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Abstract

The thriving field of Smart Environments has allowed computing devices to gain new capabilities and
develop new interfaces, thus becoming more and more part of our lives. In many of these areas it is
unthinkable to renounce to the assisting functionality such as e.g. comfort and safety functions during
driving, safety functionality while working in an industrial plant, or self-optimization of daily activities
with a Smartwatch.

Adults spend a lot of time on flexible surfaces such as in the office chair, in bed or in the car seat.
These are crucial parts of our environments. Even though environments have become smarter with
integrated computing gaining new capabilities and new interfaces, mostly rigid surfaces and objects
have become smarter. In this thesis, I build on the advantages flexible and bendable surfaces have to
offer and look into the creation process of assistive Smart Environment applications leveraging these
surfaces. I have done this with three main contributions.

First, since most Smart Environment applications are built-in into rigid surfaces, I extend the body
of knowledge by designing new assistive applications integrated in flexible surfaces such as comfort-
able chairs, beds, or any type of soft, flexible objects. These developed applications offer assistance
e.g. through preventive functionality such as decubitus ulcer prevention while lying in bed, back pain
prevention while sitting on a chair or emotion detection while detecting movements on a couch.

Second, I propose a new framework for the design process of flexible surface prototypes and its
challenges of creating hardware prototypes in multiple iterations, using resources such as work time
and material costs. I address this research challenge by creating a simulation framework which can
be used to design applications with changing surface shape. In a first step I validate the simulation
framework by building a real prototype and a simulated prototype and compare the results in terms
of sensor amount and sensor placement. Furthermore, I use this developed simulation framework to
analyse the influence it has on an application design if the developer is experienced or not.

Finally, since sensor capabilities play a major role during the design process, and humans come of-
ten in contact with surfaces made of fabric, I combine the integration advantages of fabric and those
of capacitive proximity sensing electrodes. By conducting a multitude of capacitive proximity sensing
measurements, I determine the performance of electrodes made by varying properties such as material,
shape, size, pattern density, stitching type, or supporting fabric. I discuss the results from this per-
formance evaluation and condense them into e-textile capacitive sensing electrode guidelines, applied
exemplary on the use case of creating a bedsheet for breathing rate detection.
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Zusammenfassung

Assistenzsysteme finden sich in den unterschiedlichsten unserer Lebensbereiche wieder. In einigen
ist es schwer diese wegzudenken. Wir kommen mit ihnen unweigerlich in Berührung wie z.B. beim
Autofahren, bei der Selbstoptimierung mit Hilfe der Smartwatch oder in industriellen Sicherheitsan-
wendungen. Sie unterstützen uns, um Komfort und Sicherheit zu bieten, durch die Beobachtung und
die Kontrolle über die Situation – ggf. um unerwünschte Situationen vorzubeugen. In Deutschland
verbringen Erwachsene etwa zwei Drittel ihres Tages im Bett, im Bürostuhl und im Auto - die Zeit zu
Hause auf der Couch nicht mit eingerechnet. Während dieser Aktivitäten genießen wir den Komfort,
den uns diese Orte bieten, insbesondere durch die weichen, anpassbaren und flexiblen Oberflächen.

Die Vorteile gekrümmter und flexibler Oberflächen finden sich in immer mehr Smarten Produkten
und Anwendungen wieder, wie beispielsweise faltbare Handys, ausrollbare Fernsehen oder navigierende
Jacken und Rucksäcke. Diese prominenten Beispiele aus Googles Project Jacquard wie die Levi’s Jacke
oder die smarten Rucksäcke von Saint Laurent und Samsonite demonstrieren, wie sich durch die zusät-
zliche Ausstattung von Textilien mit Sensoren, neue Möglichkeiten zur Interaktion und Bereicherung
von Alltagsaktivitäten ergeben.

Die Ergonomie und Anpassbarkeit flexibler Oberflächen bieten uns maximalen Komfort und trotz-
dem rücken sie selten in den Fokus von Anwendungen in intelligenten Umgebungen - den Smart En-
vironments. Einige Anwendungen nutzen die Vorteile flexibler Oberflächen, und manche statten feste
Oberflächen aus, doch noch wenige nutzen die flexiblen Umgebungsoberflächen mit denen Menschen
in Kontakt kommen, trotz der langen Zeit die wir uns damit umgeben. Dies rechtfertigt eine detailliert-
ere Betrachtung und einen tieferen Einblick in den Prozess der Gestaltung von unauffälligen Assisten-
zanwendungen.

Diese Arbeit präsentiert Fortschritte in Bereich der flexiblen Smart Environments Anwendungen
indem sie (1) durch neuartige Anwendungen das Spektrum der Assistenzanwendungen erweitert, (2)
Entwicklern ein Tool zur Verfügung stellt um den Entwicklungsprozess auf der Ebene des Sensorlay-
outs zu unterstützen und (3) handlungsbefähigende Informationen bietet zur Integration von Sensoren
mit den umgebenden Materialien.

Es gibt bislang sehr wenig Assistenzanwendungen, welche flexible Oberflächen zu intelligenten
Umgebungen machen, also Flexible Smart Environments Anwendungen gestalten. Dementsprechend
nutze ich dieses Potential und leiste durch folgende Beiträge eine deutliche Erweiterung des Anwen-
dungsspektrums: (1) Dekubitus Prävention durch das Monitoring von Liegepositionen durch ein intel-
ligentes Bettlaken, welches Liegepositionen erkennt [RGPK14, RGPK17], (2) Prävention von Rück-
enschmerzen durch die Erkennung von Sitzposen mittels eines intelligenten Stuhls [RBKK19b] und
letztlich (3) eine Sitzposen und Emotionen erkennende Couch. Diese Beiträge beschreibe ich haupt-
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sächlich in Kapitel 3. Weitere Anwendungen ziehen sich auch durch Kapitel 4 und 5 um die Anwen-
dung dort vorgestellter Beiträge zu verdeutlichen: eine Liegepositionen erkennende Bettdecke, sowie
eine ihre Form erkennende Jacke.

Assistenzanwendungen, oder Anwendungen im Bereich Mensch-Maschine-Interaktion, folgen in
ihrer Entwicklung dem iterativen Prozess der Hardware- und Softwareanpassung ihrer Komponenten,
um schlussendlich die erwünschte Funktionalität und die erwünschten Eigenschaften sicher zu stellen.
Dieser iterative Entwicklungsprozess verbraucht viele Ressourcen wie Zeit und Arbeitskraft. In der
Robotik sind bereits Simulationstools im Einsatz, welche die Ressourcennutzung optimieren. Auf
ähnliche Weise können bei der Entwicklung von flexiblen Smart Environment Anwendungen solche
Werkzeuge zum Einsatz kommen um Entwicklungszyklen zu verkürzen, insbesondere die kostenin-
tensive Entwicklung von prototypischer Hardware. Zudem möchte man wissen wie gut ein System
funktioniert bevor man die Hardware vollständig aufbaut und die Software dazu programmiert. Im
Kapitel 4 adressiere ich diese Hürden durch folgende Beiträge: (1) die Entwicklung eines Simula-
tionstools [RHvW∗18], welches Hilfestellung leistet bei der Identifizierung der Anzahl von Sensoren
und deren Platzierung um gezielte Entscheidungen zum Design der Anwendung zu treffen und (2)
eine Untersuchung mit Hilfe des Simulationstools um herauszufinden inwiefern Expertise beim En-
twicklungsprozess von flexiblen Smart Environment Anwendungen einen Vorteil bietet gegenüber der
Anwendungsentwicklung mittels Intuition [RBKK19a].

Durch die Weiterentwicklung von Materialien eröffnen sich neue Möglichkeiten in der Sensortech-
nologie. Durch die Verschmelzung mit den Umgebungsmaterialien sind e-textiles besonders gut geeignet
in der Umgebung des Menschen genutzt zu werden, sowie auch um Daten und Informationen zu gewin-
nen. Zudem können sie als Elektrode eines kapazitiven Sensors genutzt, die Präsenz von Menschen
berührungslos, auf Annäherung erkennen. Die Integration von e-Textilien als Elektroden kapazitiver
Sensoren in Stoffen bietet viele Herstellungsmöglichkeiten. Die strukturierte Untersuchung des Ein-
flusses der verschiedenen Eigenschaften wurde noch nicht durchgeführt. Meine Beiträge in Kapitel 5
untersuchen die Leistungsfähigkeit der Elektroden abhängig vom Material, der Größe, der Form, des
Nahtmusters, der Musterdichte, der Elastizität und der Art des Stützstoffes [RSBK15,RBKK19b]. Die
Ergebnisse statten Entwickler mit einer Entscheidungsbasis aus, um für ihre Anwendung das geeignete
Elektrodendesign zu gestalten.
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1. Introduction

"A smart environment is a small world where all kinds of smart devices are continuously working to
make inhabitants’ lives more comfortable" [CD04]. While the first term smart refers to intelligent and
can be described as having the ability to autonomously acquire and apply information and knowledge,
the second term, environment, refers to the surroundings of humans. This thesis brings into focus these
two essential terms of the field of Smart Environments, for which the inhabitants and their comfort
achieved by the assisting surrounding is of utmost importance.

The scientific field of Smart Environments has been thriving, fueled by advances in the fields of
Electrical Engineering and Computer Science allowing for various capabilities of computing devices
and interfaces to become part of our daily life. People are making use of these technologies and
experience the limitations in terms of interaction and unobtrusiveness. To overcome these limitations,
application designers are confronted with the challenge of adapting application design work-flows. It is
imperative to design applications with a human-centred focus. The challenge is to combine these two
main areas, such that unobtrusive, helpful systems, offering just the needed support are realized.

Unobtrusiveness is crucial, as Mark Weiser has put it in his famous article [Wei99]: "The most
profound technologies are those that disappear. They weave themselves into the fabric of everyday
life until they are indistinguishable from it." The goal is to seamlessly integrate sensing devices into
the environment until they become a part of it. Since then, many applications were created. These
are increasing the comfort of their users through equipping every-day objects with sensors, making
them ’smart’ e.g. smart watches, smart TVs, smart scales. What can be observed, is that most of
these smart objects as part of a smart environment are rigid. They have sensors attached to them
or integrated into them. However, surfaces with which users come in contact within their homes or
their working environment are flexible, such as the cushion of the office chair, the couch, or the bed.
This group of objects is less present, since seamlessly integrating sensors into them is a challenge.
However, as sensing technologies evolve, objects which were initially rigid develop to a bendable or
completely flexible form e.g. smartphones or large screen TVs. From the beginning of the TV, it has
changed his form factor significantly, getting flatter and flatter and even getting curved and foldable
like a poster [Ver]. These objects provide the possibility to integrate sensors into them, leveraging the
flexibility and bendability of objects.

This thesis is built around two main paradigms. The first is that advantages of flexible and bendable
surfaces must be exploited, in order to empower the Smart Environment with the ability to adequately
assist its inhabitants. The second is that principles to easily build and design applications have to be
adapted. Not only are there new technologies used to build these applications, but these technolo-
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gies need to be explored in their functionality, the ability to seamlessly integrate as well by exploring
possibilities of easily adapting the technology for different use cases.

1.1. Motivation

Assistive systems are widespread throughout different areas of our lives, In some of them it is hard to
imagine the live without them. We come in touch with them during different activities such as while
driving a car, self-monitoring through wearables such as smartwatches - towards the Quantified Self -
or by being cared for by a robot. These assistive systems offer benefits and support through monitor-
ing, controlling and therefore preventing undesired situations. While driving a car, the car has different
functions such as parking assistance, the lane assist, speed limit detection, or emergency brake assist.
These functions add comfort and safety, such that longer drives are possible in a safe manner. In con-
trast, smartwatches offer mostly comfort functions, such as reminders, call and messaging, activity
detection or sensing of physiological parameters. Especially the activity detection offers a lot of func-
tionalities such as step counting, sport type detection and sleep detection. These systems offer already
good usability and are well integrated into the users’ surroundings.

Adults in Germany spend on average 8 hours 25 min per day sleeping [Sta02], about 7 hours per
working day working [Eur19] and about 1 hour commuting [Sta16]. Considering that roughly 50 % of
the working population is working in offices, a significant number of people are spending their time
at work sitting in the office chair, during commuting sitting in a car or train seat and at night sleeping
in beds. This total of about about 16 hours and 25 minutes represents about two-thirds of a day, not
counting the amount of time which we use media, where we mostly are sitting on a couch or chair.

These surfaces we come in contact with are built and adaptable to human use and maximize comfort.
They have in common that they are bendable and flexible, offering us as much comfort as possible.
Nonetheless, they are not at all in the focus when thinking of Smart Environment applications. Very
few applications leverage these flexible surfaces. Examples are sensors attached to the body such as
presented the works iSkin [WLB∗15], Tacttoo [WGS18], PhysioSkin [NKK∗20], or sensors attached
to clothing such as Zishi [WTC∗16] or Project Jacquard [PGF∗16]. Other applications for Smart
Environments equip rigid surfaces such as walls, bathtubs and furniture such as chairs and beds with
sensors to enable interactions and human activity recognition [ZYH∗18, WHBS16, HSH13, BFW15,
DBM14]. While these are examples of smart applications worn on or around the body or integrated
with rigid surfaces, the time spent surrounded by flexible surfaces justifies taking a deeper look at
leveraging these and creating unobtrusive applications.

Capacitive sensors are very well suited to be integrated into materials since their sensing capability
is not disturbed by hiding the sensor inside a non-conductive object. This capability makes them
especially interesting for applications where humans interact with their environment and the sensors
can be hidden behind materials or are an integrated part of the material itself.

The research in the area of shape changing interfaces is developing a lot, shown by the numer-
ous applications around flexible objects, which are extended to serve as interfaces [SSH∗17, WS17b].
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However, flexible Smart Environment applications are scarce as presented in Botanicus Interacticus
[PSLS12], where everyday objects like e.g. a plant’s leaves are used as interaction interfaces or RESi
creates textile interfaces such as an interactive area of a couch, which serves as remote control [PPP∗18].
All these applications were specifically designed for a specific use case. In order to minimize effort
when designing flexible Smart Environment applications portability of technology as well as fast pro-
totyping are important. One would need a tool to support and be adapted to flexible Smart Environment
applications. In the area of robotics, there are a few simulation tools available for creating applications,
however, they are not suited for flexible use cases. Thus, a tool is needed to support and shorten the
design process of flexible Smart Environment applications such as where to put the sensors, and how
many sensors to use.

Additionally, to the factors such as number and location of sensors determined during the applica-
tion design process, the properties of sensors are crucial. While new materials facilitate new sensing
capabilities a multitude of properties has to be explored. This is also the case for e-textiles used as
capacitive proximity sensing electrodes, especially since e-textiles are easily available for purchase and
are especially suitable for flexible Smart Environment applications, e.g. in FabriClick where buttons are
integrated into fabric by embroidering a 3D printed structure [GAGdR∗20]. Knowledge regarding ca-
pacitive proximity sensing with e-textiles is limited, even though there are several existing applications
especially in fashion and functional clothing where textile sensors are detecting postures or physio-
logical parameters. Even though the use of e-textiles is widespread no structured analysis regarding
proximity sensing performance exists.

1.2. Research Challenges

In the previous section I have outlined several gaps in the research around flexible Smart Environments
applications. In order to fill-in some of these gaps, I identified three research challenges, which I ad-
dress in this work. The challenges follow a top to bottom approach. The first research challenge starts
from a high perspective, aiming to depict the potential of applications built-in into flexible surfaces.
The second challenge is on the design process of flexible applications, addressing the need for tools to
effectively design and build these types of applications. Finally, the third challenge investigates the suit-
ability and performance of capacitive sensing electrodes for flexible Smart Environment applications.
In the following, I will address and describe each research challenge in detail.

(1) New flexible Smart Environment applications: Developing assistive applications as part of
flexible Smart Environments addresses a sedentary lifestyle, where we spend about two-thirds of a day
sitting or lying, as well as our need for comfort and monitoring and preventing health related issues.
Currently, most Smart Environment applications are built-in into rigid surfaces. Since we mostly prefer
comfortable chairs, beds or any type of soft and flexible object, the first research challenge is the design
of new assistive applications, leveraging these kinds of soft objects. These new applications show the
potential in terms of a Smart Environment fully supporting humans - just enough to empower them.
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(2) New design tools for flexible Smart Environment applications: Assistive applications, or ap-
plications in the field of HCI are generally designed by adapting hardware and software components
to achieve the goals of a specific use case or set of use cases. This iterative design workflow of an
application consumes resources in terms of time and money. In some fields, such as robotics, simu-
lation tools which help minimize the effort of creating applications exist. Similarly, when developing
flexible Smart Environment applications, such tools could be used to shorten the development cycles.
Especially relevant is the costly development of hardware prototypes, which would need to be adjusted
throughout the development cycles. A tool which would support the process of choosing the suitable
number of sensors and their position in the environment would greatly advance the cause.

(3) Suitability and performance evaluation of e-textile capacitive electrodes: Capacitive sens-
ing electrodes are especially well suited to be integrated into the humans surrounding environment.
They sense their proximity and enable a plethora of applications from interaction to measuring health
parameters. Even though capacitive sensors are very widespread through the ubiquitous use of smart-
phones, and the use of e-textiles as capacitive sensing electrodes picks up, there is a lack in knowledge
around the performance influencing properties. By filling-in these gaps, the available e-textile creating
techniques can be used appropriately, achieving the desired goal of balancing performance and costs.

1.3. Contributions

Following the research challenges presented in the previous section, in this section I describe how my
contributions in this work address these research challenges. The field of flexible Smart Environment
applications sets the context to my contributions: (1) new assistive applications; (2) a new design tool;
(3) e-textile capacitive electrode performance evaluation, as illustrated in Figure 1.1. The contributions
presented lead from a top view, at the level of uncovering new applications leveraging soft, flexible
surfaces, to the middle level, where the design process of creating applications is supported by a sen-
sor layout simulation tool, to the bottom level, where the specific sensor performance properties are
evaluated.

(1) New flexible Smart Environment assistive applications: Humans spend two-third of their
time sitting or lying on a chair, bed, or couch, which offer comfort through their soft and flexible
surfaces. Most of the Smart Environment applications are embedded into rigid surfaces - ignoring the
potential of applications embedded into flexible surfaces. This untapped potential has led me to creating
several new assistive applications using these flexible surfaces and thus extending the design space of
flexible Smart Environment assistive applications. This contribution comprises diverse prototypes in
different application areas: (1) decubitus ulcer prevention by monitoring the bed posture through a
bed sheet [RGPK14, RGPK17]; (2) back pain prevention by sitting posture monitoring and exercise
tracking through a chair [RBKK19b]; (3) differentiating emotions through sensing movements on a
couch [RBK17, RJBK18].

(2) New design tools for flexible Smart Environment applications: Similarly, as developing work-
flows and prototyping tools are needed to ensure the widespread application of emerging technologies
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Design of flexible 
applications

Spectrum of 
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Layout 
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Electrode 
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Figure 1.1.: Contributions to the field of flexible Smart Environment application design: (1) new flexi-
ble Smart Environment assistive applications; (2) new design tools for flexible Smart Envi-
ronment application development; (3) performance evaluation of e-textile capacitive prox-
imity sensing electrodes.

- flexible Smart Environment applications need these kinds of aiding tools, which help reduce the
resources needed for the creation of different applications. Especially the iterative prototyping of hard-
ware consumes resources such as development time and hardware costs. Thus, I have addressed this by
contributing: (1) a simulation tool [RHvW∗18], which aids in identifying the number and placement
preferences for flexible Smart Environment applications, in order to ensure a specific functionality
goal; (2) an investigation on whether human intuition versus human expertise results in better designs
of flexible Smart Environment applications [RBKK19a].

(3) Suitability and performance evaluation of e-textile capacitive electrodes: New sensing ca-
pabilities are rendered possible by using materials with new capabilities. Such materials as e-textiles
are especially well suited to be integrated into the sensing technology embedding materials. Thus,
e-textiles are predetermined to be used while creating flexible Smart Environment applications. As
there are many manufacturing possibilities for the electrode-material integration, the creation of these
sensing and interactive surfaces has not been analysed in a structured way, with regards to the capaci-
tive proximity sensing performance. My contributions regarding the performance evaluation in relation
to electrode material, size, filling degree, stitching type, shapes, stretching, and support materials are
filling-in the gaps around the performance influencing properties [RSBK15, RBKK19b]. This struc-
tured evaluation and the resulting findings support application developers in choosing the best suited
electrode design for their capacitive proximity sensing application.
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1.4. Structure of this work

After this initial introduction, motivation, presentation of research challenges and contributions, the
rest of this work is organized in one chapter where the related works are presented, Chapter 2, and then
three additional chapters, Chapters 3, 4, 5, corresponding to the three major research challenges and
the according contributions presented.

CHAPTER 2 presents the essential background and related works. The background information fo-
cuses on capacitive proximity sensing, a technology which is applied in Chapter 3 and is focused on in
Chapter 5, where the capacitive sensing electrode properties are evaluated. The related works present
applications in the field of HCI from coarse grained to fine grained groups of applications, introduc-
ing tangible interfaces, shape changing interfaces, flexible applications in general, Smart Environment
applications in general, and finally flexible Smart Environment applications.

CHAPTER 3 proposes possible assistive flexible Smart Environment applications. These leverage
different technologies with a focus on capacitive proximity sensing, because it has the main advantage
that it is easily embedded into materials and senses the presence of humans, which is especially good
for assistive applications. These applications focus on the areas where humans spend a lot of time
performing sedentary activities: (1) in bed, preventing skin ulcers by detecting the lying position; (2)
sitting on the office chair, preventing back pain by supporting the user to include brakes and perform
exercises on the chair; and (3) on the couch, by supporting relaxation through recognizing the emotional
state by tracking lying and sitting positions.

CHAPTER 4 outlines the simulation framework for designing flexible Smart Environment applica-
tions with the focus of textile shape detection. This includes the description of the developed simulation
framework, embedded in an application design workflow. This aiding tool is validated by comparing
the outcome of the virtual application against the real-world prototypic implementation. The exemplary
use case is the lying posture detection performed by integrating sensors in a bed cover. Furthermore,
the role of intuition versus experience in application design is investigated by using the simulation
framework. The designs of developers with various levels of experience are virtually evaluated.

CHAPTER 5 discusses the influencing properties on the performance of electrodes used for capacitive
proximity sensing. After an initial evaluation of electrode materials and measurement modes, the per-
formance of e-textiles in capacitive proximity sensing is discussed based on measurements performed
with different influencing factor changes such as material, shape, size, pattern density or stitching type.
These electrode measurements are compared and discussed. The findings are further consolidated on
the exemplary use case of designing a bedsheet which can detect the breathing rate and the design of a
sitting cushion for back pain prevention.

CHAPTER 6 concludes this work by summarizing the presented contributions and identifying poten-
tial areas of future research.

The three parts of the appendix include: a list of publications in Appendix A, a list of supervised
Master and Bachelor theses in Appendix B, and a short CV in Appendix C.
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This chapter presents the background information and the relevant contributions from the state of the
art of the topics handled by this thesis. First, I introduce the field of Smart Environment and assistive
applications, starting from wearable applications to general assistive applications. Second, I focus on
applications in the domain of HCI, which already use flexible surfaces. In these two parts I present
applications using different sensor types and application domains, which lay the base to my own ap-
plications contributed in Chapter 3. In a third step, I collect the relevant work which addresses the
application design process in general, which creates the basis for the contributions regarding the flexi-
ble Smart Environment application design work-flow presented in Chapter 4. Subsequently, I explain
ground notions, which serve for better understanding the contributions of this thesis in Chapters 3 and
5. Finally, I will present the existing contributions on how to create and integrate capacitive sensing
capabilities into flexible surfaces, showing the need of contributions presented in Chapter 5.

2.1. Smart Environments and assistive applications

The field of Human-Computer Interaction (HCI) is very vast. It includes a multitude of multidisci-
plinary research areas, which are concentrating on its different aspects e.g. sensorial experience, natural
user interfaces, multimodal interaction, and ubiquitous computing. These research fields are overlap-
ping and not neatly separable. They are being described using different keywords such as: Tangible
User Interfaces, Wearables, Shape Changing Interfaces, Affective Computing, Smart Environments,
Active and Healthy Living, Exergames, Natural Language Processing, Ambient Intelligence, etc.

In the context of this thesis most relevant is the research area of Smart Environments. The terms
Smart Environments, Intelligent Environments, Ambient Intelligence or Assistive Technologies have in
common that they refer to devices connected through a network, possibly interacting with a user, with
the goal of supporting her to carry out daily activities [CD04]. These devices are usually part of the
surrounding environment, embedded tightly into it e.g. Fisher et al. paint Smart Furniture as component
of the Smart City [KMS∗19]. This relevance of smart solutions, its drive towards ubiquity, and its
early start towards market availability is presented by the state of the art described by Frischer et al.
[FKM∗20]. The direction of the evolution of this field is foreseen by Ben Shneiderman, who proposes
in his recent work three ideas for Human-Centered Artificial Intelligence, which revolve around the
balance between the level of automation and the level of human control, the shift from emulating
humans to empowering them through their use of tool-like appliances and creating trustworthy systems
throughout the different levels of governance [Shn20].
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Due to the actual and multidisciplinary work in the field of Smart Environments, it is not possible
to conclusively list all applications that are relevant to this work. Many of the applications are already
collected by surveys, books or conference and journal publications such as CHI, IMWUT, Intelligent
Environments, Ambient Intelligence, etc. However, in the following I will introduce relevant work from
selected areas such as Physiological Aensing or Human Activity Recognition by describing exemplary
applications in the domain of Smart Furniture or Wearables.

The field of interaction with devices has experienced a wast push by the widely adopted devices,
which offer new capabilities, such as smartphones, smartwatches, virtual and augmented reality glasses,
or smart speakers. The according interaction practices with the computing devices have been rethought
and new alternative input methods created such that they are also accessible for people with motor
impairments. For example, Cicek et al. have developed a head-tracking input mechanism for mobile
devices using the front facing camera for which no calibration is needed [CDF∗20]. For smartwatches,
Klamka et al. have extended the limited input and output capabilities of the screen of the watch by
extending the screen touch display to the strap of the watch [KHD20]. In some contexts user intent is
explicitly required. Thus, Xiao et al. have proposed to use the gyroscopes of a smartphone to receive
data by physically touching a emitting surface [XMH20].

Works of Yu-Chun Chen et al. and Perera et al. take the pure interaction with the device further by
taking the human and the context in which the device is operated into account. Thus, interactions for
Augmented Reality devices use the sensor data and context to reduce interaction ambiguities [Per20].
The suitability of an existing set of gestures for smart earpieces or augmented glasses is questioned by
Chen et al. in order to uncover gesture design rationales and preferences [CLH∗20]. In homes where
the density of IoT devices is high e.g. smart lights, speakers, or mobile devices, the usage of voice as
input is a natural modality. The devices are capable to interpret their context by detecting if they are
targeted by a voice command or not. For this, they not only listen to the voice input, but additionally
detect the direction from which the voice is coming [AKGH20]. Through this, a more intuitive speech
interaction is created.

Not only the interaction with and the context of mobile devices are subject to new developments. Ca-
pabilities of objects are extended with the use of information and communication technology. Hence,
Beruscha et al. have proposed and evaluated a multitude of input modalities for the interaction with
a smart cooking pan in order to understand the preference of potential users with regard to interaction
concepts [BMS20]. Objects are also created from scratch with touch sensing capabilities. Such exam-
ples are the 3D printed objects by Tejada et al. [TRBA20]. They print the objects by including tubes
into the object, which lead from the surface to a central air-filled chamber where a pressure sensor is
located. By touching the objects, the outlets of the tubes are blocked, resulting in characteristic air
pressure patterns. Using machine learning techniques, different touch events can be pre-trained and
reused every time the object is printed.

Starting from objects with new capabilities, environments are also equipped with intelligent func-
tionality into Smart Environments. New alternative sensing options arise, which complement weak-
nesses of other sensing technologies, replacing them or fusing the information creating more robust
systems. An example is an assisting system which determines the presence of humans in the room.
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Common systems are based on motion sensors or cameras. Wilhelm et al. propose to leverage the
monitoring of carbon dioxide levels in order to detect the presence or absence of multiple persons
indoors [WJA20].

An especially interesting area of Smart Environment applications is health monitoring. Many of
the existing works address health related issues such as sleep apnea, decubitus ulcers or physiological
sensing. These applications mostly focus on monitoring the state the users find themselves in, by
detecting their executed activities. In a second step the applications support the users by preventing
undesired situations. I differentiate between location-bound and wearable systems. Wearable systems
can be easily transported between locations and are usually worn close to the body, such as on clothing
or on or even inside the body. In contrast, most location-bound systems are integrated into the sur-
rounding environment of the users. Such common objects where users spend a lot of time are any type
of seat, couch or bed, or even extending to parts of the room such as walls, sealing and floor. In the
following, I will present some examples focusing on these environments.

Yousefi et al. have inspected especially decubitus ulcer prevention in hospital or home care settings,
where patients are bound to the bed for long times. They use a pressure sensing mat, with very high
resolution to track the lying posture of the bed occupant [OYF∗11, YOF∗11a]. A system of multiple
units made of air-filled bladders are presented by Brush et al., which can adjust the pressure on its
units by adjusting the degree of air and the tilt of the units [BBTR13]. Using this system Yousefi et
al. implement a proof-of-concept system comprised of the pressure sensing mat in combination with
the actuated modular air bladders mattress, which should serve as automatic decubitus ulcer prevention
system [YOF∗11b], see Figure 2.1. Similarly, Chang et al. created a sensing module based on capacitive
proximity sensing. They place several modules underneath the mattress and detect the lying posture
performing basic exercise tracking for rehabilitation [CCCY14].

Figure 2.1.: Yousefi et al. aim at preventing decubitus ulcers by detecting pressure points and adjusting
these using an bed surface of air bladders [YOF∗11a, YOF∗11b], ©2011 IEEE.

Chairs have also been in the focus of enhancing the environment with new capabilities. They mostly
detect the sitting posture and vital signs and integrate different types of sensors into different parts
of the chair. Martins et al. have similarly to Yousefi et al. equipped a chair with air bladders and
pressure sensors in order to detect and correct the sitting posture by changing the amount of air in
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the bladders [MLB∗13]. Chairs, as well as wheelchairs, were equipped with force resistive pressure
sensors. The goal was to detect the sitting posture [MLGF17, MKF∗07]. From these chairs the level of
interest and the level of activity of the occupant were detected [MP03]. Besides the pressure sensing
chairs, which are quite accurate but costly [MLGF17], capacitive sensing was used in chairs as part of
capacitive pressure sensors or for capacitive proximity sensing [BFMW15, BFW15, KLM08]. Braun
et al. detected sitting postures and animated the users to do exercise during work breaks by attaching
capacitive proximity sensing electrodes underneath the seat cushion, the armrests and in the backrest.
Proto-Chair is a 3D printed morphing public space chair, with the goal to determine how chairs are
used in public spaces [EYK∗20]. By using an accelerometer and a gyroscope as well as a ultrasonic
sensor, it detects sitting styles and the applied load to the chair.

The couch has been less in the focus of enhancements, compared to the works which equipped chairs
and seats with sensors. Kivikunnas et al. have equipped a two-seat sofa with six foot, seat and backrest
capacitive proximity sensors in form of metal foils underneath the cushions of the sofa [KSK∗10].
Similarly, Grosse-Puppendahl et al. equipped a three-seat sofa with eight capacitive proximity sensors
in seat, backrest and armrest [GPMB11]. Pohl et al. use the detected postures of the couch to control
ambient lightning [PHK∗15]. Heikkilä et al. envisage posture and activity tracking throughout the day
by connecting furniture in a network composed of bed, couch and chair [HSK∗13].

Besides Smart Furniture, walls, floors, and ceilings have also been subject to environment sensing.
The main application areas are indoor localization and human activity recognition [ZSP∗95a]. Indoor
localization is especially targeted through pressure, capacitive and electric potential sensing systems
integrated into floor tiles, the floor itself and the ceiling. Paradiso et al. have developed hexagonal
pressure sensitive tiles, which are connected through a self-organizing network structure [RLFP04].
Capacitive proximity sensors were used by the floor tiles developed by Valtonen et al. [KVVV13]. They
used special sensing and transmitting electrodes to assign the foot location to tiles and thus analyse the
walking path. Using passive electric field sensing indoor localization was performed by a grid system
integrated underneath a non-conductive floor [FKvW∗17] or using a setup of six electrodes on the
ceiling [GPDH∗16]. A similar system to the grid electrodes underneath the floor was used to detect
gait by using a capacitive pressure sensing grid inside a mat [MBBN05]. Zhang et al. have proposed
a sensing wall composed of a mutual proximity sensing grid [ZYH∗18]. It can detect touches and
proximity of the user at close distances. By receiving the electromagnetic noise emitted by appliances,
their usage and which type of appliance is used can be determined.

There are other fields of research with different denominations such as Tangible Interaction or
Shape-Changing Interfaces. Each of these are dedicated to a main aspect, focusing on a specific
perspective. In Proxemic transitions, the authors created a prototypical shape-changing table with
interactive projections [GKP∗17]. Gønbæk et al. define proxemic transitions as the process of changing
the aspect of furniture. They design shape-changing furniture for informal workplace meetings, which
intends to change the ways of collaboration in such a setting. Similarly, Perteneder et al. have proposed
a modular set of smart furniture components. By snapping the individual building blocks together, a
personalized piece of furniture is created and can be flexibly adapted to ones needs [PPL∗20].
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Another approach to create interactive objects and surfaces is to spray them with paint and add
through this process the interactive aspect. Zhang et al. use electric field sensing to equip a wide
variety of objects with touch sensing capabilities [ZLH17]. They spray or use a brush to coat objects
with conductive material. Then they attach sending and receiving electrodes to the perimeter of the
surface. By touching the object at a specific location, the electric field changes and the touch location
can be detected. On a larger scale Wessely et al. create interactive surfaces by spraying functional inks
with different layering techniques on variable 3D geometries [WSC∗20]. They prepare cardboard
stencils specifically adapted to the surfaces they spray and add microcontrollers in combination with
conductive paint for interactivity.

Quickly reviewing the presented systems one can observe that both objects and the environment
are provided with additionally functionality by adding sensing capability. In most examples, sensors
are added to rigid surfaces or are hidden behind soft and flexible surfaces. The evolution of creating
furniture which can change in shape and functionality offering different interaction capabilities to 3D
objects, shows how relevant it is to be able to add functionality and interoperability to all kind of shapes
and surfaces.

2.2. Flexible surfaces in HCI

In recent years the interest around the topic of flexible surfaces has risen. This can be also observed
by the rising number of publications on and around e-textiles. Smart Clothing, Shape-Changing Inter-
faces, and other research areas such as Skin Interfaces are ubiquitously present. They guide the public
view towards flexible surfaces such as textiles or skin, made possible by combining development of
new materials and standard manufacturing methods. In the following, I will introduce relevant works
showcasing different flexible materials with the focus on e-textile applications.

Flexible applications are built by integrating sensors into flexible materials, adding on top the sensor
data processing and higher data processing and iterating throughout the process. Ideally, the integration
is that complete that these electronic components are unobtrusive and not distinguishable from the
material itself.

The integration of sensors into the flexible material can occur on different levels. Most of the existing
applications are partially integrated, mostly integrated into the surface. This is due to the challenge that
specific fabrication processes have to be created in order to embed sensors and material in such a
way, that they cannot be distinguished from one another. One such challenge is the integration of the
processing unit and the energy source used for the sensing operation. This challenge is not addressed
by the topic of this thesis.

Flexible applications can be categorized further by considering the distance from the human body
at which the sensors are placed. These can be placed on-body, can be worn close-by or be embedded
in the environment. This thesis contributes mostly to applications in the environment and close to the
body. In the following, a number of applications created on flexible surfaces at different distances from
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the human body such as on skin, wearables, objects, and textiles, using a range of different sensing
technologies are presented.

Most of the works focusing on body-worn systems offer comfort functionality through new ways
of interaction or offer health related functions by monitoring physiological parameters. SkinBot is a
wearable skin-climbing robot, which is capable of changing its position on the human body and thus
capable to gather a wide range of body parameters [DHF∗17]. By exchanging the sensing module,
a variety of physiological parameters can be detected. Comparably, Rovables by Dementyev et al.
presents small robots which are moving on clothes by magnetic wheels. They are autonomous and
can be used to create a self-configuring interface for health sensing, decoration, interaction or dis-
plays [DKC∗16, DHC∗18, KAA∗17]. On-body interaction combines aesthetics and functionality and
is inspired by advances in material science such as Epidermic Electronics [YKL∗13]. Kao et al.
present skin-friendly tattoos. They offer different user interfaces such as touch input, output through
thermochromic color and wireless communication through NFC by attaching gold-leaf tattoos on the
skin [KHR∗16,KJRC16]. Khan et al. propose a time-saving fabrication process for thin and stretchable
circuits for soft interactive devices through inkjet printing [KRKS19]. This work is extended by Weigel
et al. in which they leverage visual and spacial recall advantages of body landmarks [WNOS17]. The
temporary tattoos they use are very elastic and can be strongly curved, offering interaction schemes
such as touch, squeeze or bend and visual output. Very thin temporary tattoos are also proposed by
Withana et al. [WGS18], used in virtual reality applications. Based on this work, Nittala et al present
skin-worn multimodal physiological sensors by using a desktop inkjet printer and commercial materi-
als to create ultra-thin skin-conformal electrode patches [NKK∗20]. In combination with textiles they
create a sports vest that tracks muscle movements and hearth rate. By attaching a temporary tattoo on
the chest area the hearth rate variability is measured. The tattoo also serves as a button. By touching it,
emotions are expressed by sending the signal of the live heartbeat.

Similarly, skin-adhesive techniques are used to attach wires as unobtrusively as possible to the
surface of the human skin, adapting to its bends and stretches. Kao et al. propose to use zig-zag
sewing techniques to manufacture on-skin wiring, demonstrating an lightweight finger tracking sys-
tem [KBL18]. By incorporating circuitry through weaving directly into fabric they explore the advan-
tages textiles offer in terms of patterns, layering and multi-material integration [SOD∗20b, SOD∗20a].
Choi et al. have also presented a tattoo-inspired fabrication of circuits on the body [CRK∗20]. They
propose to skip the step of printing the circuit using an inkjet printed, instead they created a wearable
conductive-ink deposition machine. They demonstrate the printer by printing strain gauge sensors used
for movement and posture detection. The resistance of the conductive paint printed to the body changes
when it is being stretched or bent. Thus a curved back can be detected. When using the conductive
ink as an electric connection to the human skin, the body capacitance can be sensed, and through its
change when touching other objects or persons activities can be detected.

Other types of interfaces for the skin have been proposed by Hamdan et al. They use tiny springs
attached to multi-layered stickers to create tactile patterns such as stretching, pressing, pulling, drag-
ging, and expanding [HWV∗19]. Using the abilities of a thermally reactive hydrogel, which is able
to transition between soft and rigid states, Kao et al. proposes skin overlays for individualized foot
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protection, skin armour or as carpal tunnel splint [KBKS18]. The eyelid has been also in the focus
of Kao et al. as input and output interaction. They propose to use the chemical changing powders,
applied as make-up on the lid, in order to reflect elevated levels of ultraviolet rays, ozone and carbon
monoxide [KNRD17]. By using conductive thread within a multi-layer sticker, similar to the presented
tattoos, eye-blinking is detected [LFC∗20]. Very close to the body, but not glued on the body, Weigel
et al. present DeformWear, a small input device, which can be placed at different body locations with
high resolution pressure, shear and pinch deformation [WS17a].

Flexible objects which are equipped with sensors have also been part of numerous applications.
Such as FlexCase, which is a flexible smartphone case combining flexible sensors and an e-paper dis-
play. This flip cover augments input and output capabilities of the phone such as grip sensing for
mode-switching [RKP∗16]. For generalized prototyping purposes with flexible, curved surfaces De-
mentyev et al. have developed SensorTape, which enables users to intuitively create applications with
various sensing capabilities. Each sensing module is composed of a microcontroller and different sen-
sors which are easily interconnectable and programmable. PrintScreen are flexible displays developed
by Olberding et al., which are printed on flexible substrates and have unconventional shapes and can be
bent, rolled, and folded [OWS14]. Folding and bending objects were created by Withana et al. They
embed into thin objects printed circuits which detect the deformation [VS17a]. In ObjectSkin every-
day objects are equipped with input and output capabilities by transferring printed electronics to the
3D object. Groeger et al. design the print in such a way that when transferring it using water-transfer
the desired shape is achieved on the 3D surface [GS18]. In a similar manner, interactivity is added to
3D printed objects by adding conductive areas to curved geometry objects [GFWS19]. A laser cutter
is used to very easily create interactive objects which are flexible. Specific patterns are cut into flat
surfaces, such that the surface can adapt to bending and stretching. By adding conductive traces into
the cut pattern, a flexible surface with sensing capabilities is created [GS19]. Through these stretch-
able circuits, applications such as interactive textiles or a stretchable 3D printed game controller were
presented.

Not only conductive inks and 3D printed conductive materials are used to create interactive 3D
deformable objects. By using conductive fabric and thread and exploiting the resistivity change with
applied pressure interactive textile interfaces are created. Zishi, developed by Wang et al. and Social
Textiles, developed by Kan et al. are two examples of textile wearables which offer functions such
as rehabilitation support for the back posture or offer ice-breaking interaction possibilities [WTC∗16,
KFA∗15]. Further, Enokibori et al. have created a vest with the role of a wearable spirometer or
used e-textile to detect the bending angle of an arm [EIS∗13, EM14]. For foot shape detection and
dedicated shoe creation, Zhang et al. have created a stretch-flexible sock [ZCG∗20]. Two textile
pressure sensing systems are presented by Parzer et al.: one where two sensing surfaces are separated
by a buffering surface [PSV∗17,VPS18] and another system, where the buffering surface is not needed
and the two orthogonal conductive surfaces are combined to one. Using the second technique has
the advantage, that common manufacturing processes can be used to create the fabric. Using both
techniques, the authors present different interactive prototypes in clothing such as pressure sensing
socks or bending sensing sleeves [LPP∗16, PSV∗17], bags or furniture [PPB∗16] or covers made of
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resistive yarn used as pressure sensor [PPP∗18]. Wu et al. present an antenna sewn out of conductive
thread into fabric for touchless hand gesture detection [WQC∗20]. In Project Jacquard, Poupyrev et al.
present touch-sensitive textiles produced by standard manufacturing processes, which can be adapted
in color, material, and thickness [PGF∗16]. The conductive material is integrated into a biker jacket
and backpacks. They offer the functionality to control ones smartphone and thus, assist the wearer to
perform his daily activities.

Many different applications are created with e-textiles. Examples go so far as monitoring the diges-
tion or the eating habits or creating embedded speakers. Baronetto et al. have presented a smart T-shirt
with attached small microphones in the area of the abdomen. By listening to the digestion sounds the
different digestion phases were differentiated with the final goal of digestion monitoring [BGF∗20]. By
using a wearable cap with integrated textile pressure sensors, the eating and snacking habits of persons
are detected [ZL20]. With Sonoflex, Preindl et al. present flexible speakers embroidered exemplary
into a jacket or in a beanie for notification purposes. They use an embroidery machine in combination
with a thin wire to create the coils [PHP∗20]. In order to create these smart textiles, many dedicated
manufacturing steps are needed in combination with expert-knowledge. Klamka et al. present a rapid
prototyping kit, which enables smart clothing designers to create the desired functionality more easily.
For this, heat-activated adhesive materials are used which can be easily ironed-on to create custom
interfaces [KDS20].

The plethora of applications is further extended by possibilities such as augmenting textiles with
electrical functionality. By applying different manufacturing steps, using only readily available tools,
textiles are enriched polymers applied in specific patterns enabling the dedicated creation of textiles
with sensing capabilities [HPWT∗20]. Using elastic therapeutic tape attached to the skin, the movement
detection and touch interaction is possible. Another possibility to create smart textiles with dedicated
functionality is to use stitching types to knit the desired patterns and ability into the material. Hofmann
et al. have presented a fabrication tool, which generates the machine-knittable program [HMH20]

While smart clothing has been in the subject of many recent works, adding interactivity to objects
or to measure physiological data or behavioural data to Smart Environments such as Smart Furniture
is not less relevant. The textiles of which bedsheets and chairs are made of have been subject to fewer
works. Liu et al. present a bedsheet which is capable of fine-grained pressure sensing and is flexible.
It is based on e-textile material where yarn is coated with a polymer, achieving high resistivity. The
bedsheet is composed of three layers: two layers of textile with conductive stripes and one e-textile
polymer coated surface. By applying pressure on the two orthogonally overlapping conductive stripes,
the resulting lying posture image is created [LXH∗13, LHXS14]. They use this system for sleep stage
detection, lying posture detection and rehabilitation exercise tracking [HLX∗14]. Similarly, Onose et
al. use smaller parts of textile to create pressure sensing surfaces for educational purposes, by training
carers to understand where pressure applies to different body parts [OHEM18]. Their sensing system
is created by crossing conductive fibers. By measuring the capacitance change only one textile layer is
needed. Onose et al. also add this textile to certain pressure prone surfaces in clothing [OEM17].

In addition to beds, chairs were also equipped with force sensors and binary sensors made of con-
ductive fabric, such as the lounge chair by Hurst et al. [HZAF05]. According to the time of day, and
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detected sitting posture, the lounge chair provides feedback and alerts [FDZ∗05]. Conductive fabric
electrodes are placed on the armrests, where occupants would likely expose their skin, and were used
to measure the hearth rate, like through an EKG [GSB14]. Additionally, strip force sensors were used
to detect the respiration rate at the back of the chair.

2.3. Designing process of applications

The design process of application is described throughout the related work from different perspectives.
Tränkler et al. have described a general sensing system design process, which is very close to the
manufacturing process [TR15]. Zhang et al. present a paradigm on how to design sensing systems in
the domain of health monitoring [ZA05]. Choosing an even more specific domain, Hesselmann et al.
describe an iterative process for designing gesture-based interactive surfaces [HB10b]. Cherenack et al.
describe the creation process of smart textiles in terms of hierarchy of a setup [CvP12], while Steimle
et al. describe challenges and their fabrication pipeline for on-body sensors [NS16].

Figure 2.2.: Design concept for sensors and sensor systems after Tränkler et al. [TR15].

Figure 2.2 describes the sensor and sensor system design process presented by Tränkler et al. in
four steps, where three of them are iteratively repeated. The design of a sensor system starts with
the requirements collection and the boundary conditions. The specifications of the sensors system are
deducted from these. The three next steps relate to the creation of the sensing system concept. Different
sensing structures, sensors, simulation models and signal processing models can be selected. In the
feasibility study rough system structures are evaluated and tested in their suitability. In the next step
different technology aspects and signal processing methods are analysed through simulation towards
the system performance. Finally, if the sensor system properties optimally suit the requirements and
boundary conditions then the design process ends.

Zhang et al. consider the sensing systems they design to be "highly complex, comprising intertwined
engineering, natural and human elements" [ZA05]. They see system design as steps towards controlling
various uncertainty mechanisms such as lack of insight into the application problem, data capturing,
experimental uncertainty and maximizing benefit vs. cost. Figure 2.3 (left) shows the paradigm for a
health monitoring system with the seven influencing uncertainties directly affecting the choices regard-
ing sensor type, sensor density, sensor location, communication and network architecture.

17



2. Related Work

Sensor Type
Sensor Density
Sensor Location
Communications

Network Architecture

Sensing System

Health Monitoring and 
System Identification

Modeling

Experiment

Data Processing

Parameter Estimation

Validation /
Correction

Simulation

Utilization

Task Analysis. Understand the context of use of final users. 
Define high level tasks and user requirements, gather
constraints.

Visualizations. Choose visualizations based on tasks
and type of objects. Brainstorm and collect feedback
from users.

Functions. Define necessary functions to
manipulate visualizations (e.g. rotate, scale, 
translate).

Gestures. Conduct user studies and derive intuitive 
gestures to trigger identified functions.

Evaluation. Evaluate the system to detect flaws resulting
from previous steps. Return to previous steps and adapt
them as necessay.

1

2

3

4

5

Figure 2.3.: Health sensor system design paradigm by Zhang et al. [ZA05], (left); Design concept for
gesture-based interactive surfaces after Hesselmann et al. [HB10b], (right).

Figure 2.3 (right) shows a five-step process formalizing the design process of gesture-cased, visual
interfaces for interactive surfaces. These are highly visual systems, which are controlled by touches
or gestures on surfaces. The first step is the task analysis, which encompasses the formulation of the
user’s goal and defining the requirements and constraints. In a second step the technically suitable
visualizations are chosen and gather feedback from final users. Usually the visualizations are not static.
For this purpose, the needed functions to manipulate the visualizations are defined and derived in a
user-centric process. These defined functions are triggered by gestures, which were defined through
user studies. Finally, the complete system is evaluated in order to detect flaws. If one flaw is detected,
the previous steps are repeated.

Figure 2.4.: Fabrication pipeline for on-body sensors by Steimle et al. [NS16].

Even more specifically, Steimle et al. have set up a workflow for the creation of on-body sensors
[NS16]. Their work-flow is made of four steps: digital model acquisition, sensor design in hybrid
design environment, sensor fabrication and spatial positioning of the sensor on the body. These steps
are shown in Figure 2.4. The digital model acquisition refers to acquiring the individual body geometry.
On this body part, the design of the interface can be directly sketched, and more intricate designs can be
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performed on 3D digital models. After this hybrid design the sensor is created by automatically creating
the masks for screen printing. Finally, the sensors are applied on the body. During these fabrication
steps, several challenges have to be overcome such as a robust and accurate geometry acquisition,
sketching and designing for different body characteristics and precise spatial positioning of the sensors.

These four different approaches of designing a sensor system have commonalities, meaning that the
four step on-body sensor pipeline can be mapped to some of the steps presented in the design concept of
Tränkler et al., e.g. the digital model acquisition serves to gather a set of boundary constraints, setting
the characteristics of the sensor system. Equivalently, the task analysis from the design concept of the
gesture-based interactive surface references the requirements, the constraints as well as the context of
use. Most of these models also have in common, that they explicitly state that an iterative process is
foreseen.

For the area of Smart Environments, or for Ambient Sensing, there are no specific design processes
to be found to the best of my knowledge. Moreover, the general design approaches by Tränkler et al.
and Zhang et al. can be applied to the specific field of smart environments, and a process can be created
dedicated to technologies suitable for creating applications utilizing flexible surfaces.

2.4. Capacitive sensing and flexible surfaces

The applications presented in Section 2.2 show the variety and the relevance of applications in which
humans interact with flexible surfaces or objects. Different kind of sensing principles are used such as
acceleration, resistance, time of flight etc.

In this variety of sensing principles, electric field sensing, more specifically capacitive sensing, was
used in multiple instances to add touch detection capabilities. This sensing principle offers multiple
advantages in the possibilities to design flexible applications. Especially the ability to measure the
human presence remotely, the possibility to separate the electrode from the sensor circuits as well as
remaining hidden behind non-conductive surfaces facilitates many possible flexible applications.

In the following I will explain the working principle and the features of electrical field sensing.
Subsequently, I will present how related works leverage capacitive sensing when creating applications
using flexible surfaces. Finally, I present the works focusing on presenting guidelines on how to design
capacitive sensing electrodes.

2.4.1. Capacitive sensing background

Disappearing in our environment and into devices we use every day, capacitive sensing has become
ubiquitous. Embedded into touchscreens and touchpads we use them daily while operating laptops,
phones or tables. Even more hidden, they surround us in form of buttons, such as in elevator buttons,
or consumer electronics devices.
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2.4.1.1. Capacitive sensing in nature

In nature the principle of detecting electrical potential changes developed in animals which were ex-
posed to harsh environments [Hei77]. Such a limitation is for example the lack of sunlight which occurs
in deep waters on in water in caves. There are species of fish, which have learned to sense the capaci-
tive coupling to their environment by creating their own electric field [BLL06]. They produce electric
signals with a specialized electric organ and sense it through the epidermal electroreceptor organs.

In Figure 2.5 the electric organ is placed at the back of the fish and the epidermal electroreceptor
organs are distributed over almost the entire body surface. This electric system is involved in different
behavioral functions: prey-hunting, passive electro-location, active electrolocation, species recognition,
and intraspecific communication. Passive electrolocation is used by fish which do not have electric
organs, however, are able to perceive electric fields through their electroreceptors. Thus, "sharks and
ray can make well-aimed responses toward live prey, such as flatfish, buried in sand and invisible to the
predator" [Nel05].

Figure 2.5.: Electric field distortions caused by water plants or rocks. Water plants are good conductors,
thus electric field lines are dense. Rocks are isolators and reduce the electric field lines.
[vdE99, Nel05], designed using resources from Flaticon.com.

For active electrolocation an electric organ discharge is performed. It is characterized by its voltage
waveforms between the electrodes on the head and tail of the fish. "Objects are detected by analyzing
the electric images which they project onto the animal’s electroreceptive skin surface. Electric images
depend on size, distance, shape, and material of objects and on the morphology of the electric organ
and the fish’s body" [vdE06].
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2.4.1.2. Capacitive sensing in history

While animals have evolved organs for capacitive sensing for millions of years, human exploitation
started about a hundred of years ago. Using a string electrometer (current measuring device) the mo-
tion of a beating hearth of a frog was analyzed by Cremer in 1907 [Cre07]. By placing the hearth
between two capacitor plates, its capacitance change was observed while the hearth was moving. A
few years later in 1920, Leon Theremin, a Russian physicist, invented the first electronic music instru-
ment, the Theremin. It consists of two capacitive electrodes which create a field with the surrounding
environment. When an interpreter disturbs the electric field by introducing his hands into the electric
field between electrode and environment, the pitch and the volume are controlled. One of the elec-
trodes is connected to a circuit influencing sound volume, while the other is connected to a circuit
which changes the frequency of the sound [GM00]. When playing it, it is important to keep the body
still, since by its larger size, it has a big influence on the measured capacitance.

Later, capacitive sensing gained a foothold in the area of engineering, used for application such as
measuring distance, pressure, acceleration, force, etc. The break-through of capacitive sensors hap-
pened with the widespread use of smartphones. Their screen is made of a capacitive touch surface, a
development of which the foundation was laid by engineers at CERN in 1973. They created a capaci-
tive touch screen [BS73]. This was comprised of thin 80 µ wide conductors forming capacitors placed
on a transparent substrate. The screen was manufactured with at that time standard printing techniques.
The main innovation of this tablet is that it is capable to sense multiple contact points at a time, while
it is also sensitive to the pressure executed on the surface of the tablet. The tablet was demonstrated
controlling multiple virtual devices by use of templates placed over the tablet [LBS85].

These approaches gained much interest, and in 1995 Zimmermann et al. have introduced capacitive
sensing into the area of HCI [ZSP∗95a]. They proposed interaction with the environment which goes
beyond touch sensing. A non-contact sensor was created by setting up an electric dipole field between
an oscillating electrode and the ground to which it couples. Introducing a hand into this field disturbs
it and makes at at the same time detectable. This way they created a person-sensing room and a finger
pointing mouse, where the pointing finger does not need to be in contact with the screen.

2.4.1.3. Physical principles of capacitive sensing

A capacitor is generally composed of two electrodes separated by a dielectric material. The electrodes
are usually referring to capacitor plates, however, they are conductive material which can come in
various forms such as transparent foils, wires or conductive textile. The basic natural law to which ca-
pacitive sensing relates is Coulomb’s law. It states that two charges Q1 and Q2 surrounded by dielectric
material, separated by a distance d exert a force along the line connecting the charges. Depending on
the sign of their charge the forces will attract or repel the charges.

F =
Q1Q2

4πε0εrr2
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The capacitance C measures the number of electrons, the charge Q when an electric potential V is
applied to two electrodes [GPHC∗17].

C =
Q
V

The electric field E is the gradient of the voltage V . A current flows when an electric field is pro-
duced inside a material. This current is the result of adding the conduction current density Jc and the
displacement current density Jd . The current density for conduction current is

Jc = σE

where σ is the conductivity. In a good capacitor the dielectric material has a high resistance, thus the
conduction current Jc is approximately zero. Due to this, the ‘charge is transferred by a reorientation
of polar molecules causing’ a displacement current [Bax97].

Jd =
∂D
∂t

=
∂

∂t
(ε0εrE)

The direction of the displacement current is the same as of the electric field. And by applying Gauss’
law, the ‘total flow of charge due to displacement current through a surface is found by integrating D
over that surface’ [Bax97].

Ψ =
∫

sur f
Dds

ds represents the elementary area and D the flux density normal to ds. This means that ‘the total dis-
placement of electric flux through any closed surface which encloses charges is equal to the amount of
charges enclosed’, since the alignment of the molecules to the electric field represents the displacement.
The displacement charge Ψ is the total of the charges on the electrodes and the charge displaced in the
polar molecules of a dielectric in the electric field.

For a parallel plate capacitor to which a voltage V is applied, the total flux Ψ is the amount charge
which is proportional to the capacitance C and the applied voltage V .

Ψ = Q =CV

The ‘total charge inside the surface is equal to the total displacement flux D times the area of the surface
S ’ [Bax97].

C =
ε0εrS

d

2.4.1.4. Active vs. passive sensing techniques

Sensing techniques can be grouped into active or passive measurement techniques. The initial cate-
gories described by Zimmerman et al. have been extended by the current body of work towards the
addition of passive sensing techniques [ZSP∗95b]. However, most of the capacitive sensing systems
are based on active sensing such as capacitive buttons or touchscreens.
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The difference between active and passive capacitive sensing is that the active sensing systems must
actively generate an electric field, while passive sensing systems use already existing electric fields,
which are present or are generated in the environment [GPHC∗17]. Such fields could be generated by
electronic appliances, power lines or by users which generate fields by the triboelectric effect.

The advantages of passive systems are a lower power consumption and larger sensing distances. With
larger sensing distances also the drawbacks become visible, since the sensors are more susceptible to
any environment changes. A sensing system which has to generate an electric field and then measure
will consume more power than a system which simply measures the voltage induced by a current.

Active capacitive sensors need to actively generate an as precise as possible constant current. This
current flows through the resistance connected to the electrode, charging the electrode. An as pre-
cise timer as possible is needed to measure the time it takes to charge the electrode with the constant
generated current.

In the case of a passive system a very small current is induced by bringing a charged object into the
vicinity of the electrode. The electrode will charge itself with the opposite charge, resulting in a very
small current. This current flows trough a very large resistance. The sensor measures the voltage drop
over this large resistance.

The advantages and disadvantages of active and passive systems derive mostly from the possibilities
given by the sensor setups. In theory a passive and an active system can have the same sensing range,
since the principle of charged grounded objects coupling themselves to an electrode is the same. The
measurement principle is different, and this brings the limitations. An active sensor needs multiple very
precise components such as a precisely constant current and a precise timer. The passive sensor needs
only a big resistance and a precise voltage measurement. Due to these differences the active capacitive
sensors are designed such as to have less sensing range and the passive sensors can have larger sensing
ranges. With larger sensing ranges and no possibility of measuring in a given direction, the sensor is
susceptible to many environment changes, which is a disadvantage which has to be counted in, when
designing a system.

2.4.1.5. Operating modes

In order to categorize into different sensing modes, the relation between the two components, the
human body and the electrodes, needs to be analyzed. Figure 2.6 shows these two components and the
capacitances between them. Depending on which of the capacitances is measured, different sensing
modes can be defined. This lumped circuit model also highlights the fact that not only the electrodes
and the human body influence the measurements, but that capacitances to the whole environment are
built up, such as chairs, floor and have to be taken into account [SWD∗98]. The conductivity of these
objects plays an important role when in order to set up a sensing system which measures the intended
interactions. The human body has a very good conductivity, being composed of a large percentage of
water. By mostly standing on the ground, the human body is also very well coupled to the ground of
the environment. Environmental objects such as tables, beds have a lower conductivity, making them
less easy to detect.
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Figure 2.6.: Lumped circuit model showing the capacitance coupling not only to the desired measure-
ment of the distance to the human body, but also the capacitance to the surrounding envi-
ronment [GPHC∗17], designed using resources from Flaticon.com.

The lumped circuit model, see Figure 2.6, shows a scenario where the distance to the electrodes
T (transmit) and R (receive) of a human body part B is detected. The receiving electrode is optional
and can be omitted. The two electrodes build up electric fields to their surroundings, resulting in the
capacitances CT B, CRB, CT G, CRG, and CT R. The capacitance CBG represents the coupling of the human
body to the ground and Ci and Ri represent the internal resistance and the internal capacitance of the
human body. Generally, Ri is low and smaller than 1kΩ. The capacitances CT B and CRB are static
capacitances which reflect the electrode coupling to the ground in a static setting. These capacitances
are called parasitic capacitance and should be minimized since they can influence the sensitivity of the
system. There are different electrode setups and measurement modes for capacitive proximity sensing.

Loading mode relies on a single electrode being charged and uncharged. This results in an oscil-
lating field which is changed by moving a body part into the field. The body part absorbs some of
the displacement current which flows to the ground. By changing the distance to the electrode, the
amount of displacement current which flows to the ground changes CT B and the sensor can detect the
distance of the body part. This operation mode is the most widespread in the body of work and is often
designated as self-capacitance mode. This is due to its simple setup. The loading mode uses only one
electrode which serves as transmit and receive electrode at once. Since in most systems not only one
capacitive sensor is needed, using one electrode per sensor is an advantage, making the system more
clearly arranged. In passive capacitive sensing, there is no equivalent existing setup, since in passive
sensing the electric field is only measured, meaning one single receiving electrode is needed at the
sensing system.

In shunt mode two distinct electrodes are needed, a transmitting and a receiving electrode. With two
electrodes there is a capacitive coupling between them, CT R. When the human body gets closer to the
receiving electrode, it shunts more of the displacement current between transmit and receive electrode
away to the ground. In this manner, the proximity to the body part can be detected.
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In active capacitive sensing it is most prominently used in capacitive touch screens or panels. A grid
of electrodes is used to identify the location of the body part, such as on a touchpad of a laptop. In the
case of a grid some of the wires are transmit electrodes and the others, overlaying the transmit electrodes
are receiving electrodes. When the hand or finger of the touchpad user gets into the proximity of such
a transmit-receive crossing, the capacitive coupling between the two wires is influenced by changing
the capacitance. This measurement mode is also often designated as mutual capacitance. In passive
capacitive sensing this is the most commonly used setup. The receiving electrode is part of the sensing
system and the transmit electrode represents the environment generating the electric field.

Transmit mode and receive mode are similar to shunt mode. Both use two electrodes as in shunt
mode. The difference is that in transmit mode the body is very close to the transmit electrode. Re-
spectively in receive mode the body is very close to the receiving electrode. For each of these cases
the capacitance between transmit electrode and body CT B is much higher than the capacitance between
receive electrode and body CRB and the capacitance between transmit and receive electrode CT R. Sim-
ilarly, in receive mode the capacitance between receiver electrode and body CRB is much higher than
the capacitance between transmit electrode and body CT B and the capacitance between transmit and
receive electrode CT R. Essentially in these measurement modes the body becomes an extension of one
of the electrodes, the receive or the transmit electrode.

2.4.1.6. Limits of proximity detection

Our modern environments are equipped with many sources of electric fields, such as AC-powered
instruments. These extraneous electric fields act as a source of noise to the electric fields, which the
capacitive proximity detectors should measure.

In contrast to the ground in textbooks, the ground in real life is not a ‘perfectly conducting infinite
plane’ [Bax97].

Shielding has the task to preserve a good Signal to Noise Ratio (SNR). In these constraints the signal
is the electric field changes which we want to measure which are the result of a specific action, such as
a body approaching. However, the capacitance is measured in all directions.

A good example is activity detection at a desk. We want to detect the hand movements on top of the
desk. For this, capacitive sensors would be mounted underneath the tabletop of the desk. This would
measure the movements on top of the desk, however, if a person sat down at that desk, the movements
of the legs would exert a much more significant signal change that the arms on top of the desk. This
results in the saturation of the detectable signal. The SNR would be very small, the hand movements
not extractable from the signal. By shielding, using for example a shielding reference electrode, the
electrode in the direction of the undesired signal, such as the legs, the signal strength of the desired
signal can be detected.

‘The dielectric constant of dry air at 0C and 760 mm pressure is 1.000590, and that of gaseous
water (steam) at 110C is 1.00785’ [Bax97]. This shows that the effects of temperature and humidity
are minimal and can be considered to be neglected. However, it is still difficult to measure absolute
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capacitance accurately since ‘stray capacitances must be considered’. Shielding and grounding ensure
that the variation of capacitance ‘due to dielectric constant variation and fringe field can usually be
ignored’ [Bax97].

2.4.2. Capacitive sensing in flexible Smart Environments

Between people, their devices and conductive objects in the environment, capacitance continuously
exists. The position and proximity of users can be computed resulting in a variety of applications. The
limitations through noise and stray capacitive coupling may lead to ambiguous results. One of the chal-
lenges in the field of capacitive sensing is to enable flexible and stretchable applications [GPHC∗17].

The integration of capacitive sensing, more specifically capacitive touch sensors into clothing was
explored by Orth et al. in 1998, where they present a Musical Jacket with an embroidered keypad and a
Firefly Dress where conductive fabric is used for power distribution [OPC98]. Baldwin et al. have used
capacitive sensing through fabric integrated into a pair of trousers for gait analysis [BBR∗15]. Singh et
al. have used capacitive proximity sensing pads to create an accessible user interfaces through gestures
[SNR∗15]. The application domain of adding an touch interface to clothing is very prominent and has
been subject to many works [HSP∗08, HT13, PGF∗16, SKBH18]. Capacitive touch sensing has been
added all kinds of clothes such as belts [DHR15], trousers [DWHR17], shoes [PMBA04, HMBU15],
gloves [HSP∗08], jackets [PGF∗16], shirts [HT13] etc.

Advancements in creating new materials through further embedding of conductive threads and yarns
into fabric has facilitated a variety of applications and fabric interfaces. Examples are the integration
of flexible circuits into regular fabric [OTKB19], or the creation of a braid with integrated conduc-
tive thread [OMPD∗18, OSM20]. Using this braided e-textile cord, interaction schemes were investi-
gated as casual discrete gestures. Pin-Sung et al. use a single thread for touch localization along this
thread [KSW∗20]. Further, Wu et al. have developed ZebraSense, a woven touch sensor, which can
differentiate on which side it is touched. By integrating some conductive threads on one side and others
on the other side, the textile is used as isolation and spacer in order to differentiate the side on which the
direct touch is achieved [WFG∗20]. Through layering of different conductive yarns, electrical circuits
are directly woven into materials. Sun et al. explore possibilities for on-skin interfaces by weaving
thermochromic displays or capacitive touch sensors [SOD∗20b]. Skin interfaces, with capacitive touch
capability are presented by Kao et al. [KHR∗16]. They build skin-friendly temporary tattoos made of
gold-leaf which are both functional and aesthetic. Similarly, in Tacttoo very thin, temporary tattoos
enable tactile output and touch input when enriched with a PEDOT layer. The electrodes are created
using screen printing and laser patterning [WGS18].

By leveraging the capacitive coupling between cloths and the wearer, information can be transmitted
across the skin of the wearer. Wolling et al. propose to communicate by capacitive coupling, where
the wearers’ body transmits the signal from one unit to another through the body, the feedback from
the second unit is transmitted through the conductive fabric connecting the two units [WSRVL17]. The
conductive fabric has the advantage, that it can replace the usually erratic coupling to the environment
ground.
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Flexible, bendable 3D objects are often equipped with capacitive touch and sometimes capacitive
proximity sensing capabilities. Pourjafarian et al. provide a prototyping technique to equip objects and
fabrics with multi-touch input [PWPS19]. By attaching a grid with sending and receiving electrodes,
using a shape which can adapt to curved objects, touch capabilities are added to drawings on paper,
sleeves or other everyday objects. In the same grid layout, diamond shaped conductive fabric is attached
to regular fabric using an iron-on adhesive. As a result, Wu et al. present table clothes or pockets which
are able to detect conductive objects and classify which object it is [WTZ∗20].

Printed electronics and flexible printed circuit boards can be used to create further touch or prox-
imity sensing interfaces. Using printed circuits, smallest surfaces can be enhanced with interactive
capabilities. NailO presents a sticker-like nail interface, which can detect gestures through capacitive
touch sensing [KDPS15]. Arimatsu et al. use touch and proximity sensing capabilities for hand pose
estimation for hand-held devices [AM20]. They use 62 electrodes to measure the proximity using load-
ing mode. Designs of printed electrodes for hover and touch detection are presented by Withana et
al. [WS17b]. Using flexible printed circuit stripes with a sensing and a receiving electrode, objects can
be enhanced to sense their deformation. Through the bending, the capacitance changes between the
sending and receiving stripe, resulting in a bending profile [SD20].

Objects are equipped with sensing capabilities beginning at the very first step of their creation. Capri-
cate is a tool used to design 3D-printed objects with integrated capacitive touch capabilities [SKB∗15].
These objects can be used as exemplary as personalized object for 2-factor authentication for screens
of mobile devices [MSZ∗20]. By creating and aligning conductive and non-conductive areas and a
flexible infill pattern, different mechanisms such as pressing, squeezing, and bending of the object
can be detected [SSH∗17]. Takahashi et al. have combined the flexibility of textiles with 3D-printing
and print textiles with similar flexibility and a set of woven patterns. By adding conductive material
which form circuits and small electronics to the printed object, an interactive and flexible object can be
created [TK19].

2.4.3. Properties of capacitive electrodes in flexible applications

In the book Capacitive Sensors by Larry Baxter capacitive sensing and electrode properties are de-
scribed in order to guide the design process of capacitive electrodes [Bax97]. However, it does not
address flexible, bendable capacitive electrodes. Smart Environments find their way into people’s life,
assisting them and making it more comfortable. Embedding sensing capabilities into deformable, bend-
able, flexible surfaces with which the people interact is thus an important feature.

To properly deploy capacitive sensing in real-life applications, one has to understand how to cre-
ate them, such that they serve in a not obtrusive way, and the effects of deformation on the sensing
capability is known.

The principles of capacitive sensing and some guidelines on how to design capacitive electrodes for
printed circuit boards (PCB) are presented by Chan and Underwood [Cha08], Gu and Sterzik [GS13]
and Gao [Gao13]. They describe capacitive sensing and especially capacitive touch sensing. Only Gao
describes capacitive proximity sensing, presenting GestIC for gesture recognition in automotive, home
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automation or game controllers. Most of the recommendations are unanimous. A summary addresses
the placement of the electrodes, the suggested shapes and sizes and many PCB related design issues to
increase robustness of the system. One of these factors is the placement of the ground plane and the
location of the battery. The closer the ground plane is to the electrode, the smaller the percentage of
change is when the object approaches. Thus, ground planes are hatched, such that they have only 25 %
of the original surfaces. Another technique is to have a guard ring around the electrode. For proximity
sensing, the ground plane and the guard ring can achieve directionality of the proximity sensing. The
sensing range depends on the power as well. If the power source voltage increases, the range increases.
It also increases directly proportional to the sensor size. The goal of the circuit design is to design a
system with high signal-to-noise ratio (SNR) by keeping parasitic capacitances mall and reducing the
influence of noise sources. Regarding the shape of the electrodes for capacitive touch, if the electrode
size is small, thus pads in the shape of circles and squares are proposed for button areas. For large
applications, Gao recommends using loops of any aspect ratio. However, the larger the trace width,
the larger is the range of a proximity sensing system. He states that the shape of the electrode does
not influence the effectiveness of the sensor, but rather the area of the conductor relative to the use.
However, in the end, the design of a system is unique, constrained by physical restraints and aesthetic
design limits.

The advanced in the area of printed electronics have led to a few works where the materials, the
shape and the performance of the electrode is evaluated. Wei et al. have presented an inkjet printable
capacitive proximity sensor on fabric [WTLT16]. They evaluated two factors: the filling pattern and
the outer width of a loop. For the pattern filling, they compare an entirely filled electrode, a spiral filled
electrode and a outline or loop electrode. Their results showed that even though the filled electrode has
the maximum capacitance change, the loop and the spiral perform similarly. Therefore, their preferred
design is the loop since less printing ink is required to print a loop and it still offers 90 % of the sensing
range compared to the filled design.

For capacitive touch sensing mutual- and self-capacitance are most commonly used. Mutual capac-
itance was exemplary used by Götzelmann et al. in combination with 3D surfaces. For this purpose
a grid of conductive traces is printed into the objects, enabling touch detection [GA16]. For prox-
imity sensing, in most works the self-capacitance or loading mode is used. Research on the shape
and arrangement of electrodes has been addressed by the diamond shaped grid. Wall++ uses such a
grid, to create an interactive wall tracking touch and gestures [ZYH∗18]. The electrode pattern had to
project an large electric field and to offer enough resolution for touch tracking. From the five patterns
analysed (lines, stripes, half circles, diamond dot and circle dot), the diamond shapes were chosen,
due to practicality reasons. The half circle, the circle dot and the diamond are otherwise equally well
suited, according to their simulations. In the work of Aigner et al. different embroidering patterns are
explored for resistive pressure sensors [APP∗20]. They investigate five different space-filling pattern
designs composed of two electrode traces: Interdigitated Electrodes, Boustrophendon Path, Meander,
Fermat Spiral and the Hilbert Curve. They identified, that the sensing behaviour can be controlled by
the pattern design, giving some parameters for adjustment.
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Although flexible capacitive sensing is used in numerous fields, the existing research does not focus
on the performance of capacitive sensing electrodes with regards to their various parameters such as
material, shape, size, pattern, filling degree, stretch and substrate fabric.
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3. Assistive applications for flexible Smart
Environments

In this chapter I present assistive flexible Smart Environment applications developed by me. These ap-
plications using flexible surfaces represent my contributions to the first research challenge New flexible
Smart Environment applications.

Throughout the following sections I will address different applications, which all have in common
that they put the human in the center - offering assistance. All applications leverage surfaces which are
not stiff, but can be bent and humans use them frequently during their daily activities such as sleeping,
commuting, working in office, or watching TV from a couch, see Figure 3.1.

Figure 3.1.: Human centric assistance during Activities of Daily Living (ADL), ©CC-BY-SA 4.0,
Black Man Sleeping in Bed Cartoon Vector.svg from Wikimedia Commons by Video-
plasty.com.

Special interest is given to applications using the technology of capacitive proximity sensing, which
facilitates ambient applications. The technology’s main advantage is, that it enables the application
designer to sense the presence of conductive objects or also body parts. Since humans are in the focus
of assistive applications, this technology is well suited for assistive applications.
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Section 3.1 presents an approach to support persons who must spend time in bed over a longer time
- such as during rehabilitation. The application’s focus is to prevent skin ulcers by detecting the lying
position.

An office chair which supports the user throughout her day, is presented in Section 3.2. It prevents
back pain and further diseases closely related to sitting still for a prolonged time by supporting the user
to include brakes in forms of exercise on the chair.

Relaxation scenarios at home are supported by recognizing the lying and sitting position on a couch,
as well as invoking the emotional state of mind from the user’s movements. This work is presented in
Sections 3.3 and 3.4.

The work presented in this chapter is an extended version of my papers, which will be introduced at
the beginning of each section. In this chapter I introduce following scientific contributions:

• I provide a decubitus ulcer preventive system by creating a prototypical bed sheet, which can
recognize bed postures and therefore infer pressure points.

• I create and compare different sitting cushion prototypes made of conductive textile material. By
detecting 7 sitting postures and tracking exercises diseases such as backpain are prevented.

• I create a couch prototype, with which I explore the emotional state of the occupant through
analyzing detected body movement.

3.1. Assistive bed posture monitoring

This section is based on my master’s thesis [Rus13], my extended work presented in the two papers
[RGPK14, RGPK17] and the bachelor’s thesis of Steffen Maus [Mau14]. The authors referred later as
"we" are Silvia Rus, Tobias Große-Puppendahl and Arjan Kuijper.

Enhancing the quality of care is an important factor in care facilities and home care. Many patients
are affected by decubitus ulcers, also called pressure sore. This is a skin condition, caused by prolonged
pressure on the skin on certain areas and can lead to severe injuries. According to the Center for
Disease control and prevention 11 % of nursing home residents have pressure ulcers, from which the
most common are stage two pressure ulcers, which describes skin braking open and injuries extending
to deep layers of the skin [EPL04]. Best practice requires a caretaker to look after the bedridden person
and change their position every one or two hours [fIiGuaPe13]. However, sometimes they patients may
have already moved by themselves, or other caretakers have already done this.

We propose a technological solution that helps to determine these situations, notify the caretakers
and provide decision support and appropriate actions to take. We envision a system, which might be
used at home or in hospitals, where responsible personnel is on-site to react to the alarm of the system.
The system monitors the bed posture changes of the bedridden person. The information of how long a
person has been lying in a certain position can help the caregiver to decide which action to take next.
For example, the bedridden person has been positioned during sleep to one lateral side. The caregiver
will be presented with previous postures and the time the person spent in these poses. He can avoid
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Table 3.1.: Comparison of our system with other capacitive solutions.

Reference Measurement mode Measurement points Postures

Hamisu et al. [HB10a] Self-capacitance 3 2
Braun et al. [DBM14] Self-capacitance 4 Movement
Chang et al. [WCC14], [CCCY14] Self-capacitance 320
Rus et al. [RGPK14] Mutual-capacitance 48 5

placing her back to the previous posture. This way harming the bedridden person is prevented by
prohibiting that specific body parts will be exposed to higher pressure over longer time.

Capacitive sensing has found various applications in the field of smart environments. This variety
is described by Braun et al. [BWKF15] and Grosse-Puppendahl et al. [GP15]. Detecting movements
in bed with self-capacitance sensing, using 4 copper electrodes, has been the focus of Braun et al.
[DBM14]. During sleep the pressure on the vertebral spine is an important indicator for the quality of
sleep. This is achieved by Hamisu et al. [HB10a], differentiating if a person is lying or sitting upright
in the bed, using capacitive sensors. The authors placed 3 electrodes underneath the mattress of a bed.
When a person lies down, it activates a characteristic pattern of electrodes. The algorithm can then
detect if a person is lying down or sitting. Chang et al. [WCC14], [CCCY14] presented the capacitive
system FPCSM (Flexible Projected Capacitive-Sensing-Mattress). It is a flexible sheet placed on top of
the mattress. It is based on 10 sensing units of 40 cm x 25 cm size which are composed of 32 sensors
each, providing a total of 320 measurement points.

All these capacitive systems use the measurement mode of self-capacitance, meaning that one mea-
surement point corresponds one sensor. Our proposed system [RGPK14] measures the mutual-capacitance,
providing 48 measurement points while using only 8 sensors. Table 3.1 shows an overview of similar
capacitive solutions. While most of them describe the used system, none of them have done a quantita-
tive evaluation. Hamisu et al. are able to differentiate sitting and lying while Braun et al. concentrate on
movements in the different sleeping phases. Chang et al. show only images of different lying positions
and do not evaluate their system.

Different camera systems are used to acquire visual data. Diraco et al. make use of a [DLS13] a 3D
Time of Flight (ToF) camera, Yu et al. [YRN∗12] a common digital camera and Shotton et al. [SFC∗11]
a depth camera. These are designed mainly as fall-detection systems but can also identify a lying
posture.

Accelerometers are used to detect bed postures like lateral left and right, supine and ventral. They
are attached to the body on the sternum and on the right thigh [WBvO∗12] or worn at the dominant
wrist [BBV10]. Using accelerometers, a smart watch is used in [BHV13] to detect physical activity
such as sleep detection.

The techniques presented above can be used independently to detect the bed posture, but systems
using them in combination also exist, e.g. visual and capacitive sensing [Tes12], acceleration and
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Table 3.2.: Comparison of resulting accuracy of our system compared to other solutions.

Reference Sensor type Measurement points Pos. Class. Acc.

Liu et al. [LXH∗14] Pressure 8192 6 Sparse 82.9 %
Yousefi et al. [YOF∗11a] Pressure 2048 5 kNN 97.7 %
Hsia et al. [HLA∗09] Pressure 16 3 Bayes 100 %
Hsia et al. [HLA∗09] Pressure 56 6 SVM 83.3 %
Rus et al. [RGPK14] Capacitive 48 5 J48 80.8 %
Rus et al. Capacitive 48 5 NN 90.5 %

capacitive sensing [GPBB12], a combination of temperature, light, tilt and acceleration [VBKS08] or
even RGB, depth camera and pressure [THFM15].

Using resistive and capacitive pressure sensors many approaches exist for detecting bed postures.
For example, Liu et al. use a high-density sensor bed sheet for monitoring the patients’ rehabilitation
exercises [LHX∗13, LXHA13, LXH∗14]. It is composed of three layers where the top textile layer
is coated with 64 conductive lines, the middle layer is an e-Textile material and the bottom textile
layer is coated with 128 conductive lines, perpendicular to the first layer. At each intersection of
the conductive lines a pressure sensor node is formed, leading to a total of 8192 pressure sensors.
The mean of the achieved precision over all 6 selected postures is 83 %. An Under Mattress Bed
Sensor (UMBS) is used by Walsh et al. to detect body movements [WM14]. The mattress is built by
integrating a grid of 24 pressure sensors in a foam mat in the form of a band which is placed beneath the
upper torso of the person lying in the bed. Similarly, pressure sensor arrays with a varying number of
measurement points (72, 132, 48), form (stripes, pads), dimensions and placement are used in different
setups [HLA∗09, FMGK12, NAZW10].

On a dataset provided by Yousefi et al. [YOF∗11a] with 2048 pressure sensors Ostadabbas et al.
[OPNK14] achieved accuracies of 98.4 % for three main sleeping positions and an accuracy of 91.6 %
for detecting 8 limbs lying on the back and 5 limbs in side sleeping positions.

Looking at the presented approaches using pressure sensors, one can observe that the detected posi-
tions are very different between the various deployments.

Table 3.2 shows a comparison of the existing systems implemented using pressure sensors and our
proposed solution. The best result for the similar number of 5 evaluated bed postures is achieved by
Yousefi et al. [YOF∗11a]. They reach an accuracy of 97.7 %. However, they use 2048 measurement
points, considerably more than we use in our system of 48 measurement points. Hsia et al. achieve
100 % for detecting three lying positions using 16 measurement points, but using 56 measurement
points, they achieve an accuracy of 83.3 % for 6 lying positions. It is very hard to compare the different
solutions because postures and metrics used are highly heterogeneous. Thus, no direct connection can
be drawn between the number of measurement points and the achieved accuracy.
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Applying different sensing modalities, multiple approaches have been developed, in order to realize
a system, which detects bed postures. For example, camera-based visual data and capacitive pressure
sensing are typically used. However, previous approaches require expensive hardware and are often
not easy to deploy. Therefore, we propose an extremely easy to deploy and inexpensive to produce bed
sheet. It is comparable to a large capacitive touchscreen and uses affordable hardware components.

We propose to apply mutual capacitance sensing to achieve this goal. Mutual capacitance sensing
allows for a high number of measurements, which have positive influence on the recognition perfor-
mance [SGB99]. Therefore, we place a grid of wire electrodes within the bed sheet and measure the
proximity to the body. Measurements with mutual capacitance sensing require transmitter and receiver
electrodes, one transmitter can have multiple receivers attributed to it. The data is subsequently evalu-
ated using different machine-learning classification methods. The identified bed postures are displayed
by a system which shows the bed postures over time.

3.1.1. Setup of smart bed sheet

This section presents the system overview of the hardware components of the bed sheet and its data
processing. First, we give an overview of the system architecture and the different data processing
steps in Figure 3.2. The three main components of the smart bed sheet are: the wired grid with the
sensing unit, the evaluation boards to which the grid is connected, and the PC with the visualization
and classification implementation. The wire grid is attached to the bed sheet. Each crossing of the
wires represents a sensing node but only at the end of the vertical grid lines, 8 sensors are connected.
The receiving evaluation board pre-processes the sensor data and forwards the data to the PC. Here the
data is gathered, processed in order to classify the lying posture, which is subsequently visualized.

The two boards are named after their function. Hence, the TxBoard is used for transmitting the signal
and the RxBoard is used to process the received information. It then sends the calculated value to the
PC, using a USB connection, where the bed posture alarm program receives the data and performs the
classification.

OpenCapSense [GPBB∗13], is a capacitive sensing toolkit to enable the easy prototyping of ca-
pacitive systems. The toolkit has been published as an open-source project1 and is inspired by Cap-
ToolKit [WKBS07]. Besides self-capacitance measurements, it also supports mutual-capacitance mea-
surements, which were used for the measurements performed in this paper.

Besides a powerful floating-point microcontroller, OpenCapSense has eight capacitive sensing chan-
nels. They can be used for either transmitting or receiving a signal through an electrode. It is possible
to build sensing arrays by connecting multiple evaluation boards via CAN-bus and synchronizing them.
The board has a connection to the PC, which also serves as the power supply. Moreover, messages are
passed to the computer through the on-board serial-to-USB interface. All these connection interfaces
are shown in Figure 3.3.

1http://www.opencapsense.org
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Sensor data pre-processing

Data processing

Classification

Lying posture visualization

Figure 3.2.: Schematic overview of setup. Two OpenCapSense evaluation boards connected by a CAN-
bus interface for synchronization. The transmitting board (TxBoard) sends out the signal
through the electrodes while the receiving board (RxBoard) collects the data, processes it,
and sends it to the PC.
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(a) OpenCapSense board (b) Schematic of receiver

Figure 3.3.: Each receiving electrode is connected to a sensor with a transimpedance amplifier. The
sensor amplifies the incoming displacement current from a transmitting electrode and am-
plifies it for further processing. [SGB99]

The board offers the functionality to generate signals, using a pulse-width-modulation. This allows
the adjustment of the frequency of the transmitted signal. In our final bed sheet, we generated signals
on six output ports, oscillating at a frequency of 7.3 kHz.

On the receiver side, dedicated hardware has been developed to evaluate the received signals based
on the work of Smith et al. [SGB99]. The transmitted signals are received by an amplifier config-
uration displayed in Figure 3.3, which is similar to [SGB99]. The circuit is built of two stages, a
transimpedance amplifier with a low pass filter, followed by an inverting amplifier with a gain of 4
(G = 40kΩ/10kΩ). The circuit of the low pass filter is built by adding a capacitor across the feedback
resistor of the operational amplifier. The output voltage is passed to the ADC on the OpenCapSense
board with a sampling rate of 100 kHz.

Hence, the total cost of the prototype setup needs to cover some copper wires, the receiving sensors,
and the two OCS prototyping boards. The main advantages are due to the sensing material and the
number of needed sensors. Due to the grid structure our prototype needs only 8 sensors which are
composed of standard off-the-shelf components. An additional advantage is the flexibility of the system
towards different bed sizes because the placement and the length of the wires which are embedded in
the bed sheet is easily adjustable to different sizes of the bed.

The transmitting board starts its operation by setting the sending frequency and initializing the CAN-
bus interface, the serial communication interface (SCI) and the output pins. The role of the transmitting
board is to alternate the output sender pins on which the rectangular signal is sent. In order to achieve
this, it listens for messages on the CAN bus, which indicate to start sending on a certain output pin.
Starting the transmission, a square signal at 7.3 kHz is sent.

On the other end, the receiver board switches through all its receiving ports and subsequently sends
the next expected sender port. For each measurement at the receiver, a window of 1024 values (the
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Figure 3.4.: The received signal is windowed and a Fourier Transform is applied on the signal. The
resulting amplitudes of the magnitude of the FFT are added up resulting the sensed value.

size of the ADC buffer) is collected at once. Per capacitance measurement ten of these windows are
collected.

3.1.2. Sensor data processing

As shown in Figure 3.4, the original signal is windowed, and the magnitude of the Fourier Transform is
calculated. The peaks of the magnitude are summed up. For different frequencies of the sent rectangular
signal, the peaks of the amplitude are placed differently. This way, operating the system using FDMA
(Frequency Division Multiple Access) is possible by summing up the peaks in intervals which are
specific for the expected frequency. This calculated value represents the sensed value transmitted to
the PC through the SCI interface. The according sender and receiver information is added to the sent
sensed value.

For each sender the sum of maxima of the magnitude of the Fourier Transform is calculated and
the mean is determined over several sets of 10 windows. This mean value represents the intersection’s
capacitance which is sent to the PC for further processing, described in the following.

The sensed values are continuously received at the serial port using MATLAB, which supports real-
time data acquisition on the serial port. In Figure 3.5, the sensed values for all receivers of sender 3 are
displayed. Between measurement samples 15 and 31 a person was lying down in this area whereas all
other measurement samples were taken while the bed was empty. For a single measurement point e.g.
sender 3 and receiver 5 the raw data shows a rise of about 3000, from 3000 reaching 6000. This steep
rise is due to the fact that a person was lying down on this sensor node. We observe that even in the
empty state not all receivers share similar values. Furthermore, the difference between the empty bed
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Figure 3.5.: Visualization of all eight receivers of sender 3

values and values obtained when a person lies down are different for each receiver. For receiver 3 the
difference is around 4500 while the difference is approximately 3000 for receiver 5. In order to acquire
comparable sensor values, normalization is required. For this, the system needs to be calibrated. This
is achieved by detecting the sensed values of the empty bed and the values for a calibration object for
all sensor nodes. Once the normalization is performed, the square root is applied on the data to boost
smaller signals, in order to enhance detecting smaller objects. In Figure 3.6, we show the normalized
6x8 data in the top and in the bottom image the square rooted and twice interpolated data. We used a
cubic interpolation.

We want to classify five lying postures, which will be detailed in Section 3.1.3. We consider two
different classification approaches. We call the first feature-based classification and the second raw
data classification. The feature-based classification uses the normalized and interpolated data as com-
putation base, like depicted in the right image of Figure 3.6. The raw data classification is applied on
the normalized 6x8 data, shown in the left image of Figure 3.6. For the feature-based approach we
select and compute our own feature set. Both classification approaches are evaluated using the WEKA
2 framework. We evaluated the data using three different classification algorithms: the C4.5 decision
tree implementation J48 [Qui14], the Support Vector Machine implementation libSVM [SV99] and the
k=1 Nearest Neighbour implementation IB1 of WEKA with default settings [WL81]. We defined fol-
lowing classes: sitting on the bed, lying on the right or left side, lying on the stomach or back. Noise or
movements in the region around the bed might lead to problems, that is why we also recorded a number
of instances for an empty bed resulting in an additional class.

To detect lying postures, we create an image from the sensor values and apply image processing
methods. This allows extracting features, such as mean or center of gravity. The center of gravity is
computed as the maxima of the average of the row and the average of the column. To further refine the

2http://www.cs.waikato.ac.nz/ml/weka (date accessed: 2015-06-21)
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Figure 3.6.: 6x8 normalized data (left), interpolated data (right)

Figure 3.7.: Left and right images show a person sitting upright after lying down. The left image
visualizes the normalized and interpolated values. The right image shows the 2D grayscale
of the upper image slightly turned. It is divided into eight sections. For each, the center of
gravity and the mean are calculated. Additionally, the center of gravity of the whole image
is calculated.
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Figure 3.8.: Prototype bed sheet with wired grid

results, the image is divided into 8 sections as shown in the bottom image of Figure 3.7. This image
is created by computing the gray scale image of the top image and displaying it in 2D, proportional to
a 6x8 matrix. The coloured dots represent the center of gravity calculated for each section, while the
bigger yellow dot is the computed center of gravity of the whole image. Finally, we also add overall
mean and center of gravity as features. This results in nine mean values and nine center of gravity
values, leading to 18 features overall.

3.1.3. Evaluation setup

The goal of the experimental setup is to evaluate postures that are typical for the elderly, or persons
who are bound to the bed. A possible use case for recognizing these postures is to support a caregiver
in re-bedding patients. This is especially useful when persons sometimes have active and inactive
phases. For example, in active phases, re-bedding can be avoided, while on the other hand, inactive
phases may lead the caregiver to change the patient’s bedding postures more frequently. However, there
are numerous other application scenarios, like the Quantified Self trend, which describes the trend of
taking measurements about the personal performance throughout the day, facilitating positive lifestyle
behaviour changes. Those users could capture their own sleeping behaviour by recording postures
throughout the night.

To realize the use cases mentioned above, our smart bed sheet needs to classify discrete user postures.
Time spent in a specific posture can be recorded, to avoid long-term pressure on a specific body part.
Therefore, the bed sheet was placed on an ordinary bed with a length of 2.0 m and a width of 0.8 m, as
depicted in Figure 3.8. The bed sheet provides 48 measurement points, with eight horizontal and six
vertical wires, a part of which is shown in Figure 3.8. In our first stage of the experiment, we asked
14 persons to lie down in the predefined postures shown in Figure 3.9. The test persons were only
instructed by a few words, allowing them to carry out the postures as variable as possible. Figure 3.10
shows the weight and height distribution of the test persons. The height is recorded as the size in cm
while the weight is recorded in 5 kg steps. For each test person we recorded 45 images of 6x8 sensing
nodes per lying posture, resulting in 225 recordings for each person. For the raw data classification we
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Figure 3.9.: Common bed postures used for the experiments and resulting visualization. The orange
circle represents the direction of the head of the person lying down. Bed postures from top
to bottom: lying on back, stomach, lateral right, lateral left and sitting on bed.
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normalized the sensor data and use this to evaluate it. For the feature based classification, we calculated
for each of the 225 recordings per user 18 features.

Figure 3.10.: Evaluation of subjects’ weight and height diagram. The size is recorded in cm and the
weight in 5 kg steps. The subset between 80-95 kg covers more than half of the set of test
subjects.

3.1.4. Bed posture classification

For each posture, we recorded a set of 45 images, each with 48 measurement points. The 14 test persons
carried out each posture, allowing them to vary between different interpretations for the specific posture.

For our preliminary results investigating the feature-based classification approach we divided the set
of 14 test persons randomly in two. The first set of data of 7 persons was merged and used for training
the C4.5 decision tree implementation J48 of WEKA. The second merged set of data of 7 persons was
used for testing the recognition performance. Then, the training and test set were exchanged. In this
way J48 led to a mean performance of 80.8 %.

After these first experiments, we quickly realized that the person’s weight and height had much
more influence on the classification performance than expected. It was very difficult to achieve a
good recognition performance for persons with very different body sizes. The difference in sensor
measurements of a heavy person (80 kg) compared to a light person (60 kg) for the same posture is
depicted in Figure 3.11. Such examples show that features, which are invariant to body-size are very
hard to find when the sensing area is a limiting factor. Investigating translation-invariant features was
not necessary, since the bed’s area was quite small and minor body translations did not have a big effect
on the recognition performance.

Based on these observations, we decided to limit our next experiment on a set of eight persons
whose weight and size is similar. We chose the interval between 80 and 95 kg, as depicted in Figure
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Figure 3.11.: Images of person with 60 kg (top image) and 80 kg (bottom image) sitting on the bed

Limited data set (80-95kg) Overall data set

a b c d e f a b c d e f ← classified as
357 0 0 0 0 3 568 0 16 45 1 0 a = sitting
0 327 0 33 0 0 0 530 2 57 2 0 b = side right
0 0 316 44 0 0 0 0 585 0 45 0 c = side left
0 1 0 359 0 0 45 123 156 306 0 0 d = stomach
1 0 48 4 307 0 0 9 170 17 434 0 e = back
0 0 0 0 0 360 0 0 0 0 0 630 f = empty

Figure 3.12.: The classification performance depends highly on the person’s body height and weight.
Separating the test sets into persons with similar body properties, e.g. separating the
persons by weight, leads to a much better performance in the data sets.

3.10. These 8 test persons were closest to each other regarding their weight and cover more than half
of the number of test persons.

This set of 8 test persons, we randomly grouped them into two sets of 4 persons each. These sets
were again used to train and test using J48. This led to an improved performance of 93.8 % overall
accuracy.

The two resulting confusion matrices for both sets (14 persons set and 8 persons subset) are depicted
in Figure 3.12. We observe the less dispersed confusion matrix of the smaller subset of 80-95 kg test
persons. Evaluating the remaining dispersed set of test persons, dividing the 6 test persons into two
groups of 3 test persons we repeated the evaluation. The resulting accuracy is 69.8 %. We conclude
that our feature set, as well as the whole setup, depends strongly on body height and weight. In the
future, the design of features that are more invariant to such circumstances is therefore a very important
prospect to us.
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The resulting decision trees of the subset of persons were also significantly smaller, having a depth
of five levels, than the ones generated with the overall test set. These resulted in depths of seven or
more levels.

The trees show that center-of-gravity features contribute significantly to the classification. With re-
gard to the bed sheet’s different sections, features from the sections in the middle of the bed are used
more often in classification. On the other hand, sections representing data from the test persons’ heads
and feet are included less often in the decision trees. The reason can be seen in the in-homogeneous
weight distribution on the mattress. The proximity to body parts has less influence on a mutual ca-
pacitance measurement than the deformation of the underlying mattress, caused by large pressure on
a measurement point. As expected, the feature mean is used to decide between classes like lying on
stomach and lying on back, where the weight in the corresponding regions is significantly different.
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Figure 3.13.: Feature based classification results of leave one subject out evaluation.
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Figure 3.14.: Raw data classification results sorted in rising weight of the subjects. Leave one subject
out evaluation.
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Table 3.3.: Overview of classification results for feature and raw data based classification evaluated
using J48, SVM, NN. The values are mean calculations from the Leave One Subject out
evaluation of different test person subsets from Figure 3.14 and 3.13. We separated the data
test person subsets whose weight is in and outside the weight interval 80-95kg.

Dispersed subset Similar subset Whole data set
Subj. {9,3,6,7,1,4} Subj.{8,10,2, 5,11,12,13,14} All Subj.

Preliminary feature J48 69.8 93.8 80.8

Feature J48 69.9 93.3 82.7
Feature SVM 71.5 75.4 73.8
Feature NN 79.8 90.5 85.9

Raw data J48 66.7 79.3 73.9
Raw data SVM 80 96.9 89.7
Raw data NN 85 94.7 90.5

For this classification using our own computed features, we can conclude that the classification
performance currently depends highly on the test persons’ body height and weight. The small bed size
makes it hard for developers to design features that are invariant to these properties. Compared to the
regions around a person’s head and feet, the regions in the middle are more important for classification.
An idea for future work is to increase the number of measurement points in the bed sheet’s center
region. This unequal sensing node distribution could lead to a better recognition performance.

In order to further evaluate the recognition performance of the feature-based approach, we conducted
a Leave one Subject out evaluation. The data of a single person was used as test set, while the data
of all the remaining 13 test persons was used for training. Figure 3.13 depicts the results of the J48,
SVM and NN evaluation for each test person. To allow easier comparison, the test persons are ordered
in increasing order of their weight. The mean accuracy per classification algorithm is: 82.7 % for J48,
73,8 % for SVM and 85.9 % for NN.

To further improve accuracy, we investigated the classification using only the raw data, which is the
normalized data. For this, we conducted a Leave one Subject out evaluation of the 14 persons data set.
We used 3 classification algorithm implementations of WEKA. Those are the same as for the dedicated
feature classification: Nearest Neighbour (NN), Support Vector Machine (SVM) and C4.5 decision tree
J48. The results are depicted in Figure 3.14. The mean accuracy per classification algorithm is: 73.9 %
for J48, 89.7 % for SVM and 90.5 % for NN.

Table 3.3 resumes the recognition performances of all evaluations. The first row shows the results
of the preliminary J48 feature classification, where the dispersed subset was separated into two sets of
subjects 1,4,7 and 3,6,9 resulting in the weakest recognition performance of 69.8 %. Evaluating two
subsets of the similar subset the recognition performance exceeds the overall performance of 80.8 %
achieving 93.8 %. This is the second highest result in the column of the similar subset. For the next
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tow evaluation groups, the feature or raw data classification, the mean accuracy of the subjects from
the subset is calculated for each classification algorithm according to the results from the Leave one
Subject Out evaluation. We observe the highest recognition of 96.9 % using SVM on the similar subset.
However, the overall classification result of the raw data NN classification is better for each evaluated
subset, achieving the highest overall recognition performance of 90.5 %. Having the highest possible
coverage range of all subject sizes and weight is important for the bed posture recognition implemen-
tation, thus we chose to use the raw data NN evaluation. How this is implemented is described in the
next Section 3.1.5.

3.1.5. Bed posture monitoring system

The goal of our work is to create a bed posture recognizing system that could be used in home care or
hospitals. Caregivers could inform themselves on the patient’s bedding history on a glance.

In this section the envisioned system implementation is described. The system shows multiple views.
The goal of these views are to help the caregiver decide on the reliability of the current output of the
system. To achieve this, the recognized posture history diagram is complemented by an indication of
an uncertainty threshold.

The system offers three views. The first view, Figure 3.15, shows the processed data received from
the bed sheet. Next to it the result of the NN classifier is shown. It is the best fit from the training data,
that the classifier has found. Looking at this representation the caregiver can be assured and can check
himself the similarity of the findings.

Figure 3.15.: Visualization of real-time data (left) and best matching result of classification (right).

The second view, Figure 3.16, depicts the last 10 detected lying postures and the time the bedded
person spent in each of them. It allows to avoid repetition of postures.

Finally, Figure 3.17 shows the time frame of 24 hours. The different colors depict the detected lying
position. The varying height of the bar in each time instance visualizes the certainty with which the
system is sure that the detected bed posture is correct. This helps the caregiver on the one hand to have
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Figure 3.16.: History view of detected lying postures. The last 10 postures are shown.

confidence in the detection result of the classifier and on the other hand clarify eventual classification
faults by consulting the patient.

This certainty value is calculated by looking into the classification process. The Nearest Neighbour
(NN) classifier detects the distance to the nearest object as well as the distance to the nearest object of
a different class. The uncertainty is the quotient of these two distances d1/d2. The greater the distance
to the other class and the smaller the distance to the own class is the higher is the certainty. In order to
reduce wrong classification, a class "uncertain pose" has been introduced. If the certainty of a result is
not high enough the pose is classified as an "uncertain pose", reducing the level of wrong classification
from 9.5 % to 1.9 %. This yields a correct classification in 80.3 % of the cases and in 17.8 % of the
cases an "uncertain pose". In these circumstances, if the system recognizes a pose it is in 97.6 % of the
cases correct.

Figure 3.17.: 24 hour view of detected bed postures. The vertical value depicts the certainty of the
classification result.
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3.1.6. Summary

In Section 3.1 we presented a system of preventive nature, which is intended to alarm the caretaker
which looks after a bedridden person and illustrate the current and previous lying postures. We eval-
uated a prototypical bed sheet, which can recognize bed postures and therefore infer pressure points.
This can be applied for decubitus ulcer prevention in hospitals or at home. In contrast to previous
work, the bed sheet is very affordable and easy to handle. It uses simple conductive wires, which are
inexpensive and can be replaced without great effort. The prototype is composed of a wire electrode
grid, where senders are placed horizontally to the bed posture and receivers are placed longitudinal to
the bed. Measuring the mutual capacitance between these electrodes allows for the detection of the
presence of human body parts. The received sensor data is treated like an image of 48 pixels. It is nor-
malized, interpolated and features like the mean and the center of gravity are calculated for different
regions of the image.

The evaluation with 14 participants using defined features resulted in a overall accuracy of 80.8 %,
while the accuracy of a subset of taller test persons weighing between 80-95 kg resulted in an accuracy
of 93.8 %. Better overall accuracy has been achieved using a NN classifier on the raw data, yielding
an overall accuracy of 90.5 % compared to 80.8 %. We also introduce an uncertainty threshold. It is
intended to help the caregiver decide, by illustrating how sure the system is of its findings. By using
this threshold, the recognized bed posture is correct in 97.6 % of the cases.

For future iterations, the smart bed sheet can be improved in various areas. One of the challenges is
the design of features that are more invariant to body height and weight. Furthermore, the influence of
the calibration on the sensitivity of the bed sheet has to be investigated, in order to detect smaller body
parts, like hands and feet. This could be achieved by improving the setup of the electrode grid. We
could also investigate if for a small household, where the bed sheet could be able to identify persons
just by lying down on the bed. Regarding the whole system, we need to evaluate the acceptance of such
a system in home care or hospital settings, especially the aspect of using the uncertainty threshold.

Our goal is to support the prevention of decubitus ulcer by creating a lying posture recognizing
system, based on mutual capacitance sensing, which we envision to be able to autonomously, not only
alarm the caring personnel, but also move the bedridden person on its own.

3.2. Assistive chair: sitting posture detection

The application presented in this section is based on the work published in my paper "E-Textile Ca-
pacitive Electrodes: Fabric or Thread - Designing an E-Textile Cushion for Sitting Posture Detec-
tion" [RBKK19b]. The authors referred later on as "we" are Silvia Rus, Andreas Braun, Florian Kirch-
buchner and Arjan Kuijper. Some parts of this work referring to specifics of electrode design are
presented in Chapter 5 in Section 5.3.2. In this section we present the specifics regarding the creation
of the application for back pain prevention.
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Office workers often spend most of their working time seated in front of a screen. Many of them
experience back pain, stiffness leading to long-term problems, impacting their quality of life. It is the
most common form of chronic pain and is experienced as being the sixth biggest in terms of overall
burden [HMB∗14]. There are already mechanical methods to help prevent back pain such as ergonomic
chairs, cushions, or stretching and exercises. Giving a user immediate feedback on his behaviour is
helpful [Ban69], changing it, however, is not easy. The trend towards quantified self, where sensors
eliminate the need of active monitoring shows that feedback from personalized data is very useful and
acts as motivating force [Lup16].

Most smart furniture chairs integrate sensors into different parts of the chair. Common approaches
use pressure sensors, capacitive proximity sensors or electrocardiogram electrodes [MLGF17,MLB∗13,
MKF∗07, BFW15, BFMW15, GSB14]. Example applications track sitting poses, vital signs and sup-
port the user by tracking breathing and hearth rate or seating behaviour, improving sitting posture or
triggering exercises during work. Systems where only the seat area is equipped with sensors, vary in
number of sensors from 16 to about 2000. Tekscan and Sensimat are two commercial systems. Tekscan
has developed Body Pressure Measurement System, a pressure sensing array which finds its applica-
tion in beds, car seats or chairs [Tek]. Sensimat integrates 6 pressure sensors into a wheelchair cushion
supporting the user in sitting correctly [Sen]. Xu et al. and Meyer et al. use E-textiles as capacitive
pressure arrays to detect sitting postures [MAST10, XHA∗13].

Capacitive proximity sensors are a valid approach in building smart furniture, as they sense the
human body through non-conductive material. The sitting comfort of chairs is due to the soft, textile
cushions.

In this work we evaluate conductive textiles attached to capacitive proximity sensors to detect some
of the sitting postures, identified by the Global Posture Study [Ste]. To give design guidelines and define
a minimal set of required material and sensors, we tested different sensor and textile electrode setups.
We have built three prototypes with different textile electrode properties and tested their performance
by detecting specified postures such as sitting upright, leaning back (the draw), leaning forward (the
strunch), sit leaning back left and right (the smart lean). To test the performance, we evaluated the
prototypes with a number of users, comparing single user vs. multi-user classification performance
with various machine learning methods.

3.2.1. Setup of smart cushion

For fast prototyping purposes we use the OpenCapSense board capacitive proximity sensing and pro-
cessing unit [GPBB∗13]. The board forwards the sensor values via Bluetooth to a smartphone. The
data is logged and can be evaluated against a trained classifier. the according application estimates the
sitting posture and shows the user how much time she has spent in a given sitting posture.

For the first prototype we used a therapeutic wedge sitting cushion and for the second an orthopaedic
thicker, softer cushion. Both were chosen such that sensors, processing board and battery could be
fully integrated into the cushion, see Figure 3.18. The wedge cushion was able to include the needed
hardware in a very compact way, but it takes getting used to sitting on such a cushion, even though it is
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Figure 3.18.: First prototypes of Smart Cushion

intended to be used in correcting the back position during sitting. The thicker cushion was much thicker,
offered lots of room for hardware integration, however it increased the sitting height considerably and
did feel like a big addition on top of the sitting area of the chair.

These initial prototypes were equipped with a very basic setup by using four rectangular conductive
textile electrodes. These covered most of the surface of the cushion. However, the variations in shape,
placement and number of sensors could be improved. This process is described in detail in Chapter 5,
Section 5.3.2. The final, the third cushion prototype is for ease of prototyping reasons a thin, flexible
cover of synthetic leather attached to the sitting area of the chair, see Figure 3.19. The textile electrodes
can be attached and removed from the synthetic leather cover. This emphasizes the ability to merge
and integrate seamlessly into the ambient, in this case the sitting area of a chair.

By trying out different positions, we observed that there are areas which are more relevant when
trying to detect the sitting poster. These are the areas close to the body, but not entirely covered while
sitting. Two designs using 5 and 6 electrodes were the results of these trials. We evaluated these in a
user study and concluded that the layout with 5 electrodes, performed better. 4 of the electrodes are
shaped as triangles and one as a smaller trapeze. The triangle shaped electrodes are placed in the 4
corners of the chair. In the 2 corners in the front they have contact to the thighs. In the back, they
control how much the person sitting is leaning towards the side of the sitting area. The 5th electrode is
placed in the middle of the back of the sitting area, responding to the amount a person leans back and
to the front.
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Figure 3.19.: Seat cushion prototype with person sitting upright and leaning back

3.2.2. Sitting posture classification

We used this 5-electrode layout as basic layout for the further evaluation. As mentioned in Chapter
5, Section 5.3.2 the evaluation was created such that it could also detect the influence of electrode
properties. To achieve this, different sitting postures were evaluated using different machine learning
classifiers with a multi- and single-user evaluation. The participants were both male and female in
equal parts. 20 persons participated at the evaluation. They executed five sitting postures: sit upright,
lean back, lean front, sit left, sit right.

For each sitting posture, we recorded a set of 100 samples, each with 5 measurement points, corre-
sponding to the number of sensors. The test persons were shown images of the intended sitting postures.
Afterwards they carried out each posture. Additionally to the 5 postures, data was also gathered with
the empty chair and a person standing in front of the chair. We observed small variations between the
different postures. One participant repeated the evaluation 5 times in order to gather more data for a
single-user evaluation.

The data was evaluated with 15 different classifiers and 3 additional parameter variations of SVM.
We used the implementations from the WEKA machine learning [HFH∗09] in a leave-one-subject-out
cross-validation. The results are shown in Table 3.4.

From the multi-user data set we present the results of five test persons in order to ensure a comparable
data amount in relation to the singe-user data amount. The highest values of the achieved accuracy is
97.1%. It was achieved for the single-user data. The difference of more than 15% in comparison to the
highest value of the accuracy (78,6%) achieved in the case of the 5 participants multi-user evaluation is
significant. The difference with regards to the 20 participants multi-user evaluation is much higher than
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Table 3.4.: Evaluation results per electrode type

fabric spiral perimeter
mean max. mean max. mean max.

multi-user
accuracy 51.8 62.1 58.9 72.6 56.4 78.6
f-measure 43.8 55.8 51.3 67.7 49.2 73.4

single-user
accuracy 81.3 91.4 89.6 97.1 88.9 97.1
f-measure 76.8 89.1 86.7 96.2 86.3 96.2

anticipated. The reasons for this are mostly to interpersonal variations in the posture execution and the
properties of the participants bodies.

Among the evaluated classifiers the WEKA implementation of K-nearest neighbours (IBk), Logistic
Regression Trees (LMT), Naive Bayes Multinomial and Support Vector Machine (SMO, SMO with
RBF kernel) perform best and result in the maximum classification results. Considering the overall
mean performance per classifier Naive Bayes Multinomial performs best closely followed by Multi-
layer Perceptron and K-Nearest Neighbours (IBk).

3.2.3. Summary

In Section 3.2 I have described a cushion for detecting sitting postures by using capacitive proximity
sensing. This seat cushion is equipped with capacitive proximity sensors which track the proximity and
motion of the sitting user and distinguish up to 7 postures. Giving a user immediate feedback on the
posture can facilitate healthier behaviour.

The electrodes were made of conductive textile materials such as conductive fabric and conduc-
tive thread. We have experimented and evaluated different electrode layouts and electrode materials
and confirm the design indications by building different prototypes. These were evaluated with data
collected from 20 users and 15 different classifiers. Our prototypes reached the highest single and
multi-user accuracies of 97.1% and 78.6%. This indicates that the appropriate choice of material and
classifier can lead to high accuracies but are reduced when considering more users. Future systems
should account for that using calibration routines.

3.3. E-textile couch: posture detection

Application areas like healthcare and Smart Environments have greatly benefited from embedding sen-
sors into every-day-objects, enabling for example sleep apnea detection. The application presented in
this section is based on the work published in my paper "E-Textile Couch: Towards Smart Garments
Integrated Furniture" [RBK17]. The authors referred later on as "we" are Silvia Rus, Andreas Braun
and Arjan Kuijper.
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The concept of self-aware materials [Dem16] and producing digital textiles at scale [PGF∗16] en-
ables to view our surrounding materials and surfaces differently, leveraging unexpected invisible ubiq-
uitous interactivity [MBRS14b, MBRS14a]. To address these advances, we investigate how smart tex-
tiles can be seamlessly integrated within furniture and demonstrate this on the couch as our use case.
The interactions between human and couch, create implications about the surrounding context, creating
a self-aware object of every-day use.

Posture recognition has been subject of many works [XLW∗16, EIS∗13]. Especially in the area of
Ambient Intelligence it is of utmost interest to know as much as possible about the human as interacting
counterpart in the surrounding intelligent landscape, to which knowing the posture is an important
contribution. In many works posture recognition has been attempted using different variations of smart
textiles [WTC∗16, ZSC∗16]. Zhou et al. [ZSC∗16] have built a sensing band which monitors gym
exercises. They use textile pressure sensors in order to track leg activity during exercising. Focusing
on posture monitoring Wang has interconnected smart garments with wearable electronics on a vest
for rehabilitation purposes [WTC∗16]. Few works have already partly integrated smart textiles into
furniture. Braun et al. have created a chair to recognize poses and activities creating awareness of
correct posture [BFW15]. The chair is endowed with capacitive sensors where one electrode integrated
in the backrest woven through the mesh of the chair using conductive thread. Examples of furniture
able to recognize the posture of the occupying human are bed, chair and couch. In the bed the sleeping
posture is investigated by several works, where different types of unobtrusively placed sensors are
used. For example Chang et al., Braun et al. and Rus et al. use capacitive sensors placed underneath
the mattress, attached to the frame of the bed, respectively underneath the bed-sheet in order to detect
sleeping postures, lying postures and prevent decubitus ulcers as a consequence [CCCY14, DBM14,
RGPK14]. Liu et al. use capacitive pressure sensors in a high-density sensor bed sheet for monitoring
the patients rehabilitation exercises [LXHA13].

First approaches of detecting seating postures have been made by Tan et al. using a pressure sensor
mat [TSP01]. They classify 14 postures achieving more than 90 % accuracy per posture. Eight postures
were identified by using pressure sensors endowed in an office chair created by Nazari et al. [SYS14].
Braun et al. have created several prototypes of sensing chairs by using capacitive sensing [BSF15,
BFMW15]. One prototype is meant to support training micro-breaks in the office while another is a
sensing system for car seats. The second one is based on 16 electrodes connected to capacitive sensors
with the goal of identifying different properties of the driver, like e.g. drivers head posture.

Couches have been endowed with sensors several times, mostly using capacitive sensors. Kivikun-
nas et al. present a sofa equipped with six metal foil capacitive sensors analysing basic sensor data
[KSK∗10]. Grosse-Puppendahl et al. evaluate nine different postures with a couch equipped with 8
capacitive proximity sensors achieving 97 % precision and recall [GPMB11]. By creating a network
of furniture composed of bed, couch, and chair Heikkilä et al. envisage posture and activity track-
ing throughout the day [HSK∗13]. Even though, the couch has been also equipped with sensors only
long-time evaluations with chair and bed have been reported. More recently, the couch has been used
as a sensing device by Pohl et al. for context sensing in a living room, controlling ambient lightning,
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Figure 3.20.: Couch endowed with eight textile electrodes.

music and tv [PHK∗15]. The couch is equipped with six capacitive proximity sensors, evaluating eight
postures with an achieved accuracy of 92.9 %.

Our contribution with this work, is to extend the usage of smart textiles from the on-body wearables
to the seamlessly integrated ambient objects, like furniture. In this paper we cover an ordinary living
room couch as our use case. We extend state of the art by analysing a set of several fine-grained postures
which will contribute to adjusting the environment to the users’ needs.

3.3.1. Prototype

The production of conductive textiles at large scale envisages that sensing electrodes will one day be
fully integrated into the covering materials and thus into the production process of furniture. Following
this chain of thought our interactive couch prototype is enhanced by placing eight textile electrodes
on the surface of the couch, see Figure 3.20. We created the electrodes by using pieces of 15x16 cm2

conductive fabric, sewing a loop of wire to the fabric using conductive thread and gluing it to pieces of
ordinary couch cover. Details of this process are shown in Figure 3.21. This process ensures that the
electrodes are isolated and utilize materials used for the production of an actual couch.

The electrodes are connected to sensors which are connected to a capacitive sensing prototyping
board, the OpenCapSense board [GPBB∗13]. The raw sensor data is collected and processed in order
to extract the posture of a person on the couch.

We evaluated the couch by asking 15 test persons (2 female, 13 male) to execute 14 different sitting
and lying postures: 12 sitting poses, of which 3 using the armrest of the couch (see Figure 3.22), and
2 lying postures. At all times there was only one person on the couch. Including the empty couch we
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Figure 3.21.: a) Sensor and connected electrode made of conductive textile taped to regular couch cover
sample. b) Sewn connection with conductive thread between textile and wire.

have evaluated 15 distinguished classes: empty couch; sitting upright, on right side; sitting on edge, on
right side; sitting leaned back, on right side; sitting upright, on right side, using armrest in front; sitting
leaned back, on right side, using armrest in front; sitting leaned back, on right side, using armrest at
back; sitting upright, in the middle; sitting on edge, in the middle; sitting leaned back, in the middle;
sitting upright, on left side; sitting on edge, on left side; sitting leaned back, on left side; lying down,
head on right side; lying down, head on left side.

Figure 3.22.: a) Sitting upright; b) Sitting upright using armrest in front; c) Sitting leaned back using
armrest in front; d) Sitting leaned back using armrest at back.

For each class we collected 30 data samples per sensor, which correspond to spending about 10
seconds in a given posture. The test persons were verbally instructed on how the posture should be
executed. Only the desired position of the arm using the armrest has been marked at the position in
front and back due to the more specific and smaller change in posture, harder to convey verbally.
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We evaluated the data with leave-one-subject-out cross-validation using four different classifiers
form the WEKA [HFH∗09] framework. All classifiers were applied with their standard settings. The
four classifiers are k-Nearest-Neighbours (kNN), naive Bayes, C4.5 decision tree (Weka J.48) and Sup-
port Vector Machine (SVM). At first, we applied them on the raw sensor data and subsequently on the
normalized sensor data. In order to be able to compare the performance of conductive fabric electrodes
with the performance of proximity capacitance measurements we selected the classes equivalent to the
ones which were evaluated within the work of Pohl et al. [PHK∗15]. These correspond to our classes
1−4 and 11−15.

3.3.2. Evaluation results

We have collected the raw data of 15 subjects and evaluated it with different classifiers. As input,
we used the raw data, the per sensor normalized data and a subset of classes of the raw respectively
the normalized data. The subset was chosen in order to compare the results of the fabric electrodes
to the proximity sensing electrodes. The detailed results of the leave-one-subject-out cross-validation
F-measure are shown in Figure 3.24. For each classifier we have calculated the overall accuracy and
F-measure by compiling the mean of all leave-one-subject-out cross-validation results for the particular
classifier. Table 3.5 shows an overview of the results.

Table 3.5.: Overview of classification results for C4.5, kNN, naive Bayes and SVM on different data
sets.

C4.5 decision tree kNN Naive Bayes SVM

Data Acc.[%] F-m.[%] Acc.[%] F-m.[%] Acc.[%] F-m.[%] Acc.[%] F-m.[%]

Raw 82.3 77.0 80.7 75.6 84.0 79.8 85.7 81.9
Normalized 89.1 86.0 88.9 86.2 87.2 84.1 91.2 88.8
Subset raw 83.3 78.9 87.5 83.9 89.7 87.0 90.45 88.1
Subset nor-
malized

89.9 87.2 91.6 88.9 95.3 94.1 95.5 94.1

Comparing the overall results of the different classifiers, SVM produces the highest accuracy and
F-measure. SVM performs on the normalized data an accuracy of 91.3 % and an F-measure of 88.8 %.
On the subset of classes 1− 4 and 11− 15 SVM reaches even higher values of 95.5 % accuracy and
94.1 % F-measure.

These results outperform the results achieved by Pohl et al. [PHK∗15]. Table 3.6 compares the
accuracy achieved with the two classifiers kNN and naive Bayes which we used in common. For kNN
our results were significantly better 91.6 % compared to 79.4 %. Pohl et al. achieved their best results
with the naive Bayes classifier, reaching 92.9 % accuracy, whereas our prototype has achieved slightly
more 95.3 % accuracy, only 0.2 % less than our overall best result of 95.5 % accuracy using SVM.

Grosse-Puppendahl et al. [GPMB11] have evaluated their prototype with a total of 9 classes. Six of
these classes correspond to the classes evaluated using the current prototype. These classes are sitting
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upright on left, middle and right side and lying down with the head on the right and the left side which
correspond to classes 1, 2, 8, 11, 14, 15. The F-measure calculated from their precision and recall
values of the individual classes is 97.5 % achieved using the RBF network. Selecting the same classes,
using the current prototype, we achieve an F-measure of 99.8 %.

These results indicate, that using conductive textile electrodes reaches equally good results, slightly
outperforming a system with electrodes placed under the couch cushions.

Table 3.6.: Performance comparison to related work.

kNN Naive Bayes SVM

Pohl et al. [PHK∗15] 79.4 % 92.9 % -
Our work 91.6 % 95.3 % 95.5 %

The difference between the results of SVM on the normalized data and on the subset of normalized
data is of 6 %. In order to find out, which of the classes cause the miss-classification, we inspected the
confusion matrices of particular subjects. We chose to look at the subject with the lowest success rate,
subject 4 (see Figure 3.23), and a middle success rate, subject 3. The confusion matrices indicate that
classes sitting on the right, upright and on the edge were not differentiated at all for both test persons.
Looking at the performance over all classes, in the case of subject 4 sitting upright and on edge were
correctly identified, however differentiating between leaned back with arm in front and arm at the back
were miss-classified as can be observed in Figure 3.23.

Figure 3.23.: Confusion matrices of subject 4 for the subset and for all classes.

Taking only the miss-classification of sitting upright and on the edge on the right side, we could
consider improving this by placing two electrodes on the sitting area, as has been done by Pohl et al.
However, the fact that the two classes were correctly identified in the case of sitting on the left side
and in the middle shows that it is possible to differentiate these poses in most of the cases. This means
that one needs to consider a trade-off between the cost of using one or more additional sensors and
accuracy.
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Figure 3.24.: F-measure of leave one subject out cross-valuation using different classifiers and on dif-
ferent data sets.
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Regarding the placement of the arm, one single electrode does not seem to be enough to detect the
position of the arm in a robust way. We are considering improving recognition rates with placing two
electrodes on the armrest, one towards the front and one towards the back.

3.3.3. Summary

This section contributes to extending the usage of smart textiles from on-body wearables to seamless
integration within ambient objects, like a couch. Conductive textiles used as capacitive electrodes yield
as good results as capacitive proximity electrodes, slightly outperforming previous works.

The evaluation results show, that using conductive textile electrodes is equally suitable in order to
detect postures. However, while attaching the textile electrodes to the couch cover, it became clear
that integrating the electrodes with the couch cover has to be done by taking the design and shape of
the couch into account. On a couch where three persons can sit down, but the sitting surface is made
up of only two couch cushions one needs to consider the placement of the electrodes. Placing the
electrodes underneath the couch cushion needs only one electrode to sense the user. Integrating the
electrode into the cushion cover material would mean in the case of this couch to create two different
electrodes, which could be connected to two sensors or connecting the two electrodes to one single
sensor. Connecting multiple electrodes to one sensor could be used in order to increase the sensing
area and would still send their signal to one single sensing unit. This approach could reduce conductive
fabric material costs.

In order to be able to track a human skeleton motion model and measuring fine-grained postures there
are a few steps to be considered: exploring conductive thread as electrodes, refining the placement of the
electrodes and the number of electrodes needed. These concerns and further other concerns regarding
the creation and the properties of conductive fabric and thread electrodes are further investigated in
Chapters 4 and 5.

60



3.4. The emotion sensing couch

3.4. The emotion sensing couch

Our living environments are increasingly equipped with sensors and controlled devices that aim at sup-
porting the inhabitants in their daily lives. Some of these sensors can be invisibly integrated into regular
pieces of furniture to detect how humans act on or around those. The couch is a very frequent piece
of furniture in the living room, often frequented while performing other activities, such as watching
TV, reading books, or interacting with a smartphone. All of these actions can be a subject of affective
human-computer interaction - based on the current emotional state, the content on the screens can be
adjusted, or the lighting of the room to emphasize passages in a book, see Figure 3.25.

In this section I present such a couch, which aims to detect the occupant’s emotions while protecting
the privacy. This work is based on the paper "The Emotive Couch - Learning Emotions by Capacitively
Sensed Movements" [RJBK18]. The authors are Silvia Rus, Dhanashree Joshi, Andreas Braun and
Arjan Kuijper and are further referred by "we".

Over the years, research in emotion recognition has mainly focused on facial expressions, voice
analysis and handwriting. Apart from these conventional methods, body movements, body postures
and gestures or quality of movements can also be used to differentiate basic or fundamental emotions
like happiness, anger, fear, sadness, or surprise. In case of fear, the body of a person contracts and
muscles tighten, while in case of happiness, the muscles are more relaxed, and the body tends to
occupy more space. Recognizing these emotions, based on presence and movement can improve the
communication between human and machine in situations, where conventional methods of emotion
recognition are impossible or undesired.

He‘s getting
angry, I should
turn on some
calming light.

a) b)

Figure 3.25.: (a) Based on emotional state the lightning of the room is adjusted. Invisible sensors in the
couch sense the emotional movements and communicate with the lamp; (b) Living-room
like Lab. The sensing couch is placed in front of a screen, creating a setting like watching
a movie at home.
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Ekman et al. have focused in 1978 for the first time on emotion recognition [EF78]. They found out
that there is a basic set of emotions which humans universally understand independent of their cultural
background. Emotion recognition is triggered by audio-visual signals abstracted and classified by the
brain. These classes are decoded into emotions. The Facial Action Coding System (FACS) describes
facial expressions according to the activated muscles. This system is largely used from psychologists
in order to describe facial expressions. However, for emotion recognition not only mimic is used.
There are a range of bodily signals which express emotions visually such as body posture or eye-to-eye
gaze. Acoustically the frequency and the pitch of the voice are detected, next to other features. Bodily
reactions mirror emotional states as well e.g. body temperature change, skin conductance, respiration,
blood volume pressure, pupil size and heart rate [GCLF06].

Analysing speech for emotion recognition is not an easy task due to the complex configuration of
parameters and feature selection [DPW96, LNP01]. Lee et al. reached an average accuracy of 76 %
confirming results of Dellaert et al. at about 72 % mean accuracy. Hudlicka et al. state success rates
for emotion recognition of about 63 % [Hud03]. More recently, Hasrul et al. present an overview of
auditive emotion recognition with recognition rates between 41 and 96 %, where 96 % was reached
classifying six emotions [HHY12].

Involuntary, according to our emotional arousal level, physiological signals show how our body pre-
pares to react on the triggered emotion. The results in measuring physiological signals are comparable
to human assessment reaching 81 % compared to 80-98 % by humans. Especially pupil size combined
with gaze detection seems to lead to promising results [Hud03]. Multimodal physiological sensing has
also been investigated. Picard et al. are detecting three different driving stress levels with 97 % accu-
racy. They are differentiating between happy and sad moods with 65-80 % accuracy [HP05, SYM∗15].

Kleinsmith et al. have found that bodily expression is as effective as facial emotion detection. Body
language might even convey emotions better, since it is harder to conceal emotions like with a "pok-
erface" [KBB13, BB16]. Furthermore, body postures also indicate what the reaction to the emotional
stimulus might be. Initially, body postures were analysed from dance sequences [CMR∗04] using cam-
eras and depth cameras. Dance movements were later found to be overly expressive, not covering
day-to-day activities. Thus, at first acted body movements were analysed, such as arm movements
performing gestures like knocking or waving [PPBS01]. Later on the focus moved to more naturalis-
tic movements in non-acted settings. Using depth cameras such as the Kinect, tracking acceleration,
distances and angles between the 11 upper body joints, recognition rates of 90,8 % were achieved by
Saha et al. for detection of five emotions [SDKJ14]. Camera systems work well when occlusion is
not a problem and conditions such as lightning or background and viewing angle do not change too
much. Wearables and sensors hidden in the environment are very well suited to ensure privacy since
the identity of the user cannot be retrieved easily from video data [KSG∗13].

While motion capture using wearables has been widely addressed [SSBB12], sensing body mo-
tion in ambient intelligence is not thoroughly explored. In previous work a multimodal system in-
cluding a pressure sensing chair has been used to detect levels of interest and frustration of chil-
dren [MP03, KBP07, DG09]. The chair was equipped with two matrices of pressure sensors, 2016
sensors arranged in a 42x48 grid, placed on the seating and leaning area. The chair reported nine pos-
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tures of leaning forward, forward-to-left, forward-to-right, sitting upright, leaning back, back-to-left,
back-to-right, sitting on the edge of the seat and slumping back. While determining three levels of
interest, the system achieved 82.3 % for known test persons and 76.5 % for new test persons [MP03].
Using an additional camera, a pressure mouse and a skin conductance sensor the accuracy with which
frustration was detected was overall 79 % [KBP07]. The accuracy rate for only posture detection was
not reported, however the most discriminative features were found to be fidgets, velocity of head move-
ments and the ratio of forward to backward postures.

In the past, this prominent role of the couch in our daily lives has been used to detect users and their
posture [GPMB11] or even to express emotions using haptics, sound, and patterns [MBRS14a]. We
present the Emotive Couch, which integrates sensors that track the proximity and motion of people
on the couch. These capacitive proximity sensors detect changes in the electric field caused by the
presence and motion of conductive objects, such as the human body [BWKF15]. The Emotive Couch
uses flexible sensor electrodes that seamlessly integrate into the fabric of the couch [RSBK15].

3.4.1. Ambient affect sensing prototype

We challenge ourselves to achieve emotion recognition in an completely unobtrusive way, avoiding
wearable sensors and ensuring a level of privacy which is more accepted as using cameras as sensing
devices.

Body postures and movements are sensed using a couch equipped with eight capacitive proximity
sensors [RBK17]. The sensors are distributed over the whole couch, minimizing the number of sensors
needed to detect body postures. The sensing electrodes are flexible and are invisibly integrated into
the couch cushion material. The postures which can be detected by the couch are leaning back, sitting
upright, sitting on the edge, and lying down. When a person sits down on the left or right sitting area
of the couch, three of the eight sensors are directly triggered. The nearby sensors also register slight
changes due to their proximity sensing capability.

There are various systems which address establishing the link between emotions and movements.
Movements are described from anatomical, directional and posture/movement point of view depending
on the quality and type of movement. Coding systems are used to interpret and attribute the descriptions
to specific emotions.

Since our system is able to detect movements and postures, we identified that the posture/movement
description level is best suited for our work [FP14]. Different coding systems have been proposed to
understand the bodily expressions of emotions based on postures and movements such as the Body
Action and Posture Coding System (BAP). We use this coding system because it combines coding of
both actions and postures. By checking how emotions are described in the BAP coding system we have
selected which five emotions to detect.

Joy is described by various purposeless movements, jumping, dancing for joy, clapping of hands,
stamping, head nods while laughing; during excessive laughter the whole body is thrown backwards
and shakes or almost convulses; body and head are upright, arms are open generally above the head,
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active movements. We chose to detect this emotion because most of these movements and postures
imply whole body movement and less specific head or arm positions. In contrast Sadness is described
by motionless or slow motions, head dropped on contracted chest, passive movements. With similar
passive movements Relaxation is described by the whole body thrown backwards or sideways, arms
open while seating and head backwards. Even tough Sadness and Relaxation are both described with
passive movements, the body posture between them is expected to be different. When displaying
Interest, the whole body is inclined forward, arms stretched out to the front, head straight, active or
passive movements. Anxiety is characterized by short movement times and active movements.

These emotions are not only well suited because of their different characteristic body movement
but are attributed to different quadrants of the Circumplex Model of Emotion which is used to place
emotions in a 2D space with the dimensions pleasure and valence [PRP05]. The emotions in different
quadrants are as far as possible from each other in order to be as different as possible in valence and
pleasure, which eases the process of discriminating them.

3.4.2. Emotion detection study design

One of the major obstacles in evaluating emotion recognizing systems is to obtain non-verbal behav-
ior which corresponds to realistic emotions. Carrying out experiments in the lab, a performer has to
reproduce emotions by acting them.

Our lab is arranged like a living-room. As central part of the room, the couch is placed in front
of a big screen a few meters away. This setting evokes very easily a feeling of watching a movie at
home, see Figure 3.25b). We investigated emotion elicitation techniques which are suitable for this
given setting. There are different methods to evoke emotions from a person in test laboratories. Such
methods are imagination, repeating of phrases, music and film/videos.

We have researched emotion elicitation methods which correspond to our selected emotions. For
eliciting Joy, Sadness, Anxiety we have selected videos, for Relaxation we play calm music and for
Interest the user has to solve puzzles. We have chosen these elicitation methods because we think that
these are most naturally suited for our living-room evaluation scenario. For Joy we show a compilation
of funny baby videos. Sadness is meant to be induced by showing a scene from the movie "The
Champ" which is generally approved to be a sad movie scene [GL95]. For Anxiety we chose a video
of an individual performing parcours on top of a skyscraper. Calming images are accompanying music
for Relaxation. For inducing Interest a few puzzles are shown with the task to search something in the
image. Each activity lasts between 70 and 92 seconds.

Because acted and non-acted situations present different advantages [KBB13] we decided to try out
both approaches, gathering body movements from elicited and from acted situations. For this, we have
invited 15 test subjects (6 female, 9 male), aged 20-40 years into our lab. None of the test subjects
had acting experience. Only one test person was allowed to enter the lab at a time. The experimenter
was sitting in a different room. This assured the test person total privacy, in order to encourage natural
reactions. After filling out some demographic information, the subjects were instructed to keep their
mobile phones aside, in order to avoid disturbance. The test subject was instructed to sit on the right side
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of the couch and watch the videos as though she would be at home. The lights of the lab were dimmed,
and the videos started: first the video for Anxiety, followed by Relaxation, Interest, Sadness and Joy.
The purpose of this order was to ease the transition between emotions. After each video, corresponding
to a different emotion, lights were turned on and the user filled out a multiple-choice questionnaire,
stating which of the presented emotions she felt during the last video and to which degree of intensity.
This constituted Round 1 of the experiment. After showing all videos, the experimenter explained to
the subject, that the purpose of the experiment was to match motions to emotions. With this in mind
the test subject was instructed to act all the emotions, supported by watching the videos a second time
and by creating awareness of their movements by wearing a decoy sensing system. This constituted
Round 2.

While the test subject was watching the videos and acting according to their emotions, the couch was
providing eight values from the capacitive sensors. These eight sensor values are further on mentioned
as raw sensor data. Additionally to the raw data, two features were computed. The first is the posture
predicted by the couch and the second is the amount of movement.

We have evaluated the data using various combinations of features of which these two cases per-
formed best: (1) raw sensor data; (2) all features: raw sensor data, movement, and posture. The
data of the 15 test subjects was evaluated using leave-one-subject-out cross-validation. We used five
classifiers to evaluate the data. We have evaluated the data by using Weka’s implementation of C4.5
decision tree [Qui93]: J48, Weka’s implementation of k-Nearest Neighbours [AKA91]: IBk, Weka’s
implementation of SVM using SMO [Pla98]: SMO, Weka’s Naive Bayes classifier [JL95]: NaiveBayes
and Weka’s implementation of Random Forests trees [Bre01]: RandomForest. For each classifier we
computed the average of the results of the 15 persons using leave-one-subject-out cross-validation.

3.4.3. Study results

The results of all evaluations are presented in Table 3.7. It shows accuracy and f-measures for different
classifiers. Round 1 denotes the part of the experiment where emotions are evoked and Round 2 denotes
the experiment where the subjects act the emotions. At first, we have computed results for two feature
combinations considering all emotions. Subsequently we have considered a subset of emotions.

Comparing the overall results of different classifiers, Random Forest produces the highest accuracy
and f-measure of 52.6 % and 48.4 % for five emotions in Round 2. For Round 1 we achieved the
highest accuracy of 43.6 % with SVM. Comparing the difference in accuracies between evoked and
acted emotions from Round 1 and Round 2, there is no notable improvement with differences of up
to 3% for kNN (38.4% vs. 37.1%) , SVM (43.6% vs. 46.5%) and Naive Bayes (40.8% vs. 42.4%).
However, for C4.5 Decision Tree (33.9% vs. 46.4%) and Random Forest (36.8 vs. 52.6%) there is a
noteworthy difference of about 15%. The same pattern in difference between rounds is maintained in
the results computed with all features.

During the experiments of our study, test persons mentioned the difficulty to act some of the emo-
tions. Many participants reported that they managed to feel the emotions but did not know how to
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All emotions Emotion subset

Classifier Round Sensor Data All features All features

Acc (%) F-m (%) Acc (%) F-m (%) Acc (%) F-m (%)

C4.5 Decision Tree
1 33.9 27.7 36.5 30.6 53.7 47.1
2 46.6 40.6 45.2 40.7 66.4 61.5

kNN
1 38.4 31.0 38.0 32.5 56.3 48.1
2 37.1 34.5 39.5 35.6 63.1 58.0

SVM
1 43.6 35.6 42.0 33.7 62.2 55.5
2 46.5 39.7 48.3 40.1 77.7 73.0

Naive Bayes
1 40.8 31.5 40.5 30.5 54.5 45.5
2 42.4 36.0 47.6 41.2 68.9 64.0

Random Forest
1 36.8 29.3 36.4 29.4 54.0 47.4
2 52.6 48.4 49.0 43.9 68.6 63.4

Table 3.7.: Classification results of all emotions and a subset of emotions (Relaxation, Interest, Anx-
iety). All emotions are evaluated on two feature variations with raw sensor data only and
combined with the features posture and movement.

manifest them. Especially with Sadness and Joy the test subjects mentioned that they were unable to
translate those emotions into movements.

In order to find out which of the emotions causes miss-classification, we inspected the confusion ma-
trices of multiple subjects. For the emotions Sadness and Joy almost all the instances are misclassified
as Anxiety. By removing the two classes from the evaluation and evaluating the emotions Relaxation,
Interest and Anxiety the accuracy increases by about 20 % reaching a maximum accuracy at 77.7 % in
Round 2 and 62.2 % in Round 1.

For three emotions, the probability of randomly picking the right class is at about 33 %. Having
achieved a maximum average accuracy of 77.7 % is thus significant. Results indicate, that SVM could
be a good general choice. Analysing individual results one can determine that for particular individuals,
different classifiers reach the highest accuracies. Regarding evoked and acted emotions, the difference
of 10-15 % between the two rounds shows that when acted, emotions classification results are better.

Our achieved results of 77.7 % for the emotions Anxiety, Interest and Relaxation are comparable with
work of Mota et al. [MP03] and Kapoor et al. [KBP07]. Endowing a chair with a grid of 42x48 pressure
sensors on the seating surface and on the backrest Mota et al. have investigated the level of interest. For
three levels of interest they have achieved 82.3 % for test persons within the training set and 76.5 % for
new data. Kapoor et al. have focused on detecting frustration. Complementary to the pressure sensitive
chair used by Mota et al. their setup is equipped with a camera and a pressure sensing mouse. They
achieved 79 % accuracy in detecting frustration. Due to the very different research questions it is hard
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Joy Sadness Relaxation Interest Anxiety

Effectiveness [%] 93 93 100 93 80

Table 3.8.: Effectiveness of evoking emotions using visual emotion elicitation methods

to compare the achieved accuracy for level of interest or frustration with detecting different emotions
by means of ambient affect sensing.

The effectiveness of the videos which were used to evoke particular emotions was calculated by
inspecting the sheets filled out by the participants during Round 1 of the experiment. Table 3.8 shows
with what percentage we achieved to convey the desired emotions. For Anxiety 80 % of participants
found the video about parcours to evoke anxiety. In contrast 100 % of all participants found the music
and the screen images to convey Relaxation. The emotions Interest, Sadness and Joy each achieved
93 %. These results show that we were successful in eliciting the intended emotions with an overall
accuracy of 92 %. However, on some sheets of the participants the intended emotion was different from
the perceived emotion. The perceived emotions may depend on many factors such as person’s nature,
his mindset during the experiment, his interests, etc. For example, the video showed for Anxiety can
be perceived as interesting or can evoke joy if the person is adventurous. If a person looks for acting
talent in a video, then she can find any video interesting.

During the experiment, the test subject was alone in the room. The experimenter was in other room
with no line of sight thus the experimenter was unable to see the movements and postures that were
taken by the test subjects. From the recorded data we observe a pattern between emotions and postures.
For Interest most of the subjects were sitting on the edge of the couch while for Relaxation the subjects
were sitting leaned back on the couch. These specific postures are responsible for the good results for
the emotions Interest and Relaxation.

Movements of body parts like head, hands and shoulder play a major role in recognizing emotions.
Because of the scarce placement of the capacitive sensors on the couch and the form of the couch, it
is difficult to track the movements of head, shoulder, and hands. One way to overcome this without
enhancing the couch is the use of wearable sensors. Another possibility would be to choose another
kind of piece of furniture such as an armchair or a couch with a different form. If the couch would
have a higher backrest or even a headrest one could track the head movements. By having sensors in
the armrests arm and hand tracking would be possible.

3.4.4. Summary

In this section I presented a couch especially set up to measure emotional movements by sensing move-
ments using capacitive sensors. The couch integrates capacitive sensors that track the proximity and
motion of people. The couch gathers raw sensing data, posture, and movement data. It uses flexible
electrodes which invisibly integrate into the cover material of the couch.
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In a specifically designed study, we have gathered movement data from elicited and acted emotions
of 15 participants. The sensed movements can be learned and linked to emotional states. For the
classification of emotional states, we applied standard machine learning techniques and achieve 52.6 %
accuracy for all 5 emotions Joy, Sadness, Relaxation, Interest and Anxiety. As expected, the results
of the acted emotions were better compared to the elicited emotions. Analysing a subset of emotions
Relaxation, Interest and Anxiety we have achieved results of 62.2 % for evoked emotions and 77.7 %
accuracy for acted emotions.

I foresee a number of potential use cases for the Emotive Couch. The ability to assess emotion from
motion can be used in applications for affective computing and beyond.

The data acquired from the Emotive Couch can be fused together with data from other devices that
collect the affective state, such as cameras or wearables, to create a more complete picture of the users
emotions, as well as increasing robustness and precision of the methods. This can also feed into a long-
term assessment of changes in the users affective states that may be an indicator for mental disorders,
such as depression.

The Emotive Couch can be used to personalize experiences based on the current affective states,
particularly for applications that are performed on the couch. There could be selection or adaptation
for multimedia playback, such as musical selection or movie loudness according to the current mood.
When the system is linked to a home automation system this can be extended to control of the lighting
situation.

The Emotive Couch can also be used in more engaged scenarios, such as interaction with smart
phone or video games. The level of frustration while using the smart phone can be used by the current
application to adapt their output in a beneficial way. The current affective state could also be used to
adapt content, game play, and speed when playing a video game.

3.5. Conclusion

In this chapter, I presented contributions which feed into the first of the three research challenges New
flexible Smart Environment applications. Through these contributions, I demonstrate that the untapped
potential of embedding sensors into flexible surfaces is considerable and that it can be exploited. Thus,
I present diverse prototypes from three different application areas.

The first area is the one of decubitus ulcer prevention [RGPK14,RGPK17]. I created a system based
on a bed sheet that can be used in hospitals or at home, which alarms the caretaker looking after a
bedridden person, if the person has spent too much time in a certain lying position. The prototype is
composed of a wire electrode grid. Measuring the mutual capacitance between these electrodes allows
for the detection of the presence of human body parts. The received sensor data is treated like an image
of 48 pixels. After preprocessing and using machine learning, the bed sheet is able to recognize bed
postures and therefore infer pressure points. The evaluation with 14 participants resulted in a overall
accuracy of 80.8 %, with varying accuracy for different test person subsets achieving an accuracy of
93.8 %. The best overall accuracy has been achieved using a NN classifier on the raw data, yielding an
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overall accuracy of 90.5 %. Compared to similar works, the bed sheet is affordable and easy to handle
due to the wire grid, which allows for a high number of sensing points.

The second application area is back pain prevention by sitting posture monitoring and exercise track-
ing through a chair [RBKK19b]. Through different design iterations, I created a sitting cushion using 7
capacitive sensors with electrodes made of conductive textile materials that track the proximity and mo-
tion of the user. Even though previous works have achieved limited sitting posture detection, I extend
the current body of knowledge by evaluating different e-textile electrode layouts. These were evaluated
with data collected from 20 users and 15 different classifiers. The prototypes reached the highest single
and multi-user accuracies of 97.1% and 78.6% demonstrating that the appropriate choice of material
and classifier can lead to high accuracies.

The final application area to which I contribute in this research challenge, is differentiating emotions
through sensing movements on a couch [RBK17, RJBK18]. I contribute a couch especially set up to
measure emotion by interpreting measured movements. Through my work, I show that conductive
textiles used as capacitive electrodes yield as good results as capacitive proximity copper electrodes
when detecting lying postures, slightly outperforming previous works. I use the same setup to extend
the sensing capabilities to motions from which I subsequently infer emotions. Initial results achieve
52.6 % accuracy for all 5 emotions Joy, Sadness, Relaxation, Interest and Anxiety. Different subsets of
emotions Relaxation, Interest and Anxiety achieved results of 62.2 % for evoked emotions and 77.7 %
accuracy for acted emotions.

While exploring the many possibilities to embed sensing into flexible surfaces and provide useful
applications for their user, it is very motivating that high and very high accuracies could be reached.
This shows that these systems are able to achieve their potential, once stable and seamless integration
options of sensors into materials are possible. While I created these assistive applications using flexible
materials, I encountered application design decisions I needed to take. This call to decide where to
place sensors and how many are needed, led to the second research challenge, which I will address
further throughout Chapter 4.
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Embedding sensors into fabrics can leverage substantial improvements in application areas like work-
ing safety, 3D modelling or healthcare, for example to recognize the risk of developing skin ulcers.
In the previous chapter I have presented applications leveraging flexible surfaces, creating various as-
sistive applications for Smart Environments. During the design process of these applications I have
encountered the need to take different design decisions, such as where, which type of sensor and how
many sensors should be placed. This led me to the second identified research challenge New design
tools for flexible Smart Environment.

Finding a suitable setup and sensor combination for such a surface currently relies on the intuition
of an application engineer.

I address this challenge by contributing in this chapter with: (1) an aiding tool for identifying the
suitable number of sensors and layout, and (2) investigating the role of human intuition when designing
a smart garment use case. In Section 4.1 I present the developed simulation framework. Its function-
ality is validated by comparing the simulated prototype with a real-world prototype for lying posture
detection using a bed cover. In a second step, I use the validated simulation framework and investigate
in Section 4.2 to which degree application designers can rely on intuition vs. expertise while creating
an application with flexible surfaces.

The work in this chapter is an extended version of my papers [RHvW∗18,RBKK19a] and the Master
thesis of Felix Hammacher and Christian Gutjahr [Ham15, Gut17]. In this chapter we, the authors of
these works, introduce following scientific contributions:

• We introduce a novel approach to simulate the application using flexible surfaces first and opti-
mize the design to achieve better real-world implementations. In order to enable developers to
easily prototype their shape-sensing scenario, we have implemented a framework that enables
soft body simulation and virtual prototyping.

• We confirm the validity of our framework by comparing the simulated and real evaluation results
of a virtual and a real-world prototype for the use case of lying posture detection.

• We investigate how well human intuition helps to design a smart garment application on flexible
surfaces and to which extent sensor expertise plays a role in the design of these.
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4.1. Prototyping applications for flexible surfaces through simulation

This Section is based on my paper "Prototyping Shape-Sensing Fabrics Through Physical Simulation"
[RHvW∗18] and the Master’s Thesis of Felix Hammacher [Ham15]. The authors referred to as "we"
are Silvia Rus, Felix Hammacher, Julian von Wilmsdorff, Andreas Braun, Tobias Große-Puppendahl,
Florian Kirchbuchner and Arjan Kuijper.

The rapid development towards miniaturized sensors and bendable electronics has led to new con-
cepts for shape-changing and shape-sensing devices [DMW∗18, TKG∗15, SJM13, KLMS11, RSL14].
Contrary to the traditional usage of cameras for shape-sensing, which suffer from occlusion, lack of mo-
bility and lack of acceptance, sensors integrated into everyday materials can leverage fine-grained shape
detection supported by developing bendable sensors [RGPK14, GSO∗14, CLY10, SPM04, RKF∗14].
One consequence of integrating sensors into everyday materials is the approach towards developing
"Everything" as a Material, like Displays as a Material [SCHGP16], Microcontrollers as a Mate-
rial [MJB∗13] and Self-Aware Materials [Dem16] which are self-aware of their shape and deformation.

It is common to simulate prototypes in a virtual surrounding to see if the planned hard- and software
is capable of fulfilling their desired purpose before they are built in real hardware [Ž08, ELDL11],
especially in robotics research. Several robotic simulators have been implemented that integrate virtual
sensors and use them together with other virtual robots [SM11]. Since robots are mostly made of
rigid materials, none of the robotic simulators were found to be able to attach virtual sensors to soft
materials, like fabrics and thus simulate our shape-sensing fabric. However, there are multiple existing
shape-sensing fabrics approaches which we address in the following.

Flexible, self-sensing objects, which know their current shape and report their deformation have
recently been in the focus of different works using technologies like piezoelectric, resistive and ca-
pacitive sensors [RKF∗14, GSO∗14, LGBV11, LRS∗04]. An example of a self-sensing flexible surface
is FlexSense, a piezoelectric transparent foil which can sense if it is bent. It is used as input foil for
tablet interaction [RKF∗14]. PrintSense is a similar approach for manipulation detection of flexible
surfaces using capacitive sensing [GSO∗14]. Resistive sensors enable the users of the PaperPhone to
interact with its bendable corners [LGBV11]. Lorussi et al. create a piezoelectric sleeve which detects
the arm bending [LRS∗04]. All of these examples have as a goal to determine their shape and use this
information for the use case at hand.

Additionally, there are a few approaches using inertia and magnetic sensors added on flexible sur-
faces, in order to determine their shape [DKP15, WTC∗16, Wan16, HCG15, HN12, SSJLB14, HS08,
HCG15]. The Three-Dimensional Capture Sheet measures its own shape only by using embedded iner-
tia and magnetic sensors [HS08]. It produces a 3D-mesh without external devices, by attaching inertia
sensors onto rigid links connected at their ends, forming a lattice structure. By determining the orienta-
tion of each attached sensor, the orientation of the corresponding link can be distinguished. The theory
and a simulation of an exemplary 13x13 lattice structure shows the feasibility of using the orientation,
measured via accelerometer and magnetic sensors, for shape reconstruction. However, only a small
prototype with a 3x3 grid using 24 sensors, attached to the grid links, was realized.
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MorphoShape consists of a rectangular piece of fabric embedding a 3x3 grid of inertia sensors
[SSJLB14]. Although MorphoShape only uses 9 sensors (accelerometers and magnetometers), its
reconstruction algorithm, based on curves, provides a realistic interpolation of the whole prototype.
Hermanis et al. have developed two shape sensing prototypes [HN12, HCG15]. The first was com-
prised of a 4x4 acceleration sensor grid used for body posture recognition. The sensors were attached
to clothing on the back. The second prototype was based on inertia sensors sewed into two layers of
freely bendable fabrics. The 63 embedded sensors are aligned in a 9x7 grid.

In a similar manner Wang et al. have demonstrated Zishi, a wearable smart garment based on intertial
measurement units monitoring the shape of the back of a person for rehabilitation purposes [WTC∗16,
Wan16]. Demetyev et al. have developed a cuttable SensorTape, where each sensor node has inertial,
infrared, and light sensors gathered on a flexible substrate [DKP15]. Demonstrating the capability
of their rapid prototyping they attach the tape to the back of the person, recording and displaying its
deformation.

Having a flexible shape-sensing fabric use case, the engineer needs to decide on how to equip and
distribute sensors across his shape-sensing surface. He has to try out different designs with solely his
intuition to work with regarding type, number and placement of sensors. Even though supporting tools
like simulators are well known in the robotics area they are only suited for rigid object simulation and
not for flexible surface simulations [Ž08]. We close this gap by providing a tool for designing virtual
prototypes for shape-sensing fabrics.

4.1.1. Simulation framework

Our proposed simulation framework offers tools to create and run a physical based simulation in real
time. This simulation can not only contain physical objects interacting with each other, but also sensors
attached to them. Instead of just being able to attach sensors to rigid bodies, like in most robotic
simulators, sensors can also be attached to soft bodies. Thus, it enables a user to simulate the fabrics
with embedded sensors.

4.1.1.1. Virtual sensors

The sensors currently included in the simulation framework are acceleration sensors and combined
acceleration and magnetic sensors. The first ones only offer tilt sensing, the latter complete orientation
sensing. Tilt sensing only measures the orientation of the sensor relative to earth’s surface.

A 3-axis accelerometer measures it’s acceleration in three local perpendicular axes. When left mo-
tionless, the accelerometer measures a fixed acceleration of 1 g ( 9.81 m/s2) towards the earth center,
due to the gravity of the earth. This gravity direction is used as axis to determine the tilt of the sensor
relative to the earth frame. The tilt consists of the roll, the rotation around the earth-frame x-axis, and
the pitch, the rotation around the earth frame y-axis of the sensor, as shown in Figure 4.1. They can be
determined by calculating the angles between the reference Zearth-axis and the local Zlocal-axis of the
sensor in the YZ- (roll) and the XZ-plane (pitch) respectively. The yaw, the rotation around the earth-
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frame Z-axis, cannot be measured since the reference Zearth-axis stands always perpendicular on the
XY-plane and thus the angle between the Zearth and Zlocal is always zero. Furthermore, an accelerome-
ter cannot distinguish between acceleration caused by gravity or by movement, thus it is not well suited
for orientation measurements in non-linear motion.

Figure 4.1.: Tilt sensing and orientation using an accelerometer-magnetometer combination [Ham15]

A 3-axis magnetometer measures the strength and direction of the magnetic field around it. If no
other magnetic field is created, the only measurable one is the magnetic field of the earth pointing
towards its magnetic north. Thus, the magnetometer can be used as a compass providing the direction
towards magnetic north. In the right image of Figure4.1 the direction of the earth magnetic field is
chosen to be aligned to the global Xearth-axis. By calculating the angle between the global Xearth-axis
and the local Xlocal-axis in the XY-plane, the yaw of the sensor is determined.

Since both sensor types only provide a single reference vector, none of them alone can be used to
calculate their complete orientation around all three global axes. Complete orientation sensing also
includes knowledge of the cardinal direction the sensor points at. The sensor types offer different
advantages and disadvantages for shape-sensing, shown in Table 4.1.

Table 4.1.: Advantages and disadvantages of different sensor types for shape-sensing fabrics

Advantages Disadvantages

Tilt sensing • no calibration needed

• cheap

• software faster

• less affected by wrinkles in fabric

• restricted to 90 degree bending

• less precise if sensor grid yawed

Complete orientation • no restriction due to bending

• can handle yawed sensor grid

• higher precision

• better surface reconstruction
possible

• more affected by wrinkles

• calibration necessary

• more expensive

• software slower
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4.1.1.2. Import realistic objects

The simulation framework is based on the bullet physics engine. This provides several types of objects:
rigidbodies and softbodies. Rigidbodies are solid objects, which are not deformable. Their behaviour
depends on many adjustable physical properties of the physics engine, such as friction and mas. Besides
basic shapes such as spheres and cubes, the simulation framework provides the possibility to load OBJ
files.

The fabrics in the simulation framework are represented by softbodies. These are soft structures,
which can be deformed by external forces. These are directly applied on the nodes of the softbody
mesh or as result of the impact with another object. A softbody consists of nodes connected by links.
Depending on the configuration of the softbody 3-4 nodes connected by links form a face - a surface.
The links act like springs, which exert force on the nodes. This force is defined by the link stretchability.
By adding up the forces on the nodes, the impact on the whole softbody is calculated.

The number of nodes, and thus faces and links, depend on the resolution of the softbody. With an
increasing number of nodes at the same expand of the softbody its resolution increases as well. A
higher resolution provides more realistic behaviour, because the softbody can bend more freely. The
collision detection between softbody and another collision object is also more accurate. Figure 4.2
shows the different accuracies of a softbody with 10 x 10 and 20 x 20 nodes in the same situation.
Rising the resolution of the softbody leads to more calculations, what can prevent the simulation from
running in soft real time.

Besides the possibility of using forces to interact directly with the nodes of a softbody, bullet provides
the possibility to create anchors between nodes and rigidbodies. A softbody node connected to an
anchor moves according to the rigidbody the anchor is attached to. A flag for example consists of a
piece of fabric fixed to a flagpole. In the simulation the fabric is represented by a softbody, the flagpole
by a rigidbody. By attaching the lower and the upper right node with an anchor to the rigidbody, the
softbody follows the movement of the rigidbody like a real flag would. Anchors can be set and removed
in the simulation-framework to help the user to create the desired scene.

Figure 4.2.: Softbody with 10x10 and 20x20 resolution [Ham15]

In order to create scenes with realistic objects, complex meshes can be loaded. These meshes could
be taken from databases or being custom created. A possibility is to use a depth camera to create a
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high-resolution 3D shape of the object we want to import. In order to import this in the simulation
framework, these shapes have to be transformed to meshes with lower resolution.

4.1.2. Simulation framework use case: sleeping posture recognition

The proposed simulation workflow, shown in Figure 4.3, eliminates the need for designing and build-
ing the hardware equipment. We introduce and evaluate a simulation framework for shape-sensing
fabrics, which enables developers to investigate designs of applications prototypes, before any hard-
ware installation. First, the application developer scans a several shape-sensing scenarios. With this
representation, we provide the developer with a tool to estimate the desired level of accuracy, deciding
on the trade-off between accuracy and number of sensors suitable for this use case. Finally, when the
application developer is satisfied, the system can be implemented.

Shape-sensing use case 
(e.g. sleeping posture recognition)

3D scan with KinectFusion

Iterative sensor placement and 
performance analysis

Shape-sensing fabric 
implementation

(1) (2)

(3)(4)

Figure 4.3.: Prototyping support of shape-sensing fabrics including simulation and refinement phase
into workflow. First, we 3D-scan several scenarios e.g. sleeping posture recognition
(1) to create a mesh representation (2). On this mesh, we place a virtual prototype of
a shape-sensing fabric with simulated sensors (3). The classification performance is it-
eratively analysed, allowing the application developer to implement the best-performing
shape-sensing fabric (4).
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Figure 4.4.: Evaluated sleeping postures: (a) supine and prone; (b) straight left and right; (c) left and
right fetal.

In order to show the workflow for simulation-aided prototyping of hardware and software, we choose
sleeping posture recognition as application for shape-sensing fabrics. We cover a sleeping individual
with a sensor embedded bed cover, which adapts to her body posture. The bed cover senses the shape
of the person lying underneath and deduces her sleeping posture.

In this section we present the workflow, that supports planning the hardware for this specific use
case like deciding on different dimensions of a prototype, the number of sensors and the sensor layout.
This is achieved by creating a virtual prototype first. Subsequently, we describe the real prototype
built according to its model, the virtual prototype. The description of the two prototypes, virtual and
real-world prototype, is followed by a detailed comparison and evaluation in the validation section.

4.1.3. Creating a virtual prototype using the simulation framework

Our proposed simulation framework offers tools to create and run a physical based simulation in real
time. This simulation can not only contain physical objects interacting with each other, but also sensors
attached to them. Instead of just being able to attach sensors to rigid bodies, like in most robotic
simulators, sensors can also be attached to soft bodies. Thus, it enables a user to simulate fabrics with
embedded sensors. The sensors currently included in the simulation framework are acceleration sensors
and combined acceleration and magnetic sensors.

Our shape-sensing fabric is comprised of a bed cover equipped with acceleration sensors. Before a
hardware prototype is created, the simulation framework is used to test different sensor layouts which
are suitable for the use case. The simulation framework provides a way to quickly generate sensor
output for different virtual prototypes. Even huge amounts of sensors become manageable. Although a
higher resolution of sensors leads to a more precise shape reconstruction, embedding more real sensors
on a real prototype is very complex. To find the optimal solution for the trade-off between precision and
complexity, the simulation framework is used. For this, we create the scene of the use case in the virtual
environment of the simulation framework. The virtual bed cover consists of a soft body with 36 x 36
nodes and virtual sensors. Sensors can be attached to each of the nodes. This way, the behavior of the
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Create high poly mesh of
test person with Kinect. 

Use reconstruction as quick
decision aid.

Place virtual shape sensing prototype 
on top of the scanned person.

Load the low poly mesh into the
simulation framework.

Figure 4.5.: Virtual prototyping workflow: the high-resolution mesh of a sleeping posture is created
using a depth camera (upper left); this mesh is preprocessed creating a mesh of lower res-
olution, which is loaded into the simulation framework (upper right); the virtual bed cover
equipped with sensors falls on the virtualization of the sleeping posture and delivers the ac-
cording simulated sensor data (bottom right); the reconstruction of the surface calculated
from the sensor data is displayed (bottom left).

soft body only slightly changes because of the weight of the attached sensors. Different resolutions of
nodes instead would cause a different behavior of the bed cover.

For evaluating the analysed use case in the virtual area of the simulation framework, the ground truth
of the use case has to be gathered and virtualysed. We have decided on detecting 6 common sleeping
postures, depicted in Figure 4.4: lying on the back, on the stomach, on the left and on the right side with
stretched legs and lying on the left and right side in foetus position. This ground truth is gathered by
using a depth camera, in this case we used the Microsoft Kinect v2 and the free software KinectFusion.
The outcome of this process, a raw high-resolution mesh of a test person is shown in Figure 4.5. After
this initial 3D capture of a test person, all unnecessarily captured objects in the surrounding have to be
eliminated. This is done be registering the persons 3D shapes against each other and cutting around the
object of interest. The result from this process is a high-resolution mesh of the test person. In order
to load this high-resolution mesh into the simulation framework, a lightweight low resolution mesh of
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the test person has to be calculated. We chose to use Cloudcompare1 for registration and Meshlab2

for lowering the resolution of the 3D mesh. Finally, the lower resolution mesh is introduced in the
simulation framework, shown in the upper right of Figure 4.5. In the bottom right, the mesh of the
sleeping posture is covered by a soft body, the bed cover, which is equipped with the virtually modelled
sensors. The sensors provide virtual sensor data of the softbody covering the 3D mesh of a sleeping
posture. This data is passed to the classification algorithm where the sensor data is classified using a
Support Vector Machine (SVM). Using the reconstruction algorithm, the reconstruction visualizes the
sensed shape.

Initially, we have scanned two sets of sleeping postures from two test persons. We loaded the 3D
shape data into the simulator using the process described in Figure 4.5. The next step was to decide on
the positions of the sensors on the virtual bed cover - the layout. Due to resource limitation, the max-
imum number of available sensors was 40. Hence this number was used as a starting point. However,
in the validation section we describe evaluation results in more detail, where the number of sensors
varies and further adapts to our use case. For now, this number of 40 sensors was used to compare three
different virtual layouts: one where the sensors were equally dispersed on the bed cover, one where
the sensors cover the person underneath and one where the upper part of the body and the sides of the
bed cover are occupied by sensors (see Figure 4.10. As a quick aid on deciding which layout was more
suitable, we analyzed the reconstructed shape. The third layout showed the best recognizable shape for
the human eye, hence we decided for the upper body covering layout. Even though, at this moment a
human looking at the reconstructed image of the simulated sensor data was used to decide on the most
suitable layout, further evaluations support this decision and are described in the validation section.

4.1.4. Creating the real-world prototype hardware and software

As a result of the virtual prototype simulation, the layout with the best results in detecting the sleeping
posture was identified. This input is used to build a real-world prototype consisting of 40 sensors,
arranged in a 5x8 grid. As shown in Figure 4.6, the extracted distances between the sensors from the
simulated layout are 14 cm and 21 cm. These dimensions were chosen to cover a human torso using 40
sensors. The sensors are linked by three wires, two power lines and a bus-line for communication. The
wires are sewn to the bed cover. Since the bed cover is deformed by every underlying object, the power
lines as well as the bus-line have to withstand physical stress. In order to compensate for possible single
point of failures in the links between the sensors, the links were built redundant on every side of the
bed cover, as schematically depicted in Figure 4.6. The reason to not link each sensor to its neighbors
is to preserve the flexibility of the bed cover.

Each sensor uses an accelerometer to detect its current orientation. The accelerometer is connected
to an 8 MHz microcontroller via I2C. The microcontroller transfers the data using the UART protocol.
This was chosen in order to minimize wire-usage, as only one is required for transferring data.

1http://www.danielgm.net/cc/
2http://meshlab.sourceforge.net/
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Figure 4.6.: Schematic of hardware implementation of posture recognizing bed cover. 40 sensors are
aligned in a 5x8 grid, connected via bus and redundant power lines. Each accelerometer
is connected to a microcontroller which communicates using the UART protocol. Dimen-
sions and layout are outcome from the preliminary layout evaluation.

To transfer the data to a computer, we use a simple, yet fast protocol. Each sensor has a fixed, pro-
grammed address. The first sensor sends two start-bytes and the data of the accelerometer periodically
in a fixed interval of time. The second sensor, as all other sensors, is counting the amount of data that
was transferred over the bus. After the first sensor has sent all of its data, the byte-count of the sensor
with address 2 will be (sensoraddress−1)∗NumberO f BytesPerSensorData. Then the second sensor
starts transmitting. All other sensors follow the same procedure. The byte-count of all sensors is set
to zero and the procedure is repeated if the start-byte, transmitted by sensor 1, is received. Using this
method, all the 40 sensors can be read at a rate of more than 20 Hz.

4.1.5. Validation of simulation framework

We used the simulation framework for designing a virtual prototype for the exemplary use case of
sleeping posture detection. Following its virtual model, we have built a hardware prototype. In order
to validate the correct results of the simulation framework, the results of the evaluation of the virtual
prototype will be compared against the results of the hardware prototype. Hence, in the following
sections we will describe the evaluation setup used to gather data which will be used for comparing the
simulated and the real prototype. We will further analyze in more detail the influence of the number
and placement of sensors for this use case.

In order to compare the virtual and hardware prototype designed and built for sleeping posture detec-
tion, we asked 10 participants to carry out six different lying postures on a bed, depicted in Figure 4.4.
The set of participants was predominantly male, with 8 male and 2 female participants. Each person
repeated a lying posture twice. For each posture, we executed the steps shown in Figure 4.7.
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3D Scan with 
KinectFusion

Prototype 
Implementation

Comparison of 
Real-World vs. Simulation  

Results

Real Sensor
Data

Simulated 
Sensor Data

(1)

(2)(3)

(4)

Figure 4.7.: Evaluation steps: (1) instruct test person to lie down; (2) the 3D shape of each posture is
recorded and used in the simulation framework where the virtual prototype provides virtual
sensor data; (3) the test person is covered with the real prototype gathering sensor data; (4)
the real and the virtual sensor data are evaluated and compared.
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First, we verbally instructed the participants to lie down in the different sleeping postures, not giving
any further instructions. This assures highest resemblance to a natural setting. As a second step, we
scanned the person in the sleeping posture using a depth camera. Next, we covered the person using
the real-world prototype and gathered a sample of 500 sensor readings for each sensor. The whole
process of scanning each of the six sleeping postures twice and gathering the sensor data using the real
prototype lasted one hour per test person. The 3D shape of the test persons is used as input for the
evaluation using the simulation framework. We have described the process of loading the 3D shape
into the simulation framework, which is shown in Figure 4.5. Once the shape is loaded, the virtual
bed cover hung on top of the shape is released and falls on the test person. Using this setup, for each
sleeping posture virtual sensor data is collected.

As a result of the evaluation, we have collected sensor data corresponding to the sleeping postures
from the real, as well as from the virtual prototype. To classify this data, we used Weka’s implementa-
tion of the Support Vector Machine (SVM) classificator LibSVM with adjusted parameters (SVMType:
nu-SVC, normalize: true).

For each sleeping posture we have recorded a set of 500 data samples per sensor. We calculate the
mean value per sensor per sleeping posture. Joining the data of all the sleeping postures, we recorded
12 sleeping postures, two times six postures, per test person. As a final result, we have two data sets of
the 10 test persons, one for the hardware prototype and one corresponding to the virtual prototype.

1 2 3 4 5 6 7 8 9 10
40

50

60

70

80

90

100

Real vs. simulated sensor data

Subject

F
−

m
ea

su
re

 (
%

)

 

 

Real data Simulated data

Figure 4.8.: Classification results of leave one subject out cross-validation of 10 test persons for real and
simulated sensor data recorded by the hardware and virtual prototype for sleeping posture
detection.

For each data set a leave one subject out cross-validation has been conducted, the results of which
are shown in Figure 4.8. The Figure shows the resulting F-measure for each test person by evaluating
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real and simulated data. We observe that the real and the simulated estimation are not far apart. The
overall F-measure for the real data is 88.6 % and 85.2 % for the simulated data, resulting in a slightly
more pessimistic F-measure of the simulated evaluation.

The small difference is caused by the slightly different execution of the simulated and the real eval-
uation. In the real evaluation we covered the test person with the bed cover. In the simulation the bed
cover falls on the test person, causing the sensor node placement to be slightly different. Another in-
fluencing factor might be the parameters of the bed cover itself, which need to be set in the simulation
framework. These slightly differ from the real bed cover.

4.1.6. Determining the optimal number of sensors and optimal sensor layout

In order to find out which number of sensors would be optimal for our application, the simulation
framework can be used to easily equip the virtual prototype with simulated sensors. Hence, the sim-
ulated bed cover has been equipped with different numbers of sensors, ranging from 4 to 676. We
distributed the sensors homogeneously in order to cover the full surface of the bed cover. The simu-
lated sensor data has been recorded by letting the bed cover with different numbers of sensors fall on
the 3D shape of the 10 test persons. The same evaluation process, mean calculation of F-measure of the
leave one subject out cross-validation using SVM, results in the mean F-measures depicted in Figure
4.9.
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Figure 4.9.: Mean F-measure of total coverage layout with increasing number of sensors. Using the
simulation framework up to 676 sensors are simulated on the prototype. The F-measure
versus number of sensors trade-off is reached using 40 sensors.

We observe that in the interval of 4 to 40 sensors the highest F-measure gain is achieved, with its
highest value at 40 sensors. Further increasing the sensor count to 64, 196 and 676 does not significantly
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improve the results. Possible reasons might be that more sensors do not offer additional information
that improves the feature selection. This is caused by the redundancy of information or because of
over-fitting produced by sensors detecting small wrinkles in the bed cover. Hence, the simulation
results confirm the trade-off between sensor count and improved F-measure as well as the decision of
using the 5x8 grid of 40 sensors in the hardware implementation of the real prototype.

In a second step we compare different possible sensor layouts using the same sensor count of 40
sensors and evaluate these. Figure 4.10 shows the three evaluated sensor layouts. The left image of
Figure 4.10 shows the equally distributed sensors covering the entire prototype. In the middle we see
the 5x8 sensor grid in a more constrained area, covering the entire body of the test person. The third
image at the right shows a combination of the previous two layouts covering the upper body and the
sides of the bed cover. Underneath the images, the mean F-measure per layout is shown, reaching the
highest value of 85.2 % with the upper body coverage layout.

Total coverage

F−measure: 81 %

Length coverage

F−measure: 78 %

Upper body coverage

F−measure: 85.2 %

Figure 4.10.: Layout comparison of three different layout designs with 40 sensors evaluated using
the simulation framework. The layout covering the upper body achieves the highest F-
measure of 85.2 %.

In order to detect if some sensor data is still redundant, we consider the upper body coverage layout
with a growing subset of sensors. The different sensor subsets are depicted in Figure 4.11. Additionally
to these sensor layout subsets, Figure 4.12 shows the mean F-measure of the evaluation results. For
each sensor layout subset, a leave one subject out cross-validation has been effectuated for real and
simulated data. Both are depicted on the same graph. We observe that in general better results are
achieved evaluating the real prototype. The simulation data shows a clear gain in F-measure at the
layout using a subset of 14 sensors. The real data similarly shows a high slope at the layout using 14
sensors. The mean F-measure values at this point are 84.7 % for the real prototype and 80.4 % for the
virtual prototype. Looking up the corresponding 14 sensor layout subset from Figure 4.11, we observe
that it represents the minimum configuration covering the whole upper body of the test person as well
as areas outside, where the bed cover lies on the bed.

We observe a second similar but smaller jump in F-measure by looking at the simulation data for
the subset of 30 sensors. The real data mimics this small peak achieving the highest F-measure with
89.4 %. Looking at the corresponding layout subset with 30 sensors, we observe that the improvement
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Figure 4.11.: F-measure of increasing sensor amount using upper body coverage layout with 40 sen-
sors. For each sensor layout the mean F-measure is calculated by effectuating a leave one
subject out cross-validation for simulated and real data.

of results is generated by adding sensors to the first and last line, covering the shoulders and legs as
well as the area lying flat on the bed.

4.1.7. Summary

In Section 4.1 we presented a simulation framework for applications with flexible surfaces such as a
shape-sensing fabric. Even before the hardware is available developers can start designing and virtually
evaluating their prototype for their individual shape-sensing application.

We proposed and demonstrated the workflow of a prototype designing process with shape-sensing
fabrics by virtually planning a sleeping posture detecting bed cover. According to its virtual model
we have equipped a bed cover with 40 acceleration sensors and evaluated it with 10 different users.
Comparing the F-measures of 85% for the virtual and 89% for the real-world implementation we val-
idate our proposed simulation framework for shape-sensing fabrics. We show further advantages of
the simulation framework in terms of analyzing optimization potentials in order to find the suitable
trade-off point for the required application. To our knowledge there is no simulation framework which
includes soft-body simulation and attaches virtual sensors to them. Through our simulation framework
we were able to provide a decision basis for developers when they need to decide on the trade-off
between number of sensors, sensor placement and achieved accuracy.

In Section 4.2 the general approach of the simulation framework is demonstrated by using this for
planning further shape-sensing applications. Examples of such shape-sensing applications in the field
of ambient intelligence could be intelligent clothing which reports on its status (in drawer, washing bin,
coat hanger, coat hook, if it is worn correctly, etc.) or an intelligent furniture cover which would detect
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Figure 4.12.: F-measure of layout with increasing sensor number

on which furniture it is placed and provide the user with services such as posture detection, breathing
frequency tracking, amount of movement.

4.2. Human intuition in designing flexible surface applications

This Section is based on my paper "Designing a Self-Aware Jacket Insights into Smart Garment’s cre-
ation process" [RBKK19a] and the Master’s Thesis of Christian Gutjahr [Gut17]. The authors referred
to as "we" are Silvia Rus, Andreas Braun, Florian Kirchbuchner and Arjan Kuijper.

The use of smart garments has impacted different application areas. It has spread from fashion
and Arts&Crafts, where it was used for achieving special effects in fashion shows which are unique
like a piece of art, to areas such as rehabilitation or virtual reality where it was used for remote control
[FHS17,FSH∗18,Hom17,Sen17,Wan16,SPW07,PWB10]. These garments are enhanced by integrating
flexible and stretchable electronics such as sensors and actuators which can be used to create different
applications.

The question is how to deal with these new possibilities and how designers of such applications
can deal with them. Do they have to have special training, is working experience with these materials
needed or is the intuition of a person with basic background knowledge enough?
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An example where smart garments are used on a daily basis is a biker jacket. Its functions range
from controlling music, taking calls, getting navigation directions, notifying when the taxi is there to
flashing brake lights and front lights [For18, PGF∗16].

Research on smart garments has been concerned with creating different sensors which can be easily
integrated into prototypes realizing different use cases. Initial textile sensor examples from Perner-
Wilson et al. are bend, pressure, stretch, tilt and stroke sensors [PWB10]. Examples of smart garment
use cases are Trainwear, from Zhou et al. which create a shirt for sports exercise recognition. [ZBF∗17].
Voit et al. have created a textile authentication for wearables and a textile sleeve for public display
interaction [VS17b, VPS18].

Smart Jackets were presented by Hutschenreuther, Google and Ford Smart Mobility [Hut17a,Hut17b,
PGF∗16, For18]. All of these jackets are intended for commuting by bike. Knitty-fi has started as a
jacket with three knitted switch patches which were freely configurable. They fulfill specific pro-
grammable tasks, easing the day by day activities of people with impairments [Hut17a, Hut17b]. Ford
Smart Mobility have developed LUMO, a smart jacket prototype for cyclists. Similarly to Levi’s
Jacquard jacket by Google, it assists the user’s navigation by conveying directions by haptic cues,
helps with taking calls and controlling the music player. Additional functions such as showing the
directions using lights at the front and back or connection to commuter apps differentiate them from
each other. Knitty-fi and LUMO are not on the market yet, while Levi’s jacket can be already bought.

Most of the smart garment prototypes were created for a specific purpose and with a great deal of
effort. To ease the process of creating e-textile prototypes Posch et al. have introduced new tools for
electric textile making and Hamdan et al. have created an interactive system to support the user to
easily create interactive embroidered prototypes [PF18, Pos17, HVB18]. These tools are of great help
after the process of designing the electric textile project is finished.

Schneegass et al. have recognized this need for multiple application possibilities and created a
multipurpose shirt, with many different textile sensors integrated into it. The wearer could set which
functions of the shirt he wanted to use and create new applications for the given set of sensors [SHZ∗15].
Further into this direction Dementyev et al. have proposed the vision of a fabric which is self-sensing.
It would be equipped with sensors measuring stretch, the shape in 3D as well as temperature and
proximity [Dem16].

With so many sensors integrated into the material is it economically and ecologically acceptable to
use these resources?

The objectives of this research are to find out:
• how well human intuition helps to design a smart garment application and
• to which extent sensor expertise plays a role in the design of a smart garment application.

To answer these questions, we have collected a data set from test subjects which were presented with
a smart garment use case. We created a simulation framework to transfer the collected data sets to the
same smart garment use case. Then we have evaluated these results in toward answering our research
objectives.
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4.2.1. Design use case: the shape-sensing jacket

We want to investigate what the intuition is to design a system which fulfils a specific task. Throughout
this section, we will call the person with such a task a system designer. When a system designer starts
the design process, the question of how densely the sensors should be distributed, and which of them
hold the key information to achieve the intended task is crucial for hardware optimization.

In order to gather insights into the intuition of system designers, we selected a smart garment use
case. We assigned this use case to the system designers as a prototype design task. What we came
up with is a jacket which knows its whereabouts and provides context information to the user. The
jacket situations to detect are presented in Figure 5.34. As sensing units, the system designers have
acceleration sensors at their disposal.

Figure 4.13.: Situations in which to detect the jacket: (a) on coat hanger; (b) over couch; (c) on coat
hook; (d) over chair; (e) scrunched-up; (f) over table; (g) worn.

We selected this use case because of its potential. Use cases for such a jacket could be one-size
clothes, like one-size-fits-all. By knowing the 3D shape the jacket could adjust itself to the body form
of the wearer and to his level of comfort or preference of style. Other potential use cases could be to
detect if a safety-vest is worn or not and if it is worn correctly.

To gather information on intuitive sensor layouts we first observed and discussed the designs of two
system designers, which were experts in their field. They carried out the sensor placement practically.
Later, we asked 18 participants for the theoretical placement of sensors in a survey. This facilitated the
usage of more sensors. Also, the results could be captured more accurately.

The gathered sensor locations were used as input for the evaluation via the simulation framework
described in Section 4.1. This tool enables the simulation of the different situations which the jacket
should detect. The simulation framework allows to load a flexible surface, such as the bed cover used
in the sleeping posture recognition use case from Section 4.1.2. For the shape-sensing jacket use case
this is a rectangular piece of fabric, representing the jacket. By loading different 3D rigid objects into
the simulation framework, the virtual jacket can be shaped into situations such the ones in Figure 5.34.
The virtual jacket is equipped with accelerometer. This jacket situations are simulated by letting the
sensor equipped textile fall on a table, on a chair, on a coat hook, etc. For variation purposes there were
five different chairs, five coat hangers, five tables, etc.
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4.2.2. Design process in practice

First, we asked two participants which are system designers with deep understanding of accelerometers
to distribute up to ten sensors on a jacket in order to detect the situations presented in Figure 5.34.
For this, a person wore the jacket and the system designers glued tags on the jacket where they would
place the sensors, see Figure 4.14. Then, we transferred these positions from the jacket to positions on
a grid. This grid corresponds to the sensor locations on the textile used in the simulation framework,
our evaluation tool. By simulating the different situations, we gathered the sensor data and evaluated
the created sensor position patterns using various classifiers from which we computed the maximum of
the accuracies. For design (a) in Figure 4.14, the accuracy is 75.3 % and for design (b) the computed
accuracy is 69 %.

(a)

(b)

Figure 4.14.: Final prototype designs by two knowledgeable system designers. Tags mark sensor place-
ment on front and back of jacket.

The rationale behind the creation of design (a) was that each added sensor will contribute to differ-
entiate between different situations. The upper sensor on the back could differentiate between (coat
hanger, coat hook, worn), (over couch, over chair) and over table. The two lower sensors on the back
were placed to differentiate between over couch and over chair. To differentiate between coat hook
and (coat hanger, worn) one sensor was placed on the shoulder. The last sensor on the chest is intended
to separate coat hanger from worn. For situation scrunched-up no specific sensor was placed since the
jacket can be packed differently. This design used only five sensors and reached a maximum accuracy
of 75.3 %.

Design (b) uses nine sensors. Similarly to (a), there are sensors placed on the back of the jacket in
order to determine the curvature of the jacket, detecting over couch, over chair, over table, scrunched-
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up. To detect the other situations coat hanger, coat hook, worn the sensors on the shoulders were added,
one on each shoulder, on the front and also on the back. The achieved accuracy is 69 %.

This difference in accuracies shows us, that using more sensors does not necessarily mean that better
results can be achieved. The placement of the sensors plays a key role in detecting the desired positions.
This trade-off between the number of sensors and accuracy will be further investigated in the following.

4.2.3. Design process survey

In the second step, we interviewed 18 test subjects with the help of a questionnaire. The test subjects
fulfilled the role of system designers implementing the already mentioned use case. The survey ad-
dresses our research questions by focusing on gathering initial information on the level of knowledge
of the participants, providing the needed information to fulfill the given task, motivate and describe the
task and propose the number of sensors to be distributed.

After providing some general information such as age, gender and educational background the par-
ticipants are asked if they have already used accelerometers in previous projects. Subsequently, they
were asked questions regarding their understanding of how accelerometers work. We proposed some
aiding questions such as:

• What does an accelerometer measure?
• How can the accelerometer data be interpreted when there is no movement?
• How can the shape of a surface be computed from accelerometer data?

Upon their answers, they were able to self-evaluate their knowledge and mark on a scale from 1-5
(1-least, 5-most) their expertise. On the following pages, the answers to the previous self-evaluation
aiding questions were provided with a detailed explanation. The goal was to provide every participant
with the same knowledgebase regarding accelerometers.

In the next step of the form the participants were provided with the motivation of this work describing
the task of detecting different situations of the jacket. They were instructed to distribute a certain
number of sensors (from 4-50) on the grid drawn on a cloth, representing the worn jacket, see Figure
4.15. Due to simulation limitations, the sensors cannot be distributed on the arms. In the area of the
neck on the front of the cloth there usually is a cut-out, thus sensors cannot be attached there either.
Their task is to mark on the sheets of the form where they would place a given number of sensors {4,
6, 8, 10, 20, 30, 40, 50}.

4.2.4. Evaluation results

18 subjects participated in the survey. Nine of them are male and nine female. Five reported having used
accelerometers in previous projects. The educational background ranges from Bachelor or Master of
Computer Science, Electrical Engineering, Mathematics and Interactive Media Design, with a majority
group of 12 participants whose educational background is Computer Science.
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Figure 4.15.: Participants marked the sensor placement of a given number of sensors. We transferred
the input to the simulated use case.

We transferred the input from the survey to a simulation framework. This simulation framework was
built to evaluate different sensor setups. The executed simulation scenarios correspond to the situations
shown in Figure 5.34. The framework has been developed because of the lack of a simulation tool,
which is capable to attach sensors to soft-bodies. The reliability of the simulation framework has been
confirmed by Rus et al. by comparing simulated prototypes with real world prototypes [RHvW∗18].
The developed simulation framework is capable of attaching sensors to a soft-body, such as a textile.
In the simulation, the sensor equipped soft-body is placed on a rigid-body such as a chair or a couch,
corresponding to the situations from Figure 5.34.

Figure 4.16 shows a chair, the rigid-body used in our simulation, with the three instances of an
orange soft-body. The sensor equipped garment is represented by a rectangular soft-body, equipped
with sensors. This matches the grid used in the survey, see Figure 4.15. In the second representation
of Figure 4.16 the garment is bent, in order to be as close as possible to the way e.g. a jacket would
be placed on a chair. This preparation is necessary, such that the simulated garment can fall on the
chair in the right position. After the simulated garment stopped moving, the virtual sensors measure
their position and the data is stored. This data is used for the evaluation of the survey. Each situation
depicted in Figure 5.34 is simulated five times using five different objects, such as five different chairs.
On the soft-body, corresponding to the simulated garment, the maximum number of 256 sensors is
attached. The data from all sensors is recorded. From this recorded data only the sensors chosen by the
participants are used for the corresponding evaluation.

91



4. Simulation framework for designing flexible Smart Environment applications

Figure 4.16.: Placement of virtual garment on chair in the simulation framework

The data was evaluated using a leave-one-subject-out cross-validation with five different classifiers
and three additional parameter variations of Support Vector Machine (SVM). Leave-one-subject-out
cross-validation was performed since we gathered sensor data using a simulated environment. The sen-
sor data varies minimally due to the residual movement remaining when placing the sensor equipped
soft-body on the objects such as the coat hanger or chair. By using k-fold cross-validation the classifiers
get trained on data which is very similar to the test data, resulting in high accuracies. By using leave-
one-subject-out cross-validation the system is tested on totally new test data, providing a better picture
of the system performance. The classifiers used were the WEKA implementation of k-Nearest Neigh-
bours (IBk), Decision Trees (J48), Naive Bayes, Random Forest, SVM and SVM with polynomial and
RBF kernels. For each survey input, we noted the best performance independent of the classifier. We
measure the best performance in terms of accuracy, which represents the percentage of test instances
correctly classified. The overall results from the study are shown in Figure 4.17 and 4.18.
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Figure 4.17.: Performance evaluation for different numbers of sensors.

From Figure 4.17 we observe that the accuracy rises the more sensors are used. However, not in
a linear manner. A good result can be achieved by using eight sensors. A more robust result can be
achieved by using 10 sensors. Here the median accuracy is 78,99 % (SD 6,06). If the number of sensors
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rises, the quality of the results can be improved. However, the benefit is minimal. Using more sensors
to reach a good result entails additional costs.
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Figure 4.18.: Mean and maximum performance per survey participant. Participants with diamond
shaped symbol have previously worked with accelerometers.

Compared with the results achieved by the two more experienced system designers, which created
sensor layouts with 5 and 10 sensors with accuracies of 75.3 % and accordingly 69 %, the highest
accuracies from the survey results for 4 and 10 sensors outperform the expert results. This indicates
that special expertise in terms of having previously built wearable sensing devices does not result in
best performing systems.

Figure 4.18 presents the maximum and mean performance per participant, sorted according to the
mean performance. The achieved maximum accuracy is 94.06 % (SD 5,20) for a sensor setup with 40
sensors achieved by the second to last participant. The diamond shape represents participants which
have previous knowledge in the field of accelerometers, such as experience by using accelerometers in
previous projects. The green coloured diamond shapes of participant 2 and 15 represent the designs
proposed by the two experts. The mean performance of the experienced participants places them in the
first half of the participants. This indicates non-experienced test subjects can achieve better results in
placing sensors by using their intuition than experienced test subjects.
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Figure 4.19.: Sensor layouts with best per sensor number performance.
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The sensor layouts with the maximum accuracy per sensor are shown in Figure 4.19. These designs
show that the area around the shoulders and on the edge of the textile are of high importance. Most
of the designs have a symmetric component, whereas sensors are placed more asymmetrically towards
the inner surface of the garment than on the edges.

4.2.5. Summary

In this section, we have investigated what role the human intuition has when designing a smart garment
use case compared to designing a system by an experienced system designer. We proposed a novel
smart garment use case in which a garment is equipped with accelerometers to detect different situa-
tions. To achieve this, we have gathered the input from experienced system designers in two hands-on
sessions and through a survey with 18 participants. By evaluating the results with a specifically created
simulation framework for this garment use case, we have found that special expertise does not provide
an advantage, that good sensor layouts can be achieved by system designers with less or no experience.
While technical knowledge does not play a significant role in the resulting performance, we observed
that many participants intuitively create well-working patterns. Thus, rather intuitive sensor layouts
achieve as good as and better results up to a maximum accuracy of 94% for 40 sensors.

Regarding the resources used for implementing this best performing sensor setup the trade-off be-
tween accuracy and invested resources is high. Compared to a sensor setup using 10 sensors (accuracy
of 79%), one has to ask himself if the 4 times more used sensors give are worth the approx. 15%
increase in accuracy. Depending on this preference the advisable number of sensors will vary.

As a next step, the optimal sensor layout could be calculated by evaluating the simulated sensor
data. Principal Component Analysis could be used to identify important sensors and other optimization
algorithms to address the sensor number vs. accuracy trade-off.

4.3. Conclusion

This chapter presented my contributions to the second research challenge New design tools for flexible
Smart Environment applications. While creating assistive applications, certain design decisions need to
be taken. I reduce the use of resources throughout the iterative work-flow by addressing the prototypical
hardware iterations. For this, I contribute a simulation tool, which aids in identifying the number and
placement preferences for flexible Smart Environment applications and a study on the relation between
human intuition and expertise.

Section 4.1 presents the first contribution, namely understanding where sensors need to be placed
and how many are needed to achieve the desired application functionality and accuracy. I contribute
a simulation framework, which facilitates the creation of flexible applications [RHvW∗18]. Since ex-
isting simulation tools only perform the simulation of rigid objects, I included a soft-body simulation
with attached virtual sensors. Developers can create and evaluate their prototype virtually, even be-
fore the hardware is available. This workflow of virtually planning and subsequently implementing is
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validated and demonstrated on the use case of designing a sleeping posture detecting bed cover. The
built virtual and real prototypes, equipped with 40 acceleration sensors, have been evaluated with 10
different users, resulting in an f-measure of 85% for the virtual and 89% for the real-world implemen-
tation. The similar performance achieved by the real prototype and the virtual prototype validates the
simulation framework. By varying the layout and number of active sensors, the optimization potential
of the simulation framework is shown. For this use case of a posture detecting bed cover, one possible
trade-off between application performance accuracy and desired costs in terms of integrated sensors is
achieved by distributing 14 sensors throughout the surface of the bed cover while still achieving 84.7 %
for the real prototype and 80.4 % for the virtual prototype.

My second contribution to this research challenge is the investigation on what role the human intu-
ition has when designing a smart garment use case versus the expert knowledge used to design such a
system by an experienced system designer [RBKK19a]. I use the developed simulation framework as a
tool to compare the proposed designs for a smart garment which detects different situations. I gathered
the designs through a survey with 18 participants and two hands-on sessions with experienced system
designers. The result conveys that many participants intuitively create well-working patterns, and tech-
nical knowledge does not play a significant role. Thus, rather intuitive sensor layouts achieve as good
as and better results up to a maximum accuracy of 94% for 40 sensors. Again, the simulation tool was
used to evaluate the trade-off between the number of sensors and the system performance. Compared
to a sensor setup using 10 sensors with an achieved accuracy of 79%, 4 times more sensors achieve an
increase in accuracy of approx. 15%. Depending on the priorities of the developer of such a system,
the minimum achieved accuracy and the cost trade-off can be thus computed.

In some situations it makes sense to settle for a trade-off with lower performance. In these situations,
the performance could be increased by adding an additional sensing modality. One such modality
could be a capacitive sensor. Capacitive electrodes in form of e-textile are especially well suited to
be integrated into flexible Smart Environment applications. Even though their use is widespread in
the field of Ubiquitous Computing and Human Computer Interaction, different manufacturing options
are available, and subsequently capacitive electrode design decisions have to be taken. In Chapter
5 I address this research challenge of Suitability and performance evaluation of e-textile capacitive
electrodes by offering a structured evaluation of various electrode properties for capacitive proximity
sensing.
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5. Properties of flexible capacitive proximity
sensing electrodes

In the previous chapters, I have presented the possibilities and challenges flexible surfaces leverage
in the domain of Smart Environments. I have created a number of new flexible assistive Smart En-
vironment applications and extended the application design process by providing a tool enabling the
evaluation of applications. Varying the number of sensors and their placement, trade-offs such as cost
reduction and application performance can be determined. Increasing the performance can be achieved
by multiple modalities. Adding capacitive sensing seems likely, due to the ability of human presence
detection at a distance. Thus, capacitive sensing electrodes can be hidden in the environment. Based on
this, the challenge of selecting the right electrode material, shape and size appears to be a fundamental
factor in designing applications for flexible surfaces. The analysis of these properties will shape the
content of this chapter.

Influence
electrode
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Eelctrode size

Electrode
filling degree

Electrode
conductive

material 
(fabric/thread)
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stitching type
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Electrode
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Figure 5.1.: Influencing factors of electrode performance and suitability for applications

First, I will compare different materials used as electrodes for capacitive proximity sensing. Elec-
trode size will play a secondary role here. In the second part, I will focus on e-textile materials and
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compare conductive fabric and conductive thread more into detail regarding shape, size and making.
Based on the collected knowledge, I will conclude with a rationale on how to choose the proper/most
suitable electrode for ones envisaged application, which I will exemplary apply in two use cases.

Figure 5.1 depicts influencing factors on capacitive electrodes in general with specific factors for the
integration into materials which are flexible. The conductive material type itself plays a significant role.
As described in Chapter 2 introducing capacitive sensing, there are several options available to be used
not only in a rigid shape, but also materials which are deformable, such as stretchable and bendable.

Electrode shape, pattern, and pattern density are influencing factors which play a major role in the
possibility to integrate the materials into everyday objects or the environment, in order to build useful
applications. Moreover, when people, users of the application interact with these flexible and stretch-
able materials, the capacitive electrodes are deformed.

The work presented in this chapter is an extended version of the papers [RSBK15, RBKK19b] and
Pinar Yakars bachelor’s thesis [Yak19]. In this chapter we, the authors of these works, introduce fol-
lowing scientific contributions:

• We execute extensive measurements for five different materials using different setups. We pro-
vide measurements in self and mutual capacitance mode.

• We execute various measurements for e-textile materials with different variations of size, mate-
rial, pattern density, shape and making such as support material and stitching types.

• We compare characteristics of the different materials and lead through the electrode choosing
rationale by running-through the electrode creation process in two exemplary use cases.

5.1. Evaluation of electrode materials

Capacitive sensors in both touch and proximity varieties are becoming more common in many indus-
trial and research applications. Each sensor requires one or more electrodes to create an electric field
and measure changes thereof. The design and layout of those electrodes is crucial when designing ap-
plications and systems. It can influence range, detectable objects, or refresh rate. New materials, as well
as advances in rapid prototyping technologies have vastly increased the potential range of applications
using flexible capacitive sensors.

Existing applications show a variety of different materials used for building applications using ca-
pacitive sensors. For example, Singh et al. use clothing as input/control device [SNR∗15]. They utilize
conductive textile to build capacitive electrodes and integrate them into clothing. Equipping trousers
with conductive textiles Baldwin et al. prevent falls by analysing the gait while walking [BBR∗15]. By
touching metal nibs in different areas of a belt Dobbelstein et al. control a head worn device or have a
textile touchpad integrated in the fabric of the trousers’ front pocket [DHR15, DWHR17]. Conductive
paint is used by Teodorescu et al. to paint interdigital capacitive sensors on regular textile in order
to detect specific movements of the arm by integrating the painted sensor into clothing [Teo13]. For
the on-body interaction new, special materials have been developed, to fit to the requirements of not
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harming the human body. Nearly all these applications are developed for capacitive touch interaction.
Mostly the applications built into furniture exploit the biggest advantage of capacitive sensing of being
unobtrusively mountable.

The multitude of applications presented here and in Section 2.4.2 shows how new materials find their
way into capacitive sensing applications. However, most of them use a special electrode design and
only cover capacitive touch. They don not evaluate properties such as the spatial resolution and the
interaction range.

A few works also evaluate the influence shape and filling degree has on electrode performance.
Chang et al. propose a circular electrode design composed of a guard ring and an electrode [WCC14].
The authors evaluate the influence of electrode area, shielding and of the gap between guard ring and
electrode on the capacitance.

However, they did not evaluate the spatial resolution like it has been done By Grosse-Puppendhal
et al. where different electrode materials like foil of polyethylene terephthalate (PET) coated with
indium tin oxide (ITO) or PEDOT:PSS, conductive polymer are compared to different sizes of copper
electrodes for distances up to 40 cm [GPBB∗13].

Braun et al. evaluate capacitive proximity sensors in Smart Environments [BWKF15]. They focus
on practical guidelines, gained in the design of various prototypes, but do not provide measurements of
flexible materials or different measurement modes.

The measurement mode used is predominantly self capacitance, while applications which need to
cover a larger surface like [ZYH∗18] and [Rek02] and hence need more measurement nodes, explore
the advantage mutual capacitance has to offer in terms of multiple measurement nodes.

The applications have been developed by trying out new materials and electrode layouts. Some
capacitive sensing electrode guidelines have been presented in Section 2.4.3. However, a more quanti-
tative approach might reveal qualities of the materials which will help developers to optimize the choice
for the used materials for their application.

In order to enable developers to choose between available electrode materials, we further inspect
by performing measurements, which of these are performing best in a capacitive proximity sensing
scenario.

5.1.1. Measurement setup

The measurement setup utilized for measuring the performance of capacitive proximity sensing of
different electrode materials is shown in Figure 5.2. The setup shows two electrodes: one on top -
the reference electrode - and on the bottom multiple electrodes to evaluate made of different materials.
The structure allows the upper reference electrode to adjust the distance to the electrode on the bottom.
The reference electrode remains unchained throughout all measurements in the electrode materials
measurement series. It is made of a copper plate of 10 x 16 cm, the same size as the evaluated electrodes.
The chosen size is approximately the size of a hand palm. This simulates a hand getting closer to the
electrode. The upper electrode is connected to ground, similar to how one is coupled to ground when
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Figure 5.2.: Setup with measurement copper electrode adjusted at different distances in relation to var-
ious electrode materials

interacting through the hand with a capacitive electrode. During our measurements we also show
measurement results with loosely grounded electrodes.

Depending on the size of the electrode the sensing distance can vary. Capacitive sensing distances
up to 50 cm are achievable with acceptable electrode sizes. Hence, we have effectuated measurements
up to distances of 50 cm.

We effectuate measurements in self capacitance and in mutual capacitance sensing mode. When
measuring the self capacitance a single electrode is needed. This electrode is connected to a sensor
which sends the sensed signal to an OpenCapSense evaluation board [GPBB∗13].

For measuring the mutual capacitance, multiple sending and receiving electrodes are used. The
sending electrodes send out a signal generated by the sending OpenCapSense board, while the two
receiver electrodes are connected to two sensors, which are connected to the receiving OpenCapSense
board. From there the values are further transmitted.

For each setup we used five different materials for the measurements. These materials are: copper
(electrode and wires), conductive paint, conductive paint on fabric, conductive fabric and conductive
thread. Figures 5.3 and 5.4 show the used electrodes in the different measurement modes.

For self capacitance measurements only one electrode is used to measure the capacitance. Therefore,
we choose electrodes of the same size of 10 x 16 cm. Next to the copper electrode one can see in Figure
5.3 the black conductive paint, which we applied on paper and contacted using copper tape to a small
piece of wire. To the right of the conductive paint, conductive thread is sewn into a green piece of
fabric. The conductive thread is sewn in narrow s-lines with spacing of about 0.5 cm, in order to
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Figure 5.3.: Electrode material samples used in self capacitance measurement mode: (from left to right)
copper electrode, conductive paint, conductive thread, conductive fabric, conductive paint
on fabric.

Figure 5.4.: Electrode material samples used in mutual capacitance measurement mode: (from left to
right) copper wires, conductive paint, conductive thread, conductive fabric, conductive
paint on fabric.

cover the whole surface of the electrode. Conductive thread is contacted by knotting the thread to
the connecting wire. The fourth electrode material sample is conductive fabric, which is contacted
using conductive thread which is sewn to the connector. We used the material Shieldex Zell-RS 1,
widespread through retailers for electrical craftship. The last electrode is made of conductive paint like
in the second sample but this time the used substrate is fabric. It is contacted using copper tape.

For the mutual capacitance measurement mode, one sending and one receiving electrode are needed.
We use two sending and two receiving electrodes which are placed as a two times two grid. Instead of
the copper electrode, wires are used. These are already isolated and can simply cross each other. For
the other electrode setups 0.5 cm thick stripes of conductive paint and fabric have been used. After the
horizontal electrodes have been placed, the crossing points were isolated using tape. Then the vertical
electrodes have been added. In the case of conductive thread, the supporting fabric itself is used as
isolation at the crossing points by sewing the receivers and the senders on top and on the bottom of the
fabric. The contacting methods are the same as described for measuring the self capacitance.

We have effectuated three kinds of measurements, for both self and mutual capacitance measurement
modes. First, we have used the measurement setup for distances of up to 50 cm. From 1-30 cm we mea-
sured in steps of 1 cm while from 30-50 cm we measured in steps of 2.5 cm. During these measurements
the electrode simulating the hand was loosely coupled to the ground through the environment.

1https://www.shieldextrading.net/wp-content/uploads/2018/08/1500101130-Zell-RS.pdf
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Figure 5.5.: Self capacitance measurement, loosely coupled to ground: (left) normalized mean; (right)
superposed mean and standard deviation with removed offset.

Second, we connected the human hand simulating electrode to ground and measured the sensed value
for distances up to 30 cm. This time we measured up to 15 cm in steps of 1 cm while from 15-30 cm
we measured in steps of 2.5 cm. Additionally, we evaluated how the materials react to touch. For this
the moving electrode has been placed on the different electrode materials with an isolating layer in-
between. The touch measurement has been evaluated once without weight and once with a weight of
0.5 kg, to reflect the behaviour of pressing a button.

The resulting diagrams of the three measurement sets are presented in the following two sections
5.1.2, for the self capacitive measurement mode, and 5.1.3 for the mutual capacitance measurement
mode.

5.1.2. Results of measurements for self capacitance measurement mode

Figure 5.5 shows on the right side the mean and standard deviation for distances of 1-30 cm of different
materials, shifted to a common baseline. One can observe that the standard deviation is relatively high.
Also, one can infer the deviations due to noise which lead to unusual drops and spikes in the signal.
The influence of the environment noise is sensed because of the loose coupling to the ground.

In Figure 5.6 the moving electrode is grounded and yields a much smoother and constant signal
throughout all electrode materials with very small standard deviations, see graphic on the right. For
direct comparison we normalized the curves and show them in the left graphs of Figures 5.5 and 5.6.

From the left graph of Figure 5.5 showing the loosely coupled electrodes, one can infer that even due
to much noise, the copper, conductive paint and conductive fabric electrodes have a better measurement
of up to 12 cm. Conductive thread and paint on fabric have shown a different course with measurement
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Figure 5.6.: Self capacitance measurement, grounded: (left) normalized mean; (right) superposed mean
and standard deviation with removed offset.

ranges until around 5 cm. When looking at the raw data, shifted to a common baseline in Figure
5.5 in the right image, the conductive thread electrode shows the steepest slope, indicating a good
differentiation of values for distances up to 10 cm.

In contrast, when grounding the moving electrode, the measurement ranges get closer together. At
the distance of 0 cm the conductive fabric reaches the highest value, then the conductive paint on fabric,
conductive paint, copper electrode and lastly the conductive thread. However, for the next measurement
of 1 cm they all have a mean around the same value. The normalized view, in the left image of Figure
5.5 shows that all values of the electrodes take a very steep course, the conductive thread electrode with
the least steep course.

In conclusion, using these measurement settings, there is no specific electrode material which clearly
shows better properties. The noise, and the generally very high ground capacitance limits the sensitivity
of the sensor.

5.1.3. Results of measurements for mutual capacitance measurement mode

Unlike the self capacitance the mutual capacitance measurements for two sender and two receiver
electrodes yield four sensing nodes. Because we are using a single moving electrode centered over the
four sensor nodes, these behave approximately the same. Figure 5.7 shows on the left the normalized
values of the sender and receiver pair (1,1) and on the right the mean and standard deviation of each of
them. We observe the very big standard deviation, which shows once again the influence of the noise
(parasitic capacitance) of the environment when the electrode is coupled loosely to the ground.
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Figure 5.7.: Mutual capacitance measurements, loosely coupled to ground, sender-receiver pair (1,1):
(left) normalized mean; (right) superposed mean and standard deviation with removed off-
set.

Grounding the moving electrode reveals the right graph from Figure 5.8. One can see that all ma-
terials show a smooth curve. At first, the measurements for the conductive paint electrode were very
different from the graph of the conductive paint electrode on fabric. This led to the assumption, that
the measurements were heavily noise prone. After repeating the measurements, the conductive paint
on fabric and the conductive paint both showed nice characteristics. For mutual capacitance the surface
between sender and receiver where the capacitance change is measured is very small - only at the cross-
ing of the sender and receiver electrode. The noise can increase so much that the change in capacitance
generated by the moving electrode can be to small and overruled by noise.

In mutual capacitance mode, it is very hard to infer a recommendation on which electrodes to use
due to the strong influence of the noise for some electrode materials. However, from the right graph of
Figure 5.7 one can infer that conductive thread, copper wire, conductive paint and conductive paint on
fabric have a similar course. For conductive fabric the measured values are less steep and have a small
standard deviation than compared to the conductive wire electrode or the conductive paint on fabric
electrode.

5.1.4. Summary

Following our quantitative measurements, we are able to discuss a first set of factors influencing po-
tential applications for flexible capacitive sensors. This discussion builds upon the results presented in
Sections 5.1.2 and 5.1.3 where different electrode materials were investigated in settings using different
measurement modes.
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Figure 5.8.: Mutual capacitance measurements, grounded, sender-receiver pair (1,1): (left) normalized
mean; (right) superposed mean and standard deviation with removed offset.

We compared self and mutual capacitance mode and got to the conclusion, that for applications
which need to be robust and are surrounded by changing environmental properties it is advisable to
choose the self capacitance mode over the mutual capacitance mode. This is because the parasitic ca-
pacitance is at some point so high that the small change in capacitance in mutual capacitance mode is
not detectable anymore in comparison to the fluctuations in the noise. This leads us to the recommen-
dation to prefer self capacitance measurement mode over mutual capacitance mode, especially when
robustness is required, and the environmental conditions are prone to a lot of change.

However, by comparing the results in self and mutual capacitance mode of the different electrode
materials, we infer that without the influence of noise all electrode materials would be equally well
suitable for flexible capacitive sensor applications.

5.2. Efficiency of e-textiles in capacitive sensing

As e-textiles represent an emerging field and market attractiveness rises [Sul19], looking more deeply
into capabilities of e-textile gives further indication on how to most effectively use them as part of appli-
cations. While designing an application using e-textile capacitive sensing electrodes, various questions
need to be addressed: Which shape and size of electrodes should be used? Which material, conductive
thread or fabric, should be used? Which pattern filling should be used? What kind of stitching should
be used? And how do these characteristics influence an application?

In order to find answers to these questions, we create different electrodes with specific characteris-
tics. The goal is to compare the different electrodes regarding the performance in a measurement setup
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for capacitive proximity sensing. This is achieved by measuring the capacitance in an as noise-free
environment as possible. The measurement device at choice is a capacitive proximity sensing measure-
ment device where a reference electrode is lifted, and sensor values are gathered at different distances.
This measurement device, called CapLiper (see Figure 5.9), has been developed by M. Majewski in his
master’s thesis [Maj17].

5.2.1. Measurement setup

To evaluate the performance of textile electrodes, as well as comparing textile electrodes to classic
copper-based electrodes, a standardized method is needed. This method has to provide a similar envi-
ronment across all evaluation runs. The assessment space has to be isolated from external influences,
such as electric fields and electric noise. This isolation allows confidence regarding the measured val-
ues, as well as a higher resolution rating. To contain the influence of external noise throughout the
evaluation trials, an effective shielding is needed. The used capacitive sensing board (OpenCapSense)
offers an active shielding functionality. A connected conductive material acts as a barrier between un-
intended electrical influences from the outside of the CapLiper test chamber and the electrodes surface
inside. To provide measurements under the same circumstances for all electrodes regarding electrode
distance and noise minimization, a setup was created, composed of a mechatronic surrogate hand, a
controller, and a data recording software. Figure 5.9 shows the measurement chamber, which serves
as shield, the OpenCapSense board and the controller which moves the upper electrode, the surrogate
hand. The size of the upper electrode is 5x5 cm. Inside the measurement chamber only one capacitive
sensor is placed. It is connected through a wire to the evaluated electrode.

In order to evaluate textile electrodes, a system to hold the electrodes steady was developed. It is
inspired by embroidery hoops. By 3D-printing such a hoop, an inner and an outer ring, which fit into
each other, the textile on which the electrode is sewn can be fixed, like a fabric ready for embroidery.
The electrode basic size is of 6x6 cm. The connection between electrode a capacitive sensor is done
through a wire which is soldered at one end to the sensor pad, and at the other end is wrapped around
and soldered to one side of a fabric snap. By attaching this side of the fabric snap to the corresponding
second part, which is sewn to the electrode, the sensor is connected to the different measured electrodes.

Each electrode is placed in the measurement chamber and the upper reference electrode is moved up
in steps of 1 cm. The arm moves up to a distance of 31 cm. After the arm moves up, the system stands
still for 2 seconds until vibrations from the up movement have stopped. Then the data at each distance
is recorded for about one minute.

5.2.2. Data processing

For each measured distance about 1470 sensor samples are gathered. Thus, during a lift from 0 to 31 cm
more than 47000 data samples are gathered. For each distance, the mean and the standard deviation of
the gathered sensor data are calculated. This is done for all three executions of the same measurement.
For each distance, the median of the three means and the standard deviation are computed. The resulting
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Figure 5.9.: Capacitive proximity sensing measurement device
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values of mean and standard deviation are used throughout the following sections as basis for various
computations displayed in various graphs.

The graphs computed have the goal of visualizing the performance of the compared electrode groups.
The four graph types, see Figure 5.15, represent: raw sensor data shifted to a common baseline, nor-
malization of the raw sensor data, the computed noise range (NR) of the raw sensor values and the
signal to noise ratio (SNR) of the raw sensor values.

The raw sensor values are computed as mentioned by calculating the mean and standard deviation.
By plotting these values, one can observe that the values follow the expected exponential curve, as
mentioned in Chapter 2. These curves reach a plateau. When environment conditions such as tempera-
ture and humidity change, these plateaus are at different levels. To be able to more easily compare the
electrodes, the curves with different plateau levels are brought to the same level, by shifting the curves
with the difference. For this, the mean sensor value at the distance of 30 cm is taken as reference. All
curves are shifted to the minimum of these values, thus to the lowest curve. The shape of the curves
remains the same only their relative placement of the curves on the graphs is changed.

The normalization of the raw sensor data is computed by compiling the maximum and minimum
sensor values for one electrode measurement set. The mean and standard deviation are normalized by
mapping the data between the minimum and the maximum to the interval [0,1]. The formula used for
this is:

normalizedvalue = (value−minimum)/(maximum−minimum)

Normalization is helpful in representing the data, due to the fact that the absolute values can shift under
environmental condition changes. By normalizing the curves, comparisons are possible, by comparing
the procedural gradients of the displayed sensor data.

The standard deviation is derived from the gathered raw sensor data. If the standard deviation is
small, it indicates that different distances can be well distinguished. If the standard deviation is large,
a distance cannot be detected with high precision. Finally, if the standard deviation is larger than the
difference of the sensor values at the adjacent distances, the sensor values cannot be clearly assigned to
a specific distance.

The Noise Range (NR) is a value computed on the base of the standard deviation 5.10. It shows
the noise of the signal with reference to the distance. A maximum and minimum sensor value are
calculated for each distance. By adding the standard deviation to the average sensor value of a specific
distance the maximum value is computed. By subtracting the standard deviation, the minimum value
for this distance is computed. Subsequently, the maximum and minimum values are projected onto the
sensor values function. Finally, the height distance between both new function points is derived, which
represents the NR value. The NR depends not only on the measured noise, represented by the standard
deviation, but also on the steepness of the curve resulting from the sensor values. Furthermore, the NR
value indicates the estimated distances of not uniquely identifiable distances for the given sensor value.
Given this, a lower value of the NR at a given distance indicates a better performance of the electrode.
By summing the NR values up for all distances, an overall NR for the electrode is computed, and used
for the performance comparison evaluation.
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Figure 5.10.: Computation of Noise Range (NR) [GPBB∗13]

The Signal to Noise Ratio (SNR) is a common measure in electrical and communication engineering
to represent the quality of a signal. It expresses the level of the desired signal versus the level of
background noise. It is defined as ratio of signal power to noise power. In this case, the meaningful
input is the signal, the sensor values, at a given distance and the unwanted input is the noise, represented
by the standard deviation. Thus, the formula applied for the SNR computation is:

SNR =
µ
σ

where µ is the mean at a given distance and σ is the standard deviation. Thus, the graphs displaying the
SNR for various electrodes shows the quality of the signal throughout the measured distances.

These four views of the raw data, the normalized data, the NR and the SNR will be displayed through-
out the comparison of different electrode groups presented in Section 5.2.3.

5.2.3. Evaluation measurement overview

As stated in Figure 5.1 the goal is to identify the performance of textile electrodes depending on dif-
ferent factors such as electrode material, pattern, pattern density and shape. The main focus in this
section lies on electrodes fabricated from conductive textiles and conductive threads. These are more
in detail the analysis of size of electrode, material of electrode, stretching deformation, pattern/filling
of electrode, shape of electrode, support fabric, elasticity of e-textile fabric and stitching distance. An
electrode in shape of a rectangle is used as reference electrode. All the other electrodes besides the
electrodes from the electrode size comparison will be the same size as the reference electrode. Addi-
tionally, a control electrode, called placebo electrode is used for the general comparison. The placebo
electrode is an electrode where only the connecting snap is sewn to the empty fabric electrode and the
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wire is connected to the capacitive sensor. Through this, the performance with regards to a minimal
electrode is compared.

Figure 5.11 shows the ensemble of electrodes used for the measurements. The numbers highlight
different groups of electrodes compared more in detail throughout Sections 5.2.4 to 5.2.7. The electrode
numerated with group 8 is the placebo electrode. It is shown also as part of group 7, however, it is used
in all the proceeding electrode comparisons. The comparison of materials such as conductive textile
and thread is performed from different perspectives and is represented in multiple groups such as in
group 1, where different sizes of electrodes are compared, group 2, where stretching deformations are
performed, group 3, where different types of conductive thread and different types conductive fabric
are compared, as well as in group 5, where different filling degrees of the basic rectangle are compared.
The measurements of group 1 are compared in Section 5.2.4. The comparison results of electrodes
from group 5 are presented in Section 5.2.5. In Section 5.2.9 and 5.2.7 the comparison of different
textiles and thread types are presented. Section 5.2.8 presents the stretching deformation comparison
for conductive fabrics.

Since conductive thread offers the possibility to be easily added to existing fabrics, adding additional
electronic functionality to the fabric, it is further evaluated more in detail. By using a sewing machine,
thread can be sewn in different ways, for instance, using different stitching types. Also, various shapes
can be easily created.

Figure 5.11 shows at the bottom the electrodes of group 7. These are sewn into different possible
shapes. In order to compare only the variation given by the shape and eliminate the influence of the
amount of material used to create the shapes, these shapes have the same perimeter, using thus the
same amount of conductive material. The results of the shape comparison of electrodes are presented
in Section 5.2.11.

Group 6 from Figure 5.11 shows the basic rectangle shape, sewn using different stitching types of the
machine: narrow zigzag stitch and wide zigzag stitch. The results from the stitching type comparison
are presented in Section 5.2.6.

Finally, group 4 shows three electrodes on which the reference shape of a rectangle was sewn. They
are sewn in a similar manner, only that the material on which the conductive material is sewn on
differs. Variations of different cotton, polyester compositions are used and a common material, such as
synthetic leather. The results for this comparison of measurements are presented in Section 5.2.10.

Many more categories of comparison are possible. For example, the comparison of different shapes
using conductive textile instead of conductive thread, or multiple filling patterns, adjusting also the
density. There are many types of materials which are different material mixes, like the ones used in
sportswear. It would be interesting to observe, if multiple properties identified with a good performance
amplify the performance of the resulting electrode.

This initial set of comparing groups is meant as a basic start and should give an indication regarding
the general performance tendency.
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Figure 5.11.: Overview of electrode comparison groups: 1) size; 2) stretch deformation; 3) conductive
thread and textile type; 4) support material; 5) filling degree; 6) stitching type; 7) shape;
8) placebo electrode;
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Figure 5.12.: Electrodes made of conductive textile rectangles of different sizes: 2, 3, 4, 6, 8 and 10 cm

5.2.4. Comparison of electrode size

In order to identify the influence of the electrode size, we use our reference shape of a rectangle and
create a few electrodes with different sizes: 2x2 cm, 3x3 cm, 4x4 cm, 6x6 cm, 8x8 cm, 10x10 cm. They
are created from both materials: conductive textile and conductive thread. The textile material used is
the same as the one used in Section 5.1, Zell-RS. It is not stretchable and is woven in a ripstop manner.
The thread used for sewing is conductive thread made of two conductive strands, Adafruits Stainless
Thin Conductive Thread2 (0.2 mm thick, 2 ply thread, 1.3 ohm per inch). It is widespread throughout
the shops for electrical craftship. The created electrodes are shown in Figure 5.13 and 5.12.

The textile electrodes are created by cutting out pieces of conductive textile, in the desired size.
They are subsequently machine-sewed to the supporting fabric. The thread used to sew the conductive
material to the support material is regular thread. The snap for the connection with the wire and through
that to the sensor, is sewn by hand using conductive thread on the reverse side of the fabric. The used
supported fabric is 100% cotton, which is tightly woven, thus is not significantly stretchable.

The electrodes made of conductive thread are created by sewing the perimeter of the desired rectangle
size. For this, a sewing machine was used equipped with a regular and a conductive thread. The
rectangle is sewn in straight stitch on the setting "2" in stitch length. For the utilized sewing machine
this represents a step length of 1.75 mm. The snap is sewn in a similar fashion as with all electrodes
using conductive thread.

2https://www.adafruit.com/product/640
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Figure 5.13.: Electrodes made of conductive thread rectangle perimeters of different sizes: 2, 3, 4, 6, 8
and 10 cm

The expected performance, for both conductive textile as well as conductive thread is derived from
the basic formula of the capacitance, where the capacitance is proportional to the electrode area and
inversely proportional to the distance between the capacitor plates, see Section 2.4.1.3 for more details.

C =
ε0εrS

d

Thus, with the area of the textile electrodes rising from 2-10 cm the capacitance at a given distance
should also be bigger as the electrode size increases.

Figure 5.14 shows the resulting values of the measurements of different sizes of conductive textile
electrodes. The upper left diagram shows the raw shifted data. All curves were shifted to the common
value they are converging to. The placebo electrode has the lowest values and then the values increase
with increasing size of the electrode. This diagram confirms the expected behaviour in performance. By
plotting the normalized curves, one can see that the slopes of the curves are very similar. Consulting the
graph displaying the NR, it shows that the NR reaches values of 6 mm. Up until a distance of 200 mm
the NR is low, and afterwards it increases. In contrast, looking at the graph displaying the SNR, the
values of the noise are higher in the first 7 cm in relation to the sensor values, resulting in lower SNR.
After the 7 cm the SNR of most electrodes is higher, indicating that the noise, in this case the standard
deviation is smaller as at the beginning. The contrast between the good NR at the beginning and the
worse SNR at the beginning do not indicate conflicting measures, they show that the NR does not solely
depend on the standard deviation - the noise - but also on the slope of the curve, which for all electrodes
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Figure 5.14.: Comparative graphs of conductive textile size comparison: shifted raw sensor data and
standard deviation (top left); normalized sensor data (top right); Noise Range (bottom
left); Signal-to-Noise Ratio (bottom right).
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Figure 5.15.: Comparative graphs of conductive thread size comparison: shifted raw sensor data and
standard deviation (top left); normalized sensor data (top right); Noise Range (bottom
left); Singal-to-Noise Ratio (bottom right).
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is very steep, especially for the 8 cm and 10 cm. Thus, the noise is not significantly high to influence
the ability to discriminate between different distances.

Figure 5.15 shows the comparative graphs of rectangular electrodes made from conductive thread
in different sizes. The graph on the top left represents the raw sensor data which is shifted. Similarly
to the conductive textile electrodes, the smallest values at a given distance is achieved by the placebo
electrode, with increasing values as the size of the electrode increases. The normalized graph on the top
right shows that the curves have similar slopes. What can be observed is, that the behaviour observed
at the distances of 1 cm for the conductive textile electrodes is not present anymore. Nonetheless, the
values of the electrodes of sizes 6, 8 and 10 cm are very close together. This could be explained by the
fact, that they are bigger as the reference electrode used for the measurements. In the NR view on the
bottom left it still can be observed that the 10 cm electrode performs best in terms of NR. In contrast to
to the conductive textile electrodes, the NR up until 20 cm is very low for all electrode sizes, indicating
a good discrimination of distances. From 20 cm up, the NR starts to vary more, however it reaches a
maximum at 6 mm, which indicates that even at a distance of 29 cm the distance of the electrode can be
discerned. In practice a 6 mm NR means that an object at a distance of 29 cm could be confused with
an object at 28.7 cm or at 29.3 cm. The SNR at close distances is small, indicating a higher standard
deviation. After the distance of 7 cm, the SNR varies, but settles down, similarly as the behaviour of
the SNR observed for the conductive textile electrodes.

Concluding, the two Figures 5.14 and 5.15 give an indication which the best performing electrode
is in this group of size comparing electrodes. For both cases, the conductive textile and conductive
thread, the largest electrodes have the smallest overall NR, thus the best performance. The overall NR
of the conductive textile electrode of size 10 cm is 0 mm and the overall NR of the conductive thread
electrode of size 10 cm is 4 mm - as also the trendlines indicate. The 2 cm electrodes have in contrast
the highest overall NR besides the placebo electrode. This confirms the expected behaviour, supporting
that a larger surface results in a higher detection range. These graphs show that this behaviour can be
observed not only for surfaces of conductive material, but also applies to perimeters of rectangles made
of conductive thread.

5.2.5. Comparison of filling degree of electrodes

In order to determine the trade-off between filling a surface completely with conductive material and
keeping just the perimeter of the surface, we have varied the ways of filling these two shapes. Figure
5.16 shows in the top three images a rectangle filled with different variations, and in the bottom three
images variations on perimeters of a rectangle. Through these variations the influence of the surface
filling degree of the electrode is analysed. in addition to the sensing performance, the effort and material
cost of creating these electrodes is also monitored, playing an important role in the feasibility of the
electrode.

Figures 5.16a - 5.16c represent a rectangle with its surface filled by conductive textile, conductive
thread densely stitched and conductive thread loosely stitched. Image 5.16a shows conductive textile
cut to the reference rectangle shape. This electrode sample of a conductive textile rectangle of 6 cm side
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(a) textile filled (b) thread zigzag filled (c) thread spiral filled

(d) textile perimeter (e) thread zigzag perimeter (f) thread perimeter

Figure 5.16.: Comparison of filling degree with textile and conductive thread

length is the same as the one used in the electrode size comparison. The electrode from Image 5.16d
is made of the same conductive textile material. In Image 5.16b, the same 6 cm side length rectangle
is filled by sewing conducting thread in a dense zigzag stitch. The same conductive thread is used
throughout the other electrodes, as was used in the electrode size comparison. Image 5.16c shows a
rectangle roughly filled using a spiral shape with a straight stitch. From Image 5.16a with the highest
conductive material density on the surface, to Image 5.16c the density of the conductive material filling
the surfaces diminishes.

These filled surfaces are compared against only the perimeter of the rectangle filled with conductive
material. Thus, Image 5.16d shows a rectangle perimeter made of conductive textile. It has a width
of 1 cm and has been cut out of the reference shape. This same area is filled with conductive thread
sewn in a zigzag stitch, see Image 5.16e, and a straight conductive thread stitch in Image 5.16f. The
electrode from Image 5.16f is the same as the conductive thread electrode used in the conductive thread
size comparison, see Section 5.2.4.

The expected performance for this set of electrodes with varying filling degrees, realized by using
conductive textile as well as conductive thread is derived from the same basic formula of the capacitance
mentioned in Section 5.2.4. Thus, if we consider the surface of the electrodes to be only the surface
where the supporting textile material is covered, the denser the surface is filled, the bigger the surface is.
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Hence, the electrode loosely filled with a spiral made of conductive thread and the rectangle perimeter
made of conductive textile are the surfaces with the lowest density and according surface. We expect
that as density of conductive material increases, the capacitance at a given distance should also be
bigger as the electrode surface density increases.

Figure 5.17 shows the results of the measurement sets from the six electrodes with different fill
degree from Figure 5.16 plus the placebo electrode. The graph on the top left shows the raw data
shifted to a common baseline. The smallest values are achieved by the placebo electrode. Next are the
thread perimeter, thread spiral filled, thread zigzag filled at the same level as thread zigzag perimeter,
then the textile perimeter and last the textile filled electrode. The normalized graph on the top right
shows that the conductive textile electrodes have a slightly steeper slope at the beginning, while the
electrodes from conductive thread have a very similar slope, which is close to the placebo slope. In the
NR view on the bottom left can be observed that the conductive textile electrodes have the lowest NR
and their trendlines are overlapping. Up until nearly the end also the thread spiral filled electrode has
a very low NR, allowing for a good correlation of measured values to distance. Overlapping are also
the thread zigzag filled and the thread zigzag perimeter electrodes. Finally, still with a distance to the
placebo electrode the thread perimeter electrode has the highest NR. Overall, the NR is small, with a
maximum of 6 mm. Similarly to the SNR of the electrode size comparisons, the SNR up to distances
of roughly 7 cm are small, while after 7 cm the SNR varies with a few different spikes. However, this
shows that the standard deviation at small distances is higher and plateaus afterward.

By observing the two variation of conductive textile, the filled rectangle and the rectangle perimeter
of 1 cm in the raw data and the NR graphs, they are close together, or even overlapping. In the NR
view they are equal, only the higher values from the raw sensor data graph differentiate them. The
fact that they both perform so well indicates that electrode surfaces do not have to be fully covered.
Creating an electrode out of a part of the surface of the same shape provides the same results by using
less conductive material. Thus, when creating textiles in which the conductive part is embedded, not
the whole surface has to be made of conductive material, the outer border of the same shape and size
accomplishes similar results. Hence, costs could be reduced.

When considering only the NR, the thread spiral filled overlaps until the distance of 22 cm with the
conductive textile electrodes. In the raw sensor data view, it has the second smallest values after the
thread perimeter electrode. However, as the NR takes the slope and the standard deviation into account,
it shows that it performs similarly well. One can very well correlate distance to sensor values.

In concordance with the filled and perimeter conductive textile electrodes, the filled and perimeter
zigzag stitched electrodes have the same NR. They also have very similar raw sensor data values. This
confirms that not the whole surface of a shape needs to be filled with conductive material, a thick
perimeter performs similarly well.

Surprising from the NR view, is the difference in NR for the thread perimeter and the thread spiral
filled electrode. The filled electrode performs in terms of NR at the level of the conductive textile
electrodes. The zigzag stitch filled surface uses much more material as the spiral filled electrode. This
observation contradicts the expected behaviour. Possible reasons could lie in the nature of the zigzag
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Figure 5.17.: Comparative graphs of electrode filling degree comparison: shifted raw sensor data and
standard deviation (top left); normalized sensor data (top right); Noise Range (bottom
left); Singal-to-Noise Ratio (bottom right).
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stitch - having multiple edges, or by creating multiple connections between the threads - creating a
whole surface, not like with the filled spiral one thread which does not connect to itself.

By summarizing the three compared filling degrees, when using conductive textile or conductive
thread in a zigzag stitch, a thick perimeter of the same surface performs similarly well as the filled
surface. However, in contrast a surface loosely filled with a spiral performs as good as the conductive
textile and better than the zigzag stitched electrodes. When having to choose which filling degree one
wants to use, a material optimizing choice would be the thicker border or a filled spiral. The filled spiral
has the advantage, that the material is distributed over the whole surface and when interacting with the
surface, e.g. by though, the possibility to touch the conductive part of the material is more likely.

5.2.6. Comparison of stitching types

In order to investigate the influence of different stitching types of conductive thread, we have used the
most common stitching patterns on the reference rectangle shape. Figure 5.18 shows the three used
stitching types: straight stitch, zigzag narrow stitch, and zigzag wide stitch, also known as multiple
zigzag stitch. All electrodes were created using the same conductive thread type and using the same
type of support material. The straight stitch is most common stitch, used the majority of the time. The
zigzag stitches are used for sewing elastic materials which are able to stretch and the stitch need to also
stretch. The wide zigzag stretch is used to finish the edges on a stretchy fabric, preventing puckering
which might happen using the narrow zigzag stitch.

Indicators for the expected behaviour is on one side the general formula of the capacitance, where
the capacitance is proportional to the electrode area and inversely proportional to the distance between
the capacitor plates, see Section 2.4.1.3 for more details. However, the area and the amount of material
does not vary to much in the case of different stitching types. A second indicator might be the higher
amount of sharp edges for the zigzag stitches. The article of Madaan et. al state that sharp corners are
more sensitive - at edges electrical field are focused [MK12]. The high amount of edges creates electric
field lines straying in many different directions.

Figure 5.19 shows the results of the measurement sets of the three different stitching type electrodes
and the placebo electrode. The graph on the top left shows the raw sensor data shifted to a common
baseline. From the course of the curves the placebo electrode is on the bottom, followed by the straight
stitch electrode and then the two zigzag electrodes are very close together. The narrow zigzag electrode
has slightly higher values as the wide zigzag electrode. The normalized view of the sensor data only
conveys a very similar steepness of the curves, the straight electrode is the least steep. When looking at
the bottom left graph of the NR, the same order is kept as in the raw sensor data view. The two zigzag
electrodes have an overlapping trendline with the same NR when adding it up. They are followed by
the stitched electrode and at a certain distance by the placebo electrode. The SNR, in the bottom right
graph, follows the already observed pattern, that the standard deviation is higher at the beginning of up
to 4 cm and then plateaus with a few spikes of different electrodes.

Concluding, the zigzag stitched electrodes have the same overall NR, slightly higher than the straight
stitch electrode. It was expected that due to more material being used by the zigzag stitching types these
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Figure 5.18.: Conductive thread rectangle with different stitching types: straight stitch, zigzag narrow
stitch, zigzag wide stitch

result in higher sensor values. Since the narrow zigzag stitch is also very common it is a good choice if
the pattern of the intended smart fabric pattern allows it. The fact that it has more edges does not seem
to negatively impact the performance. However, if minimal use of conductive material is intended, then
a straight stitch is also well suited.

5.2.7. Comparison of conductive textile type

Conductive textiles can be purchased in different variations. They are addressing different needs, such
as e.g. the need to integrate interactive textiles into elastic materials. Thus, we have purchased addition-
ally to the already used Shieldex Zell-RS3 one variation of conductive elastic material Shieldex Medtex
P1304and compared it against the previously used conductive fabric, as shown in Figure 5.20. The raw
material of the conductive fabric is Nylon ripstop fabric, plated with silver and a surface resistivity of
0.02 Ohms. The elastic conductive fabrics raw material is a mixture of 78% Nylon and 22% Elastomer,
plated with silver and a surface resistivity of on average 5 Ohm. It is stretchable in two directions.
After cutting a rectangle of 6 cm side length, it was sewn to the support material with regular thread.
The fabric was sewn in loose state, not stretched in any direction.

According to the base formula of the capacitance, see Section 2.4.1.3 for more details, the capaci-
tance should be the same. Since the active surface is the same, the different conductivity of the materials
could be an indicator on performance differences.

The resulting curves of the measurements are shown in Figure 5.21. The graphs in the left images
shows the raw sensor data shifted to a common baseline. At the bottom is the curve of the placebo
electrode and with some distance are the curves of the ripstop and elastic conductive textile partially
overlapping.

3https://www.shieldextrading.net/wp-content/uploads/2018/08/1500101130-Zell-RS.pdf
4https://www.shieldextrading.net/wp-content/uploads/2018/08/1150902130-Medtex-P130.pdf
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Figure 5.19.: Comparative graphs of stitching type comparison: shifted raw sensor data and standard
deviation (top left); normalized sensor data (top right); Noise Range (bottom left); Singal-
to-Noise Ratio (bottom right).

122



5.2. Efficiency of e-textiles in capacitive sensing

Figure 5.20.: Conductive textile rectangle with different material types: regular conductive textile rip-
stop, elastic conductive textile
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Figure 5.21.: Comparative graphs of conductive textile type comparison: shifted raw sensor data and
standard deviation (left); Noise Range (right).
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5. Properties of flexible capacitive proximity sensing electrodes

Figure 5.22.: Conductive elastic fabric stretched in different directions: reference rectangle shape, hor-
izontally stretched electrode by 0.5 cm to the left and right side, diagonally stretched
electrode by 0.5 cm to the upper right and lower left corner, electrode equally stretched
by 0.5 cm in every direction

Consulting the graph shown on the right, the NR of the three electrodes are displayed. Up until
distances of 27 cm the NR of the conductive fabrics is zero, just slightly rising towards the end to
values of 2 mm. The smallest overall NR is achieved by the elastic textile electrode. It is however
closely followed the ripstop textile.

Concluding, the graphs show that in a flat, unstretched setting the two conductive fabrics perform
very similarly. However, since both perform similarly, the elastic material has the advantage that it is
elastic and can adjust to surface strain. Secondly, the elastic conducive textile does not fray as much as
the woven ripstop material.

5.2.8. Comparison of conductive textile stretch deformation

The same conductive elastic material (Shieldex Medtex P130) used in Section 5.2.7 is evaluated in this
section towards the influence of stretching. Different stretching directions can be applied, stretching
horizontally, stretching diagonally and stretching in both directions at the same time.

Figure 5.22 shows the reference shape of a rectangle not stretched, stretched in different directions
and sewn to a not stretchable support material (the same as generally used). The stretching distance
in each direction is of 0.5 cm. The electrodes support material was stretched by the embroidery hoop,
such that it is flat and thus the material sewn to the surface stretches.

Since electrodes with bigger surface are expected to perform better than the ones with smaller sur-
face, the expected behaviour for the stretched electrodes is, that the bigger the surface of the electrode
is due to the stretch, the better the electrode performance.

Figure 5.23 shows the raw shifted data on the left, and on the right it shows the computed NR. The left
diagram shows that the textile values are well differentiated from the values of the placebo electrode.
However, the curves of the stretched and not stretched electrodes mostly overlap. The NR values of the
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5.2. Efficiency of e-textiles in capacitive sensing

Figure 5.23.: Comparative graphs of stretched conductive elastic fabric comparison: shifted raw sensor
data and standard deviation (left); Noise Range (right).

fabric are also very similar, with all the stretched variations overlapping. Up until a distance of 27 cm
the NR is zero, when it rises firs in the not stretched fabric to 2 mm and then at 28 cm all stretched
fabrics also reach a value of 2 mm.

In conclusion, this series of stretching measurements have not confirmed the expectations, of better
performance of the stretched electrodes compared to the not stretched electrodes. Even though the
NR of the stretched variations is smaller, it is very close to the not stretched electrode, indicating that
stretching does not have a great influence, but if one would have to choose, the stretched electrodes
perform slightly better in terms of NR.

5.2.9. Comparison of conductive thread type

Conductive thread can be purchased in different variations and has different properties. One main
variation in the conductive thread that can be purchased is the number of thread strands which are
twisted together to form the thread. The number of strands influences also the conductivity of the
conductive thread. Thus, we compare two commonly available conductive threads with 2 and 3 strands,
called 2ply and 3ply conductive thread. We use the 2ply and 3ply thread from Adafruit. Both are
machine-sewable. Both threads are made of stainless steel. Due to the different number of strands the
2ply thread has a diameter of 0.2 mm, a resistance of 1.3 Ohm/Inch and a conduction current of up to
50 mA. The 3ply thread has a bigger diameter of 0.25 mm, a smaller resistance of 0.83 Ohm/Inch and
a higher current of up to 100 mA. The evaluation is done similarly to the previous evaluations using the
basic shape of a rectangle with the edge length of 6 cm.
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5. Properties of flexible capacitive proximity sensing electrodes

Figure 5.24.: Conductive thread with different thread types: 2ply (left); 3ply (right).

The expected behavior is, that the 3ply conductive thread performs better in measurements due to
its smaller resistance which allows for higher capacitances. Additionally, it is expected, that the 3ply
conductive thread is slightly more difficult to use when sewing with the sewing machine. This is
because of the fibrous appearance and rough feel when touched.

Figure 5.25 shows on the left the raw sensor data shifted to a common baseline and on the right the
values of the NR. The raw sensor values of the placebo electrode are overall the smallest, followed
by the 2ply conductive thread and then the 3ply conductive thread. The overall NR of these electrodes
show the electrodes in the same order, with the placebo electrode as highest NR, the 2ply electrode next,
while the 3ply electrode shows the smallest overall NR. Up until a distance of 22 cm the electrodes have
similar NRs. After this point the NR of the 3ply conductive thread has prevalently the smallest values
with values of 2 mm from 27 to 9 cm.

As expected, the 3ply conductive thread has a better performance due to the smaller resistance and
thereby better capacitive properties as the 2ply conductive thread. Additionally to the measurement
performance, the ease of use is another important factor which needs mentioning. While creating the
electrodes by using a sewing machine, one could observe due to the difference in diameter of the
threads, that the 2ply conductive thread is easier to sew. The difference can be observed when sewing
corners of electrode shapes. However, both can be used for sewing with the sewing machine.

5.2.10. Comparison of electrodes on different support materials

In order to inspect the possible influence of the support materials on capacitive electrodes, we sew
the basic shape of a rectangle with the side length of 6 cm using the same 2ply conductive thread to
four kind of support materials. Figure 5.26 shows the four general materials. They are samples of
established materials used in everyday clothing and furniture. On the left, there is a tightly woven
100% cotton material. It is not stretchable and is used as a reference support material to all other
measurements. Next to it, there is a mixed material of 65% polyester and 35% cotton. It is thinner
as the cotton material but also not stretchable. The dark blue material, the third in Figure 5.26, is a

126



5.2. Efficiency of e-textiles in capacitive sensing

0 50 100 150 200 250 300

Distance to electrode [mm]

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

S
en

so
r 

da
ta

#104

placebo
2 ply
3 ply

0 50 100 150 200 250 300

Distance to electrode [mm]

0

1

2

3

4

5

6

N
oi

se
 r

an
ge

 N
R

 [m
m

]

placebo
2 ply
3 ply
placebo trendline
2 ply trendline
3 ply trendline

Figure 5.25.: Comparative graphs of conductive thread type comparison: shifted raw sensor data and
standard deviation (left); Noise Range (right).

elastic material know from stretch jeans. It is a composed of a mixture of 84% cotton, 14% polyester
and 2% elastane. It is tightly woven, thinner than the cotton material and thicker than the polyester
material. Last, on the right of Figure 5.26, we show synthetic leather made of 100% polyurethane. It
is the thickest material and in comparison to the stretch jeans material not stretchable. One is a more
tightly woven jeans material made of cotton, while the other is a polyester material. 5

Synthetic materials have generally a smaller resistivity as cotton material. Thus the expected be-
haviour for our different types of support materials is that the ones with less resistivity perform better
than the ones with higher resistivity.

Figure 5.27 shows the curves of the measurement results of the support material comparison. In the
left graphic the raw sensor data is displayed shifted to a common baseline. The placebo electrode is
clearly distinguishable with the lowest values, followed by the material made of 100% cotton. Closer
together, but with slightly increased values are the 65% polyester, the stretch jeans and synthetic leather
with the highest values. The overall NR displayed in the graph on the right supports the findings of
the raw sensor data. The overall NR of the material with 100% performs worse than the materials with
some compound of synthetic fiber. Polymers have a poorer electrostatic isolating properties. Due to
this the conductive thread can exchange with the polyester material more easily charges, which leads
to a higher amount of charge, which leads to a higher capacity.

From this, one can conclude, that synthetic materials will positively influence the performance of
the electrode. However, when a synthetic material would span as a top cover over multiple electrodes,
it allows to exchange charges between the electrodes and can lead to less meaningful measurements

5https://www.uvex-safety.com/blog/electrostatic-discharge-capability-of-clothing-part-two-of-two/
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Figure 5.26.: Conductive thread stitched to different support materials: 100% cotton, 65% polyester
and cotton 35%, stretch jeans (84% cotton, 14% polyester, 2% elastane), synthetic leather
(100% polyurethane)
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Figure 5.27.: Comparative graphs of support material comparison: shifted raw sensor data and standard
deviation (left); Noise Range (right).
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per sensor. Thus, materials prone to less electrostatic charging can have a isolating property, useful in
multi-electrode systems.

5.2.11. Comparison of electrodes of different shapes

Using conductive thread, it is especially easy to create custom shapes of electrodes. One can simply
stitch the thread into the material in the predefined form. Especially overlock sewing machines and
highly specified industrial sewing machines are able to perform intricate patterns using a combination
of different yarns.

In order to have some indication on whether different shapes, which can be sewn, influence the
performance of a capacitive measurement, we selected various shapes, shown in Figure 5.28. To ensure
comparability, the same amount of material should be used for all shapes and the same type of stitch.
We stitched the perimeter of the different shapes. The size of the stitched shape is chosen such that the
perimeter length of the shapes are equal. The length of the perimeter is 24 cm.

The same length of the shape perimeter excludes the factor of the varying amount of conductive
material. Thus, the remaining expected factor which influences the performance is the amount of
corners and acute angles. As the design guidelines for capacitive touch sensing area layouts suggest,
a circle would be better than a square or a triangle [MK12]. The authors argue that edges are to be
avoided, and acute angles even more. Thus, we expect the shapes with less edges, like the circle and
the ellipse to perform well.

The results of the measurements of the 11 different shapes are shown in Figure 5.29. In the left
image the shifted raw sensor value to a common baseline is shown. The placebo electrode is the only
one separated from the bulk of the other 11 electrodes which have very similar behaviour. The graph on
the right, shows the NR view for the different shapes. The circle followed by the ellipse are the shapes
with the highest sensor values. These shapes are also among the smallest measured NR. The placebo
electrode has as expected the largest overall NR.

Because these graphs with 12 curves and additional exponential trendlines are hard to read, we
provide an additional graph, displaying the overall NR (sum of the NR at all distances). These values
are shown in Figure 5.30.

Comparing the NRs the circle, ellipse, trapeze, rectangle, and pentagon perform best, followed by the
triangles. These have an overall NR which is smaller than 10 mm. All the other shapes have a bigger NR
but the placebo electrode has nearly double compared to the highest NR value of the electrodes. One
can observe that there is no specific pattern regarding the number of edges. Circular shapes and shapes
with fewer edges do not perform especially well in terms of NR. Next to the placebo electrode the
hexagon, hexagram and parallelogram have a higher NR. This behaviour is not intuitive, since hexagon
and pentagon are similar to circles, but have some edges. The influence of edges could be confirmed
by the hexagrams NR, which is the highest of all shapes, with the highest number of edges. However,
it is also contradicted by the NR of the heart, triangles and rectangle. From these measurements the
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(a) circle (b) ellipse (c) hearth (d) equilateral triangle

(e) right-angled triangle (f) rectangle (g) parallelogram (h) trapeze

(i) pentagon (j) hexagon (k) hexagram

Figure 5.28.: Comparison of different electrode shapes of same perimeter length
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Figure 5.29.: Comparative graphs of shape comparison: shifted raw sensor data and standard deviation
(left); Noise Range (right).
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Figure 5.30.: Sum of Noise range (NR) comparison of different electrode shapes
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indication to avoid shapes with corners can not be confirmed. At least, circular shapes as the ellipse
and the circle are among the best performing shapes, confirming the expectation.

5.2.12. Electrode comparison results

From the electrode group comparisons performed in Sections 5.2.4 to5.2.11, we have in most cases
identified a single best performing electrode. In case of the size of electrodes, the electrode with the
largest size performs best in terms of NR. This is true for the electrode made of conductive textile, as
well as for the electrode made of conductive thread. Thus, if one does not have a preference, fabric or
thread can be chosen.

When comparing the results of how densely a surface needs to be covered in order to perform well,
one can conclude that for conductive fabric only a perimeter of the area performs as well as covering
the whole surface of the area. For conductive thread, only the shape of an area performs poorer than
an area filled with a spiral of conductive thread. The conductive fabric perimeter and the conductive
thread spiral perform comparably well.

If one decides to use conductive thread as capacitive electrode, one should prefer the variation of
conductive thread with 3 strains, the 3ply conductive thread, since it performs better than the 2ply
version. Nonetheless, it is harder to sew since it gets knotted very easily and the sewing machine gets
blocked often.

The stitching types a sewing machine can perform are meant for different situations, such as using
zigzag stitching for elastic materials. If one only compares the performance in terms of NR of straight
vs. narrow and wide zigzag pattern, the zigzag patterns perform best, however, closely followed by the
straight stitch.

Choosing between types of conductive fabric can depend on different factors. For capacitive elec-
trodes, both, the elastic and the ripstop conductive fabric are performing in a similar way, with the
elastic textile performing slightly better. Both materials are different in their intended usage, thus the
suited material should be chosen for the desired application.

As the electrode properties influence the performance, the substrate, the supporting material to which
the conductive thread or fabric electrode is sewn is an influencing factor. Generally, materials with parts
of synthetic material perform better compared to cotton. Of the compared materials, synthetic leather,
of 100% polyurethane performed best.

When using conductive thread, the shape of an electrode can be easily variated. We have evaluated
a range of 11 shapes with the same perimeter length. The results show that the rectangle, circle and
ellipse perform best in terms of smallest achieved NR.

In Figure 5.31 the best electrodes from the different groups are shown. These 8 electrodes are the
10 cm conductive textile, from the electrode size comparison, the conductive textile border and the con-
ductive thread spiral filled shape from the filling density comparison, the 3ply conductive thread from
the thread types comparison, the zigzag narrow stitch from the stitching types comparison, the elas-
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5.2. Efficiency of e-textiles in capacitive sensing

Figure 5.31.: Best electrodes from analysed categories: 10 cm electrode, textile perimeter, thread spiral
filled, 3ply conductive thread, zigzag narrow stitch, elastic conductive textile, synthetic
leather, circle.
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Figure 5.32.: Comparative graphs with best of electrodes from different groups: shifted raw sensor data
and standard deviation (left); Noise Range (right).
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tic conductive textile from the textile type comparison, the synthetic leather from the support material
comparison and finally the conductive thread circle from the shape comparison.

When looking at the raw data, which is shifted to a common baseline, shown in the left image
of Figure 5.32, one can observe that the 10 cm conductive textile electrode has the highest values,
followed by the synthetic leather and the textile perimeter electrode. The other electrodes are very
closely together, only the placebo electrode is separated. Looking at the NR display on the right image
of Figure5.32, in a similar manner the 10 cm conductive textile electrodes performs best in terms of
NR. At some distance the other electrodes are more or less grouped and at some considerable distance
the placebo electrode creates the lower bound with the highest NR.

When looking into the other electrodes, which are close together, the closest ones to the conductive
textile electrode are the textile perimeter and the synthetic leather support of the conductive thread
electrode overlapping with a NR value of 4 mm. Next, with an overall NR of 5 mm, the conductive
thread rectangle filled with a spiral is placed forth. The overall NR value of 6 mm is reached by the
3-ply conductive thread and the elastic conductive textile. On the top, the zigzag narrow stitch and the
circle electrodes are overlapping with an overall NR value of 8 mm.

From the overall NR perspective, the best electrode is as expected the largest electrode, the conduc-
tive textile electrode with 10 cm edge length. However, if one wants to optimize conductive material or
use other types of materials, more suited to the task or application, one can choose only a perimeter of
the conductive fabric or use conductive thread on a material with high synthetic composition. Filling
the shape with a loose spiral of conductive thread performs also very well.

5.3. Choosing the electrode design

As outlined in Section 5.1 there are many application areas in which flexible sensors can be applied. If
we would like to use capacitive sensors in those domains, the choice of material and layout is crucial.
Some of these aspects were already discussed in Chapter 4. In this chapter we already addressed
questions regarding general setup of applications such as: Which sensors are right for my application?
How many sensors are needed? Which layout should I choose? By asking similar questions associated
to design factors specific for capacitive electrodes, the application designer can choose the optimal
combination for their purpose.

What sensing range do I need?

Depending on the specific layout, flexible capacitive sensors are capable of detecting touch or prox-
imity to a distance of 10 cm for the evaluated electrode size. Several competing technologies possess
only touch detection capabilities. Accordingly, if a proximity detection is required in the specific use
case, the designer can give priority to capacitive sensors.

What level of flexibility is required?

134



5.3. Choosing the electrode design

Certain applications require highly flexible sensors that can only be realized using some technologies.
For other sensors it limits the design options. For example, high levels of bending can influence the
conductivity of some materials. This limits the choice for applications using capacitive sensors.

Are capacitive sensors the right choice for my application?

The vast variety of materials, shapes, and modes to choose from, make capacitive sensors a powerful
choice for applications. However, in many use cases this is not required or suitable. Capacitive sensors
can only detect conductive objects and the presence of those. If we need information about other
characteristics, such as color, other sensors are required.

How many sensors are needed?

This factor entirely depends on the use case. If we want to precisely measure the location of a small
object, numerous small electrodes connected to sensors are required, e.g. small conductive thread
patches that detect the presence of a finger for explicit interaction scenarios. For physiological mea-
surements the size has to be adapted to the measured object. Detecting the breathing rate may require
a large thread electrode near to the chest.

Which measurement mode should I choose?

The most notable advantage of shunt mode is the reduced number of required sensors in grid lay-
outs. The mutual capacitance measurement is often chosen in touch screens. If we require similar
levels of precision, using a grid and reduced number of sensors may be beneficial. For heterogeneous
setups, using loading mode systems may be advantageous, since they do not require two electrodes in
proximity.

What is the best electrode material?

Giving a definite answer on this is impossible, as the material and use case have to be chosen in
accordance. Some instances may require specific properties, such as transparency. Our measurements
have shown that all materials are good candidates for a large number of different use cases, as they
equally combine high detection range and resolution. If possible, the best choice for a textile electrode
is the largest possible electrode made of conductive fabric. If options with conductive thread are pre-
ferred, then filling a surface with a loose spiral or using synthetic fabrics as support/substrate material
for conductive thread are good options.

In the following Sections 5.3.1 and 5.3.2, I address the system design process to develop two appli-
cations: a bed sheet with breathing rate detection capability and a sitting cushion back pain prevention
by tracking the sitting behaviour. I presented the sitting cushion already in Section 3.2 of Chapter 3.
During the design process of the sitting cushion I evaluate if the findings presented in Section 5.2 are
confirmed by a finished system. I base the corresponding Section on my work described in [RBKK19b].

5.3.1. Designing a bed sheet for breathing rate detection

Depending on the use case one wants to implement, the findings from these previous measurements
can be helpful in order to choose how to build a textile capacitive electrode. For example we take the
use case of detecting the breathing rate while lying in bed. For this use case one can imagine creating
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a bed sheet which has a textile capacitive electrode integrated with which the breathing rate can be
detected. This electrode has to cover a wider area of the bed, since while asleep a person might move.
The electrode should be big enough, that at any given time the person is lying on it. It has to be as wide
as the distance between the shoulders and the belly button. The length should be the same as the width
of the underlying mattress. This size would be enough to counter the movements of a sleeping person.
One can decide how many sensors to use to cover this area. We decide to use a minimal hardware
setup and thus use one single capacitive sensor with one single textile electrode. This electrode could
be created using conductive fabric or conductive thread, or ultimately a mix of both.

Using conductive fabric, we could choose to use elastic material, since bedsheets usually span on
the mattress and is thus better suited to use an elastic conductive fabric. Regarding the shape one could
choose the ellipse, due to the available area on the mattress. The ellipse has proven to perform well for
conductive thread. However, this ellipse would not have to be entirely filled, a perimeter of 1/6th of the
covered surface length could be an option, provided the user reaches at all times a part of the electrode.
This would be a viable solution for the breathing detection use case created with conductive fabric.

Using conductive thread allows for more variability and options. Thus, an electrode of conductive
thread could be sewn directly on the bedsheet support material. The preferred conductive thread would
be the 3ply conductive thread. It could be sewn in various shapes covering the sensing area. Using a
ellipse as outline shape has proven to be a good choice for a minimal amount of material. Thus, for
this use case the ellipse is the preferred choice. The spiral rectangle performed better than the simple
perimeter of a rectangle. Transferring these results to the shape of an ellipse this would mean to have
a spiral in shape of an ellipse. The space between the spiral lines could be of 1/6th of the width of
the sensing area, ensuring that the person has contact to the electrode. Additionally, since synthetic
materials perform better, one would prefer from a performance point of view, a material with higher
percentage of synthetic materials, not a material made entirely of cotton.

Combining the two designs using conductive fabric could be a good option. However, it is not clear
if the additional work would be worth it. Because of the ease of design and the material costs our
recommendation is to use the conductive thread design. To finish the electrode, one needs to connect
it to the sensor. The outer perimeter of the ellipse could be contacted to the sensor at the smallest
distance from the electrode perimeter to the side of the mattress. This would ensure that the sensor
does not disturb while sleeping.

5.3.2. Designing a sitting cushion for back pain prevention

We present the process of designing an E-Textile capacitive cushion. In Section 3.2 of Chapter 3 the
application for back pain prevention is already described. In this Section, I describe the process of
optimizing the design of the sitting cushion. Throughout the different cushion prototype versions the
hardware setup remained the same.

What differentiates the prototypes, is the different setup of the electrodes. The experiments were
conducted using the third type of cushion prototype, which is for ease of prototyping reasons a thin,
flexible cover of the sitting area of a chair, see Figure 5.34.

136



5.3. Choosing the electrode design

Figure 5.33.: Surface of sitting area covered when sitting on cushion layouts with 4, 5 and 6 capacitive
sensing electrodes

Figure 5.34.: Seat cushion prototypes with three electrode types: conductive fabric, conductive thread,
and spiral

The process of a person sitting down on a chair can be captured by different setups of electrodes
in terms of shape, placement, and number of electrodes. When a user is sitting on the chair, most
of the surface of the sitting area is covered, see Figure 5.33. For capacitive proximity sensing the
relevant areas are those, where the sensor values change significantly during changes of sitting postures.
These are the ones where the body of the person is in proximity to the electrodes. To analyze this we
created prototypical electrode patches, inspired by the form of the areas not covered while sitting. We
experimented with the placement and number of the patches. Resulting in two designs of 5 and 6
electrodes, chosen to detect as many sitting postures as possible.

From this shape and placement analysis we concluded that through experimentation and evaluation
of different sensor layouts that the sensor layout with 5 electrodes performs best. In a second step we
focused on the electrode itself.

Cushions need to be highly flexible. Since most of them are covered by some woven material, we
chose textile conductive thread and fabric to be suitable for prototypes. These textile electrodes can
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be made of different materials. We used conductive fabric and conductive thread [Shi, Ada18]. We
evaluated both materials individually.

For this, we have created three different electrodes - before integrating textile electrodes directly
into cushions covers. One electrode was made of conductive fabric, one where the shape perimeter
is machine sewn with conductive thread and a third one where the shapes surface is filled by a spiral
of conductive thread, see Figure 5.35. An additional fourth electrode, the placebo electrode, is an
electrode with no conductive material connected to the sensor, just the connecting wire.

For each electrode we conducted measurements to measure the spatial resolution, derived as the
inverse of the noise range at specific distances. We measured the capacitance change by repeating
the measurements three times and collecting 100 samples per height level, in 1 cm steps up to 30 cm.
The measurement device with the evaluated electrode and the measurement electrode connected to a
moving spacer are depicted in Figure 5.35.

Figure 5.36 shows that the electrodes made of conductive thread perform slightly better overall than
the conductive textile electrode, showing smaller Noise Range (NR) variations. From the distance
of about 15 cm up the NR increases for the conductive thread perimeter electrode, with not as high
variations in NR as the spiral conductive thread filled and the textile electrode. Starting from distances
of 21 cm the NR of the conductive thread spiral electrode increases and starting at 24 cm the NR of the
conductive textile increases reaching values higher than the placebo electrode. This indicates punctual
noise. Due to this big NR variation the trendlines of the two conductive thread electrodes are lower
and the conductive textile trendline depicting the overall NR slightly closer to the placebo electrode
trendline.

In comparison, the best results were achieved in Section 5.2.5 by the conductive textile electrode.
There the conductive thread electrodes performed worse. The spiral filled electrode performed slightly
better than the thread perimeter electrode. In each measurement sets the conductive textile electrode
shows much higher NR starting at the distance of 24 cm.

We aim at confirming the results obtained in Section 5.2 with regards to electrode layout and material
through the evaluation of prototypes built following the design decisions. We integrated the three
electrode types and the layout identified as best performing in prototype seat covers, as shown in Figure
5.34. We evaluate these with a multi- and single-user evaluation. For the evaluation we asked 20
participants (10 male, 10 female) to execute five postures: sit upright, lean back, lean front, sit left, sit
right. For each posture we also gathered data for the empty chair and standing in front of it, resulting in
a total of seven classes. For each posture we gathered 100 samples for 10 seconds. For the single-user
evaluation one participant repeated the evaluation five times.

The data was evaluated using a leave-one-subject-out cross-validation with 15 different classifiers
and three additional parameter variations of SVM, using the WEKA machine learning toolkit [HFH∗09].
From the multi-user data set we present the results of five test persons, comparable to the amount of
data of the single user data amount.

The mean and best classification results of both evaluations are shown in Table 5.1. We observe that
the higher density of the conductive surface of the conductive fabric electrodes does not provide better
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Figure 5.35.: Measurement device and compared electrode types: conductive textile, conductive thread
perimeter, conductive thread spiral filled and placebo.
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Table 5.1.: Evaluation results per electrode type

fabric spiral perimeter
mean max. mean max. mean max.

multi-user
accuracy 51.8 62.1 58.9 72.6 56.4 78.6
f-measure 43.8 55.8 51.3 67.7 49.2 73.4

single-user
accuracy 81.3 91.4 89.6 97.1 88.9 97.1
f-measure 76.8 89.1 86.7 96.2 86.3 96.2

results as one could have expected. Compared to conductive fabric, electrodes made of conductive
threads outperform conductive fabric. However, the spiral layout of the electrode made of conductive
thread performs on mean slightly better than just using conductive thread for the electrode perimeter.
In contrast, the highest accuracy for the case of multi-users is reached by the electrodes with their
perimeter made of conductive thread. In case of the single-user both electrodes made of conductive
thread reach the maximum achieved accuracy. These findings show that electrodes with less material
costs, such as conductive threads can achieve favorable results when used in applications.

Concluding, I can say that the conductive thread electrodes can be considered a good choice for
e-textile electrodes. This is shown by both, the measurement setups in this section and in Section 5.2.5
as well as in the evaluation results of the sitting cushion application. The worse performance of the
conductive textile than the conductive thread does not fall into line with the measurements from Section
5.2.5. However, it is consistent with the results from the prototype evaluation. This difference could
derive from factors such as the fabrication or the shape of the electrode. In order to prove these one
would need to be able to create electrodes even more uniformly and also evaluate the influence of shape
for conductive textile electrodes.

5.4. Conclusion

In this chapter I have addressed the third research challenge Suitability and performance evaluation
of e-textile capacitive electrodes. I have analysed a set of properties of capacitive electrodes such
as electrode material and measurement mode, as for e-textiles in special I analysed properties such as
electrode size, pattern density and making. These two analysed aspects feed their results into a rationale
of creating capacitive electrodes. I have analysed the findings and used them as a design guideline in
order to create electrodes in two exemplary use cases: a bed sheet for breathing rate detection and a
cushion for back pain prevention.

Mostly copper electrodes in self capacitance mode is the go-to hardware setup of various applica-
tions where proximity sensing is used. Alternatives in terms of material are especially interesting for
applications leveraging the flexible properties of objects and surfaces. There is a plethora of possible
not very much explored materials. Also, mutual capacitance is a capacitive proximity measurement
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mode which could be used as alternative with advantages already described in Section 2.4.1.5. By
comparing self and mutual capacitance measurement modes the conclusion is that choosing which to
use depends very much on the application. If it needs to be robust or is surrounded by a changing
environment it is advisable to choose the self capacitance mode over the mutual capacitance mode for
proximity sensing. This is due to the bigger influence of parasitic capacitance on mutual capacitance
setups. When looking at different electrode materials, the electrodes are equally suitable for flexible
capacitive applications.

Due to the ability of e-textiles to integrate easily into flexible surfaces, a special interest comes to
conductive thread and fabric. Through measurements I have evaluated different properties such as the
influence of size, pattern degree of filling, types of conductive thread and fabric, stretching deformation,
different stitching types, support materials and shapes. The hypothesis that with increased size the
performance increases is approved, in both cases of conductive fabric and conductive thread. When it
comes to the density of conductive material on the electrode surface, the measurements indicate that a
perimeter of fabric has similar performance as the whole surface of a rectangle. Interesting is also, that
a perimeter of conductive thread, filled with a spiral is a viable and good option for an electrode made
of conductive thread. When comparing stitching types, on a microscopic level, the zigzag stitch is
preferable to the straight stitch. However, on a macroscopic level, in relation to the desired application
straight and zigzag are both suitable. Similarly, when comparing 2ply versus 3ply conductive thread,
the latter is better suited. But as with the conductive fabric type comparison between ripstop and elastic
fabric, the fabric performs lightly better, however, in the end it depends on the needs of the application,
and both are suitable choices. The same applies to the stretching deformation of an elastic fabric. The
stretched materials performs slightly better. In terms of the material on which the conductive material is
applied on, conductive thread on materials with high percentages of synthetic components in the fabric
perform better than pure cotton. Finally, when looking at shapes, no certain answer can be provided
regarding the number of edges of a shape. Thus, the recommendation to use less edges can not be
broadly confirmed. The best performing shapes are the circle, ellipse, trapeze, rectangle, and pentagon.

In a final step, I presented application guidelines. By the example of two use cases I walk through
the electrode creation rationale which integrates the findings relating the best performing electrodes.
In the first use case the goal is to create a breathing rate detecting bed sheet. By going through the
requirements of the application and applying the recommendations extracted from the previous sec-
tions, a final electrode is designed. The second use case serves to confirm that the findings from a
measurement setup of electrodes reflect in the accuracy results of the application. For this use case
the cushion for back pain prevention presented in Chapter 3 was created three times, each time with
different electrode types.

Through my contributions in this chapter, I support application developers in choosing the best suited
electrode design for their envisaged assistive application based on capacitive proximity sensing. They
are going to be able to make informed decisions regarding their electrode design and thus provide us,
the main beneficiaries of the assistive applications, with quickly developed, well performing systems.
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6. Conclusions and Future Work

The topic addressed by this thesis, of extending the design space of assistive applications for flexible
Smart Environments is highly relevant, as I showed in the related work in Chapter 2 and throughout
Chapter 1 where I have presented the research challenges and outlined my contributions. The main
goals I address through my contributions are to provide additions to the scientific field of assistive
flexible applications, to enhance and ease the prototyping process and to offer design guidelines for
flexible capacitive proximity sensing electrodes.

In this chapter, I summarize the contributions to the three main research challenges formulated in
Section 1.2 and conclude by providing areas of promising future research in the field of flexible assistive
Smart Environment applications.

6.1. Conclusions

The use of flexible surfaces in assistive applications, such as sensor equipped bed sheets, cushion cov-
ers, or cloths, aims at leveraging the comfort they offer to their users, and exploits the implicit closeness
and thus the possibility of unobtrusive use. This work presented a set of new assistive applications in
Chapter 3, a simulation tool supporting the application prototyping work-flow in Chapter 4 and e-
textile capacitive sensing electrodes design guidelines in Chapter 5. All these components are intended
to support the designing of sensor equipped flexible assistive Smart Environment applications. In the
following, I will outline my contributions to each of the research challenges.

New flexible Smart Environment applications: The contributions to the first research challenge
are presented in Chapter 3. This contribution materializes the untapped potential of sensors embedded
into flexible surfaces. It comprises diverse prototypes from three different application areas. The first
is the area of decubitus ulcer prevention [RGPK14,RGPK17]. I created a system based on a bed sheet,
which can be used in hospitals or at home, and alarms the caretaker looking after a bedridden person, if
the person has spent too much time in a certain position. The bed sheet is able to recognize bed postures
and therefore infer pressure points. Compared to similar works, the bed sheet is affordable and easy to
handle due to the wire grid in mutual capacitance measuring mode, which allows to have a high number
of sensing points, at all wire crossings. The second application area is back pain prevention by sitting
posture monitoring and exercise tracking through a chair [RBKK19b]. By giving the user feedback on
his sitting posture, one can facilitate healthier behaviour. Through different design iterations, I created
a seat that tracks the proximity and motion of the user. Even though previous works have achieved
limited sitting posture detection, I extend the current body of knowledge by evaluating different e-
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Figure 6.1.: Overview of contributions addressing the three research challenges.

textile electrode layouts and materials and compare the results by evaluating the designed prototypes
in a user study. The final application area to which I contribute in relation to this research challenge, is
differentiating emotions through sensing movements on a couch [RBK17, RJBK18]. I outline a couch
specially set up to measure emotion by interpreting measured movements. Previous work has focused
on user posture detection. By using conductive fabric as capacitive proximity sensing electrodes, I
extend the sensing capabilities to motions from which I subsequently infer emotions.

Creating these applications, I explored flexible materials we use throughout our daily activities, and I
not only created assistive systems which offer us comfort and health support functionalities, but which
do this in an unobtrusive manner. While I created these assistive applications, I encountered application
design decisions I needed to take, which have led to the next two research challenges.

New design tools for flexible Smart Environment applications: Chapter 4 contains my contri-
butions to the second research challenge with relation to work-flows of designing applications using
sensor-equipped flexible surfaces. I reduce the use of resources, such as time and hardware costs,
by especially addressing the prototypical hardware iterations. For this, I contribute a simulation tool,
which aids in identifying the number and placement preferences for flexible Smart Environment ap-
plications. Understanding where sensors need to be placed and how many are needed to achieve the
desired application functionality and accuracy is vital information when designing any application.
When designing applications for flexible surfaces, the appropriate aiding tools are needed. I contribute
a simulation framework, which facilitates the creation of flexible applications such as shape-sensing
applications [RHvW∗18]. Existing works focus only on the simulation of rigid objects. I included
soft-body simulation with attached virtual sensors and validated and demonstrated the work-flow by
virtually planning and subsequently implementing a sleeping posture detecting bed cover. This process
provides a decision basis for developer decisions regarding number of sensors, the sensor placement
and achieved accuracy. My second contribution to this research challenge is the investigation on what
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role the human intuition has when designing a smart garment use case, versus the expert knowledge
used to design such a system by an experienced system designer [RBKK19a]. I used the simulation
framework to compare the proposed designs from all study participants with the results from two hands-
on sessions with experienced system designers. The outcome shows that many participants intuitively
create well-working patterns.

Through these contributions, I closed the gap of the lacking support for the resource conserving cre-
ation of shape-changing applications. I also enable less experienced application and system designers
to try out their designs and optimize them towards cost and performance, enabling a more efficient
design process in general.

Suitability and performance evaluation of e-textile capacitive electrodes: My contributions to
the third research challenge are contained in Chapter 5. E-textile materials are especially well suited
to be integrated into various flexible assistive Smart Environment applications due to their flexibility
and different manufacturing possibilities. In existing works, e-textiles find usage in many applica-
tions. However, the influence of varying manufacturing properties on the capacitive proximity sensing
performance has not been analysed in a structured way. I contribute a performance evaluation of ca-
pacitive proximity sensing electrodes with different properties such as different material, size, filling
degree, stitching type, shapes, stretching and support material [RSBK15, RBKK19b]. I compared dif-
ferent sizes of conductive thread perimeters and conductive fabric squares, as well as different types of
conductive threads and conductive fabrics. For both materials, I also compared if the surface needed
to be filled with conductive material, or if a loop would be enough. Additionally, I also investigated
the influence of the support material type as well as its stretching influence. Creating electrodes from
conductive thread offers an additional manufacturing dimension. Thus, I also contribute insights into
the sensing performance of electrodes made with different stitching types or diverse shapes. Finally,
I demonstrate the findings by contributing an electrode creation rationale with two examples a breath
detecting bed sheet and a cushion for back pain prevention.

These contributions to this research challenge support applications developers in choosing the best
suited electrode design for their capacitive proximity sensing application. By having performed the
structured measurements, analysis, and comparison. The application designer can go through the elec-
trode design constraints and choose step by step the preferred electrode properties, avoiding the creation
of multiple electrode prototypes and thus allow for a quicker application design process.

In conclusion, the aforementioned contributions to the three identified research challenges enable the
exploitation of flexible surfaces creating new assistive applications and enhancing the overall applica-
tion design process by offering a tool for resource effective creation of prototypes as well as a design
guideline for e-textile capacitive sensing electrode creation.

6.2. Future Work

As I have shown in Section 6.1 and throughout the related work in Section 2, the developments in the
field of flexible Smart Environments are flourishing. Research areas such as Skin Interfaces, Shape
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Changing Interfaces and Textile Interfaces are highly relevant, especially in the combination with ma-
terial sciences, which allows for more leavened developments.

My current research was mostly focused on leveraging flexible surfaces such as textiles on furniture
with which people come in contact in order to unobtrusively offer health assistance. In the future, I
would like to explore from a technological point of view the combination of 3D-printing methods and
flexible applications. On application level I would like to rest in the field of personal health and further
focus on extending my work related to emotion detection and communication.

Personal health In my previous work I have created dedicated prototypes for assistive health ap-
plications. As mentioned throughout Chapter 3, there are several possibilities to enhance the different
presented applications. Examples could be to enhance the grid setup used for the lying posture sensing
bed sheet such that smaller body parts are detectable as well, and combine it with actuators able to
autonomously change the position of the user. The proposed simulation framework could be extended
to optimize the simulated hardware setup to find the suitable trade-off between the number of sensors
and application accuracy. Overall, health applications profit if they can cover both aspects, general-
ization and individualization or personalization. In terms of generalization of hardware, I would like
to create a system in the form of a textile cover, which is able to fit to all kinds of furniture and offer
diverse services such as posture detection, physiological sensing and emotion detection. On the other
hand, this textile cover would profit from person identification to cope with a small group of users and
personalize its services.

Multimodal emotion detection and communication In my previous work I explored the unob-
trusive detection of emotions by interpreting movements on furniture, see Section 3.4. By fusing
physiological parameters such as breathing rate detected through the furniture and physiological pa-
rameters measured through available wearables, I want to improve the granularity and accuracy of
detected emotions. Different modalities are used to detect emotions e.g. through brain-computer
interfaces [SSA∗20], smart-watches [CGJC19]. Not only detecting the emotions is of interest, but
also communicating them to others or to machines, in order to be able to adapt to emotional varia-
tions [YAB19, EAYA∗20, SSA∗20, USL19]. From detecting and communicating emotions, I imagine
that changing or influencing emotions is a next possible step. Controlling and changing ones emotions
during every day activities [SMvB∗20] could serve to enhance and emphasize our well-being [RM20]
and performing ability [CGJC19, DMB∗20].

Morphing 3D-printing Even though my previous work has not covered the area of 3D-printing,
new printing materials and printing methods with the ability to create flexible and deformable objects
have caught my interest. Examples are the foldable and unfoldable objects of daily use presented by
Noma et al. [NNOK20], printing multi-material objects from one single filament [TPK20], spraying in-
teractive displays on 3D-printed objects [HWM∗20], printing biocompatible soft vibro-tactile actuators
[FRS∗20], or the fabrication of morphing lines into three-dimensional shapes through the use of ther-
moplastic material [WTC∗19]. FabriClick by Goudswaard et al. and DefeXtiles by Forman et al. show
how advances in 3D-printing can be leveraged in creating functional textiles [GAGdR∗20, FDFI20].
These developments can be used to rethink functional furniture and create adaptable and personalized
health services.
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