening [Kharevych
et al. 2009; Chen et al. 2017, 2018a], metamaterials and digital fabrication [Bickel et al. 2010;
Schumacher et al. 2015; Chen et al. 2015; Pérez et al. 2015; Rodriguez et al. 2022; Li et al. 2022b],
sound simulation [Cirio et al. 2018], and rendering [Guarnera et al. 2016; Zhao et al. 2016].

Our work focuses on homogenization of periodic yarn patterns and is thus closely related to
the work of Schumacher et al. [2018]. They investigate the elastic properties of isohedral tilings
represented as planar rod patterns through numerical homogenization. They also provide
a tool for exploring the various families of tilings and discuss emergent properties such as
material symmetries in detail. Their tool examines material nonlinearities by fitting linear
models at multiple magnitudes of deformation. Our work can be seen as an extension to fully
nonlinear models for non-planar woven and knitted yarn patterns. In addition, our novel
boundary conditions let us homogenize interaction between multiple modes of deformation,
such as simultaneous stretching and bending.

Recently, Rodriguez et al. [2022] built on our work and developed an algorithm for inverse
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design of bending-active structures. Chapter 6 similarly discusses inverse design using homog-
enization. It also relates to the inverse design of simulated fibers [Hadap 2006; Derouet-Jourdan
et al. 2010] and hair [Derouet-Jourdan et al. 2013].

Another work has addressed the computational cost of full yarn-level simulations by enabling
hybrid simulations [Casafranca et al. 2020], combining thin-shell and yarn-level simulation
while focusing yarn-level computational effort only where needed.

Computational Homogenization Multiscale modeling has received a lot of attention also
outside of computer graphics; this includes the technique of computational homogenization,
where macroscopic material responses are computed based on representative microscale
simulations [Renard and Marmonier 1987; Guedes and Kikuchi 1990]. Macroscopic strains
are imposed on the representative microscale material sample through boundary conditions,
and stresses can be computed through averaging. To this end, De Souza Neto et al. [2015]
and Blanco et al. [2016] propose a generalized framework to derive microscale boundary
conditions and averaging relations for homogenization in general. For more details, we refer
to the reviews of Geers et al. [2010] and Matouš et al. [2017].

This method has been applied to the homogenization of thin shells [Geers et al. 2007] as well
as textiles and fabrics [Mehnert et al. 2015; Fillep et al. 2017; Dinh et al. 2018; Liu et al. 2019].
However, these works discretize yarns with expensive volumetric finite-elements and limit
their analysis to small stitches and deformations. They use a small-curvature assumption
which is inadequate for large bending, as we will discuss in Section 3.2.2.

The nature of representative microscale computations in computational homogenization lends
itself to data-driven approaches. Various approaches fit constitutive models from precomputed
stress and energy data [Bessa et al. 2017; Le et al. 2015; Yvonnet et al. 2013]. However, the
basic constitutive models used are either not descriptive enough for our data or do not provide
any guarantees to ensure smooth animation.

Other Continuum Models for Fabric The physics and engineering communities have
also developed continuum-level models for approximating the behavior of fabrics. Choi
and Lo [2003] and Poincloux et al. [2018] propose mathematical models describing the rich
material response of a stockinette pattern based on inextensible and incompressible yarns.
However, their investigations are limited to a small set of extension tests. Researchers have
also developed mesoscopic models of woven fabric using spring-based finite elements [King
et al. 2005; Parsons et al. 2010, 2013].

2.5 Embedded Detail
A simple and effective way to give the illusion of detailed physics is to embed fine geometric
detail into a coarser control mesh. After the idea of dynamic free-form deformations were
introduced by Faloutsos et al. [1997], researchers embedded geometric detail into animations
of elasticity [Sifakis et al. 2007], fracture [Muller et al. 2004], viscoplasticity [Wojtan and
Turk 2008], fluids [Wojtan et al. 2009], and articulated characters [Rumman and Fratarcan-
geli 2016]. Skinning or cage-based approaches deform detailed geometry to follow skeletal
poses or a surrounding cage respectively. For more detail, we refer to surveys of skinning
techniques [Rumman and Fratarcangeli 2016] as well as the overview in Corda et al. [2020].
James [2020] introduced Phong Deformation to reduce artifacts caused by the resolution of a
coarse embedding mesh.
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Porumbescu et al. [2005] proposed shell maps to embed geometry within thin shells. Re-
searchers also use embedding to deform woven yarn pattern geometry [Zhao et al. 2016;
Montazeri et al. 2020]. Wu and Yuksel [2017] instantiate fiber-level detail using yarn curves.
Hoffman et al. [2020] map detailed knit, crochet, and sequin geometry onto cloth meshes with
support for fly-away fibers. Because these techniques apply coarse deformations to fine-scale
geometry, they cannot reproduce small-scale physical effects. Our method for mechanics-
aware yarn detail (Chapter 5) addresses this in the context of yarn-level cloth, by displacing the
yarn geometry before mapping it onto the deformed mesh such that the combined deformation
actually captures the yarn-level physical effects.

2.6 Example-Based Deformation
Our work in Chapter 5 animates yarn physics in real-time by interpolating from precomputed
examples. Researchers also use example geometry to bias physics simulators toward preferred
results [Martin et al. 2011; Schumacher et al. 2012; Koyama et al. 2012; Wampler 2016; Gao
et al. 2019]. Similar to Ma et al. [2008]’s interpolation of displacement textures based on
the deformation of a face mesh, we interpolate yarn geometry based on the deformation
of a cloth mesh. Montazeri et al. [2019] deform yarn cross-sections by learning a model
from precomputed simulations; our approach operates at one scale higher, by animating the
reconfiguration of yarn patterns based on a database of precomputed examples.

2.7 Mechanics-Aware Detail & Wrinkling
Researchers use similar ideas to add fine-scale wrinkle details to a coarse cloth or flesh
simulation. Procedural wrinkle methods rely on an underlying strain field [Hadap et al. 1999;
Rohmer et al. 2010; Zuenko and Harders 2019; Chen et al. 2021] explicit simulation of detail
[Müller and Chentanez 2010], while data-driven wrinkle methods instead train local operators
or pose-dependent systems [Wang et al. 2010; Kavan et al. 2011; Zurdo et al. 2012], with
recent works building on recurrent or convolutional neural networks [Santesteban et al. 2019;
Chentanez et al. 2020; Jin et al. 2020; Vidaurre et al. 2020]. Our technique (Chapter 5) assumes
that the input cloth mesh animation already contains all cloth-scale features including wrinkles,
and then adds detail purely on a yarn scale.

2.8 Machine Knitting & Garment Authoring
The fact that knitted and woven fabric can be produced from simple yarns while having both
great visual and mechanical appeal has spurred the development of authoring tools for these
types of fabric. These tools have also been one of the main targets of yarn-level models in
computer graphics.

Yuksel et al. [2012] introduce the stitch mesh representation for authoring yarn-level models of
knitted garments. This work has later been extended to guarantee knittability [Wu et al. 2019;
Narayanan et al. 2019] and for crocheting [Guo et al. 2020]. Several other representations for
machine-knittable fabric have been developed for sketch-based authoring [Kaspar et al. 2021],
focusing more on high-level design aspects [Nader et al. 2021; Jones et al. 2021], or more on
low-level topology [Kapllani et al. 2021]. Similarly, design tools have also been developed for
3D woven fabrics [Wu et al. 2020a,b].
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CHAPTER 3
Preliminaries

In this chapter, we will introduce our method for the homogenization of periodic yarn patterns
to thin-shell cloth. We will first briefly discuss notation and terms, then review homogenization
of elastic solids, before detailing thin-shell homogenization and yarn pattern simulation that
subsequent chapters rely on.

3.1 Notation and Terms
In the following and throughout this thesis, we use the terms microscopic and microscale when
referring to small local (yarn-level) effects, and we use the terms macroscopic and macroscale
when referring to average (continuum-level) behaviors of the bulk material.1

Wewill refer to the dominant directions of both knitted and woven fabric asweft, for horizontal
rows of knit loops or woven threads, and warp for vertical columns, see also Figure 3.1.

The notation we use during the exposition of our homogenization approach is as follows.
We write matrix-valued quantities 𝐴 and vector-valued quantities 𝑥 in bold, as compared to
scalar-valued quantities Ψ or 𝑘 . We write macroscopic quantities 𝑥 with a bar and microscopic
quantities 𝑥 without. We use Latin indices 𝑖, 𝑗 to iterate dimensions 1, 2, 3, and Greek indices
𝛼, 𝛽 to iterate only the first two dimensions 1, 2. We use indices preceded by a comma as
shorthand for derivatives, e.g. 𝑥𝑖, 𝑗 is the derivative of element 𝑥𝑖 with respect to parameter 𝑗 .

Figure 3.1: The main directions in a knit: weft (rows of knit loops, left) and warp (columns of
knit loops, right).

1As an aside, for several of our examples the term mesoscale (in between micro and macro) might be more
appropriate, given that the deformation is on a somewhat similar scale to the yarn geometry. For simplicity, we
will continue referring to the yarn scale as microscopic.

11



3. Preliminaries

3.2 Homogenization
We begin by summarizing the “kinematic averaging” theory of computational homogenization
for volumetric solids, and we extend these concepts to the homogenization of thin shells in
the second part of this section. For further details, we recommend the following reviews on
computational homogenization and multiscale modeling [Geers et al. 2010; Matouš et al. 2017].

3.2.1 Computational Homogenization of Volumetric Solids

We describe the macroscale deformation of an elastic solid with reference coordinates 𝑋 ,
deformed coordinates 𝑥, and deformation gradient 𝐹 = 𝜕𝑥

𝜕𝑋
. Similarly, we have microscale

quantities 𝑋 , 𝑥, and 𝐹 = ∇𝑥 = 𝜕𝑥
𝜕𝑋 . Homogenization theory assumes that the bulk material

exhibits microscale variations, and thus we can zoom in at any macroscale point 𝑥 to find a
volume of microscale material, called the representative volume element (RVE) [Hill 1963; Geers
et al. 2010]. Mathematically, we can describe the RVE with a first-order expansion about a
point 𝑥 [De Souza Neto et al. 2015]:

𝑥(𝑋) = 𝑥 + 𝐹 𝑋 + �̃�(𝑋), (3.1)

where �̃� is a microscale displacement fluctuation field which encodes all of the non-affine
local deformations around 𝑥. In other words, �̃� encodes all of the detailed, high-frequency
deformations of the microstructure geometry that are not accounted for by the large-scale
deformation 𝐹 . The holes in a spongy material, for example, may deform more than the stiffer
elastic parts; �̃� would define this difference in microscale deformation. See Figure 3.2 for an
illustration.

The theory assumes that the macroscale quantities vary so slowly over the RVE that they are
essentially constant at the microscale [De Souza Neto et al. 2015], i.e. 𝑥 and 𝐹 do not depend
on 𝑋 . We also assume without loss of generality that 1

|Ω |
∫
Ω

𝑋 𝑑Ω = 0, i.e. the centroid of the
microscale reference domain Ω with volume |Ω | is located at the origin.2 Here, 𝑑Ω denotes
integration over Ω.

Ω

FX

u

x

Figure 3.2: RVE for an elastic solid with microscopic holes. At any macroscale point 𝑥, we can
observe a microscale RVE with reference domain Ω. The RVE is deformed through an affine
transformation given by 𝐹 (dashed lines) and additional periodic fluctuations �̃� (blue). Note
that the deformation of the holes is described by a combination of 𝐹 and �̃�.

2Otherwise, the term 𝐹 𝑋 in (3.1) would instead become 𝐹 (𝑋 −𝐶) for the centroid 𝐶 = 1
|Ω |

∫
Ω

𝑋 𝑑Ω.
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Next, macroscale quantities are defined to be averages over their microscale counterparts [Hill
1963; De Souza Neto et al. 2015]:

𝑥 =
1
|Ω |

∫
Ω

𝑥(𝑋) 𝑑Ω, (3.2)

𝐹 =
1
|Ω |

∫
Ω

𝐹 (𝑋) 𝑑Ω. (3.3)

Plugging (3.1) into (3.2) and (3.3) and applying these assumptions gives us∫
Ω

�̃�(𝑋) 𝑑Ω = 0, (3.4)∫
Ω
∇�̃�(𝑋) 𝑑Ω = 0. (3.5)

In other words, the small-scale fluctuations in translation �̃� and deformation ∇�̃� must average
out over the RVE. In computer simulations with periodic micro-structures, (3.4) is satisfied by
fixing the barycenter of �̃�, and (3.5) is commonly satisfied by requiring �̃� to be periodic on
the boundaries [Van der Sluis et al. 2000; De Souza Neto et al. 2015]:

�̃�+ = �̃�−, (3.6)

where �̃�+ is the value of the fluctuation field on one side of the domain, and �̃�− is its value on
the corresponding opposite side. Finally, we compute the homogenized energy density as the
averaged total energy in the RVE

Ψ =
1
|Ω |

∫
Ω
Ψ(𝑋) 𝑑Ω, (3.7)

where Ψ and Ψ are the microscale and macroscale energy densities respectively.

We can also derive an equation for homogenized stresses 𝑃 , either variationally or by taking
the derivative of Ψ with respect to the deformation 𝐹 :

𝑃 =
1
|Ω |

∫
Ω
(𝑃 − 𝑓 ⊗𝑋) 𝑑Ω, (3.8)

where 𝑃 are microscale first Piola-Kirchhoff stresses, and 𝑓 are microscale inertial and body
forces. We refer to the work of De Souza Neto et al. [2015] for more details.

To restate briefly, we expand a microscale RVE from a macroscopic deformation 𝐹 and
with fluctuations �̃� that describe local deformation. We then require that the microscale
deformation on average equals 𝐹 . This imposes the constraint that �̃� should on average not
induce any additional deformation, which can be enforced through periodicity. We solve for �̃�
at equilibrium subject to these constraints. For the purposes of macroscale simulation, we can
then compute forces by taking the negative gradient of the homogenized potential energy or
from the homogenized stresses.

This pipeline can be used to solve coarse problems without an explicit coarse constitutive
model [Geers et al. 2010]. We can evolve macroscale and microscale at the same time, for
example enriching a macroscale mesh with nested solves of RVEs, mapping local deformation
to local elastic stresses. The downside is that we will have to solve for microscale equilibria for
every new deformation, which negatively impacts performance. To address this, data-driven
approaches have been developed [Bessa et al. 2017; Le et al. 2015; Yvonnet et al. 2013], and we
will similarly instead precompute a constitutive model in Chapter 4.
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Figure 3.3: Comparison of a first order (left), second order (middle) and our nonlinear expansion
(right) of thin-shell RVEs in a curved configuration. The lower order expansions show strong
artifacts as bending modes are approximated through shearing (left) or stretching (middle).

3.2.2 Nonlinear Homogenization of Thin Shells
Next, we apply this rationale to the problem of homogenizing a yarn-level microscale to a
thin-shell macroscale. The main challenge here is to find a suitable analogy to Equation (3.1)
that works for thin shells instead of volumes. Previous work on thin-shell homogenization
relies on a small curvature assumption and uses first or second order expansions for the
RVE (e.g. [Geers et al. 2007]). This effectively replaces bending modes with shearing or
stretching of the material, as illustrated in Figure 3.3. For microscale materials that resist
stretching far more than bending, the erroneous stretching can introduce artificial stiffness
in the homogenized response for macroscale bending. To support our goal of homogenizing
highly flexible materials, this section proposes a novel nonlinear thin-shell expansion based
on metrics from differential geometry.

On the macroscale, we have a thin shell 𝑥 that is defined through its midsurface 𝜙, which is
extruded along the normal 𝑛:

𝑥(𝑋 1, 𝑋 2, ℎ) = 𝜙(𝑋 1, 𝑋 2) + ℎ 𝑛(𝑋 1, 𝑋 2), (3.9)

where𝑋𝛼 are the flat reference coordinates of the midsurface, and ℎ is the thickness coordinate.
The left side of Figure 3.4 illustrates this parametrization.

We locally define deformations with the first fundamental form I [Do Carmo 2016] for in-plane
deformation and the second fundamental form II for bending modes. With surface tangents
𝑎𝛼 = 𝜙,𝛼 we have

𝑛 =
𝑎1 × 𝑎2

|𝑎1 × 𝑎2 |
, (3.10)

and we compute the components of the fundamental forms as

I𝛼𝛽 = 𝑎𝛼 · 𝑎𝛽, (3.11)
II𝛼𝛽 = −𝑛,𝛼 · 𝑎𝛽 . (3.12)

We construct the RVE expansion similar to (3.1):

𝑥(𝑋1, 𝑋2, ℎ) = 𝜙(𝑋1, 𝑋2) + ℎ 𝑛(𝑋1, 𝑋2) + �̃�(𝑋1, 𝑋2, ℎ) (3.13)

with microscale midsurface 𝜙, its normal 𝑛, and fluctuation field �̃�. In an analogy to (3.1),
which deforms the volumetric RVE based on the macroscale quantity 𝐹 , we deform the
thin-shell RVE with a midsurface 𝜙 derived from the macroscale fundamental forms I and
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Figure 3.4: A macroscopic line-segment (left) is expanded in-plane into a curved microscale
volume (right). Top and bottom show reference and deformed configurations respectively.
This example uses a squiggly yarn for the microstructure, and we indicate the fluctuations �̃�
as offsets to the yarn deformed purely from its embedding (dashed).

II. The function 𝜙(𝑋1, 𝑋2) + ℎ 𝑛(𝑋1, 𝑋2) applies a low-resolution spatial deformation across
the entire microstructure (illustrated by the dashed line in Figure 3.4), while �̃� encodes the
remaining high-frequency details of the thin-shell microgeometry. In a knitted microstructure,
for example, �̃� prescribes how the individual threads stretch, slide, twist, and bend relative
to each other. Figure 3.4 illustrates a 2D schematic, and Figure 3.5 shows a 3D rendering of
this expansion. Notice that the thickness coordinate ℎ is shared between both micro- and
macroscale since our thin-shell homogenization averages only the in-plane coordinate. Thus,
we sometimes interchangeably write ℎ = 𝑋3 = 𝑋 3.

Defining the Midsurface Our goal here is to create a midsurface 𝜙 in (3.13) with constant
fundamental forms I, II matching those of the macroscale. Although it is possible to derive
such constant-fundamental-form surfaces analytically, the exact solutions are only compatible
with a limited set of boundary conditions. Here, we present a more general least-squares
solution to this surface-reconstruction problem.

Inspired by the rotation-strain decomposition for deformation extrapolation [Huang et al.
2011], we begin with the polar decomposition of the midsurface gradient

∇𝜙 =
(︁
𝑎1 𝑎2

)︁
= 𝑅𝑆 . (3.14)

Here, the 3× 2 matrix 𝑆 represents the constant in-plane deformation and 𝑅 is a 3× 3 rotation
matrix that aligns 𝑆 with the tangent plane of the curved surface. Without loss of generality,
we choose the macroscale frame of reference such that

(︁
𝑎1 𝑎2

)︁
= 𝑆 and 𝑛 =

(︁
0 0 1

)︁⊤.
Note that ∇𝜙, 𝑎1, 𝑎2, and 𝑅 vary along the midsurface; we omit the (𝑋1, 𝑋2) function notation
when convenient for readability.

We want to match I = I. With I = ∇𝜙⊤∇𝜙 and (3.14) we get

𝑆
⊤

𝑆 = I, (3.15)

allowing us to compute 𝑆 in (3.14) from the principal square root of the first fundamental
form I:

𝑆 =

(︄ √︁
I

0 0

)︄
. (3.16)
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Figure 3.5: A periodic yarn pattern microstructure is shown with its associated midsurface in
an undeformed (left) and deformed state (right).

(a) (b)

Figure 3.6: (a) Naive averaging creates a null-space of growing/shrinking cylinder radii as well
as sliding along the surface. As an example, the displacements indicated as pairs of orange or
brown arrows would cancel each other respectively, whereas with our co-rotated averaging
they are treated as the same rotated displacement. (b) Our co-rotated periodicity compares
fluctuations (arrows) by rotating them into a common frame (gray).

To match II = II, we compute 𝑅(𝑋1, 𝑋2) in (3.14) by integrating the normal curvatures 𝑛,𝛼

outward from the RVE center 𝑋1 = 𝑋2 = 0. We perform this integration with an analytic
expression for the exponential map, which we explain in detail in Appendix A.1.1.

Now that we know 𝑅 and 𝑆, we solve (3.14) for 𝜙 in the least squares sense, giving us a vector
Poisson equation with natural boundary conditions:

∇2𝜙 = ∇ ·𝑅𝑆 inside the domain, (3.17)

𝑁 · ∇𝜙 = 𝑁 ·𝑅𝑆 on the boundary. (3.18)

This equation gives the exact solution for singly-curved surfaces and can generalize to solutions
for non-constant I and II. We solve the system numerically by discretizing the surface as a
regular grid and using standard finite differencing. This midsurface can now be used in (3.13)
to completely describe a highly deformed thin-shell microstructure, as illustrated in Figure 3.5.

Co-Rotated Boundary Conditions To complete our analogy with the homogenization
strategy in Section 3.2.1, we must derive constraints on the fluctuation field �̃� which make
sense for thin shells. Unfortunately, as illustrated in Figure 3.6a, the simple averages proposed
in (3.4) and (3.5) can lead to erroneous cancellation of fluctuations when applied to a highly
deformed domain, leading to undesired nullspaces in the RVE.

To address this problem, we propose to average quantities by parallel transporting them to
a common frame. The rotation 𝑅 from earlier rotates 𝑛 = 𝑛(0, 0) to 𝑛(𝑋1, 𝑋2) and thus
describes orthogonal frames oriented along the midsurface normal. Therefore, we can use its
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3.2. Homogenization

transpose to align local frames for fluctuations, resulting in the modified constraint∫
Ω

𝑅⊤�̃� 𝑑Ω = 0. (3.19)

With a bit more work (explained in Appendix A.1.2), we can also derive a co-rotated constraint
on the derivative of �̃�: ∫

Ω
𝑅⊤�̃�,𝛼 𝑑Ω = 0, (3.20)

implying an analogous co-rotated version of (3.6):

(𝑅⊤�̃�)+ = (𝑅⊤�̃�)−, (3.21)

which is satisfied by splitting the boundary of the midsurface domain Γ into opposing parts
𝜕Γ+ and 𝜕Γ−, and using this constraint as periodic boundary conditions. Figure 3.6b illustrates
how our co-rotated periodicity aligns displacements.

Homogenized Energies and Stresses Finally, for macroscale thin-shell simulations, we
are interested in homogenizing an elastic energy area density. Instead of dividing the total
energy by the volume as in (3.7), we divide by the area of the RVE midsurface to get

Ψ =
1
|Γ |

∫
Ω
Ψ(𝑋1, 𝑋2, ℎ) 𝑑Ω, (3.22)

with |Γ | being the area of the midsurface domain.

We can also compute homogenized stresses by computing the derivative of (3.22) with respect
to the deformation. Writing Ψ = 1

|Γ |
∫
Ω
Ψ(𝑥(𝑥, �̃�)) 𝑑Ω with 𝑥 = 𝑥 + �̃�, we compute the

derivative with respect to some strain 𝑠 as:

𝜕Ψ

𝜕𝑠
=

1
|Γ |

∫
Ω

𝜕Ψ

𝜕𝑥
( 𝜕𝑥
𝜕𝑥

𝜕𝑥

𝜕𝑠
+ 𝜕𝑥

𝜕�̃�

𝜕�̃�

𝜕𝑠
) 𝑑Ω (3.23a)

=
1
|Γ |

∫
Ω
( 𝜕Ψ
𝜕𝑥

𝜕𝑥

𝜕𝑠
+ 𝜕Ψ

𝜕�̃�

𝜕�̃�

𝜕𝑠
) 𝑑Ω (3.23b)

=
1
|Γ |

∫
Ω

𝜕Ψ

𝜕𝑥

𝜕𝑥

𝜕𝑠
𝑑Ω, (3.23c)

where in (3.23c) we use that at equilibrium we have 𝜕Ψ
𝜕�̃� = 0.

Note that for volumetric homogenization (and similar for in-plane deformations for thin-shells)
the derivative 𝜕𝑥

𝜕𝑠 is quite simple. Similar to (3.8), we can compute a first Piola-Kirchhoff stress
𝑃 = 𝜕Ψ

𝜕𝐹
= 1
|Ω |

∫
Ω
−𝑓 ⊗𝑋 𝑑Ω, with forces 𝑓 = − 𝜕Ψ

𝜕𝑥 . Due to equilibrium, net yarn forces 𝜕Ψ
𝜕𝑥

are zero in the interior of the tile; therefore, the computation of the coarse stress simplifies
to a gathering of tile boundary forces [Schumacher et al. 2018]. These boundary forces are
exactly the constraint forces maintaining the average RVE deformation on the boundary. In our
implementation, the integral in (3.23) is weighted by a periodicity weight (see Appendix A.2),
which after discrete summation aggregates only those forces.

Alternatively, stresses can simply be computed by finite-differencing energies homogenized
with (3.22), although this does require multiple simulations, e.g. Ψ(𝑠 + Δ𝑠) and Ψ(𝑠 − Δ𝑠) for
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3. Preliminaries

Figure 3.7: We show a stretched rib pattern before (left) and after (right) optimization with
the periodic tile highlighted in red, periodic ghost segments in gray, and the midsurface in
translucent blue. Notice how the rib pattern’s yarn loops naturally tighten under tension while
maintaining the curvature of the surface.

central differencing. In experiments for Chapter 6 we used finite-differencing for bending
stresses.

To summarize, we are now able to take a macroscale deformation given by I and II and compute
a midsurface 𝜙 from (3.17)–(3.18). This defines the fluctuation field �̃� through (3.13), on which
we can then enforce the translation and periodicity constraints (3.19) and (3.21), and compute
homogenized energy area densities Ψ with (3.22) or homogenized stresses with (3.23).

3.3 Yarn Pattern Simulation
For any periodic yarn pattern, we aim to compute a mapping from deformation to homogenized
energy densities. To minimize the dimensionality of the problem, we seek the energy at the
elastostatic equilibrium configuration, subject to the macroscopic deformation. In the context
of homogenization, the timescale of the microscale is often faster than that of the macroscale.
As a result, microscale oscillations and motions can be considered damped and resolved when
viewed on a macroscale. In our case, this equilibrium state corresponds to the physical state
with yarn collisions resolved and the yarns being at rest with respect to bending, twisting, and
stretching. The elastostatic assumption is common in many applications like animation [Teran
et al. 2005], fracture simulation [Müller et al. 2001], and structural optimization [Liu et al. 2014],
because it captures the overall behavior of a material without needing to compute dynamic
effects.

To deform a microscale periodic yarn patch, we embed it into the RVE as shown in Figure 3.5.
Finding the elastostatic equilibrium amounts to a constrained optimization problem of minimiz-
ing the homogenized energy with respect to the fluctuations �̃� and subject to the translation
and deformation constraints; i.e.,

Ψ = min
�̃�

1
|Γ |

∫
Ω
Ψ(�̃�) 𝑑Ω s.t. (3.19) and (3.21). (3.24)

Figure 3.7 shows a yarn pattern before and after relaxing it into its optimized state.

The number of tiles within an RVE is a choice that determines which scales of buckling are
handled by homogenization, and which ones are handled by the cloth simulator. In this work,
we chose to use a small RVE size for each pattern primarily based on computational cost, and

18



3.3. Yarn Pattern Simulation

Figure 3.8: In this real-world example, we extracted the top strand of wool yarn from the knit
pattern below, and allowed the yarn to come to rest. The yarn clearly has a bent rest shape
related to the pattern it was knitted into.

have not explored larger sizes. We leave the study of RVE sizes and buckling frequencies as
future work.

3.3.1 Yarn Model
We simulate yarns using discrete elastic rods [Bergou et al. 2008, 2010] with the yarn-level
cloth collision forces of [Kaldor et al. 2008] modified for linear spline segments. Most real
world yarns consist of many threads wound together, so they may resist bending and twisting
much less than stretching. To add more flexibility to our yarn simulations, we therefore add an
additional parameter 𝛾 to scale bending and twisting energies in relation to stretching energy.
Thus, we compute the integral in (3.24) as the sum of stretching 𝐸𝑠 , bending 𝐸𝑏 , twisting 𝐸𝑡 ,
and collision energies 𝐸𝑐 of yarns in the periodic patch:∫

Ω
Ψ 𝑑Ω = 𝐸𝑠 + 𝛾𝐸𝑏 + 𝛾𝐸𝑡 + 𝐸𝑐 . (3.25)

For the definition of the individual energies, see [Kaldor et al. 2008] for 𝐸𝑐 and [Bergou et al.
2010] for the other terms. As discussed in Chapter 1, we omit inter-yarn friction in the
microscale quasistatic optimization.

The elastic energy terms in this model require that we know the rest shape of each yarn.
Because the act of knitting and weaving can actually change the rest shape of a yarn (as seen
in Figure 3.8), obtaining it is a non-trivial task. In our experiments, we apply a heuristic that
the rest pattern should be in equilibrium relative to the stretching energy; inspired by Leaf
et al. [2018], we apply tension by shortening the yarns’ rest lengths, and then we shrink the
periodic lengths of the pattern to find an energy minimum relative to stretching. We explain
this initialization process in detail in Appendix A.2.4.

Note that we use the above yarn model in both Chapter 4 to fit a continuum model and in
Chapter 5 for computing deformation-aware yarn detail. In Chapter 6, however, we will use
an extended yarn model and a slightly altered rest-shape heuristic for the problem of fitting
yarn parameters to real fabric measurements.

3.3.2 Periodicity
Yarns on one side of the patch can interact with yarns on the opposite side through periodic
collisions or by being periodically connected. Therefore, we have to consider periodic discrete
elastic rod and collision forces. We introduce ghost segments that copy and tile the yarns along
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the periodic field 𝑅⊤�̃� implied by the constraint (3.21). Ghost segments do not contribute to
the energy in (3.25); they simply copy the motion of the primary yarns and act as colliders and
boundaries for the yarn segments in the RVE. Figure 3.7 shows these ghost segments colored
gray.

In addition to positional degrees of freedom, [Bergou et al. 2010] incorporates material frames
and edge twists. We enforce periodicity on reference frame directors 𝑑𝛼 and twist variables 𝜃
via

(𝑅⊤𝑑𝛼 )
+ = (𝑅⊤𝑑𝛼 )

−, (3.26)
𝜃+ = 𝜃−, (3.27)

where + and − denote an original and copied edge respectively.

3.3.3 Homogenization Constraints
For the purposes of homogenization, we have to impose the translation constraint (3.19),
periodic vertex positions (3.21), and periodic edge twists (3.27) on the microscale. Additionally,
the yarn forces are invariant to a constant twist and to parametric sliding.

We remove the constant twist nullspace by requiring the total twist per periodically connected
yarn to be zero: ∑︁

𝑖

𝜃𝑖 = 0. (3.28)

We found that the reference frames do not drift from their constraint manifold (3.26) over time,
so we do not actively enforce this constraint after initialization.

We found that the optimization contains a nullspace that allows yarns to slide: a periodic yarn
curve 𝑥(𝑠) parametrized by 𝑠 can slide by a parametric shift Δ𝑠 without changing its elastic
energy 𝐸, i.e. 𝐸 (𝑥(𝑠)) = 𝐸 (𝑥(𝑠 + Δ𝑠)). Geometrically, such a shift corresponds to tangential
sliding of yarn while maintaining the same periodic shape. To the optimizer any such state is
equivalent, and the actual result may depend arbitrarily on numeric solver parameters. This
nullspace does not affect the energies in the system by definition. However, as we’ll see later
in Chapter 5 (Figure 5.5), it may produce artifacts when trying to interpolate between two
shifted parametrizations. We eliminate this parametric yarn sliding by adding a constraint
to the optimization, effectively removing the nullspace. Specifically, we fix one vertex per
periodic yarn to remain on the boundary of the pattern:

�̃� · (∇𝜙 𝑁 ) = 0, (3.29)

where 𝑁 is the undeformed normal to the respective pattern boundary, either 𝑁 = (1, 0)⊤ or
𝑁 = (0, 1)⊤. Note that ∇𝜙 is by definition 𝑅𝑆.

Implementation We enforce the periodicity constraints by eliminating the copied degrees
of freedom from the linear system in the Newton step. Exploiting the fact that any periodic
vertex or twist relates linearly to exactly one other vertex or twist through (3.21) and (3.27),
we can define reduced degrees of freedom 𝑦 through

�̃�𝑦 + �̃� = 𝑞, (3.30)
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where 𝑞 is the vector of all vertex positions and edge twists. Notably, �̃� is sparse and
will preserve the sparsity of the Newton system. This elimination of variables is based on
parametrizing the nullspace of all periodicity constraints. We discuss its construction in
Appendix A.2.2.

On the other hand, due to its density, enforcing the translation constraint (3.19) by parametriz-
ing its nullspace would result in a dense �̃� . Instead, we enforce this constraint with Lagrange
multipliers. We also use Lagrange multipliers for the nullspaces of constant twists and para-
metric sliding. We concatenate the translation, twist and sliding constraints to get

𝐶𝐿𝑞 = 𝑑𝐿 . (3.31)

Alternative Implementation Another way of implementing periodicity constraints is to
expose only the original (non-ghost) degrees of freedom to the Newton solver as 𝑔 = (𝑅⊤�̃�, 𝜃 ),
i.e. using unrotated displacements. Internally, 𝑔 will be copied to all periodic vertices with the
displacements appropriately rotated by 𝑅 at that point. While the result is the same as the
implementation discussed in this thesis, this treatment simplifies constraint implementation
and can produce more readable and separable code. This variant is used in the published
code at https://git.ist.ac.at/gsperl/HYLC, which was used to generate the results in
Chapter 5. Rodriguez et al. [2022], who build on our method, define an analytic mapping for
cylindrical curvature and then similarly express the constraints in a computational domain
based on the inverse mapping.

3.3.4 Optimization Step
We can now solve the constrained minimization problem in (3.24). Using Newton iteration,
each step to solve for increments 𝛿𝑦 and Lagrange multipliers 𝜆 is given by(︄

�̃�
⊤

𝐻�̃� + 𝛼𝐼 �̃�
⊤

𝐶𝐿
⊤

𝐶𝐿�̃� 0

)︄ (︃
𝛿𝑦
𝜆

)︃
= −

(︃
�̃�
⊤∇𝐸

𝐶𝐿𝑞 − 𝑑𝐿

)︃
, (3.32)

where 𝐸 is the total energy, 𝐻 = 𝜕2𝐸
𝜕𝑞𝜕𝑞 is its Hessian, and 𝛼 is an exponentially decaying

regularizer to help convergence. We also limit the maximal vertex displacement per step to
a fraction of a yarn radius to avoid missing collisions between iterations, and we observed
improved numerical conditioning if we rescale positional degrees of freedom relative to twists.
We provide these details, as well as initialization and stopping criteria for this optimization
algorithm in Appendix A.2.3.

The following chapters will use the homogenization procedure discussed above, starting with
a method for fitting continuum materials that reproduce the large-scale elastic behavior of
yarn-based fabric.
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CHAPTER 4
Homogenized Yarn-Level Cloth

We have discussed that the simulation of knitted and woven materials directly as a collection
of threads can faithfully reproduce the fascinating large-scale behavior caused by small-scale
yarn interactions —for example, knit loops tighten and pull on adjacent rows to produce
fabric-scale anisotropy and area-preservation. Can we reproduce these large-scale mechanics
without needing to simulate hundreds or thousands of individual yarns in a garment?

In this chapter, we propose to approximate the homogenized fabric mechanics with a continuum
model. To do so, we use our quasi-static yarn simulator with novel co-rotated periodic boundary
conditions established in Chapter 3. With it, we sample the knitted or woven material’s
behavior in response to a number of different in-plane and bending deformations. We use
regularized spline regression to fit a macroscopic energy density model to this data (Section 4.1),
and use the new material model directly in a thin-shell cloth simulator (Section 4.2). This
way, we are able to reproduce the expected effects like the stiffness of woven fabrics, and the
highly deformable nature and anisotropy of knitted fabrics (Section 4.3). The method is based
entirely on efficient simulations of only a small periodic sample of the underlying yarn pattern.
As such, it can generate entirely new material models quickly without the need for testing
apparatuses or human intervention. We will discuss later in Chapter 6 how these simulation
models can be combined with real-world measurements to enhance their predictiveness and

  

HYLC
YLC

Figure 4.1: Left: A comparison between direct yarn-level simulation (YLC) and simulation with
our homogenized model (HYLC); our homogenized model accurately captures the non-trivial
elastic stretching and bending response of the fabric. Middle and right: Results simulated
with homogenized continuum models of woven and knitted patterns; our method allows us
to efficiently compute large-scale simulations where direct yarn-level simulation would be
prohibitively slow.
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(a) Precomputed Homogenization (b) Fitting (c) Thin-shell Simulation

Figure 4.2: Our method takes a periodic yarn pattern and produces a homogenized cloth
material model. (a) We impose macroscopic in-plane and bending deformations on a periodic
pattern. (b) We compute homogenized energy density samples for ranges of deformations and
fit them with regularized splines. (c) The resulting material model can be used to efficiently
simulate cloth by computing elastic responses of the pattern to deformations.

Figure 4.3: Insufficient regularization can negatively affect simulated rest shapes. Here, a
draped rib knit shows noisy boundaries (left) compared to a fit with better regularization
(right).

realism. Figure 4.1 shows some results achieved with our method, and Figure 4.2 provides an
overview of our method.

4.1 Fitting

With the homogenization procedure discussed in the previous chapter, we are able to compute
an energy density Ψ for a yarn pattern given an input deformation I, II. Our next step is to
build a database of entries sampling this Ψ(I, II) function, and then approximate the data by
fitting a model to it. However, the energy landscape can be noisy due to multiple microscale
equilibria — the yarn pattern can buckle, interacting yarns are generally multistable and slide
over each other. Especially in compressive regimes, the pattern can buckle differently for
similar strains, leading to noise in the energies. Local minima in the fit then introduce noisy
restshapes and popping in the final macroscale simulation (see Figure 4.3). Additionally, our
data is neither convex nor is it well-fit by polynomials. After experimenting with several
fitting schemes, we settled on the strategy of first regularizing the input data, and then fitting a
model as a sum of regularized splines while enforcing quasiconvexity and piecewise monotone
interpolation. We will discuss the main ideas of the fitting procedure in this section, and we
provide further details in Appendix A.3.
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4.1.1 Parametrization and Sampling

We begin by choosing a reparametrization of the input strains I and II that is better suited to
sampling and interpolation. We desire each input parameter to be valid over a fixed interval
independent of other parameter values, so that we can use standard interpolation schemes
over rectilinear grids. Furthermore, we wish to avoid sampling over the full 𝑛-dimensional
space of possible strains, but still capture pairwise interactions such as the Poisson’s ratio,
influence of stretching on bending, and so on.

To start, we reparametrize the in-plane strains. Using the entries of I is problematic as its
off-diagonal entry 𝑎1 · 𝑎2 not only encodes the shearing angle but is also influenced by the
lengths of the 𝑎𝛼 . Instead, we define weft-stretching 𝑠𝑥 , shearing 𝑠𝑎 , and warp-stretching 𝑠𝑦
strains as

𝑠𝑥 =

√︃
I11 − 1, 𝑠𝑎 =

I12√︃
I11I22

, 𝑠𝑦 =

√︃
I22 − 1, (4.1)

and the combined in-plane strain 𝑠 =
(︁
𝑠𝑥 𝑠𝑎 𝑠𝑦

)︁⊤. Here, we use the terms “weft” and “warp”
to refer to the directions 𝑋1 and 𝑋2 respectively.

The difficulty with the bending strain II is that it is not possible to construct a microscale patch
with constant strain unless it is singly curved, i.e. the rank of II is ≤ 1. We were further unable
to find a satisfactory parametrization for the space of all singly-curved bending strains. Instead,
we choose to only sample the response to bending along two orthogonal directions. That is,
we collect one set of data with II of the form diag(𝜆𝑥 , 0), and another set with II = diag(0, 𝜆𝑦).

The data then represent samples of the function along two subspaces: one with arbitrary 𝑠
and bending only in 𝑥 , and one with arbitrary 𝑠 and bending only in 𝑦. As described the next
section, we interpolate the data in each subspace to obtain fits Ψ𝑥 (𝑠, 𝜆𝑥 ) and Ψ𝑦 (𝑠, 𝜆𝑦). Finally,
we describe how to interpolate between them to define the fitted energy density for arbitrary
bending strain II.

Note that our choice of axis-aligned bending and stretching corresponds to the weft and warp
directions that are dominant in the patterns we investigate, but in general the orientation of
the bases is arbitrary.

Prior to fitting, we normalize all strains (𝑠𝑥 , 𝑠𝑎, 𝑠𝑦, 𝜆𝑥 , 𝜆𝑦) by their maximum absolute values in
the data, which ensures that stretching and bending strains are treated as equally important.
We have tried various strategies to mitigate the noise in the data induced by buckling, including
prohibiting specific buckling modes through constraints and even penalizing yarn motion
normal to the midsurface. However, we were unable to eliminate noise without affecting the
overall elastic response and concluded that homogenization of microscale buckling is a difficult
problem. As a first step, we settled on regularizing the data by re-sampling it using moving
least squares interpolation.

4.1.2 Fitting and Interpolation

We define a fitting procedure for multidimensional data which captures pairwise interactions
between parameters without requiring high-dimensional sampling. Consider a function 𝑓

depending on many parameters 𝜃1, 𝜃2, ... . Inspired by Miguel et al. [2016], we additively split
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4. Homogenized Yarn-Level Cloth

it into the form

𝑓 (𝜃1, ... , 𝜃𝑛) = 𝑓0 +
∑︁
𝑖

𝑓𝑖 (𝜃𝑖) +
∑︁
𝑖< 𝑗

𝑓𝑖 𝑗 (𝜃𝑖, 𝜃 𝑗 ). (4.2)

Without loss of generality, we may fix 𝑓𝑖 (0) = 0 and 𝑓𝑖 𝑗 (0, 𝜃 𝑗 ) = 𝑓𝑖 𝑗 (𝜃𝑖, 0) = 0. Thus the
one-dimensional term 𝑓𝑖 encodes the response to 𝜃𝑖 holding other parameters at zero, and the
two-dimensional term 𝑓𝑖 𝑗 encodes the residual response to both 𝜃𝑖 and 𝜃 𝑗 , i.e. the component
of 𝑓 ( ... , 𝜃𝑖, ... , 𝜃 𝑗 , ... ) not explained by 𝑓0 + 𝑓𝑖 (𝜃𝑖) + 𝑓 𝑗 (𝜃 𝑗 ).

Therefore, the 𝑓𝑖 𝑗 terms describe cross-modal material responses, including stretching in two
directions or simultaneous stretching and bending. Notably, our homogenization method is
capable of sampling these cross-modal deformations.

To fit the components of (4.2), we measure 𝑓0 = 𝑓 (0, 0, 0, ... ), we fit the one-dimensional 𝑓𝑖
terms using piecewise monotone cubic splines [Fritsch and Carlson 1980], and we fit the
two-dimensional residual 𝑓𝑖 𝑗 terms using our novel extension of Carlson and Fritsch [1989]
to spline patches (Appendix B). We also apply a heuristic outward marching algorithm to
ensure quasiconvexity. We provide details for each of these steps in Appendix A.3. Miguel
et al. [2016] enforce convexity in their fits. However, we found that this would not describe
our data well, and we opted for quasi-convexity as the closest choice. Specifically, we want
to enforce that individual terms 𝑓𝑖 and 𝑓𝑖 𝑗 have a single well-defined minimum. While the
aggregate sum of terms can still produce multiple minima, we found that our heuristics as
explained in Appendix A.3 produce reasonable fits and more stable simulations (see Figure 4.3)
with the downside of not perfectly fitting the data. Outside of the sampled range, we linearly
extrapolate the fitted splines. Figure 4.4 shows data and fit for the 1D splines. Figure 4.5
compares data, 1D fits, 2D residuals, and the cumulative fit.

Our method makes the simplifying assumption that there are only pairwise interactions
between parameters. What this assumption buys us is a dramatic economy of sampling: even
for arbitrarily high-dimensional parameter spaces, our procedure only needs samples along
coordinate axes and 2D coordinate planes. When the assumption is violated, however, our
approach may not preserve convexity. For example, 𝑓 (𝑥,𝑦, 𝑧) = max(𝑥2, 𝑦2, 𝑧2) is a convex
function for which our fit is nonconvex.

The above procedure is applied to the singly-curved data Ψ𝑥 and Ψ𝑦 defined previously. Of
course, the zero-curvature data points and the 1D and 2D fitting terms not involving curvature
will be shared between both. Finally, to define our fitted energy density for an arbitrary
curvature II, we look at the eigenvalues of II, 𝜆1 and 𝜆2, and the squared cosine 𝑐2 of the angle
between the eigenvector corresponding to 𝜆1 and the x-axis. In Appendix A.4, we show how
to robustly compute these values. Now we define Ψ(𝑠, II) as

Ψ(𝑠, II) = 𝑐2
(︂
Ψ𝑥 (𝑠, 𝜆1) + Ψ𝑦 (𝑠, 𝜆2)

)︂
+ (1 − 𝑐2)

(︂
Ψ𝑥 (𝑠, 𝜆2) + Ψ𝑦 (𝑠, 𝜆1)

)︂
.

(4.3)

Limitations We found the fitting problem particularly challenging due to the complex
interactions between deformation modes, the numerical noise in the data, and especially the
sensitivity of macroscale simulations to local minima in the energy density (Figure 4.3). We
invested a great deal of effort to design a fitting scheme that works well for all the yarn patterns
we tested, but we found a few cases unavoidable, which we summarize below. Firstly, to ensure
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Figure 4.4: One-dimensional in-plane (left) and bending (right) terms for the honeycomb
pattern. We show data in blue, the fit as a green line, and spline control points as black dots.
Notice the off-center minimum for the bending terms, which corresponds to the pattern’s
curved rest shape.

a decent fit for the “stockinette” pattern, which features a strong tendency to curl, we found it
necessary to concentrate spline control points for 2D residual terms involving bending strains
more closely around the origin (Figure 4.6), and to apply a higher quasiconvexity parameter in
the marching step. We believe that this may be caused by the far-off-center bending minimum
and the additively split model thus creating local minima. Secondly, we observed yarn-level
reference simulations to exhibit symmetric rest shapes with zero shear; to ensure that this
behavior is preserved in our macroscale simulations, we symmetrized our data with respect
to 𝑠𝑎 . Finally, we disabled our heuristic quasiconvexity marching for the two-dimensional
𝑓13(𝑠𝑥 , 𝑠𝑦) term, which would otherwise prevent us from modeling Poisson’s ratio.

4.2 Cloth Simulation

We now want to drive a thin-shell cloth simulator using the continuum models fit in the
previous section. The cloth is discretized as a triangle mesh, which represents the macroscale
thin-shell midsurface 𝜙. Similarly, we need to discretize I and II to compute in-plane and
bending strains, (4.1) and 𝜆1, 𝜆2, 𝑐

2, on the triangle mesh. For robust simulation, we use implicit
integration, which requires computing the Hessian of the energy. To improve stability, we
enforce positive definiteness in the Hessian. Dynamic yarn friction is partially modeled via
Rayleigh damping in the continuum simulations, but we leave the inclusion of friction into
the homogenization procedure as future work.

For each triangle, we first compute its deformation gradient

𝐹△ =
(︁
𝜙1 −𝜙0,𝜙2 −𝜙0

)︁ (︂
𝑋1 −𝑋0,𝑋2 −𝑋0

)︂−1
, (4.4)

where 𝜙 𝑗 and 𝑋 𝑗 are the world-space and material-space coordinates of vertex 𝑗 , and the
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Figure 4.5: Fit of the 2D term 𝑓13(𝑠𝑥 , 𝑠𝑦) for the honeycomb pattern. From left to right: data,
sum of 1D fits, 2D residual, cumulative fit, and fitting error. The colors show the magnitude on
a symmetric-log scale, and we show extrapolated values outside of the data range (indicated as
a rectangle). Note that this term shows the area preservation of the material; while increasing
tension along one axis, the minimum along the other moves towards a compressed state.
Crucially, this behavior is missing from just the sum of 1D terms.

triangle-averaged shape operator [Grinspun et al. 2006]

𝚲 =
∑︁
𝑖

𝜃𝑖

2𝐴𝑙𝑖
𝑡𝑖 ⊗ 𝑡𝑖, (4.5)

where 𝜃𝑖 is the signed angle between this and the 𝑖-th neighboring triangle’s normals, 𝐴 is the
triangle area, 𝑙𝑖 are edge lengths, and 𝑡𝑖 are vectors of length 𝑙𝑖 perpendicular to each edge and
the inner triangle normal. All quantities in (4.5) are computed in world-space. With this, we
compute the discrete fundamental forms as

I△ = 𝐹△
⊤𝐹△, (4.6)

II△ = 𝐹△
⊤
𝚲 𝐹△. (4.7)

Because of (4.5), the degrees of freedom involved in a triangle’s strain also include the triangle
vertices of up to three neighboring triangles. Denoting the combined degrees of freedom as
𝑞△ and the collected strains 𝑧 = (𝑠𝑥 , 𝑠𝑎, 𝑠𝑦, 𝜆1, 𝜆2, 𝑐

2), the total energy of a triangle is given by

𝐸△ = 𝐴 Ψ(𝑧(𝑞△)) . (4.8)

Since our energies are nonconvex, their Hessians are not guaranteed to be positive definite,
which negatively affects stability. Inspired by Teran et al. [2005], we enforce positive definite-
ness by clamping the eigenvalues of per-triangle sub-Hessians 𝜕2𝐸△

𝜕𝑞△𝜕𝑞△
to be non-negative using

an eigensolver for self-adjoint matrices in the library Eigen [Guennebaud et al. 2010]. The
global system in the implicit timestep will then be positive definite as a sum of the positive
semi-definite sub-Hessians and the positive definite global mass matrix.
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Figure 4.6: We show a simulated restshape and the plot for a representative bending residual for
the homogenized stockinette with default and modified spline control points, and a yarn-level
reference (YLC). Even though the fit is smooth, default control point locations create artifacts
at the fabric boundary.

4.3 Results

To summarize, our pipeline first takes in a periodic yarn pattern and elastic rod material
properties, simulates the pattern subject to various deformed boundary conditions, and records
the resulting potential energy density. We then create a data-driven strain-parameterized
material model for each yarn pattern and simulate the material in an existing thin-shell finite
element solver (ArcSim [Narain et al. 2012, 2013]). Code for periodic pattern simulation,
the full fitting algorithm as well as the raw data are available at https://git.ist.ac.at/
gsperl/HYLC, and our code for cloth simulation is available at https://git.ist.ac.at/
gsperl/ARCSim-HYLC.

In our experiments, we wanted to model a variety of yarn patterns with notably differ-
ent topologies and macroscale material effects. We drew several patterns from the yarn
pattern database of Leaf et al. [2018] (basket2_2, satin2_3, slip_stitch_honeycomb, and
cartridge_belt_rib), and implemented a custom stockinette knit pattern of our own. Fig-
ure 4.7 shows the five patterns. The knitted patterns are topologically quite different from each
other and from the woven patterns, leading to significant variance in macroscopic effects like
area preservation, resistance to stretching, and out-of-plane curling. We rescale the patterns
to have a yarn radius of 1mm and smaller variants of the satin and stockinette patterns to
0.1mm. Table 4.1 lists the yarn-level parameters for each pattern; we choose parameters to
achieve realistic-looking yarn-level simulations.
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4. Homogenized Yarn-Level Cloth

basket satin honeycomb rib stockinette
Figure 4.7: The patterns used in our results with abbreviated names.

YLC HYLC

(a) basket weave

YLC HYLC

(b) honeycomb

YLC HYLC

(c) stockinette

Figure 4.8: Comparison of direct yarn-level simulation (YLC) to simulation with our homoge-
nized continuum models (HYLC) for drapes and stretching tests of three patterns. Our method
is able to capture a wide array of phenomena such as the Poisson’s ratio of the honeycomb
pattern, or the more exotic restshape and curling under tension of the stockinette pattern at a
fraction of the cost.

We render cloth simulated with our models using ambient occlusion and normal map textures,
which we create by projecting the periodic yarn patterns. Thus, the results in presented in this
chapter do not show visible gaps between yarns as seen in Figure 4.6, regardless of the quality
of the homogenization. We attribute the differences between yarn-level and homogenized
results in Figure 4.6 to both texture mapping as well as an imperfectly homogenized model. It is
possible to drive the deformation of detailed yarn-level geometry using the coarser, simulated
mesh, as we will see in the next chapter (Chapter 5).

4.3.1 Validation
To validate our homogenized macro-material models, we run side-by-side comparison simula-
tions between our macro-material cloth simulator and a brute-force yarn-level cloth simulator.
We compare the behavior of a 30 cm × 30 cm square patch of material when stretched in
different directions and draped over a spherical obstacle. Some of these comparisons are
displayed in Figure 4.8 and Figure 4.1, and all of them are included with the paper [Sperl et al.
2020] and openly available at https://doi.org/10.1145/3386569.3392412.

Our homogenized yarn-level cloth models generally agree well with the yarn-level cloth
simulations, even though the various yarn patterns behave very differently from each other:
the woven materials tend to be stiffer and exhibit no tendency to preserve area when stretched;
the rib knit exhibits fairly extreme anisotropy when stretching; the stockinette stitch curls up
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4.3. Results

Table 4.1: Yarn-level parameters per pattern including Young’s modulus 𝐸, the shear modulus
𝐺 , the bending and twisting stiffness multiplier 𝛾 , the collision stiffness 𝑘contact, and the density
𝜌 .

Pattern 𝐸 (Pa) 𝐺 (Pa) 𝛾 𝑘contact
(︁ kg
s2

)︁
𝜌

(︁ kg
m3

)︁
basket 1e5 4e4 0.1 1.2e1 1.2e2
honey 5e5 2e5 0.1 6e1 1.2e2
rib 5e5 2e5 0.001 6e1 6e1
satin 1e5 4e4 0.1 1.2e1 1.2e2
stock. 5e5 2e5 0.001 6e1 1.2e2
satin small 1e6 4e5 1 1e2 1.2e3
stock. small 1e6 4e5 1 1e2 1.2e3

on the boundaries when stretched or left to hang freely.

For the yarn-level simulations in this comparison, we used the non-rigid motion damping of
Kaldor et al. [2008]. Because our material models are based on elastic properties of the cloth,
we did not yet attempt to learn damping properties. Instead, we used the continuum Rayleigh
damping model implemented in ArcSim, which we tuned to empirically match the yarn-level
damping model.

Note that our material models are extracted from periodic yarn patterns, so they should be able
to adequately reproduce the behavior of a yarn-level simulation near the interior of the cloth.
However, knitted garments generally have different stitches or fasteners near boundaries,
which disrupts this periodic structure; indeed, to model boundary effects in our yarn-level
simulator, we effectively “glue” the yarns together with springs that are pre-stretched in the
thickness direction. These boundary effects were not included in our periodic homogenization,
so we do not expect our material to behave perfectly near boundaries. Nevertheless, our results
do show relatively similar boundary behaviors to the yarn-level examples.

To illustrate the merits of our multidimensional fitting procedure described in Section 4.1, we
also compared our method’s behavior with and without two-dimensional energy terms. As
seen in Figure 4.9, the materials with only one-dimensional stress response do a reasonable job
of approximating the overall stretching and bending resistance, but they fail to capture more
complex two-dimensional compensations. Notably, the 1D models cannot capture Poisson-like
behaviors, where stretching in one direction causes the material to compress in the other.

Performance The computational complexity of a yarn-level cloth simulator scales with the
number of yarn segments. In contrast, the performance of our macroscale material scales with
the number of elements in a cloth simulator, multiplied by the cost of evaluating our potential
energy function (or its gradient). Yarn-level simulations also invest computational resources
into carefully handling persistent inter-yarn collisions, either through small time steps or more
clever collision handling. Our method deals with those persistent contacts in its preprocessing
phase, and only deals with large-scale self-collisions within the cloth solver. Because our
method sidesteps most of the performance bottlenecks in a yarn-level cloth simulator, we
expect our method to achieve a large speedup over a yarn-level cloth, especially when the yarn
density is high. Additionally, using an implicit cloth solver allows us to take larger timesteps
compared to the explicit yarn-level solver, where computing Hessians becomes infeasible.
Although these side-by-side examples use a modest number of yarn segments, our simulator
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4. Homogenized Yarn-Level Cloth

Figure 4.9: Only fitting the one-dimensional energy terms for the same models as in Figure 4.8
shows that overall draped shapes are still captured nicely and are arguably faster and easier
to fit. However, area-preservation effects and curling under tension are modeled by two-
dimensional terms and as a result are lost in the simpler model.

basket satin honeycomb rib stockinette small satin small stock.

Figure 4.10: We demonstrate the effectiveness and the rich behavior of our homogenized
models for all of our patterns on simulations of sweaters and t-shirts. This freeze frame
highlights: stronger stretching resistance of woven fabric (basket and satin), the anisotropy of
the rib, curling of the stockinette, and the folds of the small-scale patterns.

shows significant speedups from ×3.3 to up to ×46, as seen in Table 4.2. Across the patterns,
sampling the data for fitting takes from 15min to 76min, and the fitting itself takes less than a
minute, further highlighting the cost benefit of precomputing inexpensive simulations. The
stockinette examples in Table 4.2 have a higher “sec/frame” and number of vertices due to
finer adaptive remeshing needed for resolving tight curls.

Our proposed constitutive model depends on the second fundamental form and thus requires
more computation compared to standard bending models based on dihedral angles such as
[Grinspun et al. 2003].
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Table 4.2: Simulation timings for the comparisons of direct yarn-level simulation (YLC) and
with our method (HYLC). Pattern names are abbreviated. All tests were performed for two
orientations of the cloth (original and 90◦ rotation), and their videos can be found with the
published paper.Δ𝑡 denotes the timestep in seconds. sec/step denotes the average seconds per
timestep. sec/frame denotes the average seconds per frame for a reference framerate of 30fps.
# Vertices denotes the number of vertices in yarn-level simulations, and the average number
of vertices for thin-shell simulations, which are subject to remeshing.

Simulation HYLC YLC

Δ𝑡 sec/step sec/frame # Vertices* Δ𝑡 sec/step sec/frame # Vertices

basket drape Fig. 4.8 2.09e-04 0.46 73.46 2276 1e-05 0.13 (×5.9) 430.43 65188
basket drape 90◦ 2.09e-04 0.46 72.74 2229 2e-05 0.23 (×5.2) 381.50 65188
basket stretch Fig. 4.8 2.09e-04 0.50 80.58 2668 1e-05 0.17 (×7.0) 560.43 65188
basket stretch 90◦ 2.09e-04 0.52 82.96 2657 1e-05 0.24 (×9.6) 797.10 65188

honey drape Fig. 4.8 1.67e-04 0.41 81.91 2091 1e-05 0.36 (×14.7) 1206.40 118140
honey drape 90◦ 1.28e-04 0.42 109.65 2127 1e-05 0.39 (×12.0) 1314.72 118140
honey stretch Fig. 4.8 1.67e-04 0.49 98.67 2370 1e-05 0.31 (×10.3) 1017.60 118140
honey stretch 90◦ Fig. 4.1 1.67e-04 0.44 87.50 2376 1e-05 0.29 (×10.9) 954.20 118140

rib drape 2.09e-04 0.48 76.86 2337 5e-06 0.39 (×34.2) 2625.12 157592
rib drape 90◦ 2.09e-04 0.48 77.32 2374 5e-06 0.53 (×46.0) 3559.10 157592
rib stretch 2.09e-04 0.48 76.35 2577 5e-06 0.38 (×33.3) 2542.47 157592
rib stretch 90◦ 2.09e-04 0.47 75.07 2541 5e-06 0.45 (×39.6) 2971.27 157592

satin drape Fig. 4.1 2.09e-04 0.48 77.21 2297 1e-05 0.56 (×24.0) 1855.08 95040
satin drape 90◦ 2.09e-04 0.47 74.74 2246 1e-05 0.56 (×24.9) 1861.55 95040
satin stretch 2.09e-04 0.44 70.82 2500 1e-05 0.35 (×16.6) 1176.50 95040
satin stretch 90◦ 2.09e-04 0.50 79.66 2684 1e-05 0.30 (×12.4) 985.17 95040

stock. drape Fig. 4.8 2.09e-04 0.96 152.96 3390 1e-05 0.19 (×4.2) 643.08 76156
stock. drape 90◦ 2.09e-04 1.03 165.04 3383 4e-06 0.08 (×4.0) 652.35 76156
stock. stretch Fig. 4.8 2.09e-04 1.15 184.17 4415 1e-05 0.18 (×3.3) 615.83 76156
stock. stretch 90◦ 2.09e-04 0.79 126.91 3869 4e-06 0.08 (×5.4) 684.30 76156

4.3.2 Large-scale Simulations

Because our homogenized material’s computational complexity is now independent of the
number of yarns, we are able to approximate the behavior of large garments with a high
density of yarns. Figure 4.11 shows draped cloth simulated with models of stockinette and
satin patterns rescaled to 10% of their original size. The stitch density of these materials is one
hundred times higher than those we were able to feasibly simulate with a yarn-level simulator,
so we do not have any direct performance or behavioral comparisons to report here.

Similarly, we are able to simulate large garments such as sweaters and shirts (Figure 4.1,
Figure 4.10). We note that these homogenized knitted materials retain their unique material
properties, like stretchiness (honey), anisotropic effects (rib), or curling at the boundaries
(stockinette), despite the fact that they were simulated with a continuum-mechanics based
cloth solver. For comparison, a direct yarn-level simulation of a stockinette sweater would
require over 1.7 million vertices, compared to the 76 thousand vertices in our yarn-level
validation tests. The small-stockinette shirt would require 36 million vertices.

Because our homogenized materials rely on triangle meshes instead of knitted patterns to
determine their geometry, it is straightforward to simulate garments with more exotic shapes
using our method (Figure 4.1, Figure 4.12). We report the simulation timings for each of these
results in Table 4.3.
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Figure 4.11: Models homogenized from higher density variants of the satin (left) and stockinette
(right) patterns at a 10% scale naturally produce more folds when draped. Notably, the small
stockinette shows small curls on the inside, similar to cut t-shirts. Besides the scale of the
folds, the larger stitch density does not affect the performance of our method.

Figure 4.12: Before and after of a bunny and a yarnmadillo simulated with our models.

4.4 Discussion
In this chapter, we have proposed a method for computing homogenized models capable
of simulating yarn-level effects in a thin-shell cloth solver. Through homogenization of a
nonlinear shell, we are able to compute homogenized responses of periodic yarn patterns to
macroscale deformations. We can then fit a regularized continuum model without the need for
expensive measurement equipment. We compare our results with brute force simulations for
multiple patterns on a series of stretching and draping tests. Our method is able to capture the
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4.4. Discussion

Table 4.3: Simulation timings for large-scale simulations with timestep Δ𝑡 in seconds, average
seconds per step, and average seconds per frame for a reference framerate of 30fps.

Simulation Δ𝑡 sec/step sec/frame

satin small drape Fig. 4.11 3.34e-04 1.10 109.72
stock. small drape Fig. 4.11 3.34e-04 2.01 200.32

sweater basket Fig. 4.10 1.67e-03 7.40 147.62
sweater honey Fig. 4.10 1.67e-03 7.43 148.36
sweater rib Fig. 4.10 8.35e-04 5.79 231.15
sweater satin Fig. 4.10 1.67e-03 7.45 148.79
sweater stock. Fig. 4.10 1.67e-03 7.44 148.50
shirt stock. small Fig. 4.10 8.35e-04 3.74 149.19
shirt satin small Fig. 4.10 1.67e-03 4.96 99.06

scarf Fig. 4.1 8.35e-04 0.91 36.31
yarn bunny Fig. 4.12 6.68e-04 1.23 61.20
yarnmadillo Fig. 4.12 5.57e-04 11.16 668.24

rich properties of knitted fabric such as general stretching and bending anisotropy, including
Poisson’s ratio, while being an order of magnitude faster even on moderate scales.

Ourmodel is able to abstract the yarn-level interactions into an elastic continuum; however, this
implies that we do not model localized effects such as tearing or pulling on single yarns. To this
end, combining our continuum model with localized yarn simulation is worth investigating.

While ourmodel captures elastic rest shapes well, we ignore yarn-level friction and hysteresis in
our homogenization procedure. Although our method can be combined with other macroscale
damping and plasticity models, we would like to explore homogenizing viscous and plastic
effects from yarn-level simulations as well. We have left cloth-cloth and cloth-obstacle frictional
contact entirely to the continuum solver; the more recent Argus simulator [Li et al. 2018]
could be used in place of ArcSim for improved accuracy there.

Homogenization theory assumes a small RVE compared to the macroscale deformation. Al-
though our co-rotated boundary conditions significantly loosen this limitation by allowing
large highly-deformed configurations, the theory still imposes practical limitations on pattern
size and thickness. For example, extreme curvatures at the macroscale may cause excessive
self-intersections at the microscale. Similarly, approximating voluminous yarn patterns with
a triangle-based cloth solver may make the garment look unrealistically thin. In the next
chapter (Chapter 5), we address this issue by adding mechanics-aware yarn geometry that
co-deforms alongside an underyling cloth simulation. This pairs especially well with the
continuum models developed here since both elastic material and yarn-detail can be computed
from the same periodic yarn pattern.

Our fitting procedure based on regularized splines aims to strike a balance between generality
and robustness. Although we present a number of heuristics to increase the quality of the fit
for nonconvex data, we do not offer any provable performance guarantees, and the approach is
tailored to our application domain. One way to improve the stability of our cloth simulations
would be to integrate it in the incremental potential method of Li et al. [2021].

Our focus in this work was to find one approach that yields stable simulations and reproduces
the essential qualitative features of yarn-level cloth. Due to various approximations in fitting,
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4. Homogenized Yarn-Level Cloth

we do not expect a perfect quantitative match. The results in this chapter use yarn material
parameters chosen to produce realistic-looking animations, and our system does manage
to capture the realistic non-linearities and anisotropies induced by the yarn-scale geometry.
However, we will see in Chapter 6 that for our system to quantitatively match real physical
measurements of fabrics, we have to address additional complications such as the scale of
physical tests and the parametrization of yarn models.
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CHAPTER 5
Mechanics-Aware Deformation of Yarn

Pattern Geometry

In the previous chapters we have established a method for fitting thin-shell continuum models
that reproduce the large-scale elastic behavior of yarn-based fabrics. We have seen that we
can produce satisfying animations of knitted and woven cloth. However, while these models
are able to capture the large-scale mechanics, this abstraction loses the rich visual yarn-level
detail. Simple texturing, as used in the results of the previous chapter, can make the fabric
look unrealistically flat. We could instead embed the yarn geometry within the cloth triangle
mesh and use barycentric coordinates to animate the yarn detail. While this does add some of
the visual complexity back, this approach may miss certain critical local deformations. For
example, knit loops tighten when the fabric is being stretched (Figure 5.1 right). Running full
yarn-level simulations to reproduce such effects is prohibitively expensive at large scales. We
would like the best of both worlds — the efficiency of the mesh-based solvers and the physical
yarn detail.

In this chapter, we propose a method to interpolate yarn pattern deformations at run time to
enrich a cloth simulation with detailed yarn geometry. In the framework of homogenizing
elastic properties of periodic yarn patterns, we also automatically capture the deformation-
dependent displacements of the local yarn geometry. At runtime, we use the triangle strains of
the deforming cloth mesh to interpolate precomputed yarn displacements. This interpolated
geometry then rearranges in accordance with yarn-level mechanics and reproduces salient
effects such as knit loops tightening under tension. Our method thus effectively approxi-
mates full yarn-level animation at negligible cost over an underlying mesh-based simulation.
Figure 5.2 highlights some examples achieved with our method.

We also introduce an efficient way of linearizing the bending response of yarn patterns in
terms of stretching, and we propose a way to clamp compression, allowing the user to tune the
extent of yarn buckling. We implement the yarn deformation procedure as compute shaders
on the GPU.

Overview We start by discussing the two main stages of our method: data generation and
real-time displacement. Section 5.1 explains the data generation step shown in Figure 5.3,
where we optimize for the rest configuration of yarn patterns under a range of large-scale de-
formations, and compute local displacements relative to these deformations. Section 5.2 details
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5. Mechanics-Aware Deformation of Yarn Pattern Geometry

Figure 5.1: Deforming a yarn pattern (left) with embedded deformation causes it to stretch
uniformly (center), which ignores yarn-level physics that should make the yarn loops tighten
(right).

Figure 5.2: Our method uses an underlying cloth mesh (bottom) to animate yarn-level cloth
(top) in real-time by approximating the yarn-level response in a data-driven fashion based on
the deformation of the mesh. It reproduces the stretching behavior of knits (left), animates
large garments with millions of yarn vertices (middle), and combines with real-time cloth
simulation for end-to-end interactive animation of yarn-level cloth (right). We render the
sweater (middle) using pathtracing and with hair particles.

the real-time displacement phase illustrated in Figure 5.4, where we map the precomputed
yarn geometry onto a deforming triangle mesh. Section 5.3 explores our method’s results.
Section 5.4 discusses limitations and advantages, and concludes with a summary and future
work.

5.1 Data Generation
We want our embedded yarn details to deform realistically, so we prescribe their motion based
on yarn-level simulations. This section describes the physics precomputation phase of our
algorithm, illustrated in Figure 5.3.

5.1.1 Deformation Optimization
We use the method presented in Chapter 3 to simulate how each yarn pattern deforms. This
method takes as input a particular yarn pattern in an undeformed configuration (e.g. the
“stockinette” pattern in Figure 5.3), and a large-scale surface deformation encoded as the first I
and second II fundamental forms. 1 The method uses this large-scale deformation to define
boundary conditions, and then optimizes for the elastostatic equilibrium configuration of
the yarn pattern. Chapter 4 then reduced this geometric information down to a single scalar

1In this chapter, omit explicit bar notation (such as II) for mesh-level quantities and instead reserve it for the
uniform part of the deformation mapping 𝑥 as compared to the local fluctuations �̃�.
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5.1. Data Generation

  

pattern 𝑄 deformed 𝑞 optimized 𝑞 pullback �̂� data Δ𝑄

Figure 5.3: From left to right: We start with a periodic yarn pattern 𝑄, and we apply a range of
large-scale surface deformations to get the deformed state 𝑞. Using the optimization method of
Chapter 3, we optimize for the elastostatic rest shape 𝑞 subject to the respective deformation.
We then pull the resulting geometry back into the undeformed material space to get �̂�. Finally,
we subtract the initial state to compute displacements Δ𝑄, building a mapping from large-scale
deformation to the associated local yarn-level deformation.

  material space world space

𝑄 Δ𝑄 �̂� 𝑞

Figure 5.4: Our algorithm for animating yarn geometry in real-time: We start with undeformed
yarn-level geometry𝑄 tiled over a triangle inmaterial space (left), andwe apply the appropriate
material displacement Δ𝑄 from the database to get deformed yarn geometry �̂� (middle). This
geometry is then mapped along with the triangle to get the current world-space deformation
𝑞.

energy density used in a hyperelastic material model. In contrast, here we will use the yarn
geometry directly.

We model yarns as discrete elastic rods [Bergou et al. 2010], represented as connected lists
of vertices with positions 𝑥 along the centerline. Each edge also stores a twist angle 𝜃 and
a reference director 𝑑1.

2 We concatenate positions and twists for each vertex into a four-
dimensional vector 𝑞 =

(︁
𝑥⊤, 𝜃

)︁⊤, where 𝜃 corresponds to one incident edge. (Note that the
reference directors 𝑑1 are not degrees of freedom.)

We recall from Chapter 3 that during the optimization the kinematics of yarn vertex positions
are defined as

𝑥(𝑋) = 𝑥(𝑋) + �̃�(𝑋), (5.1)
𝑥(𝑋) = 𝜙(𝑋1, 𝑋2) + 𝑋3 𝑛(𝑋1, 𝑋2). (5.2)

Here, 𝑋 = (𝑋1, 𝑋2, 𝑋3)⊤ are the material-space coordinates of the undeformed yarn pattern,
with (𝑋1, 𝑋2) the orthogonal and periodic directions along the pattern and 𝑋3 the height
coordinate. 𝑥 denotes the large-scale deformation constructed from the input fundamental

2The subscript in 𝑑1 refers to its definition as one of two reference directors: one for the edge normal, and
one for the edge binormal.
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5. Mechanics-Aware Deformation of Yarn Pattern Geometry

Figure 5.5: Top: Interpolating two periodic curves (left and right) that are identical up to a
shift in parametrization can result in arbitrary interpolated shapes which look very different
from the original data (center).
Bottom: Interpolating yarn geometry without accounting for sliding creates unrealistic artifacts
like self-collisions and floating loops (left); our sliding constraint eliminates these artifacts
(right).

forms I and II, which encode in-plane and bending deformations respectively. From these
fundamental forms, we construct the mid-surface 𝜙 with normal 𝑛, as described in Chapter 3,
such that I = ∇𝜙⊤∇𝜙 and II = −∇𝜙⊤∇𝑛. We then solve for the yarn configuration which
minimizes elastic energy. The optimization variables are the fluctuations �̃�, which describe
local displacements relative to the large-scale deformation, and the twists 𝜃 . Using Θ for
undeformed twists, the concatenated coordinates are undeformed 𝑄 = (𝑋⊤,Θ)⊤, large-
scale-deformed 𝑞 = (𝑥⊤,Θ)⊤, and optimized 𝑞 = (𝑥⊤, 𝜃 )⊤. Here, we assume that twists Θ
are unaffected by the large-scale mapping, which is true for pure in-plane deformations. In
general, bending may induce local twists that depend on II and the orientation of yarns relative
to the curvature direction. In our experiments, we assume that this effect is small.

Crucially for our application, we found it important to restrict parametric sliding, i.e. periodic
sliding of the yarn that does not affect the conceptual periodic geometry, but its representative
simulated geometry. While this sliding does not affect the energy of the simulated yarn pattern,
interpolating between two shifted parameterizations may produce completely different shapes,
as shown in Figure 5.5. In our experience, this nullspace creates distracting interpolation
artifacts even for nearly-identical deformations. The problem remains as we sample the
deformations more densely, manifesting as sharp discontinuities in deformation space. We
recall from Section 3.3.3 that we can easily remove the parametric yarn sliding by effectively
constraining one vertex per periodic yarn to remain on the boundary of the pattern:

�̃� · (∇𝜙 𝑁 ) = 0, (5.3)

where 𝑁 is the undeformed normal to the respective pattern boundary, either 𝑁 = (1, 0)⊤
or 𝑁 = (0, 1)⊤. This sparse set of vertex constraints efficiently and effectively removes the
aforementioned interpolation artifacts. This strategy allows us to find a physically realistic
yarn shape for a given large-scale deformation described by I and II.
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5.2. Real-time Displacement

5.1.2 Sampling
Now that we can produce yarn geometry for a given deformation, we want to precompute a
series of representative samples and interpolate them at runtime. I and II are each symmetric
2 × 2 tensors, so parameterizing deformation by I and II directly yields a 6-dimensional
function which is expensive to precompute, store, and read at runtime. We aim to reduce this
dimensionality by parameterizing the deformation with as few variables as possible.

Identically to Chapter 4, we reparameterize I as a 3-dimensional function using the in-plane
strains

𝑠𝑥 =
√︁

I11 − 1, 𝑠𝑎 =
I12√
I11I22

, 𝑠𝑦 =
√︁

I22 − 1. (5.4)

II can be parameterized similarly by introducing additional curvature variables and increasing
the dimensionality of the data set. However, we show in Section 5.2 that bending deformation
can be reasonably approximated in terms of stretching variables alone. This strategy lets
us sample the entire large-scale deformation space with only three variables 𝑠𝑥 , 𝑠𝑎 , and 𝑠𝑦 ,
significantly reducing memory and computation overhead. We sample these deformations on
a regular 3D grid, and we discuss the performance, data size, and quality for different numbers
of samples in Section 5.3.

5.1.3 Material-Space Displacements
At runtime, our interpolated yarn geometry will be mapped onto a deformed triangle mesh,
where it will naturally inherit the deformation of its triangle (the mapping from material-
space to world-space in Figure 5.4). Thus, we want to store all of the deformation except the
large-scale deformation in our precomputation as material-space displacements (the “pullback”
column in Figure 5.3).

To do this, we need to find the modified material space coordinates �̂� which give us our
desired world-space deformations 𝑥 when deformed by only the large-scale deformation
𝑥(�̂�): in other words, find �̂� s.t. 𝑥 = 𝑥(�̂�). We perform this solve using Newton’s method
and provide more details in Appendix C.1.

Concatenating �̂� = (�̂�⊤
, 𝜃 )⊤, we subtract the initial material state to get displacements

Δ𝑄 = �̂� −𝑄. (5.5)

Note that at the rest pose, I = Id, II = 0, and Δ𝑄 = 0.

To summarize, we can now build a database of material-space yarn displacements Δ𝑄 for each
vertex 𝑖 of a pattern and for a range of in-plane deformations 𝑗 : Δ𝑄𝑖 (𝑠𝑥 𝑗 , 𝑠𝑎 𝑗 , 𝑠𝑦 𝑗 ). This database
can be interpreted as a grid of example deformations, or similarly as a 3D displacement texture
per yarn vertex. Interpolating between these samples takes a planar deformation 𝑠𝑥 𝑗 , 𝑠𝑎 𝑗 , 𝑠𝑦 𝑗
and maps it to a yarn-level displacement map. Note that this will recover the exact deformed
yarn pattern for the strains sampled in the database and approximate patterns for intermediate
strains.

5.2 Real-time Displacement
Now that we have a database of yarn pattern displacements for a range of deformations, we
apply them to a yarn pattern tiled over an animating triangle mesh. In the following discussion,
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5. Mechanics-Aware Deformation of Yarn Pattern Geometry

Algorithm 1 Real-time yarn animation
Input: mesh animation, yarn pattern, displacement data Δ𝑄
Output: deformed yarn geometry 𝑞
1: procedure Animate Yarns
2: 𝑄← yarn pattern tiled over mesh
3: Each Frame:
4: compute I, II per face
5: interpolate I, II to mesh vertices
6: for each yarn vertex do ⊲ on the GPU
7: interpolate I, II from mesh
8: compute linearized bending I(𝑋3) ⊲ (5.7)
9: clamp compression ⊲ Section 5.2.3
10: compute strains 𝑠𝑥 , 𝑠𝑎 , 𝑠𝑦 ⊲ (5.4)
11: look up displacements Δ𝑄 ⊲ Section 5.1.3
12: displace: �̂�← 𝑄 + Δ𝑄 ⊲ (5.8)
13: map: 𝑞 ← (𝑥(�̂�)⊤, Θ̂)⊤ ⊲ Section 5.2.5
14: end for
15: tessellate and render 𝑞 ⊲ Appendix C.4
16: end procedure

we denote 𝑄 as the undeformed (material space) coordinates, �̂� as the coordinates deformed
by local displacements, and 𝑞 as the final world-space coordinates, as illustrated in Figure 5.4.
Algorithm 1 outlines our procedure.

  

X2

X1

X3

As a precomputation, we first create the ini-
tial undeformed yarn mesh corresponding to
the undeformed triangle mesh (inset). We
generate a 2D background grid in the mesh’s
UV-coordinates with cells the size of the peri-
odic pattern, and we copy the yarn geometry
into every cell that overlaps an undeformed
triangle. We then remove yarn vertices that
do not lie within a triangle and delete yarn

fragments shorter than a user-specified length for aesthetic purposes as described in the
Appendix C.3. Finally, we precompute the material-space barycentric coordinates for each
yarn vertex.

5.2.1 Mesh Strains

Each animation frame, we compute discrete fundamental forms for each triangle as in Chapter 4:

I = 𝐹 ⊤𝐹 , II = 𝐹 ⊤𝚲𝐹 , (5.6)

where 𝐹 is the triangle deformation gradient and 𝚲 is the triangle-averaged shape operator
from [Grinspun et al. 2006]. We then distribute them to triangle vertices using modified
Shepard weights from Phong interpolation [James 2020], and finally interpolate them to each
yarn vertex.
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5.2. Real-time Displacement

Figure 5.6: Top: From left to right, a yarn pattern buckles into different configurations under
increasing shearing deformation. Bottom: Adding a lower bound 𝜆min=0.7 to the eigenvalues
of the in-plane deformation I allows a user to tune the extent of buckling during animation.

5.2.2 Linearized Bending
As alluded to in Section 5.1.2, we can approximate the effect of bending behavior by adding
stretching and compression depending on the surface curvature. We show in Appendix C.2.1
that we can enhance the first fundamental form with one that varies along the surface normal:

I(𝑋3) ≈ I − 2𝑋3 II, (5.7)

≈

We illustrate this idea in the inset figure to the right, which approxi-
mates the extruded volume around a curved blue midsurface (top) with
a linearized volume that is stretched above and compressed below the
midsurface (bottom). We compare this idea to other bending models in
Section 5.3.

5.2.3 Compression Clamping
Like most elastic materials, cloth buckles out of plane when compressed. The chaotic nature of
this buckling can make our yarn optimization reach multiple visually distinct configurations
that do not vary smoothly over deformation space (Figure 5.6, top). For the continuummaterials
in Chapter 4, we dealt with this issue by regularizing the fit of the output energies. Here, we
similarly regularize compression by clamping the eigenvalues of I to a lower bound before
looking up the yarn displacement, which reduces buckling in a user-tunable way.

Using the method of Deledalle et al. [2017], we set a minimum value 𝜆min for the eigenvalues of
I(𝑍 ). (Unless stated otherwise, all of our experiments use 𝜆min=0.8, where 𝜆<1 is compression.)
Because Δ𝑄→0 as I→Id, our technique for clamping compression will only reduce local
deformations, but it will still deform due to the triangle embedding. Figure 5.6 (bottom) shows
how this clamping reduces buckling while preserving the large-scale deformation.

5.2.4 Local Displacement
After clamping I, we convert it to strains 𝑠𝑥 , 𝑠𝑎 , 𝑠𝑧 (Equation (5.4)), trilinearly interpolate the
yarn displacement Δ𝑄(𝑠𝑥 , 𝑠𝑎, 𝑠𝑧), and compute the deformed material space yarn coordinates

�̂� = 𝑄 + Δ𝑄. (5.8)
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5. Mechanics-Aware Deformation of Yarn Pattern Geometry

Figure 5.7: The yarns of a rib pattern adapt to increased stretching from an initial state (left)
until the limits of the precomputed data are reached (middle). Deformation beyond the sample
limits (right) do not result in further local displacements, but instead fall back to purely
embedded deformation.

Figure 5.8: Barycentric embedding of yarn geometry may create sharp edges (center), whereas
Phong deformation smooths out obvious mesh resolution artifacts (right).

We clamp strains outside of the sampled range to their nearest neighbor in the Δ𝑄(𝑠𝑥 , 𝑠𝑎, 𝑠𝑧)
data set. Similar to compression clamping, this constant extrapolation will limit the local
deformations while still inheriting large-scale deformations from the mesh embedding (See
Figure 5.7).

5.2.5 World-Space Mapping
To map the yarn vertices to world space 𝑥, we use:

𝑥(�̂�) = 𝜙(�̂� 1, �̂� 2) + �̂� 3 𝑛(�̂� 1, �̂� 2), (5.9)

which corresponds to extruding the world-space mesh surface 𝜙 along its normal 𝑛. To
avoid piecewise linear embedding artifacts, we employ Phong deformation [James 2020] and
interpolated vertex normals to generate a smoother surface 𝜙 and shell-volume (Figure 5.8).

To map yarn twists, we simply copy the updated twist values 𝜃=Θ̂, and we co-transform
the edge normals 𝑑1 using an approximate mapping of the Jacobian of (5.9), as detailed in
Appendix C.4.1.

The computation of yarn vertex deformation and world-space mapping are trivially parallel,
so we implement them as GPU compute shaders. The interpolation of Δ𝑄 results in a single
3D texture interpolation per yarn vertex.

5.2.6 Real-Time Rendering
Computer graphics researchers have developed a number of algorithms for rendering yarns
and fibers [Wu and Yuksel 2017; Montazeri et al. 2019, 2020]. For the examples in this paper,
we tessellate the deformed yarns as cylindrical meshes in a geometry shader. We approximate
ply- and fiber-level detail with procedurally twistable normal maps and ambient occlusion
maps, and we approximate volume conservation by locally rescaling yarn radii when they are
stretched. We provide the full rendering details in the Appendix C.4.
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ours

naive

Figure 5.9: Comparison of our mechanics-aware yarn animation (top) against naive embedding
(bottom). The yarn geometry differs substantially on the left, where the deformation is large.

mesh naive ours

Figure 5.10: Compared to naive embedding, our method reproduces the ribs of knitted cloth
flattening under tension.

5.3 Results

We will now discuss examples generated by our mechanics-aware yarn animation technique.
Figure 5.9 shows how our algorithm compares to a more typical embedded approach to
animating yarn-level geometry detail. Our method naturally reacts to the deformation of the
underlying cloth by causing loops to rearrange and tighten up as the tension is increased. As
a natural consequence, our approach also reproduces the tendency of knitted and mesh fabrics
to become more transparent when stretched. Figure 5.10 highlights that thicker patterns
similarly exhibit flattening under tension. Figure 5.11 shows how we can easily apply different
yarn-patterns to any cloth mesh, producing visually distinct geometry which depends on both
the deformations of the mesh and the precomputed yarn mechanics. Our method can add
yarn-level details onto any deforming triangle mesh: examples in this paper use deforming
cloth meshes from ArcSim [Narain et al. 2012, 2013], position-based dynamics [Müller et al.
2007], and Blender [2020].

We enhance the offline cloth simulation solver from Chapter 4, which reproduces the large-
scale effects of knitted garments. Figure 5.12 compares this approximation to ground-truth
yarn-level simulations, yielding visually plausible recreations of the local pattern deformation.
We note that the accuracy of our method highly depends on the accuracy of the underlying
triangle deformation, so we see higher discrepancy where the FEM cloth simulation deviates
from yarn-level simulation.
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5. Mechanics-Aware Deformation of Yarn Pattern Geometry

Figure 5.11: Different yarn patterns mapped onto a twisted cloth with our method react
differently to the mesh deformation. The second row shows a zoom and compares it to naive
embedding in the third row. Our method captures the subtle tightening in all cases, while the
naive method results in unrealistic gaps between yarns.

We also used our approach to add yarn-level details to a position-based dynamics cloth solver
[Bender et al. 2015], to approximate yarn-level cloth simulation in real-time. Figure 5.13 shows
how a user can perform an interactive dressing operation by pulling a knitted sock onto a foot.
Note that our method still produces plausible yarn-level deformations, despite the fact that
the default position-based elastic material model is quite far from a model derived from yarn
physics.

Figure 5.14 shows we can render our yarn geometry offline to produce higher quality path-
traced scenes with “fuzz” from a procedural particle system. Figure 5.15 shows how our
GPU-based yarn displacement algorithm allows for the animation of garments with millions
of individual yarn vertices at interactive rates.

We animated most of the figures and concepts in this paper. For these and additional highly
detailed results, please refer to the submission and supplementary videos included with the
paper [Sperl et al. 2021], which is openly available at https://doi.org/10.1145/3450626.
3459816. For reproducibility, we release the source code and data used to generate our results
(https://git.ist.ac.at/gsperl/MADYPG).

Performance We ran our method on a desktop computer with an Intel Core i7-7820X
processor and an NVIDIA GeForce GTX 1080 Ti graphics card and gathered performance
statistics. Table 5.1 breaks down the computational cost of our algorithm for each of the
various examples in this paper. Almost all examples in this paper perform both geometry
generation and rendering in real-time (well over 60 fps). To stress-test our method, we created
the knitted sweater in Figure 5.15 (right), which has more than 40 million yarn vertices and
generates yarn geometry at over 14 fps. The total time including rendering (depending on
the complexity of the renderer and the amount of geometry per pixel due to camera zoom) is
around 4 fps for this example.
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5.3. Results

Figure 5.12: Comparison of yarns animated with our method applied to a precomputed cloth
simulation (left) against full yarn-level simulation (right). Our yarn level deformations differ
the most where the triangle-level cloth simulation is least accurate.

Data Set Size The number of samples in our precomputed yarn database only modestly
affects the visual quality of the animation. Figure 5.16 shows a deformed rib pattern with a
varying number of database samples and a visualization of the associated interpolation error.
In practice, we found that a small number of samples was sufficient to capture strong effects
like loops tightening under tension, and we noticed surprisingly few obvious interpolation
errors (like interpolated threads leading to self-collisions).

On the other hand, a large number of database samples led to unwanted noise in the animations,
like sudden ‘pops’ from one configuration to another, instead of gradual ones. We believe our
observations are consistent with those presented in Chapter 4, where we noted that a dense
sampling rate (especially in the compressive regime where fabric buckles chaotically) required
explicit filtering to remove high-frequency noise. Here, simply removing samples from the
database acts as an effective low-pass filter, and our compression clamping technique strongly
reduces popping.

The complexity of our yarn database has only a small affect on runtime. Table 5.2 relates the
number of precomputed yarn-level simulations in our database to the memory and runtime
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Figure 5.13: We use position-based dynamics to simulate a sock being pulled over a foot in
real-time, where the user can interactively control the force.

Figure 5.14: Two examples of our yarn geometry that were rendered offline using path tracing
and hair particles.

Figure 5.15: Our method scales favorably with increasing yarn density. We deform yarn
geometry for a sweater with 0.8 million vertices at well over 100 FPS (left), and a sweater with
42.7 million vertices at over 14 FPS (right).

of our method. Notably, a 238× increase in database size caused a proportional increase in
memory but only a 2.8× increase in runtime. Unless stated otherwise, the results shown in
this paper use data sets of 93 samples sampled uniformly over the ranges 𝑠𝑥 , 𝑠𝑦 ∈ [−0.2, 1.0]
and 𝑠𝑎 ∈ [−0.7, 0.7].

Bending Models Finally, we compare the effect of our linearized bending approximation in
Figure 5.17. We compare our linearized model described in Section 5.2.2 to a bending model
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Table 5.1: Performance breakdown of results in this paper. From left to right, we list: the
respective figure, the number of animated yarn vertices and average per-frame times of mesh
strain computation (Section 5.2.1), data look-up and local yarn displacements (Sections 5.2.2 to
5.2.4), and embedded world-space mapping (Section 5.2.5). The mesh stage is implemented on
the CPU, whereas yarn displacement andmapping are implemented on the GPU. In comparison,
the CPU-implemented position-based dynamics step for the sock example averaged to 19.24
ms.

animation # vertices strainsCPU displacementGPU mappingGPU

sleeve Fig. 5.9 94k 1.02 ms 0.13 ms 0.10 ms
patterns (averaged) Fig. 5.11 82k 0.82 ms 0.09 ms 0.07 ms
honeycomb stretch Fig. 5.12 top 74k 0.61 ms 0.08 ms 0.07 ms
rib stretch Fig. 5.12 center 154k 0.77 ms 0.16 ms 0.12 ms
stockinette stretch Fig. 5.12 bottom 119k 0.59 ms 0.12 ms 0.11 ms
stockinette sweater Fig. 5.15 left 862k 2.59 ms 0.81 ms 0.66 ms
fine stockinette sweater Fig. 5.15 right 42.7M 2.59 ms 35.34 ms 27.68 ms
rib twist Fig. 5.14 left 433k 0.38 ms 0.51 ms 0.38 ms
table cloth Fig. 5.14 right 130k 1.50 ms 0.16 ms 0.13 ms
sock Fig. 5.13 139k 7.5 ms 0.14 ms 0.11 ms

Table 5.2: Comparison of rib pattern displacement data for different data set sizes. “generation”
refers to the time needed to precompute the data, and “displacement” refers to the per-frame
time of computing �̂� = 𝑄 + Δ𝑄(𝑠𝑥 , 𝑠𝑎, 𝑠𝑧) on a representative sweater animation with 1.8
million yarn vertices.

# samples memory generation displacement

53 = 125 0.7 MB 2.2 min 1.58 ms
93 = 729 4.2 MB 12.7 min 1.82 ms
153 = 3375 19.2 MB 59.8 min 2.30 ms
313 = 29791 169.7 MB 533.6 min 4.35 ms

that explicitly captures combined stretching and bending. (See Appendix C.2 for details on
these comparison models.) First of all, we found that the importance of bending depends on the
knit pattern: “thick” patterns like the rib (Figure 5.11 red, center) exhibit more differences than
nearly planar ones like the stockinette (Figure 5.11 blue, right). The further away the geometry
is from the surface 𝜙, the more it is locally stretched or compressed by bending. Second, even
for a thick pattern, the differences between the two models are minor and localized to regions
of strong curvature. Most importantly, the linearized model is much more efficient — when
comparing CPU-based implementation, our linearized model ran roughly 8× faster.

An extra benefit of the linearized bending model is that it transforms bending-induced buck-
ling into compression, which can be filtered with our compression clamping algorithm (Sec-
tion 5.2.3). Otherwise, it would be non-trivial to filtering both compression- and bending-
related buckling in a compatible and coherent manner.

5.4 Discussion
Because our method is based on geometric interpolation of yarn vertices rather than an exact
simulation of yarn-level geometry, it cannot exactly reproduce all yarn-level effects. Our
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2𝑅

0
Figure 5.16: Comparison of different data sampling densities. The top and bottom rows show
results generated with 5 × 5 × 5 and 31 × 31 × 31 samples respectively. In the top images, we
color-code the 𝐿2 error in vertex positions between the coarse and fine model, compared to
the yarn radius 𝑅; red color corresponds to a larger difference. The coarse model produces
plausible geometry even in the presence of larger errors.

method fundamentally assumes that the deformations sampled in the database are representa-
tive of the deformations in the online simulation. Because our per-vertex mesh strains only
communicate deformations on the scale of a single triangle, the method will not be able to
accurately react to fine-scale collision events like pulling on an individual thread. Similarly,
our method relies on the mesh simulation to handle collisions; it will not exactly resolve object
collisions on the level of the individual thread, and it will not exactly resolve collisions for
very thick fabrics if the mesh is modeled as infinitely thin.

Our database currently also ignores time-dependent effects like hysteresis and damping, so
repeating a mesh deformation will yield exactly the same fine-scale yarn arrangements. Our
method interpolates the precomputed behaviors of a periodic yarn pattern, so we cannot yet
simulate clothes consisting of completely aperiodic or disorganized threads, and it will be
significantly more expensive to simulate ornate patterns with a large number of yarn vertices.
We also do not yet handle non-periodic connections between different patches of cloth, so
our method cannot yet sew together seams on the individual thread level. However, we can
approximate larger seams by folding a piece of thin fabric over itself (Figure 5.18) similar to
the “True Seams” technique recently proposed by Cirio and Rodríguez [2022].

On the other hand, our geometric approximation affords us a number of advantages and leads
to a few novel challenges. The data-driven approach completely avoids the expense of online
collision handling, and its exploitation of periodic structures avoids redundant computations
resulting from structurally similar yarn patterns. The method cuts the complexity of brute-
force yarn level cloth by several orders of magnitude, and as far as we know, our method is the
only way to simulate millions of yarn vertices at interactive rates. The interpolative nature of
the approach also guarantees unconditional numerical stability, so the method cannot blow
up even in unrealistic video game environments. The speed and detail of our approach for
animating knitted garments also creates new research challenges: zooming out from a pattern
made of millions of threads can cause aliasing patterns when many of them occupy a single
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2𝑅
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Figure 5.17: We compare our linearized bending model against a model incorporating bending
strains explicitly on an animated knit sweater. We measure the difference between the models
as the 𝐿2 norm of the difference in yarn vertex positions, and we color code them relative to
the yarn radius 𝑅; red color corresponds to a larger difference. The cut-outs show how knit
loops appear to tighten more with the linearized model (top) than the explicit bending model
(bottom).

Figure 5.18: Approximating a seam by folding one piece of cloth over another on the mesh-level,
rather than the thread level.

pixel, potentially requiring novel geometry anti-aliasing techniques in the future.

Conclusion We have presented a method for deforming yarn patterns in a mechanics-aware
manner. It reproduces characteristic yarn-level cloth behaviors like knitted loops that tighten
when the fabric is stretched. We introduced practical heuristics such as linearizing bending and
limiting buckling, which make the method significantly more efficient and tunable by artists.
The method is lightweight and GPU-parallelizable, so it is capable of animating millions of
yarn vertices at real-time rates.

In the future, we are interested in new research challenges introduced by the massive scale
of these yarn simulations. The method could further benefit from level-of detail approaches
simplifying yarn geometry where it is not visible. Our technique might also be useful for
research into deformation-dependent microfacet rendering, anti-aliasing techniques, or even
neural rendering, for smoothly replacing extremely dense yarn geometry with an analytic or
data-driven shading model.
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CHAPTER 6
Estimation of Yarn-Level Simulation

Models for Production Fabrics

Thanks to yarn-level models, we can produce animation results with extreme detail, as well as
mechanical behavior that exhibits structural nonlinearity [Kaldor et al. 2008; Cirio et al. 2014].
Yarn-level models also enable visual design of complex knit patterns [Leaf et al. 2018]. Previous
works have shown that computer-graphics yarn-level models can provide a qualitative match
to the mechanical response of real-world fabrics; however, they have not tried to match this
mechanical response in a quantitative manner.

This chapter introduces a methodology for inverse-modeling of yarn-level mechanics of cloth,
based on the mechanical response of fabrics in the real world. We have documented, scanned,
and tested a library of knit fabrics from real textile production. These fabrics span different
types of complex knit patterns, yarn compositions, and fabric finishes, and they demonstrate

Input Data

Yarn %

75D/72F Polyester 96

20D Spandex 4

1 2

Intermediate Thin-Shell Model

3

Yarn Model Fitting Final Results

4

Figure 6.1: The figure shows our pipeline to fit yarn-level mechanical parameters to real-world
knits, applied to a double knit pique fabric (DKP). (1) We take as input the fabric composition,
knit schematics, high-resolution photographs, and swatch-level physical tests. (2) We fit a
thin-shell model to the non-uniform physical data, and we use it to generate target uniform
data. (3) Then, we fit the yarn-level model to the uniform data, leveraging periodic simulations
to reduce the computational cost. (4) The images show the yarn model for DKP, under uniform
stretch on the weft, bias, and warp directions.
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6. Estimation of Yarn-Level Simulation Models for Production Fabrics

diverse physical properties like stiffness, nonlinearity, and anisotropy. We then develop
a system for fitting yarn-level simulation models that match their large-scale mechanical
response.

In doing this, we have faced two major challenges. First, we demonstrate that real-world yarns
exhibit complex deformation behavior that is not sufficiently captured by the Kirchhoff rod
models typically used in computer animation and numerical simulation. Second, the best real-
world data available is in the form of physical tests at the swatch-level, which is computationally
prohibitive to simulate efficiently at the level of individual yarns — straightforward simulation-
in-the-loop parameter estimations are intractable for this problem.

We introduce the first technique for the modeling and estimation of yarn-level fabric mechanics
that succeeds to capture the macroscopic (swatch-level) response of textile-production knitted
fabrics. We achieve this through three main contributions that address the challenges discussed
above.

Data set of real-world fabrics We compiled a data set of physical test data from 33 different
knitted fabrics used by industry professionals in the production of casual and sports garments.
The fabrics span different knit patterns (e.g., multiple layers), yarn compositions (e.g., plated
yarns), and yarn finishes. On a macroscopic level, they show diverse stiffness, nonlinearity,
and anisotropy. The data set consists of physical information about each yarn type, manually
registered yarn geometry, high-resolution photographic scans, and physical measurements
from experiments for each fabric type. The data can be found at http://mslab.es/projects/
YarnLevelFabrics.

Efficient fitting procedure To estimate yarn-level parameters from swatch-level physical
tests, we have designed a two-step procedure that circumvents the computational cost of
simulating full fabric swatches at yarn level: we first fit a thin-shell model to swatch-level
data [Wang et al. 2011; Miguel et al. 2012], then we generate analytical stress-strain data for
uniform deformations using the thin-shell model, and we finally use this data to fit yarn models
using periodic simulations.

Practical and versatile simulation models Basic models for yarns and thin shells cannot
capture the diversity of behaviors of real-world knitted fabrics, while complex models with
a large number of parameters are vulnerable to overfitting. After experimenting with many
of these models and observing how well they fit real-world data, we propose a few minimal
extensions to typical models used in computer graphics to help strike the balance between
simplicity and expressive power: an anisotropic area-preserving thin-shell model, and a yarn
model with two-phase stretching and contact energies.

In this work, we focus on the major aspects of macroscopic mechanical response, including
nonlinearity and anisotropy of stretch, shear, and bending deformation. We leave for future
work more complex aspects such as extreme nonlinearity, hysteresis, or curling. Under these
limitations, we maximize parallelism between the data, parameterization, and estimation
processes of thin-shell and yarn-level fitting; we do this to minimize the error introduced
by using the thin-shell model as an intermediate representation, while circumventing the
challenge of simulating full-swatch non-uniform deformations at yarn level.

After discussing related work, we give an overview of our approach in Section 6.1. We then
describe the input data to the yarn-model estimation process in Section 6.2. Section 6.3
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6.1. Overview

Figure 6.2: This image shows an all-needle fabric (A2) stretched along the bias direction. Notice
the spatially non-uniform shear and curved shape near the clamps.

describes the thin-shell model, its estimation, and how it is used as an intermediate target for
the yarn-level model. We continue with the description of the yarn-level model in Section 6.4
and the estimation of its parameters in Section 6.5. We discuss our results in Section 6.6, and
we conclude with a discussion of limitations and future work in Section 6.7.

6.1 Overview
The main goal of our system is to efficiently solve for the yarn-level simulation parameters
that will reproduce the large-scale in-plane responses measured by real-world knitted fabrics.
The brute-force approach—simulating every yarn in a swatch of fabric, comparing the results
to the measured data, and looping until the correct parameters are found—is computationally
infeasible, as a single swatch can easily contain tens of thousands of knit loops. To avoid
full-scale simulation, we approximate the fabric swatch as a periodically repeating pattern;
this allows us to take advantage of the method for simulating knits with periodic boundary
conditions as established in Chapter 3.

However, simply tiling these periodic yarn physics over a patch the size of the physical
knitted fabric swatch is insufficient to reproduce our physical test data. In particular, it
cannot model the spatially non-uniform deformations that occur when fabrics are sheared
(Figure 6.2). To ensure that our method performs well even in the presence of spatially non-
uniform deformations, we introduce an intermediate thin-shell model and solve for a physical
model that reproduces the test data. Once we have this model, we generate spatially uniform
deformations that can finally be modeled with periodic yarn-level simulation.

Our parameter-fitting pipeline is illustrated in Figure 6.1. We first solve for a thin-shell model
that reproduces the real world data samples. Next, we use this thin-shell model to generate
spatially uniform data samples. We then fit yarn-level simulation parameters to this new
uniform data.

We want our simulation models to be complex enough to model important features in the
data, while simultaneously minimizing additional complexity to avoid overfitting. We discuss
in Section 6.3 how a simple StVK thin-shell model is insufficient to adequately capture the
array of behaviors observed in our physical tests, but we are able to reproduce the data well
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6. Estimation of Yarn-Level Simulation Models for Production Fabrics

with the simple addition of anisotropy and an area-preservation term. Similarly, although
we found the basic discrete elastic rod model insufficient for reproducing the behaviors of
real-world textiles, Section 6.4 explains how we are able to reproduce the real-world data with
the addition of two-phase models for contact and stretching to capture the behavior of plated
yarns.

6.2 Input Data

This section discusses the different types of data that can be gathered from real-world fabrics,
and how the data can be used in practice for achieving our goals.

The first type of data we consider is the information used for fabricating each material. Exam-
ples of such data are the type(s) of yarn used to create the fabric, and the knitting/weaving
instructions. Another type of data is experimental measurements, such as yarn-level mechani-
cal tests, swatch-level mechanical tests, and high-resolution images.

We could follow a number of approaches for using this data in simulation. A “bottom-up”
modeling approach could take the fabrication settings and yarn-level mechanical tests, and
simulate the mechanics of the knitting/weaving process that yield the final fabric pattern
and its macroscopic response. A “top-down” approach, on the other hand, could take high-
resolution images and swatch-level tests, and estimate both the pattern geometry and the
yarn-level mechanical response. Unfortunately, both approaches suffer serious challenges. In
the bottom-up approach, the fabrication process entails many unknowns, such as the forces
applied by the needles or the plastic deformation of yarns, and there is no known procedure
to measure the mechanical response of yarns in tight contact. In the top-down approach, the
yarn pattern is not fully observable due to severe occlusion, especially in multi-layer fabrics,
and the strains of individual yarns are unknown.

To work around these challenges, our project follows a hybrid approach, by combining fabrica-
tion settings and experimental measurements to design and fit yarn-level models. We use the
yarn topology defined by knitting instructions, together with high-resolution photographs,
to initialize the geometry of the yarn pattern. We also use swatch-level mechanical tests to
estimate the mechanical parameters of the yarn-level model.

Section 6.2.1 describes the composition of the yarns used in our experiments; Section 6.2.2
describes the initialization of yarn geometry; and Section 6.2.3 describes the mechanical tests.
Later in Section 6.7 we discuss additional yarn data that we considered but did not use in our
system.

6.2.1 Yarn Composition

For each fabric swatch in our data set, we list the associated yarn types, the number of filaments,
the denier of each yarn type (i.e., mass in grams per 9,000 meters of unstretched yarn), the
stiffness of each yarn type (measured in response to a force of 5cN), and the mass percentage
of each yarn type. For example, 72D/75F polyester 90%, 20D spandex 10%, indicating that
90% of the fabric mass corresponds to a 75-filament 72-denier polyester, and 10% of the mass
corresponds to 20-denier spandex. This information allows us to assign basic parameters like
the density of each simulated yarn, and we have the option to derive additional information,
as discussed in Section 6.7.
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Figure 6.3: Initialization of the yarn geometry for an all-needle fabric (A2). We take as input a
schematic visualization that depicts the topology of the yarn construction (left) and high-res
photographs that show the yarn geometry on the visible layers (middle). The squares highlight
the repeat of the yarn pattern. We initialize the yarn geometry (right) by manually registering
the yarn curves to the photographs, and smoothly interpolating to unobserved regions.

6.2.2 Initialization of Yarn Geometry

To define the yarn topology from knitting instructions, we leverage existing tools by knitting
machine providers. Specifically, we have used theM1plus by STOLL, which outputs a schematic
representation of the knit pattern (Figure 6.3-left). Note that this schematic defines topology,
but it does not accurately define where yarn contacts occur. We also use this data to identify a
representative repeating periodic tile of the pattern.

We obtain front and back high-resolution photographs of the knit pattern using a custom-built
optical system, which captures photographs of 4912 × 3684 pixels at a resolution of 1.8 𝜇m
per pixel, with close-to-uniform illumination (Figure 6.3-middle). We first use these images to
estimate a yarn radius, which we use for visualization and to help with initial yarn registration.
Next, we identify the corresponding periodic tile on the photographs, and manually register the
yarn topology to the visible layer on both front and back photographs. Manual registration took
1 to 10 hours per fabric, depending on pattern complexity. This step assigns 2D coordinates
of the portions of the yarns visible in the photographs, so we still need to approximate the
geometry of the occluded yarns, as well as the depth coordinates. We approximate this missing
geometry by constraining the centerlines of yarns that overlap in the images to be two yarn
radii apart in depth, and by smoothly interpolating the yarn geometry in unobserved regions.
We include these manually registered 3D yarn geometries in our data set, and we use them
as input to our yarn model parameter estimation (which is free to optimize the initial guess
further, as in Section 6.5.2).
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Figure 6.4: Testing principles and fabric measurements for swatch-level stretch and bending
tests. We have performed these tests along three directions (weft, bias, warp) to all 33 fabrics
in our library.

6.2.3 Physical Tests

To fit accurate yarn-level parameters, we seek physical test data that captures the force-
deformation response of the fabric under stretch and bending in different directions, accounting
also for nonlinearities and transverse behavior. We have developed a custom-built test rig
capable of executing two state-of-the-art experiments: a clamped stretch test [Kawabata 1980]
and a pear-loop bending test [Peirce 1930]. The principles of the tests and the size of the fabric
swatches are shown in Figure 6.4. We chose the pear-loop test vs. the cantilever bending
test [Wang et al. 2011] because in our early experiments it showed better sensitivity at low
bending stiffness.

In the stretch test, a swatch of length 𝑙 = 10 cm (excluding the clamped region) and width
�̄� = 6 cm is clamped on two ends and stretched horizontally under known forces. In practice,
the stretch test is controlled by displacement, while force is measured. For each stretch force 𝑓𝑠 ,
we compute the stretch 𝑠 = 𝑙/𝑙 − 1 (with 𝑙 the deformed length) and the orthogonal compression
𝑐 = 1 − 𝑤/�̄� (with 𝑤 the deformed width). In the bending test, the same swatch is bent by
bringing the clamps together. For each inter-clamp distance 𝑑 , we measure the aspect ratio
𝑟 = ℎ/𝑝 of the pear-shaped loop (with ℎ the height of the loop and 𝑝 its width).

One of the important decisions for the estimation of yarn-level models is the definition of a
working range, which in turn affects the range of the physical test data. In garment design,
fabric stretch is quantified for the warp direction, which is typically the stiff direction of the
fabric, and is usually vertically aligned with the subject’s body direction along the torso and
limbs. Weft is often too compliant to be aligned with the vertical direction, as clothes would
hang loose; instead it allows a comfortable fit along the body’s circumference and flexibility
for (un)dressing. Fashion ergonomics studies suggest a comfort stretch (i.e., stretch necessary
in the warp direction for casual wear) of 5 to 30%, and a power stretch (i.e., stretch necessary
for active wear) of 30 to 50% [Wang et al. 2008; Lyle 1977]. For the fabrics in our library, we
have observed that the average warp stretch at 2 N stretch force is 31%, and at 5 N it is 52%.
This suggests that 2 N and 5 N are rough upper bounds for comfort stretch and power stretch,
respectively. Therefore, we have executed stretch tests up to 5 N. We have done this, together
with bending tests, on three directions: weft (0 deg), bias (45 deg) and warp (90 deg). In the
weft direction we often fall short of 5 N, as we reach the rig’s stretch limit (160%).

In this project, we have not addressed the hysteresis of force-deformation tests, i.e., the force
difference between loading and unloading regime, produced by inter-yarn friction [Miguel
et al. 2013]. We leave this phenomenon as future work, which requires estimating a model of
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the inter-yarn friction forces. In the physical tests, we only consider stretch under loading
conditions, from rest to 5 N.

6.2.4 Summary of Data

To summarize, our data set consists of the following information for each set of 33 different
fabric samples:

• Physical characteristics of the yarn used in each fabric, including the material used, its
density, its stiffness, and information about any special coating on the fibers

• Schematics describing the topology of each knitted pattern

• High resolution photographs of both sides of the fabric

• Initial yarn geometry and topology derived from knitting instructions and photographs

• Measurements resulting from mechanical tests of stretching and bending properties of
the fabric

6.3 Intermediate Thin-Shell Model
As outlined in Section 6.1, we use a thin-shell model as an intermediary between mechanical
tests on full-scale swatches (which can exhibit spatially non-uniform deformations) and
periodic yarn-level simulations (which assume spatially uniform deformation). To solve for
the material parameters in the thin-shell model, we focus our efforts on in-plane scenarios
where bending plays no role (Section 6.3.1). Additionally, although it is not the main result of
our work, we offer a preliminary method for solving for bending parameters in Section 6.3.2.

6.3.1 In-Plane Deformation Model

We seek a deformation model that captures the anisotropic and nonlinear behavior of knitted
fabrics, while minimizing the number of parameters. Note that the input data (Section 6.2.3)
approximates uniaxial deformations, and lacks information about the fabric’s response to
biaxial deformations. Adding high-order strain dependency to the parameters, as done in
previous works [Wang et al. 2011; Miguel et al. 2012], could over-parameterize the model and
lead to overfitting. While limited, we opt for the robustness provided by a strain-independent
parameterization.

A simple choice to represent both anisotropy and nonlinearity is the anisotropic Saint Venant-
Kirchhoff (StVK) model [Volino et al. 2009]. However, we have observed that anisotropic StVK
might exhibit a high directional Poisson’s ratio (up to 2 in some cases), and inversion within
the tested stretch range. Note that this does not make the model unstable, but it is of course
unrealistic. To address this, we augment the anisotropic StVK model with a Neo-Hookean
area-preservation term [Bonet and Wood 2008; Smith et al. 2018]. As shown in the plots in
Figure 6.5 for a uniaxial stretch deformation with zero orthogonal stress, the stretch-aligned
stress of the Neo-Hookean-augmented model remains the same as the original anisotropic
StVK model, but inversion no longer occurs.
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Figure 6.5: Our thin-shell formulation augments the anisotropic StVK model with a Neo-
Hookean area-preservation term [Smith et al. 2018]. This term does not affect the stress-
stretch behavior (left), but it eliminates inversion problems (right). Both models, with and
without the Neo-Hookean term, are fitted to a double-knit interlock fabric (DKIN1). Without
the Neo-Hookean term, the fitted model is stable but suffers inversion (i.e., it reaches 100%
compression).

Formally, the Neo-Hookean-augmented anisotropic StVK model is formulated as follows.
Given the deformation gradient F, Green strain E = 1

2
(︁
F⊤ F − I

)︁
written in Voigt notation as

𝜺 = (𝐸11, 𝐸22, 2𝐸12), and area ratio 𝐽 = det(F), the strain energy density is:

Ψinplane =
1
2
𝜺⊤

⎛⎜⎝
𝑘𝑥𝑥 𝑘𝑥𝑦 0
𝑘𝑥𝑦 𝑘𝑦𝑦 0
0 0 𝑘𝑠𝑠

⎞⎟⎠ 𝜺 + 𝑘𝑛1 (𝐽 − 1)2 + 𝑘𝑛2 log2𝐽 . (6.1)

To estimate the parameters (𝑘inplane = {𝑘𝑥𝑥 , 𝑘𝑥𝑦, 𝑘𝑦𝑦, 𝑘𝑠𝑠, 𝑘𝑛1, 𝑘𝑛2} in (6.1)), we follow a simulation-
in-the-loop optimization strategy [Miguel et al. 2012]. We search for the parameters that
produce the best match to the stretch deformation data described in Section 6.2.3, subject to
static equilibrium of the simulated cloth swatch. Formally, this is

𝑘inplane = arg min
∑︁
𝑖

𝑤𝑠 ∥ 𝑓𝑠 (𝑘inplane, 𝑠𝑖) − 𝑓𝑠,𝑖 ∥2+

𝑤𝑐 ∥𝑐 (𝑘inplane, 𝑠𝑖) − 𝑐𝑖 ∥2. (6.2)

Specifically, we use 6 target deformations for each weft, bias, and warp direction, distributed
evenly along the stretch range. For each 𝑖 target deformation, we apply the measured stretch
𝑠𝑖 , simulate the fabric swatch to equilibrium, and evaluate the error with respect to measured
stretch force 𝑓𝑠,𝑖 and orthogonal compression 𝑐𝑖 . The weights 𝑤𝑠 and 𝑤𝑐 normalize stretch
force and compression error using the average measured values.

Figure 6.6 shows a representative fit of the in-plane thin-shell model for an all-needle fabric
(A2). Notice the extreme anisotropy of the fabric. Results are discussed in more detail in
Section 6.6, but the proposed model provides an accurate overall fit across all fabrics (avg.
17.59%±8.33% error for stretch force, and avg. 16.84%±8.11% error for orthogonal compression).
We have noticed that the fabrics in our data set exhibit higher nonlinearity than the StVK
model, but the fit quality is sufficient to act as intermediate representation for the yarn-level
model.

We use this thin-shell model to generate target data for our yarn-level model by reproducing
spatially uniform versions of the mechanical test scenarios in our data-set. Notably, the
stretch tests clamp two ends of the fabric swatch but leave the other two sides free, which
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Figure 6.6: Fitting of the in-plane thin-shell model to the physical test data, for an all-needle
fabric (A2). Top: force vs. stretch fits. Bottom: orthogonal compression vs. stretch fits. Notice
the extreme anisotropy of the fabric.

leads to a minimization of stress in the direction orthogonal to the stretch. To reproduce this
behavior, we compute uniaxial stretch deformations with zero orthogonal stress of the strain
energy density (6.1). Denoting the known applied stretch as 𝑠 and the unknown orthogonal
compression as 𝑐 , the stretching direction can be defined by a unit vector u and the compression
direction by an orthogonal vector v, or alternatively by a rotation matrix U = (u v). The
resulting deformation gradient is F = U diag(1 + 𝑠, 1 − 𝑐) U⊤ = (1 + 𝑠) u u⊤ + (1 − 𝑐) v v⊤. We
then compute the orthogonal compression as:

𝑐 = arg minΨinplane(F(𝑠, 𝑐,U)) . (6.3)

Once the minimum-energy compression is known, we evaluate the stretch stress 𝜎𝑠 =
𝜕Ψinplane

𝜕𝑠
=

u⊤ 𝜕Ψinplane
𝜕F u, with 𝜕Ψinplane

𝜕F the first Piola-Kirchhoff stress (recall (3.23)). We generate analytical
stretch data {𝑠, 𝑐, 𝜎𝑠} for weft, bias, and warp directions for each fabric, using the stretch range
measured on the real fabric along each direction.

Because this thin-shell model acts as a translator from the potentially non-uniform data to the
perfectly uniform periodic yarn simulator, we should avoid encoding additional noise from
numerical errors into the thin-shell results. To verify its accuracy, we recomputed our results
on meshes that were uniformly subdivided two times and found the average difference in
output between the original and refined meshes to be only 2%.

6.3.2 Bending Model
The fabrics in our database exhibit a wide range of complex behaviors when subject to our
physical bending test; for example, some fabrics curl out of plane when stretched (Figure 6.7)
or break symmetry during bending tests. These complications make it challenging to isolate
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Figure 6.7: This single-jersey fabric (SJ14) has a tendency to strongly curl out of plane, even
during in-plane stretching tests. Such behaviors pose difficulties to the accurate measuring
and modeling of bending properties.
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Figure 6.8: Fitting of the thin-shell bending model to the physical test data, for a links fabric
(L1). The plots show the aspect ratio of the pear loop vs. inter-clamp distance.

simple bending relationships from our data and to accurately reproduce these results in
simulation. Nevertheless, we document here our first efforts toward fitting the bending
behavior of the materials in our data set.

We first note that, although the bending behavior of our fabrics appears more isotropic than the
in-plane behavior, some fabrics (like the links fabric in Figure 6.8) exhibit noticeable bending
anisotropy. To ensure our model generalizes to these scenarios, we fit these behaviors with a
discrete-shell bending model with anisotropic stiffness.

In the computer graphics literature, there are multiple choices for discrete curvature mod-
els [Grinspun et al. 2003; Wardetzky et al. 2007]. We opt for an edge-based curvature metric,
as this allows simple parameterization of anisotropy using the rest-shape orientation of mesh
edges. Given an edge with bend angle 𝜃 , and incident triangles with average altitude from base
to vertex 𝐻 , we define the edge curvature as 𝜅 = 3 𝜃/𝐻 . This curvature metric converges to the
mean curvature of a cylinder with edges aligned with the cylinder axis. This is particularly
important for estimating the yarn-level model using analytical deformation data, as periodic
yarn deformations will be designed following cylindrical bending (see Section 6.5.1).

Based on the curvature metric above, the bending energy density is:

Ψbending = 𝑘𝜃 𝜅
2. (6.4)
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We multiply this energy density by the area of the incident triangles to obtain the dis-
crete edge energy. We define bending stiffness values 𝑘𝜃 for the weft, bias, and warp di-
rections, and interpolate linearly between them. The bending parameters are then 𝑘bending =

{𝑘𝜃,weft, 𝑘𝜃,bias, 𝑘𝜃,warp}.

Similar to the estimation of in-plane model parameters, we use a simulation-in-the-loop
optimization approach to estimate the bending parameters. We search for the parameters that
produce the best match to the bending deformation data described in Section 6.2.3, subject to
static equilibrium of the simulated cloth swatch. Formally, this is

𝑘bending = arg min
∑︁
𝑖

∥𝑟 (𝑘bending, 𝑑𝑖) − 𝑟𝑖 ∥2.

Specifically, we use 7 target deformations for each weft, bias, and warp direction, distributed
evenly between inter-clamp distances of 0.3 and 3.4 cm. For each 𝑖 target deformation, we
impose the inter-clamp distance 𝑑𝑖 , simulate the fabric swatch to equilibrium, and measure the
aspect ratio 𝑟 of the bending loop.

Figure 6.8 shows a representative fit of the bending thin-shell model for a links fabric (L1).
Again, results are discussed in more detail in Section 4.3, but the proposed model provides an
accurate overall fit across all fabrics (avg. 5.61% ± 2.21% error).

To generate analytical target data for yarn-level estimation, we simply evaluate the bending
stress 𝜎𝜅 =

𝜕Ψbending
𝜕𝜅

= 2𝑘𝜃 𝜅 . We obtain data {𝜅, 𝜎𝜅} for weft, bias, and warp directions for each
fabric, using the curvature range observed on the real fabric along each direction.

6.4 Yarn Model Parameterization
Our next goal is to find the parameters of a periodic yarn-level simulation so that it reproduces
the same response to deformation as the thin-shell model described in the previous section
(and thus, the fabric-level deformation tests in our data set).

We seek a yarn model with a minimal number of parameters, and which inherently captures
the complexity of the coarse-scale behavior. In this regard, we start with rod models used
previously for yarn-level cloth simulation [Bergou et al. 2008; Kaldor et al. 2008], and we
introduce the minimal extensions necessary to capture the behavior of real fabrics with
potential complications like plated yarns made of multiple materials. Note that this is a
deviation from the model discussed in Chapter 3. We describe in turn the models we use for
yarn stretch, bending, and contact. We observe in our use case that twist forces are small and do
not affect the overall mechanical response. Our current model does not account for inter-yarn
friction, and we leave this to future work.

6.4.1 Stretch
Many fabrics blend yarns of different types to achieve complex mechanical and/or aesthetic
behavior. One common example in our fabric library is plating, where two or more yarns are
knitted side by side. Figure 6.9 shows a plated fabric consisting of both a flexible spandex
yarn and a stiff polyester yarn. At rest, the flexible yarn is stretched, while the stiff yarn is
compressed. As a result, the fabric is flexible under low forces, and then it turns stiff under
high forces, once the stiffer polyester yarn is stretched. The complex interplay of plated yarns
cannot be captured by modeling each yarn type separately.
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polyester

spandex

Figure 6.9: High-resolution photographs of a plated double-knit interlock fabric (DKIN8) at 20%
warp stretch (left) and 150% weft stretch (right). A multi-filament stiff yarn, polyester, provides
texture and stiff response under high forces. A single-filament flexible yarn, spandex (partially
highlighted), provides flexible response under low forces. The flexible yarn is stretched during
knitting, and then it compresses the stiff yarn as it retracts and relaxes into the stitch structure.

Motivated by this complex stretch behavior of multi-yarn fabrics, we have designed a yarn
stretch model that represents the combined

𝑘𝑠2
 𝜖𝑠 𝜖𝑠

𝑘𝑠1

𝑘𝑠2

forceresponse of multiple yarns. The force profile includes three linear
regimes: one for low stretch with stiffness 𝑘𝑠1; another one for stretch
larger than 𝜀𝑠 with stiffness 𝑘𝑠2; and the compression regime again
with stiffness 𝑘𝑠2. The inset shows the force profile as a function
of yarn stretch 𝜀𝑠 . Roughly, 𝑘𝑠2 represents the stiffness of the stiffer
yarn in a plated fabric, and 𝜀𝑠 the onset of stretch for this yarn. 𝑘𝑠1
represents the combined response at low stretch. The stretch energy
of a yarn segment with rest length �̄� is formally:

𝑊𝑠 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2 �̄� 𝑘𝑠2 𝜀𝑠

2 𝜀𝑠 ≤ 0
1
2 �̄� 𝑘𝑠1 𝜀𝑠

2 0 ≤ 𝜀𝑠 ≤ 𝜀𝑠
1
2 �̄�

(︁
𝑘𝑠2 (𝜀𝑠 − 𝜀𝑠)2 + 𝑘𝑠1 𝜀𝑠 (2 𝜀𝑠 − 𝜀𝑠)

)︁
𝜀𝑠 ≤ 𝜀𝑠

(6.5)

Surprisingly, we found that this proposed nonlinear stretching behavior is important even
for simulating fabrics made only of a single stiff yarn (e.g., polyester). We speculate that this
could be due to uncertainty in rest lengths and/or friction state, as well as inherent stretch
nonlinearity under low forces (e.g., due to filament realignment). For this reason, we use the
nonlinear stretch model for all fabrics in the project.

6.4.2 Bending
We choose a yarn bending model following the formulation of Bergou et al. [2008, 2010], but
similar to the model in Chapter 3 we disconnect the bending stiffness and stretch stiffness of
the yarn, making them independent model parameters. In addition, under the uncertainty
about the yarn’s cross-section shape, we choose an isotropic bending model in our project,
and we leave the design of richer bending models to future work.

Following the discrete curvature vector 𝜿 proposed by Bergou et al. [2008], we define the
bending energy at a yarn vertex as

𝑊𝑏 =
1
2

2
�̄�𝑎 + �̄�𝑏

𝑘𝑏 ∥𝜿 − 𝜿 ∥2, (6.6)

where 𝜿 is the rest curvature, and �̄�𝑎 and �̄�𝑏 are the rest lengths of the incident yarn edges.
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6.4.3 Contact
The cross-section of yarns deforms in a complex and nonlinear way when yarns are compressed
into contact. For a multi-filament yarn, fibers may be loose and voluminous under low stretch,
and they may realign anisotropically under combined stretch and contact. This phenomenon
is even more complex for plated yarns (Figure 6.9) when viewed as a single composite yarn.

2𝑅1 2𝑅2

energy

𝐷

𝑅2𝑅1

For these reasons, we choose to model both moderately soft contacts
over a large distance and stiff contacts over a small distance. This
models both the forgiving collision response of knit loops gently
touching when the fabric is relaxed, as well as a strong resistance when
the space within braided fibers collapses and there is no more room
to compress. We model this two-phase contact force by combining
two barrier potentials, one modeling softer large-radius contact, and
another one modeling stiffer small-radius contact, as shown in the
inset. Each barrier potential is parameterized by its radius 𝑅𝑖 and
stiffness 𝑘𝑐𝑖 , 𝑖 ∈ 1, 2.

We build on the yarn-yarn contact model of Kaldor et al. [2008], but we substitute their barrier
term with the one proposed by Li et al. [2020]. However, we slightly modify it to use relative
distances, as this improved the scale of the stiffness for parameter optimization. Given a
yarn-yarn centerline distance 𝐷 , contact radius 𝑅𝑖 , contact stiffness 𝑘𝑐𝑖 , and a barrier function
𝑓 (𝑥) = −(𝑥 − 1)2 log𝑥 , the contact energy is

𝑊𝑐 = 𝑘𝑐𝑖 �̄�𝑎 �̄�𝑏

∫ 1

0

∫ 1

0
𝑓

(︄
min

(︃
𝐷

2𝑅𝑖
, 1

)︃2
)︄
𝑑𝑎 𝑑𝑏, (6.7)

with �̄�𝑎 and �̄�𝑏 the rest lengths of the two colliding yarn edges, and the double integral over
colliding edges 𝑎 and 𝑏 is evaluated with Simpson’s rule.

6.5 Yarn Model Estimation
We now discuss how to estimate yarn-level parameters in order to best fit the data produced
by the thin-shell model. Section 6.5.1 summarizes the simulation of yarn-level fabrics under
periodic boundary conditions, which are key to compare to the thin-shell data.

The yarn-level model contains two types of unknown parameters: yarn rest shapes and
mechanical parameters. We follow an optimization procedure that alternates the estimation of
these two parameter subsets. Section 6.5.2 describes the estimation of yarn rest shapes, and
Section 6.5.3 the optimization of mechanical parameters.

6.5.1 Periodic Yarn-Level Simulations
We build on the periodic yarn simulations from Chapter 3. We separate two sets of degrees of
freedom on a periodic yarn tile: a uniform coarse deformation 𝝌 = (𝑠, 𝑐, 𝜅,U), which gathers
stretch 𝑠 , orthogonal compression 𝑐 , bending curvature 𝜅, and a 2D rotation matrix U which
defines the direction of stretch and/or bending; and a vector of nodal yarn displacements �̃�,
expressed relative to the coarse deformation.1 Together, these degrees of freedom define full

1We can convert the coarse deformations 𝑠 , 𝑐 , 𝜅, and U into the first and second fundamental forms we
are used to from Chapter 3. Specifically, we compute F from 𝑠 , 𝑐 and U as in (6.3). Then, I = F⊤F. Similarly,
II = U diag(𝜅, 0) U⊤.
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nodal yarn positions x(𝝌 , �̃�). To make the overall behavior of the yarn simulation match the
prescribed coarse scale behavior, the nodal yarn displacements must satisfy periodic boundary
conditions and must be absent of yarn sliding, yarn twist, and net rigid motion. We express all
these constraints together as 𝐶 (�̃�) = 0.

The various deformation components described in Section 6.4 (stretch, bending, and contact)
compile a set of discrete energy elements {𝑊𝑖} over a periodic tile of rest area �̄�. We compute
the overall energy density of the tile as

Ψyarns(x(𝝌 , �̃�)) =
1
�̄�

∑︁
𝑖

𝑊𝑖 (x(𝝌 , �̃�)) . (6.8)

Given a coarse deformation 𝝌 , the yarn-level deformation can be obtained as the minimum-
energy configuration (i.e., equilibrium) that satisfies the constraints:

�̃� = arg minΨyarns(x(𝝌 , �̃�)), s.t. 𝐶 (�̃�) = 0. (6.9)

We solve this optimization using the constrained Newton approach from Chapter 3. As each
yarn tile contains only tens to hundreds of yarn nodes, the optimizations are fast in practice.

To compare yarn simulations to the thin-shell analytical target data, we need two additional
ingredients. First, we need to compute stretch deformations under minimum-energy orthog-
onal compression. To this end, given a stretch 𝑠 , we find the compression 𝑐 that minimizes
Ψyarns in (6.8), subject to equilibrium conditions (6.9) on the yarn deformation. We implement
this optimization using the COBYLA method [Powell 1994b], solving (6.9) before every energy
evaluation.

Second, we need to compute homogenized coarse stress, in particular the stretch stress 𝜎𝑠 =
dΨyarns/d𝑠. Applying the chain rule to (6.8) for a coarse stretch 𝑠 and simplifying yields:

dΨyarns

d𝑠
=
𝜕Ψyarns

𝜕x
𝜕x
𝜕𝑠

. (6.10)

Recall also (3.23) from Chapter 3. Note that we compute stretching stress analytically and
compute bending stress by finite differencing Ψyarns.

6.5.2 Yarn Rest-Shape Estimation
The rest shape of individual yarns, i.e., their rest length and rest curvature, is unknown, as it
is heavily influenced by plasticity during the knitting process.One way to address this is to
estimate both the yarn rest shape and mechanical parameters together, to best fit the thin-shell
mechanical data. However, we have seen that the error function with respect to mechanical
parameters alone is plagued with local minima, requiring the use of global optimization
methods. Global optimization of both the rest shape and mechanical parameters together
appears intractable, and we did not find a suitable low-rank parametrization of rest shapes;
therefore, we have devised a different procedure for rest-shape estimation, motivated by the
stability of the fabric’s coarse-level rest state.

At the fabric’s rest state, net yarn forces are zero, due to equilibrium between all force com-
ponents. However, the input yarn geometry (Section 6.2.2) is not at rest, due to unbalanced
inter-yarn contact. If we let the yarns relax to reach equilibrium under no coarse deformation,
the fabric suffers a non-zero coarse stress 𝜕Ψyarns

𝜕𝝌 , i.e., the fabric’s expected rest state is actually
not stable and wants to deform (e.g. contract).
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Figure 6.10: High-resolution photograph (left), hand-registered yarn geometry (center), and
simulated yarn rest-shapes (right) for an all-needle fabric (A1).

Based on these observations, we separate the full parameter estimation into two problems. We
let yarn rest shapes ensure stability of the fabric’s rest state, and we let mechanical parameters
fit the coarse mechanical response. In our experience, finding a stable but slightly pre-tensed
rest state (i.e., with non-zero though balanced yarn forces) was key for obtaining good fits of
the mechanical response with a small mechanical parameter set.

We pose the problem of yarn rest-shape estimation as follows: We seek rest shapes such that
the coarse stress at the fabric’s expected rest state is small, and the equilibrium configuration
of the yarns deviates little from the input yarn geometry. To solve this problem, we follow
a heuristic approach similar to the one proposed in Section 3.3.1 and Appendix A.2.4. We
alternate equilibrium solves (6.9) and resetting of yarn rest shapes at the current configuration.
While doing this, and to bound the deviation from the initial geometry, we bound the change
in yarn rest lengths to 20%. Every time rest shapes are reset, contact forces push the yarns
away. At initial steps, these contact forces may be very strong and too localized, therefore we
run only a few simulation steps before resetting rest shapes. At later steps, contacts become
smooth, and we let simulations run toward convergence. See Figure 6.10 for an example
comparing the real-world fabric, the hand-registered initial yarn geometry, and the result of
our rest-shape optimization.

Yarn rest-shape estimation must be executed after every change to the mechanical parameters,
as the yarn equilibrium configuration is changed. For this reason, we alternate rest-shape
estimation and the mechanical parameter optimization described next.

6.5.3 Mechanical Parameter Estimation

To estimate the mechanical parameters of the yarn model, we pose and solve a numerical
optimization problem. The remainder of this section discusses the objective function, the
optimized parameters, and the solvers we use.

Objective function

We have designed various error metrics between the yarn model and the target thin-shell data.
The stretch error component 𝑒𝑟𝑟stretch measures error in stretch stress. The default error, based
on the first Piola-Kirchhoff stress 𝜎𝑠 , ramps up at high stretches, due to the high nonlinearity of
the stress function. Instead, we measure error in the second Piola-Kirchhoff stress, obtained as
𝜎𝑠
1+𝑠 . The compression error component 𝑒𝑟𝑟compress measures simply the difference in orthogonal
compression. To generate the stretch and compression values, we computed zero-orthogonal-
stress deformations on both the thin-shell and yarn models, sampled over the stretch range
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Figure 6.11: The performance of our system with a local nonlinear solver (purple) compared
to initializing with a particle swarm optimization (blue), on an all-needle fabric (A2). Without
the swarm optimization, the fitting gets stuck in a local minimum, causing the stretching error
to blow up. The black bar denotes the transition from the “comfort” to the “power” range of
stretches.

of the physical test data, for all three directions weft, bias, and warp. The yarn-level zero-
orthogonal-stress computation is a slowly-varying function that is expensive to evaluate
on-demand but well-approximated by simple interpolation; therefore, we compute the optimal
orthogonal compression only on both ends of the stretch range, and linearly interpolate in
between. As a positive side effect, this interpolation helps in smoothing the noise caused by
buckling instabilities found near the optimal compression (see also Chapters 4 and 7).

For the estimation of the yarn model, we have used the following objective function, with
stretch and compression error components:

𝑔 =
∑︁
𝑖

𝛼𝑖 𝑒𝑟𝑟stretch,𝑖
2 +

∑︁
𝑗

𝛽 𝑗 𝑒𝑟𝑟compress, 𝑗
2. (6.11)

To set the weights {𝛼𝑖, 𝛽 𝑗 } of the error components, we follow these heuristics. First, we
normalize each error component based on the maximum target value in the comfort stretch
range. Second, we apply a decaying weight 𝑣comfort/max(𝑣comfort, 𝑣target) on both stretch and
compression error components to favor high-quality fitting of the comfort stretch range vs.
the power stretch range (see Section 6.2.3 for the definitions). 𝑣comfort is the target value at
the maximum comfort stretch. As such, this weight is 1 within the comfort range, and decays
under further stretching.

We found it hard to robustly incorporate bending energy into the objective function without
hurting the quality of in-plane fitting. Therefore, we opted to fit stretch and compression only,
and use bending data for post-hoc test of the results. This strategy gave us good qualitative
fitting of bending in some cases, but the design of a good error metric for quantitative fitting
appeared challenging. We provide a full discussion in Section 6.7.1.

Optimized parameters

The mechanical parameters of the yarn model are (Section 6.4): low-stretch stiffness 𝑘𝑠1, high-
stretch stiffness 𝑘𝑠2, high-stretch onset 𝜀𝑠 , bending stiffness 𝑘𝑏 , outer contact radius 𝑅1, outer
contact stiffness 𝑘𝑐1, inner contact radius 𝑅2, and inner contact stiffness 𝑘𝑐2.

Three of our parameters can be set according to a general heuristic and removed from the
optimization procedure without negatively affecting our results. First, we set the high-stretch
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stiffness 𝑘𝑠2 as the yarn-stretch stiffness (which is provided as input) of the stiffest yarn in the
fabric. Next, the inner contact acts as a non-penetration constraint, and we found that the
fabric’s mechanical response is barely sensitive to its actual parameter values. Therefore, we
fix the inner contact stiffness 𝑘𝑐2 to 1e3, and the inner contact radius 𝑅2 to be 25% of a base
radius 𝑅est. We define 𝑅est geometrically as the minimum required radius such that all yarn
segments are in contact in the registered geometry.

After pruning these parameters, the final set of 5 optimized parameters is p = {𝑘𝑠1, 𝜀𝑠, 𝑘𝑏, 𝑅1, 𝑘𝑐1}.

We also use 𝑅est to define the optimization range of the outer contact radius, which we optimize
in 𝑅1 ∈ [0.5𝑅est, 1.5𝑅est]. Similarly, we define a base bending stiffness as the default stiffness
in discrete rod simulation 𝑘𝑏,base = 𝑘𝑠2

𝑅2
est
4 , to optimize 𝑘𝑏 ∈ [10−3𝑘𝑏,base, 10𝑘𝑏,base]. We further

fit 𝑘𝑠1 ∈ [10−3𝑘𝑠2, 𝑘𝑠2], 𝜀𝑠 ∈ [0.0, 0.15], 𝑘𝑐1 ∈ [10−2, 102]. 𝑘𝑠1, 𝑘𝑏 , and 𝑘𝑐1 are fit as log-space
parameters. Finally, we specifically allow 𝜀𝑠 up to 0.20 for DKIN10, to mitigate extreme
stiffening under stretching.

Optimization solvers

We found that our optimization landscape features numerous local minima. Therefore, we
combine global optimization for initialization and local optimization for refining of optimized
material parameters. Figure 6.11 gives an example of how local optimization can get stuck and
result in strong errors.

For the global step, we found naïve grid sampling to be infeasible. Instead, we use 10 steps of
swarm optimization [Bonyadi and Michalewicz 2017] with 64 particles. Each particle corre-
sponds to a set of candidate material parameters and will compute stress and compression
error using 7 samples per direction. For performance, we compute everything as parallel as
possible; first, the rest-shape heuristic (Section 6.5.2) per particle, then the optimal compres-
sion optimizations (Section 6.5.3) per particle and direction for interpolation, and finally the
individual stress samples to evaluate the errors. Our implementation uses a decaying inertia
weight from 0.9 to 0.1 for each particle with heuristic repulsion enabled.

For local optimization we use COBYLA [Powell 1994a], starting from the best parameters
found by the swarm optimization. Here, we first compute the two optimal compressions (for
the purpose of quick evaluation via linear interpolation as described in Section 6.5.3) and then
20 simulations per direction for error evaluation.

6.6 Results
We collected results for 33 diverse fabrics, exhibiting a range of different knits and yarn compo-
sitions used in real-world industrial applications. The supplementary material accompanying
the paper [Sperl et al. 2022]2 details the following fabric samples: all-needle fabrics made of
polyester fiber (labeled A1 - A3); double-knit interlock fabric made with high-gauge polyester
fiber (DKIN1 - DKIN7), spandex/polyester plated yarn (DKIN8), and low-gauge polyester fiber
(DKIN9 - DKIN11); double-knit pique fabric made of spandex/polyester plated yarn (DKP);
links fabric made of spandex/polyester plated yarn (L1 - L3); and single jersey fabric made of
high-gauge multi-yarn (SJ1 - SJ12) and low-gauge polyester fiber (SJ13 - SJ15). Within each
family of fabrics, the samples vary in yarn composition, gauge, and fabric finish. Figure 6.12
displays some rendered examples. This data set offers a unique level of access to industrial

2The paper and supplementary are openly available at https://doi.org/10.1145/3528223.3530167.
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Figure 6.12: Some examples of the diversity of fabrics in our data set. The fabrics are (clockwise
from top-left): all-needle (A1), double-knit interlock (DKIN9), single jersey (SJ9), and links (L3).
Each is stretched in the weft direction for better visibility.

quality yarns and knitted fabrics; we consider the collection and publication of this data to be
an important contribution of our work.

Figure 6.13 shows how well our thin-shell model reproduces the behavior of the fabrics in
our database (which are color-coded based on knit family) after we optimize for its param-
eters. We display results for all 33 fabrics, measuring the percentage error relative to the
average measured data in stretching force, orthogonal compression, and the pear-loop ratio
for quantifying bending discussed in Section 6.2. We test against a wide range of fabrics with
different material behaviors and find that, although some fabric families have a wider standard
deviation of error (SJ vs A, for example), our shell model fits each fabric family with roughly
the same magnitude of error.

The main result of our work is a system for producing a periodic yarn-level solver with the
exact same topology as the original fabric, but with yarn-level parameters chosen such that the
yarn-level simulation approximately matches the physical tests of the real fabric. Figure 6.14
shows the range of the estimated parameters for all 33 fabrics in the database. Figure 6.15
shows the fitting errors, indicating how well our yarn-level simulation is able to reproduce the
fabrics. The leftmost plot shows the ability of our method to accurately model the behavior of
materials within a “comfortable” range of stretching motions considered in fashion ergonomics,
as defined in Section 6.2.3. We plot here the percentage differences in stress, so smaller errors
imply a more accurate modeling of the material. As discussed in Section 6.5.3, our optimization
emphasizes the accuracy within this “comfort” range more heavily, due to its importance in
industrial applications. The next adjacent plot shows the accuracy of our yarn-level solver over
the “power stretch” range of motion expected of an athletic garment, but normalized using
the maximum target value in the comfort stretch range. Although many fabrics still produce
remarkably accurate results for the full range (particularly the “A1-3” fabrics), the accuracy is
lower overall due to our solver’s intentional bias toward accuracy within the “comfort” region.
The rightmost plot in Figure 6.15 shows how accurately our yarn-level model matches the
orthogonal compression experienced by garments within the stretch tests. We discuss our
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Figure 6.13: Overview over our thin-shell fitting results. The 𝑥-axis is error percentage, and
the 𝑦-axis lists specific types of fabric in our database. Specifically, the error is relative to the
average ground-truth measured stretching, compression, or bending datum per pattern as
discussed in Section 6.3.1.

yarn simulation’s ability to model fabric bending in Section 6.7. Overall, out of our data set
of 33 fabrics, 24 of our yarn-level simulations are accurate to within 10% of the target data
in the most important “comfort stretch” range of forces. The error tends to increase as we
enter highly nonlinear behaviors with larger stretches with very large stretches, with one
optimization (DKIN10) failing to converge.

We tested our optimization (with a periodic yarn simulation in the loop) with a combination
of a local derivative-free solver and an optimizer based on particle swarms on a number of
machines, the most powerful of which was an AMD EPYC 7662 server with 256 cores and
1TB of RAM; all optimizations were run simultaneously in parallel on different cores of the
same machine. The local solver averaged 11m49s per fabric, with a minimum of 2m15s and
maximum of 46m11s. The swarm-based solver took about twice as long, averaging 25m19s
per solve, with a minimum time of 5m18s and maximum of 1h15m25s.

Figure 6.16 shows the effect of our biphasic yarn stiffness model discussed in Section 6.4.2.
The naive elastic rod stiffness model works reasonably well for most fabrics, but it can fail
to find suitable parameters, especially in cases with plated yarns made from multiple types
of fabric. Our new two-phase yarn stiffness model, in contrast succeeds to map the behavior
without a blow-up in fitting error. Figure 6.17 illustrates the importance of the yarn rest-shape
estimation discussed in Section 6.5.2. The black bar in these figures denotes the transition
from the “comfort” to the “power” range of stretches.
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Figure 6.14: Estimated parameter values of the yarn-level model for all 33 fabrics in the test
database. A linear (resp. log) scale is used when the parameters are estimated in linear (resp.
log) scale.

The thin-shell simulator obviously approximates fabric at a completely different level than the
periodic yarn-based model, so we should expect some differences in fitting error between the
two. The thin-shell model is in a sense “closer to the data” in that we treat both the model
and the real-world samples as geometric surfaces. The fabric samples are also much larger
than individual stitches, and they occasionally exhibit features (like non-uniform deformation)
that are not possible to model with our yarn-level solver. For these reasons, it is reasonable to
expect that the thin-shell model might provide a more accurate fit than the yarn level model.
We also note that the thin-shell model has almost twice as many degrees of freedom as our
yarn-level solver (9 vs 5 DOFs), so it should also have more representation power.

6.7 Discussion and Future Work
This work marks the first demonstration that yarn-level simulation is capable of approximating
the mechanical stretching response of real-world fabrics. We compiled a database from physical
tests of several different knitted fabrics used in the textile industry, which spans several complex
knit patterns, yarn compositions, and yarn coatings, resulting in diverse physical properties
like stiffness, nonlinearity, and anisotropy.

We developed a system for optimizing yarn-level parameters in order to match this real-world
data, and we offer a few novel extensions to make yarn-level simulation models more capable
of replicating the biphasic stiffness behavior of plated yarns and real-world contact scenarios.
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Figure 6.15: Overall ability of our yarn-level solver to reproduce the corresponding real-world
behaviors of materials in our database. The 𝑥-axis is error percentage, and the 𝑦-axis lists
specific types of fabric in our database. The error is relative to the maximum ground-truth
datum in the comfort stretch per pattern (see Section 6.5.3).

0 50 100 150
Stretch [%]

0

20

40

60

80

100

St
re

tc
h 

St
re

ss

shell model
yarns (with)
yarns (without)

0 50 100 150
Stretch [%]

0

10

20

30

40

Co
m

pr
es

sio
n 

[%
]

shell model
yarns (with)
yarns (without)

Figure 6.16: The performance of our optimization with and without our biphasic yarn-
stretchingmodel, on an all-needle fabric (A2). Omitting themore complex yarnmodelmassively
increases the overall stretching error and adds to the compression error (purple line).

We are releasing our data set to the public research community, in hopes that it inspires future
work and acts as a potential benchmark for yarn-level cloth research. In particular, we hope
that future scholars use our data set and results as an inspiration for potentially finding a
reliable connection between yarn-level parameters and large-scale material behavior. Finding
such a connection will address a long-standing problem in material-science and directly aid in
the fabrication of novel fabrics.
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Figure 6.17: The performance of our optimization with and without our rest-shape heuristic,
on an all-needle fabric (A2). Omitting the rest-shape heuristic causes the stretching error to
blow up and adds to the compression error (purple line).
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Figure 6.18: The performance of our yarn-level model with (blue) and without (purple) training
on bending data in the objective function, on a double-knit interlock fabric (DKIN1). Including
bending data makes the stretching error worse (left) but dramatically improves the bending
error (right).

6.7.1 Bending

Our database includes data from mechanical stretching tests as well as bending tests. Although,
the main effort of our work is to accurately reproduce the stretching tests, we can also consider
matching the bending data. Unfortunately, matching the bending data is challenging or a
number of practical and theoretical reasons. The bending data itself is difficult to capture
using the processes we proposed — by fitting the fabric to a single curve and measuring
curvature information from it. This single-curve assumption breaks down when the fabrics
curl dramatically (Figure 6.7), or when sheared fabrics asymmetrically bulge out of plane.
(Note that the tendency of fabrics to curl makes it difficult to measure orthogonal compression
as well.)

We started our investigation with a yarn-level model that was optimized to match stretching
data for a given fabric, as explained in the previous section. We wondered whether such a
model could reproduce the bending behavior of that fabric, even though it was not trained on
its bending data. Perhaps unsurprisingly, the fits to the bending data were not nearly as precise
as the fits to the stretching data, but we did find that the bending behaviors actually match
fairly well qualitatively. Essentially, our solver correctly exhibits weaker bending stiffness for
weak fabrics, and stronger bending stiffness for strong fabrics.
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Table 6.1: Effect on various fitting errors for all fabrics if we omit bending energy (“No bending”
column) or include it (“Bending” column) in the yarn-level parameter optimization.

Regime No bending Bending

avg err std dev avg err std dev

Stress Comfort 10.40% ±5.27% 15.05% ±5.12%
Stress Full 31.69% ±44.51% 41.41% ±50.39%
Compression 16.28% ±11.58% 24.32% ±15.03%
Bending 97.78% ±98.26% 64.03% ±39.37%

To quantify bending error, we considered a bending error component 𝑒𝑟𝑟bend that measures the
difference in bending stiffness 𝑘𝜃 between the thin-shell and yarn models. On the yarn model,
we compute this stiffness through central-difference approximation of the second derivative of
the yarn energy Ψyarns at ±20% of the curvature range in the physical test data. We considered
measuring error on stiffness, and not on stress, because the thin-shell bending model does
not account for curling effects, and it assumes a flat rest state. Some of the fabrics, e.g., jersey
knits, showed evident curling on the yarn model, which manifests as an offset bending stress
that cannot (and probably should not) be removed by the parameter optimization.

If we actually add the bending data into the objective function (6.11), our yarn-level solver
matches bending behavior much better in several cases, but compromises stretching quality.
(Figure 6.18 shows a representative example, and Table 6.1 compiles the total effect on all
fabrics.) This trade-off behavior is somewhat unsurprising given the weighted least-squares
form of our objective function, but we alsowonder whether the bendingmetric can be improved.
The bending stiffnesses of the fabrics in our database span several orders of magnitude, so it
may be the case that the absolute difference from the input data is the wrong metric to use in
the future.

6.7.2 Other Yarn Data

We use yarn density and average stiffness data measured from physical tests to inform our
simulated yarn-models, as discussed in Section 6.2.1. We also considered using yarn mass and
yarn-level stretch tests for improving fidelity; by combining the yarn’s physical mass with
the fabric’s mass density, it is possible to estimate each yarn’s rest length. However, when we
compared the estimated values to the actual yarn lengths measured from the yarn geometry
(Section 6.2.2), we found that the resulting pre-stretch values would require unreasonable
stretch forces for stiff yarns such as polyester.

We also obtained individual yarns of all the tested fabrics, and we performed yarn-level stretch
tests using a commercial device. With this data, we are able to estimate the stretching stiffness
of individual yarns. Specifically, we linearly approximate the yarn stretch response in the 5 cN
range, which is an upper bound of per-yarn forces under 5 N of swatch-level force. However,
we do not use this yarn stretch stiffness alone in the simulation model (only as large-stretch
and compression stiffness 𝑘𝑠2) for multiple reasons: (i) the fitting procedure is sensitive to
experimental noise in the low-stretch regime, yielding an unrealistically large stiffness fit in
the 5 cN range; (ii) many of the tested fabrics combine multiple yarn types, and the composite
stiffness is a complex combination of the stiffness of individual yarn types; and (iii) production
fabrics undergo finishes that could change the mechanical response of yarns.
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6.7.3 Future Work
We presented two novel extensions to our yarn-level simulation: two-phase stiffness (for
modeling plated yarns) and two-phase contact modeling. During this project, we also consid-
ered a number of other phenomenologically plausible extensions to the yarn level model. We
could model the yarn’s anisotropic cross-section [Montazeri et al. 2019], and extend that to an
anisotropic bending model. Our current model ignores friction and hysteresis in models, but
we can consider this in the future. We note that our yarn simulations are well conditioned
without friction because they are subject to periodic boundary conditions, but in a non-periodic
simulation, a fabric full of frictionless fibers may unravel. Adding friction or even cohesion to
model “fuzz” may also increase the realism of our yarn contact and fabric modeling.

As noted in Section 6.7.1, some fabrics have a tendency to curl. We do not yet model this curly,
non-flat rest shape in our thin-shell model. We could do this in the future by adding non-zero
rest angles to the edges and solving for these additional degrees of freedom.

When fitting real-world materials with computer models, validation is an important task
[Oberkampf and Roy 2010]. As we use the thin-shell model as an intermediate representation,
the final estimated yarn-level model is not validated against the measured ground-truth data,
and the final results may suffer higher error than the one reported. However, comparing
full, non-periodic yarn-level simulations to the swatch-level mechanical tests comes with
challenges. We would need to model the free edges of the swatches, including critical items
such as yarn-yarn contact friction mentioned above. The error added by these modeling
aspects would introduce high uncertainty to the validation. Romero et al. [2021] recently
developed a protocol for validating rod simulation models, but it does not support the complex
contact interactions of knitted yarns.

While our two-step procedure made optimization feasible by circumventing the scale of real
fabric, it is based on derivative-free solvers. Here, futurework includes estimating the derivative
of our losses (and thus continuum stress) also with respect to the material parameters and then
utilizing gradient-based optimization. This could drastically improve the convergence speed
of our system and enable more research without the need for powerful servers. Differentiable
yarn simulation can be a useful tool in computing these homogenized derivatives automatically.

Finally, we would like to consider more complicated fabrics in the future, notably those
composed of multiple layers, or those fabricated by 3D weaving [Wu et al. 2020b] or warp
knitting. These fabrics would challenge our geometry initialization procedure, because we
would need to do more work to estimate the location of the yarns at the start of the simulation.
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CHAPTER 7
Conclusion

7.1 Summary
In this thesis, we presented three methods based on homogenized yarn simulation. We first
developed a method to analyze the elastostatic behavior of periodic yarn patterns through
numeric simulation, imposing large-scale uniform deformation as periodic boundary condi-
tions, and reading out averaged energies or stresses. With this, we were able to predict the
large-scale elastic behavior of yarn-based fabric and fit a regularized continuum model to
use in thin-shell cloth solvers. The resulting thin-shell simulations were able to match the
quality of full yarn-level simulation at a fraction of the cost, and they scaled up favorably to
large garments. Next, we introduced an algorithm to animate yarn detail that adapts to the
underlying cloth deformation in real time. To do so, we also stored the local displacements of
the periodic yarn patterns, sampling a grid of large-scale deformations, and interpolating the
data on the GPU with efficient linearized bending and tunable buckling. In combination with
the thin-shell simulations, we were able to animate garments with millions of yarn vertices
in real time and with mechanics-aware yarn detail that properly tightens under stretching.
Finally, as a first step towards predictive yarn simulation, we used homogenization as a tool
to efficiently fit yarn models to physical stretching and bending measurements of real fabric
used in production. We also discussed modifications to yarn models and heuristics for yarn
rest shapes.

These three methods can even be combined into one system. We could fit predictive yarn
models to real data, use them to learn a continuum model for efficient mesh-based simulation,
and add the missing yarn detail with our real-time displacement technique. In fact, Figure 1.3 in
the introduction was created in exactly this way. In this thesis, we thus developed a prototype
of a complete system for efficient yarn-level cloth that is based on homogenization and can
reproduce some of the rich elastic and visual properties of real knitted fabrics.

7.2 Limitations & Future Work
Buckling We have seen that, as yarn patterns are compressed in-plane, the yarns may unpre-
dictably buckle into different configurations. These configurations are not only geometrically
different but also exhibit different levels of stress. We found it necessary to deal with buckling
in each of our methods. For our continuum materials we developed strongly regularized fitting

77



7. Conclusion

against spurious local minima that caused unstable cloth simulations. In the detail animation,
we limit the lookup to less-compressed deformations for smoother interpolation. While fitting
yarn parameters to real data, we subsampled and linearly interpolated the optimal orthogonal
compression, which also served as a regularizer against noisy homogenized stresses. It is
unclear which buckling frequencies should be modeled on which scale. We arbitrarily pick a
small number of periodic repeats and expect low frequencies to be handled on the macroscale.
In real fabric, buckled yarn configurations also depend on the history of deformation, but the
problem is also mitigated by yarn friction, both of which we leave as future work.

Friction and Plasticity Our results show that even without yarn friction we manage to
reproduce several key qualities of yarn-based fabric. However, friction between yarns is
arguably the main cause for cloth hysteresis and may also strongly affect cloth damping. As
such, integrating recent models for differentiable yarn friction [Li et al. 2021; Gong et al. 2022]
in our pipeline would be a natural and interesting next step. This would involve homogenizing
path-dependent plasticity for hysteresis, or strain-rate-dependent friction forces for dynamic
damping. Both of these topics require additional research to develop suitable techniques
for homogenization and to deal with the increased dimensionality of the deformation space.
Moreover, yarn friction could also play a more dramatic role in stabilizing the fabric at rest,
where we currently modify the yarn rest shapes using heuristics instead.

Non-periodic Geometry The periodic boundary conditions we use for homogenization
fundamentally limit our methods to periodic geometry. As such, we currently cannot accurately
model localized effects such as tearing or pulling on individual yarns, or seams between
different regions. One way to solve this is to integrate our method with blended-in localized
yarn simulations similar to Casafranca et al. [2020]. A homogenized treatment of non-periodic
geometry comes with several issues. First, the periodic boundary conditions would have to
be relaxed to allow such geometry. Because periodic conditions are a specialization of the
average-deformation constraint, this could be solved with a more general averaging constraint.
Second, to accurately model seams, one might need to solve the combinatorial explosion that
comes with connecting different aperiodic regions.

Neural Methods Our methods fit relatively simple functions to data extracted from small
simulations. It would be interesting to design an approach that instead takes several big
simulations and takes local snapshots to extract similar data as before. Such an approach
would also lend itself to the use of neural networks and together could attempt to automatically
find a good representation of fabrics with aperiodic geometry, seams, or more — both in terms
of a continuum material and detail interpolation.

Knitting and Weaving Our work could be used to investigate more types of yarn-based
textiles, such as warp-knitted or 3D woven fabrics [Wu et al. 2020b]. It would be interesting to
integrate our approaches into mesh-based machine-knitting approaches [Yuksel et al. 2012;
Jones et al. 2021]; homogenized pattern-based materials could improve the predictiveness of
the mesh-based relaxation step in stitch meshes, or aid in physics-based garment authoring in
general, although this may require extending our method to non-rectangular tiles or seams. Liu
et al. [2021] propose inverse-designed knitted garments with controlled elasticity by mixing a
stiff and a compliant yarn. Our pipeline for predictive yarn models based on real data could
enable exciting research in inverse mechanical designing of yarn fabrics.
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Other Materials and Phenomena On the other hand, our thin-shell homogenization
procedure is not limited to yarn-level cloth and could be useful for animating other complicated
multi-physics materials like layered quilts, layered elastic materials [van Rees et al. 2017], skin
tissue, and layered deployable shells [Guseinov et al. 2017]. Outside of computer graphics, our
technique may be applicable to the homogenization of composite materials, micro-structured
shells, and finite-element simulations. In fact, Rodriguez et al. [2022] have applied our method
to inverse design of shell-based bending-active structures. We believe that there is a lot of
untapped potential in extending our methods to different phenomena. This could include
different dimensions, such as thick shells including transversal shearing, or one-dimensional
phenomena such as strands of hair. Homogenization could be applied to the animation of
further materials like granular materials, fluids, or even multiphase materials.

Thank you for reading.
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APPENDIX A
Thin-Shell Homogenization Details

This chapter provides details for thin-shell homogenization and periodic yarn simulation
from Chapter 3, and for the fitting algorithm from Chapter 4. Specifically, we will discuss
derivations of the rotation matrix and co-rotated boundary conditions, yarn optimization
details (periodicity, Newton solver, rest shapes, . . . ), and fitting details (algorithm, sampling,
. . . ), as well as robust eigenvalues of curvature and some implementation details for thin-
shell cloth simulation. For further implementation details please refer to the code at https:
//git.ist.ac.at/gsperl/HYLC (yarn simulation and fitting) and https://git.ist.ac.at/
gsperl/ARCSim-HYLC (cloth simulation).

A.1 Homogenization Details

A.1.1 Derivation of 𝑅

In this section, we derive the analytic expression for the computation of the rotation matrix
𝑅 from Section 3.2.2, and we summarize how to compute the micro-midsurface 𝜙 from the
macroscale fundamental forms I, II.

We start with the goal II = II. Using the definitions from Chapter 3 and with a slight abuse of
index notation, this equals

II = II (A.1a)
𝑎𝛼 · 𝑛,𝛽 = 𝑎𝛼 · 𝑛,𝛽 (A.1b)

(𝑅𝑎𝛼 )⊤ 𝑛,𝛽 = 𝑎𝛼
⊤ 𝑛,𝛽 (A.1c)

𝑅⊤ 𝑛,𝛼 = 𝑛,𝛼 . (A.1d)

By definition, 𝑅 𝑛 = 𝑛; thus, deriving both sides we have

𝑅,𝛼𝑛 = 𝑛,𝛼 . (A.2)

Plugging (A.2) into (A.1d) we get

𝑅⊤𝑅,𝛼𝑛 = 𝑛,𝛼 . (A.3)

Therefore, we want to find an expression for 𝑅 that satisfies (A.3). To this end, we parametrize
𝑅 via the exponential map, 𝑅 = exp 𝑊 , where 𝑊 is a skew-symmetric matrix. The derivative
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of the exponential map is a fairly complicated expression [Rossmann 2006],

𝑅,𝛼 = 𝑅
∞∑︁
𝑘=0

(−1)𝑘
(𝑘 + 1)! (ad 𝑊 )𝑘𝑊,𝛼 , (A.4)

where (ad 𝑊 )𝑋 = 𝑊 𝑋 −𝑋𝑊 . Note that when the surface is singly curved, 𝑊 and 𝑊,𝛼

commute, so 𝑅,𝛼 = 𝑅𝑊,𝛼 holds exactly even for large 𝑊 . For the more general case of doubly
curved surfaces, one can approximate 𝑅,𝛼 ≈ 𝑅𝑊,𝛼 under the common assumption that the
curvature is small relative to the microscale. Consequently, we approximate (A.3) by

𝑊,𝛼�̄� = �̄�,𝛼 . (A.5)

This only determines two of the three degrees of freedom (DOFs) of 𝑊 ,

𝑊 (𝑋1, 𝑋2) = ⎛⎜⎝
0 • ∑︁

𝛼 �̄�1,𝛼𝑋𝛼

0
∑︁

𝛼 �̄�2,𝛼𝑋𝛼

(skew) 0

⎞⎟⎠ . (A.6)

To fix the solution we take the minimum-norm choice, • = 0.

Finally, we can recover 𝑅(𝑋1, 𝑋2) = exp 𝑊 (𝑋1, 𝑋2). This is the matrix that rotates �̄� =(︁
0 0 1

)︁⊤ towards Δ�̄� :=
∑︁

𝛼 �̄�,𝛼𝑋𝛼 by an angle ∥Δ�̄�∥. Importantly, this choice exactly
satisfies the original constraint (A.3) for singly curved surfaces. The exponential of 𝑊 can
be computed in multiple ways; however, many are not numerically robust for small bending
strains. Here, we provide a closed form expression for 𝑅 based on the (unnormalized) sinc
function, which can be implemented to be numerically robust around 0 using Taylor expansions.
Defining

𝑎 =
∑︁
𝛼

𝑛1,𝛼𝑋𝛼 , (A.7)

𝑏 =
∑︁
𝛼

𝑛2,𝛼𝑋𝛼 , (A.8)

𝑟 =
√
𝑎2 + 𝑏2, (A.9)

we compute the rotation as

𝑅 =
⎛⎜⎝
1 − 1

2𝑎
2 sinc(𝑟/2)2 −1

2𝑎𝑏 sinc(𝑟/2)2 𝑎 sinc(𝑟 )
−1

2𝑎𝑏 sinc(𝑟/2)2 1 − 1
2𝑏

2 sinc(𝑟/2)2 𝑏 sinc(𝑟 )
−𝑎 sinc(𝑟 ) −𝑏 sinc(𝑟 ) cos(𝑟 )

⎞⎟⎠ . (A.10)

This expression robustly converges to the identity for 𝑟 → 0.

To offer some insight, the proposed strategy for computing 𝑅 can be seen as integrating
curvature along straight lines. For singly curved surfaces where the order of integration of 𝑋1
and 𝑋2 does not matter, the expression is exact, whereas for doubly curved surfaces it is an
approximation.

Computing the Micro-Midsurface We now summarize how to compute the midsurface
𝜙 from I and II. To solve the Poisson system ∇2𝜙 = ∇ · 𝑅𝑆, we need both the in-plane
deformation 𝑆 and the rotation 𝑅. We compute 𝑆 with

𝑆 =

(︄ √︁
I

0 0

)︄
. (A.11)
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To compute 𝑅, we need the normal derivatives 𝑛,𝛼 , which can be computed using(︃
𝑛1,1 𝑛1,2
𝑛2,1 𝑛2,2

)︃
= −

(︁√︁
I

)︁−⊤ II. (A.12)

Note that 𝑛3,𝛼 = 0 since 𝑛 =
(︁
0 0 1

)︁⊤ by assumption.

We solve for 𝜙 numerically, by discretizing it on a regular grid large enough to enclose the
entire yarn patch. Using standard finite differencing, we can discretize the Laplacian ∇2 on
the left-hand side as well as the right-hand side ∇ ·𝑅𝑆 with the pure Neumann boundary
conditions 𝑁 · ∇𝜙 = 𝑁 ·𝑅𝑆. With 𝑆 and (A.10), we can compute the required values at the
grid nodes.

Note that, in the case of a doubly-curved least-squares surface, the rotation given by (A.10)
does in general not match the computed surface but is required for co-rotated boundary
conditions. In this case, one can re-estimate 𝑅 as the rotation from the polar decomposition
of a finite-differenced gradient ∇𝜙.

Analytic Solution We want to emphasize that we designed our solution to compute 𝑅 and
𝜙 for general deformations. In case one only needs to consider singly-curved deformations, it
is possible to instead use an analytic expression for 𝜙 (and thus 𝑎𝛼 , 𝑛, 𝑅 etc.). In fact, the
recent work of Rodriguez et al. [2022] uses such an analytic mapping.

A.1.2 Derivation of Co-rotated Periodicity
In this section, we provide a brief derivation of our co-rotated periodicity boundary condi-
tions (see Section 3.2.2). For comparison, in the case of solid homogenization explained in
Section 3.2.1, the constraint

∫
Ω
∇�̃� 𝑑𝑋 = 0 can be derived from the expansion 𝑥 and the

deformation average of 𝐹 . Here, we apply an analogous tactic, but instead of averaging the
deformation 𝜕𝑥

𝜕𝑋 directly, we again leverage the rotation 𝑅 from the polar decomposition
∇𝜙 = 𝑅𝑆.

The proposed average is thus

1
|Ω |

∫
Ω

𝑅⊤
𝜕𝑥

𝜕𝑋
𝑑Ω = 𝑆, (A.13)

Notably, we average only the in-plane derivatives 𝜕
𝜕𝑋 and omit 𝜕

𝜕ℎ
. This directly relates to the

fact that we do not want to impose constraints on the thickness and on out-of-plane shearing
at the microscale, since these deformations are also not modeled on the macroscale.

From (A.13) we now derive the periodic boundary conditions. Plugging the expansion 𝑥 =

𝜙 + ℎ𝑛 + �̃� into (A.13),

1
|Ω |

∫
Ω

𝑅⊤
(︁ 𝜕𝜙
𝜕𝑋
+ ℎ 𝜕𝑛

𝜕𝑋
+ 𝜕�̃�

𝜕𝑋

)︁
𝑑Ω = 𝑆, (A.14)

and using a rearranged polar decomposition 𝑅⊤ 𝜕𝜙
𝜕𝑋 = 𝑆, we get∫

Ω

(︁
ℎ𝑅⊤𝑛,𝛼 +𝑅⊤�̃�,𝛼

)︁
𝑑Ω = 0. (A.15)
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Assuming that the RVE is centered with
∫
𝐻
ℎ 𝑑ℎ = 0 and noticing that 𝑅 and 𝑛,𝛼 are constant

in ℎ, we can simplify ∫
Ω
ℎ𝑅⊤𝑛,𝛼 𝑑Ω =

∫
Γ

(︂ ∫
𝐻

ℎ 𝑑ℎ

)︂
𝑅⊤𝑛,𝛼 𝑑𝑋 = 0, (A.16)

where 𝐻 denotes the thickness domain and Γ the midsurface domain. Therefore, (A.15)
simplifies to ∫

Ω
𝑅⊤�̃�,𝛼 𝑑Ω = 0. (A.17)

Splitting this integral into in-plane and out-of-plane parts, applying Leibniz’s rule and using
the divergence theorem, we can rewrite (A.17) as∫

𝐻

∫
𝜕Γ

𝑅⊤�̃� ⊗𝑁𝛼 𝑑𝜕Γ 𝑑ℎ =

∫
Ω

𝑅,𝛼
⊤�̃� 𝑑Ω, (A.18)

where 𝜕Γ is the in-plane boundary of the midsurface and 𝑁𝛼 are the normals to that boundary
in the corresponding directions. As discussed in the previous section, 𝑅,𝛼 = 𝑅𝑊,𝛼 for singly-
curved surfaces and 𝑅,𝛼 ≈ 𝑅𝑊,𝛼 for small curvatures, where 𝑊,𝛼 is constant. With our fitting
strategy, we only apply cylindrical deformation, and as such it holds exactly. Therefore, the
right-hand side of (A.18) vanishes:∫

Ω
𝑅⊤𝛼 �̃� 𝑑Ω =

∫
Ω

𝑅⊤𝛼 𝑅𝑅⊤�̃� 𝑑Ω (A.19a)

≃
∫
Ω

𝑊 ⊤
,𝛼 𝑅⊤�̃� 𝑑Ω (A.19b)

≃𝑊 ⊤
,𝛼

∫
Ω

𝑅⊤�̃� 𝑑Ω (A.19c)

≃ 0, (A.19d)

since we have the translation constraint
∫
Ω

𝑅⊤�̃� 𝑑Ω = 0.

Therefore and analogously to solid homogenization, (A.18) can be satisfied by splitting Γ into
opposite parts 𝜕Γ+ and 𝜕Γ− and prescribing periodic boundary conditions

(𝑅⊤�̃�)+ = (𝑅⊤�̃�)−. (A.20)

Alternatively, one could satisfy (A.18) more simply by setting �̃� = 0 at the boundary, effectively
gluing microstructures to the (deformed) boundary. However, this would be unnecessarily stiff
as it does not allow, for example, yarns to resolve collision at the boundary during compression.

A.2 Yarn-level Optimization Details
In this section, we provide more detail on periodic microscale energies; on initialization,
regularization, scaling, and the stopping criterion in our Newton solver; and on how we
generate a flat reference configuration for our yarn patterns.
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Figure A.1: We use fractional weights to ensure energies are integrated only over the periodic
tile. Periodic vertices are plotted as empty circles. In this example, the contributions of periodic
bending elements on the left and right are multiplied by their respective fraction of original
(non-ghost) vertices.

A.2.1 Periodicity
Fractional Counting For the simulation of periodic yarn patterns, we need periodic stretch-
ing, bending, twisting, and collision energies. As discussed in Section 3.3.2, we model periodic
energies by extending the pattern with ghost segments. These ghost segments serve only to
compute energies over the periodic boundaries and should not introduce any additional energy
into the system. To avoid double counting of energies and forces, we introduce fractional
counting as illustrated in Figure A.1.

In our implementation, energies are computed from local elements: a stretching element
consists of two connected vertices, bending and twisting both use three connected vertices and
the two corresponding edges, and collisions are computed from pairs of two-vertex segments.
For each element, we can then compute the fraction of non-ghost vertices to the total number of
vertices. Multiplying the element’s energy by this fraction ensures that in total, and including
all (partial and full) periodic copies, the contribution is counted exactly once. Note that in the
Newton step, the elimination of variables generates forces 𝑓 = −�̃�

⊤∇𝐸, where multiplication
with �̃�

⊤
sums up the partial contributions to each non-ghost DOF from its periodic copies.

We also emphasize that the translation constraint only includes non-ghost vertices.

We can avoid computing purely periodic collisions of ghost segments. As suggested by Kaldor
et al. [2008], we use an AABB tree with a static hierarchy as the collision broadphase. We can
immediately prune subtrees with only ghost vertices for extra performance since they have a
fractional count of 0 and will not add to the energy.

Edge Orientation In Section 3.3.2, the periodic twist constraint has the form

(𝑅⊤𝑑𝛼 )
+ = (𝑅⊤𝑑𝛼 )

−, 𝜃+ = 𝜃−. (A.21)

In our implementation, vertex order defines the direction of the reference frame directors 𝑑𝛼 .
For (A.21) to be correct, ghost segments need to have the same orientation and thus vertex
order. To extend a pattern with ghost yarns, we take input pattern geometry of connected
vertices, copy and translate parts as new ghost segments, and then stitch the original and copied
parts together. During this stitching process, we enforce the condition on edge orientation by
reversing the vertex order of yarns as necessary. During optimization, updates to the vertices
are subject to co-rotated periodicity and as such should not invalidate periodicity. In our
implementation, we approximate (A.21) using the value of 𝑅 computed at the first vertex of
each edge. This works well given that we also use short edge lengths on a scale similar to
the yarn radius. In our experiments, we haven’t noticed any significant drift, so we do not
reproject the directors.
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A.2.2 Elimination of Periodic Variables
The constraints on periodic vertex positions (3.21) and edge twists (3.27) can be concatenated
into one constraint

𝐶𝑞 = 𝑑. (A.22)

We eliminate periodic variables by parametrizing the nullspace of (A.22). We found that
simply using a QR factorization for this is not numerically robust and produced dense matrices.
However, we can exploit that each periodically copied degree of freedom is used in exactly
one (sub-)constraint. As such, we can write 𝐶 as

𝐶 =
(︁
𝐼 𝐴

)︁
𝑃 , (A.23)

where 𝑃 is a permutation matrix that permutes the columns of 𝐶 , splitting it into a left identity
block 𝐼 and a sparse right block𝐴; i.e., we bring the constraint matrix into reduced row echelon
form, where the columns of 𝐴 span the kernel of 𝐶 . In our case, the kernel represents exactly
the original degrees of freedom that are copied. For our periodicity constraints, the matrix is
of the form

(︁
𝐼 𝐴

)︁
=

⎛⎜⎜⎝
𝐼3×3 −(𝑅+) (𝑅−)⊤

1 −1
. . .

. . .

⎞⎟⎟⎠ . (A.24)

Note that 𝑃 splits 𝑞 into free variables 𝑦 and copies �̂�copy:

𝑃 𝑞 =

(︃
�̂�copy

𝑦

)︃
. (A.25)

Then, we have

𝐶𝑞 = 𝑑 (A.26a)(︁
𝐼 𝐴

)︁
𝑃 𝑞 = 𝑑 (A.26b)(︁

𝐼 𝐴
)︁ (︃

�̂�copy
𝑦

)︃
= 𝑑 (A.26c)

�̂�copy = −𝐴𝑦 + 𝑑, (A.26d)

and

𝑞 = 𝑃 ⊤
(︃
�̂�copy

𝑦

)︃
(A.27a)

= 𝑃 ⊤
(︃
−𝐴𝑦 + 𝑑

𝑦

)︃
(A.27b)

= 𝑃 ⊤
(︃
−𝐴
𝐼

)︃
𝑦 + 𝑃 ⊤

(︃
𝑑
0

)︃
(A.27c)

= �̃� 𝑦 + �̃�. (A.27d)

Finally, we need to compute the initial 𝑦 from 𝑞. For generality, we consider the case when
𝐶𝐿𝑞 ≠ 𝑑𝐿 and find 𝑦 as

min
𝑦

|︁|︁|︁�̃�𝑦 + �̃� − 𝑞
|︁|︁|︁2 s.t. 𝐶𝐿 (�̃�𝑦 + �̃�) − 𝑑𝐿 = 0, (A.28)
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the solution of which is given by(︄
�̃�
⊤

�̃� �̃�
⊤

𝐶𝐿
⊤

𝐶𝐿�̃� 0

)︄ (︃
𝑦
𝜆

)︃
=

(︄
�̃�
⊤(𝑞 − �̃�)

𝑑𝐿 −𝐶𝐿�̃�

)︄
. (A.29)

A.2.3 Optimization

Here, we discuss the Newton step from Section 3.3.4 in more detail.

Newton System Scaling Vertex positions and edge twists have different units. Depending
on the scale of yarns and the choice of length units, this may unfavorably affect the conditioning
of the linear system and thus optimization performance. We therefore rescale the linear system
for the microscale optimization with a diagonal scaling matrix 𝑀 :

(︄
𝑀

(︄
�̃�
⊤

𝐻�̃� �̃�
⊤

𝐶𝐿
⊤

𝐶𝐿�̃� 0

)︄
𝑀 +

(︃
𝛼𝐼 0
0 0

)︃)︄
𝑤 = −𝑀

(︃
�̃�
⊤∇𝐸

𝐶𝐿𝑞 − 𝑑𝐿

)︃
(A.30a)(︃

𝛿𝑦
𝜆

)︃
= 𝑀𝑤 (A.30b)

We use 𝑀 with entries 1 for positional DOFs and 106 𝑟 for twist DOFs, where 𝑟 is the yarn
radius.

Regularization Similarly, the different stiffnesses of stretching and collision compared to
bending and twisting energies can negatively affect convergence. In (A.30), we add a regularizer
𝛼 to the system matrix to improve convergence. At the beginning of our simulations, the
barrier-like collision forces typically dominate. In these cases, 𝛼 improves convergence by
shifting focus to larger gradients, which helps resolving and balancing out collisions first
compared to elastic rod forces. In our experiments, we use 𝛼 = �̂� |𝑀∇𝐸 |∞ and exponentially
decay �̂� from �̂�0 = 5000 to �̂�𝑁 = 5 over 𝑁 = 400 iterations, i.e. �̂�𝑖 = �̂�0(�̂�𝑁 /�̂�0)min(𝑖,𝑁 )/𝑁 .

Step Limit Increments 𝛿𝑦 computed from the linear system may be arbitrarily large. To
ensure that collisions are not ignored, we rescale 𝛿𝑦 such that the maximum displacement
of any vertex is smaller than a fraction 𝑝 of its radius. The value of 𝑝 generally depends on
the macroscopic deformation; in compressive regimes where yarns initially overlap strongly,
a lower 𝑝 may be required. We set 𝑝 = 0.05 + 0.15 min(max(0, 𝜆min), 1), where 𝜆min is the
smallest eigenvalue of I. Afterwards, in each optimization step we perform a simple decreasing
linesearch on 𝑝 , iteratively multiplying it by 0.1 until the objective is improved. More recently,
for the project discussed in Chapter 6, we have found that the additive continuous collision
detection from [Li et al. 2021] is a good replacement to the above strategy and less dependent
on choosing good parameters. However, note that their algorithm works for discrete edge
segments and this may in general not work well together with the spline-based collisions
of Kaldor et al. [2008]. Also, if collision barriers are too weak, then the continuous collision
detection may require step sizes going to 0 and thus stall in similar scenarios where the above
step limit would instead result in tunneling.
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Initial Guess As an initial guess to Newton’s method, we set �̃� = 0 everywhere. This
choice is natural in that it deforms the pattern rigidly according to the macroscopic strains.
Additionally, the vertex periodicity and translation constraints are naturally satisfied. While
warmstarting with solutions �̃� from nearby macroscale deformations is an option, we have
instead opted for naive parallelization using the naive initial guess.

Stopping Criterion The usual stopping criterion in Newton’s method is the norm of the
gradient of the objective. However, our system includes constraints 𝐶𝐿𝑞 = 𝑑𝐿 with Lagrange
multipliers and elimination of variables with �̃�𝑦 + �̃� = 𝑞 for periodicity. For robustness, we
consider the case that the system can be in a state where 𝐶𝐿𝑞 ≠ 𝑑𝐿 . Although using our
initial state �̃� = 0 implies that this is satisfied, and the Newton step and scaling of 𝛿𝑦 should
not affect it, there could be numerical drift. Therefore, as our stopping criterion we use the
norm of the gradient with respect to the free variables 𝑦 projected onto the tangent space of
𝐶𝐿𝑞 = 𝑑𝐿 .

The projection of the gradient �̂� = ∇𝑦𝐸 = �̃�
⊤∇𝐸 is found by solving

min
𝑧

1
2
|𝑧 − �̂� | s.t. 𝐶𝐿�̃�𝑧 = 0, (A.31)

the solution of which is
𝑧 = �̂� −𝐴⊤(𝐴𝐴⊤)−1𝐴�̂�, (A.32)

where 𝐴 = 𝐶𝐿�̃� . Note that computing (𝐴𝐴⊤)−1 only requires computing a 4 × 4 inverse. In
an effort to nondimensionalize the stopping criterion, we finally require

|𝑧 | < 𝜀𝑧
|︁|︁𝑧0|︁|︁ , (A.33)

with 𝑧0 being the value of 𝑧 in the first optimization step and 𝜀𝑧 = 1 × 10−5.

For completeness, we also check if the constraints modeled by the Lagrange multipliers are
satisfied ∥𝐶𝐿𝑞 − 𝑑𝐿∥ < 𝜀𝐿 𝑟 with 𝑟 being the yarn radius and 𝜀𝐿 = 1×10−4 being a relative error
threshold, althrough we found that this is always satisifed, starting from a valid configuration
�̃� = 0.

A.2.4 Pattern Reference Configuration
Here, we discuss our heuristic to find a rest pattern that is in equilibrium with respect to
in-plane stretching, which we mention in Section 3.3.1. Note that for Chapter 6 we introduce
a similar but more automatic algorithm explained in that chapter.

The yarns of a fabric may exhibit residual tension from the fabrication process. This tension is
crucial in achieving both the visual appeal of many knit patterns as well as emergent physical
properties; for example, the tension causes the edges of the stockinette pattern to curl (as
illustrated in Chapter 1).

We do not know the tension a priori. For animation purposes, we want it to not induce notable
in-plane shrinking; i.e., the reference configuration of the pattern should be the minimum with
respect to in-plane deformation. This way, the homogenized model may show its tendency
to curl but doesn’t shrink. To achieve this, we generate a stress-free state from input yarn
geometry, apply tension, and then reduce the periodic lengths to find the in-plane minimum.
We summarize the heuristic below and in Algorithm 2.

98



Algorithm 2 Compute reference yarn geometry under tension and at rest wrt. stretching.
Input: periodic yarn geometry not at rest

periodic lengths 𝑝𝑋1 , 𝑝𝑋2

material parameters
Output: reference-state geometry 𝑋1, 𝑋2, ℎ

rest lengths, rest curvatures, rest twists, . . .
1: procedure ComputeReferenceState
2: generate stress-free state:
3: repeat
4: reset rest lengths, rest curvatures and rest twists

⊲ setting rest values to current values
5: relax yarns ⊲ min𝑋 𝐸

6: until 𝐸 < 10−10

7: apply tension:
8: if knitted then
9: rest lengths← 0.9 rest lengths
10: rest curvatures← 0.8 rest curvatures
11: else
12: rest curvatures← 0.9 rest curvatures
13: end if
14: find in-plane minimum: min𝑝𝑋1 ,𝑝𝑋2

𝐸

15: modify 𝑝𝑋1 , 𝑝𝑋2 and compute total energy at equilibrium
16: translate center to

∫
Ω
(𝑋1, 𝑋2, ℎ) = 0

17: end procedure

Initial yarn geometry can be overlapping; to generate the stress-free state, we iteratively reset
rest lengths, curvatures, and twists, and then allow collisions to be resolved. This converges to
a collision-free state, where discrete elastic rod forces are at rest. Next, we apply tension to
the yarns by shortening rest lengths and flattening rest curvature. For knitted patterns, we
multiply rest lengths by 0.9 and rest curvatures by 0.8; for woven patters, we only multiply
rest curvature by 0.9. We found these values to work well as an approximation under our
expectation of how real knits and woven materials behave. Finally, we reduce the periods in
the warp and weft directions to find the energy minimum with respect to periodic lengths.
The resulting final state can therefore only induce shearing or bending. In the results of
Chapter 4, we chose patterns where shearing was negligible as observed in the yarn-level
reference simulations.

After recentering the pattern, the final reference configuration defines the initial coordinates(︁
𝑋1 𝑋2 ℎ

)︁⊤, the periodic lengths define the patch area, and the extents of the pattern
along ℎ define its thickness. Our results demonstrate that this procedure is able to generate
homogenized models that exhibit curling without in-plane deformation at rest.

A.3 Fitting Details
Here, we discuss the fitting procedure outlined in Section 4.1 in more depth.
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Algorithm 3 Fit material model splines from data

Input: data (𝑠𝑥 , 𝑠𝑎, 𝑠𝑦, II00, II11;Ψ) for 1D and 2D ranges
Output: 𝑓0, 𝑓𝑖, 𝑓𝑥 , 𝑓𝑦 , 𝑓𝑖 𝑗 , 𝑓𝑖𝑥 , 𝑓𝑖𝑦
1: procedure FitSplines
2: 𝑋 ← normalize(strains)

⊲ divide each coord. by max. abs. value in data
3: 𝑓0 ← Ψ(0)
4: for 𝑖 ∈ {1, 2, 3, 𝑥,𝑦} do
5: gather 𝑋 𝑖 , Ψ𝑖

⊲ strain and energy for data range
6: 𝑓𝑖 ← Fit1D(𝑋 𝑖 ,Ψ𝑖 ) ⊲ Algorithm 4
7: end for
8: for 𝑖 𝑗 ∈ {12, 13, 23, 1𝑥, 2𝑥, 3𝑥, 1𝑦, 2𝑦, 3𝑦} do
9: gather 𝑋 𝑖 𝑗 , 𝑌 𝑖 𝑗 , Ψ𝑖 𝑗

⊲ strains and energy for data range
10: 𝑓𝑖 𝑗 ← Fit2D(𝑋 𝑖 𝑗 ,𝑌 𝑖 𝑗 ,Ψ𝑖 𝑗 ) ⊲ Algorithm 5
11: end for
12: end procedure

Our goal is to fit elastic energy densities Ψ from data in the form of strain-energy pairs. We
only sample subspaces of deformations with either bending along 𝑥 or𝑦 directions respectively,
and interpolate between those as discussed in Section 4.1. Additionally, we fit each subspace
as a sum of constant, univariate, and bivariate terms. We can write out the total energy more
verbosely as

Ψ =𝑓0 +
∑︁
𝑖

𝑓𝑖

(︂ 𝑠𝑖
𝑣𝑖

)︂
+ 𝑓𝐵 +

∑︁
𝑖 𝑗

𝑓𝑖 𝑗

(︂ 𝑠𝑖
𝑣𝑖
,
𝑠 𝑗

𝑣 𝑗

)︂
+

∑︁
𝑖

𝑓𝑖𝐵, (A.34a)

𝑓𝐵 = 𝑐2
(︂
𝑓𝑥

(︂𝜆1

𝑣𝑥

)︂
+ 𝑓𝑦

(︂𝜆2

𝑣𝑦

)︂)︂
+ (1 − 𝑐2)

(︂
𝑓𝑥

(︂𝜆2

𝑣𝑥

)︂
+ 𝑓𝑦

(︂𝜆1

𝑣𝑦

)︂)︂
,

(A.34b)

𝑓𝑖𝐵 =
∑︁
𝑖

𝑐2
(︂
𝑓𝑖𝑥

(︂ 𝑠𝑖
𝑣𝑖
,
𝜆1

𝑣𝑥

)︂
+ 𝑓𝑖𝑦

(︂ 𝑠𝑖
𝑣𝑖
,
𝜆2

𝑣𝑦

)︂)︂
+ (1 − 𝑐2)

(︂
𝑓𝑖𝑥

(︂ 𝑠𝑖
𝑣𝑖
,
𝜆2

𝑣𝑥

)︂
+ 𝑓𝑖𝑦

(︂ 𝑠𝑖
𝑣𝑖
,
𝜆1

𝑣𝑦

)︂)︂
,

(A.34c)

with 1 ≤ 𝑖 ≤ 3 and (𝑖 + 1) ≤ 𝑗 ≤ 3. Therefore, we have to fit the constant 𝑓0, the univariate
in-plane terms 𝑓𝑖 and bending terms 𝑓𝑥 , 𝑓𝑦 , and the bivariate terms 𝑓𝑖 𝑗 , 𝑓𝑖𝑥 , 𝑓𝑖𝑦 . Here, 𝑣𝑖 , 𝑣𝑥 , and
𝑣𝑦 denote normalization constants for the in-plane and bending strains; each parameter of
each term is divided by the maximum absolute value in the data. See also Algorithm 3 along
with Algorithm 4 and Algorithm 5.

For each term, we can sample data for its respective range of deformations and then fit cubic
Hermite splines. To avoid overshoot in cubic interpolation, we use piecewise monotonic
interpolation (see [Fritsch and Carlson 1980] and Appendix B).

Our energy data is prone to noise, especially in compressive regimes (see Figure A.4). What is
more, piecewise monotonic functions can still have multiple local minima. To address these
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Algorithm 4 Fit 1D-splines

Input: strains 𝑋 , energy densities Ψ
Output: cubic hermite spline 𝑓 with coefficients

𝑥 . . . control point locations
𝑝 . . . control point values
𝑝𝑥 . . . control point derivatives

1: function Fit1D(𝑋 , Ψ)
2: mls:
3: def. 𝑔(𝑢) = symexp(MLS(𝑢 | 𝑋, symlog(Ψ)))

⊲ for 𝑠𝑎 replace MLS(𝑢) = 0.5 (MLS(𝑢) +MLS(−𝑢))
4: initial fit:
5: 𝑥← linspace within [0.95 min𝑋 , 0.95 max𝑋 ]

⊲ include 𝑥 = 0
6: 𝑝← 𝑔(𝑥)
7: 𝑝𝑥 ← finite-difference 𝑔(𝑢)
8: qasiconvexify:
9: 𝑝𝑥min ← 0.001 ⊲ 0.01 if stockinette
10: if in-plane strain then
11: 𝑖min ← 𝑥𝑖min = 0
12: else
13: 𝑖min ← arg min𝑖 (𝑝𝑖) ⊲ find bending min.
14: end if
15: march outward from 𝑖min and enforce:
16: 𝑝𝑖+1 ≥ 𝑝𝑖 + (𝑥𝑖+1 − 𝑥𝑖) 𝑝𝑥min ⊲ 𝑖 − 1 if 𝑖 < 𝑖min
17: 𝑝𝑥𝑖 ≥ 𝑝𝑥min ⊲ 𝑝𝑥𝑖 ≤ −𝑝𝑥min if 𝑖 < 𝑖min

18: apply monotone cubic algorithm ⊲ [Fritsch1980]
19: ensure increasing extrapolation ⊲ clamp 𝑝𝑥 on boundary
20: 𝑝𝑖 ← 𝑝𝑖 − 𝑝𝑥=0 ⊲ convert to residual
21: return 𝑓 ← {𝑥,𝑝,𝑝𝑥 }
22: end function

issues, we regularize our fits by smoothing out the data using Moving Least-Squares (MLS)
and applying heuristic marching algorithms to achieve quasiconvexity in individual terms.
Note that we want to regularize the total function Ψ in this way, but we fit individual terms 𝑓𝑖
and 𝑓𝑖 𝑗 . Therefore, our strategy is to fit each term to match the data and convert it to a residual
afterwards.

The value of 𝑓0 is simply the energy of the sample at zero strain, (𝑠, 𝜆1, 𝜆2, 𝑐
2) = 0. We

discuss the details of sampling, control point spacing, MLS-smoothing, quasiconvex marching
algorithms, and residualization in the following sections.

A.3.1 Sampling

To fit the univariate terms 𝑓𝑖 , 𝑓𝑥 , 𝑓𝑦 we use 150 samples each. For the bivariate terms 𝑓𝑖 𝑗 , 𝑓𝑖𝑥 ,
𝑓𝑖𝑦 we sample a 50 × 50 grid. We sample symmetric ranges for 𝑠𝑎 , 𝜆𝑥 , 𝜆𝑦 more densely around
the origin, and ranges for 𝑠𝑥 , 𝑠𝑦 more densely towards compression. We choose the limits
of deformation ranges empirically, based on self-intersection of the pattern under bending,
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Figure A.2: Top: Our non-uniform sampling for nonsymmetric ranges (𝑠𝑥 and 𝑠𝑦) and symmetric
ranges (other). Bottom: An example of a non-uniform grid created from one-dimensional
sampling per dimension. We additionally indicate sample density through color.

Table A.1: Total computation time for all sampled microscale simulations for univariate and
bivariate terms per pattern. The time is given in the format hrs:min:sec. We ran the simulations
in parallel on 128 threads.

Pattern Time 1D Time 2D

Basket 00:01:05 00:18:36
Honey 00:01:15 00:56:37
Rib 00:02:46 01:12:57
Satin 00:00:50 00:26:56
Stock. 00:00:13 00:16:46
Satin small 00:00:46 00:25:15
Stock. small 00:00:28 00:14:02

and stability of collisions in general. See also Algorithm 6. Figure A.2 demonstrates this
non-uniform sampling.

With five 1D terms, and nine 2D terms, we therefore sample a total of 750 + 22500 = 23250
deformations. Table A.1 lists the timings for the sampling stage of our method. Sampling is
fast, especially when compared to full yarn-level simulations with simulation times on the
order of hours and days. Furthermore, 1D terms already describe the rest shapes of draped
fabric relatively well, but only require a few minutes to sample. We did not investigate if the
number of samples for bivariate terms can be reduced without negatively affecting the fits to
save computation time.
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A.3.2 Control Point Spacing
We want to space control points equidistantly. For our fitting scheme, we want to set e.g.
𝑓𝑖 (0) = 0 and 𝑓𝑖 𝑗 (𝑠𝑖, 0) = 𝑓𝑖 𝑗 (0, 𝑠 𝑗 ) = 0, such that fitting another term does not influence previous
fits. To this end, we require that control point spacing includes the origin for 1D terms and the
axes for 2D terms. For each term and coordinate, we therefore combine two linearly spaced
ranges to the left and right of 0 as illustrated in Figure A.3. As discussed in Section 4.3, we
found it necessary to modify the control point spacing for the stockinette pattern, where we
concentrate them closer to the origin.

A.3.3 MLS-Smoothing
We filter and resample the data for each term using MLS at the spline control points. With
this, we can estimate the values and derivatives required for cubic Hermite splines in a way
that is robust in the presence of noise.

Since hyperelastic energies often span multiple orders of magnitude, we found it beneficial
to smooth the data in symlog-space; i.e., we convert data using ˜︂log(𝑥) = sgn(𝑥) log( |𝑥 | + 1),
estimate a smooth function using MLS, and then exponentiate the result back using ˜︃exp(𝑥) =
sgn(𝑥) (exp( |𝑥 |) −1). For example for a two-dimensional range parametrized by𝑢, 𝑣 , we define
the smoothed function

𝑔(𝑢, 𝑣) = ˜︃exp(MLS(𝑢, 𝑣 | 𝑈data,𝑉data, ˜︂log(Ψdata))) . (A.35)

We then estimate the first and second derivatives that make up the remaining Hermite spline
coefficients by finite differencing (A.35). At this point, we also enforce symmetry of our
functions in 𝑠𝑎 by symmetrizing (A.35). This fits our data well and aids in preserving the
symmetric rest shapes observed in yarn-level reference simulations also in our macroscale
simulations. Figure A.4 shows the result of applying MLS to noisy two-dimensional data.

A.3.4 Marching
Piecewise monotone interpolation does not ensure quasiconvexity for any term. We therefore
propose a marching heuristic to project the values and derivatives estimated with MLS to
be quasiconvex. For each term, we define a minimum location 𝑥min, a minimum tangent

0.4 0.2 0.0 0.2 0.4 0.6 0.8
sx
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0.4

0.6

0.8
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Figure A.3: Representative control point spacing for the 2D term 𝑓13(𝑠𝑥 , 𝑠𝑦). We use equidistant
spacing to the left and right of each axis and include the axes 𝑠𝑥 = 0 and 𝑠𝑦 = 0.
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Figure A.4: Data in compressive regions can be noisy as seen on the left. In the middle, we
show MLS applied to the data. During fitting we use MLS only at the spline control points
to mitigate the data in the noise. Our final regularized fit on the right is similar to the data
without noise.

magnitude 𝑝𝑥min, and then march outward while projecting values and derivatives. For 1D, we
have

𝑝𝑖+1 ≥ 𝑝𝑖 + (𝑥𝑖+1 − 𝑥𝑖) 𝑝𝑥min sgn(𝑥𝑖+1 − 𝑥min) (A.36a)
𝑝𝑥𝑖 ≥ 𝑝𝑥min sgn(𝑥𝑖 − 𝑥min). (A.36b)

We define the minimum as 𝑠𝑖 = 0 for in-plane deformation, and compute the bending mini-
mum as arg min𝑥 Ψ of the respective range; this ensures that the reference state of the cloth
corresponds to the in-plane rest state, but allows bent rest shapes to induce curling.

For 2D, we analogously define a minimum and march outward. For the terms 𝑓𝑖𝑥 , 𝑓𝑖𝑦 we find
the bending minimum subject to 𝑠𝑖 = 0. However, this algorithm does not allow decreasing
values away from the axes, which is crucial for modeling Poisson’s ratio accurately. Therefore,
we do not apply this regularization on the term 𝑓13(𝑠𝑥 , 𝑠𝑦), which is responsible for controlling
the response to simultaneous deformation along warp and weft direction and as such for
Poisson’s ratio. Nevertheless, for the remainder of the terms we found that this is crucial to
ensure stable simulations with smooth rest shapes. We choose 𝑝𝑥min = 0.001 for all patterns
except the stockinette, where we use 0.01 in an effort to regularize the bad restshape illustrated
in Chapter 4 (Figure 4.6). It is after this projection step, that we apply the algorithms for
monotone interpolation.

A.3.5 Extrapolation
Simulations can in general exhibit strains outside of the sampled ranges due to discrete
timesteps or constraints. Therefore, controlled extrapolation is crucial. We extrapolate splines
linearly using their derivatives at the boundary. We enforce that extrapolation must increase
energy such as to ensure that the simulation stays near the fitted deformation range. The
marching algorithms already enforce that tangents on the boundary are not decreasing away
from the minimum (for 𝑓13, we additionally clamp the boundary tangents to be increasing
outward). For 2D splines, we set the mixed derivatives 𝑝𝑥𝑦 to 0 at the boundary, such that
linear extrapolation is consistent with interpolation.

Finally, we note that in the piecewise monotone bicubic interpolation scheme (Appendix B),
we treat extrapolation as a cell with an edge at infinity. This modifies (B.6) and (B.7) to have
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the extrapolated side of the inequality become 0.

A.3.6 Residualization
To summarize the fitting procedure: we first smooth and resample the data using MLS, and
use it to compute spline coefficients; next, we apply our quasiconvex marching algorithm to
enforce a single minimum per term; then we apply the algorithms for piecewise monotone
cubic and bicubic spline interpolation.

This procedure gives as regularized fits 𝑓 ∗ of the data, which we have to convert to residuals 𝑓
for the cumulative function (A.34a), with 𝑓𝑖 (0) = 0 and 𝑓𝑖 𝑗 (𝜃𝑖, 0) = 𝑓𝑖 𝑗 (0, 𝜃 𝑗 ) = 0. We do this for
1D and 2D terms respectively with

𝑓𝑖 (𝜃𝑖) = 𝑓 ∗𝑖 (𝜃𝑖) − 𝑓 ∗𝑖 (0) (A.37)
𝑓𝑖 𝑗 (𝜃𝑖, 𝜃 𝑗 ) = 𝑓 ∗𝑖 𝑗 (𝜃𝑖, 𝜃 𝑗 ) − 𝑓 ∗𝑖 𝑗 (𝜃𝑖, 0) − 𝑓 ∗𝑖 𝑗 (0, 𝜃 𝑗 ) + 𝑓 ∗𝑖 𝑗 (0, 0) (A.38)

Finally, we had to enforce that the 2D residuals are 0 for compression in all terms except 𝑓13.
Compressive data seems to be affected the most from noise, likely due to buckling inducing
varying microscale equilibria. Note that this only means that we do not model the combined
response of e.g. compression and bending. The separable elastic response encoded in the 1D
terms still captures the material behavior well.

A.4 Single Curvature Eigenvalues
Here we provide expressions to robustly compute the eigenvalues and squared cosine used in
the bending energy curvature splitting (see Section 4.1.2) based on the formulas proposed by
Blinn [1996]. With

𝐴 =
II11 + II22

2
, (A.39a)

𝐵 =
II11 − II22

2
, (A.39b)

𝑆 =

√︂(︂ II11 − II22

2

)︂2
+ II12

2 + 𝜀, (A.39c)

𝑘 = sgn(II11 − II22), (A.39d)

where 𝜀 is a small number guarding against division by zero, we have

𝜆1 = 𝐴 + 𝑆, (A.40a)
𝜆2 = 𝐴 − 𝑆, (A.40b)

𝑐2 =
1
2
+ 𝑘

(︂1
2
− II12

2

(𝐵 + 𝑘 𝑆)2 + II12
2

)︂
. (A.40c)

Notably, our use of the sign 𝑘 in (A.40c) ensures that expressions of the form

𝑐2 (︁𝑓 (𝜆1) + 𝑔(𝜆2)
)︁
+ (1 − 𝑐2)

(︁
𝑓 (𝜆2) + 𝑔(𝜆1)

)︁
(A.41)

are robust with respect to the order of eigenvalues even when they are similar, e.g.

𝜆1 = 𝜆 ± 𝜀1 𝜆2 = 𝜆 ± 𝜀2. (A.42)
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A.5 Cloth Simulation Derivative Split
In this section, we briefly discuss how we compute the derivatives of the triangle energy
𝐸△ = 𝐴 Ψ(𝑧(𝑞△)) from Section 4.2. We found it useful to keep the computation modular, using
the chain rule to separate geometric derivatives from strain derivatives.

The energy depends on the positional degrees of freedom of the triangle’s vertices and the
additional vertices from its adjacent triangles, collectively denoted as 𝑞△, from which we can
compute the collected strains 𝑧 = (𝑠𝑥 , 𝑠𝑎, 𝑠𝑦, 𝜆1, 𝜆2, 𝑐

2) as discussed in Chapter 4. Using the
chain rule, we have

𝜕𝐸△

𝜕𝑞△
= 𝐴

𝜕𝑧

𝜕𝑞△

⊤ 𝜕Ψ

𝜕𝑧
, (A.43)

𝜕2𝐸△

𝜕𝑞△𝜕𝑞△
= 𝐴

(︁ 𝜕2𝑧

𝜕𝑞△𝜕𝑞△

⊤
𝜕Ψ

𝜕𝑧
+ 𝜕𝑧

𝜕𝑞△

⊤ 𝜕2Ψ

𝜕𝑧𝜕𝑧

𝜕𝑧

𝜕𝑞△

)︁
. (A.44)

This split allows us to easily swap out different energy models, while not affecting the strain
part of the computation. To compute the derivatives 𝜕𝑧

𝜕𝑞△
and 𝜕2𝑧

𝜕𝑞△𝜕𝑞△
, we generate code using

Mathematica [Wolfram Research, Inc. 2019]. Additionally, we concatenate both of these
derivatives and compute them at the same time, which reduces redundant computation in the
generated code by a significant amount.
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Algorithm 5 Fit 2D-splines

Input: strains 𝑋 and 𝑌 , energy densities Ψ
Output: bicubic hermite spline 𝑓 with coefficients

𝑥 . . . control point locations
𝑝 . . . control point values
𝑝𝑥 , 𝑝𝑦 , 𝑝𝑥𝑦 . . . control point derivatives

1: function Fit2D(𝑋 , 𝑌 , Ψ)
2: mls:
3: def. 𝑔(𝑢, 𝑣) = symexp(MLS(𝑢, 𝑣 | 𝑋,𝑌, symlog(Ψ)))

⊲ for 𝑠𝑎 replace MLS(𝑢, 𝑣) = 0.5 (MLS(𝑢, 𝑣) +MLS(−𝑢, 𝑣))
4: initial fit:
5: 𝑥← linspace [0.9*min𝑋 , 0] and [0, 0.9*max𝑋 ]
6: 𝑦 ← linspace [0.9*min𝑌 , 0] and [0, 0.9*max𝑌 ]
7: ⊲ for stockinette replace 0.9 with 0.3
8: 𝑝← 𝑔(𝑥,𝑦)
9: 𝑝𝑥 ,𝑝𝑦,𝑝𝑥𝑦 ← finite-difference 𝑔(𝑢, 𝑣)
10: qasiconvexify: ⊲ if not (𝑠𝑥 , 𝑠𝑦)
11: 𝑝𝑥min ← 0.001 ⊲ 0.01 if stockinette
12: 𝑖min ← 𝑥𝑖min = 0 ⊲ 𝑖 always in-plane
13: if 𝑌 is in-plane strain then
14: 𝑗min ← 𝑦 𝑗min = 0
15: else
16: 𝑗min ← arg min 𝑗 (𝑝 (𝑥𝑖min, 𝑦 𝑗 )) ⊲ find bending min.
17: end if
18: march outward from 𝑖min, 𝑗min and enforce:
19: 𝑝𝑖+1, 𝑗 ≥ 𝑝𝑖, 𝑗 + (𝑦𝑖+1 − 𝑦𝑖) 𝑝𝑥min ⊲ 𝑖 − 1 if 𝑖 < 𝑖min
20: 𝑝𝑖, 𝑗+1 ≥ 𝑝𝑖, 𝑗 + (𝑥𝑖+1 − 𝑥𝑖) 𝑝𝑥min ⊲ 𝑗 − 1 if 𝑗 < 𝑗min
21: 𝑝

𝑦

𝑖 𝑗
≥ 𝑝𝑥min ⊲ 𝑝

𝑦

𝑖 𝑗
≤ −𝑝𝑥min if 𝑖 < 𝑖min

22: 𝑝𝑥𝑖 𝑗 ≥ 𝑝𝑥min ⊲ 𝑝𝑥𝑖 𝑗 ≤ −𝑝𝑥min if 𝑗 < 𝑗min

23: ensure increasing extrapolation:
24: clamp 𝑝𝑥 and 𝑝𝑦 on boundary
25: 𝑝𝑥𝑦 ← 0 on boundary
26: apply monotone bicubic algorithm ⊲ Appendix B
27: convert to residual: ⊲ r(x,y) = f(x,y) - f(x,0) - f(0,y) + f(0,0)
28: 𝑝𝑖, 𝑗 ← 𝑝𝑖, 𝑗 − 𝑝𝑦=0, 𝑗 − 𝑝𝑖,𝑥=0 + 𝑝𝑦=0,𝑥=0
29: 𝑝𝑥𝑖, 𝑗 ← 𝑝𝑥𝑖, 𝑗 − 𝑝𝑦=0, 𝑗

30: 𝑝
𝑦

𝑖, 𝑗
← 𝑝𝑥𝑖, 𝑗 − 𝑝𝑖,𝑥=0

31: 0-compression residual: ⊲ if not (𝑠𝑥 , 𝑠𝑦)
32: for {𝑖, 𝑗} compressed do
33: 𝑝𝑖, 𝑗 ← 𝑝𝑥𝑖, 𝑗 ← 𝑝

𝑦

𝑖, 𝑗
← 𝑝

𝑥𝑦

𝑖, 𝑗
← 0

34: end for
35: return 𝑓 ← {𝑥,𝑦,𝑝,𝑝𝑥 ,𝑝𝑦,𝑝𝑥𝑦}
36: end function

107



Algorithm 6 Sample deformation ranges for fitting. All individual simulations can be run in
parallel.
Input: 1D-sampling ranges [𝑧min, 𝑧max] for each strain 𝑧

2D-sampling ranges [𝑧𝑖min, 𝑧𝑖max], [𝑧 𝑗min, 𝑧 𝑗max] for (𝑧𝑖, 𝑧 𝑗 )
1: function SampleRange(𝑧, 𝑧min, 𝑧max, 𝑁 )
2: if 𝑧 = 𝑠𝑥 or 𝑧 = 𝑠𝑦 then
3: 𝑍 ← linspace

(︁
(𝑧min + 1) 1

10 , (𝑧max + 1) 1
10 , 𝑁

)︁10 − 1
4: else
5: 𝑍 ← linspace

(︁
−

√︁
abs(𝑧min),

√︁
abs(𝑧max), 𝑁

)︁
6: 𝑍 ← sgn(𝑍 ) 𝑍 2

7: end if
8: return 𝑍

9: end function

10: procedure Sample
11: for 𝑧 in {𝑠𝑥 , 𝑠𝑎, 𝑠𝑦, II00, II11} do
12: 𝑍 ← SampleRange(𝑧, 𝑧min, 𝑧max, 150)
13: simulate each sample 𝑧 = (0 . . . , 𝑧𝑖 = 𝑍, . . . 0)
14: end for
15: for all {𝑧𝑖, 𝑧 𝑗 } do
16: 𝑍𝑖 ← SampleRange(𝑧𝑖 , 𝑧𝑖min, 𝑧𝑖max, 50)
17: 𝑍 𝑗 ← SampleRange(𝑧 𝑗 , 𝑧 𝑗min, 𝑧 𝑗max, 50)
18: simulate each sample 𝑧 = (0 . . . , 𝑧𝑖 = 𝑍𝑖, 𝑧 𝑗 = 𝑍 𝑗 , . . . 0)
19: end for
20: end procedure
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APPENDIX B
Piecewise Monotone Bicubic

Interpolation

Here, we present the algorithm for piecewise monotone bicubic interpolation mentioned in
Section 4.1.2. A python implementation is also available at https://git.ist.ac.at/gsperl/
HYLC.

For well-behaved simulations, we require our fitted energy
functions to not exhibit any new local minima other than
the ones present in the data. For bivariate functions, it is not
sufficient to apply monotone piecewise cubic interpolation
in both directions since this can still produce non-monotone
regions as shown in the inset in red. Instead, we adopt the
monotone piecewise bicubic interpolation scheme of Carlson
and Fritsch [1989]. Since their method as presented assumes
globally monotone data, we modify it to work with arbitrary
data while preserving its behavior in monotone regions.

The input to the algorithm is a grid of nodes (𝑥𝑖, 𝑦 𝑗 ) on which Hermite data is specified,
namely values 𝑝𝑖, 𝑗 , first derivatives 𝑝𝑥𝑖, 𝑗 and 𝑝

𝑦

𝑖, 𝑗
, and mixed derivatives 𝑝𝑥𝑦

𝑖, 𝑗
. For brevity, define

ℎ𝑖 = 𝑥𝑖+1 − 𝑥𝑖 and 𝑘 𝑗 = 𝑦 𝑗+1 − 𝑦 𝑗 , and define the operators Δ𝑥 and Δ𝑦 such that

Δ𝑥 𝑓𝑖, 𝑗 = 𝑓𝑖+1, 𝑗 − 𝑓𝑖, 𝑗 , (B.1a)
Δ𝑦 𝑓𝑖, 𝑗 = 𝑓𝑖, 𝑗+1 − 𝑓𝑖, 𝑗 (B.1b)

for any nodal data 𝑓 . Our goal is to modify the specified derivatives so that, in regions
where the data 𝑝𝑖, 𝑗 is monotone, the resulting piecewise bicubic Hermite interpolation is also
monotone with the same sense.

First, we must define local monotonicity of the data. We declare a horizontal edge 𝐸𝑥𝑖, 𝑗 =

[𝑥𝑖, 𝑥𝑖+1] × 𝑦 𝑗 to be increasing if Δ𝑥𝑝𝑖, 𝑗 ≥ 0 and decreasing if Δ𝑥𝑝𝑖, 𝑗 ≤ 0, and similarly define
monotonicity for vertical edges 𝐸𝑦

𝑖, 𝑗
= 𝑥𝑖 × [𝑦 𝑗 , 𝑦 𝑗+1]. Now we consider a cell 𝑅𝑖, 𝑗 = [𝑥𝑖, 𝑥𝑖+1] ×

[𝑦 𝑗 , 𝑦 𝑗+1]. We declare the cell to be increasing in 𝑥 if the adjacent horizontal edges 𝐸𝑥𝑖, 𝑗 and
𝐸𝑥𝑖, 𝑗+1 are both increasing, decreasing in 𝑥 if they are both decreasing, and nonmonotone in 𝑥
otherwise. Similarly we define monotonicity in 𝑦 using vertical edges 𝐸𝑦

𝑖, 𝑗
and 𝐸𝑦

𝑖+1, 𝑗 .

Now, we review Carlson and Fritsch’s sufficient conditions for monotonicity. Without loss of
generality, we only consider monotonicity in 𝑥 , and further that the sense of monotonicity is
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increasing; decreasingness only requires reversing all the inequalities. Increasingness along
an edge 𝐸𝑥𝑖, 𝑗 is ensured if

0 ≤ 𝑝𝑥𝑖, 𝑗 ≤ 3
Δ𝑥𝑝𝑖, 𝑗

ℎ𝑖
, (B.2a)

0 ≤ 𝑝𝑥𝑖+1, 𝑗 ≤ 3
Δ𝑥𝑝𝑖, 𝑗

ℎ𝑖
. (B.2b)

Increasingness in 𝑥 over a region 𝑅𝑖, 𝑗 is ensured by constraining differences in 𝑦-derivatives
along adjacent horizontal edges,

Δ𝑥𝑝
𝑦

𝑖, 𝑗
≥ −3

Δ𝑥𝑝𝑖, 𝑗

𝑘 𝑗
, (B.3a)

Δ𝑥𝑝
𝑦

𝑖, 𝑗+1 ≤ 3
Δ𝑥𝑝𝑖, 𝑗+1

𝑘 𝑗
, (B.3b)

and constraining mixed derivatives at adjacent nodes,

−3
𝑝𝑥𝑖, 𝑗

𝑘 𝑗
≤ 𝑝

𝑥𝑦

𝑖, 𝑗
≤ 3

(︄
Δ𝑥𝑝

𝑦

𝑖, 𝑗

ℎ𝑖
+ 3

Δ𝑥𝑝𝑖, 𝑗

ℎ𝑖𝑘 𝑗
−
𝑝𝑥𝑖, 𝑗

𝑘 𝑗

)︄
, (B.4a)

−3
𝑝𝑥𝑖+1, 𝑗
𝑘 𝑗
≤ 𝑝

𝑥𝑦

𝑖+1, 𝑗 ≤ 3

(︄
Δ𝑥𝑝

𝑦

𝑖, 𝑗

ℎ𝑖
+ 3

Δ𝑥𝑝𝑖, 𝑗

ℎ𝑖𝑘 𝑗
−
𝑝𝑥𝑖+1, 𝑗
𝑘 𝑗

)︄
, (B.4b)

3

(︄
Δ𝑥𝑝

𝑦

𝑖, 𝑗+1
ℎ𝑖

− 3
Δ𝑥𝑝𝑖, 𝑗+1
ℎ𝑖𝑘 𝑗

+
𝑝𝑥𝑖, 𝑗+1
𝑘 𝑗

)︄
≤ 𝑝

𝑥𝑦

𝑖, 𝑗+1 ≤ 3
𝑝𝑥𝑖, 𝑗+1
𝑘 𝑗

, (B.4c)

3

(︄
Δ𝑥𝑝

𝑦

𝑖, 𝑗+1
ℎ𝑖

− 3
Δ𝑥𝑝𝑖, 𝑗+1
ℎ𝑖𝑘 𝑗

+
𝑝𝑥𝑖+1, 𝑗+1
𝑘 𝑗

)︄
≤ 𝑝

𝑥𝑦

𝑖+1, 𝑗+1 ≤ 3
𝑝𝑥𝑖+1, 𝑗+1
𝑘 𝑗

. (B.4d)

To guarantee that the above constraints always have a solution, we further require that 0 is a
valid value for each mixed derivative 𝑝𝑥𝑦 . This leads to

Δ𝑥𝑝
𝑦

𝑖, 𝑗
≥ − 1

𝑘 𝑗

(︂
3Δ𝑥𝑝𝑖, 𝑗 − ℎ𝑖 max(𝑝𝑥𝑖, 𝑗 , 𝑝𝑥𝑖+1, 𝑗 )

)︂
, (B.5a)

Δ𝑥𝑝
𝑦

𝑖, 𝑗+1 ≤
1
𝑘 𝑗

(︂
3Δ𝑥𝑝𝑖, 𝑗+1 − ℎ𝑖 max(𝑝𝑥𝑖, 𝑗+1, 𝑝𝑥𝑖+1, 𝑗+1)

)︂
. (B.5b)

We now develop the algorithm for satisfying the constraints. The first step is to modify the first
derivatives 𝑝𝑥 , 𝑝𝑦 to satisfy the inequalities (B.2) arising from edges, and (B.3) and (B.5) arising
from monotone cells. Then, we modify the mixed derivatives 𝑝𝑥𝑦 to satisfy the inequalities
(B.4) arising from monotone cells, which will always be possible thanks to (B.5). The entire
algorithm requires only implementing operations for enforcing monotonicity in 𝑥 ; these can
then be used for monotonicity in 𝑦 as well by flipping the coordinates (i.e. transposing all grids
and swapping 𝑝𝑥 with 𝑝𝑦).

As in Carlson and Fritsch’s original algorithm, we first satisfy (B.2) by clamping 𝑝𝑥 and 𝑝𝑦 . As
long as we only shrink them towards zero in subsequent operations, (B.2) will remain satisfied.

Next, both sets of remaining constraints on first derivatives act on their “mixed differences”
Δ𝑥𝑝𝑦 and Δ𝑦𝑝𝑥 . Here, unlike the original algorithm, some more care is needed since adjacent
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regions may differ in monotonicity. Consider a horizontal edge 𝐸𝑥𝑖, 𝑗 and suppose it is increasing.
Then the adjacent cells 𝑅𝑖, 𝑗−1 and 𝑅𝑖, 𝑗 cannot be decreasing in 𝑥 ; they are either increasing or
nonmonotone in 𝑥 . Then from (B.3) we have

−3
Δ𝑥𝑝𝑖, 𝑗

𝑘 𝑗
≤ Δ𝑥𝑝

𝑦

𝑖, 𝑗
≤ 3

Δ𝑥𝑝𝑖, 𝑗

𝑘 𝑗−1
, (B.6)

where the first inequality arises if 𝑅𝑖, 𝑗 is increasing in 𝑥 , and the second if 𝑅𝑖, 𝑗−1 is increasing
in 𝑥 . Nevertheless, there is no harm in imposing both bounds even if the adjacent cells are
nonmonotone, since 0 is always a feasible value due to the increasingness of 𝐸𝑥𝑖, 𝑗 . Similarly,
from (B.5) we have

−
𝑏𝑖, 𝑗

𝑘 𝑗
≤ Δ𝑥𝑝

𝑦

𝑖, 𝑗
≤

𝑏𝑖, 𝑗

𝑘 𝑗−1
(B.7)

where 𝑏𝑖, 𝑗 = 3Δ𝑥𝑝𝑖, 𝑗 − ℎ𝑖 max(𝑝𝑥𝑖, 𝑗 , 𝑝𝑥𝑖+1, 𝑗 ), which we again impose regardless of monotonicity
of 𝑅𝑖, 𝑗−1 and 𝑅𝑖, 𝑗 , because 0 is always a feasible value thanks to (B.2).

We now discuss how to satisfy these constraints without violating (B.2). Note that they are all
of the form 𝑙 ≤ 𝑚1 −𝑚0 ≤ 𝑢 where 𝑙 ≤ 0 ≤ 𝑢. For any constraint, given the current values
(𝑚0,𝑚1), we project to the closest values (𝑚∗0,𝑚∗1) which satisfy the constraints as well as
|𝑚∗𝑖 | ≤ |𝑚𝑖 | and sgn(𝑚∗𝑖 ) = sgn(𝑚𝑖). The solution is given in closed form by several cases,
illustrated in Figure B.1. Since this projection may cause the constraints on adjacent edges to
be violated, we must make multiple sweeps across the grid. Following Carlson and Fritsch,
we make two sweeps across the grid, first in increasing order in 𝑥 and then in decreasing
order, applying projections to enforce the Δ𝑥𝑝𝑦 constraints on each edge. We then do the same
in 𝑦 to enforce the Δ𝑦𝑝𝑥 constraints, albeit using the old values of 𝑝𝑦 so that the results are
order-independent.

m−=min(m, 0)
m+=max(m, 0)

a=
m0+m1

2

(a − u/2, a + u/2)

(m1
−− u, m1

−)

m1−m0=u

m1

(m1
+− l, m1

+)

(m0
−, m0

−+l)

m0

(a − l/2, a + l/2)

(m0
+, m0

++u)

m1−m0=l

Figure B.1: We want to project (𝑚∗0,𝑚∗1) to the central diagonal slab 𝑙 ≤ 𝑚1 −𝑚0 ≤ 𝑢 (green)
without increasing either entry’s absolute value. There are six cases (not including if the initial
value is already feasible), which we show as bundles of arrows alongside their projected values.
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Finally, the mixed derivative 𝑝𝑥𝑦 at each node is subject to constraints (B.4) from the adjacent
monotone cells. For monotonicity in 𝑥 , the constraints acting on 𝑝

𝑥𝑦

𝑖, 𝑗
are

−3
𝑝𝑥𝑖, 𝑗

𝑘 𝑗
≤ 𝑝

𝑥𝑦

𝑖, 𝑗
≤ 3

(︄
Δ𝑥𝑝

𝑦

𝑖, 𝑗

ℎ𝑖
+ 3

Δ𝑥𝑝𝑖, 𝑗

ℎ𝑖𝑘 𝑗
−
𝑝𝑥𝑖, 𝑗

𝑘 𝑗

)︄
, (B.8a)

−3
𝑝𝑥𝑖, 𝑗

𝑘 𝑗
≤ 𝑝

𝑥𝑦

𝑖, 𝑗
≤ 3

(︄
Δ𝑥𝑝

𝑦

𝑖−1, 𝑗

ℎ𝑖−1
+ 3

Δ𝑥𝑝𝑖−1, 𝑗

ℎ𝑖−1𝑘 𝑗
−
𝑝𝑥𝑖, 𝑗

𝑘 𝑗

)︄
, (B.8b)

3

(︄
Δ𝑥𝑝

𝑦

𝑖, 𝑗

ℎ𝑖
− 3

Δ𝑥𝑝𝑖, 𝑗

ℎ𝑖𝑘 𝑗−1
+

𝑝𝑥𝑖, 𝑗

𝑘 𝑗−1

)︄
≤ 𝑝

𝑥𝑦

𝑖, 𝑗
≤ 3

𝑝𝑥𝑖, 𝑗

𝑘 𝑗−1
, (B.8c)

3

(︄
Δ𝑥𝑝

𝑦

𝑖−1, 𝑗

ℎ𝑖−1
− 3

Δ𝑥𝑝𝑖−1, 𝑗

ℎ𝑖−1𝑘 𝑗−1
+

𝑝𝑥𝑖, 𝑗

𝑘 𝑗−1

)︄
≤ 𝑝

𝑥𝑦

𝑖, 𝑗
≤ 3

𝑝𝑥𝑖, 𝑗

𝑘 𝑗−1
(B.8d)

if the adjacent cells 𝑅𝑖, 𝑗 , 𝑅𝑖−1, 𝑗 , 𝑅𝑖, 𝑗−1, and 𝑅𝑖−1, 𝑗−1 respectively are increasing in 𝑥 , and with
the corresponding inequalities reversed if they are decreasing in 𝑥 instead. Observe that each
constraint above only involves quantities along a single edge, namely 𝐸𝑥𝑖, 𝑗 , 𝐸

𝑥
𝑖−1, 𝑗 , 𝐸

𝑥
𝑖, 𝑗 , and 𝐸

𝑥
𝑖−1, 𝑗

respectively. Furthermore, if said edge is increasing, and we have satisfied all four constraints
on its mixed difference Δ𝑥𝑝𝑦 , then the constraint always has 0 as a feasible value. Therefore, it
is safe to enforce each of the constraints on 𝑝

𝑥𝑦

𝑖, 𝑗
, regardless of the monotonicity of the cell it

arises from, remembering only to reverse the inequalities if the relevant edge is decreasing
instead of increasing. We do so simply by clamping 𝑝𝑥𝑦

𝑖, 𝑗
to lie between the two bounds of each

constraint. Then we repeat the procedure on the flipped data to enforce monotonicity in 𝑦.

The algorithm presented here is equivalent to the original algorithm for globally monotone
data [Carlson and Fritsch 1989]. It also guarantees monotonicity on each cell, as long as
there are no cells with nonmonotone data. We have not yet conducted any analysis of what
guarantees, if any, are available for cells that are nonmonotone in both directions, such as[︃
0 1
1 0

]︃
.
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APPENDIX C
Mechanics-Aware Deformation Details

This chapter provides details for Chapter 5. Here we discuss material-space pullback of yarn
displacements, the experimental bending models, as well as several implementation details
such as rendering. For further implementation details, please refer to the code in the public
repository: https://git.ist.ac.at/gsperl/MADYPG.

C.1 Pullback Into Material Space
Here, we detail the Newton iteration to transform optimized yarn geometry from Section 5.1
back into material space. The goal is to find �̂� s.t. 𝑥 = 𝑥(�̂�), which we do using Newton’s
method on 𝑓 (�̂�) = 𝑥 − 𝑥(�̂�), for which we need the gradient ∇𝑓 .

The mapping 𝑥 is defined as

𝑥(�̂�) = 𝜙(�̂� 1, �̂� 2) + �̂� 3 𝑛(�̂� 1, �̂� 2), (C.1)

where 𝜙 is the deformed midsurface and 𝑛 its normal. Its gradient is

∇𝑥(�̂�) =
[︁
∇𝜙(�̂� 1, �̂� 2) + �̂� 3 ∇𝑛(�̂� 1, �̂� 2), 𝑛(�̂� 1, �̂� 2)

]︁
. (C.2)

By definition we have

∇𝜙 = 𝑅𝑆, (C.3)

and we compute ∇𝑛 = −
(︁√︁

I
)︁−⊤ II (see also (3.14) and (A.12)). The Newton iterations are

�̂�𝑖+1 = �̂�𝑖 − ∇𝑓 (�̂�𝑖)−1𝑓 (�̂�𝑖) (C.4)

starting from the rest configuration �̂�0 = 𝑋 .

In our experiments, the iterations converge to a fraction of the yarn radius within three
iterations and the cost is negligible compared to the elastostatic optimization. For pure in-

plane deformations, II = 0, and thus 𝑅 = Id and ∇𝑓 = −
[︃√

I 0
0 1

]︃
, simplifying the pullback

into the constant expression

�̂� = 𝑋 +
[︃ (︁√

I
)︁−1 0

0 1

]︃
�̃�. (C.5)
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C.2 Bending Models
We briefly outline the two bending models we experimented with: a 4D combination of in-plane
and bending deformations (C.6), and the linearization of bending as stretching (C.9).

Due to tileability constraints, in Chapter 4 we only generate data for singly curved deformations
and split the contributions of general bending onto data sampled for bending along either
the 𝑋1 or 𝑋2 directions. Here, we apply the same idea to define our “ground-truth” bending
model. For brevity, we write 𝑠 = (𝑠𝑥 , 𝑠𝑎, 𝑠𝑦). Then, we compute two sets of data for combined
in-plane deformation with the two bending directions: Δ𝑄𝑋1 (𝑠, 𝜆) and Δ𝑄𝑋2 (𝑠, 𝜆). With
the eigenvalues 𝜆1 and 𝜆2 of II and the cosine 𝑐 of the angle between the 𝑋1 axis and the
eigenvector corresponding to 𝜆1, we distribute the bending contributions to get

Δ𝑄(𝑠, II) = 𝑐2 Δ𝑄𝑋1 (𝑠, 𝜆1) + (1 − 𝑐2) Δ𝑄𝑋1 (𝑠, 𝜆2)
+ 𝑐2 Δ𝑄𝑋2 (𝑠, 𝜆2) + (1 − 𝑐2) Δ𝑄𝑋2 (𝑠, 𝜆1)
− Δ𝑄𝑋1 (𝑠, 0)

(C.6)

Since both data sets include the displacements caused by pure in-plane deformations 𝜆1 = 𝜆2 =

0, we have to subtract these displacements once to avoid double counting. This model exactly
reproduces the data samples for bending aligned with either 𝑋1 or 𝑋2. However, it requires
five 4D-texture look-ups and is thus much more expensive than the linearized model requiring
only a single 3D-texture look-up. For the speed comparison mentioned in Section 5.3, we
used two sets of 94 samples for the 4D model and 93 samples for the linearized model. The
linearized model was still 7× faster even when increasing its sample density to 153.

C.2.1 Linearized Bending
For a thin shell represented by a midsurface 𝜙 with normal 𝑛, its full domain is

𝑥 = 𝜙 + ℎ 𝑛, (C.7)

with the normal coordinate ℎ ∈ [−𝐻/2, 𝐻/2] for shell thickness 𝐻 . Its right Cauchy-Green
deformation tensor is

∇𝑥⊤∇𝑥 = ∇𝜙⊤∇𝜙 + ℎ (∇𝜙⊤∇𝑛 + ∇𝑛⊤∇𝜙) +𝑂 (ℎ2), (C.8)

which can be interpreted as a first fundamental form I(ℎ) depending quadratically on ℎ. The
quadratic term is commonly neglected (e.g. [Kiendl et al. 2015]). Additionally, we see that
∇𝜙⊤∇𝜙 = I and similarly ∇𝜙⊤∇𝑛 = ∇𝑛⊤∇𝜙 = −II are the fundamental forms of 𝜙. As a
result, we get the linearized expression

I(ℎ) ≈ I − 2ℎ II. (C.9)

Then, with precomputed data Δ𝑄𝑠(𝑠) for in-plane deformations 𝑠, the linearized bending
model is

Δ𝑄(I, II) = Δ𝑄𝑠(𝑠(I − 2ℎ II)) . (C.10)

C.3 Removal of Short Yarn Fragments
After tiling the periodic yarn pattern over the mesh as in Section 5.2, yarns near mesh bound-
aries may be very short. This may generate tiny floating yarn fragments as illustrated in
Figure C.1, which we want to remove.
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Figure C.1: Tiled yarn geometry before (left) and after (right) removing short yarn fragments.

The yarn patterns used in the optimization of Section 5.1 also store rest lengths 𝑙𝑖 of edges 𝑖 .
During tiling, we copy these rest lengths along with the other pattern data. After tiling, we
can now traverse connected yarns and accumulate these rest lengths to compute a parameter

𝑎0 = 0, 𝑎𝑖 =

𝑖∑︁
𝑗=1

𝑙 𝑗−1. (C.11)

Here, we use the final value of 𝑎 on a yarn to remove yarns that are smaller than some user-
specified minimum length. We also use 𝑎 during rendering of ply twists, since it provides
a parametrization that is independent of local stretching (and so stretching a yarn segment
would not change the amount of twisting). Note that in general the rest lengths are different
from the edge lengths in the pattern geometry corresponding to I = Id, II = 0, where the yarns
may locally still exhibit strains, e.g. tension balancing out collisions.

C.4 Rendering Details
In this section, we provide detail on world-space mapping of edge normals, the tessellation
of yarn centerlines into cylindrical geometry including yarn twists, our volume-preserving
radius-scaling heuristic, and on the twistable ply- and fiber-level detail texture maps.

C.4.1 Transformation of Edge Normals
Yarn twists are defined with a twist variable 𝜃 and reference directors 𝑑1 (edge normals)
per edge. In Section 5.2, we displace quantities from a material-space configuration 𝑄 to a
deformed material-space configuration �̂� and then map that to world-space values 𝑞 along
with the mesh. The twist variables transform trivially (simply copying values), since the edge
normals take care of the actual orientation of the twisting frame. In principle, this means that
we would have to first transform 𝑑1 along with the vertex-displacements (�̂� = 𝑋 + Δ𝑋) and
then along with the world-space mapping 𝑥 from (5.9), which may be nonlinear (due to Phong
deformation [James 2020]). Similar to how normals transform with normal matrices, 𝑑1 get
transformed by the inverse transpose of the Jacobian 𝐽−⊤ of the total mapping 𝑋 → 𝑥. We
efficiently approximate the transformation with

𝐽 =
[︁
𝐹 , 𝑛

]︁
, (C.12)

where 𝐹 is the underlying triangle’s 3 × 2 deformation gradient and 𝑛 is the interpolated
mesh-vertex normal. We apply this transformation to the initial values of 𝑑1 from the pattern
tiling. This approximation is cheap compared to the full Jacobian including Phong Deformation
and local displacements. During rendering, we simply reorthonormalize the transformed edge
normals with respect to yarn centerline tangents.
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Figure C.2: Top: Four-vertex input primitive for the geometry shader. A yarn segment is
tessellated for the middle edge, using averaged per-vertex tangents 𝑡𝑣𝑖 and normals𝑛𝑣𝑖 . Bottom:
Cylinders are generated from tessellated cross-sections per centerline vertex 𝑣𝑖 , with tangential
frames 𝑀 𝑗 = [𝑡𝑣𝑖 × 𝑛 𝑗 , 𝑡𝑣𝑖 ,𝑛 𝑗 ].

Figure C.3: Tessellated yarn geometry without (left) and with (right) volume-preserving radius
scaling. In our experiments, we found the effect to be small such as shown here.

C.4.2 Geometry Tessellation

We use a geometry shader to tessellate cylindrical yarn meshes. The inputs are a global list of
yarn vertices and index lists for each yarn. Each yarn vertex has the following data: a position
𝑥, the twist 𝜃 of it’s outgoing incident edge, a transformed normal 𝑛 = 𝐽−⊤𝑑1 of the same
edge using (C.12), the cumulative rest length parameter 𝑎 up until that vertex, as well as a
copy of the original undeformed material-space coordinates for cloth-level texturing. Since
the material space of the mesh is encoded as uv-coordinates and the yarn pattern is tiled over
that space, this is a natural way of texturing or coloring a garment.

The vertices are passed to the geometry shader stage as primitives of four consecutive yarn
vertices, fromwhichwe consistently tessellate themiddle edge such that the adjacent primitives
seamlessly connect, as illustrated in Figure C.2. To do so, we push the edge-based quantities
onto the vertices with rest-length-weighted averaging. The rest lengths can be computed
from 𝑎 or stored explicitly per edge. We average vertex tangents 𝑡𝑣𝑖 , vertex normals 𝑛𝑣𝑖 , and
vertex twists 𝜃𝑣𝑖 for the inner two vertices 𝑣𝑖 = 𝑣1 and 𝑣𝑖 = 𝑣2 of the four-vertex primitive. We
orthogonalize the 𝑛𝑣𝑖 with respect to 𝑡𝑣𝑖 , normalize both vectors and compute vertex binormals
𝑏𝑣𝑖 as the cross-product

𝑏𝑣𝑖 = 𝑡𝑣𝑖 × 𝑛𝑣𝑖 . (C.13)

Volume-Preserving Heuristic At this point, we also compute local yarn radii such that the
deforming yarns preserve volume compared to their rest shape. This is a fast approximation
that appears to work well as shown in Figure C.3. It would be possible to instead integrate the
method of Montazeri et al. [2019] for a data-driven solution to adapting yarn cross-sections to
stretching, or to use a different thickness heuristic.
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Figure C.4: Adding random displacements to tessellated yarn cylinder vertices is an efficient
way of generating a fuzzy look.

For each of the three edges 𝑒𝑖 in the geometry primitive, we compute volume-preserving radii
𝑟𝑒𝑖 from their current length 𝑙𝑒𝑖 , their rest lengths 𝑙𝑒𝑖 , and the base radius 𝑅:

𝑟𝑒𝑖 = 𝑅

√︃
𝑙𝑒𝑖/𝑙𝑒𝑖 (C.14)

We additionally clamp the ratio of the modified vs. original radii such that their ratio to
the original yarn radius is between 0.25 and 2.0, although this almost never takes effect for
“reasonable” deformation within the realm of the strains sampled for our precomputed physical
yarn data. We compute vertex radii 𝑟𝑣𝑖 using the weighted average discussed above.

Tessellation Finally, with the rotational frames (𝑛𝑣𝑖 𝑏𝑣𝑖 ) and the twists 𝜃𝑣𝑖 at the two vertices
of the middle segment, we can generate the cylindrical mesh by generating a discretized circle
at each vertex and connecting them with triangular faces.

We compute the position 𝑥 𝑗 of the 𝑗-th circle vertex at primitive vertex 𝑣𝑖 as

𝑠 = sin( 2𝜋 𝑗
𝑁 − 1

+ 𝜃𝑣𝑖 ), (C.15a)

𝑐 = sin( 2𝜋 𝑗
𝑁 − 1

+ 𝜃𝑣𝑖 ), (C.15b)

𝑛 𝑗 = 𝑐 𝑛𝑣𝑖 + 𝑠 𝑏𝑣𝑖 , (C.15c)
𝑥 𝑗 = 𝑥𝑣𝑖 + 𝑟𝑣𝑖 𝑛 𝑗 , (C.15d)

where 𝑁 is the number of vertices per circle. 𝑛 𝑗 is the normal to the cylinder at cylinder-
vertex 𝑗 and different from the edge normal 𝑛𝑣𝑖 of the centerline vertex 𝑣𝑖 . We implement the
elastic rods yarn twist here as an offset to the arguments of 𝑠 and 𝑐 . Note that this basically
corresponds to the combined computation and tessellation of “material frames” from [Bergou
et al. 2010]. It is possible to perform a naive level-of-detail optimization at this stage by
reducing 𝑁 depending on the depth value of vertex 𝑣𝑖 . For normal mapping, we also emit a
tangent-frame matrix 𝑀 𝑗 per vertex

𝑀 𝑗 =
[︁
𝑡𝑣𝑖 × 𝑛 𝑗 , 𝑡𝑣𝑖 , 𝑛 𝑗

]︁
, (C.16)

We render the tessellated geometry with “matcaps” (spherical environment maps) and screen-
space ambient occlusion. In Figure C.4, we briefly experimented adding fuzz detail by displacing
vertices similar to [Zhong et al. 2001].

117



  

α

l

h

1

1/2

1

  

l

2πRR

H

L

2πRR/N V

Figure C.5: Top left: the normalized single-ply space from which we bake geometry (indicated
by the blue half-cylinder) into normal and ambient occlusion textures. Top right: transfor-
mation of single-ply into stretched/tiled/twisted ply space. Bottom left: our baked combined
normal and ambient occlusion texture with fiber geometry for a single ply. Bottom right: yarn
geometry rendered with our twistable texture maps.

C.4.3 Ply Texture Mapping

We add ply- and fiber-level detail onto the tessellated yarn geometry using twistable normal
maps and ambient occlusion maps. The twists discussed here are separate from the discrete
elastic rods twist 𝜃 , which we already incorporate into the cylinder tessellation. Instead, the
twists in this section represent the helical geometry of yarn plies. We propose texture maps
that can be tiled and twisted along the yarn in a parametric fashion. Notably, this twisting and
tiling has an influence on the resulting normals.

The process with which we construct parametrized normals is as follows: we define ambient
occlusion and normal textures for a single ply half-cylinder (Figure C.5 top left), we stretch,
tile and shear these textures into an intermediate space (Figure C.5 top right), and lastly with
“standard” normal mapping we map the normal into the tangent frame of our textured yarn
geometry (Figure C.2).

The projection of geometry in single-ply space can be described using a height field ℎ

𝑝ply(�̂�, 𝑙) =
⎛⎜⎝

�̂�

𝑙

ℎ(�̂�, 𝑙)

⎞⎟⎠ (C.17)

with the “across-ply” parameter �̂� and the “along-ply” 𝑙 in [0, 1]. This single-ply geometry is
what we bake into a combined normal and occlusion texture (Figure C.5 bottom left). Specifi-
cally, we bake

(︂
𝑛𝑥+1

2 ,
𝑛𝑦+1

2 ,AO
)︂
into the RGB channels, where 𝑛𝑥 and 𝑛𝑦 are the components of

the normals to ℎ, and AO is the ambient occlusion value.
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Next we stretch, tile, and shear the single-ply geometry into an intermediate space (corre-
sponding to a flattening of the tessellated yarn cylinder)

𝑝int(�̂�, 𝑎) = ⎛⎜⎝
2𝜋𝑅�̂�
𝑎

2𝐻 ℎ(𝑁�̂� − 𝑎/𝐿 �̂� , 𝑎/𝐿)

⎞⎟⎠ (C.18)

with cumulative rest length 𝑎 along the yarn, 𝑁 the number of tiled plies, 𝑅 the yarn radius
(not the volume-preserving one), 𝐻 the transformed height, 𝐿 the transformed length, and �̂� a
twist factor.

We want a nice expression for the normal 𝑛int of 𝑝int using the baked single-ply texture values
𝑛𝑥 and 𝑛𝑦 . We redefine 𝐿 = �̂�𝑅/𝑁 and 𝐻 = �̂�𝑅. Then with texture coordinates

𝑤 =

(︃
𝑁�̂� − 𝑎 �̂� /(𝑅�̂�)

𝑎/(𝑅�̂�)

)︃
, (C.19)

the normal of 𝑝int is proportional to

𝑛int(�̂�, 𝑎) ∝
⎛⎜⎜⎜⎝

�̂�𝑁𝑛𝑥
𝜋
(𝑤)

2�̂�𝑁

�̂�

(︁
𝑛𝑦 (𝑤) − �̂�𝑛𝑥 (𝑤)

)︁√︃
1 − 𝑛2

𝑥 (𝑤) − 𝑛2
𝑦 (𝑤)

⎞⎟⎟⎟⎠ . (C.20)

To apply our transformed normal maps, during tessellation we compute �̂� =
2𝜋 𝑗
𝑁−1 from (C.15),

and store 𝑤 as well as 𝑀 𝑗 from (C.16) per cylinder vertex. These quantities are interpolated
in the fragment shader, where we then compute 𝑛int from (C.20) and map it into the tangent
frame as 𝑛final = 𝑀 𝑛int.

C.5 Other Implementation Details
Preloading Animation Data We experiment with cloth mesh animations stored as obj-file
sequences. For meshes of moderate size, loading meshes each frame can become a bottleneck.
Therefore, we preload mesh animations into memory before adding and animating yarn detail.
Additionally, we convert and serialize several mesh animations into a binary format for faster
loading.

GPU Buffers As stated in the Chapter 5, we perform all per-yarn-vertex computation on the
GPU and cloth-mesh computations on the CPU.With our results based on non-remeshing cloth
simulations, we can precompute material-space mesh quantities (such as shape matrices and
topology-dependent interpolation weights) once on the CPU without becoming a bottleneck.
For more performance and remeshing cloth simulations, we suggest to implement all mesh
processing on the GPU.

For yarn vertices, we mainly use two GPU buffers: one for material-space data and one for
world-space data. The material-space data basically corresponds to the initial flat tiling and
triangle assignment, which we do once on the CPU. We then buffer this data onto the GPU,
and allocate space for the world-space buffer. Afterwards, the yarn data remains on the GPU,
getting passed directly into shaders for rendering, and thus avoiding the need for expensive
data-passing between the CPU and GPU.
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Mesh Interpolation Weights We use modified Shepard weights [James 2020] for strain
interpolation frommesh faces tomesh vertices. We also use the sameweights to compute vertex
normals. To compute these weights, we use the mesh-topology in material space. Specifically,
we have two sets of faces for material-space and world-space topology respectively. This way
we can prohibit interpolation over uv-seams, i.e. faces that are neighbors in world space but
not in material space do not count as neighbors for face-to-vertex interpolation of strains and
normals.
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