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Résumé

Les images de synthèse (CGI) prennent une place grandissante dans notre environne-
ment.�e ce soit dans les jeux vidéos ou les films, leur qualité ne cesse de s’accroître
nécessitant la création fastidieuse de contenus artistiques. L’émergence de la réalité
virtuelle et augmentée, entraine la nécessité de rendre des environnements existants.
Pour perme�re l’utilisation généralisée des images de synthèse dans des applications
telles que la télé-présence ou les visites virtuelles, la digitalisation manuelle des contenus
par des artistes se doit d’être évitée. Une des solutions peut provenir des techniques
de Rendu à Base d’Images (IBR) qui perme�ent de rendre des scènes, depuis un point
de vue libre, à partir d’un ensemble de photographies parcimonieux. Bien que ces mé-
thodes ne nécessitent que peu de travail artistique, elles n’autorisent cependant pas
le contrôle ou l’édition du contenu. Dans ce�e thèse, nous explorons l’Edition et le
Rendu d’Images Multi-vues. Afin de perme�re à des scènes, capturées avec le moins
de contraintes possibles, d’être rendues avec des altérations telles que la suppression
d’objets, l’édition d’éclairage, ou la composition de scènes, nous exploitons les techniques
d’optimisation et d’apprentissage profond. Nous concevons nos méthodes afin qu’elles
tirent pleinement avantage de l’information présente dans le contenu multi-vues, tout en
en respectant ses contraintes spécifiques. Pour la suppression d’objets, nous introduisons
un algorithme de remplissage automatique, multi-vues cohérent, utilisant une représen-
tation planaire. Les plans sont des objets simples et e�icaces pour combler la géométrie,
dont la cohérence multi-vues émerge naturellement lorsque le remplissage est e�ectué
dans un espace texture rectifié et partagé. Ils perme�ent aussi le respect des e�ets de
perspective. Nous démontrons la capacité d’enlever des objets, à grande l’échelle, dans
des scènes contenant plusieurs centaines d’images. Nous traitons ensuite le problème
du rééclairage des scènes extérieures par une méthode d’apprentissage profond. Elle
permet de modifier l’illumination, en enlevant et synthétisant les ombres portées, pour
une position du soleil quelconque, tout en tenant compte des variations d’illumination
globale. Une représentation géométrique approximative, reconstruite en utilisant la sté-
réo multi-vues, est utilisée pour générer des images tampons d’illumination et d’ombres
qui guident un réseau de neurones. Nous entrainons ce réseau sur un ensemble de scènes



synthétiques, perme�ant une supervision complète. Une augmentation des données
minutieuse permet à notre réseau de généraliser aux scènes réelles et de produire l’état
de l’art en terme de résultats. Nous démontrons ensuite, la capacité du réseau à être
utilisé pour composer des scènes réelles, capturées dans des conditions d’orientation
et d’éclairages di�érentes. Nous présentons ensuite des contributions à la qualité de
l’IBR. Nous introduisons un algorithme de maillage de cartes de profondeur et de leur
simplification. Nous démontrons son impact sur la qualité et les performances d’une
nouvelle méthode d’IBR utilisant l’apprentissage. Enfin, nous introduisons une méthode
qui combine rééclairage, IBR, et analyse de matériaux. Afin de perme�re un rendu à
base d’images, rééclairable et tenant compte des e�ets spéculaires, nous extrayons du
contenu multi-vues les variations d’apparence des matériaux et l’information de texture
haute résolution, sous la forme de plusieurs rendus IBR heuristiques. Nous les combinons
ensuite avec des rendus d’irradiance, obtenus par lancer de rayons, qui spécifient les
conditions d’éclairage initiales et désirées. Ce�e combinaison permet d’entrainer un
réseau de neurones à extraire implicitement les propriétés des matériaux et à produire
des points de vues rééclairés réalistes. La séparation de la supervision entre composante
di�use et spéculaire fut démontrée cruciale dans l’obtention de résultats haute-qualité.

Mots-clés: Rendu Basé Images, Multi-vue, Inpainting, Rééclairage, Rendu Neuronal



Abstract

Computer-generated imagery (CGI) takes a growing place in our everyday environment.
Whether it is in video games or movies, CGI techniques are constantly improving in
quality but also require ever more qualitative artistic content which takes a growing
time to create. With the emergence of virtual and augmented reality, o�en comes the
need to render or re-render assets that exist in our world. To allow widespread use of
CGI in applications such as telepresence or virtual visits, the need for manual artistic
replication of assets must be removed from the process. This can be done with the
help of Image-Based Rendering (IBR) techniques that allow scenes or objects to be
rendered in a free-viewpoint manner from a set of sparse input photographs. While this
process requires li�le to no artistic work, it also does not allow for artistic control or
editing of scene content. In this dissertation, we explore Multi-view Image Editing and
Rendering. To allow casually captured scenes to be rendered with content alterations
such as object removal, lighting editing, or scene compositing, we leverage the use of
optimization techniques and modern deep-learning. We design our methods to take
advantage of all the information present in multi-view content while handling specific
constraints such as multi-view coherency. For object removal, we introduce a new plane-
based multi-view inpainting algorithm. Planes are a simple yet e�ective way to fill
geometry and they naturally enforce multi-view coherency as inpainting is computed
in a shared rectified texture space, allowing us to correctly respect perspective. We
demonstrate instance-based object removal at the scale of a street in scenes composed
of several hundreds of images. We next address outdoor relighting with a learning-
based algorithm that e�iciently allows the illumination in a scene to be changed, while
removing and synthesizing cast shadows for any given sun position and accounting for
global illumination. An approximate geometric proxy built using multi-view stereo is
used to generate illumination and shadow related image bu�ers that guide a neural
network. We train this network on a set of synthetic scenes allowing full supervision
of the learning pipeline. Careful data augmentation allows our network to transfer to
real scenes and provides state of the art relighting results. We also demonstrate the
capacity of this network to be used to compose real scenes captured under di�erent



lighting conditions and orientation. We then present contributions to image-based
rendering quality. We discuss how our carefully designed depth-map meshing and
simplification algorithm improve rendering performance and quality of a new learning-
based IBR method. Finally, we present a method that combines relighting, IBR, and
material analysis. To enable relightable IBR with accurate glossy e�ects, we extract
both material appearance variations and qualitative texture information from multi-view
content in the form of several IBR heuristics. We further combine them with path-traced
irradiance images that specify the input and target lighting. This combination allows
a neural network to be trained to implicitly extract material properties and produce
realistic-looking relit viewpoints. Separating di�use and specular supervision is crucial
in obtaining high-quality output.

Keywords: Image Based Rendering, Multi-view, Inpainting, Relighting, Neural Render-
ing
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C h a p t e r 1

Introduction

Over the last decades, digital technology occupies a growing part of our daily environ-
ment. Nowadays, many of us barely spend a day without using a screen. While the
technology was being democratized, the initial text-based interfaces were replaced with
more user-friendly graphical user interfaces. Computer graphics techniques started in
the entertainment industry and now have a significant impact in many domains. Video
games and movies are the most obvious ones, but Computer Graphics (CG) are also used
extensively in advertising, design, architecture or even scientific visualization and health-
care. At the heart of CG lies the need to create and display content. While hardware
capabilities increased for display and mathematical approximations were developed to
accelerate computation, content creation remained a time-consuming process. Even with
massive improvements in 3D asset generation so�ware, the pace at which computation
improved could not be followed. Designing a 3D scene or object requires di�erent steps
depending on its final target usage. In the case of photo-realistic imagery, very precise
geometry and textures must be created by artists. Materials have to be designed and
applied to this geometry before lighting can be set up. In the case of non-static scenes,
animation adds another layer of work. All these steps let all the imagination and talent
of artists be expressed in a very flexible manner, o�en leading to beautiful images and
photorealistic renderings such as the ones visible in figure 1.1. For high budget movies,
this creation process is an acceptable time and financial constraint, but for consumer
applications such as digital double, telepresence, or virtual visits it is an impediment.
To be able to integrate CG with our everyday environment, for instance in mixed or
augmented reality, the replication process of existing assets must be automated and the
acquisition setup simplified. This thesis studies ways of conciliating CG quality and
flexibility with real environment capture and rendering. We present techniques that
allow users to navigate through casually captured scenes while giving them back some
of the flexibility and editability inherent to classical computer graphics techniques.
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Figure 1.1: Top: CGI of a black hole taken from the movie interstellara. The e�ects of
gravity on light propagation were simulated to render this image. Bo�om: Image of
a rendering of a digital double of Sean Young created from the original Blade Runner
movie and used in the Blade runner 2049 sequelb.

ahttp://dans-la-lune.fr/2015/11/08/la-science-dinterstellar-2-le-trou-noir-gargantua/
bhttps://www.youtube.com/watch?v=724JhpqKEmY

1.1 Rendering and Captured scenes

Rendering scenes is traditionally done using one of two di�erent techniques depending on
the context. The first method is light transport simulation through the use of path tracing.
In that setup, rays are cast from a virtual camera toward the scene and then bounces
of these rays are used to integrate the incoming irradiance recursively. This allows the
computation of an unbiased estimation of light transport in a given environment which

http://dans-la-lune.fr/2015/11/08/la-science-dinterstellar-2-le-trou-noir-gargantua/
https://www.youtube.com/watch?v=724JhpqKEmY
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means it allows to realistically simulate complex lighting e�ects. This process has two
main drawbacks though, the first one is that it is a very computationally expensive
process. The recursivity of the process and the number of samples required to get
noise-free images, make this approach unsuited for rendering on consumer hardware
in realtime. The second drawback is that the realism of the rendering heavily relies on
the underlying scene description that is used. Even with perfect light simulation, the
complexity of our world and the level of detail required to produce plausible images is
reflected in the assets used for the simulation. The importance of asset quality is visible
in figure 1.2.

The second method used for real-time rendering in most game engines is called rasteriza-
tion. Geometry is projected to the screen and then shaded directly with approximations.
This process relies on simplifying assumptions and precomputation to render realistic-
looking images in realtime. This method –while practical– cannot reproduce some
lighting e�ects easily such as glossy reflections on complex surfaces or caustics. It shares
the second drawback of path tracing, relying heavily on asset quality. It is also adapted
to specific lighting configuration and e�ects on a per scene basis.

Figure 1.2: Two scenes rendered using Mitsuba’s path tracer [87]. Le�: the Cornell Boxa,
a very simple scene with only di�use materials. Right: The GT rendering of the glossy
kitchen scene from Diolatzis et al. [38]. While the same light transport engine was used
for both scenes, the second one looks a lot more realistic due to its complex geometry
and materials.

ahttp://www.graphics.cornell.edu/online/box/

As we can see, with the traditional pipeline, asset creation has a huge impact on the
outcome. In the context of real asset renderings such as people, objects, or full scenes,

http://www.graphics.cornell.edu/online/box/
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one would need to model, with a very high level of fidelity, geometry, materials, and
lighting to be able to use the aforementioned methods and get realistic results. This
would make the process impossible to generalize and scale up to the potential billions of
users and assets.

There exist di�erent ways of rendering captured assets. One approach that has gained
popularity is to take multiple photos of a scene, leverage structure from motion (SfM),
and multi-view stereo (MVS) to obtain a 3D proxy and texture it automatically. While
this can give decent results as we can see in figure 1.3, it has several limitations: first,
the quality of geometry may vary depending on the density of capture and lead to strong
visual artifacts (see fig 1.3 middle), second, the view-dependent e�ects such as glossy
surfaces, mirrors, and specular highlight are either removed or baked into the texture
(see fig 1.3 right). Finally, the lighting, geometry, and materials are constrained by the
capture conditions.

Figure 1.3: Le�: Rendering of an interior scene using a textured mesh. The overall
quality is acceptable. Middle: illustrations of two of the visible artifacts with the textured
approach. The geometry around the chair leg is very noisy leading to visual artifacts,
the highlight caused by the lamp is not visible and residual highlights are baked in the
texture. Right: inset of a input view with a visible highlight for comparison.

To overcome the first and second issues, i.e., artifacts due to geometry and missing
view-dependent e�ects, image-based rendering methods have been proposed. Instead of
baking a single texture from the images, images are reprojected on the geometry and
blended with weights depending on the viewer’s position and its orientation with respect
to the surface [19]. Many methods have improved this basic approach but artifacts due
to geometry error remain an issue.
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Figure 1.4: Illustration of the traditional IBR pipeline. Selected input views (in blue) are
reprojected in a novel view (in red) using a proxy geometry and then blended to form
the rendering.

1.2 Need of flexibility

As mentioned, in Image-Based Rendering (IBR), captured scenes are usually rendered
using reprojection of photographs. The usual pipeline involves taking photos of a scene,
building a 3D representation, for instance using 3D meshes, and a method to select
views, reproject, and blend them. It allows rendering content without light transport
simulation nor the need for manual asset creation.

While IBR is a good direction to overcome geometry issues and some view-dependent
e�ects artifacts, it does not address the last limitation mentioned previously: the scene
content is completely fixed. When capturing a scene or an object, one does not necessarily
control all the capture conditions such as the surroundings, the presence of people in
large-scale scenes or the lighting. Depending on the weather and time of day, outdoor
scenes may only be captured under di�erent lighting conditions than the one desired.
Moreover, it can be useful to be able to display the same content with varying lighting for
instance in the case of a virtual visit of an apartment. With IBR only, this would require
capturing the place under all the desired lighting conditions which defeats the purpose
of avoiding the time-consuming manual creation process. Methods have been developed
to edit the lighting of pictures. This process is referred to as relighting. While some
methods give good results on single images there are very few that work on high-quality
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multi-view datasets that are required for real asset rendering and never with a high level
of control from the end-user. Another issue that can occur is the presence of undesired
content when capturing the scenes. There can be moving people or cars in public places
that are either undesired or can even impair rendering quality with ghosting artifacts
or broken geometry (see figure 1.5). Being able to remove content can also be useful,
e.g., in the context of refurnishing with synthetic assets, where existing furniture must
be removed before superimposing synthetic ones. Removing part of images, is referred
to as inpainting. It has been widely studied in the context of single images but these
methods do not apply to multi-view content as treating each frame independently leads
to multi-view incoherencies. Recent methods investigated inpainting in the same context
as ours [183] but only so�ly enforce coherency without respecting strong 3D cues such
as perspective.

Figure 1.5: Unstructured Lumigraph rendering[19] of a scene captured with moving
people and specular objects. When sampling the input images, moving people are
blended with the background leading to ghosting artifacts. The specular parts of the car
are badly reconstructed leading to severe visual artifacts.

1.3 Contributions

The need for be�er, more flexible Image-Based techniques motivated the research pre-
sented in this thesis. We explore new ways of editing and rendering multi-view data
that are a step toward bringing together the flexibility of traditional computer graphics
and the ease of capturing assets with images. We work on unstructured sets of pictures
of real-world environments, from which we obtain a proxy geometry of the scenes using
MVS. We apply optimization and deep learning algorithms to obtain novel, high-quality
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edited renderings. We believe that improving the flexibility of image-based methods has
the potential to increase their adoption and the number of use-cases.

Through the five projects presented in this thesis, we went from treating isolated issues,
toward a more general neural rendering approach that integrates and generalizes some
of our findings. The contributions of this thesis are presented as follow:

• Chapter 3: a new multi-view inpainting method that can handle up to several
hundreds of images of large scale scenes. To this end, we introduce a shared
rectified piecewise planar space in which the inpainting is done using a resolution
aware patch-match approach. This space enforces multiview coherency while
respecting perspective e�ects. The new patch-match approach saves computation
by only performing high-resolution inpainting when it is required.

• Chapter 4: a novel deep learning-based multi-view relighting solution for outdoor
scenes with a high level of user control. We train a deep neural network to directly
produce a relit image from an input photo and image-space bu�ers generated
by computer graphics. Because of their non-local nature and their importance
for outdoor scenes, shadows are carefully treated by introducing RGB shadow
images in the network. RGB shadow images, that are refined by the first stage of
the network, allow to correctly remove and synthesize shadows while overcoming
MVS geometry inaccuracies. We train our network on synthetic data allowing full
supervision of both relighting and shadow refinement. To avoid a domain gap we
use a dual representation of the training scenes, with ground truth geometry for
supervision and MVS like geometry to generate the inputs to the network. We also
present a novel application of this network to captured scene composition. This
application was mostly implemented by Baptiste Nicolet, based on the original
code of the project, while he was interning in our group.

• Chapter 5: a novel depth map meshing strategy that has a significant positive
impact on the quality of the deep blending image-based rendering method. We
introduce an occlusion edge detection method and a simplification scheme that
is adapted to Image-Based rendering, adapting the rate of simplification in im-
age space. While we discuss the full deep blending pipeline, developed by Peter
Hedman, the contribution to this thesis is limited to the meshing algorithm.
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• Chapter 6: a relightable neural renderer for indoor scenes. Motivated by our
results for outdoor, we worked on the more challenging indoor setup. In this
method, we mix physically based rendering, IBR, and material analysis to treat
global illumination and specularities realistically. Our neural network takes as
input several observations of surface behavior, thanks to image reprojection akin
to IBR. Target lighting conditions are described as an approximate irradiance map
computed using PBR, while the source ones are computed as an image-based
final gathering. Reflexions are correctly synthesized with the help of a mirror
image bu�er. View-dependent e�ects are produced and supervised separately
from di�use ones, allowing temporal stability and be�er final quality. We again
use synthetic training data and the same dual representation as in Chapter 4.

1.4 Funding and Publications

The work in this thesis was funded by a European Union’s Horizon 2020 research and
innovation program under grant agreement No 727188 1 and the ERC Advanced Grant No.
788065 FUNGRAPH 2. The Neural Relightable Rendering project was partially conducted
when the author was interning at Adobe Research.

The work in this thesis has led to four publications in international venues, out of which
two are first author publications, and a first author project still under review:

• Plane-based multi-view inpainting for image-based rendering in large scenes.
Philip and Dre�akis [146]
Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games

• Deep Blending for Free-viewpoint Image-based Rendering.
Hedman, Philip, Price, Frahm, Dre�akis, and Brostow [72]
ACM Transactions on Graphics (TOG)

• Multi-view Relighting Using a Geometry-aware Network.
Philip, Gharbi, Zhou, Efros, and Dre�akis [148]
ACM Transactions on Graphics (TOG)

1https://emotiveproject.eu/
2https://project.inria.fr/fungraph/

https://emotiveproject.eu/
https://project.inria.fr/fungraph/
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• Repurposing a Relighting Network for Realistic Compositions of Captured Scenes.
Nicolet, Philip, and Dre�akis [138]
Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games

• Relightable Neural Rendering of Multi-view Indoor Scenes
Philip, Gharbi, Morgenthaler, and Dre�akis
In preparation





C h a p t e r 2

Previous Work

The focus of this thesis is on improving and augmenting Image-Based techniques both
in terms of quality and editability. This requires to deeply merge existing IBR concepts
with ones from image editing and image analysis. We will first describe the basics of
computer graphics and synthetic scene representations. Then we will show how these
representations have been used to simulate light transport leading to classical physically
based-rendering. While on one side computer graphics focused on rendering these envi-
ronments created by artists, there has been growing interest in extracting representations
of the real world leading to what is commonly referred to as inverse rendering. Since
IBR techniques are at the crossroads of both rendering and inverse-rendering we will
review both before discussing classical IBR methods that allow rendering real scenes
as-is. Finally, we review methods related to re-rendering with content alteration and
image editing.

2.1 Computer Graphics through explicit modeling

2.1.1 Basic representation in computer graphics concepts

A core element of classical computer graphics (CG) is the representation of the synthetic
scenes one wants to render. This representation is a necessary brick, on which algorithms
are built to obtain images. While this is not the only option, most scenes are described
with three core elements. The first one is lighting, o�en described as an emissive
point, a surface or volume, describing how much light is emi�ed from where and in
which form. Without light, our images would be black. The second one is geometry,
representing the ma�er with which light interacts, i.e., where the interactions take place.
Most o�en it is represented as a mesh of triangles and can be augmented by bump
maps, displacement maps and normals. There exist many di�erent representations and
variations but throughout this thesis this is the principal representation we considered.
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The third element is materials, describing how the light interacts with ma�er. They are
usually represented with a bidirectional reflectance distribution function (BRDF) [137].

2.1.2 Light transport equation and CG

The light emi�ed by a point x at the wavelength ⁄ and at time t towards a direction Êo,
if we neglect light propagation time, was described by Kajiya [92] as follows:

Lo(x, Êo, ⁄, t) = Le(x, Êo, ⁄, t) +

⁄

�
fr(x, Êi, Êo, ⁄, t)Li(x, Êi, ⁄, t)(Êi · n)dÊi (2.1)

It is interesting to link this equation to the di�erent elements we mentioned before.
Simplifying this equation for a static scene and a given wavelength :

Lo(x, Êo) = Le(x, Êo) +

⁄

�
fr(x, Êi, Êo)Li(x, Êi)(Êi · n)dÊi,

we can identify all the previously mentioned elements in this equation. Le is the emis-
sivity of a point in the given direction; it is null except on light sources for the given
wavelength. x and n respectively represent the position and normals of the point consid-
ered hence requiring knowledge of the geometry. Finally fr is the aforementioned BRDF
that represents the material at point x and its interaction with light. This equation is
recursive by nature, is untractable in the general case and is traditionally estimated with
Monte Carlo methods [105]. This allows us to simulate light transport in a physically-
based manner and to generate photorealistic images. An example of such a rendering is
shown in figure 2.1.
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Figure 2.1: Physically based rendering of a synthetic scene rendered using the Mitsuba
[87] path-tracer.

2.2 Explicit property estimation in the world

While computer graphics is traditionally more oriented towards image generation from
created content, computer vision (CV) tries to tackle the inverse problem that is, extract-
ing information from existing images. While a large body of work tries to interpret or
classify images, in the context of this thesis our main focus is on the link between CG
and CV, seen as a back-and-forth process. More specifically, we will show how CG can be
used to help train CV algorithms and how CV can be used to extract pieces of information
that are then useful for CG tasks. Here we make a parallel with the previous section
and review methods that try to extract classical computer graphics representations from
images. We start by discussing existing lighting estimation methods, then we quickly
review the vast body of work focusing on geometry estimation from images, and finally
we present material estimation techniques.

2.2.1 Estimating lighting

Estimating the lighting environment in an image is an important step for many tasks
related to content alteration such as relighting. There exist many proposed solutions,
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Debevec [33] presents image-based lighting where he shows that an environment can
be captured from photos. The captured environment can be represented as a light probe
and can be used as a light source in the same manner as an environment map (see figure
2.2). Stumpfel et al. [173] later described how to capture HDR environments.

Figure 2.2: Le�: Result of a traditional physically based rendering of a synthetic scene lit
by a measured lighting environment. Right: Illustration of how the environment is used
in the rendering. Illustrations taken from [33].

Researchers later focused on estimating lighting from a single photo [107] which is a
very challenging task as the direct illumination is only partially available. More recently
deep learning has been leveraged to incorporate learned priors in the lighting estimation
process [54, 75, 77, 114]. LeGendre et al. [114] create a training set using physical probes
a�ached to a mobile phone. They thus capture pairs of pictures and ground-truth probe
images. They then train a network to predict the probe images from the corresponding
photo. Hold-Geo�roy et al. [77] first train a sky panorama encoder-decoder, then train an
image encoder to produce the same latent representation as the one of the corresponding
sky, from a crop of the panorama. They obtain their full pipeline by encoding an image
with the second network and decoding with the sky decoder. Some methods on the other
hand estimate the lighting from the appearance of a specific object. Weber et al. [190]
used an approach similar in spirit to Hold-Geo�roy et al. [77] but trained on images
of objects instead of crops of panoramas. These methods are o�en used to composite
virtual objects in a real image, which we discuss in more detail in section 2.4.1.

In this thesis, our goal is to enable scene editing in the context of IBR. One core editing
that we discuss is relighting; for such applications, the estimation of initial lighting
conditions is o�en crucial. We do not use advanced lighting estimation techniques
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for our methods, thanks to multi-view data. It is however interesting to note that
lighting estimation works fairly well with a small number of input images, which is more
problematic for geometry estimation that we discuss later.

2.2.2 Estimating geometry

Estimating geometry from images is a long-lasting challenge in computer vision. A
wide variety of approaches to geometry estimation exist, varying from laser-scans with
time-of-flight sensors [111], Multi-View Stereo rigs, unstructured Multi-View Stereo
(MVS) [159], stereo depth estimation, to single view depth estimation [58]. In this thesis
we focus on unstructured photos that are easy to capture and suited for Image-Based
editing as well as on human-made environments that exhibit structured geometry such
as planar surfaces. Multi-view stereo algorithms (e.g., [50, 59, 89]) perform automatic
3D geometry reconstruction from unstructured photo datasets with diverse viewpoints.
They first calibrate cameras using structure from motion (SfM), then estimate a dense
point cloud and finally compute a 3D mesh from that point cloud. Examples of input
images and a reconstruction can be seen in figure 2.3.

Figure 2.3: Le�: Four example views used for SfM+MVS. Right: Reconstruction obtained
from 253 images of the scene using Reality Capture [152].

Approaches based on Delaunay tetrahedralization (e.g., , [89, 103, 152]) are able to gener-
ate impressive 3D models from photos, even in the presence of traditionally hard cases
such as large textureless regions. Similarly, Ummenhofer and Brox [185] show that it is
possible to generate dense meshes from noisy multi-view stereo point clouds using a reg-
ularized signed distance field. While these methods lead to globally satisfactory results, it
is o�en at the cost of coherency between depth and detailed features in individual images.
This is the reason why other methods improve the quality of individual depth maps by
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discretizing the scene depths and enforcing smoothness in image-space [74, 158]. These
methods are able to produce edge-aligned geometry, which is smooth for textureless
regions, albeit with visible staircasing artifacts due to discretization. Recently, Patch-
Match based algorithms such as COLMAP [161] have been demonstrated to create the
most accurate geometry in benchmark tests [100, 162]. In human-made environments,
plane estimation is a central component of many 3D reconstruction algorithms, includ-
ing for image-based rendering [169]. Several methods [16, 53] use Markov Random
Field (MRF) solutions to estimate planes in a multi-view scene, o�en using higher-level
structures. Sinha et al. [168] introduce plane intersections to represent corners. In areas
where traditional MVS algorithms fail such as textureless regions, which are frequent in
urban environments, some methods can leverage planar priors to obtain qualitative 3D
reconstruction [112].

Geometry estimation is the cornerstone of many IBR methods that we discuss in section
2.3. It is also crucial for light transport simulation, as such it is a core component of the
Image-Based Rendering and Editing methods we discuss in this thesis.

2.2.3 Intrinsic images and material estimation

Estimating materials from images has many applications. It can be used to previsualize
the appearance of manufactured objects using physical samples of the actual material
used or for example it can be a way to create realistic content quickly for video games and
movies. When estimating a material explicitly one has first to choose a representation
for it. There exist a wide variety of representations that can reproduce di�erent sets of
materials more or less faithfully (eg.[15, 29, 187]). One of the simplest cases is to assume
purely di�use materials, meaning that the light emi�ed in any direction is the same:
fr(x, Êi, Êo) = fr(x, Êi). One can then assume that images are the product of di�use
reflectance and shading, which is o�en referred as intrinsic image decomposition. The
classic Retinex work [110] inspired the intrinsic decomposition method of Weiss [191],
which used time-lapse sequences to compute shadow-free reflectance images. Single
image decomposition methods [178] initially needed user assistance [18] and now can
achieve impressive results automatically. Bonneel et al. [17] recently reviewed the state
of the art and discussed the direct applications to image editing. An example taken from
Bousseau et al. [18] can be seen in figure 2.4.
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Figure 2.4: Le�: Exemple of user-assisted intrinsic image decomposition taken from [18].
Right: Single-shot SVBRF training strategy, with rendering loss. Image from [37].

However, the scenes we encounter in the real world contain glossy materials that violate
the "di�use-only" intrinsic image decomposition assumption. For realistic re-rendering
one needs more powerful models. Many solutions exist to estimate spatially-varying
bi-directional distribution functions (SVBRDFs). Early optimization-based methods were
quite successful for individual objects [116] but required specific capture conditions.
Elaborate hardware setups like the Light Stage [36] use multiple lights and/or cameras
to record highly detailed accurate representations of complex materials like human skin.
Lighter-weight methods, e.g., based on flash/no flash photos [2] can extract complex
SVBRDFs under certain assumptions such as repetitive texture. Recently Neural material
estimation [37, 119] enabled one-shot SVBRDF estimation from a patch of materials;
they are typically trained on synthetic data displaying a first application of "Graphics
for Vision for Graphics". Recent methods can even handle full objects [120, 129]. Using
mirror renderings, Meka et al. [129] can recover sharp reflections by explicitly supervising
a network to produce mirror images. Sengupta et al. [164] propose a residual appearance
renderer to estimate albedo and normals from a single image, but do not explicitly output
glossy BRDF parameters. Li et al. [121] also estimate materials and light from a single
image. They use spatially-varying spherical Gaussians as their lighting model.

Finally, Barron and Malik [9, 10] jointly estimate lighting, geometry and materials and
shows that all three estimations are closely related and that one task can help the others.
Whether it is to di�erentiate between shading and albedo in the context of shadow
removal and relighting, or accurately re-render specularities for view-point interpolation,
we will show in this thesis, that understanding materials behaviors is crucial for many
multi-view image rendering and editing tasks.
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2.3 Rendering the real World from images

Figure 2.5: Stitched panorama from four input views.

We discussed how previous methods try to extract diverse elements of scenes to achieve
several goals such has be�er understanding, scene-editing or re-rendering. What is
interesting to note is that in the context of static re-rendering, i.e., rendering a scene
from a di�erent viewpoint without modifying its properties, under certain circumstances,
some of the three key elements (lighting, geometry, materials) need not be estimated.
For example, if the novel-view optical center is the same as that of a captured photo,
the image transformation for the overlapping region is a homography. This principle is
leveraged for panorama stitching [177]. An example of panorama stitching is presented
in figure 2.5. There exist many other ways to use images to re-render a scene from a
di�erent view-point; also referred as "virtual camera". We first describe the plenoptic
function and introduce light fields, then discuss the first IBR methods before describing
in more detail recent IBR algorithms that work from an unstructured set of images,
which is the body of work most closely related to this thesis.

2.3.1 Plenoptic Function, Light Fields, First Blending Methods

The plenoptic function [73] can be thought as the dual of the le�-hand part of the
rendering equation (2.1) for a static scene: Le(x, Êo). As such it is a 5D function, where
three dimensions are the 3D position of xÕ and two dimensions are used to describe ÊÕ

o

which is a direction i.e., a unit vector that can be described by two angles, traditionally,
◊Õ and „Õ. An illustration of the duality between the plenoptic function and Le(x, Êo) is
given in figure 2.6.

In practical terms, the plenoptic function describes the incoming radiance to a point
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Figure 2.6: Le�: illustration of the duality between the plenoptic function and Le(x, Êo).
Right: Illustrations of the same duality for light fields. Taken from Levoy and Hanrahan
[117].

from a certain direction. With that in mind, capturing a photo is actually sampling this
function for each of the visible directions visible from the optical center of the camera.
One can notice that in the case where the optical center remains static, some of these
directions stay unchanged, leading to the trivial homography transform mentioned
earlier. On the other hand, if the points are at a seemingly infinite distance from the
camera, the dimensionality is reduced to two, as the point position does not ma�er
anymore, which leads to the two-dimensional environments maps commonly used in
computer graphics and previously mentioned with IBL. As we can see, in the general
case, capturing only one direction has some useful applications but can not directly
be used for view synthesis with a novel camera position. To perfectly reconstruct the
plenoptic function one should sample it respecting Shannon’s Theorem [165], meaning
that the rate of sampling must be at least twice the highest frequency present in the
Fourier transform of the plenoptic function. With discontinuities in the signal, this
becomes untractable, but with dense capture very good approximations can be made.
Early approaches [60, 117] required complex capture setups, making them impractical for
widespread use. For instance, Light Fields use an array of cameras, that locally sample
the plenoptic function at a high rate, that can then be interpolated. Light Fields reduce
the plenoptic function to four dimensions as the geometry is described as a surface. They
can be represented from the viewer’s point of view, as the plenoptic function, or from
the object point of view, as the rendering equation. This is illustrated in figure 2.6.
The Unstructured Lumigraph [19] uses a globally consistent geometric proxy and blends
reprojected input images, i.e., mixes samples for varying Êo in the novel view. Assump-
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tions about source image positioning have also been considered. For example, floating
textures [42] use optical flow in short-baseline video sequences to correct for inaccurate
geometry and thus correct the estimation of the sampling. Davis et al. [32] performed
bilinear blending of viewpoints located approximately on the surface of a sphere around
a captured subject; this assumes the source viewpoints vary smoothly along a 2D man-
ifold. This restricts the sets of viable interpolated camera positions. Most following
methods focus on removing the impact of errors in measurements, and lack of sampling.
Among other special capture configurations, Arikan et al. [4, 5] present a fast rendering
and seam-hiding method for the case of high-quality di�use scenes imaged using laser
scanners. This is also an assumption that reduces the dimensionality of the function, as
di�use materials lead to no variation with respect to the observed direction Êo.

2.3.2 Superpixels, Per-view geometry, Volumetric approaches

Recently, commercial systems [3]1 2 deliver high-quality results by capturing data with
multi-camera rigs and constraining the virtual viewpoint. As the work in this thesis aims
at developing methods to help the spread, usability and number of use cases of Image-
Based techniques, we focus on methods that can use an unstructured set of photos to
facilitate ease-of-capture. As accurately rendering view-dependent e�ects o�en requires
dense sampling, methods that focus on free view-point navigation and unstructured
inputs o�en assume more or less di�use environments which means that the main
challenge for them is to have accurate geometry. Global proxy IBR methods (e.g., [19, 42,
73]) are inherently limited in realism by the accuracy of the 3D reconstruction. To address
this issue, per-view representations have recently been used to maintain accurate image
edges during rendering and overcome geometry estimation related issues. These include
superpixels [24, 139] or per-view meshes [70]. Illustrations of two of these methods can
be found in figure 2.7.

In these solutions, di�erent blending strategies have been used, most of which are
based on heuristics [24, 70, 101]. Volumetric representations have also been proposed,
So�3D [143], is based on a regular discretization of space using the input images and
a sophisticated blending approach using a so� estimation of visibility. Most of the

1https://facebook360.fb.com/facebook-surround-360/
2https://www.blog.google/products/google-vr/experimenting-light-fields/

https://facebook360.fb.com/facebook-surround-360/
https://www.blog.google/products/google-vr/experimenting-light-fields/
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Figure 2.7: Le�: Illustration from Chaurasia et al. [24].They use planar superpixel to
warp for input viesw and blend them. Right: Hedman et al. [70] refine geometry in a
per-view manner using RGB-D images as input. Illustration taken from [70].

time these methods have limited free-viewpoint capabilities, e.g., due to discretization
[143], an implicit fronto-parallel superpixel assumption [24, 139], or due to a variety of
rendering artifacts that occur for many existing methods, including InsideOut [70].

2.3.3 Learning to render

The early work on image-based priors for IBR [46, 197–199] used a form of learning to
synthesize novel views, based on a dictionary of patches from the input images. More
recently, Convolutional Neural Networks (CNNs) and deep learning have been applied
to the novel view synthesis problem. DeepStereo [47] learns to predict depth and colors
using separate "towers" in the network, building on traditional plane-sweep algorithms.
Zhou et al. [209], use an encoder-decoder approach to predict the flow field transforming
an input image to the novel view. Like many deep learning methods, wide-baseline CNN
solutions [47, 209] su�er from visual artifacts that do not provide a su�icient level of
realism. There has also been interesting work in learning for view synthesis in the context
of Light Fields and small-baseline approaches [94, 172]. More recently, multi-plane
images have been used with impressive results [48, 131, 210]. However, the constraints
of the narrow-baseline inputs result in very di�erent design choices and it is di�icult
to see how to directly apply these to our scenario of wide-baseline capture and to the
free-viewpoint navigation applications we target in this thesis.
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Another neural representation, deep neural textures [182] allows view synthesis for
glossy objects, by optimizing deep features in texture space but at the cost of very dense
capture. Mildenhall et al. [132] have a di�erent approach to a similar problem. They use
a multi-layer perceptron to encode a light field, with Fourier features, from a set of input
images as an optimization procedure.

Figure 2.8: Top: Thies et al. [182] use neural textures optimized to reproduce input images
allowing to re-render the scene from novel view-points. Bo�om: NeRF [132] optimize a
neural network to output a density and color for each point and each direction.

Both methods, illustrated in figure 2.8, are closer to what we aim at as they can faithfully
render full objects and small scenes. They are still limited, regarding our goals, by the
density of capture required, the scale of the rendered scenes and the limited types of
motion for which they were designed.

2.4 Re-rendering

We discussed previous methods that try to extract representations from images and the
state of the art in Image-Based Rendering. Both of these domains have to be taken into
account to achieve the goal of this thesis which is to provide more flexible and editable
Image-Based methods. But together they miss a key component which is content editing.
While they teach us about the scene properties and how to render them, they do not
necessarily give answers on how to modify the properties. In this section we discuss
previous work on what we call re-rendering; we define this process as generating a new
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image from existing ones with one or several intrinsic property modifications, such as lighting,
geometry, or materials.
A direct solution to re-rendering would arise naturally if we obtained perfect estimations
of lighting, geometry, and materials while having a dense enough sampling of the
plenoptic function. We could then use the rendering equation and modify the content at
wish using traditional asset creation so�ware. While the previously discussed methods
o�en give good enough results for many applications, they are not perfect and the errors
over the di�erent elements add up. For instance, the quality of MVS geometry is not
good enough to use directly in a path tracer, the defects in geometry are visible and the
precision is not good enough. Instead, one needs to factor in the fact that the results of
estimations are noisy when designing editing methods. We thus review how researchers
tackled image editing problems orienting the discussion towards the goals of this thesis.
First, we show how previous work treated content editing, discussing object removal
and inpainting as well as object insertion in captured scenes. Then we discuss methods
that aim at editing the lighting of scenes, also known as relighting methods. Finally,
we see how recent deep-learning algorithms have been used to tackle similar problems,
providing a powerful tool for scene manipulation.

2.4.1 Object Insertion, Object Removal and Inpainting

We previously discussed lighting estimation techniques [55, 76, 107, 134]; most of them
work on single images and have as a final goal to composite virtual objects in a real
image, which is the first instance of content manipulation, and is a major ingredient
of many augmented reality applications. Most methods target realistic object editing
or compositing in single images but they do not address major lighting changes, such
as editing cast shadows and in complex setups, they either require significant e�ort
from the user to annotate the scene images [96, 98] or use information recovered from
inserting specific objects into the scene [35]. Illustrations of object insertion from Karsch
et al. [96] can be seen in figure 2.9.

In this thesis, we focus on captured content manipulation and do not address virtual
object insertion. Some methods to manipulate real-world scenes have been proposed,
but operate in a restricted context [206] or rely on drastic simplifications of the scene’s
geometry [82]. Other solutions are limited by the computational power of the devices
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Figure 2.9: Le�: Example of user-assisted single image object insertion. Inputs are in the
le� column, outputs on the right [96]. Right: Results of inpainting taken from Iizuka et al.
[83]. Le� column: input with removed regions in white. Right column: corresponding
outputs.

they use [205] to generate photorealistic images. To the best of our knowledge, no
methods exist that allow compositing captured content in captured scenes.

Manipulating captured scenes is a notoriously di�icult problem. Another focus in this
area has been on removing objects, followed by inpainting the regions revealed by
removal. This process is sometimes referred to as decreased-reality in the context of
video feeds or multi-view content. Inpainting is a vast research domain; a good survey
can be found in Guillemot and Le Meur [62]. The seminal work of Bertalmio et al.
[12] and Criminisi et al. [30] have greatly influenced subsequent work in the fields
of computer graphics and vision. Sun et al. [174] use user inputs to be�er propagate
structures during inpainting. More recently, the PatchMatch algorithm [7] introduced
e�icient solutions for texture synthesis and inpainting. Several improvements have
been proposed to the basic algorithm, including Image Melding [31], that identifies and
exploits transformations during matching, leading to improved quality. He and Sun [64]
further exploit statistics of patch o�sets to be�er guide inpainting. Recently deep neural
networks (DNNs) and machine learning have been used for inpainting [83, 203] leading
to impressive results visible in figure 2.9. These methods combine global and local context
information to achieve good quality results, but have limitations on image resolution and
sizes of regions to complete. They are also generally agnostic to the 3D content of the
underlying scene, inducing errors in inpainting such as incorrect perspective or errors in
planar structures. Previous methods [81, 157] use image analysis to find vanishing lines
and induce approximate planar structure or perspective. Video completion is also an
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active field of research, that is closer to the multi-view context of this thesis. The work
of Wexler et al. [195] introduced the methodological basis for many of the subsequent
Expectation-Minimization methods. The recent video-based solution of Newson et al.
[136] proposes texture features which improve inpainting quality in many cases. Video-
based methods have dense, small baseline sequences of frames with rich redundant
information, in contrast to the sparse, wide-baseline capture we target in this thesis.
Depth information andmulti-view data have been used to improve inpainting. The DCSH
approach [44] operates on RGBD images, while Howard et al. [80] operate on stereo
pairs, as opposed to wide-baseline data. DCSH is based on a local planar approximation
of the surface at each pixel that is sensitive to the noise in depth images and is not
applicable to missing geometry. Whyte et al. [196] used several photographs of a scene,
typically taken from the internet and simple registration between images to improve
inpainting. Baek et al. [6] jointly estimate depth and color on an image sequence, but
do this progressively from one image to the next. The resulting depthmaps are thus not
adapted to a free-viewpoint IBR context. Thonat et al. [183] introduce the first method
for multi-view inpainting with output suitable for free-viewpoint IBR. Their approach
imposes so� multi-view coherence while inpainting separately in each input image.
Finally, inpainting in a multi-view context has some similarities to texture mapping of
scenes captured withmulti-view stereo (e.g., [11, 21, 52, 186, 208]). A recent approach [13]
proposes a patch-based optimization for texture mapping from multiple images. Some
of these methods show limited inpainting of small regions on object surfaces, but do
not inpaint geometry, which is crucial when removing significant parts of scenes. In
this thesis we address two types of editing regarding geometry manipulation, we first
introduce a method to remove objects in large scenes allowing to clean IBR environments.
We then show how a relighting method can be used to composite realistically di�erent
parts of captured scenes.

2.4.2 Relighting, Lighting transfer and shadow removal

Removing or adding objects in scenes mostly involves minor changes to their global
appearance, allowing to modify the content in a way that would be impractical in the
real world, such as removing cars from a street. Another application that we target in this
thesis is to be able to edit the lighting conditions of captured scenes. This is a parameter
that is o�en complex to control when capturing and that is baked in the images. Being
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able to capture a scene under only one lighting condition and to render it under many
others would give a lot more flexibility to image-based methods.

Image-based relightingmethods try to change the lighting conditions of an input image or
a set of images. Early work relied on acquiring the intrinsic parameters of the scene either
by computing a reflectance model [204] and estimated geometry segmentation [125],
or used multiple photographs of the same viewpoint with varying lighting conditions
[41, 124]. Marschner and Greenberg [128], used laser scans to estimate geometry. Other
methods aim at decomposing images in their intrinsic appearance parameters [178]
before computing a new rendering of the viewpoint, with changed illumination. Wu
and Saito [200] provide good results on single images, but at the cost of manual scene
annotation and geometry estimation. More involved capture setups such as the Light
Stage [36, 193], shown in figure 2.10. The Light Stage allows for production-quality
relighting, with wide-ranging applications in the film industry by leveraging the linear
behavior of light transport and building a basis of lighting.

Figure 2.10: Le�: The light stage [36]. This hardware helps capture the face of humans
by rotation independently a camera and a light source. Right: Illustration of Nestmeyer
et al. [135]. Their method allows for realistic face lighting editing.

In this thesis, we target more casual capture with a single camera (DSLR, phone or drone),
providing approximate 3D geometry, which is most o�en unsuitable for inverse rendering
methods. Several methods on multi-view image relighting have been developed, both
for the case of multiple images sharing single lighting conditions [39], and for images
of the same location with multiple lighting conditions (typically from internet photo
collections) [104, 201]. The multi-view se�ing provides additional information such as
geometry estimation and multiple viewpoints of each surface as discussed previously. For
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the single lighting condition, Duchêne et al. [39], first perform shadow classification and
intrinsic decomposition using separate optimization steps. Despite impressive results,
artifacts remain especially around shadow boundaries and the relighting method fails
beyond limited shadow motion. Webcam sequences have also been used for relight-
ing [108, 176], although cast shadows o�en require manual layering. Hard shadows are
inherently problematic for relighting as they create strong discontinuities, their detection
and removal, which is closely linked to relighting has been studied extensively; see Sanin
et al. [156] for a survey. Most such methods operate on a single image, for example the
work of Finlayson et al. [45], which works well on shadows of relatively simple isolated
objects. Other approaches include Lalonde et al. [109] which uses Conditional Random
Fields to detect the shadow, or Mohan et al. [133] which is a gradient-based solution for
shadow removal.

Recently relighting methods have relied on convolutional neural network architectures to
estimate intrinsic images [163], or directly generate the relit images [130], thus avoiding
the ambiguous and under-constrained model of intrinsic images. Deep learning also
powers object relighting techniques that use multiple lighting conditions as input [201].
Although they provide many interesting intuitions, these methods focus on single im-
ages, which means they are not directly compatible with our goal of free-viewpoint 3D
navigation which inherently requires multi-view consistency. Another widely developed
area of image relighting focuses on images of faces (e.g., [142, 175, 189, 192]). Nestmeyer
et al. [135] present a physics-guided approach that incorporate traditional graphics
pipeline elements with deep learning leading to very accurate results, visible in figure
2.10. Nonetheless, the specific nature of face geometry and reflectance result in solutions
that are not well adapted to the type of scenes we target in this thesis. As we can see
relighting was extensively studied for many setups and types of input data, but since
the early work of Loscos et al. [124] very few methods tried to tackle the problem of full
scene relighting, that has to be solved to give control over lighting in IBR.

2.4.3 Learning to edit

We finally discuss learning methods for image editing as we leverage learned priors
for several methods presented in this thesis. Even before the massive adoption of deep
CNNs, learning methods were proposed to edit images, for instance, to remove shadows
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from images. The method of Guo et al. [63], detects pairs of points in shadow/light
using a learning approach, and subsequently removes shadows with an optimization.
Recently deep learning strongly impacted image manipulation providing a tool that
allowed a large increase in quality and the number of applications. Neural networks that
were introduced in the late sixties [86], are optimized using stochastic gradient descent
optimization techniques. Instead of computing the gradient over a full dataset, which
would be impractical, it is done repeatedly over a small subset. The backpropagation
algorithm [113, 194] allows to compute the gradient of all the parameters with respect
to a loss function, using the chain-rule from the last layers to the first. Even though the
theory was developed more than 20 years ago, neural networks only regained popularity
in 2012 when AlexNet [102] outperformed all other image classification solutions on
the ImageNet competition. More recently, the Pix2Pix method [85], illustrated in figure
2.11 used a U-net [155] to perform many di�erent image transformation tasks with
remarkable success, even though the quantity of training data is quite low compared to
other methods. Similarly, ResNet-like architectures [66] have been particularly successful
in large image transformation tasks [211], thanks to the residual blocks that preserve
useful information in the network.

Figure 2.11: Le�: Results of Isola et al. [85]. Right: Illustration of Meshry et al. [130].
Le� column: input bu�ers. Right column: output renderings. They use SfM and MVS to
build a dataset per-scene and then first train an encoder network to represent specific
appearance that is an input to a GAN renderer.

There has been a body of work on transforming images, including day-to-night [123]
changes, that is akin to relighting. While impressive, the results of these methods typi-
cally generated by GANs [150] are lacking in consistency and ease of control. With the
advances of deep learning techniques and their capabilities, more and more researchers
focused on merging it within graphics pipelines. Tewari et al. [180] review the state of
the art of this new domain referred to as Neural rendering. They define it as: “a new
class of deep image and video generation approaches that enable explicit or implicit control
of scene properties such as illumination, camera parameters, pose, geometry, appearance,
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and semantic structure. It combines generative machine learning techniques with physical
knowledge from computer graphics to obtain controllable and photo-realistic outputs.” This
definition and the goal of this thesis are very much aligned, while having a more specific
focus on IBR and multi-view data in the methods we present. We thus review neural
rendering methods.

Work on relighting using deep learning (e.g., [95, 167]) fits in this category. Xu et al.
[202] can relight single objects from multi-view captures but their acquisition setup
requires multiple illumination conditions. Neural re-rendering [130] also takes varying
lighting as input using internet images, allowing transitions between di�erent conditions.
Chen et al. [26] perform neural rendering based on neural textures for view synthesis
and relighting of a single object. Their image formation model consists of environment
lighting, intrinsic object a�ributes and the light transport function, all implemented as
trainable networks. Deep Neural Textures [181] allow the user to copy and translate
an object in a single multi-view dataset. Lightshop [78] allowed compositing of light
fields, while recent advances in neural rendering [49] allow compositing of light field
videos [40]. Despite impressive advances, neural rendering still struggles with large
baselines, single lighting setups available in IBR captures, both in terms of reproducing
glossy e�ects and for free-viewpoint navigation more generally.

2.5 Summary

In this chapter, we reviewed the di�erent domains that we build upon in this thesis.
Each of them represents decades of work and could not be described exhaustively. We
presented the basics of graphics and physically-based rendering, that are useful for re-
rendering. We linked them with their estimation counterparts, describing how lighting,
geometry, and materials can be extracted from images. Finally, we presented how these
estimations can be used for view-point interpolation, image-based rendering and editings
such as object removal, object composition and relighting.

Geometry. We saw that many IBR methods leverage geometric information estimated
using SfM and/or MVS, this is also the path we will follow in this thesis as this approach
provides consistent, graphics friendly estimates. In Chapter 3, we show that this repre-
sentation can be used to estimate planar structures that are used both for geometry and
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texture inpainting allowing to remove objects in IBR scenes. In Chapter 4 we describe
how the noise of the estimation can be overcome using graphics generated image bu�ers
in the context of outdoor relighting. These bu�ers are more deep-learning friendly than
the mesh itself and allow geometry errors to be interpreted locally. Next in Chapter 5
we show how globally consistent geometry can be mixed together with carefully refined
depth maps to improve IBR quality. Finally, in Chapter 6 we use this geometry along
with PBR to guide rendering and relighting of indoor scenes.

Lighting and materials. Lighting and materials estimations while of good quality,
do not address directly the problem of their editing. In this thesis, we do not address
material editing which was partially studied by the intrinsic image community. We
focus our research on lighting editing which cannot be disentangled from material
estimation especially for complex indoor scenes that we consider in Chapter 6. Instead
of having an explicit material estimation, for instance of albedo, or glossiness, that could
impair relighting quality we opt for an implicit learned representation, targeting finally
rendering quality rather then interpretability of the models. In Chapter 4 we explicitly
refine CG generated shadow masks for accurate shadow removal and synthesis but
without explicit materials estimates. Finally, in Chapter 6, we train a deep neural network
to analyze material behaviors to be�er render specularities for existing and added light
sources in our relightable neural image-based render.

This last chapter contains most of the elements discussed in this chapter namely, PBR
for lighting simulation through the use of MVS geometry, material analysis for improved
specularities, input lighting estimation to guide a neural network for relighting tasks and
IBR blending and reprojection for the free-viewpoint aspect. As such, while being only a
first step toward more flexible IBR, it builds heavily on of the research work presented
in this thesis.



C h a p t e r 3

Plane-Based Multi-View Inpainting
for Image-Based Rendering in Large Scenes

3.1 Introduction

We saw in Chapter 2 that recent Image-Based Rendering solutions [22, 70, 144] provide
high-quality free-viewpoint navigation, using only a multi-view dataset of photos of a
3D scene as input. However, the scene displayed is limited to the content in the input
photographs. As mentioned in Chapter 1 this is a major drawback of IBR approaches:
capture is easy and they make rendering assets simple but at the cost of the flexibility
inherent to traditional approaches. One of the directions we explore in this thesis is
content editing as in removing or compositing captured objects.

(a) Input Image (b) Inpainted Image

(c) Novel view with 
input images

(d) Novel view with 
inpainted images

Figure 3.1: Our multi-view inpainting method can remove objects such as cars (b)
from all input images (a) of a multi-view dataset for Image-Based Rendering (IBR). This
allows more flexible usage of IBR: by removing the cars, we avoid problems due to
bad reconstruction which are more visible in novel views (c-d). Our method preserves
perspective cues and provides clean separation between di�erent planes (e.g., wall and
sidewalk).
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For 3D graphics applications, it is o�en necessary or convenient to remove objects
from the scene, e.g., parked cars or furniture in a room; this enables applications such
as refurnishing and city exploration but it can also help remove artifacts due to the
captured content, like moving people or badly reconstructed objects. This removal can be
achieved by multi-view inpainting, i.e., by removing the undesired objects in each input
image and filling corresponding pixels and depth using inpainting or completion [81, 183].
Single-image inpainting methods [12, 30] are not designed to treat multi-view datasets.
The lack of good 3D information inherently limits these single-image methods, which
cannot enforce multi-view coherence, nor fully respect perspective during inpainting.
When they handle e�ects such as perspective [81], the results are o�en impressive, but
the lack of good quality 3D information limits their applicability at the scale required for
IBR in complex scenes. Recent work provides initial solutions to this problem [6, 183],
but su�ers from four limitations: 1) multi-view coherence is applied progressively across
neighboring images and is o�en inaccurate or incomplete, 2) perspective e�ects are not
correctly reproduced during inpainting, resulting in visual artifacts and blurring, 3) the
quality of depth synthesis is insu�icient and 4) the methods are not designed to handle
large datasets, since they o�en use expensive algorithmic solutions operating on all
images in the dataset. We target scenes containing man-made structures, corresponding
to city blocks or apartments, containing up to hundreds of input images.

The key to overcoming these limitations is to perform inpainting in intermediate, locally
planar spaces shared between the input images. Our method uses such common rectified
planes for inpainting a given region visible in several input images, and thus naturally
provides multi-view consistency, strongly encourages correct perspective and provides
consistent depth completion. We fit planar segments to each 3D region to be completed
and perform inpainting in a plane which can be seen as a fronto-parallel image of each
region. Use of planes provides a common reference between images, allowing us to
develop a clustering approach for e�icient treatment of large scenes. Use of intermediate
rectified planar spaces is intuitive and appealing, since it involves locally inpainting in
an undistorted image space. However this approach poses two di�icult problems that
we address with our method. First, we need to identify local planes and create planar
regions which have two important properties for multi-view inpainting: the regions must
be well oriented and have well-defined edges with respect to the underlying structure
of the object being inpainting (e.g., wall, floor, sidewalk). This step needs to be very
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e�icient, since our goal is to treat hundreds of images. Second, we need to carefully
handle inpainting resolution and image resampling, since our algorithm operates in two
distinct spaces: the input image and rectified planar space. Our method addresses these
challenges in two main steps. The first step is a new planar region extraction algorithm,
that finds a small set of planes for multi-view inpainting and e�iciently assigns input
image pixels to planar regions. The second step uses an intermediate rectified planar
space for multi-view inpainting. Our approach performs inpainting in the intermediate
planes using a cascade of progressively larger resolutions based on constraints in each
of the input images in the multi-view dataset. We carefully handle image resampling
guided by 3D information in all steps. An example result is shown in Fig. 3.1.

In summary, our contributions are:

• An e�icient planar region extraction method that facilitates multi-view inpainting
for large datasets.

• A multi-view inpainting method using an intermediate rectified planar space and
cascaded resolution. Our inpainting method matches resolution to that in the
input images, uses high-quality resampling, structure-preserving initialization
and a resolution-dependent distance metric. Together, these elements result in
significant improvement in quality compared to previous methods.

Our method includes a clustering approach allowing us to handle large datasets. We
present results of our method on indoors and outdoors scenes, and demonstrate sig-
nificant improvement over previous work, especially in the context of IBR (Fig. 3.1(d),
Fig. 3.20, 3.21, supplemental video).

3.2 Overview

Fig. 3.2 presents an overview of our method, with references to the corresponding sections
in the text.
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(g) Inpaint 
Original Images
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Fast Plane Estimation Multi-View Resolution Aware Inpainting

Figure 3.2: Overview of our method. We use a multi-view dataset and the corresponding
3D proxy as input. The first step is a fast algorithm to estimate local planes and assign
them to pixels in the input images. In the second step we identify regions to inpaint, and
create rectified targets with reprojection. We then inpaint the rectified target images
and finally resample them to inpaint the original images.

3.2.1 Input data

The input to our method is a set of images from di�erent viewpoints of a scene containing
man-made structures. These are typically photographs, taken with a reasonable “up”
vector. We also require masks to identify the zones to inpaint; These can be obtained
automatically using e.g., a CNN detector to find bounding boxes for cars, motorbikes
or people [57, 122]. Alternatively, an interactive interface can be used to define objects
to remove (see Sec. 3.6.1 and video). We use structure from motion (SfM) [170] and
multi-view stereo (MVS) [89], to calibrate the input cameras and obtain an approximate
3D mesh or proxy of the scene, which is correctly scaled and stored in meters; Fig. 3.2,
le�. Our algorithm identifies planar regions in the images and operates in rectified plane
space. We illustrate images, 3D reconstruction and rectified plane space in Fig. 3.3. We
call the masked regions in the images image targets.

Our main goals are to provide good quality multi-view coherence, preservation of per-
spective during image inpainting and depth completion, overcoming the limitations of
previous methods. We achieve this by using an intermediate planar space for inpainting.
The first step is to identify locally planar structures in the scene and create rectified
planes fi for inpainting. Image sources are the pixels of the input images that are not
contained in image targets, and the corresponding pixels in the rectified plane are planar
sources. We process images in clusters, allowing our method to scale to large datasets.
Our approach correctly handles interdependencies between clusters, by reprojecting
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Recti!ed Plane Space π 

u
v

3D world space
md

Planar Target
Image Target

Figure 3.3: Our input is set of images and a multi-view stereo 3D reconstruction, together
with the image targets, shown here as bounding boxes. We identify planar structures,
e.g., the wall, and inpaint in the rectified plane (right); the inpainting result is then
reprojected into the input images.

already inpainted regions into following clusters. For each cluster, our method has two
main steps: plane estimation and inpainting.

3.2.2 Plane Estimation

Ourmain goals for the first step are speed, to allow treatment of large multi-view datasets
and quality, especially to provide “clean edges” for corners between man-made locally
planar structures. We introduce a fast method to identify planes in the scene and assign
pixels of each input image to the corresponding planes; Fig. 3.2(a)-(c).

3.2.3 Multi-View Inpainting

In the second step, we use the intermediate rectified planar space to perform multi-view
coherent inpainting that preserves perspective, and provides consistent inpainted depth
using the planes; Fig. 3.2(d)-(g). Our approach exploits the multi-resolution nature of
our algorithm to inpaint input images only at the required resolution, by introducing
a cascaded resolution structure. Our inpainting method introduces a structure-aware
initialization step and a resolution-dependent term, improving overall quality. Careful
treatment is required for resampling and reprojection between the rectified planes
and the input images. These are the central components of our e�icient and coherent
multi-view inpainting algorithm.
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We show results of our approach on scenes containing up to hundreds of input images,
both for indoors and outdoors scenes containing man-made structures. In Sections 3.3
and 3.4 we present our multi-view inpainting method for a single cluster which can be
seen as an independent scene; we present our clustering method in Sec. 3.5.

3.3 Fast Plane Estimation for Inpainting in Rectified Planes

Good quality inpainting requires sharp plane boundaries and careful orientation of the
planes, to avoid blur and “bleeding” artifacts between structures. We first estimate
a small number of planes that serve as intermediate rectified spaces for multi-view
inpainting. We then use our new fast approach to assign pixels to planes while respecting
corners or equivalently plane intersections.

3.3.1 Estimation and Clustering of Planes

We start with a standard RANSAC plane estimation step, using the 3D points of the
reconstruction, similar to previous work (e.g., [16, 53]). We then perform fast hierarchical
clustering based on the following distance between two planes fi1 and fi2:

d = (1 ≠ n̨1 · n̨1) + ‰E(|d1 ≠ d2|) (3.1)

where n̨i and di are respectively the normal and the distance of plane fii to the origin,
‰E is the characteristic function of E = {x œ R+|x < –fi}, and –fi represents a
maximum threshold for the variation of the distance to the origin between two planes.
In our experiments –fi is set to 30cm in outdoors scenes and 10cm for indoors, which
are reasonable thresholds to distinguish di�erent objects for each scene category. The
combination of plane estimation and clustering allows us to have a small number of
planes while preserving good precision on plane position and orientation.

In the man-made scenes we target, structures are o�en locally parallel or perpendicular to
intersections between planes, e.g., the ground and awall or the corner of a building. This is
similar to Manha�an world assumptions made in some 3D reconstruction algorithms [51,
82]. Our goal is to orient the rectified planes to follow these directional structures; this
simplifies the inpainting task, since the patch search and match steps become more
reliable. We orient the planes, and define a local basis ų, v̨ in the rectified plane, in world
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coordinates. Given that we focus on man-made structures, inpainting quality depends
heavily on the orientation of these vectors. We first determine the best candidate for
a “ground” plane, based on the assumption that photos are taken with a reasonable
up vector. To do so we compute a normalized median vector over the up vectors of
the input cameras. The ground is the plane whose normal has the highest dot product
with this median vector. We can now compute a main direction vector m̨d of the scene
which we consider to be the intersection of the ground plane with a predominant vertical
structure (e.g., a wall, see Fig. 3.3, top le�). We search the set of planes with close-to-
vertical orientation, and use the plane with the highest number of points to compute
this intersection.

The basis of each plane is then obtained by reprojecting the main direction vector m̨d on
the plane. We use this projection as the first vector to build an orthonormal basis. If this
projection norm is too small to be numerically stable, we use the ground normal instead.

The two vectors of the oriented bases are thus:

ų =
m̨d ≠ (n̨ · m̨d)n̨

|m̨d ≠ (n̨ · m̨d)n̨| and v̨ =
n̨ ◊ ų
|n̨ ◊ ų| (3.2)

We now have the main planar structures of the scene and basis for each plane. The basis
vectors can be projected into each image Ii; we denote the image space basis vectors as
ųi and v̨i. These are defined as follows, for a pixel (x, y):

ų(x, y) = C(P (x, y) + ų) ≠ (x, y) (3.3)

where P (x, y) is the 3D point in the plane corresponding to the pixel (x, y) and C is the
projection operator for this camera. These three spaces are illustrated in Fig. 3.3.

3.3.2 Assigning Pixels to Planes

We now need to assign pixels to planes to create the intermediate rectified planes for
multi-view coherent inpainting. If we compute the 3D position of each source pixel using
the camera pose and approximate 3D proxy, and then associate the pixel to its closest
plane, we have noisy results in several regions, and in particular at plane boundaries, see
Fig. 3.4. For good quality inpainting, it is essential to have clean boundaries, avoiding
content being mixed between distinct surfaces.
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Figure 3.4: Le�: original image. Right: pixel-plane association.

We observe that if we keep a small number of planes, these subdivide the input images
into a limited number of zones K , where K Æ 50 in our tests. The labelling problem
of assigning each zone to a plane can thus be solved e�iciently, and we can use the
accurate plane intersections for clean boundaries. Plane intersections have been used
in the di�erent context of image-based modelling [168]; our solution benefits from the
quality of the clean intersection edges, and provides a very e�icient solution, avoiding
the need for more expensive pixel-based MRF methods [16, 53, 168].

We compute the intersections between all clustered planes in 3D and reproject these
intersection lines into the di�erent images to inpaint. For e�iciency, we use a bitwise
encoding: for each reprojected intersection line, each pixel receives a 0 or 1 code if it
is on the le� or the right side of the line respectively. This bitwise code separates the
images into zones, and two zones are connected if and only if their bitwise code di�ers
by one bit. We can see the intersections and zones in Fig. 3.5.

Each image is now separated into zones and we want to associate a plane to each
one of them. To do this we define an energy function. We have the set of zones
Z = {z0, z2 . . . zn}, the set of planes � and a given plane labeling L(zi) œ �. We
first introduce a compactness constraint given by the pixel-plane association for source
pixels. If a zone has a majority of pixels associated to one plane we want to encourage
the association of the entire zone to this plane. We express this with the following term:

ez(zi) = max
fiœ�

PN(zi, fi) ≠ PN(zi, L(zi)) (3.4)

where PN(z, fi) is the number of pixels associated to plane fi or any plane parallel to fi

in zone z. This term implicitly treats visibility, since closer points tend to cover a larger
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D

Figure 3.5: Two images of the living room dataset. We see that several zone intersections
(e.g., of the zones A and B) are incorrect and need to be removed.

area.

We also encourage zones to be consistent with the plane intersections, while still being
able to discard intersections in some cases, e.g., when we have occlusions between planes,
the intersections are present both on the visible and occluded side. In Fig. 3.5 the plane
intersection line that separates A,B and C,D is relevant only for C and D and should be
discarded for A and B. This is expressed with the term:

ec(zi, lk, zj, lm) =

Y
_]

_[

0, if lk œ C(zi, zj) and lm œ C(zi, zj)

Œ, otherwise
(3.5)

where C(zi, zj) is the set of the two planes that intersect, forming the intersection line
connecting zi and zj . Note that label lk may be equal to lm in the case where ec is 0. In
Fig. 3.5, this term encourages points in both zones A and B to be assigned the cyan plane
(label), while encouraging points in D and C to be assigned to the orange and magenta
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label respectively, using the color coding of Fig. 3.4 and 3.6. The final energy is thus:

Ez =
ÿ

ziœZ

ez(zi, L(zi)) +
ÿ

{zi,zj}œZc

ec(zi, L(zi), zj, L(zj)) (3.6)

where Zc = {{zi, zj} | zi and zj are connected }. Since the number of zones is small, less
than 100 in all our examples, we use a greedy search in the tree of solutions to optimize.
In practice this step is very fast, taking less than 50 ms in all our datasets. Once complete,
we have an approximate planar representation of the scene suitable for high-quality
rectified inpainting. Results are shown in Fig. 3.6.

Figure 3.6: The result of our fast pixel plane assignment step. Incorrect zones have been
removed.

3.4 Multi-View, Resolution-Aware Inpainting

We now have a set of planes associated to a set of images and we can proceed with
rectified multi-view inpainting in each plane. A major advantage of having estimated
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planes is that we have synthesized 3D positions for all target pixels. These 3D positions
allow us to identify target regions that are connected between the images, for example
corresponding to the same object seen from di�erent viewpoints. Inpainting is performed
in three steps: 1) Creation of the resolution-aware rectified images with target regions, 2)
Reprojection to create source pixels for inpainting and 3) Rectified multi-view inpainting.

3.4.1 Creating Resolution-aware Rectified Images for Inpainting

Inpainting in rectified space can be wasteful if done naively, since the final goal is to
inpaint the input images, which have a given resolution for each image target. Consider
the car in Fig. 3.8: due to strong perspective each part of the car occupies a progressively
smaller region in the input image I1. Inpainting at high resolution everywhere in the
rectified plane would be wasteful, both in computation and storage of the inpainted
images.

Ei  Inpainting Extent 

Et Target Extent (w/ reprojected pixels) 
 Eg Global Extent (w/ source pixels)

Input Image
and Mask

Image target (wall)

Figure 3.7: The di�erent extents. The red region (wall) is projected into the plane and
used to define the three extents: pixels to inpaint Ei, target Et including reprojected
pixels and Eg including the source pixels.

We distinguish three extents in each rectified plane fi. The inpainting extent Ei, i.e., pixels
Pi in the planar target, corresponding to 3D points in fi that are not covered by a source
pixel in any input image. We also have the remaining pixels Pr of the planar target, that
can be filled with pixels reprojected from input images. The target extent Et contains
Ei and pixels Pr. Finally, we have pixels Ps taken directly from image sources as source
pixels for inpainting: Et and pixels Ps define the global extent Eg of the rectified planar
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image to be inpainted. Example extents are shown in Fig. 3.7. We first explain how we
obtain Ei, Et and Eg and then how we build a cascade of di�erent resolutions.

3.4.1.1 Creating the Inpainting and Target Extents.

We first segment each image target into regions corresponding to each plane; e.g., in
Fig. 3.7 we split into a region for the wall (shown in red) and for the ground. We determine
the pixels to be inpainted for this region in image Ii by reprojecting the pixels into all
other images using the corresponding 3D position in the plane. If a point projects outside
an image target in another image Ij , the pixel in Ii can be filled by reprojection and
belongs to set Pr. Otherwise the pixel is marked to be inpainted and is in Pi. We also
check for overlap between all pairs of image inpainting regions in di�erent images. If
there is more than 20% overlap, we mark these regions as a group. This ensures that we
do not merge regions that barely overlap, and account for mask inaccuracy.

For each group of regions to inpaint, we project pixels to inpaint Pi into the rectified
plane, and find the corresponding bounding box which defines the inpainting extent Ei.
We then associate each pixel Pr to the closest inpainting extent. The bounding box of
the union of Ei and associated pixels Pr is the target extent Et that is clipped to the
boundaries of the reprojected input images (Fig. 3.7).

3.4.1.2 Cascaded Resolution for Rectified Inpainting.

Our inpainting approach is based on PatchMatch [7] which is inherently multi-resolution:
inpainting starts at a coarse resolution, followed by upscaling and inpainting at pro-
gressively higher resolutions. Since we will adapt resolution to the regions of the input
images, we create a cascade of rectified planar images, each of which is inpainted only at
the required resolution: e.g., in the example of Fig. 3.8, only Level 0 (black) is inpainted
at the highest resolution, Level 1 (mid grey) at half resolution and Level 2 (light gray) at
the coarsest resolution.

To do this, for each pixel in Et we determine the required resolution using an approach
similar to a mipmap lookup in texture mapping [67], using the directional derivatives
Òų(P (x, y)) and Òv̨(P (x, y)).
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Figure 3.8: Cascaded Resolution: the maximum resolution required is found using the
gradient of the rectified basis vectors u an v.

For each pixel P (x, y), we consider two vectors of unit length in pixels, in the directions
of the image basis vectors ų and v̨. The normalized vector is: ųn =

ų
|ų| . We have the

directional derivative ÒųnP (x, y) (and equivalently Òv̨nP (x, y)):

ÒųnP (x, y) =
1

|ų|ÒųP (x, y) (3.7)

This provides themagnitude in world space units of a unit pixel displacement in the image
in the direction of ų. This measure is used to choose the corresponding resolution for
inpainting each pixel. We first find the pixel with the minimum value of Pmin = minÒP

which gives the maximum required resolution for inpainting in rectified space. In the
example of Fig. 3.8, this value is 0.8 at pixel A.
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The specific resolution of each rectified image will be determined based on the value of
ÒP and the resolution of the input images. We first determine the maximum resolution
required (blue region in Fig. 3.8), and we then create n levels for inpainting, by halving
the maximum resolution, corresponding to the minimum value Pmin = minÒP . In the
example of Fig. 3.8, level 0 corresponds to maximum resolution, and will include pixels
with ÒP between Pmin and 2 Pmin. Pixels with ÒP between Pmin and 4 Pmin will be in
level 1 etc. (see Fig. 3.8). At the end of this process we perform a region expansion step,
and find the region including only level 0 pixels, then the region with level 1, then level
2 etc. resulting in the cascaded resolution structure shown in Fig. 3.8. We ensure that
Et is fully contained in Eg, so that all reprojected pixels are present in the source. We
take 50% of the inpainting region size on each side as source pixels Ps. If there is not
enough source on one side to reach 50% we increase the amount of source on the other
side correspondingly. Example source regions are shown as dashed boxes in Fig. 3.8.

3.4.2 Resampling and Reprojection

We now have the mapping from input images to the target planar regions. Given the
projective transformation between the input images and the rectified plane, we need to
carefully resample the input images to provide good quality source pixels for inpainting.
Each pixel in a rectified image is backprojected into the original images, using Elliptical
Weighted Average (EWA) filtering [67] to sample the input images and provide source
colors. We call valid rectified pixels those with coordinates within Eg and that are not
target pixels. For input image pixels that re-project on valid rectified pixels in more than
one image we have to select which image to sample. We formulate this as a labeling
problem. We want each pixel to be sampled with a high quality kernel, but also from
pixels that correspond to 3D content close to the plane. We thus introduce the following
quality term for a pixel p sampled in image I l, with label l:

Dp(I l
) = Ap(I l

) + “DM(I l
), (3.8)

where Ap(I l
) is the inverse of the area of the EWA filter to fill pixel p coming from image

I l [67]. DM is the distance between the point given by the plane equation and the 3D
position obtained with the original depth image associated to I l, given by the proxy. The
first term favors sampling images with large elliptical kernels, which means that we have
more accuracy on the sampled values while the second term favors pixels corresponding
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to points in the 3D reconstruction closer to the plane (see Fig. 3.9). The factor “ is used
to balance the two terms. Ideally Ap(Ip

) should be 1 or less, i.e., the sampling kernel for
one pixel in rectified space has a surface of one pixel in the image. Since our scenes are
in meters, we set “ = 10 so that a few centimeters deviation from the plane does not
have a big impact on the term in Eq. 3.10.

Depth from plane
3D reconstruction depth
Pixel to inpaint

Recti!ed Plane
Figure 3.9: The Unary term DM encourages the use of the depth from the images with
depth closer to the plane.

For each pixel we find l which minimizes Dp(I l
). If we only had Ap(I l

), this per pixel
minimum would lead to homogeneous source label regions. However the noise in the
original proxy breaks this regularity through DM(I l

), leading to noise in label selection
at the boundary of low energy zones. We overcome this issue by solving a multi label
MRF only for pixels that do not have homogeneous minima in a 10 ◊ 10 neighborhood.
This occurs for a small number of pixels – less than 10% of the image pixels in our tests –
limiting the impact on computation time compared to solving the MRF on the entire
image. Similar steps exist in previous work [183, 196], but in contrast to those approaches
we have well-defined geometry, allowing us to define the following energy:

Es =
ÿ

pœRim

Dp(I l
) +

ÿ

{p,q}œN

Vp,q(I
l, Ik

) (3.9)

with:
Dp(Ip

) = Ap(Ip
) + “DM(Ip

) (3.10)

and

Vp,q(I
p, Iq

) =

Y
_]

_[

0, if Ip
= Iq

|Ip
(p) ≠ Iq

(q)|, otherwise,
(3.11)
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where V is a standard smoothness term, that helps borders of the zones to be coherent
in terms of visual content, and N represents a 4-neighborhood. Ap(Ip

) is the inverse of
the area of the EWA filter to fill pixel p coming from image Ip [67]. DM is the distance
between P3D(p) given by the plane equation and the 3D position obtained with the
original depth image associated to Ip. The first term favors sampling images with large
elliptical kernels, which means that we have more accuracy on the sampled values while
the factor “ is used to balance the two terms. Ideally Ap(Ip

) should be 1, i.e., the sampling
kernel for one pixel in rectified space has a surface of one pixel in the image. Since our
scenes are in meters, we set “ = 10 so that a few centimeters deviation from the plane
does not have a big impact on the term in Eq. 3.10.

The result of the graph-cut and the local minima of the homogenous zones provides
the source for each rectified pixel. We sample these sources by reprojecting the input
images into the rectified image. Because pixels coming from di�erent images may have
illumination variations we run a Poisson blending step [145] at the border defined by
source changes. A planar source and its source labels are shown in Fig. 3.10.

Figure 3.10: Rectified plane initialization. Inset: each color label corresponds to a
di�erent input source image.

3.4.3 Inpainting rectified images

For each global extent corresponding to a rectified planar region, we now have the
cascaded resolution structure and we can perform inpainting. We use an Expectation-
Maximization algorithm similar to previous work ([7, 183, 195]): we first initialize then
proceed with several iterations of PatchMatch [7] followed by voting.
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3.4.3.1 Initialization

To initialize our images at the lowest scale, we strive to preserve major structures.
We represent these structures by strong gradients in the images, and encourage the
initialization step to preserve these boundaries.

We first compute straight lines in all filled areas of the image at the highest resolution
using a Canny edge detector and a Hough transform. The total number of lines found
is NL. At the lowest resolution, we associate each target pixel pt with coordinates t

to a source pixel ps with coordinates s randomly sampled according to the following
distribution, that discourages sampling pairs (s, t) crossing many lines and thus respects
structures in the sources. The sampling density associating a target t to a source s is
defined as:

p(pt ¡ ps) =
1

Zt
G(s, t) and Zt =

ÿ

sœS

G(s, t) (3.12)

with

G(s, t) = e
≠0.5 Ît≠sÎ2

2
((w+h)/2)2 e

≠0.5( Nl(pt,ps)
‡l

)2

wherew, h are thewidth and height of the rectified image at lowest resolution,Nl(Xt, Xs)

is the number of lines intersecting (t, s) and ‡l = 0.05 NL.

We finally initialize each pixel in the target area Ei by transferring the patch at the
associated source area to the target patch and performing mean blending of all patches
per pixel.

3.4.3.2 Inpainting

We use the following distance between patches t (target) and s (source) for both the
PatchMatch step and voting:

d(t, s) = Ît ≠ sÎ2
2 + ⁄occ

�(s)

Êbest
+ ⁄tfeatT (t, s) + ⁄resR(t, s) (3.13)

where �(si)
Êbest

is a spatial uniformity (“occurence”) term described by Kaspar et al. [97]
and T (ti, si) is the texture feature descriptor distance from Newson et al. [136]. We
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found that images with many structured features need high uniformity to prevent blur,
while imposing uniformity when in less structured regions leads to inconsistent copies
of blocks of content (e.g., a piece of one structure in the middle of another).

Instead of se�ing ⁄occ manually as in Kaspar et al. [97], we automatically choose ⁄occ

with respect to the mean texture feature norm:

⁄occ = 0.01(
1

|S|
ÿ

sœS

ÎTf(s)Î2)
2 (3.14)

We introduce the term R(t, s) that is a measure of the correspondence of the original
resolution between two pixels in the source image. To compute R we reason on rectified
source pixels pr in Ps and the corresponding pixels ps in the input images. For each pixel
pr in the initialized rectified image we have the corresponding original input image pixel
ps, and the elliptical sampling kernel es used to sample ps. Recall that Ap =

1
Area(es) . For

a target pixel we compute Ap for all the input images in which it reprojects and we take
the one with the largest area At(Imin(t)):

R(t, s) = max(0, As(Is) ≠ At(Imin(t))) (3.15)

given:

Imin(t) = argmin
IœI

ÎAt(I)Î (3.16)

where I is the set of all input images.

This ensures coherent resolution of the patches used to inpaint a specific zone, and also
provides su�icient resolution for all the images when we reproject back into the original
image space. ⁄res is set to 0.1 and ⁄tfeat to 0.001 for all our tests. The di�erent maps for
resolution, texture feature and uniformity are shown in Fig. 3.11.

3.4.3.3 Proxy and Depth synthesis

IBR algorithms require a coherent geometric proxy. Since we have removed objects from
the scene, the original reconstructed proxy cannot be used. We first create a clean version
of the mesh by removing all vertices corresponding to pixels contained in target regions
in all images. We do this by projecting all vertices of the mesh into the input images; if a
vertex reprojects in a target region in one image it is marked as potentially invalid and if
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Figure 3.11: The maps corresponding to resolution term, texture feature term and uni-
formity term. The resolution has only small variations for this rectified target and has
almost no impact on the distance term. Texture feature and Uniformity Map are shown
at the end of the inpainting. The uniformity map shows how much a source pixel is used.

it reprojects into a source region in one image it is marked as visible. Vertices are that
are potentially invalid and not visible are marked as invalid. The clean mesh consists of
the triangles that have three valid vertices, and contains holes in regions corresponding
to the Ei of the input images.

We fill these holes using the planes of the corresponding rectified images. We create a
mesh by inserting a vertex every 10 pixels in the rectified image.
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3.4.4 Inpainting input images

A�er inpainting the rectified planar image, we inpaint the input images by sampling
the plane using the same resampling and reprojection approach as for the creation of
Et (Sec. 3.4.2). We compute the elliptical kernels but this time from rectified space to
image space. We then apply Poisson blending on the border of the zones to inpaint, to
compensate for view-dependent color di�erences. As a final step we propagate structures
that do no not belong to any estimated plane when they are in a source region in at least
one image. Specifically, if an inpainted pixel projects on a source pixel in a nearby image
with original proxy-based depth closer than the depth of the plane by at least –fi, we
sample this source pixel directly.

3.5 Handling Large Datasets

We treat large datasets using a clustering step and reprojection between overlapping
clusters. We set a target size of a cluster NC, depending on the available memory and
computing resources. We first compute the clean version of the proxy; this provides a
common reference so we can we can treat each cluster separately and thus avoid loading
all images in memory at the same time. Next we cluster input cameras with k-means
(k = NC) by 3D position and angle with two-thirds/one-third weights respectively. This
creates a set of independent clusters which can be seen as separate scenes. We start by
inpainting one of these sets. A�er treating a set, we reproject the rectified inpainted
images of all treated sets into each image of the next set. If a rectified inpainted image
reprojects into zones to inpaint, the pixels are sampled in the corresponding rectified
image and considered inpainted. For the rectified plane initialization step we add in the
original source images, i.e., all images whose cameras see the polygons defined by the
rectified images. This maintains and propagates multi-view coherence across sets and
additionally avoids inpainting the same 3D zone twice while taking into account all the
available information.
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Scene N Res NC Tp Ti

Living Room 40 1517x1110 na 16’50" 8’46"
Large Street 290 1828x984 70 45’ 28’
Fig. 3.14 & 3.20 16 2016x1512 na 1’49" 2’52"
Fig. 3.15 15 2016x1512 na 2’21" 3’24"
Fig. 3.16 12 1728x1152 na 1’37" 1’26"
Street 1 20 1864x1390 na 2’03" 3’38"
Fig. 3.22 & 3.18 30 2546x1672 na 5’25" 7’40"

Table 3.1: For each scene we list the number N of input images, their resolution Res, the
cluster value NC where applicable, the time Tp for plane processing and Ti for inpainting
in minutes.

3.6 Implementation, Results and Experiments

We implemented our method in C++, parallelizing over images and planar targets when
possible. All running times are on a PC with a dual Intel Xeon E5-2650 CPU and 64Gb of
memory. Plane processing and inpainting are run o�line, and create the data that can be
used in our IBR system. All IBR results are with a per-pixel Unstructured Lumigraph [19]
implementation with so� visibility [42].

3.6.1 Results

We show results for outdoors and indoors scenes. All running time statistics are shown
in Table 3.1. In Fig. 3.1, 3.12, we show a Street scene with 290 images, using masks
automatically computed with RefineNet [122]. In row 3 of Fig. 3.12 we show pixels
filled by reprojection in magenta and by inpainting in blue, illustrating how our method
successfully inpaints very large image regions. We also show results for another Street
scene from [183] (Street 2) and two additional scenes in figures 3.14 to 3.18 and the
accompanying video. In Fig. 3.13, we show a living room scene where the sofa was
removed using a interactive tool: the object is removed with one selection in the proxy
using a simple 3D viewer such as Meshlab [28] (please see video) and the masks are auto-
matically created in all input images through reprojection. Please see the accompanying
video which shows free-viewpoint IBR on all scenes, before and a�er inpainting.
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Figure 3.12: Results from the Large Street dataset for 4 images. First row: input images.
Second row: inpainting result. Third row: inpainting result with overlay for reprojected
regions (magenta) and inpainted regions (blue). Notice how perspective e�ects on the
sidewalk tiles and the separation between structures (wall, sidewalk) are preserved
during inpainting.

Figure 3.13: Results for the living room dataset. Top: Two input photos. Bo�om: The
corresponding inpainted results. Note that the inpainting respects multi-view coherency.
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Figure 3.14: First row: input images. Second row: our results.

Figure 3.15: First row: input images. Second row: our results.

Figure 3.16: YellowHouse dataset from Thonat et al. [183]. First row: input images.
Second row: inpainted images by Thonat et al. Third row: our results.
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Figure 3.17: Street 1 Dataset. First row: input images. Second row: our results.

Figure 3.18: Inpainting on a curved surface. First row: input images. Second row: our
results.
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3.6.2 Comparisons

All comparisons shown were generated either using the original authors’ code under
their guidance ([203]) or by the respective authors themselves (all others). We show
comparisons to single image methods in Fig. 3.20. Evidently, our approach has an
advantage over these solutions since we have use multiple input images; the main goal
of this comparison is to demonstrate that such methods are not well suited to our goal
of multi-view inpainting for IBR.

Input Cont.-aware Huang et al. [81] Yang et al. [203] Iizuka et al. [83] Ours

Figure 3.19: Comparison to single image methods. Cont.-aware is the result of Content-
Aware fill in Photoshop CC (2016 edition); note that the method of Yang et al. [203]
operates on much lower resolution images.

Input Cont.-aware Huang et al. [81] Whyte et al. [196] Ours

Figure 3.20: Comparison to single image methods and Whyte et al. [196] that does not
explicitly synthesize depth. Cont.-aware is the result of Content-Aware fill in Photoshop
CC (2016 edition).

We see that our approach preserves perspective and reduces blur significantly compared
to these methods. In Fig. 3.21, we show comparisons to methods that treat multi-view
datasets, i.e., Whyte et al. [196], Thonat et al. [183] and Baek et al. [6]. We see that
our approach overcomes the artifacts related to perspective by be�er preserving slanted
lines (e.g., on the sidewalk) and greatly reduces blur. Our approach also achieves be�er
overall multi-view consistency, e.g., the sidewalk and road in scenes from Thonat et al.
[183].
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Input Whyte et al. [196] Baek et al. [6] Thonat et al. [183] Ours

Figure 3.21: Comparison to multi-view methods.

3.7 Limitations and Future Work

Limitations. In Fig. 3.22 we show inpainting on a non-planar surface. The method
performs reasonably well overall, but non planar structures are incorrectly copied to a
plane, e.g., the curved stairs copied onto the wall.

Figure 3.22: Inpainting on a curved surface.

Another limitation of our approach is related to the number of planes we find during
plane estimation. For example, in the Living Room scene, we do not identify the plane of
the co�ee table with the default parameter se�ings. This is a user tunable parameter,
and can be adapted depending on the application needs.

Future work. In future work, we envisage the use of semantic information to improve
the selection of sources for inpainting, thus further improving final image quality overall.
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Our clustering approach can be extended to provide good quality source content even
when there is no overlap between sets; semantic information will probably be required
here as well to ensure good quality transfer of sources between such disjoint clusters.

3.8 Conclusion

In this chapter, we have presented a scalable inpainting method for multi-view datasets,
suitable for large-scale IBR, which greatly improves quality compared to previous work.
We first present a fast approach to identify planes for inpainting, and assign input
image pixels to these planes. Our algorithm enforces clean boundaries between planar
regions, encouraging high-quality inpainting. Our approach carefully handles sampling
and resolution between the input image and rectified planar spaces, by introducing a
cascaded resolution structure used for inpainting. Our inpainting method introduces
structure-aware initialization and a resolution term improving overall quality. We also
present a clustering approach to handle large datasets. We demonstrated our results
on indoors and outdoors scenes with up to hundreds of input images. Our results
show significant overall improvement in inpainting quality, providing a usable solution
for manipulating IBR environments. Our method also provides a a way to overcome
di�iculties related to certain capture conditions, e.g., moving people or cars that cause
ghosting artifacts, specular objects for which IBR has issues; these can all be removed
from the original content a�er the fact.

Another element of capture that is o�en not controlled is the lighting setup. In traditional
IBR we are limited to the lighting condition at the time of capture; as mentioned in
the introduction, this is a major limitation of such methods. The following chapter
introduces a method to relight outdoor multi-view data a�er the fact allowing more
flexible captures and even more content editing, providing a first step towards removing
this severe limitation.





C h a p t e r 4

Multi-view Relighting and Scene
Compositing

using a Geometry-Aware Network

4.1 Introduction

We have seen previously that content modification is crucial to add flexibility to image-
based rendering methods. In the context of multi-view data editing we now explore
lighting modifications for outdoor scenes. As discussed in Chapters 1 & 2 lighting
is one of the main components that would benefit from being edited a�er capture.
Indeed, lighting is hard to control when capturing a scene or simply taking a photo.
Professionals use specific hardware and know when to capture specific landmarks to
obtain the best shots. This is not compatible with the casual capture we target in this
thesis. We thus propose a method allowing the user to alter the lighting of captured

(a) our algorithm can relight a single-illumination drone video dynamically to synthesize a “time-lapse” e!ect

(b) single-view input (c) three relit outputs: here we built the proxy geometry using internet photos of the same location

Figure 4.1: Two applications of our multi-view relighting system.(a) We show five
di�erent frames from a drone video (copyright Namyeska youtu.be/JHeDP7_YBos
used with permission) relit with a "time-lapse" e�ect of a rotating sun (full video at
youtu.be/C_V8UpZYAQU). A user can also relight a photograph of a known landmark
(b) to di�erent target lighting conditions (c). For this, we applied our algorithm to a
collection of 50 internet images of the same location.

%20https://www.youtube.com/watch?v=JHeDP7_YBos
%20https://www.youtube.com/watch?v=C_V8UpZYAQU


60
Chapter 4. Multi-view Relighting and Scene Compositing

using a Geometry-Aware Network

pictures a�er the fact. Here we focus on outdoor scenes. Changing the illumination of an
outdoor image is a notoriously di�icult problem that requires the lighting to be modified
consistently across the image, and shadows to be removed and resynthesized for the
new sun position [39, 179, 204]. Cast shadows are particularly challenging because an
occluder can be arbitrarily far from the point it shadows, or even out of view.

The basic premise of our approach is to use multi-view information and approximate
3D geometry to reason about non-local lighting interactions and guide the relighting
task. In Chapter 3, multi-view imposed strong constraints inpainting, such as multi-view
coherence, and was one of the core problems the method deals with. For relighting,
on the contrary, we argue that having access to multi-view and geometry is one of
the key elements allowing us to solve the problem. We introduce the first learning-
based algorithm that can relight multi-view datasets of outdoor scenes (Fig. 4.1), which
have become a commodity thanks to smartphone cameras, large-scale internet photo
collections and drone cinematography. Our model uses a neural network designed to
exploit geometric cues. It includes a careful treatment of cast shadows and is trained
solely on realistic synthetic renderings.

Our method has several applications: it allows automatic creation of a “time-lapse” e�ect
by dynamically relighting drone videos (Fig. 4.1(a)). Or, if we only have a single photo, we
can access online photos of the same place to relight the input photo (Fig. 4.1(b)). We can
also relight images in traditional multi-view pipelines, e.g., Image-Based Rendering (IBR)
or photogrammetry (Fig. 4.20). In section 4.6 we also show how the relighting network
can be used to composite real scenes captured under di�erent lighting conditions. We
introduce a two step method to do this compositing which has the advantage of using
the already trained relighting network.

Previous methods have di�iculty with the type of input we target. Inverse-illumination
methods [124, 204] cannot handle the approximate geometry of the proxy, while single-
image relighting solutions struggle with cast shadows [126, 166]. Finally, our solution
significantly outperforms neural-network baselines (Sec. 4.5.2).
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Contributions. In summary, in this chapter we present the following contributions:

• An end-to-end learning method for multi-view relighting of outdoor scenes, guided
by image-space bu�ers, namely shadow masks and illumination bu�ers, that are
computed from a geometry proxy.

• A learning-based shadow refinement solution to remove and resynthesize shadows.
It uses the input images as well as our newly-introduced RGB shadow images to
overcome reconstruction errors in the proxy.

• A training procedure that uses realistic synthetic scenes to flexibly generate multi-
ple lighting conditions. Critically, we create a stereo-based proxy for each training
scene which, together with the ground truth geometry, enables supervised learning
for shadow refinement.

• A compositing algorithm that leverages the trained relighting network to realisti-
cally insert parts of captured scenes into other captured scenes.

Although it is entirely trained on synthetic images, our algorithm generalizes to real
multi-view datasets, and can modify the lighting in a much wider range of illumination
conditions than previous methods (e.g., [39]). We evaluate our approach on real multi-
view datasets, and show a variety of applications (Fig. 4.1,4.17,4.18. Sec. 4.6).

4.2 Overview

Given a set of images captured from multiple viewpoints (Fig. 4.2a), we start by building
an approximate representation of the scene’s geometry — a proxy — using o�-the-shelf
stereo [152, 171] (Fig. 4.2b). We can relight any reference view of that scene (Fig. 4.2c) —
this could be one of the input images or a novel view obtained by IBR. The user provides
a target illumination by specifying a sun direction vector and a scalar “cloudiness” level
(or a sequence of such parameters for “time-lapse” e�ects). From the proxy, we then
compute image-space bu�ers (Fig. 4.2d: normal maps, specular reflection direction, etc.)
and shadow masks for the source and target illuminations. We perform relighting by
training a neural network to map from the reference image, with extra bu�ers and
shadow masks, to the novel lighting condition.
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(d) illumination bu!ers

synthetic training data

renderings with multiple
 lighting conditions

ground truth
geometry

proxy

(g) relit output

cloudy image

(f) refined shadow masks

targettarget

sourcesource

(e) RGB shadow images

shadow refinement

relighting

(b) 3D proxy & source/target
lighting parameters

(c) reference input

(a) multi-view
dataset

Figure 4.2: Overview of our approach. Le�: We use o�-the-shelf stereo to create a
3D geometric proxy of the scene (b). The geometry is encoded as illumination bu�ers
(d) and used to create RGB shadow images (e) that are independently refined by two
networks (f), helping the final relighting network remove and re-synthesize shadows,
and change the illumination (g) according to the desired novel lighting condition. Right:
We train our model with synthetic data, including accurate ground truth geometry and
renderings and an approximate proxy, created using synthetic renderings instead of
photos. These two representations of the training scene allow the network to accurately
refine shadows, enabling plausible relighting.

The importance of accurate shadow estimation for shadow removal has been previously
demonstrated [39, 61, 63]. But reconstruction errors in the proxy o�en lead to inacurrate
masks a network cannot trust. This motivates our network design: we decompose our
model into three sub-networks (Fig. 4.2). Two modules refine the source (resp. target)
shadow masks (Fig. 4.2f) while the third implements the final relighting (Fig. 4.2g). The
sub-networks are trained jointly but with di�erent supervision: respectively ground
truth shadow masks and ground truth relit images. Furthermore, instead of computing
standard shadow masks from the proxy, we introduce RGB shadow images (Fig. 4.2e).
These shadow images re-project colors from the shadow-casting geometry from all
viewpoints into pixels in shadow, helping the network identify erroneously reconstructed
shadow casters from the reprojected color (Fig. 4.4,4.5).

For supervised training, we need data corresponding to di�erent lighting conditions
of the exact same views, that is hard to capture with real photos. Instead, we use
professionally-modeled, realistic synthetic scenes to generate physically-based render-
ings with many di�erent viewpoints and lighting conditions. We introduce a flexible
compositing methodology to generate a large variety of illuminations on-the-fly at
training time. This avoids the combinatorial explosion in the number of images to render.
Synthetic scenes also give us ground truth shadow masks.
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To train the shadow refinement, it is impossible to capture real data and we cannot
directly use the ground truth shadows cast by the synthetic geometry. A model trained
with these perfectly accurate shadows would not generalize to real photographs, since
it would have never seen the reconstruction errors of the stereo-based proxy. Instead,
we generate an approximate 3D proxy for each synthetic training scene using stereo on
renderings, from which we obtain the input illumination bu�ers and (inaccurate) RGB
shadow images. The ground truth shadow masks are used as targets to supervise the
refinement sub-networks. This approach makes our model robust to 3D reconstruction
errors at test time and limits the generalization gap between real and synthetic data.

4.3 Geometry-aware relighting network

Our relighting solution is built around a neural network that takes one image from
a multi-view dataset, and a set of corresponding image-space bu�ers as input, and
produces a new image, with the lighting altered. We identified three key di�iculties to
successfully implement this image transformation: modeling the illumination changes
(color, intensity, etc), and removing and resynthesizing cast shadows.

To overcome these di�iculties, our learning solution exploits a geometric 3D proxy which
we obtain by first calibrating the input virtual cameras using structure from motion
(SfM) [171], then running a Multi-View Stereo algorithm [59, 152]. Fig. 4.3 illustrates
this procedure.

Because our CNN operates in the image domain, we encode the geometry and lighting
parameters as image-space illumination bu�ers B. These include normal maps, per-pixel
specular reflection direction, etc. See Section 4.3.3. In our ablation study, we found these
bu�ers to be instrumental in synthesizing plausible novel illuminations (Section 4.5.5).

Furthermore, the proxy gives us a particularly powerful means to guide the shadow
removal and re-synthesis process. We use it to obtain two shadow masks, Ssrc and Stgt,
corresponding to the source and target sun directions respectively, by running a shad-
owcasting algorithm. If the geometry were perfect, these masks would tell the network
precisely which pixels to brighten (resp. darken). However, because of errors in the stereo
reconstruction, the masks typically contain significant artifacts and misalignments with
respect to the actual shadows in the image.
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(a) input views (b) calibrated cameras and 3D proxy

Figure 4.3: (a) Our method takes as input a set of photos of an outdoor scene, shot from
varying viewpoints (in this example 140). (b) We calibrate the cameras (shown in green)
and build a 3D proxy of the scene usingMVS. This reconstruction is approximate, as can be
seen from themultiple holes (white) and erroneous over-reconstruction (e.g., blobs around
palm trees with reconstructed sky). Our model learns to account for this uncertainty
and generalizes well at test time.

While coarse masks are be�er than no shadow mask at all (see Section 4.5.5), we found
that the success of the shadow removal procedure strongly depends on the quality of
Ssrc. Similarly, the shadow re-synthesis su�ers from errors in Stgt. This led us to build an
explicit shadow refinement step within our pipeline. We guide the refinement step by
introducing RGB shadow images. These maps use color information from all images in
the multi-view dataset to provide hints to the CNN on reconstruction inaccuracies.

Our overall model can thus be divided into three sub-components (Fig. 4.2). Two sub-
networks independently refine the shadow masks Ssrc and Stgt, and a third implements
the final relighting given the illumination bu�ers and the refined shadow masks. The
three components are trained jointly in an end-to-end, supervised fashion, using a
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training set of synthetic scenes. Our dataset contains ground truth source/target images,
and approximate/ground truth shadow mask pairs.

4.3.1 Overall architecture

At a high-level our network is the composition of three sub-networks, two for the source
(resp. target) shadow refinement tasks and one for relighting (Fig. 4.2). The refinement
networks both take the RGB shadow images (Section 4.3.2.1) and the input images
and predict refined greyscale shadow masks. These two refined shadow masks, along
with the illumination bu�ers, are sent to the relighting sub-network which infers the
target sun condition image and an overcast image. This 3-step approach is supported
by recent results (e.g., [188]) showing that decomposing shadow detection and removal
in two consecutive subtasks within the same network greatly improves quality. The
overall architecture of our network is shown in Fig. 4.2; we use a ResNet [66, 90] for
the shadow refinement and the relighting modules [211]. We also experimented with a
Unet-like architecture [85], that gave marginally inferior results. Our network outputs
two images: the relit target image, and a “cloudy" rendering which we use to produce
di�erent degrees of overcast lighting conditions (Section 4.5.6.1).

4.3.2 Shadow refinement with RGB shadow images

Strong shadow cues are central to the shadow removal and re-synthesis process (see
Section 4.5.5 for a comparison). The proxy can be used to compute standard (greyscale)
shadow masks (Fig. 4.4 (c), black pixels are occluded by the geometry). We found however
that, because the proxy is only approximate, the shadow masks are usually too coarse,
which motivates our shadow refinement pipeline. To reap the most benefits from this
refinement, we introduce a novel representation — RGB shadow images — that is robust
to inaccurate geometry (Section 4.3.2.2).

4.3.2.1 Independent source and target shadow refinement

Both source and target shadow maps are obtained from the proxy, and therefore need
refinement (Fig. 4.4). We process the two maps independently, with two sub-networks
that perform fundamentally di�erent tasks.



66
Chapter 4. Multi-view Relighting and Scene Compositing

using a Geometry-Aware Network

Refining the source masks is an easier problem because the shadows in the input image
are in exact correspondence with the shadow mask: the refinement network can use the
image as guide.

This does not apply to the target masks. Since we want to change the lighting, the
target masks are generally not aligned with the shadows in the input image, making the
problem inherently more ambiguous. If instead, we used the same shared network for
both tasks, the quality of the refined source shadows would degrade. Unlike specialized
modules, a shared network cannot expect the masks to be consistently aligned with the
image data.

We use synthetic data to create ground truth / proxy pairs for shadow refinement
(Section 4.4.3). The source shadow refinement process uses the actual boundary in the
input image, giving be�er overall results compared to the target shadow refinement
(Fig. 4.4, (e)).

4.3.2.2 RGB shadow images

We introduce RGB shadow images to guide the refinement of both source and target
shadow masks: this is a key element to the success of our solution. RGB shadow images
Srgb (Fig. 4.4, (d)) are created by reprojecting colors from all the other images in the
multiview input.

Their purpose is to help the network recover from over-reconstruction errors, e.g., the
beams of the pergola in Fig. 4.4 appear connected as a solid ceiling. Our RGB shadow
images will show blue pixels in the (incorrectly) shaded area corresponding to the sky,
which easily disambiguates this error (compare (c) and (d) in Fig. 4.4).

We illustrate the computation of RGB shadow images in Fig. 4.5. For each pixel in shadow,
we cast a ray in the direction of the sun dsun from the corresponding 3D scene point
x œ R3 (see Fig. 4.5). The ray intersects the occluding proxy geometry at a point xo,
that we reproject into the other input images. We accumulate a weighted average color
collected from the other views. The weight for the contribution of a given image i to the
color of a pixel in the RGB shadow image is computed as:

1

||xo ≠ pi(xo)||22 · |1 + c|
i dsun|2 + ‘

, (4.1)
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Figure 4.4: We use the 3D proxy (a) to cast shadow masks corresponding to the source
and target lighting conditions. Traditional shadow masks (c) already provide strong cues
for a relighting model, but they o�en su�er from errors in the multi-view reconstruction.
Our new RGB shadow images (d) are more expressive and help us recover from the
proxy’s errors. We process them with two independent shadow-refinement subnetworks
to obtain finer shadow masks (e). In turn, these refined masks guide the removal of
shadows in the input (b), and the synthesis of detailed cast shadows for the new lighting
condition.

where ci is a unit vector giving the direction from camera i to xo, pi(xo) œ R3 is the
first intersection of the camera ray defined by ci with the proxy (Fig. 4.5) and ‘ = 1e≠5.
The first term reduces contributions of images i when an object occludes xo from the
point of view of camera i.

The second term tries to reduce reprojection error due to depth inaccuracy.
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Figure 4.5: Computation of the RGB shadow images. For a visible point x we reproject
the shadow caster point xo on the proxy into the input images. In this example, image i
contributes a (blue) sky color, indicating the proxy is inaccurate at xo. The contribution of
image j is reduced thanks to our weighting term because xo is occluded by the rightmost
tree from the point of view of camera j.

It encodes a preference for views that are closer to the sun direction, in a similar spirit to
blending weights for IBR [19].

In addition to the weighted average of reprojected colors, we also maintain two additional
pieces of information. First, we store the ratio of the distance from the visible point x

to xo to the distance from the current camera to x; this provides a hint to the network
on how so� the shadows should be. Second, we store the uncertainty of reconstruction,
provided by the MVS algorithm since geometry is more likely to be erroneous whenever
the algorithm’s confidence is low. Our RGB shadow images can be computed quickly at
test time for a captured scene.

4.3.3 Image-space geometric information via illumination bu�ers

The network takes as input a source and target lighting condition, that are defined by the
respective sun positions. To help the network perform the lighting transformation, the
first illumination bu�ers we provide are sun elevation for both source and target as scalars
proportional to the angle between the horizon and the sun direction, as well as the sun
directions in camera space as unit vectors. We also help the network determine surface
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lighting depending on sun orientation, by using the proxy to compute normal maps in
camera space. Finally, we provide a reflection bu�er that is the dot product between the
direction from the camera to the surface and the mirror reflection of the incoming sun
ray at the surface. These help the network synthesize illumination consistently and also
a�ects shadow removal. Our illumination bu�ers are illustrated below, and their impact
on final relighting quality is evaluated in Section 4.5.5.

input image normal maps reflection features

4.3.4 Training the model

The three sub-modules of our network are trained jointly in a supervised manner to
minimize the sum of three losses:

L = Lrelight + Lsrc + Ltgt. (4.2)

These loss functions compare the accuracy of our network’s predictions (the final relit
image as well as both intermediate refined shadow masks) to synthetic ground truth,
which we detail in Section 4.4.

To refine the source shadow mask, a straighforward L1 loss proved su�icient. Intuitively,
this task is less ambiguous than refining the target shadow maps because the input
image contains the source shadows:

Lsrc = E
Ë
|rsrc(Srgb

src , I) ≠ Sı
src|

È
, (4.3)

where rsrc is the source refinement network, Sı
src is the ground truth shadow mask, I

is the input image, and Srgb
src is the source RGB shadow image. The operator E denotes

expectations taken over the training set.
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For the target shadow refinement however, the network has less information to exploit
from the input image, so we use a more complex perceptual loss:

Ltgt = E
Ë
w1 · P(rtgt(S

rgb
tgt , I), Sı

tgt)
È
, (4.4)

with rtgt the target refinement network, Srgb
tgt the target RGB shadow image, Sı

tgt the
ground truth target shadow mask, and w1 a weight map.

P is a perceptual loss function. It extracts features from the two images independently
using a pretrained VGG19 network and compares them with an L1 loss. We use the
implementation of Chen & Koltun [25].

In practice, pixels shadowed by geometry that is not reconstructed in the proxy are
fundamentally ambiguous. They tend to bias the target refinement network towards
conservative outputs (see Section 4.4.3). We reduce the contribution of these pixels using
a binary mask computed from the ground truth shadow mask. We set w1 =

1
10 for the

masked pixels, and 1 otherwise (value found empirically to give satisfactory results).

For the relighting network, we also use a weighted perceptual loss. We weight the loss
using the di�erence between the ground truth and proxy shadow image so that we do
not penalize parts of the shadow mask where the refinement step failed. Specifically,
the weight is given by w2 = 1 ≠ 0.9|rtgt(Srgb

tgt , I) ≠ Sı
tgt|.

The overall goal of the relighting network is to produce a relit image IR, which we
encourage to match the ground truth target lighting condition Iı using, again, an image-
space perceptual criterion:

Lrelight = E
Ë
w2 · P(IR, Iı

)

È
. (4.5)

Note that IR depends on the input image, the illumination bu�ers and the refined source
and target shadow masks.

4.3.4.1 Details

The weights of all the convolutional layers are initialized according to He et al.’s rec-
ommendation [65] and the biases to 0. We optimize the network parameters using the
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Figure 4.6: A sample viewpoint from each of our 10 ground truth training scenes.

ADAM solver [99], we train with a batch size of 4, and a learning rate of 2 ◊ 10
≠4. The

remaining parameters of the ADAM optimizer are kept to the values recommended by
the authors. Our model is implemented in Tensorflow [1]. Unless specified otherwise,
the models were trained on a NVIDIA GTX 1080 Ti GPU until the loss stopped improving
(typically 3–4 days). The architecture is a 64-channel ResNet for the relighting module
and a 16-channel ResNet for the shadow refiners, following [211].

4.4 Synthesizing training data

Capturing a large-scale dataset of real photographs to train our multi-view relighting
network would be cumbersome and fraught with practical di�iculties. To guarantee
su�icient coverage of the lighting scenarios, such a campaign would have to cover many
di�erent locations, maintain strictly fixed viewpoints during capture, and require day-
long (or even month-long) capture sessions with many cameras. Even if this approach
were practically possible, it would lack in diversity, e.g., for the kind of lighting conditions
and scene content available. In addition, data for shadow refinement supervision cannot
be directly captured.

To bypass these issues, we use synthetic training data and render photo-realistic images
using the Mitsuba [87] pathtracer. We gathered a set of 10 synthetic scenes from which
we compute the data required for training. This approach allows us to generate arbitrary
lighting conditions easily and have full control over the supervision at training time. To
maximize diversity while keeping rendering time under control, we factorize the lighting
computation by separately rendering the sun and sky contributions and compositing
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the two at training time. The use of synthetic data also allows us to render ground
truth shadow masks Sı

tgt, Sı
src, which is critical to our shadow refinement sub-network

(Section 4.3.2).

The key requirement for our training images is that they closely resemble real pho-
tographs. That is, the scenes must contain highly detailed models of outdoors scenes,
with realistic materials. For this reason, we chose to use professionally built models
(either purchased or freely available) and develop a set of data augmentation techniques.
Our experiments show that, even though our network is trained entirely on this synthetic
dataset, it generalizes well to real images (Fig. 4.17, 4.18).

4.4.1 Synthetic scenes

We gathered 10 di�erent outdoor 3D scenes to generate our training data; a sample
viewpoint from each scene is shown in Fig. 4.6. The first 8 scenes were professionally
modeled scenes we purchased1. We also used the large scene published by NVIDIA2

and created two separate subscenes (a street and a square). The scenes are in standard
industry formats (typically Autodesk 3DSMax), and include hand-cra�ed materials with
complex shading trees which we export as Mitsuba scene description files [87].

We render the scenes using path tracing and Mitsuba’s physically-based sun model,
with HDR sky environment maps from Stumpfel et al. [173]. We remove the sun from
these environment maps by mirroring the envmap. The physically-based model provides
correct colors for the sun at di�erent sun elevations, as well as a sky environment
map [79]. We apply the average color and intensity shi� of the sky for a given sun
position during compositing (Section 4.4.2).

4.4.2 Photo-realistic rendering, layer decomposition and compositing-based
data augmentation

Path-tracing complex outdoors scenes with a physically-based sun/sky model is expen-
sive: rendering a converged image at 1024◊768 takes about 10 minutes on our 400-core
cluster. However, we noticed that our method works well with relatively noisy images,

1Scenes purchased from h�p://evermotion.org, taken for collections Archexteriors vol. 17 and 22.
2h�ps://developer.nvidia.com/orca/amazon-lumberyard-bistro

https://developer.nvidia.com/orca/amazon-lumberyard-bistro
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so we use 64 samples per pixel for all our renderings, with good results. This corresponds
to a recent observation that learning with noisy rendering data can be robust [115].
Generating the same resolution image with these se�ings takes about 10 seconds on
the same cluster. For our dataset which contains about 17,000 rendered images this
approach reduces rendering time from about 100 days to only 2 days.

For each training scene we select around 30 di�erent viewpoints to obtain as much
content variety as possible. To increase the number of lighting conditions within a
fixed rendering budget, we render sky and sun illumination as two separate images
that we composite on-the-fly at training time. This allows us to apply random intensity
variations before we generate the final image. For each scene and each viewpoint, we
render with 49 sun positions, and 5 sky conditions, while varying the cloud coverage. We
store these render bu�ers as floating point linear images. Thus, for each viewpoint we
have 5 ú 49 = 245 lighting conditions, before applying any intensity data augmentation.
This leads to 245

2
= 60K pairs of training lighting conditions for each per viewpoint.

On-line compositing. For a given training step, we need to generate a source “input”
image, corresponding to the input photo we will use at test time and a target ground truth
image, corresponding to the desired image relit with the target lighting configuration.

We start by randomly selecting 2 out of the 49 sun position images to be the source
and target conditions and we randomly select a single sky condition image used for
both, scaling the sky with the corresponding average color shi� computed using the sky
model [79]. Sky and sun illumination are highly correlated so this is not strictly physically
accurate, but the quality of the results was satisfactory despite this approximation. We
also randomly scale the sun intensity separately per channel, and randomly scale all
channels of sky intensity.

Data-augmentation. We first randomly scale our images and select a random crop of
256◊256 pixels. Real-world images have a variety of exposure and white balance se�ings.
To be robust to this variety in the input, we apply random variations to both source and
target images during training.

We next take the source and target linear images with all the random perturbations
applied, and perform gamma correction, with small random variation on the gamma
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Figure 4.7: Top: linear images from le� to right, source sun image, sky image, target
sun image, cloudy image. Bo�om: composited source, composited target and cloudy
images, a�er data augmentation and tone-mapping. All linear images overexposed for
visibility.

value. We use the same random variables for all transformations, including compositing,
for source and target to preserve coherence; these are also applied to the RGB shadow
images. We illustrate this process in Fig. 4.7; details of all the processing steps for
compositing and augmentation are provided in appendix A. Our data augmentation
scheme is critical to the performance of our algorithm, as we show in an ablation test
(Section 4.5.5).

In addition to the relit image, we train our network to produce a “cloudy” layer, i.e., an
image lit only by a uniform mid-gray sky. We use it to approximate di�erent degrees of
overcast conditions.

4.4.3 MVS reconstruction of synthetic ground truth scenes

When relighting a real scene, we only have the approximate proxy representation of
the scene to generate shadow images. For shadow refinement to be successful at test
time, the network needs to learn the mapping between approximate proxy shadows and
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(a) three of the renderings used for MVS reconstruction of a training scene 

(b) ground truth geometry (c) reconstructed proxy

Figure 4.8: To bridge the gap between our synthetic training data and real multi-view
datasets, we purposely degrade the quality of the training geometry by running a multi-
view stereo algorithms on our renderings (a). Compared to the ground truth geometry
(b), the proxy (c) is inaccurate and misses many details (e.g., the trees).

ground truth shadows at training time. To achieve this we create a second representation
of each synthetic scene by rendering a set of views, subsequently used as if they were
photographs of a real scene. These photos are then processed with SfM and MVS to
create a proxy of the synthetic scene, with the typical reconstruction artifacts of this
process (Fig. 4.8). For more details on this step, please see appendix A.

4.4.4 Training with synthetic data

We train our network using both representations of each synthetic scene. The ground
truth geometry and materials are used to render the sun and sky layers, and to create the
ground truth greyscale shadow masks. The proxy is used to generate the illumination
bu�ers and RGB shadow images.
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RGB shadow images for training. RGB shadow images depend both on the source
lighting condition, as we need to sample pixels from the source images, and on the target
lighting condition as shadows are cast from the target sun direction. To generate the
complete set of RGBD shadow images for training, we would have to render 49◊(5+49)
images for each viewpoint. Our RGBD shadow images depend on the target sun position
for the shape of the shadows, and also on the source images for the color reprojection.
These source images are composited sun and sky renderings. Given the number of
viewpoints in each scene, the cost of rendering and storing these images would be too
high. Instead, we only compute the colors for 5 source sun positions, and thus compute
49◊(5+5) images for each viewpoint. During training, we use the closest source sun
position rendering stored for the sun layer in the compositing. We can then apply the
same image processing transformations on the fly as for the source and target image
to the color values in the RGBD shadow images using the same random variables for
consistency.

4.5 Implementation, Results and Experiments

We have implemented our method in both interactive and batch processing contexts. To
perform relighting, we require a set of calibrated cameras and a proxy. The user must then
specify the source sun position by clicking on a shadow caster and the corresponding
shadow on the textured mesh (see supplemental video). We present quantitative and
qualitative results, comparisons to previous work, ablation studies and applications. Our
results and video can be found at h�p://fungraph.inria.fr/deep-relighting.html.

4.5.1 �alitative results

We show the output of our relighting method for a variety of scenes, under a large range
of lighting conditions in Fig. 4.18. Our method successfully removes and resynthesizes
shadows, and achieves convincing changes in illumination levels for di�erent times of
day and lighting conditions. We present an extensive set of relighting results for the
8 di�erent scenes in Fig. 4.18 with large sun arc movements in supplemental material.
These include 2 drone video captures (first two rows of Fig. 4.18), 2 scenes from Duchene
et al. [39] (last two rows of Fig. 4.18) and 4 scenes we captured ourselves.

http://fungraph.inria.fr/deep-relighting.html
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(a) input (c) our output(b) ResNet output

Figure 4.9: Relighting is a challenging task for standard image-to-image networks. Even
when provided with our auxiliary inputs and shadowmasks, a ResNet model (b) struggles
to remove cast shadows in the input (a), and cannot generate globally-consistent color
changes and plausible novel shadows. Our model gives much more realistic results (c).

4.5.2 Comparison to a neural network baseline

Assuming proper training data is available, a natural approach to relighting outdoor
scenes would be to train a standard model such as a ResNet [66, 90] to transform an
input image given a target sun direction. We trained such a model with the image and
source/target sun direction layers as input, using the same data augmentation (sky/sun
rendering, exposure and white balance) as our approach. As shown in Fig. 4.9, the images
it produces are not satisfactory. The network completely ignores the sun direction input
layers and produces an image with reduced intensity and shadows that are only partially
removed. It also does not synthesize cast shadows that are consistent with the target
sun direction.

This purely image-based baseline simply does not have enough information to solve the
severely ill-posed relighting problem. For instance, even with its large receptive field, the
ResNet cannot properly deal with the non-local nature of cast shadows. Furthermore,
this baseline has no notion of surface appearance or surface orientation.

4.5.3 Comparison to previous work

As a second comparison we first apply a shadow removal algorithm ([149] or [188]),
then cast a new shadow using the proxy geometry. Fig. 4.10 shows the shadow removal
generally fails on our real test images. Also, the proxy is o�en too approximate to use
its cast shadows directly, justifying our shadow refinement approach. It is important
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to note however that unlike our method, neither of these shadow-removal techniques
uses multi-view information, and thus have much less information to work with than
our approach.

We also compare to the relighting algorithm of Duchêne et al. [39], where we have used
the same 3D reconstruction as in their original method. We see that Duchêne et al.
achieve good quality shadow casting close to the original sun direction, but the shadow
shape is completely incorrect when moving further away. The method also su�ers from
residual artifacts due to incorrect shadow classification (examples highlighted by red
squares). These artifacts can be be�er seen in the companion video.

(d) our output

(a) input (b) [! et al. 2017]
shadow removal

(c) [Wang et al. 2017]
shadow removal

(f) [Wang et al. 2017]
+ proxy cast shadows

(e) [! et al. 2017]
+ proxy cast shadows

Figure 4.10: We compare our method to a baseline that removes shadows using o�-
the-shelf algorithms then casts new shadows from our proxy geometry. (b) and (c) are
the output of the shadow-removal algorithms from input (a). (e) and (f) show the same
images with new shadows generated using the proxy. Our output is significantly cleaner
(d).
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(a) input (c) our output(b) [Duchêne et al. 2015]

Figure 4.11: Duchêne et al. [39] o�en leaves shadow residuals (b), bo�om. Their method
also breaks when the desired relighting is far from the input (b), top. Our method is
more robust and can synthesize significant lighting changes (c).

(a) input (b) ground truth (c) our output

Figure 4.12: We evaluate our model on a held-out synthetic scene (a) for which we can
generate arbitrary novel lighting conditions (b). Our model can faithfully predict the
novel illumination (c) even though it has not been trained on this scene and has only
access to the degraded geometry (proxy) and input images.
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4.5.4 Comparison to synthetic and real ground truth

We next show comparisons to a synthetic scene held out from the training data in
Fig. 4.12. Note that we used a reconstructed proxy and not the perfect, ground truth
geometry to obtain these results.

We also show a qualitative ground truth comparison with a real scene, in Fig. 4.17. For
this, we photographed the same scene, at di�erent times of day, with the same viewpoint.

4.5.5 Model ablations

We performed several ablations of our model. For each analysis we trained the di�erent
configurations for 100 epochs. We held out one synthetic scene for testing and trained
our network on the others.

Table 4.1 summarizes the numerical error for the di�erent ablations

We present interactive side-by-side comparisons of the di�erent ablations as a web page
in supplemental materials for three di�erent scenes.

Data augmentation. Our data augmentation procedure randomizes exposure, white
balance and gamma correction. It is critical to the success of the network, especially in
generating correct illumination levels. In Fig. 4.13, we show an example output of our
model trained without data augmentation.
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input our outputno data augmentation

Figure 4.13

Illumination features. When we remove the illumination features, the network has
di�iculty finding the correct illumination levels, and generates inconsistent results. These
layers help the network alter the image intensity consistently, improving shadow removal.
This is visible Fig. 4.14.

input our outputno illumination bu!ers

Figure 4.14

Shadow refinement. If we only remove shadow refinement from our solution, shadow
removal is also worse, and shadow re-synthesis exhibits ghosting artifacts as visible in
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Fig. 4.15.

input our outputno shadow refinement

Figure 4.15

RGB shadow images. If we deactivate our RGB shadow images and use standard
gray-scale shadow masks instead, the network cannot overcome over-reconstruction
artifacts and the resynthesized shadows mostly follow the masks as we can see if Fig.
4.16.

input our outputno RGB shadow images

Figure 4.16
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model L1 error L2 error

our full model 0.131 1.98e≠4
no shadow refinement 0.179 2.43e≠4

no RGB shadow images 0.184 2.72e≠4

no illumination bu�ers 0.200 2.51e≠4

no image augmentation 0.445 4.54e≠4

Table 4.1: We evaluate the error of our relighting numerically on a held-out ground truth
synthetic scene. We report the average L1 and L2 pixel error. The input illumination
bu�ers, shadow refinement subnetworks and data augmentation procedure all contribute
to the final quality of our result.

4.5.6 Applications

Our method can be used in several di�erent contexts. We present four potential applica-
tions: interactive relighting, drone-video relighting, relighting for image-based rendering
and relighting of reconstructed textured meshes.

(a) input photo (b) same scene, 3h30 later (real photo) (c) our output

Figure 4.17: Our network generalizes to real input images (a) and produces photorealistic
outputs (c) that closely match real, novel lighting conditions (b).

4.5.6.1 Interactive Relighting

In our interactive application the user selects the input image to relight, and the network
produces the relit image together with the “cloudy” layer. We can simulate varying levels
of overcast conditions by inserting a blurring kernel a�er shadow refinement and before
relighting, providing a user-controlled “cloudiness” parameter. We then blend between
the resulting relit and cloudy image to produce the output (Fig. 4.19).
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We have developed an integrated interactive viewer by calling tensorflow with a CUDA -
OpenGL coupling, allowing interactive performance.

Performance numbers: 5-8 frames per-seconds on an Dell Precision 7810 computer with
an NVIDIA 1080GTX GPU at 1080p resolution (see video).

Performance breakdown Our pipeline takes less than 10minutes from the beginning
of the multi-view calibration procedure to the final relit result. In particular our neural
network runs at interactive rates, which enables a user to alter the lighting dynamically.
We report the computational cost for a typical scene with 109 input photos in the table
below.

preprocess camera calibration 1 min
proxy reconstruction 6 min
manual sun position input 15 s

runtime rendering RGB shadow images 40 ms
rendering other bu�ers <10 ms
network inference 70 ms

4.5.6.2 Drone video relighting

We extract frames from a drone video and perform standard multi-view reconstruction.
We can then individually relight the frames of the video using our approach, either at
a single di�erent time or dynamically changing the lighting during the video (Fig. 4.1,
top row). This is best seen in the supplemental video. Our algorithm treats each frame
independently, without explicit temporal regularization, so we sometimes observe flick-
ering in the rendered videos. This is easily corrected using a post-processing temporal
smoothing method like that of Lai et al. [106].

4.5.6.3 Relighting for Image-Based Rendering (IBR)

We have integrated our relighting in an interactive IBR system implementing [19], by
relighting the blended novel view on-the-fly as if it was an input photo. The ability
to relight for IBR overcomes one of the major limitations of these techniques that are
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input our outputs

Figure 4.18: Results using our network. The le�most column is the input, followed
by three outputs corresponding to di�erent sun positions. First and second row
respectively generated using the Chichen Itza drone video (copyright Drones Yu-
catán youtu.be/qkveKd3nW9w) and Stonhenge drone video (copyright Namyeska
youtu.be/JHeDP7_YBos) both used with permission.

https://www.youtube.com/watch?v=qkveKd3nW9w
https://www.youtube.com/watch?v=qkveKd3nW9w
%20https://www.youtube.com/watch?v=JHeDP7_YBos
%20https://www.youtube.com/watch?v=JHeDP7_YBos
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input 50% cloudiness 100% cloudiness

Figure 4.19: Our model exposes a user-controllable “cloudiness” parameter to modulate
between sunny and overcast conditions.

otherwise restricted to the lighting conditions of capture. Please see the video for
examples.

4.5.6.4 Relighting for Reconstructed Textured Meshes

We can relight all the images for a given multi-view dataset in a new sun position, and
then re-run the final texturing step a�er geometric reconstruction. In supplemental, we
provide three meshes with di�erent versions of the same scene, i.e., two conditions in
addition to the original captured lighting (Fig. 4.20).

(a) original mesh (c) relit mesh 2(b) relit mesh 1

Figure 4.20: Our algorithm can also be used to relight an input textured mesh (a) to
di�erent lighting conditions (b), (c).
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4.6 Relighting for captured Scene composition

While capturing scenes for such IBR methods is as easy as taking a few tens of pho-
tographs, there is no obvious way to change the geometry, and in particular to realistically
combine content from di�erent captures into a single richer virtual environment. In
Chapter 3 we showed how objects can be removed from scenes and Thonat et al. [184]
also present a way to move objects a�er inpainting, but only in a single scene. Com-
positing objects coming from di�erent scenes poses a bigger challenge since this would
require the lighting conditions of the di�erent scenes to be coherent to have a realistic
composition. The interaction of shadows between the scenes must be handled and the
lighting directions must be "aligned". Compositing scene is thus inherently related to
relighting. Using the relighting method we presented, we introduce the first method
that allows combination of captured scenes with coherent lighting, suitable for IBR,
multi-view texturing but also image manipulation. This extension was developed as part
of Baptiste Nicolet’s internship which the author of this thesis co-supervised and led to
a separate publication [138]. This contributes to the main goal of this thesis by giving
additional artistic control to IBR.

Naively cu�ing pieces from one scene to another would result in three important issues.
First, lighting is inconsistent between di�erent scenes both in terms of direction and
intensities, since the illumination conditions are not the same in each capture. Second,
regions of contact between pieces of one scene o�en su�er from an unrealistic look of
“floating” when directly inserted into another scene. Finally, inconsistencies in camera
parameters (e.g., color temperature) may occur when combining captures and negatively
a�ect the final result.

To address lighting inconsistency, we use our multi-view relighting method. However,
since it was designed for a single scene, we need to adapt it to the context of scene
composition. Specifically, when inserting part of potentially several source (or part)
scenes into a target (or reference) scene, we need to align the lighting conditions of
the source scenes to that of the target while synthesizing new realistic shadows in the
composite scene. Correct handling of overlap between shadows in the source and target
scenes is also a requirement. We develop a two-pass approach that enables good shadow
removal and consistent shadow and lighting in the composite scene, by adapting the
network so it can be used without retraining. We also provide solutions to increase the
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realism of contact geometry by creating more realistic contact shadows using Ambient
Occlusion and allow user control of color temperature inconsistencies.

Figure 4.21: Overview of this extension. We use multi-view datasets (a) as inputs. One
dataset is considered the "reference" dataset (d), and we use its sun direction to relight
the other datasets (c), then we compute a composition of the selected parts (b) into the
reference scene (e). Finally, we relight the composite scene as one to synthesize shadows
across scenes and we account for the changes in the environment of each scene (f).

4.6.1 Overview

This application can be decomposed into three main components :

1. An interactive application that allows the user to import, select, and move parts of
captured scenes to create the desired composition.

2. An adaptation of our relighting solution to enforce consistent lighting and shadows
in the composite scene.

3. An environment compensation step to account for the modification of the sur-
roundings of each part.

The overview of the scene composition extension is displayed in Fig. 4.21.

4.6.2 Composition Interface

The first building block of the approach is the composition interface. During this stage,
we render a preview of the composition with a slight variation of the unstructured
lumigraph algorithm [20], that allows the user to interactively edit their selection and
move parts around until the composition is finalized.



Chapter 4. Multi-view Relighting and Scene Compositing
using a Geometry-Aware Network

89

We refer to the scene in which the user imports objects as the reference scene, and we
will refer to the objects imported in the reference scene as parts. We refer to all scenes
together as the constituent scenes, and the final combined scene as the composite scene.
Finally the scenes used to extract parts are referred to as part or original scenes.

4.6.3 Consistent Composite Lighting

The composite scene contains the geometry from the di�erent parts and the reference
scene. We next proceed with the relighting step, to produce consistent lighting in the
composite scene. If applied naively (See section 4.6.5 below), our relighting method
cannot handle the multiple constituent parts and their corresponding di�erent lighting
and shadow levels. In addition, it cannot handle the di�erent shadow interactions
between the geometries coming from separate scenes if used on each constituent scene
separately. To avoid the artifacts from such a naive solution, most notably for shadow
removal, we proceed in two passes.

1. An o�line pass relighting the entire scene of origin of each part to match the
lighting conditions of the reference scene. We do so by relighting all the input
views.

2. A second pass where we relight the composition, allowing us to generate cast
shadows between parts. This can be either online in the novel view, or o�line on
all the input views, allowing interactive IBR for free-viewpoint navigation.

In most of the examples given, we used the lighting conditions of the reference scene
as target lighting conditions. Compositions are however not restricted to the lighting
conditions of a constituent scene, and we can create compositions using any desired
target sun direction (e.g., Fig, 4.27).

4.6.4 Environment Compensation

Consistent lighting and shadows in the composite scene are o�en not enough to achieve
a satisfactory level of realism. As each part is extracted from a given environment in
its scene of origin, and inserted in a new one, residual visual artifacts may remain even
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a�er relighting has been applied. We identified two factors that improve realism of
compositions: ambient occlusion and camera parameters. We estimate the former in both
the scene of origin and the reference scene for each part, and apply the corresponding
compensation to the result of the second step. We provide the user with a per-scene color
temperature slider, since we have no control over the camera parameters with which
each scene is captured. The result of this compensation step is the final composition,
suitable for IBR.

4.6.5 Naive solution

Direct compositing of di�erent parts into the reference scene creates obvious visual
artifacts due to the di�erent lighting conditions in the constituent scenes (e.g., Fig. 4.22(a)).
Our first a�empt was to apply the relighting network to the composite scene in a single
pass. In our case, there are multiple source conditions, one for each part and one for the
reference scene, while the target condition is common to all constituent scenes. To apply
the method to the composite scene, we generate all source information (i.e., shadow
maps, illumination bu�ers) on a per-pixel basis, according to the source condition of each
original scene; i.e., source shadow map, sun direction, elevation etc. While the network
was able to correctly predict the refined source shadow map in spite of the multiple sun
orientations, it failed to completely remove shadows in some areas of the composition,
as shown in Fig. 4.22.

Indeed, the network was never trained to deal with compositions of multiple scenes. One
possible explanation for this failure is that the network cannot handle multiple levels
of the shadows in the di�erent scenes, since they can be significantly darker from one
capture to another. Since the network is trained with single scenes, it may have learned
to deal with a global value over the whole scene for shadows to be removed or added.

A direct solution to this issue would be to generate composite training data to re-train
the network for multi-scene relighting. However, generating such data is very complex
compared to the original, single-scene case. If we wanted to re-train the network, we
would have to manually cut di�erent pieces from the various training models, and create
a large number of combinations of parts and references where each composition would
require manual placement of pieces. This process would be even more complicated when
inserting parts from several di�erent scenes into the composite. As a result, we chose to
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(a) Naive Composition (b) Direct Relighting (c) Deferred Relighting

Figure 4.22: Example of the failure to remove shadows while directly using the relighting
network of [147] in the multi-scene se�ing. The original shadow in (a) is not completely
removed when using the network directly (b). Our approach allows us to remove it more
e�ectively (c).

develop a new approach that can use the original pre-trained CNN by using two separate
passes, and some careful preprocessing to generate the correct illumination bu�ers.

4.6.6 Two-pass Relighting for Composite Scenes

Our two-pass solution consists of first relighting each scene individually, and then
relighting the composition in a second pass. Our approach is designed to correctly
remove shadows in the multi-scene se�ing – which cannot be handled directly by the
relighting network – and to provide a consistently lit composite scene. We proceed as
follows:

• Each scene is relit individually, i.e., we relight all the input images of each scene to
match the lighting conditions of the reference scene. This is done once, o�line, and
requires care to only consider the selected parts of each scene. This pass generates
consistent lighting for each part, but we are lacking the interactions between parts
and the reference scene.

• In the second pass, we relight the current viewpoint of the composition rendered
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with the input images modified by the first pass. This adds cast shadows between
parts, and creates fully consistent lighting and shadows.

First Pass. The goal of the first pass is to generate lighting and shadows on the selected
part itself that are consistent with the reference lighting conditions (i.e., with respect to
its orientation in the target scene), and in particular to correctly remove shadows of the
source lighting condition of each part. We do this by adapting the relighting network to
relight each selected part. This pass is applied on the original part scene, but care must
be taken to provide correct layers to the relighting CNN. We need to avoid unselected
parts of the original scene from casting shadows onto the selected parts. We modify
the shadow casting step to avoid this, see Fig. 4.23. Specifically, we send a shadow ray
from each visible intersection point in the sun direction, to determine if the visible point
is in shadow. We compute the source shadow image normally, but we compute the
target shadow image only with the selected geometry, to avoid shadows cast by the
non-selected geometry.

(a) Original Input 

Image

(b) Relit Image - no 

shadow filtering

(c) Relit Image - with 

shadow filtering

Figure 4.23: Illustration of our first pass relighting strategy. When relighting the input
viewpoints (a) of a scene, we need to make sure that no shadow is cast by unselected
geometry on the selected part (outlined in white in image a), resulting in hard to remove
shadows (outlined in red in image b). We therefore intersect rays only against the
selected geometry when computing the target shadow map. Since the network cannot
hallucinate full shadows, we end up with a "shadow-free" relit image (c).

The shadow refinement part of the relighting network is thus provided with the input
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that will produce the desired result. At the end of this pass, we have each input image
of each part scene with shadows removed, and self shadows correctly cast from the
selected geometry in the reference lighting conditions (Fig. 4.23).

Second Pass. We can now apply the relighting network a second time on the full
composite scene to cast shadows between constituent scenes, and finalize the consistent
overall lighting.

This pass also requires that we carefully prepare the data sent to the relighting network.
Specifically, when computing the source shadow images, we ray cast again only con-
sidering visible selected geometry of each part. The target shadow image is computed
using the full composite scene containing all the geometry.

This pass can either be done online at a given novel view, or as a preprocess on all input
views (i.e., reference and part input views), and then used for IBR (see Sec. 4.6.8).

4.6.7 Environment Compensation

A�er our two pass relighting, the resulting composite has a greatly improved level of
realism, for example Fig. 4.22 (c). However there are two remaining issues.

First, parts inserted into the reference scene o�en appear to “float” above the ground
because we have not captured the mutual shadowing e�ect between the two scenes
in the lighting. We compensate for this problem by computing an Ambient Occlusion
(AO) shi� based on the geometry of the two scenes, similar in spirit to the di�erential
rendering of Yu et al. [204].

Second, the overall color temperature of the two scenes may be very inconsistent, and
may not convey the desired visual e�ect. We allow the user to control the color balance
of the composition to achieve the desired e�ect.

4.6.8 Implementation & Results

All our results are obtained on scenes reconstructed using standard Structure-from-
Motion (SfM) and Multi-View Stereo (MVS) to create a geometric proxy. We used the
commercial SfM/MVS package RealityCapture [151] to perform reconstructions.
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(a) Without AO (b) AO Shift Map (c) With AO

Figure 4.24: Illustration of our AO shi� computation. We compute a per-pixel ambient
occlusion shi� (b) by casting rays in the original scene of the visible part and in the
composite scene. We apply the ratio of the computed values (b) to the composite image
(a), resulting in image (c).

(a) Before Temperature Compensation (b) After Temperature Compensation

Figure 4.25: Illustration of our color balance compensation.

We enable interactive exploration of the resulting composition by applying our extended
method on all viewpoints of each constituent scene. We then use the same per-pixel
ULR as for the composition preview, reprojecting modified images. In order to prevent
occlusion issues when relighting a viewpoint of a given scene occluded by another part,
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Reference Scene Extracted Part(s) Naive Composition Our Method

Figure 4.26: Examples of compositions created with our approach. For each row, the
le�most image corresponds to the reference scene for our composition, the next image
shows the scene from which we extract a part, highlighted in green, the next image is
the naive IBR composition of the scenes, and the rightmost image is the result of the
composition using our approach.
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Scene Pass 1 # Images Pass 2 # Images
2nd row 7m36s 177 33m8s 354
3rd row 3m1s 75 30m56s 247
4th row 3m24s 79 23m35s 194
6th row 4m42s 85 15m26s 126

Table 4.2: Computation time of some of our compositions. For each line, the first
column indicates which composition we refer to (row of Fig. 4.26), the second is the
duration of the first pass, relighting all input viewpoints of the imported scenes. The
third column (# Images) is the number of images of each scene, and the fourth is the time
of the second pass, which allows interactive free-viewpoint navigation in the composition
a�er this computation. This step is longer than the first one due to our expensive
computation of ambient occlusion via ray casting, and could be accelerated (e.g., using
ray-tracing hardware). The last column shows the number of input images (# Images) of
the composite scene that are relit.

we adjust each camera’s clipping planes to be as close as possible to the selection, thus
removing most of these issues, and ensuring good quality renderings when the user
viewpoint is near a part’s input viewpoint.

We show statistics of our scenes and computation times on a Intel Xeon Silver 4110
with 32GB RAM and �adro P5000 GPU in Tab. 4.2. These computation times can
be explained by the need to cast visibility and shadow rays through each pixel of the
scene in both passes, as well as AO sample rays in the second pass, and running the
result through the network. While we already use accelerating data structures and
leverage SIMD instructions on the CPU side, the ray-tracing overhead could be further
accelerated using ray-tracing hardware.

The relighting network this extension can be applied in di�erent context such as: multi-
view image editing, IBR and textured meshes.

We show 7 examples of compositions in Fig. 4.26, including the case of mixing 3 di�erent
scenes, and the case of a di�erent lighting direction from the reference scene (Fig. 4.27).
As we can see, our compositions provide a high level of realism, providing a fast way to
rapidly create more complex scenes.

Such multi-view editing can be directly used for IBR. We can either apply the second pass
relighting for each novel view on the fly (taking approx. one second per frame) or apply
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(a) Naive Composition (b) Arbitrary Output

Figure 4.27: We can produce compositions using any provided sun direction (b).

the pass on all the input images for all views of the reference and part scenes. When
doing the la�er, we can use our per-pixel ULR for interactive free-viewpoint navigation.

We also show composite meshes for this extension to our method. First, we apply it to all
the input images, then re-texture the composite mesh with the relit images. In Fig. 4.28
we show two examples of composite textured meshes with coherent lighting.

Figure 4.28: Two examples of meshes textured using the relit input viewpoints.

4.6.9 Comparisons & Evaluation

We show comparisons with naive compositions in Fig. 4.26. We also show a comparison
with the Deep Neural Textures approach [181], which is the only other case of composite
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captured scenes, albeit only with pieces of the same scene. As we can see Fig. 4.29, Deep
Neural Textures do not generate cast shadows for the duplicated pieces.

(a) Reference viewpoint (b) Naive Composition

(c) Thies et al. 2019 (d) Our Method

Figure 4.29: Comparison of scene compositionwith [181], in the case of object duplication.

Finally we provide a ground truth comparison by capturing a scene twice, once with an
additional object and once without. We show our composite compared to the ground
truth version in Fig. 4.30. While not perfect, our composition is quite close to the ground
truth. Examples of remaining artifacts include small e�ects such as the highlight on the
le� arm of the statue, since the network is not designed to handle non-di�use e�ects.
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(c) Ground Truth (e) Our Result(d) Naive Composition

(a) Captured Object (b) Empty Viewpoint

Figure 4.30: Real-world ground truth comparison of a composition with a picture of a
object inserted in a scene. While lacking some global e�ects, our approach conveys a
convincing result compared to the naive solution (d) and the initial conditions of the
statue (a).

4.7 Limitations and Future Work

Limitations. Our relighting method generally produces plausible results for the scenes
we tested, including scenes from previous work, drone captures, internet image datasets
and our own captures. It also permits compositing of scenes with di�erent lightings.
Occasionally, slight shadow residue is visible in some views of a given dataset (see
Fig. 5.10(a)); this typically occurs in overexposed or very dark image regions where
shadow information is unreliable. This phenomenon may be even more visible when
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applying the network twice in case of compositing. Our network may also occasionally
produce small “checkerboard” artifacts, that come from the “deconvolution” upsampling
layer. This is a common issue with this type of network.

Our goal is plausibility, and therefore in most cases the network does not hallucinate ad-
ditional shadows when no occluder geometry is available. This can be seen in Fig. 5.10(b)
where the top branches of the palm tree are missing from the relit shadow at the input
sun position. However the result is plausible since the original shadow is cleanly removed.
This limitation is shared with the compositing application where missing occluders do
not cast shadows on inserted content. In addition, as the network does not explicitly
handle global e�ects it can have visible impacts on compositions. It can be seen in the
real-world ground-truth comparisons (Fig. 4.30), where while we achieve significant
improvement (b) over naive compositing (d), our method fails to account for global
e�ects such as the reflection of light over the water’s surface, which illuminates the
statue from behind.

Future Work. Our method is currently limited to outdoor scenes with a simple light-
ing model. Being able to treat interior scenes, where materials and indirect illumination
are crucial, is one direction to generalize this work; we introduce a method going in
this direction in Chapter 6. Another possible research direction is to allow more drastic
changes such as day/night. One could also integrate our method with a generative
adverserial network to give more faithful shadows especially when dealing with ex-
tremely bad geometry. From the image editing perspective, the requirement of a full
reconstruction and the number of images required to get one limits the applicability of
the method. It would be interesting to reduce the number of images needed and have
the method work with other geometry representations such as depth maps, e.g., allowing
its direct use with RGBD images.
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(a) input (b) our output: residual shadows 

(c) ground truth (d) our output: missing geometry

Figure 4.31: Thanks to our RGB shadow images, our algorithm can generally refine
inaccurate shadows. However it sometimes confuses texture detail with the input
shadows (a), which creates a visible shadow residual (b). When a scene object is not
properly reconstructed by MVS (shadow of the palm leaves in (c)), our model cannot
hallucinate the missing shadows (d).

4.8 Conclusion

In this chapter, we presented a deep-learning based method, guided by approximate
reconstructed geometry, that enables multi-view relighting. Important elements of
our relighting solution are the shadow refinement subnetworks, guided by our newly
introduced RGB shadow images, as well as illumination bu�ers. The use of synthetic
data allows generation of highly diverse ground truth data, and the creation of a proxy
representation in addition to ground truth geometry for each synthetic scene allows
supervised training for shadow refinement. The main strengths of our approach and its
robustness allowed us to extend the relighting work to a method to simply and quickly
create visually compelling compositions of captured multi-view scenes, by adapting the
relighting network to our task.
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Our results show that by performing relighting of multi-view datasets we greatly increase
their utility for traditional applications such as photogrammetry meshing and IBR hence
providing a strong editing capability on top of IBR methods. We also demonstrate very
powerful novel image and video manipulation applications for drone footage and photos
of landmarks, where internet-based multi-view data is available showing that multi-view
information can largely improve single image editing capabilities. Lighting is crucial
for scene compositing; we also present the first method that can handle several scenes
and provide coherent illumination in a resulting composite scene, allowing, through
relighting, easy geometry modification of scenes without the need for asset creation.

In this and previous chapters, we presented powerful editing methods for IBR. One of
their strengths is also a weakness regarding our main goal which is to have flexible
image-based rendering methods. All the methods presented so far are a preprocessing
step for input images. These input images are first edited before being used by an
IBR algorithm that is agnostic to the fact that images where edited. That means that
it increases the number of steps and interaction needed from users which decreases
the usability and interest of the pipeline. In Chapter 6 we a�empt to reunify IBR and
relighting in a single algorithm that allows free-viewpoint relightable rendering. Before
presenting this approach, we introduce in Chapter 5 a newmachine learning approach for
IBR, Deep Blending. More specifically we present our contribution to per-view geometry
meshing. While this topic is somehow orthogonal to the main goal of the thesis it greatly
contributes to the quality of the final rendering, leading to improvements in state of the
art for IBR. Moreover, the experience gained during the Deep Blending project and the
be�er understanding of IBR issues, greatly impacted the design choices of the method
presented in Chapter 6.



C h a p t e r 5

Per view meshes for Deep Blending
Rendering

5.1 Introduction

As technology and applications evolve, there is increasing demand for realistic 3D content
display. The traditional graphics pipeline o�ers significant flexibility but asset creation
is usually very time consuming as discussed in Chapter 1. This property makes it hard
to apply to the replication of real content especially at the scale of entire rooms or for
outdoor scenes. There is a need to make full scenes easy to capture, be used for free-
viewpoint, interactive navigation. As discussed in Chapters 1 & 2, Image-Based Rendering
(IBR) can provide such realistic interactive imagery, but current methods [70, 139, 143],
still su�er from many visible artifacts, especially when moving far from the input photos.
Novel views are synthesized in IBR by combining warped pixels from input photos;
output quality depends on the computation of visibility in the presence of inaccurate
geometry and on the blending method.

Geometry quality. While Multi-View Stereo (MVS) algorithms now provide impres-
sive 3D reconstructions, they cannot achieve the quality required for realistic IBR. A first
set of MVS algorithms (e.g., [161]) provides high-quality depth maps containing fine
details, while a second set provides be�er globally consistent geometry, i.e., they esti-
mate a smooth connected surface, even in hard-to-reconstruct (e.g., textureless) regions
(e.g., [89, 152]). The meshes provided by either method still result in artifacts if used
directly by an IBR algorithm (e.g., Buehler et al. [19]). State-of-the-art IBR algorithms
try to overcome this di�iculty using per-view geometric structures, which may not be
globally consistent but achieve good visual quality [24, 70] if blended correctly.

Nevertheless, they still su�er from geometric inconsistencies, outliers, and inaccurate
occlusion edges. We develop a new per-view geometry refinement method that overcomes
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Figure 5.1: Image-based rendering blends contributions from di�erent input images to
synthesize a novel view. (a) This blending operation is complex for a variety of reasons.
For example, incorrect visibility (e.g., for the non-reconstructed green surface in input
view (1)) may result in wrong projections of an image into the novel view. Blending must
also account for, e.g., di�erences in projected resolution ((2) and (3)). Previous methods
have used hand-cra�ed heuristics to overcome these issues. (b) Our method generates a
set of ranked contributions (mosaics) from the input images and uses predicted blending
weights from a CNN to perform deep blending and synthesize (c) novel views. Our
solution significantly reduces visible artifacts compared to (d) previous methods.

the shortcomings of each of the two sets of reconstruction methods. We do this by
using the information available in the one set of methods as a prior to compensate
for information lacking in the other. Our solution, which is separate from our neural
network, generates per-view geometry that is of su�icient quality to allow deep blending
to succeed.

Blending. With only few exceptions (e.g., [118]), previous solutions use heuristic
blending to handle geometric inaccuracies, and to correct image seams and ghosting
due to view-specific di�erences in the combined images. Blending needs to correct for
artifacts due to incorrect occlusion edges, visible seams due to texture stretch/misalignment,
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and lack of color harmonization, as well as view-dependent e�ects from highlights,
di�erent exposures, and unsuitable camera selection.

These complex, o�en contradictory requirements have led prior work to develop case-
specific, hand-cra�ed heuristics that always fail for some configurations.

The main insight is that a data-driven solution is currently a be�er strategy to e�ectively
satisfy these challenging requirements.

The full pipeline thus introduce a deep blending algorithm, leveraging convolutional neural
networks (CNNs) that learn blending weights that will most reasonably approximate real
imagery for novel view synthesis (Fig. 5.1). For this deep blending method to succeed,
the underlying geometry used to reproject the original input images in the novel view
space should be as faithful as possible. A blending method cannot recover from missing
objects or broken reconstruction if none of its input provide a viable candidate.

Contribution. The full deep blending approach mainly introduces an e�icient data-
driven blending weight computation. In the context of this thesis, while we discuss the
full pipeline1, our contribution is limited to:

• An improved depth-map to mesh conversion algorithm with occlusion edges de-
tection, and a geometry-aware mesh simplification, that together produce high-
quality source geometries that greatly improve the input and performance of deep
blending for IBR.

Our meshing and simplification solution provides high quality input to the blending
network while highly reducing the size of the meshes. The reduced number of triangles
of our approach allows for interactive rendering and low memory impact making the
full pipeline accessible to consumer GPUs.

For a majority of the scenes tested – both outdoors and indoors – the full deep blending
method achieves excellent quality for free-viewpoint navigation. This is thanks to the
joint combination of the new blending and to the high-quality inputs enabled by our
meshed depth maps. The method is also capable of achieving interactive frame-rates
with our highly simplified per-view meshes.

1For more details please see the publication, Hedman et al. [72] h�ps://repo-sam.inria.fr/fungraph/
deep-blending/

https://repo-sam.inria.fr/fungraph/deep-blending/
https://repo-sam.inria.fr/fungraph/deep-blending/
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Figure 5.2: Overview of the full pipeline. Top: Scene preprocessing entails constructing 1)
6-DoF image positions using SfM, 2) per-image depth maps using MVS, 3) a global mesh,
4) mesh-refined depth maps, and 5) simplified per-view meshes respecting occlusion
edges. Bo�om le�: Training uses a perceptual loss to compare our pipeline’s output
(bo�om) for a known viewpoint to the real image; a temporal consistency term penalizes
di�erences a�er viewpoint perturbation. Bo�om right: Deep Blending outputs color
images for novel scene viewpoints. At each output pixel, InsideOut [70] ranks pixels in
the dataset images. Our network takes 4 color mosaics of the top samples, plus a global
mesh rendering, and outputs per-pixel blend weights. The weighted sum of inputs forms
a new color image.
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5.2 Overview

The core part of most IBR algorithms is the reprojection and blending of input images
to synthesize a novel view. This blending step is a very complex operation that needs
to compensate for inaccurate geometry and for artifacts induced by view- and image-
dependent e�ects. Previous methods use complex heuristics, hand-cra�ed to work for
specific scene configurations. However, they are generally unable to provide realistic
free-viewpoint navigation for IBR. Deep learning o�ers a very powerful tool for coping
with variable inputs, while explicitly rewarding high quality blending.

For Deep blending approach to work correctly, we need to provide the network with
the best possible geometry to reduce the amount of artifact correction required. When
learning blending weights, we restrict the output color to be a positive linear combination
of the inputs. This is key in understanding why giving high quality input, close to the
expected output, is crucial.

Our input is a set of input photographs of a scene. We first calibrate the cameras
using structure from motion (SfM) [160]. Following previous work [70], we use per-view
meshes for rendering. The goal of the geometry refinement step is to provide high quality
per-view depth map refinement, and generate the compact meshes that respect occlusion
edges as much as possible. We achieve this by combining two di�erent MVS methods:
COLMAP [161] – based on Patch-Match [8] – that provides fine details in each per-view
depth map, and methods based on Delaunay tetrahedralization [89, 152] that provide a
smooth mesh estimate in regions where COLMAP fails. The complementary information
from each approach is used as a prior for the other one during the per-view depth
refinement algorithm. To be able to re-project images into a novel view the depth-maps
are meshed. Meshing allows forward re-projection which is very e�icient on the GPU.
First we detect occlusion edges based on a triangle stretching criteria while avoiding over
detecting for surfaces seen at a grazing angle. Then we connect pixels of the depth maps,
forming triangles, except at detected occlusions. This gives a clean qualitative mesh,
which contains one vertex per pixel. This high number of vertices limits performance,
so we introduce a simplification method that preserves the geometric information in
image space while allowing e�icient reprojection. Our contribution in this thesis is on
the meshing and simplification of the refined depth-maps.
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Our experiments show that using our simplification method and occlusion detection, our
meshes can be simplified at lower scales while maintaining high fidelity to the refined
depth maps. This high level of simplification allows interactive rendering for many of our
scenes. Compared to previous work, our method significantly reduces errors in meshing
and artifacts caused by simplification.

5.3 High-�ality Per-View Meshes for Deep IBR

The input to our method is a set of photos calibrated with SfM [160]. From these, we can
use MVS reconstruction to generate per-view depth maps, that can then be converted
into per-viewmeshes for IBR [70]. There are several desirable properties for these meshes:
1) they need to respect occlusion edges, and should be “cut” with no geometry straddling
a depth discontinuity, thus avoiding reprojection artifacts in novel views; 2) they should
have low triangle complexity to minimize the e�ect on frame-rate during rendering,
and preferably have fewer triangles in the background. When these requirements are
satisfied, visibility-related artifacts are reduced during rendering, making the task easier
for our deep blending approach, while maintaining interactive frame-rates.

To respect occlusion edges, we introduce a per-view refinement algorithm that fuses and
combines information from two di�erentMVS reconstructionmethods that have di�erent
completeness-vs.-accuracy tradeo�s. To achieve low mesh complexity, we present a view-
dependent mesh simplification method that achieves very high compression rates while
respecting occlusion edges. Our solution results in significantly be�er preservation
of occlusion edges and much lower mesh complexity overall, compared to previous
methods [70].

5.3.1 Per-View Geometry Refinement

To achieve good quality per-view refinement, we combine two complementary MVS
methods, one with be�er detail accuracy, and one with be�er global completeness. For
accurate depth map reconstruction, we use COLMAP [161]. COLMAP resolves small
details accurately, but can break down for large textureless regions. For global mesh-
ing, we use RealityCapture [152], which is the commercial evolution of the CMPMVS
method [89]. This method provides a smooth global mesh estimate, providing informa-
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Figure 5.3: Top: Globally consistent reconstruction with RealityCapture [152]. Bo�om:
Same scene and viewpoint using COLMAP [160, 161]. We can clearly see that the feature-
less wall is completely missing from the COLMAP depth maps, but a smooth estimate
is provided by RealityCapture. Conversely, the details of the back of the chair are only
present in the COLMAP depth maps.

tion in regions that are not reconstructed by other approaches (e.g., textureless content).
The strengths and weaknesses of each method are clearly illustrated in Fig. 5.3.

The Patch-Match-based algorithm of COLMAP successfully finds small structures in the
scene, but o�en tends to produce unreliable edges, since it optimizes for photoconsis-
tency using a patch. This is a known problem in stereo algorithms, i.e., the algorithm
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Figure 5.4: Merging globally and locally accurate depthmaps leads to improved occlusion
edge handling and artifact minimization. Le�: Reference image Top middle: Globally
complete RealityCapture mesh. Top right: Locally accurate COLMAP depth map.
Bo�ommiddle: Fused COLMAP and RealityCapture depth maps. Bo�om right: Our
refined depth map.

must choose between edge fa�ening and missing small structures (see Scharstein and
Szeliski [158], who point out that approaches focusing on details fail in textureless
regions). However, since we already have a globally consistent geometry, we can signif-
icantly constrain the search space for our stereo optimization and still obtain reliable
results by performing single-pixel optimization.

At a high level, we optimize for per-pixel photoconsistency, but use the geometries
estimated from MVS as strong priors to avoid ambiguity. We first fuse the COLMAP
depth maps with the RealityCapture mesh wherever COLMAP is uncertain, replacing
any unreliable depth by the global geometry. Then, we run a per-pixel photoconsistency
optimization to refine the occlusion edges further, similar to InsideOut [70].

The resulting depth maps both preserve small features and provide reliable information
in textureless regions. In Fig. 5.4, we show how our approach combines the advantages
of both sources of 3D. As this step is presented in another Ph.D thesis [69], we refer the
readers to the full paper2 [72] for more details.

2url: h�ps://repo-sam.inria.fr/fungraph/deep-blending/

https://repo-sam.inria.fr/fungraph/deep-blending/
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5.3.2 Occlusion Edges and Meshing Simplification

The refinement step above produces a dense depth map which we use to create per-view
meshes for IBR. We now need to simplify the per-view meshes as much as possible while
preserving occlusion edges, to minimize the e�ect on rendering performance. We do this
by first identifying occlusion edges, then “cu�ing” the mesh to preserve them, followed
by a mesh simplification step.

5.3.2.1 Meshes from Depth maps

First, we need to reliably detect triangles at occlusion edges. Noisy detection o�en
creates isolated components which degrades simplification. Previous work used a simple
3D distance threshold [70] for this purpose. We found that the min/max aspect ratio
measure from [141] more reliably detects degenerate triangles at occlusion edges. To
avoid over-cu�ing background surfaces and surfaces at grazing angles, we also account
for depth and the slope of the underlying surface when detecting occlusion edges.

We connect each pixel to its neighbors with a quadrilateral. This results in two di�erent
possible pairs of triangles. We keep the pair which minimizes fl, the maximum aspect
ratio of the two triangles. �ads with a large fl value are likely to be at occlusion edges,
since this value corresponds to a large di�erence in depth. A naive solution would thus
be to discard quads with fl above a threshold. For surfaces seen from grazing angles,
this removes too many triangles as the depth varies greatly. We would also discard too
many small foreground quads for rendering, since our measure is scale-invariant and
we want to keep closely seen objects as clean as possible. To overcome these issues, we
modulate fl by two terms. For grazing angle triangles, we estimate a smooth normal
for each pixel and modulate fl by the dot product between the normal and direction to
the viewpoint. We clamp this modulation to avoid a more than 10 times reduction. For
foreground pixels, we also modulate fl by a second term, which is the disparity at the
pixel normalized by the median disparity over the image. This modulation is clamped
between 50% and 200%. To detect pixel-precise occlusion edges we need a local measure
that is scale invariant, sensitive to strong gradients in depth maps and that measures
geometry quality. The aspect ratio of a triangle, defined by q(t) =

ÎtÎŒ
h(t) where ÎtÎŒ

represents the length of the longest side and h(t) the height of the triangle with respect
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to this side, is such a measure. For each pixel we consider the quad formed by neighbors.
This quad can be meshed by two configurations of two triangles. We define fl as being
the minimizer over the configurations of the maximum of q(t) between the two triangles.

This measure guarantees good occlusion edge detection and good geometry in most
cases as pixels with a large fl correspond to stretched triangle configuration with inhomo-
geneous depth variation. Nonetheless for surfaces seen at a grazing angle this measure
alone, as the ones used in InsideOut [70] or Casual3D [71], leads to over-detection. To
overcome this shortcoming we modulate fl by:

dP = max(0.1, |cos(v̨ · n̨)|)

where v is the view direction. We also modulate fl by a second term

dD = min(2, max(0.5, D/Dmean))

where D is disparity. This term allows to cut more in the background as we have less
certainty about the estimated depth and our method is more robust to the lack of per-
view geometry than to false geometry. Finally, occlusion edges pixels are defined as
those with “ = fl ú dP ú dD larger than the threshold · = 25 using a hysteresis
threshold to avoid instabilities for edges with “ close to · . Examples of occlusion edge
cuts using our method are shown in Fig. 5.5.

Figure 5.5: Le�: Occlusion edges, marked in blue, for a depth map using InsideOut [70].
Right: Our solution provides much cleaner edges on surfaces at grazing angles.
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5.3.2.2 Mesh Simplification

Once occlusion edges have been cut, we create a full-resolution mesh that we simplify
based on the edge-collapsemethod of Garland andHeckbert [56]. There is a rich literature
on view-dependent simplification for polygonal models, including, e.g., screen-size error
thresholds and silhoue�e preservation [127], or sophisticated methods to avoid folding
triangles [43]. The solution we present here is simpler, since we target the specific case
of per-view meshes for multi-view photo datasets.

We construct our per-view meshes to have uniformly sized triangles in image-space.
Compared to earlier approaches [70], which strive for uniformly sized triangles in 3D,
this be�er preserves objects close to the camera (with smaller triangles), while also
reducing the number of triangles in the background. We achieve this by dividing the
standard quadric simplification cost by the squared distance between the edge and the
camera.

One frequent problem with quadric error metrics are “folding triangles”: we avoid this by
preventing normal deviation caused by collapse over 60¶. Finally, we multiply the weight
of occlusion edges by the targeted simplification ratio to encourage their preservation.
As we can see in Fig. 5.6, we can achieve extremely high simplification factors (up to
256x) with li�le loss in quality.



114 Chapter 5. Per view meshes for Deep Blending Rendering

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

2 4 8 16 32 64 128 256 512

Er
ro

r

Simplification Ratio

Hedman et al. 2016
Meshes
Our Meshes

Figure 5.6: Top Le�: Simplification using InsideOut meshing [70]. Top Right: Our
solution, which provides higher uniformity in image space and preserves occlusion edges
with good quality. Meshes were simplified by a factor of 256x. Bo�om: Mean relative
error in 3D at di�erent simplification ratios for a set of 20 meshes from di�erent scenes.
More than 80% of meshes could not be simplified at 512x using InsideOut.

5.4 Rendering algorithm

Input and Network. To allow a per-frame interactive rendering loop that includes
a CNN evaluation, we choose a U-net [155] architecture, and generate a fixed set of
inputs to the CNN. For rendering, we build on InsideOut [70], which at each output pixel
selects a variable number of input photos to blend into a final image (Fig. 5.2). In our
rendering loop, we rank these per-pixel selections to generate a fixed number of mosaics
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that are blended into the novel view. Each pixel of the first mosaic contains the color
value of the best selected pixel, the second mosaic contains the second best, and so on.
Pixels are ranked according to an IBR cost [70] and a new visibility term.

Training. Generating training data for IBR is di�icult since it is hard to obtain ground
truth. We overcome this problem by using training data for our supervised learning of
the CNN weights in a non-traditional manner: the same photo serves, at times, as one
of the inputs to the mosaic-building step, or it is held-out so it can serve as the ground
truth output that the network tries to reconstruct from mosaics of other input photos.
We generate a large dataset of input images through round-robin use of this hold-out
strategy, and through data augmentation. The test results we show are distinct samples
(i.e., novel viewpoints) never seen in training. Finally, to achieve good visual quality, to
overcome alignment issues and to reduce flickering, we use a perceptually-motivated
loss [90] and introduce a temporal coherence term. Our experiments show that the
network training can be run on a general set of images from training scenes, and that
performance is stable even when no images for a given testing scene were seen during
training.

We refer the readers to the original paper for details about the rendering pipeline.

5.5 Implementation, Results and Experiments

We implemented the full system in C++ and OpenGL, combined with the C++ interface
of TensorFlow [1] for runtime blend evaluation. The rendering pipeline is based on the
code of InsideOut [70]. The meshing and simplification were implemented in C++ and
parallelized using OpenMP independently from the rest of the pipeline.

To maximize the pipeline’s potential for interactive rendering times, we implemented
custom TensorFlow operations that directly copy the input and output OpenGL textures
to and from the network in on-device GPU transfers, making use of the OpenGL/CUDA
interop interface available in the CUDA version 9.0 library. A custom CUDA kernel
was implemented to increase the speed of 2D spatial upsampling; all other network
components used TensorFlow’s native operations with cuDNN 7.1 [27].



116 Chapter 5. Per view meshes for Deep Blending Rendering

5.5.1 Comparisons

In Figs. 5.7 we show results from 8 scenes, comparing our method with other end-to-end
IBR systems:

RealityCapture: The textured mesh from RealityCapture [152].

Selective IBR: The superpixel IBR approach by Ortiz-Cayon et al. [139] using the
RealityCapture mesh as input geometry.

ULR: Unstructured Lumigraph Rendering [19] with so� visibility [42] and the Reality-
Capture mesh as the geometry proxy.

So�3D: The novel view synthesis algorithm by Penner and Zhang [143], using their
custom so� 3D reconstructions.

InsideOut: The indoor IBR system by Hedman et al. [70] using their custom depth-
sensor based 3D reconstructions.

5.5.2 Evaluation of Deep Blending vs. Geometric Refinement

We evaluate the relative e�ect of each of our steps, namely deep blending vs. our
improved geometric refinement and meshes. We implemented an IBR algorithm similar
to Hedman et al. [70], with two variables: InsideOut per-view refinement vs. our
refinement, and InsideOut-style blending using our depth-modulated cost (which we
call heuristic blending from now on) vs. Deep Blending, for a total of four configurations.
For a fair comparison with our refinement, InsideOut refinement is performed using
only the RealityCapture mesh.

In Fig. 5.8, we compare heuristic blending vs. deep blending using our refinement,
isolating the e�ect of blending only, and observe there are several visible artifacts that are
corrected by the neural network. In Fig. 5.9, we show the e�ect of using our refinement
vs. InsideOut refinement, but using Deep Blending for both, isolating the e�ect of
refinement only. We also show InsideOut refinement with heuristic blending that is
clearly worse.
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Deep Blending (Ours) Crop (Ours) Hedman et al. [70] Buehler et al. [19] RealityCapture [152]

Deep Blending (Ours) Crop (Ours) Ortiz-Cayon et al. [139] Buehler et al. [19] RealityCapture [152]

Deep Blending (Ours) Crop (Ours) Ortiz-Cayon et al. [139] Buehler et al. [19] RealityCapture [152]

Deep Blending (Ours) Crop (Ours) Penner and Zhang [143] Buehler et al. [19] Ortiz-Cayon et al. [139]

Deep Blending (Ours) Crop (Ours) Ortiz-Cayon et al. [139] Buehler et al. [19] RealityCapture [152]

Deep Blending (Ours) Crop (Ours) Penner and Zhang [143] Buehler et al. [19] RealityCapture [152]

Deep Blending (Ours) Crop (Ours) Ortiz-Cayon et al. [139] Buehler et al. [19] RealityCapture [152]

Deep Blending (Ours) Crop (Ours) Hedman et al. [70] Buehler et al. [19] RealityCapture [152]

Figure 5.7: Results from 8 scenes. Le�: Full novel view from our solution, followed by
a crop using our method. The remaining three columns show previous methods. In
most cases, errors due to inaccurate geometry result in visual artifacts such as ghosting,
incorrect edge reconstruction as well as blur.
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Figure 5.8: Our deep blending network vs heuristic blending, both using our refined
per-view meshes. Le�: Our full method, showing the di�erence in quality due to Deep
Blending. Right: Heuristic blend cost, see original papers for details.

5.5.3 Performance

We evaluate the runtime performance of our interactive rendering pipeline at a resolution
of 1280 ◊ 720 px on a system with a 3.47 GHz Intel Xeon processor and an NVIDIA
GTX 1080Ti GPU. (Note that the videos in our supplemental are rendered o�line at a
resolution of 1920 ◊ 1080 px.) Table 5.1 shows average per-frame execution times of our
interactive pipeline over several scenes. Runtimes are specific to the scene and are not
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Figure 5.9: Di�erent geometry refinement approaches with our deep blending network.
Top: Using the geometry refinement and meshes from Hedman et al. [70]. Bo�om:
Our full solution, which be�er recovers thin structures.

driven only by the deep blending network component. For smaller scenes, especially
indoor scenes, our implementation achieves greater than 30fps performance, which
falls o� gradually as scene complexity increases. For large outdoor scenes, we observe
that the primary bo�leneck is in the voxel-wise camera selection, which in our current
implementation is tied to a fixed-size spatial subdivision. An adaptive or hierarchical
approach is an interesting future direction for this issue.

Preprocessing times for our pipeline varied from scene to scene but generally finished
overnight. We treat network training separately, which takes two days, but does not
necessarily have to be re-run for each new scene. Example processing times for the
Creepy A�ic scene are shown in Table 5.2.



120 Chapter 5. Per view meshes for Deep Blending Rendering

Table 5.1: Average runtimes (ms/frame) over 100 frames for our IBR system.

Non-network Total Non-network Total
Scene Runtime Runtime Scene Runtime Runtime

Museum-1 6.2 26.2 Hugo-1 14.1 35.6
Creepy A�ic 7.1 26.8 Night Snow 15.3 33.0
Dr Johnson 12.4 33.6 Boats 19.7 47.6

Table 5.2: Preprocessing times for Creepy A�ic (249 images at 1228 ◊ 816) using a 4-core
Intel Core i7 processor and an NVIDIA Titan X GPU.

Component Runtime Component Runtime
COLMAP SfM 1h Depth map Refinement 0.75h
COLMAP MVS 5.25h Meshing 1.5h

RealityCapture MVS 0.5h Network Training 37h

5.6 Limitations and Future Work

Limitations. Full pipeline: Our method gracefully degrades when there is very li�le
3D geometry from the initial 3D reconstruction; we show an example in Fig. 5.10. Our
method will also tend to flicker when the di�erences in exposure are very large and
inconsistent. The network occasionally creates blur, typically in regions with missing
geometry or where di�icult decisions need to be made (highlights, resolution mismatches
etc.). Nonetheless, in the vast majority of the 19 scenes, the full pipeline outperforms all
previous solutions, although in some cases one artifact is traded for another (e.g., blur
instead of seams).

Meshing and simplification: The simplification ratio is fixed in our method. In images
with a lot of occlusion edges, the number of connected components may increase drasti-
cally leading to poor performance, if simplifying a lot, as geometry is spent on edges
preservation. Another issue with our approach is that if some meshed parts are never
good candidates for reprojection they are still rendered and use geometry budget when
simplifying. We discuss possible avenues to address these limitations in future work,
below.
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Figure 5.10: Le�: From the rendering of the mesh, we see that part of the geometry
of the car is completely missing. Right: Despite significant visual improvement, our
method cannot hallucinate the missing geometry.

Future work. In future work, we would like to address the problems outlined above.
To reduce blur, one possible avenue would be the use of an adversarial loss [84]; it is
unclear how well such an approach would deal with temporal coherence. To reduce
flickering for very large exposure inconsistencies would probably require an e�ective
pre-processing step for color harmonization, while respecting di�erences due to view-
dependent materials.

Achieving real-time performance, especially in the context of stereo viewing (i.e., at least
90 fps), requires performance improvements. This can partly be addressed with upgraded
hardware. A solution to the meshing problem that would also benefit performance would
be to preprocess the depthmaps to remove parts for which many be�er candidates exist
in other images. This would allow removing geometry that is never used to feed the
network. This would require careful treatment of correspondences between the images.

5.7 Conclusion

In this chapter we have presented our meshing and simplification method used for Deep
Blending. We demonstrate large improvement compared to the state of the art both
in quality and fidelity to input depthmaps while allowing higher simplification ratios.
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Overall this allows be�er quality input to the network while improving reprojection
performance. These two factors enhance the usability of the full deep blending pipeline
as they strongly impact interactivity and rendering quality. The results in this chapte
also shows that giving high quality heuristics inputs to a network positively impacts
its performance, allowing it to generalize even with small datasets. In the next chapter
we present a relightable neural renderer that heavily relies on this idea. We use IBR
heuristics as inputs to a network both to get high quality reprojection but also to enable
material analysis.



C h a p t e r 6

Relightable Neural Rendering of Multi-view
Indoor Scenes

6.1 Introduction

In the previous chapters we introduced and discussed methods to edit and render multi-
view data. First, in Chapter 3 we treated the problem of object removal, then we introduce
a method to relight and compose outdoor scenes in Chapter 4, and we finally discussed a
deep learning based IBR algorithm focusing on the geometric representation in Chapter
5. Each of these methods contributes to be�er, more flexible IBR on their own. But
they also treat each problem separately. To allow real ease of use and editability of
IBR methods, ideally, all these contributions should be unified in a single algorithm.

(a) three of n input views (b) novel view synthesized by
our algorithm

(c) the same novel view with
modified illumination

Figure 6.1: Our neural algorithm takes as input a multi-view capture of a real scene under
a single lighting condition (a). It re-renders the scene from novel viewpoints, accounting
for view-dependent glossy e�ects, e.g., on the floor (b) and on the table (c), allowing
free-viewpoint navigation. Our network internally builds an implicit representation of
the scene materials, based on complex input feature maps we compute with a novel
hybrid image- and physically-based rendering algorithm. This enables a user to insert
new lights in the scene and/or turn o� the original illumination; the network produces a
new rendering of the scene under the modified lighting (c). Note how the light – that
was on in the input photos – has been turned o� with our method.
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This chapter is a first step toward that goal. While we do not treat all editings at once
we introduce a method that is capable of both relighting and novel view-synthesis
in indoor scenes. Existing view-synthesis methods [72, 131] do not allow the user to
change the illumination of a scene, while relighting techniques o�en require an involved
capture process to accurately measure the geometry (e.g., laser scanning), materials and
illumination (e.g., via light probes [34, 179]). These measurements are typically used in
an expensive inverse rendering model to re-render a new image [204].

We introduce a neural rendering algorithm in which a convolutional network learns to
create an implicit representation of the materials and lighting from a multi-view capture
of an indoor scene under a fixed source lighting condition. The user then specifies a target
lighting condition and, a�er a short pre-computation, the network can interactively
synthesize new viewpoints under the novel lighting conditions. Our algorithm combines
the best of two worlds: inverse rendering — that decomposes scenes into explicit models
re-rendered with physically-based methods, and image-based rendering — that renders
new views by blending multiple input images. Compared to image-based techniques,
our algorithm can handle more complex glossy materials, and it can change the scene’s
illumination, via a lightweight physical simulation. Yet, unlike inverse rendering, it is
faster and requires no explicit material model.

6.2 Overview

We work with wide-baseline multi-view captures (typically 100–300 photos) from which
we compute a 3D mesh by Multi-View Stereo [50, 89, 152]. This means we start with
richer information about the materials and lights that make up the scene than single-
image methods (e.g., [200]). We summarize this rich information as a set of feature
bu�ers that are reprojected in the novel view, and passed to our convolutional network.
We make the simplifying assumption that the scene lighting can be decomposed into
the sum of two components: view-independent di�use and view-dependent glossy. Our
input bu�ers encode the salient parts of the illumination under this decomposition, for
both the source and target conditions.

More precisely, our features consist of three major elements that together help the
network learn an implicit representation of lighting and materials, and synthesize the
final image.
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First, to treat the di�use component of relighting, we use elements of physically-based
rendering to estimate the source di�use irradiance bu�ers via a lightweight Monte
Carlo integration. From this di�use irradiance, we compute an approximate albedo
stored in the mesh. This albedo mesh, while being a very rough estimate of the scene,
can be used to compute approximate target di�use irradiance bu�ers via path-tracing
given user-specified synthetic light sources. The network learns to change the di�use
illumination by comparing and combining reprojections of the source and the target
bu�ers. In particular this includes cast shadows, global illumination, color bleeding,
overall illumination levels, etc.
Second, we use a fast single-ray mirror reflection computation to generate source and
target mirror images. Source mirror images, along their corresponding source input
images, facilitate learning the relationship between di�use and glossy illumination in
the input. These provide some material understanding, and can be precomputed. The
network then uses the target mirror image, generated at render time, to reproduce glossy
e�ects on the fly. Third, inspired by image-based rendering, we introduce a new scheme
to reproject the input images and their corresponding feature bu�ers; this naturally
enables the network to process any novel viewpoint, giving free-viewpoint navigation
capabilities. Our reprojections of input images provide good estimates of the novel
view under the source lighting condition and also capture the view-dependent image
variations due to glossy materials.

We train our network entirely on synthetic data. To ensure the trained network transfers
well from synthetic to real scenes, we use the exact 3D geometry to compute our ground
truth, but we also reconstruct each training scene with MVS to provide the network with
the approximate geometry available at test time.

Ours is the first solution that can relight complete indoors scenes with glossy materials
and indirect lighting e�ects. We demonstrate our method on several captured scenes,
showing sessions where the user adds lights, or turns-o� the original scene lights.
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Figure 6.2: Overview of our pipeline. We first perform scene pre-processing of our multi-
view dataset and MVS geometry to precompute source di�use irradiance, source mirror
images and an albedo mesh, stored with the scene. For a new lighting condition target
added irradiance is precomputed. Online view synthesis is achieved by reprojecting the
information into a novel view using our neural network to synthesize a relit image.

6.3 Multi-view neural relighting

We start from a set of calibrated undistorted 14bit photographs and an approximate 3D
mesh reconstructed with MVS, ensuring that lights are visible in the photos. Our goal
is to allow a user to alter the scene’s illumination by adding new light sources in the
virtual 3D space and/or turning o� all the captured lights.

As the user navigates freely in the scene, our algorithm synthesizes realistic novel views
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and recreates convincing glossy reflections for both the original and synthetically added
light sources. This relighting process requires an estimate of the source (i.e., at the time
of capture) and of the target illumination. Instead of explicitly modeling the lights and
materials — leading to a di�icult inverse problem and requiring costly physically-based
rendering — we train a convolutional neural network to learn an implicit representation
suitable for relighting and view synthesis. We derive a simplified illumination model
(Section 6.3.1) that guides our design of easy-to-compute input features for the network.
We compute these features with a novel hybrid rendering algorithm that blends elements
of physically- and image-based rendering (Section 6.4). Figure 6.2 gives an overview of
our pipeline.

6.3.1 Simplified illumination model

The rendering equation for a static, non-emissive surface is given by:

Lo(x, Êo) =

⁄
f(x, Êi, Êo)Li(x, Êi)Êi · ndÊi, (6.1)

where Lo and Li are the outgoing and incoming radiance at a 3D point x with normal
n and Êo, Êi are the outgoing and incoming directions respectively. We make the
simplifying assumption that the bidirectional reflectance distribution function f is the
sum of two components: a di�use albedo term a(x) which is independent from the
incident and outgoing angles, and a view-dependent glossy component s(x, Êi, Êo)

which we assume is non-zero only in a small angular neighborhood around the mirror
direction at x:

f(x, Êi, Êo) ¥ a(x) + s(x, Êi, Êo), (6.2)

This is a reasonable assumption for isotropic materials. Integrating over incident angles,
di�use irradiance is given by:

E(x) =

⁄
Li(x, Êi)Êi · ndÊi, (6.3)

and the near-mirror glossy illumination term is:

S(x, Êo) =

⁄
s(x, Êi, Êo)Li(x, Êi)Êi · ndÊi. (6.4)

Combining with Equation (6.1) gives us a linear decomposition of the outgoing radiance:

Lo(x, Êo) ¥ a(x)E(x) + S(x, Êo). (6.5)
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Our relighting strategy is to design an e�icient rendering algorithm to estimate approxi-
mations of the di�use irradiance E and near-mirror view-dependent illumination S from
which a neural network can infer an implicit representation of the lighting and materials,
and use it to re-render the scene with complex glossy e�ects and illumination changes.

Note the intrinsic link between glossy behavior in relighting and view synthesis: moving
the light or moving the viewpoint for the same angle leads to the same radiance. Our
representation implicitly exploits this link for both relighting and view synthesis with
glossy surfaces.

6.3.2 Illumination representation as 2D feature maps

The global nature of light transport makes it extremely di�icult for a convolutional
network to decouple the intrinsic material properties from the scene illumination. To
simplify the learning problem, the network takes as input a representation of the scene
that approximates E and S from Equation (6.5). We construct this representation around
three major components.

First, we estimate the source di�use irradiance E by stochastic integration from the
input images. This allows us to compute an approximate source di�use albedo mesh, and
in turn, to compute the di�use target irradiance modifications from the user-modified
illumination using path-tracing. The very rough albedo mesh is only used for the target
irradiance computation and not given as input to the network.

Second, we computemirror images that estimate the energy in themirror direction at each
surface, for both source and target illuminations. Under our near-mirror assumption for
S, the mirror images help our network measure the glossy component of scene materials
as well as synthesize new reflections.

Third, we reproject the multi-view RGB images in the novel view to synthesize, so we
can exploit the wealth of real-world light transport cues they provide. Our reprojection
scheme uses blending heuristics to get good texture information but also tries to maxi-
mize color entropy, leading to more diverse observations of view-dependent e�ects. In
Section 6.4, we describe our rendering algorithm to compute this representation.

All source information is computed once at capture time and stored with the scene. For
any novel lighting condition, a short preprocessing time (a few minutes) is required to
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compute the target di�use irradiance modification (addition). The final rendering of the
relit novel view is performed by a neural network that takes all the above elements as
input to synthesize a novel view.

6.4 Generating the network inputs

Our network consumes di�erent image bu�ers that all need to be represented in the
novel view image space. A first natural set of bu�ers to use is the set of input views, I1..n.
As they lie in input view space for each input camera, they need to be reprojected in the
novel view space; this reprojection is done through an operator noted �I . It produces
eight image bu�ers through blending and pooling in novel view space. For a given
scene and user-specified target illumination we also pre-compute static information,
specifically the source mirror images M src

i to help with material understanding, that
are also reprojected using �I . To guide relighting, we also compute a di�use source
irradiance map Esrc

i that is an estimate of the irradiance in the input view i, the user
defined added di�use irradiance Eadd

i , and finally the di�use irradiance to remove Erem
i

used to specify whether or not to keep the original lights in the relit result. These are all
precomputed for each input view i œ 1..n once for each scene and cached. The various
irradiance maps are then reprojected in novel view space with another operator �B that
produces one image for each kind of irradiance map. Finally, we also compute one target
mirror image M tgt and a few additional bu�ers addB directly in the novel view space.
The final relit novel view R can thus be expressed as:

R = F
1
�I(I1..n), �I(M src

1..n), �B(Esrc
1..n), �B(Eadd

1..n), �B(Erem
1..n ), M tgt, addB

2

Where F is our neural network.

Algorithm 1 summarizes our rendering pipeline.

6.4.1 Di�use source irradiance - Esrc
1..n

We compute a source irradiance map Esrc
i for each input view by stochastic integration.

For each pixel in each viewpoint, we cast a ray in the 3D scene. If the ray intersects the
geometry, we randomly sample 128 directions in the hemisphere above the intersection
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and integrate the pixel colors from the other input images. Specifically, we sample
the image for which the camera–intersection vector forms the smallest angle with the
secondary ray (this is the same test as the target case, see Fig. 6.4). If the secondary ray
does not reproject to any view, we ignore it during integration. Our irradiance maps
can be noisy, so we denoise them using Optix [23] to avoid magnifying the noise when
reprojecting. An example source irradiance map is shown in Fig. 6.3b.

(a) input image (b) di�use source irradiance

(c) albedo mesh (d) added di�use irradiance

Figure 6.3: We estimate the di�use irradiance (b) corresponding to the input illumination
by stochastic integration, sampling the input views (a). This allows us to estimate an
approximate albedo by dividing the input image data by the estimated irradiance, which
we store at the vertices of the 3D mesh (c) . When adding a new light in the scene, we
can compute the added di�use irradiance by path-tracing using the albedo mesh (d).
Here the light was added on the lower right of the view. Even though in this example the
scene illumination is mostly neutral, our irradiance maps contain full RGB information.
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6.4.2 Approximate di�use albedo mesh

We compute the target added irradiance using physically-based rendering. This requires
an estimate of the scene albedo. Using our estimate of the di�use source irradiance Esrc

i ,
we compute a per-view approximate albedo map as ai = Ii/Esrc

i . We want to use this
information for path-tracing the target added irradiance; we thus need a mesh colored
with albedo. To do this, we reproject the albedo maps onto the mesh and collect the
average of all the reprojections that pass the depth test, weighted by the inverse distance
to the corresponding camera. We store the average albedo at mesh vertices (see Fig. 6.3c
for a visualization). This estimate of the albedo is rough but it allows to compute good
estimates of global irradiance as the influence of this albedo is only for second bounces
and more.

6.4.3 Path-traced added irradiance - Eadd
1..n

The user provides light sources to be added as 3D area lights with constant emi�ance.
For each view we compute the new irradiance image Eadd

i by bi-directional path tracing
using the albedo mesh in Mitsuba [88]. An example of target added irradiance map is
shown in Fig. 6.3d.

When the user wants to add several lights, we can either compute a single lighting setup
with all the lights, or for each light l to add, compute a full set of added irradiance maps
(Eadd

1..n l). The sets are then linearly composed at render time by the user using sliders
to control colors and intensity, leading to the composed added irradiance maps and set
which we respectively refer as Eadd

i and Eadd
1..n for simplicity.

6.4.4 Removed irradiance - Erem
1..n

The user can optionally request to turn o� all the original scene lights, allowing more
drastic changes in lighting. To specify it to the network we have a third irradiance map,
Erem

i , for each input view. If the source lighting is to be kept, Erem
i is equal to zero,

otherwise it is equal to Esrc
i . This map is interpreted as the irradiance to be removed

from the input.
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novel view

input views

mesh

occluder

closest valid

mirror ray

Figure 6.4: To compute the mirror value at a reprojected point x in the novel view, we
sample pixels from the input view that best align with the mirror direction, making sure
to ignore cameras that do not see the intersection y between the mirror ray and the
geometry using a depth test.

6.4.5 Source mirror images - M src
1..n

Relighting requires our network to learn to decouple view-dependent e�ects from the
di�use illumination. However, we cannot expect a convolutional network to be able to
sample distant parts of the scene. Wemake the simplifying assumption that glossy e�ects
are concentrated around the mirror direction (Section 6.3.1) and compute first-bounce
mirror images M src

i for each input view i œ 1..n. More precisely, we cast a single ray per
pixel into the scene, for each input camera i. We re-project the reflected ray — mesh
intersection (if any) into all the other views. Amongst them, we retain the camera whose
viewing direction is closest to the direction defined by the reflection, say j, making sure
to ignore viewpoints from which the reflected point is not visible using a depth test.
See Figure 6.4, for an illustration. Sampling Ij at the reprojected intersection gives us
the color value for M src

i . With these mirror reprojections, we observe the scene from
two material models: the original materials Ii and a pure mirror variant M src

i . When
reprojecting several version of these two maps (using �I ) and comparing them, the
network will be able to learn to assign the correct energy to the glossy BRDF component
(Fig. 6.5).
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(a) input view (b) source mirror image

Figure 6.5: For in each input view (a), we compute a mirror image (b) by tracing a ray
in the mirror direction of the first mesh intersection and sampling the image whose
camera—intersection vector is closest to the mirror ray in angle (see also Figure 6.4).
These mirror images help the network analyze the materials in the scene, and identify
complex glossy e�ects like the salient highlight on the floor.

6.4.6 Interactive reprojection and rendering - �I and �B

When rendering a novel view, we reproject the per-view feature maps as well as the raw
input images into the novel view before passing them to the neural network. We also
compute a target mirror image M tgt interactively which the network uses to synthesize
new glossy reflections. As reprojecting all the views into novel-view space would lead to
a huge volume with many empty pixels, we need not keep track of all the input views
content. Instead, we introduce two reprojection algorithms. The first one (�I ) builds
a small constant set of composites that are assembled from pixels sampled in the n

inputs. The second one (�B) is used for the di�use irradiance maps and produces only
one image.

This design of the reprojection algorithms (�I ,�B) satisfies the following constraints:
1) maximize the reprojected image resolution by selecting pixels from viewpoints that
are close to the novel view, 2) maximize coverage to limit the number of pixels with no
data, 3) maximize temporal coherence, i.e., avoid popping of input views and temporal
discontinuities when changing viewpoint. And for �I only: 4) maximize viewpoint
diversity so we can observe the non-di�use scene materials from multiple angles (i.e., we
try to avoid views that are clumped together), 5) yet keep the number of network inputs
small to limit running time and memory consumption.
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Our reprojected views are obtained by blending or pooling pixels from the n input views.

6.4.6.1 Multiple reprojections for texture quality and material observation -
�I

Our reprojection scheme for the input views and corresponding mirror images outputs
eight di�erent images, fik k œ {1..8}. Four of these, fik k œ {1..4}, are produced to
ensure view synthesis quality and are computed by blending input views. The last four,
fik k œ {5..8}, provide observation of the material appearance variation. �I is thus
defined as follow:

�I(I1..n) = {fik(I1..n)|k œ {1..8}}

Heuristic blending for view synthesis. For a given novel view vú we compute four
reprojections fik(I1..n) k œ 1..4 as a blending of reprojected input views:

fik(I1..n)(p) =
1

Wk

nÿ

i=1
wk(vú, vi, 3D(p), n(p)) ú Ii(R(p, vi))

Where p is a given pixel in novel view,R(p, vi) is the reprojection of p in Ii,wk(vú, vi, 3D(p), n(p))

is the weight for the sample, depending on the novel view vú, the sampled view vi, the
3D position corresponding to the pixel 3D(p) and the normal at this point n(p). Wk is
the sum of the weights for normalization.
We define the four weighting schemes as follow:

w1(v
ú, vi, 3D(p), n(p)) =

1

Îpos(vú) ≠ pos(vi)Î2
(6.6)

w2(v
ú, vi, 3D(p), n(p)) = ((pos(vú

) ≠ 3D(p)) · (pos(vi) ≠ 3D(p)))
2 (6.7)

w3(v
ú, vi, 3D(p), n(p)) =

1

Îpos(vi) ≠ 3D(p)Î2
2

(6.8)

w4(v
ú, vi, 3D(p), n(p)) = e

(pos(vi)≠3D(p))·n(p)
Î(pos(vi)≠3D(p))Îú0.3

2

≠ 1.0 (6.9)
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w1 favors cameras that are close to the novel view. w2 favors cameras that see the point
from the same direction as the novel view. w3 is not view dependent and favors images
that see the point from a short distance, maximizing texture information. Finally w4

favors observation of the surface from an orthogonal viewing direction, which reduces
errors due to erroneous depth. These schemes naturally provide di�erent observations of
the material behavior: for instance w4 reduces Fresnel e�ects, and is temporarily smooth.
Only w1 and w2 are view dependent and they smoothly blend all the inputs to avoid
popping.

Pooled luminance for material understanding. The last 4 reprojections aim to
fulfill our goal of covering the variation in outgoing radiance due to glossy materials.
For each texel in the novel view, we sample the luminance from all the input images I i,
i œ 1, . . . , n and sort them. We define these reprojections as:

fi5(I1..n)(p) = Ij1(R(p, vj1)) with j1 = argmax
iœ{1..n}

lum(Ii(R(p, vi))) (6.10)

fi6(I1..n)(p) = Ij2(R(p, vj2)) with j2 = argmax
iœ{1..n}\j1

lum(Ii(R(p, vi))) (6.11)

fi7(I1..n)(p) = Ij3(R(p, vj3)) with j3 = argmedian
iœ{1..n}

lum(Ii(R(p, vi))) (6.12)

fi8(I1..n)(p) = Ij4(R(p, vj4)) with j4 = argmin
iœ{1..n}

lum(Ii(R(p, vi))) (6.13)

Where lum is the luminance of the sampled pixel. fi8 samples the image with the mini-
mum observed value of luminance that is o�en very close to the di�use component of
the surface. On the contrary fi5 and fi6 pool the two highest observed value based on
luminance, providing observations of the highest specular highlight, if any. The variation
between fi8 and fi5 already gives insight on whether a material is glossy or not. Finally,
fi7 samples the image with the median value of luminance; this has the nice property to
discard outliers. When geometry is badly reconstructed or even missing, IBR methods
still sample the pixel corresponding to the missing geometry leading to "floaters". The
median pooling of fi7 allows to discard floaters on both sides of the luminance spectrum.

For the source mirror images, we use the same reprojection scheme but weights and
pooling are based on the input view which provides correspondences.
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group 1 : IBR heuristics for resolution and fidelity

group 2: material understandingbrightest darkest

Figure 6.6: We assemble a total of 8 reprojections from the input images, divided
in two groups. The first group (top) tries to maximize reprojected resolution, image
fidelity and coverage. For instance favoring cameras close to the novel view reduces
reprojection errors but favoring cameras close to the observed point provides higher
texture quality (blue circles, top). The second group (bo�om) gather pixels that span the
largest possible range of luminance values to help material understanding. In particular,
these reprojections capture the brightness variations due to specular highlights (red
circles, bo�om).

6.4.6.2 Reprojection of the irradiance maps - �B

For the source and added di�use illumination, which are view-independent, we simply
average the reprojections of all the Esrc

i and Eadd
i that pass the depth test, weighted by

the inverse distance to the corresponding camera:

�B(E1..n) =
1

Wk

nÿ

i=1
w1(v

ú, vi, 3D(p), n(p)) ú Ei(R(p, vi))

6.4.6.3 Target mirror image - M tgt

We also dynamically compute a mirror image M tgt under the new lighting. Unlike the
source mirror images M src

i , used for material understanding, this target image helps
the network synthesize new glossy reflections that correctly account for the target
illumination. To compute it, we trace a mirror ray per pixel and sample the image data
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from the viewpoint closest to the mirror direction (like in Section 6.4.5), as well as the
corresponding di�use irrandiances Esrc

i and Eadd
i .

(a) mirror image

source added target

targetsource

(e) mirror image

(f) target + source light

(c) mirror irradiance

(d) mirror pseudo albedo(b) mirror irradiance

Figure 6.7: To compute target mirror images that properly account for the added light
sources, we first divide the mirror input (a) by a mirror image of the source irradiance (b).
This gives us a pseudo-albedo (d) that we can multiply with a mirror image of the target
irradiance (c) to obtain the final target mirror image (e) corresponding to the newly
added illumination. We can also decide to preserve the original lighting in addition to
the synthetic target illumination, in which case the target mirror image would account
for both source and target illumination (f).

We obtain a pseudo mirror albedo by dividing the RGB value sampled from image Ii with
the corresponding value of Esrc

i , which we multiply with the added target irradiance
to obtain the target mirror value. If we keep the original lights on, we also add the
RGB value of Ii to this value (see Fig. 6.7). This ray-tracing step runs in real time using
Optix [140].
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6.4.7 Additional features

We provide a few additional inputs to the network to help it reason about surfaces, dis-
continuities, and reflections. For each pixel in the novel view we compute the normalized
inverse depth (disparity), and the surface normal at the corresponding mesh point. We
also provide the incident angle, i.e., the angle between the normal and the view vector
(from input camera to visible scene point). This angle map helps the network deal with
Fresnel e�ects.

Finally we provide the ratio of distances between the observed and the reflected points
and the observed points and the camera center. This guides the network in smoothing
the reflection for rough surfaces. These features are illustrated in Fig 6.8.

Figure 6.8: From le� to right: The disparity map to reason about geometry, depth and
occlusions. The normals. The angle map to guide Fresnel e�ects. And the reflection ratio
to guide smoothing due to roughness.

6.4.8 Implementation Details

We first simplify the mesh reconstructed with MVS and apply Laplacian smoothing on
the normals. We also indentify planes by running RANSAC on the mesh vertices. We
snap to plane normals for inlier points with a normal close to that of the plane; this
improves overall robustness of our approach.
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Algorithm 1 Pre-processing and online rendering pipelines
inputs

n images captured from multiple viewpoints I1, . . . , In

procedure P���������S���� Û o�-line pre-computation
Compute 3D mesh from multi-view images
for i=1, . . . , n do

Compute source irradiance maps Esrc
i (§ 6.4.1)

Color mesh with approximate albedo Ii/Esrc
i (§ 6.4.2)

Compute source mirror images M src
i (§ 6.4.5)

end for
Compute albedo-colored 3D mesh using the approximate albedos

end procedure
procedure P���������T�����L������� Û fast light estimate

for i=1, . . . , n do
Compute target added irradiance maps Eadd

i (§ 6.4.3)
end for

end procedure
procedure R����� Û interactive novel view rendering

Compute the reprojections of images and source mirror bu�ers �I(I1..n) and
�I(M src

i..n) (§ 6.4.6.1)
Compute the reprojections of source and target irradiances �B(Esrc

i ) and
�B(Eadd

i ) (§ 6.4.6.2)
Compute target mirror image M tgt (§ 6.4.6.3)
Compute additional features (§ 6.4.7)
Forward pass with relighting network (§ 6.5.1)

end procedure

6.5 Network and Training

From the input features described in Section 6.4, we render a novel view with novel
illumination using a convolutional network, which we train on synthetic data (§ 6.5.2).

6.5.1 Network architecture

Our network uses a multi-scale architecture shown in Figure 6.9. A 4-block ResNet [66]
processes the input. Its output is then decomposed into a 5-level feature pyramid, using
convolution layers with kernel size 4 and stride 2 as a downsampling operator. Each
pyramid level is processed by an independent 4-block ResNet. The outputs of the 5
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Figure 6.9: Our network uses a multi-scale architecture to process the input features
maps. It produces two output images, for the di�use and specular image component
respectively.

pyramid levels are bilinearly upsampled back to the original resolution and summed.
A final 2-block ResNet, operating at full resolution, processes the summed features to
produce two outputs: one containing the di�use image component, and one containing
the view-dependent specular e�ects.

We use fixup ResNets [207], with 6 residual blocks and 66 filters per convolutional layer,
with kernel size 3, zero padding and ReLU activations. The input feature maps make up 66
channels as well. We found the “fixup” initialization to significantly improve convergence
speed and output quality. The di�use and specular components are supervised separately,
then summed to obtain the final relit image.

Input/output tonemapping. To ensure the distribution of the values is not two
skewed toward darker pixels — which we found is detrimental to network convergence
— we apply a tonemapping operator to all the radiance inputs to the network (repro-
jected source images and reprojected mirror images). We use the tonemapping operator
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proposed by Kalantari and Ramamoorthi [93] and defined as:

x ‘æ log(1 + µx)

log(1 + µ)
, µ = 64. (6.14)

The di�use and specular outputs of the relighting sub-network are also in the tonemapped
space. To get the final output composite we just invert the tone-mapping operator for
each component and them together giving a linear-space composite image.

Loss functions. We supervise the overall network to minimize the sum of three losses:
one for data fidelity, one for multi-view consistency of the di�use component and an
adversarial loss that improves the overall texture sharpness and plausibility of the output.
The data fidelity loss is:

Lvdep + Ldiff + Lim. (6.15)

Each individual loss is computed in the tonemapped domain defined by Equation (6.14),
and is itself the sum of a standard L1 loss and a so-called perceptual loss based on the
L1 distance between VGG activations [90]. We use the VGG features a�er the first three
maxpooling operations weighted by 1.0, 0.5 and 0.1 respectively to give more emphasis
to low-level features. We found this helps recover sharper outputs than using the L1 loss
alone. It also speeds up the network convergence. The VGG loss has weight 0.1, relative
to the plain L1 loss.

The multi-view loss is computed using ground truth optical flow to reproject pairs of
closeby views on each other. It is the L1 di�erence between the reprojections. This also
enforces that the di�use component does not contain residual view dependent e�ects
and is temporally stable.

Finally we use a adversarial loss on the 6 channel output, the discriminator is a global
GAN that implements the Relativistic Gan loss introduced by Jolicoeur-Martineau [91]
and the same discriminator architecture [150].

6.5.2 Synthetic training data

Training data for relighting and view synthesis of complete indoors scenes needs to have
su�icient variety of content (geometry, materials, lighting) and allow easy generation
of di�erent lighting conditions. Following the same scheme as in Chapter 4, we use
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synthetic data, with the similar constraint that we need our training to transfer to the
real-world data we will capture.

We have developed a comprehensive system to allow generation of synthetic training data
from artist-modelled scenes, either purchased or freely available [14] 1. For the former,
our system exports V-Ray or 3DS Max materials to a format suitable for Mitsuba [88],
by evaluating the shade trees in 3DS Max and exporting spatially-varying BRDF maps,
while the la�er are already in Mitsuba format. Our interactive interface then allows us
to easily place cameras and lights to prepare each scene for training. For training, we
used a total of around 2000 viewpoints, each with 6-7 di�erent lighting conditions with
lights placed manually. These are stored separately for di�use and glossy in HDR format,
and are then augmented during training in arbitrary combinations of exposures.

Using theHeckbert notation [68] we separate the types of paths into “di�use”, i.e.,L(S|D)
úDE

and “glossy”, i.e., L(S|D)
úSE, where L are the lights, S and D are glossy and di�use

materials respectively and E is the eye or camera. These two components are stored
separately, and correspond to the integrals a(x)E(x) and S(x, Êo) respectively (see
Sec. 6.3.1). The corresponding images are rendered with bi-directional path-tracing at
256 samples per pixel, which is e�icient for the type of indoor scenes we treat using our
modified version of Mitsuba. Images are stored in linear 32-bit floating point format.
The two rendered and denoised components are shown in Fig. 6.10.

For each hand-modeled training scene with exact geometry, we also compute rendered
images that we use to reconstruct an MVS proxy used for all rendering during training,
similar to Chapter 4. This encourages the network to learn to correct the rendering
errors due to imprecise geometry, since it compares its rerendering against the images
rendered with exact geometry. However, generating such data for indoor scenes is much
more challenging than for outdoor scenes for example, since indoor environments have
many large textureless surfaces such as walls, ceiling etc, and many objects with highly
reflective materials that make MVS algorithms fail.

To overcome the problems caused by lack of texture our system automatically generates
alternate representations of the scenes by adding texture on large surfaces with uniform
appearance. These scene variations are only used during MVS reconstruction and their

1We use the scenes from evermotion.org Archinteriors 30: 001-010, Archinteriors 01:, 004 and 005 and
the scenes Country Kitchen and the White Room from [14]. We modified the scenes to add more color on
the walls and furniture.
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(a) synthetic rendering
(di�use)

(b) glossy component
(brigthened for display)

(c) automatic scene
modification for MVS

reconstruction

Figure 6.10: We decompose our synthetic target renderings into di�use (a) and glossy
components (b). To be�er simulate real data, the network inputs used at training time
are computed using an MVS reconstruction of the scene instead of the ground truth
geometry. We facilitate the reconstruction using an automated tool that changes the
lighting and adds markings and textures (c).

modified appereance is not used in any way by our rendering pipeline. We use both
“natural textures” and markings that help MVS find features. We show the modified
version of a training scene in Fig. 6.10.

To overcome the problem of materials, we render the scene as completely di�use with
simple di�use lighting that allows the MVS algorithms to work well. The resulting
reconstructions (see Fig. 6.12) have similar artifacts to those of captured real scenes,
allowing the network to learn the desired domain transfer.

To limit the storage usage, we save the images as lossless 16-bit PNG files. This still
provides enough bit-depth to preserve the data’s dynamic range (especially for the glossy
illumination). For be�er bit allocation, we tonemap the images before quantizing to
16-bits with the map x ‘æ (x/(x + 1))

“ , where “ = 0.4 is the gamma correction [153].
All our lights have emissive intensity normalized to 1.0.

6.5.3 Training details

We train our network and discriminator using the RMSProp algorithm with default
parameters. We use a learning rate of 10

≠4 with a batch size of 1 for 600k iterations,
which takes approximately 96 hours on a RTX 6000 GPU.
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Figure 6.11: A selection of the synthetic scenes we use for training.
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(a) Ground truth geometry of a training scene (b) reconstruction of the same training scene

(c) reconstruction of a real scene

Figure 6.12: To minimize the impact of the domain gap between real data and our
synthetic training scenes, we compute the network inputs on a degraded mesh at train
time, obtained by multi-view stereo. The training reconstructions (b) exhibit artifacts
that are qualitatively very similar to what we expect to see in real scenes (c). This helps
the network generalize well to real scenes.
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(a) one input
view

(b) novel synthesized
view

(c) novel
illumination

(d) another novel
illumination

Figure 6.13: A selection of view-synthesis and relighting outputs produced by our neural
algorithm. For each row, we show one input view (a), a newly synthesized view (b)
and two relightings, also at a novel viewpoint (c) and (d). The scenes are respectively:
Bedroom2, Sofa, Bedroom1, LivingRoom and Hall.

6.6 Implementation, Results and Experiments

We captured multi-view datasets for qualitative analysis on real-world scenes (§ 6.6.1).
To the best of our knowledge, no previous method can jointly relight scenes and enable
free-viewpoint rendering for indoor scenes with glossy materials. We thus compare
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to view-synthesis (§ 6.6.3) and relighting (§ 6.6.2) techniques separately. We run our
quantitative comparisons and model ablations (§ 6.6.4) on a held-out synthetic scene,
shown in Figure 6.18. Figure 4.1 and 6.13 shows our model’s output for relighting and
view-synthesis on five real scenes. Our results are best appreciated in the supplemental
video. As can be seen in the figures and videos, our method allows plausible relighting
of scenes with complex, glossy materials, while allowing free-viewpoint navigation. Our
method provides faithful flow of highlights when moving the camera, both for the
original (real) light sources, and those added for relighting.

6.6.1 Real-world scene capture

We created a dataset of real test scenes, using a Canon 50D DSLR and a 18-50mm lens,
photographing in 14-bit RAW format from 250–350 viewpoints per scene. Specifically,
we captured the following scenes, shown in Fig. 6.1, 6.14-6.13: Bedroom1 (352 photos),
Bedroom2 (306), LivingRoom (321), Sofa (282), Kitchen (274), Hall (291).

Our irradiance estimation requires that the real light sources be directly visible in at
least some of the photos. The linearity and higher dynamic range of the RAW format
helps us estimate relative light powers. Despite the higher bit-depth, directly visible light
sources can still be clipped. In this case, the user needs to provide a few clicks to allow
estimation of the clipped source irradiance; we describe this procedure in Appendix B.1.
We manually place additional lights in the reconstructed 3D scene when relighting.

6.6.2 Relighting

To our knowledge, there is no previous method that can relight multi-view datasets
of entire scenes. Instead in Figure 6.14 we compare to a baseline that uses the 3D
information available to our method, and the state of the art inverse rendering technique
for indoor scenes from Li et al. [121]. Their method does not directly relight images; it
produces an albedo from a single image. Our baseline assumes a Lambertian material
model: it combines their albedo with our target irradiance (computed from the MVS
mesh) to get the relit image. Note that we provide the benefit of irradiance computed
using 3D information to allow a comparison that is as fair as possible. Compared to this
baseline, our relighting solution preserves texture in the scene, and benefits from the



148 Chapter 6. Relightable Neural Rendering of Multi-view Indoor Scenes

overall quality of our neural rendering.

Input view w/ original
lighting

Our relighting result Baseline relighting result

Figure 6.14: Relighting comparison to a baseline using the method of Li et al. [121]. Le�:
Input view with original lighting. Middle: Our relighting result. Right: Baseline result.
For the baseline computation, we first extract albedo using the approach of Li et al. [121]
and directly multiply it with our target added irradiance to form a relit image. As we
can see in the zoomed region, contrary to the baseline, our method correctly modifies
the lighting under the stool, removes the shadows initially present and does not exhibit
geometric artifacts while preserving high texture quality.

We also make a comparison to Wu and Saito [200], which is indicative of modern single-
image methods. We asked the authors to insert lights in the scene to produce an e�ect
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similar to our lighting modifications, Figure 6.15. Their approach only uses a single image
and has a very approximate notion of 3D geometry compared to the much richer input
we use. Compared to ours, their method cannot cast shadows for complex objects such
as the armchair. It creates a static highlight for the novel light on the hardwood floor,
without the view-dependent e�ects we can synthesize.

6.6.3 View-synthesis

We compare our model to four free-viewpoint rendering methods: a baseline Unstruc-
tured Lumigraph Rendering (ULR) implementation with per-pixel blending weights [19],
Deep-Blending [72] already partially presented in Chapter 5, as well as the very recent
Neural Radiance Fields — NeRF [132] and Free View Synthesis (FVS) [154]. We used the
original Deep-Blending network and code and the authors’ implementation of NeRF. The
FVS comparisons were run by the authors using the model they trained on the Tanks and
Temples dataset [100], which has very di�erent scene content compared to our scenes.

Figures 6.16,6.17 show we can synthesize realistic highlights that move coherently when
changing viewpoints while previous methods cannot (see also supplemental videos).
Since ULR, Deep Blending and FVS blend multiple frames and have no or limited material
understanding, they tend to create double ghost highlights that appear to "jump" from
one frame to the next (see video), or even completely suppress glossy reflections. ULR
and our method use the same MVS mesh; this shows our neural rendering is largely
robust to errors in the 3D reconstruction.

Deep Blending [72] uses our more complex per-view meshes described in Chapter 5
that significantly improve the geometry, especially for small objects. As a result, Deep
Blending’s rendering of small objects is sometimes more detailed than ours (e.g., the legs
of the chair in Figure 6.17, first row). Still, our renderings are much sharper and realistic
overall. Our method would benefit from per-view meshes or any other improvements to
the MVS geometry, but this is largely orthogonal to our view-synthesis and relighting
contributions.

As noted by Riegler and Koltun [154], NeRF struggles with the unstructured capture
required to reconstruct large scenes such as ours. For fair comparison, we made a
best-e�ort a�empt to improve NeRF’s output by manually selecting a subset of images
that produces the best visual and numerical quality for NeRF. We found much fewer,
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Ours Wu and Saito [200]

Figure 6.15: Single-image relighting comparison. We provide an indicative compari-
son with the single image method Wu and Saito [200] that has much less information
that our multi-view input. We see that this method cannot reproduce shadows of complex
objects such as the armchair, nor the view-dependent glossy e�ects on the hardwood
floor.

more tightly packed images, provide be�er visual quality locally, but they result in
low coverage, and therefore worsen the overall image quality. NeRF can synthesize
convincing moving highlights (see supplemental), but the overall image quality is low.
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FVS [154] gives good static results, but as with all previous view-synthesis techniques,
does not render moving highlights correctly. They have more visual artifacts and less
temporal coherence (see supplemental videos). This is possibly accentuated by the
di�erence in content compared to their training dataset.

(a) our output (b) ULR [19] (c) Deep Blending [72]

Figure 6.16: View-synthesis comparison. In the LivingRoom and Sofa scenes, we see
that plausible glossy highlights are generated by our method (a) (see also supplemental
video for moving highlights). In contrast, ULR (b) and Deep Blending (c) do not faithfully
reproduce glossy highlights.

Table 6.1 summarizes our numerical evaluation on a held-out synthetic scene; Figure 6.18
and supplemental show the renderings. Appendix B.2 analyzes this error as a function
of the distance to input views.
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(a) our
output

(b) ULR
[19]

(c) Deep
Blending[72]

(d) NeRF
[132]

(e) FVS
[154]

Figure 6.17: View-synthesis comparison. Our model (a) synthesizes plausible glossy
highlights (see supplemental video to be�er appreciate the e�ect for moving highlights)
whereas ULR (b) and Deep Blending (c) exhibit artifacts like double highlights, cross-
fading andmissing highlights. NeRF (d) can synthesize plausible highlights, but generally
yields much lower quality on large-baseline indoor scenes. FVS (e) su�ers from temporal
coherence issues and exhibits strong artifacts.

Table 6.1: View-synthesis evaluation. Our method consistently outperforms previous
work on a held-out synthetic scene.

method PSNR ø SSIM ø
Ours 29.25 0.916
Hedman et al. [72] 27.07 0.911
Buehler et al. [19] 24.50 0.896
Riegler and Koltun [154] 21.66 0.853

6.6.4 Model ablations

We conduct an ablation study to isolate and highlight the importance of our input
features and design choices. Every model variant in this section is trained from scratch
using the same training procedure. Numerical results are summarized in Table 6.2.

6.6.4.1 Single reprojection

Our reprojection scheme (§ 6.4.6) produces 8 composites that are key to learning a good
implicit representation of scene materials. If we replace it with a single reprojection
using w1, the network is much less e�ective at separating specular and di�use e�ects
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Table 6.2: Ablations. �antitative comparisons on a held-out synthetic scene shows
that each element in our design contributes significantly to the final result quality.

method PSNR ø SSIM ø
ours 26.12 0.909
no GAN 20.97 0.876
no GAN nor VGG 25.06 0.895
no target mirror 25.10 0.897
no source mirror 25.06 0.891
single reprojection 23.52 0.874
no extra features 23.85 0.889
no multiscale in network 24.49 0.882
no split di�use/Vdep 24.95 0.904
GT geometry 24.55 0.881
fewer training scenes 25.33 0.897

and copies incorrect glossy highlights baked in the reprojected input views, significantly
reducing realism (Fig. 6.19).

6.6.4.2 No target mirror image

The target mirror image (§ 6.4.6.3) guides the synthesis of new glossy reflections. Without
it, predicting accurate specular highlights, for both input and added light sources, is
extremely di�icult. This ambiguity leads to blurring (Figure 6.20).

6.6.4.3 No separate supervision on di�use/specular (no split di�use/Vdep in
table)

Supervising the di�use and specular components separately leads to cleaner glossy
reflections. If we online supervised the summed output, the network tends to focus on
di�use regions, which leads to unrealistic, muted reflections (Fig. 6.21).

6.6.4.4 No Multiscale module in the network

The Multi-scale module in our network is essential to obtain realistic specularities on
rough surfaces. It yields a wider receptive field and can overcome the limitations of our
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mirror-like surface hypothesis, as shown in Fig. 6.22.

The remaining ablations in Table 6.2 show: the e�ect of removing the discriminator loss
(no GAN), discriminator and VGG (no GAN no VGG), the source mirror layer and the
use of extra features. We also show the e�ect of only using ground truth (GT) geometry,
i.e., no MVS reconstructions, and training using 8 instead of 16 scenes used for the full
method.

6.6.5 Performance

We use RealityCapture [152] for the MVS reconstruction, which takes about 10 minutes
per scene. Precomputing the source irradiance takes around 3 sec./image on average
on an Intel Xeon E52650 @ 2.2Ghz, while the target added irradiance takes about 2
sec./image using Mitsuba and 16 samples per pixel on the same machine. Both images
are denoised using Optix. So, for a typical scene ( 300 input frames), it takes about
10 minutes to precompute the added irradiance for a new lighting condition. Given
this precomputation, our renderer is interactive and runs at 5–8 frames per second on
a NVIDIA GeForce 2080RTX graphics card, rendering at 512 ◊ 384 resolution. Using
texture compression, we can render up to 1024 ◊ 768 images, maintaining the framerate
above 2fps.
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Ground Truth

Ours Riegler and Koltun [154]

Hedman et al. [72] ULR

Figure 6.18: Held-out synthetic scene used for quantitative evaluation. We show
here the synthetic scene used for numerical evaluation. In rows 2 and 3, we show the
synthesized result for each method; For all methods but ours, the highlight on the TV
does not move correctly (see also supplemental).
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(a) our full solution (8 reprojections) (b) single reprojection

Figure 6.19: Single reprojection ablation. With only one reprojection heuristic, using
the closest views, the model cannot analyze scene materials properly (b) and outputs
wrong colors corresponding to glossy highlights observed in the input views. In our full
pipeline (a), the reflection is correct and there is no residual error from the reprojection.
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(a) our full solution (b) without target mirror

Figure 6.20: Target mirror ablation. In our full pipeline (a), the target mirror image
guides the reconstruction of realistic glossy reflections for existing and new light sources.
Removing the target mirror (b) leads to lackluster images with no specular highlights.
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(a) our output, with di�use/specular
separation

(b) without di�use/specular separation

Figure 6.21: Ablation di�use/specular supervision. When separating the di�use and
specular output components, the loss can be be�er balanced, using scalar weights, to
ensure correct highlights are synthesized (a). Without the split, the highlights are lost (b).
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(a) our full solution (b) without the multi-scale module

Figure 6.22: Multi-scale module ablation. Our multi-scale module provides a wide
receptive field that is particularly important to analyze complex materials with a large
spatial pa�erns (a). Without it, the network struggles with rough surfaces for instance,
and generates pure-mirror reflections (b) instead of spreading them out properly.
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6.7 Limitations and Future Work

Limitations. Like most neural rendering approaches, our method su�ers from a few
residual visual artifacts. Most of them are due to incorrect geometry where the MVS
reconstruction failed. This is visible in some sequences in the video especially when a
novel light is tangent to a surface. Both the reprojection and Monte Carlo interaction can
cause some temporal flickering, but this is highly reduced by the use of the multi-view
loss. Currently we can only turn o� all the lights in a scene instead of individual light
sources. Finally, our simplified illumination model is not valid for anisotropic materials;
in this case we expect our model to fall back to a standard blending behavior.

Future Work. In future work it would be interesting to test and train on more scenes
for higher generalization. We did not train nor test on outdoor scenes, the main issue of
this kind of data being the very high dynamic range that might break the stability of
irradiance estimations. It would be interesting to evaluate the impact of such instability.
Another interesting direction is to try and generalize our approach to enable more edition
capabilities directly such as object insertion or material modification. One of the main
issue for such tasks is obtaining training data. Training a model to do several tasks at the
same time would require a combination of geometry, materials and lighting variations
of scenes which makes the required amount of data grows in a combinatorial manner.

6.8 Conclusion

In this Chapter, we presented the first method that permits relighting and free-viewpoint
navigation in real indoor scenes with glossy materials. Our algorithm combines the
strengths of inverse, physically-based and image-based rendering methods. It uses
multi-view inputs, a 3D mesh reconstructed by MVS and e�icient approximations of
physically-based rendering to compute input feature bu�ers from which a convolutional
network learns an implicit representation of materials and lighting in the scene. The
source bu�ers include source di�use illumination, mirror images from the input views,
and approximate albedo. These enable us to compute the target illumination bu�er by
path-tracing. The neural network uses this information to relight and re-render the scene.
It runs at interactive frame-rates, thus enabling free-viewpoint navigation. We train
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using synthetic scenes, that in addition to their exact geometry are also reconstructed
with MVS, allowing the CNN to transfer to real-world images. Our results show realistic
relighting of complete indoor scenes, including plausible apparent motion of glossy
reflections. This opens up an extremely promising avenue for future research, paving
the way for more general solutions that could apply to all scenes (including outdoors),
overcoming remaining limitations, e.g., related to erroneous 3D reconstruction. This
method shows that IBR methods and multi-view editing methods can be merged when
using good representations, and opens the way for more general solutions that integrate
the flexibility of traditional computer graphics and the ease of asset capture provided by
IBR approaches.





C h a p t e r 7

Conclusion

7.1 Lessons Learned and Contributions

In this thesis, we presented several methods that all share the same high-level goal:
improving the quality and flexibility of image-based rendering and relighting methods.
The di�erent projects also share methodological elements.

First, given multi-view data they try and extract as much information as possible from the
input to solve the specific problem they try to tackle. An example is the use of available
texture information in several views for inpainting (Chapter 3). Another example are RGB
shadow images that sample input colors to give more meaningful content to a network
(Chapter 4); the same idea was extended to compute input irradiance and mirror images
later on (Chapter 6). A final illustration of this idea is the merging of globally consistent
geometry and noisy depth maps with input image consistency to form accurate per-view
meshes (Chapter 5).

Second, all methods are designed to take into account the noise and errors in geometry
estimation. This was done explicitly when designing per-view meshes for a novel image-
based rendering method. In the case of very inaccurate geometry, we introduce a
workaround through object removal. For instance, on semi-transparent highly specular
objects such as cars, removing the object through multi-view inpainting avoids artifacts
caused by geometry. Another way to achieve this goal is through the use of meaningful
input to a powerful neural network: this is the case of the RGB shadow images that help
to overcome errors due to "over-reconstruction". Finally we take this uncertainty in the
input data into consideration with the use of a dual representation for synthetic scenes
during training for relighting.

We can also identify some common findings between some of the projects. First, the three
projects using deep learning showed that by providing good heuristics and guidance to
networks, one can achieve good generalization without needing a lot of data. Whether
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it is with real data supervision in the deep blending project or with synthetic data in
both relighting projects, the total number of training scenes is less than twenty and the
networks still transfer correctly to real, unseen, test data. This is a crucial point for the
kind of tasks we treat as acquiring data to train models is by itself a very time-consuming
task. Next, most of the di�iculties we overcome with our methods are due to errors in
estimation that are done before our method can be used, for instance, bad geometry
reconstruction. This means that if these estimation methods improve, the results of the
proposed solutions should improve too.

Contribution to lighting editing. Image-based rendering techniques are good at
displaying new viewpoints of a given scene. But the content is rendered with the lighting
condition under which it was captured. We showed that using a geometry proxy and
image-space features along with a neural network it is possible to realistically relight
captured scenes.
First, we worked with outdoor scenes and simplified lighting conditions. We used
synthetic data to train a neural network to change the sun position and the global tone
of images. The results outperformed the state of the art for multi-view relighting. We
also showed that our methods could be used with a single photo if a proxy geometry can
be recovered by other means. This allows users to do single-view relighting of landmarks
by using internet photo for reconstruction.
Next, we used our experience with neural relighting to design a method that can alter
the lighting in indoor scenes. We can simulate second bounce e�ects, add multiple
light sources, and even turn-o� the input lighting. We used irradiance maps, a more
general representation of lighting, to achieve these results. Our irradiance maps are
based on a physically-based rendering of the proxy geometry using approximate albedo.
As they do not use the albedo for the final integration of the radiance but only for global
illumination they are quite resilient to errors in the approximation.
Both these methods allow capturing a real scene under a certain lighting condition and
rendering it under novel ones, providing much greater flexibility to users compared to
previous solutions.

Contibution to geometry editing. We addressed two main geometric types of edi-
tion in this thesis. First, we introduced an object removal method for multi-view data. It
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can be used to remove content from a scene in a realistic multi-view coherent manner, for
pure scene manipulation, but also to remove objects that could impair the visual quality
of image-based methods. This method was designed for man-made environments where
the piecewise planar model used can be applied, but is the first to enforce multi-view
coherency and to respect perspective. Second, we showed that our pre-trained outdoor
relighting network can be adapted for captured scenes composition. One of the main
issues when compositing two captured scenes is the fact that the lighting may be quite
di�erent, for instance, the light orientation may vary leading to unrealistic compositing.
Using the network to coherently align lighting, shadows, and interactions between the
scenes led to the first method that can compose captured content automatically.

Contribution to rendering. While IBR methods give decent results on many scenes
they still struggle with some geometry artifacts. We introduced a method to improve
per-view mesh quality for IBR. We demonstrated that careful treatment of refined
depthmaps can have a very positive impact on the rendering quality of novel viewpoints
(Chapter 5). Finally, we contributed to view-dependent e�ect rendering in the context of
multi-view data. Through the use of a mirror image and by providing observations of
material behavior, we train a network to compute novel relit viewpoints with synthesized
view-dependent e�ects, such as specular highlights or fresnel e�ects (Chapter 6).

7.2 Potential research directions

In this thesis, we presented methods to augment the flexibility of image-based methods.
While we advance on several fronts a lot of e�ort has to be put in research in order
to obtain artifact-free results, to reduce the number of images required or to augment
performance. These general directions are all open to further research; some solutions
some solutions may arise from hardware and engineering improvements while others
require rethinking data representation and require more involved research. For instance,
performance will certainly benefit from be�er hardware, advances in machine learning,
and in neural network architectures. On the other hand to reduce the number of images
either MVS methods have to drastically improve or one would have to change the
representation they use for geometry, possibly with a more implicit approach, creating
new challenges for instance with light transport simulation.
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Material editing. One of the three main elements described at the beginning of
Chapter 2 are materials. In this thesis, we do not address the complex problem of
material editing. While early solutions were provided by work on intrinsic images, being
able to change a texture and correctly impact the scene or make materials more specular
is still an important issue as it impacts light transport with complex non-local e�ects.

Towards a more general framework. While Chapter 6 opens the way for a more
general (re-)rendering framework by proposing both free-viewpoint navigation and
relighting, the rest of the thesis treats problems separately. Finding a more general
framework that can integrate free-viewpoint navigation with all kinds of editing at the
same time is both a complex challenge and a very interesting research direction.

7.3 Thesis impact

The di�erent projects presented in this thesis have led to publications and presentations
in international journals and conferences, and also got somemedia exposure. The content
of Chapter 3 has been presented at I3D 2018 as an oral presentation. The relighting
part of Chapter 4 was presented at SIGGRAPH 2019, it was also presented at CVPR
2020 during a tutorial on neural rendering. While the author was interning at Adobe
this project was also presented at AdobeMax under code name #LightRight. The scene
composition extension presented in Chapter 4 will be presented at I3D 2020. Chapter
5 was part of a publication presented at SIGGRAPH Asia 2019. The work described
in Chapter 6 is currently under review. All of the projects were implemented in the
same code base, soon to be open-sourced, that also contains work from many other
researchers. This will allow be�er dissemination and reproducibility of the complex
pipelines presented.

7.4 Closing Remarks

This thesis introduces several methods that all aim at improving real asset rendering.
We argue that this work is a first, but significant, step towards broader usage and
dissemination of IBR methods. Multi-view editing methods not only allow for some
degree of artistic control, which is crucial for a wider usage of IBR, but also relax some
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constraints of the capture process.
We also show that novel learning based algorithms are not necessarily meant to replace
traditional computer graphics. On the contrary we argue by the design of our pipelines
that understanding both weaknesses and strengths of these two domains is a crucial step
in building e�icient methods. More specifically, in our setup, we leverage the e�iciency
and stability of traditional computer graphics for long range interactions while we use
deep learning for localized image processing tasks, using each domain for what it does
best.





Ap p e n d i x A

Chapter 4 Appendices

A.1 Compositing and data augmentation details

Online compositing. We randomly scale the linear sun images by 2
u with u in

[≠0.1, 0.1], separately for each color channel, allowing a small shi� in sun color, and
randomly scale the sky image by 2

u with u in [≠1.0, 1.0] (giving a uniform sampling
between 0.5 and 2, centered at 1), with the same value for each channel. The la�er is
a simple approximation for sky turbidity since higher turbidity results in higher sky
emission. We then sum sky and sun images.

Data-augmentation. To be robust to di�erent exposures in the input, we apply a
random exposure operation by multiplying the image by 2

e where e is in [≠2, 2]. Similary,
to handle white balance di�erences, we multiply each channel by 2

w with w randomly
selected in [≠0.1, 0.1], separately for each channel.

We now have two linear images: one for source and one for target lighting condition.
We perform the standard gamma correction operation to convert to sRGB with gamma
randomly selected in [2.0, 2.8] We clip to 1 for the source image, since all input images
will be in the [0, 1] range, but we clip the output to 2, to avoid zeroing the gradients and
thus adversly a�ecting training for values slightly above 1.

A.2 Implementation details

• We do not apply transformations such as tanh or sigmoid at the end of the network
allowing to produce images with a higher range than [0,1].

• We export our scenes using a 3DSMax to Mitsuba format exporter that we have
developed in the 3DSMax scripting language. This gives flexibility in rendering
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thanks to mitsuba but we loose a bit of quality of the materials as our exporter
only partially handles “baked” materials. The specificities of the V-ray materials
in the scenes used poses some issues of compatibility with Mitsuba.

• Generating path traced image for reconstruction would be prohibitively expensive
as we require high resolution and li�le noise. Instead we generate lower resolution
ambient occlusion images, upscale and multiply them with full resolution albedo
images, which give a coarse approximation to global illumination (see Fig. A.1).
This approximation is su�icient for reconstruction in most cases. For some scenes,
the repetitive nature of the synthetic geometry and lack of texture detail, requires
additional processing to allow SfM and MVS to succeed, e.g., by adding calibration
targets in very uniform textures.

Figure A.1: Top: From le� to right, the rendered ambient occlusion, the albedo , and
the multiplication of both. The right most image is used along other point of views to
reconstruct the scene and get MVS-like data. Bo�om: The obtained reconstruction.

• Some ground truth scenes we used had very repetitive and/or flat textures which
led to poor quality or failure in reconstruction when using Sfm + MVS. To allow
for a reconstruction with the same level of quality as with real pictures we had to
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modify some textures in two of our 10 scenes by adding targets on them. These
modified textures were only used for reconstruction.

• Reconstructed scenes are not aligned with the original ground truth ones. To align
them we used pairs of 3D points of the original ground truth scene and the proxy
using the respective original and calibrated cameras. We then used iteratively
reweighted least squares on those pairs to compute a transformation from proxy
space to original (3DSMax) space.





Ap p e n d i x B

Chapter 6 Appendices

B.1 Light-levels estimation for overexposed real scenes

In real scenes, the absolute, global light level can be ambiguous because directly visible
light sources may saturate the sensor and clip, even in high bit-depth captures. In such
cases, we estimate the global energy level using a simple algorithm. We first detect the
overexposed regions in 3D space, by filling a sparse voxel grid (2cm e�ective resolution).
When at least 50% of the visible pixels (from the input views) that reproject to the voxel
are clipped, we mark the voxel as overexposed. We then cluster the voxels; each clipped
voxel initializes a cluster and we iteratively merge clusters whenever their bounding
spheres intersect. The 3D region defined by a cluster roughly corresponds to a real-world
light source. We compute a source irradiance map for each such light, assuming constant
emi�ance over the entire region, and a separate irradiance map for the non-clipped pixels.
We model the total irradiance as a linear combination of the non-clipped irradiance map
and per-light irradiance maps, with unknown non-negative weights. We ask the user to
click on a set of points with the same albedo in the scene. The selected points should all
have the same albedo, approximated as image value divided by irradiance. This gives us
equality constraints to assemble a linear system. We solve for the scalar weights using
least-squares optimization; they correspond to each light’s intensity. When a single light
source is clipped, the user only needs to select two points, one lit by the overexposed
light and one in its shadow to avoid an ill-conditioned linear system.

B.2 Dataset statistics for the real scenes

In our quantitative analysis on the synthetic scene livingRoom2, we found that the
distance between the synthesized viewpoint and input cameras did not significantly
correlate with error, as illustrated below. This shows our model generalizes well to distant
viewpoints.
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scene mean std

Living Room 0.187 0.07
Bedroom 1 0.174 0.11
Bedroom 2 0.173 0.11
Hall 0.240 0.14
Sofa 0.192 0.10
Kitchen 0.157 0.08

Table B.1: Mean and standard deviation (std) of distance to input camers for novel views
in the test paths.

0.88

0.9

0.92

0.94

0.96

0.98

1

20

22

24

26

28

30

32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

SS
IM

PS
N

R

distance to closest view

PSNR

SSIM

Linear (PSNR)

Linear (SSIM)

We also show the mean and standard deviation of distance to the input cameras in
Table B.1.
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