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ABSTRACT 
Discrete spatial datasets known as point clouds often lay the groundwork 

for decision-making applications. E.g., we can use such data as a reference for 
autonomous cars and robot’s navigation, as a layer for floor-plan’s creation and 
building’s construction, as a digital asset for environment modelling and incident 
prediction... Applications are numerous, and potentially increasing if we consider 
point clouds as digital reality assets. Yet, this expansion faces technical limitations 
mainly from the lack of semantic information within point ensembles. Connecting 
knowledge sources is still a very manual and time-consuming process suffering from 
error-prone human interpretation. This highlights a strong need for domain-related 
data analysis to create a coherent and structured information. The thesis clearly tries 
to solve automation problematics in point cloud processing to create intelligent 
environments, i.e. virtual copies that can be used/integrated in fully autonomous 
reasoning services. We tackle point cloud questions associated with knowledge 
extraction – particularly segmentation and classification – structuration, 
visualisation and interaction with cognitive decision systems. We propose to connect 
both point cloud properties and formalized knowledge to rapidly extract pertinent 
information using domain-centered graphs. The dissertation delivers the concept of 
a Smart Point Cloud (SPC) Infrastructure which serves as an interoperable and 
modular architecture for a unified processing. It permits an easy integration to 
existing workflows and a multi-domain specialization through device knowledge, 
analytic knowledge or domain knowledge. Concepts, algorithms, code and materials 
are given to replicate findings and extend current applications. 

Keywords: Knowledge Discovery; Knowledge Extraction; Knowledge Integration; 
Knowledge Representation; Cognitive Decision System; Intelligent Support System; 
Intelligent environment; 3D Semantics; 3D Indoor; 3D Database; 3D GIS; Ontology; 
Smart Point Cloud; Point Cloud Database; Point Cloud Structuration; Point Cloud 
Topology; Point Cloud Knowledge-Base; Point Cloud Training platform; 3D 
Automation; 3D Pattern recognition; 3D Clustering; Information extraction; Voxel; 
Octree; AI Inference; Segmentation; Classification 



RÉSUMÉ 
Les ensembles discrets de données spatiales, appelés nuages de points, 

forment souvent le support principal pour des scénarios d’aide à la décision. Par 
exemple, nous pouvons utiliser ces données comme référence pour les voitures 
autonomes et la navigation des robots, comme couche pour la création de plans et la 
construction de bâtiments, comme actif numérique pour la modélisation de 
l'environnement et la prédiction d’incidents... Les applications sont nombreuses et 
potentiellement croissantes si l'on considère les nuages de points comme des actifs 
de réalité numérique. Cependant, cette expansion se heurte à des limites techniques 
dues principalement au manque d'information sémantique au sein des ensembles de 
points. La création de liens avec des sources de connaissances est encore un 
processus très manuel, chronophage et lié à une interprétation humaine sujette à 
l'erreur. Cela met en évidence la nécessité d'une analyse automatisée des données 
relatives au domaine étudié afin de créer une information cohérente et structurée. 
La thèse tente clairement de résoudre les problèmes d'automatisation dans le 
traitement des nuages de points pour créer des environnements intelligents, c'est-à-
dire des copies virtuelles qui peuvent être utilisées/intégrées dans des services de 
raisonnement totalement autonomes. Nous abordons plusieurs problématiques liées 
aux nuages de points et associées à l'extraction des connaissances - en particulier la 
segmentation et la classification - la structuration, la visualisation et l'interaction 
avec les systèmes cognitifs de décision. Nous proposons de relier à la fois les 
propriétés des nuages de points et les connaissances formalisées pour extraire 
rapidement les informations pertinentes à l'aide de graphes centrés sur le domaine. 
La dissertation propose le concept d'une infrastructure SPC (Smart Point Cloud) qui 
sert d'architecture interopérable et modulaire pour un traitement unifié. Elle permet 
une intégration facile aux flux de travail existants et une spécialisation multi-
domaine grâce aux connaissances liée aux capteurs, aux connaissances analytiques 
ou aux connaissances de domaine. Plusieurs concepts, algorithmes, codes et 
supports sont fournis pour reproduire les résultats et étendre les applications 
actuelles. 

 
Mots-clés : Nuage de points ; Découverte des connaissances ; Extraction des 
connaissances ; Intégration des connaissances ; Représentation des connaissances ; 
Système décisionnel cognitif ; Système de soutien intelligent ; Sémantique 3D 
Environnement intelligent ; Intérieur 3D ; Base de données 3D ; SIG 3D ; Ontologie ; 
Base de données de nuages de points ; Structure du nuage de points Topologie du 
nuage de points ; Base de connaissances du nuage de points ; Segmentation ; 
Classification ; Automatisation 3D ; Reconnaissance de formes 3D ; Cluster 3D ; 
Extraction d'informations ; Voxel ; Octree ; Inférence AI 
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KURZFASSUNG 
Diskrete räumliche Datensätze, so genannte Punktwolken, bilden oft die 

Grundlage für Entscheidungsanwendungen. Beispielsweise können wir solche Daten 
als Referenz für autonome Autos und Roboternavigation, als Ebene für die Erstellung 
von Grundrissen und Gebäudekonstruktionen, als digitales Gut für die 
Umgebungsmodellierung und Ereignisprognose verwenden... Die Anwendungen 
sind zahlreich und nehmen potenziell zu, wenn wir Punktwolken als Digital Reality 
Assets betrachten. Allerdings stößt diese Erweiterung vor allem durch den Mangel 
an semantischen Informationen innerhalb von Punkt-Ensembles auf technische 
Grenzen. Die Verbindung von Wissensquellen ist immer noch ein sehr manueller und 
zeitaufwendiger Prozess, der unter fehleranfälliger menschlicher Interpretation 
leidet. Dies verdeutlicht den starken Bedarf an domänenbezogenen Datenanalysen, 
um eine kohärente und strukturierte Information zu schaffen. Die Arbeit versucht 
eindeutig, Automatisierungsprobleme in der Punktwolkenverarbeitung zu lösen, um 
intelligente Umgebungen zu schaffen, d.h. virtuelle Kopien, die in vollständig 
autonome Argumentationsdienste verwendet/integriert werden können. Wir 
befassen uns mit Punktwolkenfragen im Zusammenhang mit der Wissensextraktion 
- insbesondere Segmentierung und Klassifizierung - Strukturierung, Visualisierung 
und Interaktion mit kognitiven Entscheidungssystemen. Wir schlagen vor, sowohl 
Punktwolkeneigenschaften als auch formalisiertes Wissen zu verbinden, um schnell 
relevante Informationen mithilfe von domänenzentrierten Grafiken zu extrahieren. 
Die Dissertation liefert das Konzept einer Smart Point Cloud (SPC) Infrastruktur, die 
als interoperable und modulare Architektur für eine einheitliche Verarbeitung dient. 
Es ermöglicht eine einfache Integration in bestehende Workflows und eine 
multidimensionale Spezialisierung durch Gerätewissen, analytisches Wissen oder 
Domänenwissen. Konzepte, Algorithmen, Code und Materialien werden zur 
Verfügung gestellt, um Erkenntnisse zu replizieren und aktuelle Anwendungen zu 
erweitern. 

 
Schlüsselwörter : Punktwolke; Wissensentdeckung; Wissensgewinnung; 
Wissensintegration; Wissensrepräsentation; Kognitives Entscheidungssystem; 
Intelligentes Unterstützungssystem; Intelligente Umgebung; 3D Semantik; 3D 
Innenbereich; 3D Datenbank; 3D GIS; Ontologie; Smart Point Cloud; Punktwolke 
Datenbank; Punktwolke Strukturierung; Punktwolke Topologie; Punktwolke 
Knowledge-Base; Punktwolke Trainingsplattform; 3D Automatisierung; 3D 
Mustererkennung; 3D Clustering; Informationsextraktion; Voxel; Octree; AI 
Inferenz; Segmentation; Classification 
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Point Cloud voxelisation of the church situated in Germigny des prés, France. 
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1.1  CONTEXT 

“when we open our eyes on a familiar scene, we form an immediate 
impression of recognizable objects, organized coherently in a spatial framework”  
[1]. In 1980, Treisman defines in simple terms the complex mechanism behind our 
human sight-perception. For non-impaired human-being, it is often the primary 
source of information which our cognitive decision system can use to act on. This is 
extendable using our brain which quickly adapts to new surroundings and only uses 
the most important material captured though our eyes. In fact, the brain receives just 
three “images” every second, which are sorted and combined with prior knowledge 
to create the reality that we experience. This mechanism is exceptionally fast and 
efficient allowing to brake when we see a red light, or simply to read this thesis and 
understand the spatial organization of words. Even more impressive, our vision can 
be adapted for an “orientation attention” – energy saving mode where the brain does 
not develop a full understanding of the surroundings – or a “discover attention” – 
which runs slower as the brain collects data from our memory to obtain a full 
understanding of the scene. With today’s computational power and high level of 
dematerialization, virtually replicating such a process is not only very attractive but 
seems feasible. While the operation is genuinely hard to mimic, studying how we 
interact with our environment permits to better grasp the boundaries and usable 
mechanisms. It first translates into the use of sensors that can capture key inputs 
usable by a computer. We then aim at a procedure based on gathered data and 
accessible information repositories to produce a “semantic representation”: a 
depiction of a scene integrating concepts and their meaning. In such a scenario, a 
spatial sensor plays the role of our eyes to obtain a digital spatial asset further refined 
into a semantic representation using available knowledge.  

 
Figure 1. The sensor plays the role of our eyes, the spatial framework becomes a semantic 

representation, and the scene is tagged familiar using available knowledge 

But this availability is often a first complication. Our online cognitive 
perception uses our memory and is structured to access needed evidence in a very 
short time. Mirroring this stage using a computer (Figure 1) is extremely complex 
and aiming for a solution as generalist as possible is an important challenge. The 
second bottleneck when trying to virtualize a cognitive decision system is the 
creation of a semantic representation (E.g. Figure 2). Gathering and attaching 
domain knowledge to underlying spatial data is linked to colossal integration and 
mining complications regarding data types, sources or representations. 
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Figure 2. 3D point cloud representation vs 3D semantic representation 

The last main challenge revolves around the specificity of the data collected 
by the sensor(s). Single raster images or video streams are great when depth cues 
are not necessary, but emulating our 3D visual cognition demands a richer data basis. 
Reality Capture devices permit to obtain such an exhaustive 3D spatial information 
primarily as a point cloud: a {X, Y, Z} (+ attributes) spatial ensemble which digitally 
represents the recorded environment w.r.t the sensor strengths and limitations. The 
landscape of these instruments and acquisition methodologies is mature enough to 
allow digital replicas of the real world ranging from the object scale to the country 
scale (Figure 3). 

 

Object-scale point cloud 

 

Terrestrial laser scanner 
building-scale point cloud 

 

Mobile-based area-scale 
point cloud 

  

Street level MMS point 
cloud 

 

Aerial city-scale 
photogrammetric point 

cloud 

 

LiDAR-based country-scale 
point cloud  

Figure 3. Point cloud datasets using different techniques at different scales and using 
different methodologies 
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Moreover, the acquisition of these so-called point clouds has become easier, 
faster and is even accessible from very low-cost solutions. All these hardware 
evolutions were unfortunately not followed by their software counterpart, which are 
heavily impacted by the 5 V’s of Big Data problematics (Figure 4).  

 

Figure 4. The Five Vs of Big Data in the context of point clouds. 

Connecting numerous sensors/approaches creates heterogeneous point 
cloud datasets (Variety) and participate in the constitution of massive data 
repositories (Volume). In turn, it reduces the processing efficiency (Velocity) and 
creates new needs to turn huge amounts of point data into trustworthy (Veracity) 
and actionable information (Value). Specifically, the procedures to convert point 
clouds in application-specific deliverables are very costly in time/manual 
intervention. It is getting ever more complicated for the human expertise to handle 
adequately the large and complex volumes of information, often contradictorily 
disseminated among different actors/supports of one project. Thus, it is key for a 
sustainable system that big point cloud data translates into more efficient processes 
opening a new generation of services that help decision-making and information 
extraction. We need to find ways for massive automation and structuration to avoid 
task-specific manual processing and non-sustainable collaboration.  

Interoperable approaches which permits several actors to leverage one 
common information system (E.g. Facility Management 4.0) based on a digital twin 
is a great exploration motor. In this continuum, the reflexion to go from a human-
centered process to an autonomous workflow orient our research to develop 
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automation and AI to speed-up inference processes, crucial to the development of 
point clouds in 3D capture workflows. 

1.2  PROBLEM STATEMENT 

Point cloud acquisition and processing workflows are usually application-
dependent following a classic progression from data gathering to deliverable 
creation. While the collection step may be specific to the sensor at hands, point-
cloud-as-a-deliverable upsurges, becoming one de-facto choice for many industries. 
This task-oriented scenario mainly considers these as a spatial reference – which is 
used by experts to create other deliverables – thus being a project’s closest link to 
reality. It brings accurate real-world information which could allow decision-making 
based on digital-reality instead of interpreted or not up-to-date information. 
However, there are several considerations to address for a suitable integration. Point 
clouds are often very large depending on how much data is collected – usually in the 
realms of Gigabytes, if not Terabytes – and are destined to be archived as a reusable 
support to create new type of data and products. This can lead to a dead-end with 
exponential storage needs, incompatibility between outputs, loss of information and 
complicated collaboration. These practices also show limited to no attempt to 
generalize a framework which could in turn play as a common ground for further 
interoperability and generalization. This lack is counterproductive and could lead in 
term to a chaotic data repartition among actors and worsen the dependency to 
several outsourced service each aiming an application independently. This 
emphasize a strong need to study interoperable scenarios in which one point cloud 
could be used by many users from different domains, each having a different need. 
This will in turn introduce new constraints at the acquisition level to define the 
needed exhaustivity of the 3D representation for use with reasoning engines. Of 
course, this serialize additional challenges for interconnecting processes and 
insuring a compatibility with the different sources, volumes and other data-driven 
parameters.  

Finally, robotics research has made a leap forward providing autonomous 
3D recording systems, where we obtain a 3D point cloud of environments with no 
human intervention. Of course, following this idea to develop autonomous surveying 
means demand that the data can be used for decision-making. The collected point 
cloud without context does not permit to take a valid decision, and the knowledge of 
experts is needed to extract the necessary information and to creates a viable data 
support for decision-making. Automating this process for fully autonomous cognitive 
decision systems is very tempting but poses many challenges mainly link to 
Knowledge Extraction, Knowledge Integration and Knowledge Representation from 
point cloud. Therefore, point cloud structuration must be specifically designed to 
allow the computer to use it as a base for information extraction using reasoning and 
agent-based systems. 
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1.3  RESEARCH QUESTIONS 

In this dissertation, I explore various topics related to the concept of Smart 
Point Clouds. The main research question that I seek to answer in this thesis is: 

How to extract and integrate knowledge within 3D point clouds for 
autonomous decision-making systems? 

The research question is subdivided into multiple interrogations, targeting 
a theoretical, implementation-wise and experimental side of the global problematic. 

Theoretical part enquires the following aspects: 

1. How to structure efficiently point clouds with domain knowledge 
for interoperable workflows? 

2. How to leverage a data structure to automate object detection over 
massive and heterogeneous point clouds? 

3. How to connect reasoning services for autonomous decision-
making scenarios? 

Implementation and experimental parts cover the following questions: 

4. How can open-source database systems integrate point cloud data 
and semantics? How should one provide domain connectivity? 

5. How can a system handle the heterogeneity found within point 
clouds datasets and semantics for object detection? Can 
unsupervised frameworks relate to domain concepts? 

6. How modular is the Smart Point Cloud Infrastructure? How efficient 
are the proposed point cloud processing modules (segmentation, 
classification, semantic injection, semantic modelling)? 

1.4  OUTLINE OF THE THESIS AND SCOPE 

This thesis is mainly based on papers that I have published during the course 
of my doctoral research and listed on pp. 234. 

It provides all the necessary information for the development of an 
infrastructure to (1) handle point cloud data, (2) manage heterogeneity, (3) process 
and group points that retain a relationship (4) regarding a specific domain ontology 
and (5) that allow to query and reason for (6) providing a decision-making tool (7) 
including smart modelling. The thesis is structured in 7 chapters (including Chapter 
1: Introduction and Chapter 7: Conclusion), each giving extended details on the 
proposed Smart Point Cloud Infrastructure showed in Figure 5.  
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Figure 5. The Smart Point Cloud Infrastructure and its modular architecture associated to the 
thesis chapters. 

Chapter 2 gives an overview of the most in-use point cloud workflows from 
acquisition to delivery. I first provide a comprehensive list of applications associated 
with used sensors and platforms. This introduces the main challenges by giving data-
driven specificities linked to reality-capture devices, followed by problematics to 
structure & represent such datasets. Then, I address automation fundamentals and 
related limitations. The sections are voluntary succinct to give the reader a quick and 
structured outline with references to pertinent works if one wants more details. 
While this chapter doesn’t participate into new research breakthrough, it is essential 
to the good comprehension of the thesis and to develop a full understanding of the 
motivations behind the formulated hypothesis.  

Chapter 3 details the proposed Smart Point Cloud (SPC) Infrastructure for a 
modular and centralized point cloud framework. It provides a conceptual data model 
to structure 3D point data, semantics and topology proficiently. It aims at creating a 
point-based digital twin usable by Cognitive Decision Systems. A multi-modal 
infrastructure integrating this data model is presented that includes Knowledge 
Extraction, Knowledge Integration and Knowledge Representation for automatic 
agent-based decision-making over enriched point cloud data. It constitutes the 
backbone of the thesis, and its modular nature permits efficient extensibility to 
several applications. Each module is then described in following chapters, giving the 
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details of their specificity and their role toward interoperable digital reality. This 
chapter is based on the book chapter “A Smart Point Cloud Infrastructure For 
Intelligent Environments” [2] to be published in 2019 in ISPRS Book Series. 

Chapter 4 develops the parsing module to best integrate point cloud data 
within the SPC Infrastructure while managing efficiently source heterogeneity. The 
chapter gives extended details on a voxel-based feature engineering method 
followed by an unsupervised segmentation approach that is used to better 
characterize point clouds and integrate them within automated workflows. The 
parser is also extendable through domain related classifications illustrated in the 
chapter. Algorithms, methods and metrics are given to benchmark the approach 
against best-performing deep learning mechanisms. This chapter is based on the 
article “Voxel-based 3D point cloud semantic segmentation”  [3] to be published in 
2019 in the Open Access ISPRS International Journal of Geo-Information. 

Chapter 5 illustrates the flexibility of the SPC parser by plugging a 
formalized knowledge classifier for multi-sensory data. The chapter presents a 
domain-based mechanism exemplifying Knowledge Extraction, Knowledge 
Integration and Knowledge Representation over point cloud data in the context of 
archaeological research. As such, I give an exhaustive review of point cloud 
integration within archaeological applications and related 3D GIS. An acquisition, 
pre-processing, and ontology-based classification method on hybrid point clouds is 
proposed leveraging the SPC Infrastructure. It also proposes a web-based prototype 
for the visualisation of complex queries. It provides an example of ontology-based 
classification as a module while demonstrating the possible interactions with a 3D 
semantic representation. It is based on the paper “3D point cloud in archaeology” [4] 
published in 2017 in the Open Access journal Geosciences. 

Chapter 6 shows the possibility to attach domain-specific agent-based 
modules to provide automated inferences. It presents an integrated 3D semantic 
reconstruction framework that leverages segmented point cloud data and domain 
ontologies. The approach follows a part-to-whole conception which models a point 
cloud in parametric elements usable per instance and aggregated to obtain a global 
3D model. SPC heuristics, context and relationships are used to deepen object 
characterization. Then, it proposes a multi-representation modelling mechanism 
augmented by automatic recognition and fitting by massive 3D data mining. Its 
conception permits a direct integration within the landscape of 3D data by providing 
an interoperable way to map point clouds with other 3D representations. This 
chapter is based on the article “3D point cloud semantic modelling” [5] published in 
2018 in the Open Access journal Remote Sensing. 

Chapter 7 concludes the thesis with the key takeaways and answers the 
research questions by summarizing the main contributions of the research. Finally, I 
propose a roadmap for future work by giving research questions that were raised by 
doing this research.  
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Point Cloud voxelisation of the Dome replica situated in Aachen, Germany. 
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The dissertation is inspired by previous works gradually presented along 
chapters 2, 3, 4, 5 and 6 following Figure 6. These references are introduced in the 
second section of each chapter and organized to fit its content. Figure 6 acts as a point 
of reference to identify where the most pertinent state-of-the-art resources can be 
found and to help the reader navigate the essay. 

 

Figure 6. State-of-the art resources given in the thesis. It is gradually organized to first 
present point clouds specificities and challenges in Chapter 2, then decomposed in Chapter 3 
regarding Knowledge Extraction, Integration and Representation further specialized toward 

automation and structural tasks.  

Every addressed topic is related to 3D point clouds which we present in the 
current Chapter 2. We believe that the more we dive into digital processes, the more 
important it is that we keep a link to real-world applications. Thus, to understand the 
potential of point clouds, it is central to overview main applications (2.1) and the 
challenges that limit a broader use. We categorized these challenges by first giving 
data-driven specificities linked to reality-capture devices (2.2). Then we list the main 
problematics we face to structure & represent such datasets (2.3) and finally we 
address automation fundamentals. These subsections are voluntary succinct to give 
the reader a quick and structured overview with references to pertinent works if one 
wants more details. 

2.1  APPLICATIONS & INDUS TRIES 

The way digital disruption is affecting industries changes the practices and 
creates new applications every day. Reality capture and 3D point clouds are part of 
these disruptive technologies, which permits the creation of spatial datasets at 
various scales. This rich information then serves industries such as surveying and 
engineering; buildings and architecture; public safety and environmental issues; 
heavy construction, power and plants; transportation and navigation; mining and 
natural resources; environmental and man-made structures monitoring. Their utility 
is found at many levels and seeing the number of in-use application gives a good idea 
of the potential they hold. We list in Table 1 the main applications from these 
industries categorized by sensor-related scale. 

  



 

30 

Scale/Sensor Main applications 

Object-scale 
TrLS1, TPHO2 

Molecular density, target identification, free-form component 
inspection, reverse-engineering, manufacturing documentation, 

quality control, gaming asset creation 

Building-scale 
TLS3, HHLS4, 

TPHO 

Structural deformation, BIM, 3D mapping, architectural analysis, 
gaming asset/environment creation, façade inspection, built 

environment, space optimization, construction progress monitoring, 
deformation control, coordination, reconstruction, restoration, 

conservation, asset management, offsite production, navigation maps, 
robotics, ship build documentation, facility management, planning 

technical modifications 
Area-scale 

TLS, BMLS5, 
APHO6 

Crime-scene investigations, site mapping and discovery, virtual tours, 
3D designs, forensics, agriculture, bullet-path reconstruction, fire 

investigation, security and pre-planning, volume calculation 

Street-scale 
TLS, BMLS, MLS7, 

APHO 

Roadway design, infrastructure (bridge, railway …) inspection, 
parking utilization, corridor mapping, traffic congestion, road signs 

and utility management, forensics and accident investigations, 
passive safety of cars, autonomous vehicles and self-driving cars. 

City-scale 
APHO, MLS, ALS8 

Gaming environment creation, urban survey, light simulations, 
airport infrastructures, utility planning, vulnerabity studies, 

earthquake damage assessment, cellular network planning, solar 
energy planning, tourism and park management, urban planning, 3D 

cadaster, building classification 

Region-scale 
ALS, APHO 

DEM, DTM, DSM, Micro-topography, Forestry, environmental 
monitoring (land, glacier, coastline, dune, windfarm, shoreline, 
change detection …), agriculture, flood/pollutant modelling, 

ecological and land classification, mapping, meteorology, geology, 
astronomy, topographical mapping, tsunami prediction, mining, oil 

and gaz exploration 
Table 1. Applications making use of reality-based point cloud data organized by looking at 

the scale of the studied environment.  

From this high number of applications today in use, one is particularly 
interesting for its numerous challenges: self-driving cars. These are equipped with 
various LiDAR sensors [6] which work as a “powerful” eye for the autonomous 
vehicle: an eye that allow one to see in all directions all the time. Imagine if, instead 
of guessing, we could always know the precise distance of objects in relation to us. 
LiDAR enables a self-driving car to view the surroundings with these special 
“powers”. These are a big research motor allowing sensor mapping for guidance 
systems. Gerla et al. [7] state that “Vehicles will be a distributed transport fabric 
capable to make its own decisions about driving customers to their destinations”. 
This statement hides big challenges: It demands massive automation for object 

                                                                    

1 Arm/Triangulation Laser Scanner 
2 Terrestrial photogrammetry 
3 Terrestrial Laser Scanner 
4 Hand-held Laser Scanner 

5 Backpack-Mounted Laser Scanner 
6 Aerial Photogrammetry 
7 Mobile Laser Scanner 
8 Aerial Laser Scanner (Aerial LiDAR) 
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detection while managing highly dimensional data from heterogenic sources. This 
implies looking into big data practices and data mining principles to correctly handle 
the volume, the velocity, the veracity and the variety of information. 

The same problematics are found in scene understanding applications, a 
well-established research area in robotics [8]. Tasks like navigation, grasping or 
scene manipulation is essential to its applications, and depth sensors [9]  are highly 
used  to create environment in which robots can evolve and interact. The rapidly 
growing interest for UAV-based solutions [10] has made passive sensors such as 
thermal, infrared and RGB camera a common tool for creating point cloud via 
photogrammetry [11] and computer vision implementations [12]. On the industry 
side, new software based on Structure from motion [13] and multi-view stereo with 
bundle adjustment and SIFT, SURF, ORB, M-SURF, BinBoost descriptors [14,15] 
allowed a wide range of professionals and non-expert to recreate 3D content from 
2D poses [16–25]. Use cases range from object-scale reconstruction to city-scale 
reconstruction, making this technique a promising way to get 3D point clouds. 
However, While reconstruction precision for middle to large scale are getting 
increasingly better [26], remote sensing via active sensors is favoured in several 
infrastructure-related industries. 

Also mentioned in the Table 1, active triangulation, structured light and 
computer tomography for reverse engineering and modelling is highly used at the 
object-scale due to its high precision, and adaptation to small isolated objects [27]. 
Typically, deviation analysis and prototyping will be based on the point cloud 
acquired, and parametrization tasks will convert the point cloud to a mesh 
interpolation [28], or solid parametric geometry. To some extents, ALS point cloud 
processes relates closely to the same pipeline for mesh generation, specifically DTM, 
DSM and DEM. In both techniques, a critical step includes layering data, therefore 
classifying to obtain correct representations. I.e., the generation of a DTM needs to 
take into account only points belonging to what is considered “ground” [29], which 
present major automation challenges. Applications are numerous especially to map 
regions (corridor, roads, railway, landscapes), for product extraction, forest and 
coastal management, flood mapping, volume calculation, 3D city models creation for 
urban planning, glacier monitoring and other region-scale measurement’s extraction 
listed in Table 1. This can be further refined using the full-waveform LiDAR data [30] 
providing better structural and physical information within the backscattered signal 
of the illuminated surface, allowing new data analysis and interpretation. Some 
Terrestrial Laser Scanners (TLS) also propose full waveform processing, and an 
example of application to determine canopy height is given in [31]. 

TLS have driven an engagement within manufacturers including Trimble, 
Topcon, Faro, Maptek, Optech, Riegl, Zoller + Fröhlich, Smart Max Geosystems, 
Neptec Technologies, TI Asahi, Clauss, Leica, focusing on Phase Based and Time of 
Flight technology [32] enabling different use cases depending mainly on the desired 
precision, the range and resolution of the point cloud. Topography, indoor mapping, 
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AEC, monitoring, reconstruction, archaeology, cultural heritage conservation 
benefits of the high precision and versatility laser scanners offers. The high speed 
and rate generation of 3D points has become a convenient way to get instantly data, 
constituting datasets of up to Terabytes, so redundant and rich that control operation 
can take place in a remote location. However, it is still rare that point clouds are 
directly shared or used as an end-product. Rather, they are interpreted and analysis 
reports, simulations, maps, BIM and 3D models will be considered as deliverables. 
Rising from the static concept, Mobile Laser Scanning (MLS) [33] has scaled up the 
data rate generation of TLS by allowing dynamic capture allowing rapid street point 
cloud generation and public domain mapping. New concepts and technology 
including Solid State LiDAR and simultaneous localization and mapping (SLAM) has 
pushed dynamic acquisition for quickly mapping the surroundings, extending cases 
for indoor mapping using Hand-held Laser Scanners HHLS [34], Mobile Mapping 
Systems (MMS) [35], or more recently Backpack-mounted Laser Scanners (BMLS) 
[36]. 

While 3D point clouds are well-established as a source of spatial data, we 
often note that they are not the preferred default data type in the industry, mainly 
due to data specificity and structuration problematics. On top, both these 
characteristic and the variety of domain complicate automation workflows which 
industries aim to increase reliability and efficiency in established workflows. 

2.2  3D POINT CLOUD DATA SPECIFICITIES 

Despite the ease of capturing point clouds, processing them becomes a 
challenging task in part due to the problems listed Table 2. Indeed, point clouds 
obtained from the sensors described in sub-section 2.1 suffers mainly several 
artefacts (Table 2). These are the main data-driven obstacles to a wider 
dissemination, often related to their data-structure or capture-related environment 
specificities. The structure-related problems usually emerge due to a lack of 
connectivity within point ensembles, which can make the surface information 
ambiguous [37]. Furthermore, environment-related problems are usually present in 
real world acquisition setup which happens due to different reasons such as 
limitations of the sensors or some physical factors in the scene. 
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Artefact Main source 

Misadjusted 
density 

Point clouds exhibit locally variable densities based on surface 
orientation, nature and distance from the capturing device. Occlusions 
from surface irregularities and adjacent objects also produce regions 

with missing data. Variations in density can be attenuated by sub-
sampling techniques but not fully eliminated. 

Clutter 

A scene can contain small objects represented by very few points, 
moving objects and multiple objects in proximity which for an 

application are considered “noise”. These are often making feature 
detection, structuration and automatic recognition difficult. 

Occlusion 

A scene can contain objects of significant size that occlude objects 
behind them (E.g cars, buildings…). This produces incomplete and 

disjointed descriptions of the background surfaces thus large missing 
areas. This phenomenon can be limited through an adapted acquisition 

technique, E.g. reduced using BMLS, MLS, MMS or HHLS systems 
compared to static devices. 

Random errors 
(noise) 

This is mainly due to absorption linked to the operation frequency, 
scattering, and taking into account the properties of the observed 

object + the wavelength of the incident energy. These influence the 
sensor’s choice considering the application, firstly between active and 

passive sensors. As passive sensors rely solely on the light emittance of 
the measured object, they are more influenced by atmospheric 

conditions and errors. 

Systematic 
errors 

The sensor will measure a property in the scene, and to be highly 
representative, must be sensitive to only the value measured, without 

influencing the backscattered signal. However, errors such as zero 
input, sensitivity error will create additional noise, but these can be 

calibrated. 

Surface 
properties 

The physical texture of common surfaces can range from smooth 
(steel, marble) to very irregular (grass, crushed stone). Because a 

given scene can contain a wide range of surface roughness’s, no priors 
about noise levels can be reliably used.  

Misalignement 
(i.e. 

georeferencing 
errors) 

Assembling point data in one reference system is a task that is 
primarily dependent on the acquisition platform (airborne, vehicle, 

tripod, satellite). Indeed, the data obtained by different LiDAR 
platforms are heterogeneous in three respects: (1) different 

perspectives: data collected by space-based laser scanning (SLS) and 
airborne laser scanning (ALS) systems are from a top view, while data 

collected by MLS or TLS systems are from a side view; (2) different 
spatial resolution: the resolution of ALS data is generally at the meter 

scale, while MLS and TLS data are at the centimeter scale, with TLS 
being more precise; (3) different content of focus: ALS data cover 

general features, while MLS data cover both trajectory sides. 
Furthermore, registration can introduce local noise due to imperfect 

correspondence between point clouds. 
Table 2. Artefact commonly found in reality-based 3D point clouds. These are obstacles to a 

broader adoption of point cloud data as the default spatial data type. 
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As referred in [38], these artefacts produce missing and erroneous (noise, 
outliers, misalignment) data, which can arise from an improper set-up on the scene. 
It also happens when the surface doesn’t permit a correct survey thus return an 
incomplete dataset. E.g. transparent and very reflective surfaces will produce 
unpredictable data. Objects like windows, mirrors, and shiny metal frames or ducts 
can generate either no-points associated to them, or worse, points on virtual 
reflected surfaces that place the object at a false location in space. Filtering 
techniques and knowledge based-interpretation are possible solutions to these 
problems to get the most complete description of the scene. Complementary, getting 
a high number of representative signal descriptors and parameters for each point 
permits a more reliable description important for automation through segmentation, 
classification and domain adaptation.  

2.3  REPRESENTATION & STRUCTURATION 

The 3D datasets in our computerized ecosystem – of which an increasing 
number come directly from reality capture devices presented in 2.1 – are found in 
different forms that vary in both the structure and the properties. Interestingly, they 
can be somehow mapped with success to point clouds thanks to its canonical nature. 
We provide a quick review of the main 3D data representations modes bindings to 
point clouds and we invite the reader to study [39–42] for more details. 

First, point clouds can be mapped to shape descriptors [43,44]. These can be 
seen as a signature of the 3D shape to provide a compact representation of 3D objects 
by capturing some key properties to ease processing and computations.  The nature 
and the meaning of this signature depend on the characteristic of the shape 
descriptor used and its definition. For example, global descriptors provide a concise 
yet informative description for the whole 3D shape while local descriptors provide a 
more localized representation for smaller patches in the shape. The work of Kazmi 
et al. [43], Zhang et al. [44] and more recently Rostami et al. [45] provide 
comprehensive surveys about such 3D shape descriptors. 

Secondly,  projecting 3D data into another 2D space is another 
representation for raw 3D data where the projected data encapsulates some of the 
key properties of the original 3D shape [46]. Multiple projections have been 
proposed in the literature where each of them converts the 3D object into a 2D grid 
with specific features. Projecting 3D data into the spherical and cylindrical domains 
(e.g. [47]) has been a common practice for representing the 3D data in such format. 
Such projections help the projected data to be invariant to rotations around the 
principal axis of the projection and ease the processing of 3D data due to the 
Euclidean grid structure of the resulting projections. However, such representations 
are not optimal for complicated 3D computer vision tasks such as dense 
correspondence due to the information loss in projection [48]. 
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Third, representing 3D data as RGB-D images has become popular in the 
recent years thanks to the popularity of RGB-D sensors. RGB-D data provides a 2,5D 
information about the captured 3D object by attaching the depth map along with 2D 
colour information (RGB). Besides being inexpensive, RGB-D data are simple yet 
effective representations for 3D objects to be used for different tasks such as identity 
recognition [49], pose regression [50] and correspondence [49]. The number of 
available RGB-D datasets is huge compared to other 3D datasets such as point clouds 
or 3D meshes [51] but they do not permit a direct 3D immersion. 

Fourth, 3D data can be represented as a regular grid in the three-
dimensional space. Voxels are used to model 3D data by describing how the 3D object 
is distributed through the three-dimensions of the scene. Viewpoint information 
about the 3D shape can be encoded as well by classifying the occupied voxels into 
visible, occluded or self-occluded. Despite the simplicity of the voxel-based 
representation it suffers from some constraining limitations [52]. Voxel-based 
representation is not always efficient because it represents both occupied and non-
occupied parts of the scene, which can create an unnecessary demand for computer 
storage. More efficient 3D volumetric representations are often linked to indexing 
techniques addressed later. 

Fifth, we can access 3D information from a multi-view image, which is a 2D-
based 3D representation where one access the information by matching several 2D 
images for the same object from different point of views. Representing 3D data in 
this manner can lead to learning multiple feature sets to reduce the effect of noise, 
incompleteness, occlusion and illumination problems on the captured data. 
However, the question of how many views are enough to model the 3D shape is still 
open, and linked to the acquisition methodology for photogrammetric 
reconstructions: a 3D object with an insufficiently small number of views might not 
capture the properties of the whole 3D shape (especially for 3D scenes) and might 
cause an over-fitting problem. Both volumetric and multi-view data are more 
suitable for analysing rigid data where the deformations are minimal. 

Sixth, 3D meshes are one of the most popular representations for 3D shapes. 
A 3D mesh structure consists of a set of polygons called faces described in terms of a 
set of vertices that describe how the mesh coordinates exist in the 3D space. These 
vertices are associated with a connectivity list which describes how these vertices 
are connected to each other. The local geometry of the meshes can be realized as a 
subset of a Euclidean space following the grid-structured data. However, on a global 
aspect, meshes are non-Euclidean data where the familiar properties of the 
Euclidean space are not well defined such as shift-invariance, operations of the 
vector space and the global parametrization system. 3D meshes can also be 
presented as graph-structured data where the nodes of the graph correspond to the 
vertices of the mesh and the edges represent the connectivity between these vertices. 
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(a) (b) (c) (d) (e) (f) 

Figure 7. 3D data representation: (a) point cloud; (b) multi-view image; (c) depth map; (d) 
volumetric; (e) polygonal mesh; (f) parametric model. 

Thus, the versatility given by point cloud mappings to 3D representations 
modes is very interesting and permits to leverage the strength of several approaches. 
However, this demands that we study ways to integrate point clouds directly in 
computerized systems.  

This is a major challenge as the large discrete datasets that point clouds 
constitute cannot directly fit in the main memory. Handling efficiently these massive 
unstructured datasets (heterogeneous and from different sources) demands high 
scalability, speed (when data must be mined in a near or real-time style) and 
computational adaptation to answer specific needs.  

This again relates to Big Data problematics, or how to efficiently process big 
semi-structured / unstructured datasets. relational Database Management Systems 
(DBMS) and NoSQL DBMS for such application provide interesting research tracks 
which are further explored in this thesis. The fundamental component in DBMS is the 
data model that determines the logical structure of a database determining in which 
manner the data can be stored, organized, and manipulated. We refer to the extensive 
works of Otepka et al. [53], Van Oosterom et al. [54] and Cural et al. [55] which 
provides fundamentals over existing large point cloud data structures including 
attribute and geometrical information organization. They rightfully state that the 
secondary storage access limits data-intensive tasks that could be solve through 
streaming algorithms to keep small parts in-memory. However, this implies pre-
sorting and structuring a priori the data to handle the large volume and high 
resolution, thus linked to indexations problematics. 

Indexation for 3D point clouds via spatial indices that subdivide the space 
through different approaches are a solution to reduce the overhead via chunk 
memory loading. The exhaustive paper presented by [56] state that the spatial 
subdivision of k-d tree are not suited for updates (e.g. add, remove) operations over 
point clouds because the tree structure becomes unbalanced. However, k-d trees 
perform well regarding Nearest-Neighbor searches by efficiently eliminating large 
portions of the search space (≈ 0(log n)). Octree structures, a 3D analogy of quad-
tree [57], as opposed to kd-tree perform well for update operations thanks to their 
uniform spatial subdivision, which makes them particularly interesting considering 
point cloud varying resolution, distribution and density. Linked to voxelized 
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representations, an octree [58] is a tree-like data structure that models occupancy 
by dividing a 3D scene [56] into multiple hierarchical cubes. They are powerful in 
representing the fine details of 3D scenes compared to voxels with less computations 
because of their ability to share the same value for large regions of space. However, 
as stated by [59] , octrees are “not able to dynamically adjust the tree structure 
according to the actual object layout. As a result, the tree depth is high where there 
are many objects, and this also results in unstable query performance”. Other 
interesting work such as 3D R-Tree [60], modified nested octrees or sparse voxel 
octrees [61] are also solutions for spatial data indexing techniques. 

Point clouds are thus good candidates for Level of Detail (LoD) 
implementations for a better management (and rendering) of the data. But to be 
usable in extended workflows, ways to map semantics and domain knowledge to 
point clouds are to be addressed.  A good introduction to knowledge injection within 
3D scenes is accessible in [62]. The authors structure knowledge information in 
formal domain ontology [63], which could then be accessed through different 
queries. Formal ontologies thus are a great research track for leveraging domain 
specificities, but their integration with data artefacts and data structure is very 
manual. By extension, the extraction of knowledge from gathered data suffers from 
automation problematics that are very important obstacles to the usability and 
efficiency of point clouds within workflows. 

2.4  AUTOMATION 

The concept of 3D point cloud automation is found at different stages, 
illustrated in Figure 8 presenting a classical workflow. 

 

Figure 8. Classical point cloud workflow from acquisition to delivery of a product for a 
specific application. 

While automation for the acquisition of point clouds, pre-processing and 
registration opens multiple research tracks, we focus in this dissertation on 
segmentation, classification, structuration and application-related automation. 
However, the reader can find further information regarding the acquisition phase 
automation which mainly deals with capturing platforms [64], such as UAVs [10], 
multi-sensory robots [65] and efficient navigation systems [66]. For the pre-
processing stage which mainly deals with filtering techniques to avoid sensor-
related problematics and for calibrating devices, we refer to the work of Kaasalainen 
et al. [67]. As for the registration step, we  refer to feature-based and featureless 
automatic registration methodologies reviewed in [68,69], SLAM reviewed in [70] 
and dense-matching in [15,71]. 
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Automation in detecting objects by grouping points that share a similarity 
and decisive criterion is the basis for segmentation, thus classification. This step is 
crucial since accuracy of the subsequent processes depends on the validity of the 
segmentation results [72] and requires to balance flexibility with the ease of use. As 
point cloud sets get larger, segmentation methods need to be scalable in terms of 
time and memory complexity. Special attention needs to be paid to offline processes 
– that can be run over night without user supervision – and online responsive 
processes that leverage user interaction and geared toward real-time applications. 
State-of-the-art segmentation and classification applied to point cloud references are 
reviewed in [73], and deep learning techniques for semantic segmentation in [74]. It 
is important to note that the major challenges concern the domain specialization, 
which will majorly orient a classification approach. Classifiers that learn from 
previous or available knowledge differ from their approach, thus their results. They 
are usually categorized in 3 ensembles as in being supervised learning (from a set of 
features to a labelled data) unsupervised learning (structure detection by pattern 
recognition) and reinforcement learning (functional inference through a set of state 
and actions). While supervised method often proves more efficient than its 
unsupervised analogue, they can suffer from over-fitting which limits their 
extensibility and interoperability with wider applications. This is a main concern for 
massive automation, and it is tackled in the dissertation. Several approach demands 
a feature selection and engineering among the most in-use 3D descriptors reviewed 
in [75], which permit to extract a fine-tuned description of the underlying data. 
However, it is important to note that in point cloud classification frameworks and 
feature estimation, the suitability of features should privilege quality over quantity 
[76]. This shows a need to prioritize and find robust and relevant features to address 
the heterogeneity in a point cloud structure. Several approaches make use of 
Decision-trees [77], Random Forests (RF) [78] extended to Streaming Random 
Forests  [79], Support Vector Machines (SVM) [80], Conditional Random Fields (CRF) 
[81], Neural Networks [82,83] and multiple variants [39,45,91–93,83–90]. 

As stated by [94] “any fully-fledged system should apply as much domain 
knowledge as possible, in order to make shape retrieval effective”. With the rise of 
online solutions, there is a great potential in using formalized knowledge for 
classification to analogically associate shapes and groups of points with similar 
features. This association through analogy “is carried out by rational thinking and 
focuses on structural/functional similarities between two things and hence their 
differences. Thus, analogy helps us understand the unknown through the known and 
bridge gap between an image and a logical model” [95]. This introduces the concept 
of data association for data mining, and relationships between seemingly unrelated 
data in an information repository. The use of domain knowledge over point cloud 
data by separating domain knowledge from operational knowledge refers to 
ontologies, although knowledge-based applications do not always refer to ontology 
reasoning. These concepts orient research in structural and application-related 
automation for a more interoperable and generalizable framework. Some attempt 



 

   39 

were made such as in [96] to turn a kitchen point cloud into a meaningful 
representation for robot interaction; [97] developing an interesting web object 
recognition workflow; [66] tackling robot-vision understanding and navigation 
challenges by proposing an abstracted spatial hierarchy graph and a semantic 
hierarchy that model domain concepts. Overall, attaching semantic concepts to point 
clouds for further reasoning was attempted in several disciplines but never 
generalizable. On top, some propose a way to infer knowledge in segmentation and 
classification method, papers rarely cover the topic of data structuration. To keep a 
record and use ontologies over analysis process, the point cloud needs to be 
structured retaining spatial and relation information deducted or useful for 
classification and segmentation. For data visualisation, it is also very important to 
work over a structure as flexible as possible to handle billions of records and queries 
over different attributes for validation through visual perception. 

It appears that 3D data capture workflows would benefit from semantically 
rich point cloud in order to automate reasoning for an application, end-point of 
Figure 8. Using connectivity, material properties, date stamp or even description of 
chunk-wise group of points can be useful in almost all scenarios, even for mesh 
derivation. Managing highly dimensional data and heterogenic sources therefore 
goes through the definition of efficient automated procedures that describe the 
nature and properties of a point cloud sample in order to classify and establish 
relations between point segments in a new data structure.  
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Point Cloud voxelisation of a Saber-toothed cat skull, America. 
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CHAPTER 3 
- A Smart Point Cloud Data Structure  
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CHAPTER ’S PREFACE  

 

In this chapter 3, I will give the necessary details for the realisation of a 
Smart Point Cloud Infrastructure. The main element is the conceptual data model 
which permits the structuration of the Point Cloud Database Module as highlighted 
in Figure 9. 

 
Figure 9. Chapter 3: A Smart Point Cloud Data Structure 

Details about the integration and compatibility of each module are also 
given. This chapter lays the groundwork to comprehend how every subsequent 
module described in chapters 4, 5 and 6 interact, and permits to get a precise 
understanding of the proposed framework.  
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Based on Book Chapter [2] 

A Smart Point Cloud Infrastructure for intelligent 

environments  

Abstract: 3D Point cloud data describes our physical world spatially. 
Knowledge discovery processes including semantic segmentation and classification 
are a great way to complement this information by leveraging analytic or domain 
knowledge to extract semantics. Combining efficiently these information’s is an 
opening on intelligent environments and deep automation. This chapter provides a 
conceptual data model to structure 3D point data, semantics and topology 
proficiently. It aims at creating an interactive clone of the real world usable by 
Cognitive Decision Systems. A multi-modal infrastructure integrating this data model 
is presented that includes Knowledge Extraction, Knowledge Integration and 
Knowledge Representation for automatic agent-based decision-making over 
enriched point cloud data. A knowledge-base processing with ontologies is provided 
for extended interoperability. 

Keywords: 3D Point Cloud, Intelligent Support Systems, 3D Database, Segmentation, 
Classification, Structure, Ontology, Semantics, Cognitive Decision. 
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3.1  INTRODUCTION 

Knowledge extraction (KE), also known as Knowledge Discovery Process 
[98,99] is the process to mine9 information and create new knowledge from 
structured / unstructured data. Specifically, KE-oriented processes such as semantic 
segmentation and classification permit to extract relevant information regarding an 
application domain. However, KE is only one step from a global pipeline that aims at 
creating an interactive space for autonomous decision-making: to represent the 
world in a form that a computer can use to reason (Figure 10). 

 
Figure 10. Modular Framework for the creation of an intelligent virtual environment, 

illustrated over an Indoor Point Cloud. (1) KE; (2) Knowledge Integration; (3) Knowledge 
Representation; (4) Reasoning from Cognitive Decisions Layer (CDL)  

Looking at this modular framework from raw data to Intelligent 
Environment [100], the processes of integrating, structuring, reasoning and 
interacting with the data are very challenging especially when dealing with massive 
datasets from heterogeneous sources. In this chapter, we explore a solution driven 
by a need in automation (Figure 10) to progressively achieve fully autonomous 
cognitive decision-making based on 3D digital data. 

State of the art in KE-automation applied to point clouds permits nowadays 
to efficiently extract different information’s by means of feature-based algorithms 
[76] , by using Knowledge-based inference [4] or more actively through machine 

                                                                    

9 The purpose of data mining is to 
extract knowledge from large 

amounts of data using automatic or 
semi-automatic methods. 
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learning10 with promising results using neural networks [90,91,101–105] and 
decision trees [106]. Extracted knowledge often comprises new patterns, rules, 
associations or classifications and is ultimately useful for one application. But 
adapting this extra information to be usable within various domains is a great 
interoperable challenge. A transversal field coverage demands bijective 
communications through a great generalization and normalization effort.  

The processing module defined as knowledge integration (KI) in Figure 10 
specifically addresses this task of synthetizing multiple knowledge sources, 
representations and perspectives often layering multiple domains. This can be 
decomposed into (1) information integration (i.e. merging information that is based 
on different schemas and representation models), and (2) synthetizing the 
understanding of one domain into a common index that keep track of the variance 
within perspectives. KI specifically addresses integration and structuration of the 
data (often within database systems), which may resolve conflicts with hitherto 
assumed knowledge. 

Thus, the extended data structure must be translated into an explicit 
Knowledge representation (KR) to permit a computer to achieve intelligent 
behaviour, and access knowledge reasoning through a set of logical and inference 
rules. This is very motivating if you want to deepen the operations made by the 
computer rather than interpreting on the fly (brain work). Once metadata is attached 
to 3D data, then you can more easily grasp, or even make calculations impossible 
before (e.g. in Figure 10 for 3D indoor pathfinding, indoor lighting simulations, 
reasoning for optimal positioning, extraction of surfaces per room for digital 
quotations and inventories). 

While such a universal solution to decision-making situation is very 
attractive, KE, KI and KR highly depends on the initial application domain definition, 
data understanding and its integration within a complete infrastructure. This strains 
that the underlying data structure must synthetize knowledge through pertinent KR 
while permitting inference reasoning based on an efficient Cognitive Decision Layer 
(CDL). 

In a first part, we study the attempts, standards and existing reflections to 
define a common scheme for exchanging relevant 3D information while situating the 
current integration state of point clouds within these normalizations. Secondly, we 
present a data model for point cloud structuration that retains knowledge. We then 
propose a point cloud infrastructure integrating this data model to allow KE, KI and 
KR following the modular framework presented in Figure 10. Finally, we benchmark 
such a global solution against several datasets to test its response to established 
requirements and identify limitations for new research directions. 

                                                                    

10 supervised / semi-supervised / 
unsupervised 
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3.2  SEMANTICS & 3D DATA 

In the context of 3D data, the wide array of applications implies a vast 
diversity on how the data is used/conceived. This research environment adds 
important complexities to the integration within any generalized workflow, of which 
3D point cloud data are quasi-inexistent. This explicitly demands that data-driven 
applications enable targeted information extraction specific to each use case. While 
this is rather convenient for one use case, making a general rule that applies to all 
models is a daunting task. In this section, we review existing attempts and standards 
favouring interoperability through well-established 3D spatial information systems 
(3.2.1),  KI reflexions over 3D data (3.2.2) and point clouds (3.2.3). 

3.2.1 3D spatial information systems 

Datasets that explicitly include spatial information are typically 
distinguished regarding the data models and structures used to create, manage, 
process, and visualize the data. In a 3D context, we analogically to [107,108] 
differentiate three main categories: 

- 3D GIS: GIS systems usually model the world itself, retaining information 
about networks, conductivity, connectivity, topology, and associativity. This 
enables geospatial analysis, often carried on large collections of 3D instances 
stored in data warehouses with coordinates expressed in a frame of 
reference. 

- 3D CAD (Computer Aided Design): CAD/CAM techniques model objects 
from the real world through parametric and triangular modelling tools. The 
topology is often partial or planar (although vendors extend functions to 
include semantics and higher descriptive topology [109]) and the data 
usually plays on a visual scale. The distinction between visualisation and 
storage is not as clear as in 3D GIS systems, and one file generally describes 
one complex 3D object. CAD files carry visualization information that is not 
relevant to the data itself. A simplistic difference consists in thinking of 3D 
GIS systems as 3D spatial database whereas 3D CAD models are rather 
related to 3D drawings. The coordinate system is therefore linked to a 
defined point of interest (often the centroid) in the scene.  

- BIM: it constitutes working methods and a 3D parametric digital model that 
contains “intelligent” and structured data initially for planning and 
management purposes. It is often studied for its integration with 3D GIS 
systems with an extensive review in [110], but their parallel evolution 
(conditioned by temporal and hermetic domain research) and 
fundamentally different application scopes are slowing down their common 
assimilation. BIM models share many properties with 3D CAD models, 
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including their expression of coordinates in a local system, but benefit of a 
higher semantic integration. 

The emergence of new data sources and evolution in data models constantly 
put in question the suitability of these categorizations. Established and emerging 
data types and their integration / characterization can become difficult for meeting 
the characteristics of one of these categories. For example, a more primal spatial data 
from a more direct data source such as 3D point clouds could benefit of their own 
category. Indeed, they have a very small direct integration in these groups, but rather 
serve as a support for the creation of CAD/CAM models, BIM models or 3D GIS 
systems. In some advanced cases, the information included in 3D point clouds can 
help extract metadata for the future data model. 

However, it is important to note that while barriers between each category 
was well defined five years ago, the improvement and added functionalities to each 
category as well as interoperability and integration research and standardization 
plays a major part into blurring the respective frontiers. 

3.2.2 Knowledge integration solutions for 3D semantically-rich data 

“Semantic interoperability is the technical analogue to human 
communication and cooperation” [111]. This sentence pertinently summarizes the 
drive in GIS research to formalize semantics in order to facilitate the communication 
of data among different communities. Different levels of interoperability exist, and 
we are looking at the technical parts without looking at societal issues raised by 
enterprise-oriented information sharing [112]. However, the conceptualization of 
interoperability in our computerized environment remains a challenge at different 
levels:  

- The nature of concepts that defines interoperability should not arise from 
simplistic assumptions as notions evolve with time; 

- The ever-growing use of 3D data makes it very hard to define a common 
“language” to be spoken by all professionals; 

- The knowledge involved is sparse enough to constraint natural language 
extension in a computerized formalism; 

- Standardization efforts need an international cooperation to represent as 
thoroughly as possible the reality and benefit of effective coordination; 
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- Retaining semiotic relationships between concept, symbol and entity, as in 
the semantic triangle11. 

In a narrower context, 3D data as 3D models are largely used for a high 
number of applications, which vary in scope, scale, elaboration and representativity. 
Therefore, semantic schemes as generic as possible provide a potential solution for 
interoperability. 

Ontologies are a good way to explicitly define knowledge in order to address 
semantic heterogeneity problematics arising from this large variety. However, 
independent work and research limits their extension to a broader audience 
especially looking at 3D content. But the rise in usage demands that specific solutions 
allow 3D data to be exchanged and used as thoroughly as possible. Independent 
development and uncoordinated actions in the research field of ontologies applied 
to GIS are addressed by entities such as the World Wide Web Consortium (W3C), the 
International Organization for Standardization (ISO), the Open Geospatial 
Consortium (OGC), the International Alliance for Interoperability (IAI) and the rise 
of open-source developments and repositories. Clarifying standardization processes 
over 3D data is especially important, with issues arising at both a technical level and 
a consideration level (how is 3D data considered by the community?)   

In general, a standard defines a data model at two levels: properties and 
geometry. A well-known example is the standard GML3 issued by the OGC which is 
used by the CityGML data model describing the geometrical, topological, and 
semantic aspects of 3D city models [113]. The specification and the decomposition 
in Level of Details (LoD) as well as the current 2.0 version allowing to define 
semantic concepts has made the integration of city models easier and applicable to a 
wider range of use cases [114]. Indeed, this gives the possibilities for decision makers 
to impose a specific “abstraction figure” (LoD1, LoD2 …) that characterizes the 
granularity level of the wanted geometry and semantic concepts. This 
interoperability “tool” is a leap forward in the democratization of the standardized 
data model CityGML. However, its integration with other standards or ontologies is 
still being discussed and studied, where a discrete number of LoD with ‘unconnected’ 
(potentially uneven) levels could be a concern [115]. This illustrates the need to find 
interoperable systems between already established standards to benefit of higher 
semantics and topology integration that enhances our comprehension and usability 
of 3D data. 

The Semantic web is a great tool standardized through Semantic Web 3.0 
that can create links between already established standards, which encourages the 

                                                                    

11 Attaching meaning to language 
“objects” is a conceptual 
phenomenon. As such, this object 
concept refers to a symbol and 

conceptualize a “real world” entity 
that shapes the symbol, and is 
attached to a social agreement in an 
information community. [343] 
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use of web-based data formats and exchange protocols, with the Resource 
Description Framework (RDF) as the basic format. Indeed, this has the potential to 
greatly reduce the gap/frontier between each previously defined category in 3.2.1, 
and better integrate knowledge within 3D spatial data. This is especially efficient if 
we better integrate 3D point clouds, on which we today derive so many systems and 
data models. Indeed, in a first time it could serve as transition data but given time it 
could provide all the necessary information if correctly integrated. Point cloud data 
large volume and high resolution make it suitable for LoD management and 
rendering. 

Finding hidden pattern and information for knowledge discovery requires 
complex multi-modal systems as presented in 3.2.3. Data interaction needs flexibility 
and scalability for different tasks: processing, data management and visualisation. To 
solve these challenges, both the data model and the storage model must be 
investigated. 

3.2.3 Point cloud solutions for knowledge integration 

Few solutions exist for managing semantics and geometry directly on point 
cloud, demanding new data model to capture key logical aspects of the data 
structure. On top, the large datasets that point clouds constitute cannot directly fit in 
the main memory, demanding adapted systems that can exploit efficiently the 
information regarding a storage model.  

We can identify two ways that point cloud can integrate semantics, geometry 
and topology: through file-based solutions, or through Database Management 
Systems (DBMS). The storage model used will condition how efficiently the 
variability and redundancy of the amount of observations is handled. In available 
DBMS the data store is either as a Block model (i.e. points are grouped in blocks, 
usually neighbourhoods, which are stored in a database table, one row per block) or 
a Flat Table Model (i.e. points are directly stored in a database table, one row per 
point, resulting in tables with many rows). All file-based solutions use a type of 
blocks model, where points are stored in files in a certain format and processed by 
solution-specific software. While they are common point cloud storing systems 
managed through hierarchical-like database models, sharing, compatibility, query 
efficiency and data retrieval are the main limitations in these solutions. For example, 
the standard LAS12 format allows only one byte for user data, making it a very limited 
choice for managing highly variable knowledge with different perspectives for 
categorization. Therefore, a fixed schema will quickly become obsolete when trying 
to cope with thousands of applications.  

                                                                    

12 The LAS file format is the most 
common file format for the 

interchange of 3-dimensional point 
cloud data. 



 

54 

[116] introduced the concept of point cloud database for scientific 
applications, based on relational tables. Classical Relational DBMS for such 
application exists, but binary trees limited scalability that struggle with huge 
datasets size and non-adapted vectorisation and indexation schemes often specific 
for one usage are hard to exploit on many different servers. Building on this, they 
point requirements of the structure for analysis of point clouds mainly filtering 
capabilities, key look-up and Nearest Neighbour’s search, cluster analysis, outlier 
identification, histogram and density estimation, random sampling, interactive 
visualisation, data loading, insert and updates. [54] extend the concept by defining 
point cloud data as the third type of spatial representation (the first one being vector 
data – row like Single Feature Specification – and the second raster data – multipoint 
object). Their extensive work focus on benchmarking several available commercial 
Point Cloud Data Management Systems (PCDMS) (block model and flat model of 
PostgresQL-PostGIS, block model and flat table model of Oracle, flat model of 
MonetDB, file-based LAStools) to define which one is the most fitted for point cloud 
management. While some improvements need to be implemented to fix issues in 
available solutions, each provides a benefit compared to the others, but none can 
answer efficiently combined queries, data I/O and real-time visualisation. The 
interoperability stays essential to combine point cloud data with vector data and 
raster data. They also show in a brilliant way the need of linking user needs, user 
type with user experience to define a standard in point cloud design and 
implementation. The NoSQL database robustness to massive data with weak 
relationship can scale up to many computers but functionalities are today very 
limited.  

Other research work by [53,55,62] present some solution to the integration 
of domain knowledge through a priori or a posteriori KR in ontologies, but the 
efficiency and extensibility to production processes depend on the underlying 
structure for efficient processing, analysis and visualisation. As stated by [53], naïve 
strategies especially considering query complexity of neighbour search O(n²) are 
unrealistic for industrial applications. Indexing techniques provide a solution to 
storing, compressing and managing the data [54,56,116], but efficiency and 
extensibility to dynamic semantic update and ontological reasoning stays limited. 
Queries over octree derived indexing techniques can provide an efficient solution for 
out-of-core rendering and parallel processing, but data structuration cannot 
efficiently include context adaptation and inference reasoning.  

While these constitute pertinent examples of knowledge and semantic 
enhancing capabilities, no clear and defined structure is developed. Identifying links 
and relations within objects of interest becomes essential to truly understand how 
each spatial entity relates to its surroundings and connecting GIS, CAD and BIM 
concepts (as seen in 3.2.1) to 3D point clouds through contextual segmentation and 
object storage. The work of [4,108,117] is a first step in this direction: it proposes a 
global framework that classify, organise, structure and validate objects detected 
through a flexible and highly contextual structure that can adapt to three identified 
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knowledge sources being domain, device and analytic knowledge. This lays the 
groundwork for the development of a new data model – the smart point cloud – that 
can address previously identified issues while retaining a high level of 
interoperability with existing standards (3.3). 

3.3  THE SMART POINT CLOUD (SPC) DATA MODEL 

The Smart Point Cloud concept gives the conceptual tools and definitions for 
a point cloud knowledge-based structure contextually subdivided according to KE 
results (namely segmentation and/or classification). It presents a broad framework 
for the semantic enrichment and structuration of point clouds for intelligent agents 
and decision-making systems. Our approach infers initial relationships / topology 
and separate spatial / attribute information to provide efficient data mining 
capabilities. The domain specialization relies on ontologies to allow high 
interoperability and specialization through derived Semantic Enrichment Layers 
[118]. The structuration of the in-base knowledge relies on a categorization first 
introduced in [117], extended in 3.3.1, and a conceptual model proposed in 3.3.2 and 
described in 3.3.3, 3.3.4, 3.3.5. 

3.3.1 Knowledge categorization 

KR and reasoning are the area of Artificial Intelligence (AI) where we study 
how knowledge can be represented symbolically and manipulated automatically by 
reasoning engines13. Mainly, the use of logic in this context will study entailment 
relations languages, truth conditions, and rules of inference to enable reasoning. This 
demands that part of the knowledge be explicitly represented (Knowledge-Base) and 
constitute the foundation of what the system believes. In order to structure this 
Knowledge Base (KB) for 3D Point Clouds, we propose a simple yet efficient 
categorization of knowledge for deriving implicit conclusions from our explicitly 
represented KB. 

The first step toward knowledge integration considers knowledge 
categorization. In order to cope with the heterogeneity within information’s and 
perspectives, Knowledge for point cloud processing was categorized in 3 branches: 
device knowledge, analytic knowledge and domain knowledge. The latter constitute 
what is the closest to domain applications, thus is attached to ontologies of 
specialization. 

                                                                    

13 Reasoning engines are charged of 
determining what sorts of 
computational mechanisms might 
allow its accessible knowledge to be 
made available to an agent. What 

allows humans to behave intelligently 
is that they can apply their knowledge 
and adapt/transform it to a new 
environment to achieve their goals.  
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3.3.2 Conceptual SPC (Smart Point Cloud) Model 

The overview of current practices showed a need to improve automation, 
data management and interaction. The semantization process relies on geometrical 
descriptors as well as a domain analogy integrated in a new structuration of the point 
cloud data through correct indexing techniques. At a higher conceptual level, the 
creation of an intelligent virtual environment from point clouds is inspired by our 
cognitive system: recognizing an object means accessing symbolic units stored in a 
semantic memory and which are abstract from our previous experiences while being 
independent from any context. Disposing of either digital copies of the real world, 
invention / conception of “things” to be integrated in the world or a combination of 
both, we refer to geometries from the “physical space” and  “fictional space” 
(immaterial, concept-based) as in [119]. In their paper, they propose an ontology of 
space in order to facilitate an explicit definition of CityGML. Extending the formalism, 
it constitutes a basis for semantic injection into point clouds. However, the study of 
ethno-physiography as well as human cognition of geospatial information is 
mandatory for defining information system ontologies. Indeed, the closer (and the 
richer) the model is to the domain concept, the better (and more extensible) the 
ontology will be. But the questions of how detailed an ontology should be depend on 
the levels of interoperability that is envisioned. 

The purpose of the SPC characterization is to represent the real world 
spatially described by point clouds in a computerized form: a user-centered frame 
representation serving an intelligent environment. The definition of a generic model 
that applies to a general purpose is very complex, as opening on all domains that 
benefit from 3D semantically rich models and point clouds range from neuro-
psychiatry to economics or geo-information. Our approach was thought to allow a 
maximum flexibility by defining a conceptualization on which different domain 
formalization can be attached (Figure 11). 
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Figure 11. Meta-model articulation for the creation of a SPC 

We divided the characterization (KR and data modelling) in different 
hierarchical levels of abstraction to (1) avoid overlap to existing models, and (2) 
enhance the flexibility and opening to all possible formalized structure. The core 
instruction is that the lower levels are closer to a domain representation than higher 
levels (level-0 being the highest level) but they impose their constraints. The overall 
structure can be seen as a pyramidal assembly, allowing the resolution of thematic 
problems at lower levels with reference to constraints formally imposed by the 
higher levels.  

KI is essential to the creation of the SPC structure, as it constitutes the 
necessary source for the meaning and adaptation of different entities within this 
pyramidal model. By default, we integrate a core algorithmic module that allows to 
extract a raw relationship graph based on a voxel element mining routine inspired 
by [120,121]. This was established as it does not require any external semantic 
information other than pure spatial information which encourage flexibility and 
adaptation. However, more domain-verse classification modules such as [81] 
provide potentially enhanced workflows. As seen beforehand, while Relational 
DBMS are a great fit logically speaking, they do not perform well considering the very 
high number of rows. Clustering via indexing-schemes is mandatory for interactive 
visualisation as well as efficient data loading, inserts and updates. Building this 
spatial structure over an object-based binary host/guest structure enables powerful 
analysis and visualization exploitation. In parallel, the ontology-based KR allows 
inference reasoning/semantics retention and is directly linked to the spatial 
structure. Thus, it defines relationships and topology both at the point and objects 
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geometrical levels. The top conceptual level, called level-0 gathers data, information, 
and knowledge about the core SPC components. 

3.3.3 Level-0: Generalized SPC meta-model 

For clarity, we specifically target point clouds, but the model can be 
extended to all kind of massive gathered data from our physical world, and in an 
extended version provide an opening for 3D meshes or parametric model 
integration. The different meta-models are formalised in UML and provide a 
conceptual definition for implementations. We therefore modelled as a goal to 
provide a clear vision and comprehension of the underlying system, but the database 
creation slightly differs to privilege performances, therefore adaptations are made at 
the relation scheme modelling level. 

 
Figure 12. Level-0 Generalized SPC meta-model (UML). A point cloud constituted of points is 
block-wise organized through semantic patches. These can be pure spatial conglomerate or 

retain a coherent semantic relationship between constituting points. Generalizations via 
different schemes are possible using the generalisation structure to provide additional 

analysis flexibility. 

The generalized SPC meta-model (Figure 12) formalizes the core 
components needed for constituting semantic point patches. It starts with the most 
primitive geometry: a point. It has a position defined by three coordinates in 
Euclidean space (R3): X, Y and Z. Each point has a limited number of attributes, for an 
example in Figure 12, derived from 3 different sources: device knowledge (scan 
angle, intensity …), analytic knowledge (normal, curvature, roughness …) or domain 
knowledge (definition, representativeness …). While the UML model shows a one-to-
many relationship, to avoid too many SQL joints and for performances sake, the 
attributes can directly be integrated within the point table (the same applies to 
semanticPatch). However, it is important to note that one point can have many sets 
of attributes (consequently, as does a semanticPatch). 
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A collection of points sharing the same type of dimensions (spatial and 
semantic) constitute a point cloud. This is a data-driven aggregation, as depending 
on the definition of the dataset, the point cloud object parameters will differ. 
However, one dataset often represents a coherent point aggregation which serves a 
domain purpose. This point cloud entity also benefits from a knowledge source 
pointer to identify which knowledge source it relates to (if multiple domain-specific 
ontologies are connected to the model). To cope with heterogeneity in point cloud 
sources, a schema is defined and attached to all point clouds that share a similar 
dimension number, dimension type, scale and offset, similarly to [122].  Each point 
cloud is then parsed in semantic patches, regarding available knowledge and an 
adapted subdivision technique. Arbitrary, such a technique could be point-number 
related, geometry related, or position related. While the existing PostgreSQL plugin 
Pgpointcloud defining patches in an XML scheme provides spatial patches, we 
propose to greatly enhance such an approach by constructing semantic patches, 
which retain both spatial and semantic properties. It constitutes small spatial subsets 
of points that share a relationship based on available (and injected) knowledge. By 
default, our proposed voxel-based subdivision method groups point using 
geometrical & topological properties that implicitly relate to abstract 
conceptualization of our mind (such as geometric shapes to group points belonging 
to a plane, others floating above it …). As such, they are indirectly semantically 
enriched. “semanticPatch” retains many attributes, with an emphasis on two 
specifics: a classification status (which can be 0: unclassified, 1: one class only or 2: 
many classes), and a confidence level for the classification. These are computed 
through a segmentation and classification routine as described in 3.4.1, which is 
independently developed from the proposed point cloud data model. In order to 
speed up computations, allow enhanced spatial & semantic searches and provide 
new generalization possibilities to better address our representation of the data, a 
LoD generalization structure definition is directly linked to the semantic patches 
(Figure 13).  

 
Figure 13. Example of a basic LOD n-1 Generalization of 3 SemanticPatches from a point 

cloud with colour attributes only. 
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It defines the indexation scheme used, the different levels (if any), its node 
spatial extent and neighbours, associated geometries (if any) and other generalized 
attributes derived from statistical computations (average, Gaussian mixture …). 
[117] suggests a 3DOR-Tree as defined in [123] for improved performances, but 
hashing and implicit storage [124] can also greatly improve the internal coherence. 

3.3.4 Level-1: Connection-layer meta-model 

The connection-layer meta-model (i.e. the strict framework that drives the 
use of a formalism and resolves any ambiguities about the use of its concepts) plays 
the role of a plug system: an interface between the core SPC level-0 generalized meta-
model, and a domain ontology that formalizes the domain-specialization of a generic 
ontology. It is constituted of two sub-levels, L1-1 and L1-2 (Figure 14). 

 
Figure 14. Level-1 Connection-layer meta-model. It is directly linked to the Level-0: semantic 

patches constitute ConnectedElements. AggregatedElements and topological notions gives 
flexibility to the deepness of an element characterization. ConnectedElements can relate to 

one or multiple spaces defined by their dimensions. These are subsequently divided in 
subspaces regarding a concept from a domain knowledge characterization, similarly to the 

world objects (being a specialization of ConnectedElements). 

The core element in this meta-model is created by an aggregation of one or 
many patches that define a connected element (ConnectedElements, CEL). These are 
the entities that closely relate to classified objects, retaining both spatial and 
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metadata coherence. Connected elements transparently describe a portion of the 
space that is by default indirectly influenced by analytical knowledge and device 
knowledge, from the underlying patch organization. Connected elements have a 
spatial extent computed from the aggregation of patches, as well as one or several 
geometries that can be obtained by topological calculations from the patches. Aside 
from geometrical attributes including a spatial generalization (which can be for 
example the barycentre of the spatial extent, but also more representative statistical 
generalization) they retain raw semantics from the underlying patch aggregation 
rule dependant of a CEL. The integration of domain knowledge gives the opportunity 
at this level to deepen the representativeness of a connected element. Nevertheless, 
one connected element regarding a variety of applications can have different spatio-
semantic interests. Therefore, aggregated elements constitute an aggregation of 
connected elements which provide additional granularity and flexibility (a table, 
with 4 feet and one horizontal working area, which is either 5 connected elements or 
one aggregate element). Similarly, each connected element retains relationships 
with its surrounding environment: we detect and store host and guest relationship 
information (the table is the guest of the floor, and the floor is the host of the table). 
These strong concepts have an influence on how deep the selectivity can go. 
Retaining relations and organizing hierarchically through topological relations 
refers to mereology, applied on point clouds object generalization regarding DE-9IM 
[125]. The existing topological relations between 3D spatial objects with internal 
space are Disjoint, Meet, Overlap, Equal, Contain, ContainedBy, Cover, CoveredBy 
[126]. Therefore, a double structural definition retaining generalization and point 
primitives (Level-0) allows new analysis combining multi-LoD definitions. This 
pyramidal graph relationship formalization permits to easily access a spatially 
connected graph for reasoning engines that interpret topological relations. These 
conditions can be used to infer a physical description and combine many possible 
analysis, for example the possibility to recreate occluded zones, reason about 
position in time and space, conduct structural investigation... Connected elements 
also have additional properties and specific attributes inherited from the patches 
that it relates to. While every point can retain a date stamp, a connected element can 
be influenced by temporal variations, but duplicating a physical description of the 
connected element at every discrete temporal interval would not be enough. 
Therefore, ConnectedElements can have a temporal modifier that will describe the 
different modifications from the in-base initial state. They can also relate to multiple 
spaces defined as a set of dimensions in R, R2… Rn (for example X/Y/Z in R3). 

“Space” and “ConnectedElements” are related to a lower abstraction level 
L1-2 within the connection-layer. A space can have many subspaces defined in 
respect to the space dimensions. In a spatial context, it is interesting to note that they 
are mostly fiat subspaces in regard to [127]. Indeed, bona fide boundaries represent 
physical separators whereas fiat boundaries will describe a fictional border, and 
most of subspaces for human cognition have a fictional border (e.g. a room with an 
open door). The topological inward relation allows to constitute different subspace 
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Levels of Detail (we can consider a building, or the first floor of that building, or the 
room 2/43 of that first floor …). “SubSpace” therefore retains a domain knowledge 
source pointer that can be dedicated to one or many specific domains (it can be a 
subspace regarding the ontology of buildings, to the archaeology temporal findings 
in Australia …). The concept of world objects results from the definition of [119], 
which is a mind conceptualization of an object that also follows the categorization of 
[127]. “WorldObject” is a specialisation of “ConnectedElements” retaining a domain 
related semantic pointer similarly to “SubSpace” (a knowledge source mirroring the 
domain conceptualization). Geometries attached to these entities are useful for 
topological calculations and the direct link to “SubSpace” allows many possible 
queries for information extraction (testing the inclusion of a world object in a 
subspace, testing the intersection of two objects geometries with a fiat boundary 
from a subspace …). “SubSpace” and “WorldObject” constitute the entry points on 
which domain ontologies can be associated to adapt to a specific application. 

3.3.5 Level-2: Domain adaptation 

 
Figure 15. Level-2 meta-model example. SeparatorElement and InternalElement are 

connected to the Level-1 meta-model directly through “WorldObject” and “SubSpace”. It is a 
succession of specialization describing an indoor environment. 

As stated by [94] “any fully-fledged system should apply as much domain 
knowledge as possible, in order to make shape retrieval effective”. With the rise of 
online solutions, we have seen a great potential in using knowledge database for 
classification to analogically associate shapes and groups of points with similar 
features. This association through analogy “is carried out by rational thinking and 
focuses on structural/functional similarities between two things and hence their 
differences. Thus, analogy helps us understand the unknown through the known and 
bridge gap between an image and a logical model” [95]. This introduces the concept 
of data association for data mining, and relationships between seemingly unrelated 
data in a relational database or other information repositories. Enabling the use and 
analysis of domain knowledge through explicit domain assumptions while 
separating domain knowledge from operational knowledge refers to domain 
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ontologies. This shares interoperability notions with our proposed SPC structure; 
while one domain meta-model formalization is suited for some applications, another 
can be more adapted for others and create different results that will be used 
differently. These will dictate how the final point cloud data model should be used 
(for which application). 

Therefore, the level-2 meta-model is directly linked to different knowledge 
sources, which are specified in the level-1(-2) meta-model interfaces: “SubSpace” 
and “WorldObject”. Their conceptual abstraction in between pure spatial data (point 
clouds) and specific domain-verse data constitute a generic door for the potential 
connection to many level-2 domain specialization. This allows a great flexibility and 
a context adaptation to a very wide range of application, limited only by the 
underlying domain ontology. In fine, the domain meta-model attached to the 
connection-layer meta-model, and indirectly to the generalization meta-model 
constitute the SPC model. 

In a simple example (Figure 15), we illustrate over a basic indoor ontology 
the connection of a level-2 meta-model to the connection-layer meta-model. It 
contains 2 class elements (SeparatorElement and InternalElement) specialized in 8 
classes (transitionSeparator, verticalSeparator, horizontalSeparator, livingElement, 
mepElement, madeMadeStructElement, moveableElement, noise) which can also be 
specialized in a refinement process to get as close possible from the abstract idea 
that the human mind has of a concrete or abstract object of thought. This crude 
example is inspired by already established BIM standards and is used on a simple 
test case to enable rapid perception of natural language requests. As such, one 
selected “WorldObject” can be specialized and identified as an internalElement, a 
mepElement (Mechanical, Engineering, Plumbing), specifically a duct of the 
“subspace” room 4 in the higher LoD level “subspace” building 7 and attached by an 
“externalFixture” next to the exit “door”. The possibility to play on all possible scales 
is therefore an opening on a flexible system that can be adapted to many real-world 
applications within an infrastructure. 

3.4  FRAMEWORK ARTICULATION & AUTOMATION 
FOR INTELLIGENT ENVIRONMENTS 

The SPC data model permits to structure the information (3D geometry, 
semantics and topology) in order to leverage knowledge for accessing decision 
support tools and reasoning capabilities. Indeed, at the frontier between a point 
cloud GIS system and a spatial infrastructure for agent-based decision support 
systems, its flexibility allows its extension through new developments mainly in 
artificial intelligence and machine learning. As such, a modular SPC-based 
conception permits a high extensibility, with a few constraints described in 3.4.1. 



 

64 

3.4.1 Infrastructure modularity and extensibility 

The SPC data model integration within a computerized environment was 
though to first allow an end-to-end usage even with limited automation. Thus, each 
module as seen in Figure 16 has been developed and implemented in a standard 
version that allows immediate usage, but which can be upgraded when every defined 
constraint is met. The choice was oriented to provide an open, functional and 
evolutionary infrastructure that can easily be replicated / extended. It mainly 
addresses level-0 and level-1 SPC conceptual model, and for some datasets the level-
2 is presented. 

 
Figure 16. SPC modular framework. The point cloud is fed to the parsing module (KE) that is 

directly adjusted regarding the processing module (KE). The different point subsets are 
extracted and injected in the Point Cloud Database module (KI). This module is central and 

influenced by the Classification module (KE) and the language and query processing module 
(KI & KR) which are themselves linked to the Knowledge and agent layers.  

The Point Cloud is defined by its characteristics that must follow the 
prescriptions detailed in 3.4.1.1. The Parsing (3.4.1.2) and processing (3.4.1.3) 
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modules are designed for KE and for organising efficiently in SemanticPatches the 
data which is integrated with other spatio-semantic information in the Point Cloud 
Database (3.4.1.4). This will constitute the main data repository for the Knowledge 
processing Engine (3.4.1.5) including Classification, language and query processing, 
reasoning which is directly linked to the Knowledge management layer  described in 
3.4.1.7 (Training Data and Ontologies). Finally, when through the GUI (3.4.1.9) an 
interaction necessitate an agent intervention, the Query engine / reasoner and Agent 
Layer (3.4.1.8) permits AI-based decision making. 

3.4.1.1 Point Cloud characteristics 

To be processed and usable by the SPC Infrastructure, a point cloud P must 
a least be constituted of n points with each three spatial attributes: X, Y, Z. This 
criterion is the minimal condition to be compatible with the parsing module. If the 
point cloud has one or multiples attributes aj, these will be kept, and a specific 
schema will formally describe the format as an XML document stored in the 
pointcloud_formats table from the SPC data model level-0. 

3.4.1.2 Point Cloud parsing 

In order to integrate both classified point clouds and unclassified point 
clouds, two methods are included in the SPC infrastructure. If knowledge 
information is available through classification metadata (e.g. .las attributes, ASCII 
with classification pointers) or file-on-disk organization (.txt file), each independent 
instance of each class is then divided into a point-based number of separate semantic 
patches pointing to each instance according to the hardware configuration of the 
server and the version of the used database. The Point Cloud parsing standard 
module for raw point cloud data is based on a semantic segmentation framework 
that groups points in a voxel-based space at a given octree level calculated 
automatically regarding device knowledge14. Each voxel is then studied by analytic 
featuring and similarity analysis to define a ConnectedElement. This process is 
conducted regarding an initial connected component from graph representation 
process after automatically detecting the main “ground” element and different 
perpendicular/parallel elements that are candidates to wall and ceiling. The voxels 
containing “edges” or multiple possible points that should belong to separate objects 
are further subdivided by studying the topology and features with their surrounding 
elements (Figure 17). Thus, the indexation is defined both spatially and semantically 
to define SemanticPatches either “pure” voxel or leaf nodes from “hybrid” voxels. 
While this is very efficient, any decomposition can be though, for example regarding 
a 3D-OR Tree [60], a Kd-tree [128] or a Sparse Voxels Octree … On the 
implementation side, the parser module was developed in Python, including the 

                                                                    

14 these were KB determined 
regarding available product-sheets 

specifications for each tested point 
cloud presented in Figure 16. 
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following libraries: numpy, laspy, tensorflow, scikit-learn, math, 66etwork. The 
Storage Model is therefore of type Block. 

 
(a) 

 
(b) 

 
I 

 
(d) 

 
I 

 
(f) 

 
(g) 

 

Figure 17. Point cloud parsing methodology: (a) Raw point cloud from TLS; (b) voxelisation 
at different Octree LoD levels; (c) Segmentation: (d) Voxel-based topology featuring; I 

Extraction of highly representative points; (f) voxel classification; (g) Connected Element 
constitution and patch decomposition. 

3.4.1.3 Point Cloud processing 

The added functionalities play on multi-LoD (point-based or object-based) 
KE routines. By default, statistical generalizations are computed, as well as a 
topological skeleton based on voxel adjacency, object information (if available), 
space decomposition (if available) and in any pertinent space (XYZ, RGB …). This 
module then rearranges SemanticPatches to corresponding ConnectedElements, and 
WorldObjects if applicable. Eigen vectors and eigen values are also extracted through 
Principal Component Analysis, as well as parametric shapes, planarity estimators, 
shape regularity, Concave/Convex 3D estimator. This is especially important 
regarding the host/guest topological (8-relationships study) inference used for 
further reasoning and computations. 

This module can directly be improved by joining classification procedures 
linked to the Knowledge processing engine for added feature computation or 
ConnectedElements specialisation. The constraints being the update of 
WorldObjects table, the topology and internal relationships. The standard processing 
module was developed in Python and C++ and is directly connected to the Point 
Cloud Database through the psycopg/JSON python library. Some calculations and 
extraction are directly in-Base (SQL). 

3.4.1.4 Point Cloud Database 

The Decision Support System is constructed over a Point Cloud DBMS which 
provides an interface for integrating, updating, and accessing 3D point clouds. In 
addition, a LoD data structure and indexing scheme is prepared for fast data access 
by hierarchically subdividing the spatial area or using existing indexes. It provides 
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an access to every component as described in the Conceptual model, permits 
topology featuring (Figure 18) and allows various modules to be plugged thus 
playing the role of a centralized KI module.  In addition, point/objects attributes 
resulting from capture, analysis, simulation, or processing stages can be stored. 
Efficient processing requires a certain data quality that can be ensured by applying 
Knowledge-Based filtering and registration methods to the input data. The module 
was implemented in the open-source PostgreSQL 9.6 DBMS, with the extensions 
PostGIS and Pgpointcloud activated. 

 
(a) 

 
(b) 

 
I 

 
(d) 

Figure 18. Example of Point Cloud in-base topology determinations for relationship 
extraction (a) CEL block storage; (b) host/guest CEL/ground; (c) Generalization and 

topology inference: (d) Higher LoD topology inference. 

3.4.1.5 The Knowledge processing engine  

For the training data and ontologies present in the Knowledge management 
layer to be usable, a processing module make use of this information to allow 
possible reasoning on point cloud data. As such, it is composed of a reasoner engine 
that can be used in the case of classification tasks for creating new knowledge (KE). 
It is also able to extract new information based on data stored in-base. The First 
Order Logic (FOL) is used for expressing logical conditions. The new knowledge is 
then stored as attributes and made available through a schema definition’s 
modification. New KI is possible. A Convolutional Neural Network based on PointNet 
Vanilla and trained using different datasets is developed in python and an indirect 
connection allows automatic classification based on Machine Learning, using the 
trained model. Extending this provide a great opportunity for added representativity 
and automatic processing. The implementation was made using Protégé, the FOL 
reasoner Pellet and python for the link between RDF/JSON and SQL statements. 

3.4.1.6 The Language and query processing engine 

This module allows to navigate between different languages, with the aim to 
provide a direct interface for natural language processing. The version in the SPC 
covers the ability to realise SQL and NoSQL queries. The language and query 
processor are developed in Python, and uses the following libraries: psycopg, json, 
SPARQLWrapper. 
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3.4.1.7 The Knowledge management layer 

The training data is structured to keep for each classified instance a link to 
every possible related domain formally expressed in an ontology of Specialization 
such as provided in [5] . The ontology also permits to formalize rules and constraints 
for KR. The reasoner used for extracting new information is Pellet, and the 
developments are made in Protégé, linked to the database through SPARQL queries 
and connected through an EndPoint, or a server hosting. The main used language is 
OWL/RDF. KI and specifically Knowledge structuration was constructed to allow 
efficient KR and reasoning while insuring interoperability with already established 
models. 

3.4.1.8 The Intelligent Agent Layer  

The Intelligent Agent Layer indirectly linked to a reasoner through a 
language processor permits to leverage AI through Experts Systems (E.g. semantic 
modelling SPC extension in [5]) / Neural Networks, Genetics Algorithms or any 
agent-based technology for Decision Support Systems. Our tests were conducting 
with an AI pathfinding agent that uses the Subspace graph connections to establish 
possible areas to visit. Based on an initial node and a goal node, the agent determines 
the nodes succession of the least costly path to the goal. We used a heuristic that 
works for A* returning the distance between the node and the goal.  Then, the 3D 
Geometry representing each subspace is tested against “ST3Dwithin” SQL statement 
to establish the occupancy grid of any CEL (Figure 19). The implementation was 
made in python, SQL and JSON. 

 
(a) 

 
(b) 

 
I 

 
(d) 

Figure 19. Example of voxel space generalization from 3D Point Cloud for A* pathfinding (a) 
Raw point cloud from TLS; (b) voxelisation at different Octree LoD levels; (c) Segmentation: 

(d) Voxel-based topology featuring. 

3.4.1.9 The GUI 

The GUI is conceived so as to answer the 10 usability heuristics for user 
interface design described in [129]. Concurrency is also very important, and a 
platform should be able to scale up to multiple simultaneous connections. As such, a 
client-side application and RESTful development constitute a good solution for 
answering efficient interaction and high interoperability. The World Wide Web is a 
democratized way to share and exchange information. It constitutes a long-term 
mean to collaborate and is independent of the location which is very important 
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considering the need to be able on site to work with digital copies. The web 
application is implemented in a WebGL framework and is accessible on any HTML5-
compatible browser. The server has different roles and one interaction is to allow 
the user to view different point clouds. Each point cloud is linked to a corresponding 
database stored on the server. When the user selects a part of a point cloud, the 
coordinates are sent to the server which will execute different queries to determine 
which object is selected by comparing the intersection of these coordinates with the 
related geometry (e.g. bounding box) of each object in the database. Once the 
corresponding object is determined, the extension “Pgpointcloud” allows to retrieve 
in JSON format the data related to each point constituting the patches of the object. 
When viewing an object, the client makes AJAX calls to the server to retrieve all this 
data. Once retrieved, the client can then process them to display each point in the 
point cloud representing the object. The server is developed in Python using the 
Django library, psycopg2 and json libraries which makes it possible to set up this 
kind of infrastructure quickly and easily. 

3.4.2 SPC Requirements benchmarking 

In order to test the suitability of the SPC infrastructure to efficient 
Decision Support Systems, the following requirements were evaluated:  

- (R1) Allow point cloud data loading, insert and updates; Key look-up search, 
Nearest Neighbour’s search and Cluster analysis; Outlier identification, 
Histogram and density estimation, Random sampling; Filtering capabilities 
based on spatial attribute and semantics; [116]; 

- (R2) Visualisation and interaction with in-base data; 

- (R3) Support KE processes for semantic segmentation / classification; 

- (R4) Possibility to attach semantics to point clouds and point cloud subsets; 

- (R5) Support for the interpretation and the aggregation of contextual 
information; 

- (R6) Allow spatial, semantic and topology queries; 

- (R7) Allow the user to control, manipulate, search, analyse, query and 
navigate within the data; 

- (R8) Support agent-based inference and reasoning; 

- (R9) High interoperability with established data models and extensibility 
through other modules; 

The implementation’s choice toward a client-server infrastructure (Figure 
20) was thought to allow point clouds and databases storage on a server. In addition, 
the application can manage multiple point clouds and databases. All data is therefore 
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centralized with the application, developed and tested on Linux (Ubuntu) and 
Windows 10, using the described frameworks, languages and libraries in the 
previous section. The application hierarchy is easy to set up, and administrator 
sessions for editing, adding or deleting application data are automatically 
implemented. For example, each object in a point cloud is automatically stored in the 
application database when a user selects it.   

 
Figure 20. SPC Client/Server Infrastructure implementation 

To test the suitability of the infrastructure to point clouds with varying 
characteristics, the following datasets (Table 3) from different 
sensors/methodologies were integrated: 

Table 3. Datasets for benchmarking the SPC Infrastructure 

PCID PCType 
Sensor / 

Instrument 

Point 

Number 

(Million) 

Attributes 

Number 

Classification 

Status 

1 TLS Leica P30 200 7 Unclassified 

2 TLS 

Trimble TX5 

(eq. Faro 

Focus 3D) 

150 8 Unclassified 
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3 PS CMOS 

Canon 5D 

Mark III + 24-

104 mm 

200 6 Unclassified 

4 PS CMOS 

Canon 70D + 

Fisheye Sigma 

15 mm 

450 6 Unclassified 

5 IS 

Camera 

Matterport 

Pro 3D 

50 3 Classified 

6 2DS+S Zeb Revo 25 3 Unclassified 

7 LiDAR 

Riegl 

Litemapper 

6800i 

70 15 Classified 

8 2DS Velodyne 1 3 Classified 

9 2DS+S NavVis 8 7 Unclassified 

Note: TLS= Terrestrial Laser Scanner, PS CMOS= Passive Sensor CMOS, IS= Infrared Scanner; 2DS+S= 2D 

Scanner + SLAM 

Firstly, we notice that the SPC can directly integrate, all tested point cloud 
with different characteristics while addressing (R1). Mainly, the characteristics of 
the point cloud data influence the initial Connected Element detection for non-
classified datasets. We also noticed that the quality/representativity of the point 
cloud data can impact the results. The most influential factors are the irregular point 
distribution, the point accuracy and the return signal dependence on the physical 
characteristics of the surface. We observed that the datasets with high noise or with 
complex structures (indoor and outdoor data) can become problematic for the 
Parsing module. However, Device Knowledge-based filters and characterization 
correct this phenomenon and when the sensor related device knowledge is 
formalized in the Knowledge Layer, it has a limited impact. 
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Raw point cloud 

    
Voxel-based featuring 

    
Grouping before topology 

(a) PCID 1 (b) PCID 2 I PCID 3 (d) PCID 7 

Figure 21. Visualisation of four point clouds from the benchmarking datasets and visual 
impact of the voxel-based featuring and grouping before topology 

Requirements (R2), (R3), (R4) are also validated, with a manual interaction 
step when the classification module doesn’t permit automatic classification. Through 
the GUI, a python script on the server is executed. It first determines the selected 
ConnectedElement object according to the x, y and z coordinates of the ray-casting. 
To do this, an SQL query is carried out on the database linked to the point cloud and 
allows to return the name of the object containing the point (e.g. Figure 21). (R7) is 
answered but the implementation could be extended by providing higher 
interactivity. 

Requirement (R5) for contextual aggregation is limited to established 
EndPoints such as DBPedia. The integration demands that the concepts definitions 
are the same as the one in the different accessible ontologies. However, as the WWW 
standards evolve, and new semantic web resources are available, it can be extended. 

Using PostGIS, Python, SQL, SPARQL statements, information extraction is 
possible. This gives the SPC infrastructure the ability to fully answer requirement 
(R6), independently from the initial tested datasets. Problem arises when the 
generalization geometry is not representative of the described objects (e.g. when 
noise is too prominent with an incorrect 3D Concave Hull / BB extracted).  

Requirement (R8) depends on the depth and completeness of the semantic 
definition of objects. Indeed, the classification granularity may limit the available 
operations to a fraction of what is possible due to a lack of specialisation. For 
example, A* pathfinding is possible in all datasets, but for the PCID5, the use of 
SubSpace and objects definition information gives an additional edge to the deepness 
of the AI-pathfinding. The reasoning module was tested over unclassified datasets, 
as a classification reasoner, and allowed to automatically detect shapes regarding 
available knowledge over geometrical and radiometric properties of the point cloud 
[4]. Extending the module by providing domain ontologies and inference rules would 
provide very interesting for adapted domain-versed classification. 
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Therefore the (R9) condition is important and was tested. The addition of knowledge 
“pointers” to the in-base data permits to use this flexibility concerning every point 
cloud. The possibility to connect to EndPoints also permits a higher interoperability 
by gathering established knowledge from recognized knowledge repository (e.g. 
DBPedia). As such, information regarding classified elements can directly be linked 
to extend instance information. This can also be used by agent support system for 
inference and better guidance toward decision-making and simulation. 
By combining the Point Cloud Database module with the Knowledge Layer, the SPC 
infrastructure allows the use of operators either spatial, semantic, topology-based or 
any combination of them. This was tested over the different datasets and the 
reasoner engine “Pellet” was used to infer new knowledge. Purely spatial operators 
possess spatial semantics that can be classified as 3D directional operators such as 
above, under, NorthOf, SouthOf, EastOf, WestOf; metric operators such as distance 
analysis; topological operators such as touch, contain, equal, inside; Boolean 
operators such as union, intersection. The ability to play with the generalization 
possibility provide a very high flexibility regarding possible data analysis and 
cognitive decision making. 

Table 4. Example of Basic SQL statements over the SPC infrastructure 

Goal SQL Statement 

I want to select the ‘semanticpatches’ which 
intersects a defined 2D polygon 

SELECT pa FROM semanticpatch WHERE 
ST_INTERSECT(pa::geometry) = TRUE 

I want to select all ‘semanticpatches’ that 
have been classified  

SELECT pa FROM semanticpatch WHERE 
spclassifstatus = 1 

I want to select the connected element 
CEL0065 

SELECT pa FROM semanticpatch WHERE 
connectedelement_id = 0065 

I want to extract the name of the connected 
element(s) that include the (x,y,z) position 

(used through ray-casting) 

SELECT name FROM connected_elements 
WHERE((ST_Z(x, y, z) > 

ST_Zmin(geom::box3d)) AND (ST_Z(x, y, z) 
< ST_Zmax(geom::box3d)) AND (ST_Y(x, y, 
z) > ST_Ymin(geom::box3d)) AND (ST_Y(x, 

y, z) < ST_Ymax(geom::box3d))AND 
(ST_X(x, y, z) > ST_Xmin(geom::box3d)) 

AND (ST_X(x, y, z) < 

ST_Xmax(geom::box3d))); 
  

 

The integration of semantics, e.g. “The connected element CC0065 is a desk 
chair named ‘comfychair’ made in 2018-10-08 for working in front of a PC” as SQL 
statements (INSERT INTO moveableelement_connectedelement_id, type, title, 
date_prod, kind) VALUES (‘65’, ‘chair’, ‘comfychair’, ‘2018-10-08’, ‘working’) from 
KE-routines and the Knowledge Layer permits to achieve very interesting analysis. 
E.g., the Natural language “I want to locate the highest table within the room A of the 
Building B and calculate the free space between its surface and the ceiling for 
determining the possible extension” leveraging the linked domain concepts from a 
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level-2 meta-model mirror our real-world information gathering, thus heavily 
extend possibilities. 

3.5  LIMITATIONS, PERSPEC TIVES AND 
POSSIBILITIES 

While the SPC infrastructure can play the role of intermediary between real-
time acquisition and inference for decision making without the need to denature 
point cloud data, the infrastructure presents some limitations that suggest new 
research directions.  

Any modelling choice is arbitrary and depends on the conscious or 
unconscious aspirations of the designer. Although our work responds to a concern 
for generalization at a spatio-semantic level, it nevertheless remains that it is not 
totally independent of a certain context. It is for this reason that we wanted to clearly 
illustrate a privileged domain of application: indoor environments (for BIM, 
emergency response, inventory management, UAV collision detection …). This choice 
permits to explore different scales and configurations for deeply and entirely testing 
our developments. It is also ideal for the definition of new virtual spaces, and the GIS 
demand associated to such environment is ever increasing. Therefore, as the 
formalization of domain constantly evolve, modelling and direct integrations of level-
2 domain meta-models remain important. 

While 3-dimensional spaces are strongly inferred in the SPC model, 4-
dimension spaces integrating time or by extension n-dimensional spaces are possible 
characterizations for greater interoperability. Tests were conducted with static point 
data only, but varying positions in space and time present additional problematics 
that could be address through new modules or an extended SPC data model. While 
the developed framework constitutes the groundwork of a modular infrastructure 
that provide direct integration of hard-coded or inferred domain knowledge, future 
work including the extensibility of the proposed model to other data types, as well 
as a better integration of learning routines and ontologies as knowledge sources is 
very interesting. 

The SPC infrastructure permits to link efficiently AI through agent decision 
support systems and reasoning. While developments were carried in a 3D voxel 
space (passable or non-passable at each point) with gravity constraints, using CEL 
Bounding-Boxes or an advanced Navmesh could enhance results. This illustrate that 
finding an efficient AI-based agent can become complicated for one application, so 
generalizing software agents can become complicated. To have an intelligent agent 
that performs reactively and/or pro-actively, interactive tasks need to be tailored to 
a user’s needs without humans or other agents telling it what to do. To accomplish 
these tasks, it should possess the following general characteristics in regard to [130]: 
(1) Independence, (2) learning, (3) Cooperation, (4) Reasoning, (5) Intelligence. 
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This relates to the exploratory research field of for Artificial General Intelligence15 
[131] which explicitly justify a need of virtual environments that incentivize the 
emergence of a cognitive toolkit, such as the SPC infrastructure. As such, SPC-based 
multi-agent environments provide an opening thanks to its variety (the optimal 
strategy must be derived optimally) and natural curriculum (the difficulty of the 
environment is determined by the skill of other agents). This direction while being 
extremely exciting to avoid purpose-specific algorithm is still a research question 
that need to be further explored, in which Deep Learning may provide a suitable 
answer. 

3.6  CONCLUSION 

The Smart Point Cloud data model permits to structure the information (3D 
geometry and semantics) to leverage knowledge for accessing decision-making 
support tools and reasoning capabilities. At the frontier between a point cloud GIS 
system and a spatial infrastructure for agent-based decision support systems, its 
flexibility allows to evolve with new developments mainly in artificial intelligence 
and machine learning. The proposed modular infrastructure includes Knowledge 
Discovery processes with Knowledge Integration and Knowledge Representation as 
ontologies, proving efficient context-specific adaptation. Nine point cloud datasets 
were used for testing the infrastructure, successfully answering identified needs and 
providing new research directions as modular extensions. 

  

                                                                    

15 Artificial General Intelligence is the 
intelligence of a machine that could 
successfully perform any intellectual 
task that a human can do, including: 
reasoning; judgment calls under 
uncertainty; KR; planning; learning; 
natural language communication. 

Other important capabilities include 
the ability to sense (e.g. see) and the 
ability to act (e.g. move and 
manipulate objects) in the world 
where intelligent behaviour is to be 
observed. 
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Point Cloud voxelisation of a surveyor’s friendly tripod, Belgium. 
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CHAPTER 4 
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CHAPTER’S PREFACE  

 

In the previous chapter 3, we established the fundamentals of the Smart 
Point Cloud Infrastructure (SPCI) and its modular architecture. The present chapter 
4 will give extended details on the Parsing module and the Classification module as 
highlighted in Figure 22. 

 
Figure 22. Chapter 4: Knowledge Extraction 

In this chapter, we provide a general clustering approach that groups point in 
relatively low-specialization segments which can then be further refined depending 
on the application at hand. We then provide a naïve knowledge-based classification 
approach for indoor point cloud data and asset management applications. These 
both permit to leverage the SPCI architecture. This chapter holds targeted 
references as seen in chapter 2, namely feature extraction and segmentation / 

classification approaches. The following chapters, 5 and 6 are then building on the 
initial spatial structuration provided by the Parser module.  
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Based on Article [5] 

Voxel-based 3D point cloud semantic 

segmentation: unsupervised geometric and 

relationship featuring vs deep learning methods  

Abstract: Automation in point cloud data processing is central for knowledge 
discovery within decision-making systems. The definition of relevant features is 
often key for segmentation and classification, the main challenges in automated 
workflows. In this paper, we propose a voxel-based feature engineering that better 
characterize point clusters and provide a strong support to supervised or 
unsupervised classification. We provide different feature generalization levels to 
permit interoperable frameworks. First, we recommend a shape-based feature set 
(SF1) which only leverage raw X, Y, Z attribute of any point cloud. Then, we derive 
relationship and topology between voxel entities to obtain a 3D structural 
connectivity feature set (SF2). Finally, we provide a knowledge-based decision tree 
to permit infrastructure-related classification. We study SF1/SF2 synergy on a new 
semantic segmentation framework for the constitution of a higher semantic 
representation of point clouds in relevant clusters. We finally benchmark the 
approach against novel and best-performing deep-learning methods using the full 
S3DIS dataset. We highlight good performances, easy-integration and high F1-score 
(>85%) for planar-dominant classes comparable to state-of-the-art deep learning. 

Keywords: 3D point cloud; voxel; feature extraction; semantic segmentation; 
classification; 3D semantics; deep learning 
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4.1  INTRODUCTION 

Extracting knowledge from raw point cloud data is actively driving academic 
and industrial research. There is a great need for automated processes that can speed 
up and make existing frameworks faster and more reliable. It often integrates a 
classification step to extract relevant information regarding one application domain. 
However, one classification approach cannot efficiently satisfy all domains as the 
semantic concepts attached to objects and location vary depending on uses (e.g. 
considering a chair as an object, or its legs). Therefore, insuring that such 
information is transferable to benefit other applications could provide a great 
opening on point cloud data usage. Yet, this is a non-trivial task which necessitate 
highly interoperable reasoning and a flexible way to handle data, relationships and 
semantics. Our method considers the Gestalt’s theory [132], which states that the 
whole is greater than the sum of its parts, and that relationships between parts can 
yield new properties/features. We want to leverage the human visual system 
predisposition to group sets of elements. 

In this paper, the first goal is to provide a point cloud parsing unit to extract 
semantic clusters through a voxel-based partitioning of the dataset. It permits 
flexible usage in different domains such as Architecture, Engineering & Construction 
(AEC), Building Information Modelling (BIM), Facility Management (FM), indoor 
navigation and robotics. The module acts as a standalone within a Smart Point Cloud 
Infrastructure [2] – a set-up where point data is the core of decision-making 
processes – and handles point clouds with heterogeneous characteristics. Indeed, for 
the sake of interoperable data management, the possibility to incorporate 
Knowledge-Extraction routines in existing frameworks has become essential for an 
efficient international research cooperation. As such, we investigate an objective 
solution for versatile 3D point cloud semantic representation transparent enough to 
be usable on different point clouds and within different application domains. We 
propose to structure a point cloud in Connected Elements further refined in Semantic 
patches using efficient and low-level voxel-related features. This is primarily 
motivated by the limitations of point-based approach where the amount of data, the 
redundancy and the absence of relationships within points are great performance 
issues. 

In order to assess the possibilities given by the 3D clustering scheme, a 
semantic segmentation solution is developed to leverage feature sets retaining both 
shape and relationship information. This permits to benchmark the performances 
and results against the best-performing state of the art deep-learning methods. 
Indeed, with the rise in computing power, promising machine learning techniques 
detailed in [39,45,91–93,83–90] are a great opening to more reliable and robust 3D 
objects classification. However, ground-truth extraction and dataset labelling to 
create training data are the main drawbacks in supervised learning. Manually 
annotating and insuring the quality of such datasets is a heavily dauting task. Hence, 
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ways to alleviate these mechanisms through automated tools are essential to new 
findings and for training new models. 

The experiments were conducted on the full S3DIS [133] indoor dataset as 
(E.g. Figure 23), but it is generalizable to outdoor environments with man-made 
objects/characteristics. 

 
Figure 23. Voxel-based 3D semantic segmentation. From left to right: Raw point cloud, 

feature engineering, Connected Elements extraction, Classified point cloud 

Briefly, this paper makes the following three main contributions: 

- A new interoperable point cloud data clustering approach that account 
variability of domains for higher-end applications; 

- A novel point cloud voxel-based featuring developed to accurately and 
robustly characterize a point cloud with local shape descriptors and 
topology pointers. It is robust to noise, resolution variation, clutter, 
occlusion and point irregularity; 

- A semantic segmentation framework to efficiently decompose large 
point clouds in related Connected Elements (unsupervised) specialized 
through a graph-based approach: it is fully benchmarked against state-
of-the-art deep learning methods. We specifically looked at 
parallelization-compatible workflows. 

The reminder of this paper is structured as follows. Section 4.2 briefly 
reviews recent related works dealing with point cloud feature extraction, 
segmentation and classification. Section 4.3 gives the details of the proposed voxel-
based featuring and semantic segmentation. In Section 4.4, we present the S3DIS 
dataset used for the different experiments and benchmarks. In Section 4.5 we study 
the impact of features over the results and analyse the performance of the approach 
against high-yielding supervised learning. In Section 4.6 we discuss our findings and 
highlight limitations as research directions. 
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4.2  RELATED WORKS 

Feature design occupies a central position to knowledge representation and 
classification approaches. As expressed in Section 4.1, the Gestalt’s theory [132] is 
fundamental to understand how our visual cognition systems perceive our 
surrounding when trying to feed a classifier with information. While many factors 
make intuitive sense (E.g. Figure 24), it is often very hard to translate them into 
algorithms. 

 
Figure 24. Visual patterns on points from left to right: Not grouped; Proximity criterion; 

Similarity criterion; Common cluster region; Linear criterion; Parallel criterion: Symmetry 
criterion. 

This gives an edge to deep learning approaches where the emphasis is 
toward training dataset’s constitution rather than feature engineering. In this 
section, we cover both problematics, i.e. feature- engineering and point-cloud 
supervised learning, which is further linked to Section 4.3 and 4.5. First, features and 
methods that work well for extracting relevant information from point clouds are 
investigated. Then, relevant references and recent works (2015+) that deals with 
point clouds semantic segmentation are given to the reader. We specifically look at 
voxel approaches and features that already made their proof over complex point 
cloud artefacts. 

4.2.1 Point cloud feature extraction 

In this sub-section, we analyse low-level shape-based approaches that try to 
extract local descriptors from 3D neighbourhood [134]. We refer initially to the 
pertinent work of Ghorpade et al. [40] which proposes a review of 2D and 3D shape 
representation and is a good introduction to get an idea of the landscape of features 
in use. 

The work of Bueno et al. [135] focuses on the detection of geometric key-
points and its application to point cloud registration. The authors primarily study 
data subsampling to keep key points for coarse alignment purposes. These points are 
obtained using an approach mainly based on features being eigen entropy, change of 
curvature and planarity. Indeed, they state these provide a good representation in 
both, visual and mathematical value of the point clouds. This is found in many recent 
works such as [136], where authors also use local eigen-based features for disaster 
damage detection through synergistic use of deep learning. The work of Blomley et 
al. [137] provides larger insights on the common geometric (e.g. eigen-based) 
covariance features in varying scale scenarios. In 2018, Thomas et al. proposed a 
semantic classification of 3D point clouds in [39] which also employs eigen-based 
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features as well as colour derived feature. The specificity lies in the definition of a 
multiscale neighbourhoods which allows the computation of features with a 
consistent geometrical meaning. The authors in [138] also uses several eigen-based 
feature, spectral and colour-derived features for the classification of aerial LiDAR 
point clouds. The features coupled with their approach provides good results, and 
therefore orient our choice of features toward eigen-based features, for they 
representativity of local neighbourhood as well as low-knowledge requirement. 

Other recent works for learning local structures [139] or local shape 
properties [90] highlighted the wide acceptation of normals. Shen et al. present in 
[139] two new operations to improve PointNet [101] – one of the earliest deep 
learning reference for point cloud semantic segmentation – with a more efficient 
exploitation of local structures. The first one focuses on local 3D geometric 
structures. In analogy to a convolution kernel for images, they define a point-set 
kernel as a set of learnable 3D points that jointly respond to a set of neighbouring 
data points according to their geometric affinities measured by kernel correlation. 
The second one exploits local high-dimensional feature structures by recursive 
feature aggregation on a nearest-neighbour-graph computed from 3D positions. 
They specifically state that “As a basic surface property, surface normals are heavily 
used in many areas including 3D shape reconstruction, plane extraction, and point 
set registration” [140–144]. The paper of Song et al. [145] provide a comparison of 
normal estimation methods, which can also be achieved via neural networks such as 
PCPNet [90]. In this last article, Guerrero et al. propose a deep-learning method for 
estimating local 3D shape properties in point clouds. The approach is especially well-
adapted for estimating local shape properties such as normals (both unoriented and 
oriented) and curvature from raw point clouds in the presence of strong noise and 
multi-scale features. Therefore, we will specifically integrate normal within our 
workflow, while looking at performance issues during its computation. 

Edge-based features have also been investigated in [146] or [147] but their 
applicability is mostly oriented toward point cloud line tracing. Thus, we confront 
large performance issues due to analysing geometric properties of each point’s 
neighbourhood, and combining RANSAC [148,149] and angular gap metrics to detect 
edges. While extended in [150] to contour extraction of large 3D point clouds, we will 
specifically avoid region growing approaches due to performances limitations. 

4.2.2 Semantic segmentation applied to point clouds 

The first challenge in pure segmentation frameworks is to obtain group of 
points which can describe with enough detachment the organization of the data by a 
relevant clustering. A first approach using relationships while conserving the point-
based flexibility is given by the work of Papon et al. [146]. They propose an over-
segmentation algorithm using ‘supervoxels’, an analogue of the superpixel approach 
for 2D methods. Based on a local k-means clustering, they try and group voxels with 
similar feature signatures (39-dimensional vector) to obtain segments. The work is 
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interesting because it is one of the earliest to try and propose a voxel-clustering with 
the aim to propose a generalist decomposition of point cloud data in segments. Son 
et Kim use such a structure in [151] for indoor point cloud data segmentation. They 
aim at generating as-built BIMs from laser-scan data obtained during the 
construction phase. Their approach consists of three steps: region-of-interest 
detection to distinguish the 3D points that are part of the structural elements to be 
modelled, scene segmentation to partition the 3D points into meaningful parts 
comprising different types of elements using local concave and convex properties 
between structural elements, and volumetric representation. The approach clearly 
shows the dominance of planar features in man-made environments. 

Another very pertinent work is [121] which propose a SigVox descriptor. 
The paper first categorizes object recognition task following the approach as (1) 
model-fitting based (starts with segmenting and clustering point cloud followed by 
fitting point segments); (2) semantic methods (based on a set of rule-based prior 
knowledge); (3) shape-based methods (shape featuring from implicit and explicit 
point clusters). They use a 3D ‘EGI’ descriptor to differentiate voxels extracting only 
specific values from a Principal Component Analysis (PCA) [152]. The approach 
proves useful for MLS point clouds, grouping points in object candidates, following 
the number. Another voxel-based segmentation approach is given in [153,154] using 
a probabilistic connectivity model. The authors use a voxel structure of which they 
extract local contextual pairwise-connectivity. It uses geometric “cues” in a local 
Euclidean neighbourhood to study possible similarity between voxels. This approach 
is similar to [155] where authors classify a 2.5D aerial LiDAR point cloud multi-level 
semantic relationships description (point homogeneity, supervoxel adjacency, class-
knowledge constraints). They use a feature set among other composed of the 
elevation above ground, normal vectors, variances and eigen-based features. 
Another analogous approach can be found in [156] for building point detection from 
vehicle-borne LiDAR data based on voxel group and horizontal hollow analysis. 
Authors present a framework for automatic building point extraction including three 
main steps: voxel group-based shape recognition, category-oriented merging and 
building point identification by horizontal hollow ratio analysis. This article 
proposes a concept of “voxel group” where each group is composed of several voxels 
that belong to one single class-dependent object. Then the shapes of point clouds in 
each voxel group are recognized and this shape information is utilized to merge voxel 
group. This article leverages efficiently a sensory characteristic of vehicle-borne 
LiDAR building data but specialize the approach in consequence. 

The references [157,158] are built upon a graph-based over-segmentation 
methodology composed of a local 3D variation extraction, a graph construction, 
descriptor computation and edge-wise assignment followed by sequential subgraph 
criteria-based merging. The used descriptors are mainly RGB, location and normal 
vectors on top of the fast point feature histogram [159]. While the approach is 
domain-related, it offers some additional insight on the power of relational 
approaches between local point patches for the task of semantic segmentation. 
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However, as show in [86], using a multi-scale voxel representation of 3D space is very 
beneficial even for complexity reduction of terrestrial lidar data. The authors 
propose a combination of point and voxel generated features to segment 3D point 
clouds into homogenous groups in order to study surface changes and vegetation 
cover. The results suggest that the combination of point and voxel features represent 
the dataset well, which shows the benefit of dual representations. The work of [134] 
uses Random Forests for aerial Lidar point cloud segmentation which aim at 
extracting planar, smooth and rough surfaces, classified using semantic rules. This is 
interesting to answer specific domains through ontology formalization.  

These methodologies contrast with deep learning approaches as they try to 
solve the semantic segmentation problem by first understanding which set of 
features/relations will be useful to obtain relevant results. The following 
methodologies start directly with the data and will learn by themselves how to 
combine the initial attributes (X, Y, Z, R, G, B …) into efficient features for the task at 
hand. 

Following PointNet [101] and PointNet++ [102] which are considered as a 
baseline approach in the community, other work applied deep learning to point set 
input or voxel representations.  

The end-to-end framework SEGCloud [160] combines a 3D-FCNN, trilinear 
interpolation and CRF to provide class labels for 3D point clouds. Their approach is 
mainly performance-oriented compared to state-of-the-art methods based on neural 
networks, random forests and graphical models. They interestingly use a trilinear 
interpolation which add an extra boost in performance enabling segmentation in the 
original 3D points space from the voxel representation. Another promising approach 
is given by Landrieu and Simonovsky for large scale Point Cloud semantic 
segmentation with Superpoint graphs [161]. In the article, the authors propose a 
deep learning-based framework for semantic segmentation of point clouds. They 
initially postulate that the organization of 3D point clouds can be efficiently captured 
by a structure (Superpoint graph), derived from a partition of the scanned scene into 
geometrically homogeneous elements. Their goal is to offer a compact 
representation of contextual relationships between object parts to exploit through 
convolutional network. The approach is similar to Connected Elements [2,108] in 
essence, through a graph-based representation. Finally, the works of Engelmann et 
al. in [82,88] provides very interesting performances by including the spatial context 
into the PointNet neural network architecture [82] or providing an efficient feature 
learning and neighbourhood selection strategy [88]. These works are very inspiring 
and have the potential to become de-facto methodologies for a wide variety of 
application through transfer learning. As such, they are very good methodology for 
benchmarking semantic segmentation approaches. 
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In this state-of-the-art review of pertinent related work, we highlighted 
three different directions that will drive our methodology. First, it is important that 
we identify key points in a point cloud which can retain a relevant connotation to 
domain-related objects. Secondly, we noted that for gravity-based scenes, these 
elements have a space continuity and often feature homogeneity. Third, specifically, 
man-made scene retain a high proportion of planar surfaces that can host other 
elements (floor, ceiling, wall …) [117]. Therefore, detecting these constitute a central 
first step in our methodological framework but must be quick, scalable, robust, 
reliable and flexible. It is important to note that the global context may be lost if 
working with relatively small neighbourhood samples. 

4.3  MATERIALS AND METHODS  

In this section, we describe a point cloud parsing method to extract semantic 
clusters (Connected Elements [108]), which can be refined in application-dependent 
classes. 

Our automatic procedure is serialized in 7 steps illustrated in Figure 25 and 
described in the 4 following sub-sections. In Section 4.3.1, we describe the voxel grid 
constitution. In Section 4.3.2 we cover feature extraction processes for low-level 
shape descriptors (Section 4.3.2.1) and relational features (Section 4.3.2.2). Then, 
we provide in Section 4.3.3 a connected-component system using extracted feature 
sets SF1 and SF2, followed by a point-level refinement within each voxel to obtain 
Semantic patches. Finally, we propose a graph-based assembly for the constitution 
of Connected Elements [2] and a classification routine to obtain labelled point data 
(Section 4.3.4) benchmarked in Section 4.5.  

 
Figure 25. Methodological workflow for the constitution of Connected Elements and 

knowledge-based classification. A point cloud goes through 7 serialized steps (diamonds) to 
obtain a fully classified dataset (red square).  
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4.3.1 Voxelisation grid constitution 

Our approach proposes to integrate different generalization levels in both 
feature space and spatial space. First, we establish an octree-derived voxel grid over 
the point cloud and we store points at the leaf level. As stated in [69,162], an octree 
involves recursively subdividing an initial bounding-box into smaller voxels until a 
depth level is reached. Various termination criteria may be used: the minimal voxel 
size, predefined maximum depth tree, or a maximum number of sample points 
within a voxel. In the proposed algorithm, a maximum depth tree is used to avoid 
computations necessitating domain knowledge early on. To study the influence of 
the design choice, we study the impact of tree depth selection over performances in 
Section 4.5, starting at a minimum level of 4. The grid is constructed following the 
initial spatial frame system of the point cloud to account for complex scenarios where 
point repartition doesn’t follow precisely the axes. 

Let 𝑝𝑖  be a point in ℝ𝑠, with 𝑠 the number of dimensions. We have a point 
cloud 𝒫 = {𝑝𝑖}𝑖=1

𝑛  with 𝑛 the number of points in the point cloud. Let 𝒱𝑖,𝑗,𝑘  be a voxel 

of 𝒫 identified by a label ℒ𝑖 , containing 𝑚 points from 𝒫. 

The cubic volume defined by a voxel entity provides us with the advantage 
of fast yet uniform space division, and we hence obtain an octree-based voxel 
structure at a specific depth level. Our approach similarly to [163] is constructed 
using indexes to avoid overhead. The constituted voxel grid, with the goal of creating 
Connected Elements discards empty voxels to retain only points-filled voxels. 
However, for higher end applications such as pathfinding, the voxel-grid can be used 
as a negative to look for empty spaces. We then construct a directed graph ℊ defined 
by a set 𝓋(ℊ) of inner nodes, a set ℯ(ℊ) of edges and a set 𝓋𝑒(ℊ) of leaf nodes, each 
representing a non-empty voxel at an octree level, illustrated over a room sample of 
the S3DIS dataset in Figure 26. 

 
Figure 26. Point Cloud and its extracted voxel structure, where each octree level represents 

the grid voxels, each subdivided in subsequent 8 voxel children. 



 

92 

Once each point has been assigned to a voxel regarding the defined grid 
within the ℝ3 Euclidean space along 𝑒𝑥⃗⃗  ⃗, 𝑒𝑦⃗⃗⃗⃗ , 𝑒𝑧⃗⃗  ⃗, we consider leaf nodes 𝓋𝑒(ℊ) of ℊ as 

our representative primitive. 

4.3.2 Feature Extraction 

As a single object of the resulting feature vector is hardly interpretable [76], 
we aim at extracting a robust feature set for general semantic segmentation 
frameworks. To insure interoperable workflows, we used descriptors that were 
thoroughly studied and made their proof in various works referred in Section 4.2. 

Our new voxel-primitive serves as an initial feature host, and acts as a point 
neighbourhood selection approach. These can then be transferred following the 
structure of ℊ, permitting feature transfer at every octree depth level extended to the 
point-storage (Figure 27). 

 
Figure 27. Feature transfer between octree levels. We note that each non-empty node 

describes a voxel which can then permit a point-level access for example to compute feature 
sets (Here, a planar voxel and a corresponding SF1 sample, and a transition voxel and its 

corresponding SF1 sample) 

This permits a flexible and unconstrained feature-based point cloud parsing 
which can process raw data (i.e. pure X, Y, Z Euclidean sets). In the next sub-section 
4.3.2.1, we present several low-level shape-based features used to construct our SF1 
feature set. Then, we explain our relationship-level feature set (SF2) which permits 
to leverage local topology and relationships at different cluster levels. 

4.3.2.1 Low-level shape-based features (SF1) 

The first group of low-level features is mainly derived from Σ, our data 
covariance matrix of points within each voxel for the low memory footprint and fast 
calculation, which in our case we define as: 

Σ =
1

𝑚 − 1
∑(𝑋𝑖 − 𝑋̅)(𝑋𝑖 − 𝑋̅)𝑇
𝑚

𝑖=1

 (1) 
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where 𝑋̅ is the mean vector 𝑋̅ = ∑ 𝑝𝑖
𝑚
𝑖=1 . 

From this high yielding matrix, we derive eigen values and eigen vectors 
through Singular Value Decomposition [164] to increase computing efficiency, which 
firstly correspond to modelling our voxel containment by a plane, showing to largely 
improve performances. We follow a Principal Composant Analysis (PCA) to describe 
three principal axes describing the point sample dispersion. Thus, we heavily rely on 
eigen vectors and eigen values as a feature descriptor at this point. Therefore, their 
determination needs to be robust. This is why we use a variant of the Robust PCA 
approach presented in the article [5] to avoid miscalculation. We sort eigenvalues 
𝜆1, 𝜆2, 𝜆3 such as 𝜆1 > 𝜆2 > 𝜆3, where linked eigen vector 𝑣1⃗⃗⃗⃗ , 𝑣2⃗⃗⃗⃗ , 𝑣3⃗⃗⃗⃗  respectively 
represent the principal direction, its orthogonal direction and the estimated plane 
normal. These indicators as reviewed in Section 4.2 are interesting for deriving 
several eigen-based features [138] as following: 

𝜆𝑎 = (𝜆1 − 𝜆3)/𝜆1 (2) 

𝜆𝑙 = (𝜆1 − 𝜆2)/𝜆1 (3) 
𝜆𝑝 = (𝜆2 − 𝜆3)/𝜆1 (4) 

𝜆𝑣 = 𝜆3/∑ 𝜆𝑖

3

𝑖=1
 (5) 

𝜆𝑜 = √∏ 𝜆𝑖

3

𝑖=1

3

 (6) 

𝜆𝑠 = 𝜆3/𝜆1 (7) 

𝜆𝑒 = −∑ 𝜆𝑖 ∗ ln (𝜆𝑖)
3

𝑖=1
 (8) 

Where for the voxel 𝒱𝑖,𝑗,𝑘 , 𝜆𝑎 is its anisotropy, 𝜆𝑙 its linearity, 𝜆𝑝 its planarity, 

𝜆𝑣 its surface variation, 𝜆𝑜 its omnivariance, 𝜆𝑠 its sphericity and 𝜆𝑒 its eigen entropy. 
The first set of eigen-based features is summarized in Table 5. 

Table 5.  Eigen-based features part of the SF1 feature set 

Eigen-based 

feature 
Description 

𝜆1, 𝜆2, 𝜆3 
Eigen values of 𝒱𝑖,𝑗,𝑘  where 𝜆1 >

𝜆2 > 𝜆3 

 

𝑣1⃗⃗⃗⃗ , 𝑣2⃗⃗⃗⃗ , 𝑣3⃗⃗⃗⃗  Respective Eigen vectors of 𝒱𝑖,𝑗,𝑘   

𝑣3⃗⃗⃗⃗  Normal vector of 𝒱𝑖,𝑗,𝑘  

𝜆𝑎 Anisotropy of voxel 𝒱𝑖,𝑗,𝑘   

𝜆𝑒 Eigen entropy of voxel 𝒱𝑖,𝑗,𝑘   

𝜆𝑙 Linearity of voxel 𝒱𝑖,𝑗,𝑘  

𝜆𝑜 Omnivariance of voxel 𝒱𝑖,𝑗,𝑘   

𝜆𝑝 Planarity of voxel 𝒱𝑖,𝑗,𝑘   
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𝜆𝑠 Sphericity of voxel 𝒱𝑖,𝑗,𝑘  

𝜆𝑣 Surface variation of voxel 𝒱𝑖,𝑗,𝑘   

We extract a second geometry-related set of features (Table 6), starting with 

𝒱𝑖𝑥
̅̅ ̅̅ ,𝒱𝑖𝑦

̅̅ ̅̅ , 𝒱𝑖𝑧
̅̅ ̅̅  the mean value of points within a voxel 𝒱𝑖,𝑗,𝑘 .  

Table 6. Geometrical features part of the SF1 feature set 

Geometrical 

feature 
Description 

𝒱𝑖𝑥
̅̅ ̅̅ ,𝒱𝑖𝑦

̅̅ ̅̅ , 𝒱𝑖𝑧
̅̅ ̅̅  

Mean value of points in 𝒱𝑖,𝑗,𝑘  

respectively along 𝑒𝑥⃗⃗  ⃗, 𝑒𝑦⃗⃗⃗⃗ , 𝑒𝑧⃗⃗  ⃗  

 

𝜎𝑖𝑥
2, 𝜎𝑖𝑦

2, 𝜎𝑖𝑧
2 Variance of points in voxel 𝒱𝑖,𝑗,𝑘  

𝒱𝒜𝑝 
Area of points in 𝒱𝑖,𝑗,𝑘  along 𝑛𝒱⃗⃗ ⃗⃗   

(𝑣3⃗⃗⃗⃗ ) 

 

𝒱𝒜 Area of points in 𝒱𝑖,𝑗,𝑘along 𝑒𝑧⃗⃗  ⃗  

𝑚 Number of points in 𝒱𝑖,𝑗,𝑘   

𝑉𝒱  
Volume occupied by points in 
𝒱𝑖,𝑗,𝑘   

 

𝐷𝒱 point density within voxel 𝒱𝑖,𝑗,𝑘   

The area features 𝒱𝒜𝑝, 𝒱𝒜 are obtained through a convex hull (Eq. 10) 

analysis respectively along 𝑣3⃗⃗⃗⃗  and 𝑒𝑧⃗⃗  ⃗. The third is the local point density within the 
segment, which is defined as follows: 

𝐷𝒱 =
𝑚

𝑉𝒱

 (9) 

where 𝑉𝒱  is the minimum volume calculated through a 3D convex hull, such as: 

𝐶𝑜𝑛𝑣(𝒫) = {∑ 𝛼𝑖𝑞𝑖
|𝒫|
𝑖=1 |(∀𝑖: 𝛼𝑖 ≥ 0) ∧ ∑ 𝛼𝐼 = 1

|𝒫|
𝑖=1 } (10) 

𝑉𝒱 =
1

3
|∑(𝑄𝐹

⃗⃗ ⃗⃗  . 𝑛𝐹⃗⃗⃗⃗  )𝑎𝑟𝑒𝑎(𝐹)

𝑚

𝑗=1

| (11) 

In order to prevent outweighing some attributes and to equalizes the 
magnitude and variability of all features we standardize their values from different 
dynamic ranges into a specified range. There are three common normalization 
methods as referred in [86]: Min-max, Z-score, and decimal scaling normalization. In 
this research we use Min-max method found empirically more computationally 
efficient to normalize the multiple features 𝐹 in 𝐹𝑁, normalized feature in a 
[0: 1] range:  

𝐹𝑁 =
𝐹 − min (𝐹)

max(𝐹)− min (𝐹)
 (12) 
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We combine eigen-based features and geometrical features for an easier 
data visualization in two separate spider charts (E.g. in Table 5 and Table 6). Then 
we plot normalized distributions per-voxel category (E.g. in Figure 28) to better 
understand the variations within features per element category. 

  
Figure 28. Box plot of primary elements feature variation. 

We note that for the example of Primary Elements (mostly planar, described 
in Section 4.3.3), there is a strong similarity within the global voxel feature sets, 
except for orientation-related features (Normals, Position, Centroids). 

4.3.2.2 Connectivity and Relationship features (SF2) 

There are very few works that deals with explicit relationship feature 
extraction within point clouds. This is mostly justified by the complexity and 
exponential computation to extract relevant information at the point-level. Thus, the 
second set of proposed feature set (SF2) is determined at several octree levels. First, 
for each leaf voxel, we extract a 26-connectivity graph which appoints every 
neighbour for every voxel. These connectivity are primarily classified regarding their 
touch-topology [125] which either is vertex.touch, edge.touch or face.touch (Figure 
29).  

 
Figure 29. Direct voxel-to-voxel topology in a 26-connectivity graph. Considered voxel 𝒱𝑖  is 

red, direct connections are either vertex.touch (grey), edge.touch (yellow) or face.touch 
(orange) 
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To complement this characterization of voxel-to-voxel topology, each 
processed voxel is complemented through new relational features. Immediate 
neighbouring voxels are initially studied to extract 𝐹𝑔 (geometrical difference) using 

the log Euclidean Riemannian metric, a measure of the similarity between adjacent 
voxels covariance matrices: 

𝐹𝑔 = ‖log Σ𝑣𝑖
− log Σ𝑣𝑗

‖
𝐹
 (13) 

where log(.) is the matrix logarithm operator and ‖ . ‖𝐹  is the Frobenius 
norm.  

If the SF1 feature set is available (non-constrained through computational 
savings), and depending on the desired characterization, these are favoured for an 
initial voxel tagging. 

To get higher end characterization while limiting the thread surcharge to a 
local vicinity, we estimate concavity and convexity between adjacent voxels. It 
refines the description of the graph edge between the processed node(voxel) and 
each of its neighbour (Algorithm 2. We define 𝛼𝒱 the angle between two voxels 𝒱𝑖 
and 𝒱𝑗 as: 

𝛼𝒱 = 𝑛𝒱𝑖
⃗⃗ ⃗⃗  ⃗. (Σ𝒱𝑖

⃗⃗⃗⃗  ⃗ − Σ𝒱𝑗
⃗⃗ ⃗⃗  ⃗) (14) 

 

Algorithm 2 Voxel Relation Convexity/Concavity tagging 

Require: A voxel 𝒱𝑖 and its direct vicinity {𝒱𝑗}𝑗=1

26
 expressed as a graph 𝑔. 

1. For each 𝒱𝑗 ≠ ∅ do 

2.   𝛼𝒱 ← angle between normal of voxels 

3.   if 𝛼𝒱 < 0 then 

4.     ℯ𝑖𝑗(ℊ) ← edge between 𝒱𝑖 and 𝒱𝑗 is tagged as Concave 

5.   else ℯ𝑖𝑗(ℊ)  ← edge between 𝒱𝑖 and 𝒱𝑗 is tagged as Convex 

6.   end if 

7. end for 

8. end 

9. return (𝑔) 

 

Third we extract 4 different planarity-based relationships (Figure 30) 
between voxels which we define as: 

- Pure Horizontal relationship: For 𝒱𝑖, if an adjacent voxel 𝒱𝑗 has a 𝑣3⃗⃗⃗⃗  colinear to 

the main direction (vertical in gravity-based scenes), then the edge ℯ(𝑣𝑖 , 𝑣𝑗) is 

tagged ℋ𝓇. If two adjacent nodes 𝑣𝑖 and 𝑣𝑗 hold an ℋ𝓇 relationship and both 𝑣3⃗⃗⃗⃗  
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aren’t colinear, they are connected by a directed edge, ℯ𝑑(𝑣𝑖 , 𝑣𝑗) where 𝑣𝑖 is the 

starting node. In practice, voxels near horizontal surfaces hold this relationship. 

- Pure Vertical relationship: For 𝒱𝑖, if an adjacent voxel 𝒱𝑗 has a 𝑣3⃗⃗⃗⃗  orthogonal to 

the main direction (vertical in gravity-based scenes), then the edge ℯ(𝑣𝑖 , 𝑣𝑗) is 

tagged 𝒱ℯ. If two adjacent nodes 𝑣𝑖 and 𝑣𝑗 are connected through 𝒱𝓇 and both 

𝑣3⃗⃗⃗⃗  are coplanar but not colinear, they are connected by a directed edge, ℯ𝑑(𝑣𝑖 , 𝑣𝑗). 

In the case we are in a gravity-based scenario, they are further refined following 
𝑣1⃗⃗⃗⃗  and 𝑣2⃗⃗⃗⃗  axis. These typically includes voxels near vertical surfaces. 

- Mixed relationship: For 𝒱𝑖, if within its 26-connectivity neighbours, the node 𝑣𝑖 
presents 𝒱ℯ and ℋ𝓇 edges, then 𝑣𝑖 is tagged as ℳ𝓇. In practice, voxels near both 
horizontal and vertical surfaces hold this relationship. 

- Neighbouring relationship. If two voxels do not hold one of these former 
constraining relationships but are neighbours, associated nodes are connected 
by an undirected edge without tags. 

   

   
(a) (b) (c) 

Figure 30. Relationship tagging in the voxel-space. (a) represent a mixed relationship ℳ𝓇, 
(b) a pure vertical relationship 𝒱𝓇, (c) a pure horizontal relationship ℋ𝓇. 
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Illustrated on the S3DIS dataset, for a room, this is an example of what the 
different voxel categories are: 

    
(a) (b) (c) (d) 

Figure 31. S3DIS points within categorized voxels. (a) Full transition voxels, (b) vertical 
group of points, (c) horizontal group of points, (d) mixed group of points, 

Finally, the number of relationships per voxel is accounted as edge weights 
pondered by the type of voxel-to-voxel topology, where vertex.touch=1, 
edge.touch=2 and face.touch=3. We obtain a feature set SF2 as in Table 7: 

Table 7. Relational features of the SF2 feature set for 3D structural connectivity 

Relational feature  Description 

𝑔26(𝑖) 
Graph of voxel entity 𝑖 and its neighbours retaining voxel 

topology (vertex.touch, edge.touch, face.touch) 

𝐹𝑔 Geometrical difference  

𝑔26−𝑐𝑐(𝑖) 𝑔26(𝑖) retaining Convex/Concave tags. 

𝑔26−𝑐𝑐−𝑝(𝑖) 𝑔26−𝑐𝑐(𝑖) retaining planarity tags (ℋ𝓇,𝒱𝓇,ℳ𝓇). 

This is translated into a multi-set graph representation to give a flexible 
featuring possibility to the initial point cloud. As such, extended vicinity is then 
possible seed/host of new relationships that permit a topology view of the 
organization of voxels within the point cloud (E.g. Figure 32). 

 
Figure 32. Graph representation within a voxel sample of the point cloud. 
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These relationships are represented in different groups to extract different 
feature completing the relationship feature set. Graphs are generated automatically 
through full voxel samples regarding Category tags and Convex-Concave tags. 

4.3.3 Connected Element constitution and voxel refinement 

Based on the feature sets SF1 and SF2, we propose a connected-component 
workflow driven by planar patches. Connected-component labelling is one of the 
most important processes for image analysis, image understanding, pattern 
recognition, and computer vision and is reviewed in [165]. Mostly applied for 2D 
data, we extend it to our 3D octree structure for efficient processing and 
parallelization compatibility. We study the predominance of planar surfaces in man-
made environments and the feature-related descriptor which provides segmentation 
benefits. The designed feature representations described in Section 4.3.2 are used as 
a mean to segment the gridded point cloud into groups of voxels that share a 
conceptual similarity. These groups are categorized within four different entities: 
Primary Elements (PE), Secondary elements (SE), transition elements (TE) and 
remaining elements (RE) as illustrated in Figure 33. 

 
Figure 33. Elements detection and categorization. A point cloud is search for PE, the rest is 
searched for SE. The remaining from this step is searched for TE, leaving RE. TE permits to 

extracts graphs through SF2 analysis with PE, SE and RE 

We start by detecting the PE using both feature sets. Initially, we group 
voxels that answer a collinearity condition with the main direction. Due to the 
normal dispersion in voxel sets (which has no exact collinear match), this condition 
is translated by comparing the angle of normalized vectors against a threshold: 

𝛼𝑣 < 𝑡ℎ𝑎     𝑤𝑖𝑡ℎ    𝛼𝑣 = cos−1(
𝑣3(𝑖)⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ . 𝑣3(𝑗)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

‖𝑣3(𝑖)⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ‖. ‖𝑣3(𝑗)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖
) (15) 

Using SF2, we then cluster linked nodes through connected-component 
labelling. PE presents mainly clusters of points which are the main elements of 
furniture (table top, chair seat …) or ceiling and ground entities. 
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SE are constituted of voxels which hold 𝑣3⃗⃗⃗⃗  orthogonal to the main direction, 
further decomposed along 𝑣1⃗⃗⃗⃗  and 𝑣2⃗⃗⃗⃗ .  As such, they are usually constituted of 
elements which belong to walls, and horizontal planar-parts of doors, beams …  

The “edges” voxels which are within the set of tagged voxels {ℋ𝓇, 𝒱𝓇,ℳ𝓇} 
are seeds to constitute TE which are then further decomposed (voxel refinement) in 
semantic patches with homogeneous labelling depending on their inner point 
characterization. As such, they play an important role for understanding the 
relationships between primary, secondary and remaining elements. They are 
initially grouped based on 𝐹𝑔 and clustered in connected-components using 

𝑔26−𝑐𝑐−𝑝(𝑖) (SF2). The voxels containing “edges” (E.g. in Figure 34) or multiple 

possible points that should belong to separate objects are further subdivided by 
studying the topology and features with their neighbouring elements.  

 
Figure 34. Edges elements to be decomposed in TE and RE 

Finally, the remaining voxels are labelled through connected-components as 
RE, and their SF1-similarity is aggregated as a feature descriptor. For each element 
within the Connected Elements (CEL) set {PE, SE, TE, RE}, voxel features are 
aggregated to obtain a global SF1 and SF2 feature set per CEL, updated through voxel 
refinement. Implementation-wise, CEL are sorted by occupied volume after being 
sorted per category, Relationships exist between primary, secondary, edges and 
remaining elements due to their voxel-based direct topology. This proximity is used 
to refine voxels (thus elements), by extracting points within voxel neighbours of an 
element 𝜀𝑖  which belong to an element 𝜀𝑗  based on defined SF1 features of 𝜀𝑖-voxel. 

In this context, this permits to leverage planar-based dominance in man-made scenes 
using for example eigen-based features. We thus extract a new connectivity graph 
between CEL where the weight of relationships is determined using the number of 
connected voxels. This allows to refine the transition voxels based on their local 
topology and connectivity to surrounding elements. The global element’s features 
therefore play the role of reference descriptors per segment, and points within 
targeted voxels for refinement are compared against these. If within a voxel points 
justify belonging to another Connected Element, then the voxel is split in semantic 
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patches, which each retains a homogeneous CEL label. The final structure retains 
unique CEL labels per leaf, where leaves called semantic patches are either pure 
voxel or voxel’s leaf.  

We obtain a graph-set composed of a general CEL graph, a PE graph, a SE 
graph, a TE graph, a RE graph, and any combination of PE,SE,TE and RE (e.g. Figure 
35) : 

 

     
(a) (b) (c) (d) (e) 

Figure 35. different graphs generated on voxel categories. (a) CEL graph, (b) PE graph, (c) SE 
graph, (d) TE graph, (e) RE graph 

In order to estimate the impact of designed features, we establish a graph-
based semantic segmentation over these CEL described in Section 4.3.4. 

4.3.4 Graph-based semantic segmentation 

For every CEL in the graph-set, we first employ a multi-graph-cut (set of 
edges whose removal makes the different graphs disconnected) approach depending 
on the weight of edges defining the strength of relations, where the associated cut 
cost is: 

𝑐𝑢𝑡(𝜀𝑖 , 𝜀𝑗) = ∑ 𝑤𝑝𝑞

𝑝𝜖𝜀𝑖,𝑞𝜖𝜀𝑗

 (16) 

Where 𝑤𝑝𝑞  is the weight of the edge between nodes 𝑝 and 𝑞. In order to avoid 

min-cut bias, we use normalized cut by normalizing for the size of each segment: 

𝑁𝑐𝑢𝑡(𝜀𝑖 , 𝜀𝑗) =
𝑐𝑢𝑡(𝜀𝑖 , 𝜀𝑗)

∑ 𝑤𝑘𝑘𝜖𝑒𝜀𝑖
(𝑔)

+
𝑐𝑢𝑡(𝜀𝑖 , 𝜀𝑗)

∑ 𝑤𝑘𝑘𝜖𝑒𝜀𝑗
(𝑔)

 (17) 

Where 𝑒𝜀𝑖
(𝑔) are the edges that touches 𝜀𝑖 , and 𝑒𝜀𝑖

(𝑔) are the edges that 

touches 𝜀𝑗 . 

Our approach was thought as a mean to provide only a first estimate of the 
representativity of CELs in semantic segmentation workflows, especially to 
differentiate big planar portions. As such, the provided classifier is very naïve, and 
will be subject of many improvements in the near future for a better flexibility and 
to reduce empirical knowledge. It was constructed for indoor applications. For 
example, a segment with the largest membership to the ceiling might belong to beam 
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or wall, and a segment with the largest membership to floor might belong to wall or 
door. To handle such semantic mismatches, the graph 𝑔𝐶𝐸𝐿, that was previously 
constructed is used to refine the sample selection using the following rules and the 
search sequence starting from the class floor, and is followed by the class ceiling, 
wall, beam, table, bookcase, chair and door. Once a node is labelled with one of these 
classes, it is excluded from the list of nodes being considered in the sample selection. 
The definition of thresholds was directly extracted from knowledge about the 
dimension of furniture objects from the European Standard EN1729-1:2015. As for 
the concepts at hand, these were defined regarding the Semantic Web resources, 
mainly the ifcOWL formalized ontology representing the Industry Foundation 
Classes application knowledge [166]. It is important to note that furniture (chair, 
table, bookcases) models were extracted from these rules and then we simulated 
scan positions to obtain simulated data. Indeed, sensors artefacts produce noisy 
point clouds which can then slightly change the definition of thresholds. The 
obtained samples were then looked against 5 objects of the S3DIS to insure 
consistency with the device knowledge. 

1) A node is tagged “floor” when for a primary element 𝑝𝜀𝑖  and all primary elements 
𝑝𝜀:  

𝒱𝒜(𝑝𝜀𝑖) ∈ 𝑚𝑎𝑥𝑖𝑚𝑎𝑠(𝒱𝒜(𝑝𝜀)) & ∑𝑒𝑝𝜀𝑖
(𝑔𝑝𝜀)

𝑘

∈ 𝑚𝑎𝑥𝑖𝑚𝑎𝑠() & 𝑍𝑝𝜀𝑖
∈ 𝑚𝑎𝑥𝑖𝑚𝑎𝑠 (𝑍𝑝𝜀) 

(18) 

with ∑ 𝑒𝑝𝜀𝑖
(𝑔𝑝𝜀)𝑘  being the sum of edge weights of all outgoing edges and 

incoming edges. 

2) The “ceiling” is similar to the “floor” labelling with the difference that 𝑍𝑝𝜀𝑖
 is 

search among minimas of 𝑝𝜀. 

3) Once all the ceiling and floor segments are identified, the nodes in the graph 𝑔𝑠𝜀 
of secondary elements are searched for “wall” segments by first identifying all 
the nodes that are connected to the ceiling or floor nodes through the edges of 
the designated relationships. To handle complex cases, the area feature guides 
the detection through thresholding to exclude non-maxima. 

4) To identify “beams”, A sub-graph 𝑔𝑟−𝑝𝜀−𝑠𝜀 composed of remaining non-classified 

elements from PE and SE. A connected-component labelling is performed guided 
by transition elements. It is then searched for nodes that are connected to the 
ceiling and the walls, which are then classified as “beam” segments. 

5) The “table” segments are extracted by the remaining elements of primary 
elements, if its SF1 feature set presents a correspondence of more than 50% with 
a sample table object. We note that the predominant factor is the height which is 
found within 70 and 110 cm from the ground segment. The feature 
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correspondence is a simple non-weighted difference measure between the 
averaged SF1 features between the sample and the compared element. The 
sample element is constructed by following the domain concepts and thresholds 
as explained previously. 

6) From the remaining elements RE, we identify “bookcases” if it presents a direct 
SF2 connectivity to wall segments and a SF1 feature correspondence of more 
than 50%. 

7) Then, RE and remaining PE are aggregated through connected components and 
tagged as “chair” if their mean height above ground is under 100 cm. 

8) All the unclassified remaining nodes are aggregated in a temporary graph, and a 
connected-component labelling is executed. An element is tagged as “door” if the 
bounding-box element’s generalization intersect a wall segment. 

9) Every remaining element is classified as “clutter”. 

By using the above 9 rules, the ceiling, floor, wall, beam, table, chair, 
bookcase, door and clutter classes are looked for, going from raw point cloud to a 
classified dataset as illustrated in Figure 36. 

 

    
(a) (b) (c) (d) 

Figure 36. a) raw point cloud; (b) {PE, SE, TE, RE} groups of voxels; (c) Connected Elements; 
(d) Classified point cloud. 

4.4  DATASET 

To test our approach, we evaluate feature performance in one application 
context: 3D semantic segmentation for indoor environment. We used the S3DIS 
dataset [133] from the Matterport sensor [70]. It is composed of 6 areas each 
subdivided in a specific number of rooms (Table 8) for a total of 270 sub-spaces 
[108]. These areas show diverse properties and include 156 offices, 11 conference 
rooms, 2 auditoriums, 3 lobbies, 3 lounges, 61 hallways, 2 copy rooms, 3 pantries, 1 
open space, 19 storage rooms and 9 restrooms. One of the areas includes multiple 
floors, whereas the rest have one, and is very representative of building indoor 
spaces. The dataset is very noisy, presents imprecise geometries, clutter and heavy 
occlusion. During the tests we noted that some points were mislabelled in the 
ground-truth labels, and that several duplicate points (points where the distance is 
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inferior to 10-9 m from one another) add an extra bias. However, it was chosen as it 
is a big dataset which provides a high variability of scene organization and is 
currently used for benchmarking new algorithms. It is a very interesting opportunity 
to evaluate the robustness of our approach and to study the impact of features and 
their robustness to hefty point cloud artefacts. We remind the readers that the goal 
is to obtain relevant semantic patches constituting Connected Elements in a Smart 
Point Cloud Infrastructure. 

 

Table 8. The S3DIS dataset and its 6 areas used for testing our methodology 

 Area-1 Area-2 Area-3 Area-4 Area-5 Area-6 

 

 

#Poin

ts  
43 956 907 470 023 210 18 662 173 43 278 148 78 649 818 41 308 364 

Area 

(m²) 
965 1100 450 870 1700 935 

Room

s (nb) 
44 40 23 47 68 48 

 

We consider 9 out of 13 classes in the S3DIS dataset, holding 88.5% of the 
total number of segments representing both moveable and structural elements. The 
choice was motivated by the colour-dependence of the remaining classes. Indeed, in 
this article we focus on a general approach with minimal input, and as such we 
filtered the initial dataset before computing metrics for every point initially assigned 
to one of the following classes: column, window, sofa, board. Thus, our approach runs 
on the full dataset, but we compare only these classes. The repartition is found in 
Table 9: 
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Table 9. S3DIS per-area statistics regarding the studied classes. 

Metho

d 

Ceilin

g 

Floo

r 

Wal

l 

Bea

m 

Doo

r 

Tabl

e 

Chai

r 

Bookcas

e 

Other

s 

0 1 2 3 6 7 8 10 12 

Area 1 56 45 235 62 87 70 156 91 123 

Area 2 82 51 284 62 94 47 546 49 92 

Area 3 38 24 160 14 38 31 68 42 45 

Area 4 74 51 281 4 108 80 160 99 106 

Area 5 77 69 344 4 128 155 259 218 183 

Area 6 64 50 248 69 94 78 180 91 127 

Full 

S3DIS 
391 290 1552 215 549 461 1369 590 676 

4.5  RESULTS 

4.5.1 Metrics 

Existing literature has suggested several quantitative metrics for assessing 
the semantic segmentation and classification outcomes. We define the metrics 
regarding the following terms extracted from a confusion matrix 𝐶 of size 𝑛 × 𝑛 (with 
𝑛 the number of labels, and each term denoted 𝑐𝑖𝑗): 

- True Positive (TP): Observation is positive and is predicted to be positive. 

- False Negative (FN): Observation is positive but is predicted negative. 

- True Negative (TN): Observation is negative and is predicted to be negative. 

- False Positive (FP): Observation is negative but is predicted positive. 

Then the following metrics are used: 

𝐼𝑜𝑈𝑖 =
𝑇𝑃𝑖

𝐹𝑃𝑖+𝐹𝑁𝑖+𝑇𝑃𝑖
 equivalent to 𝐼𝑜𝑈𝑖 =

𝑐𝑖𝑖

𝑐𝑖𝑖+∑ 𝑐𝑖𝑗𝑗≠𝑖 +∑ 𝑐𝑘𝑖𝑘≠𝑖
 (19) 

 

𝐼𝑜𝑈̅̅ ̅̅ ̅ =
𝑇𝑃

𝐹𝑃+𝐹𝑁+𝑇𝑃
 equivalent to 𝐼𝑜𝑈̅̅ ̅̅ ̅ =

∑ 𝐼𝑜𝑈𝑖
𝑛
𝑖=1

𝑛
 (20) 

 

𝑜𝐴𝑐𝑐 =
∑

𝑇𝑃𝑖
𝐹𝑃𝑖+𝑇𝑃𝑖

𝑛
𝑖=1

𝑛
 equivalent to 𝑜𝐴𝑐𝑐 =

∑ 𝑐𝑖𝑖
𝑛
𝑖=1

∑𝑛
𝑗=1 ∑ 𝑐𝑗𝑘

𝑛
𝑘=1

 (21) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
, 𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
, 𝐹1−𝑠𝑐𝑜𝑟𝑒 =

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 (22) 
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The Overall Accuracy (𝑜𝐴𝑐𝑐) is a general measure on all observation about 
the performance of the classifier to correctly predict labels. The precision is the 
ability of the classifier not to label as positive a sample that is negative, the recall is 
intuitively the ability of the classifier to find all the positive samples, The F1-score can 
be interpreted as a weighted harmonic mean of the precision and recall, thus gives a 
good measure of how well the classifier performs. Indeed, global accuracy metrics 
are not appropriate evaluation measures when class frequencies are unbalanced, 
which is the case in most scenarios both in real indoor and outdoor scenes, since they 
are biased by the dominant classes.  

In general, the Intersection-Over-Union (IoU) metric tends to penalize single 
instances of bad classification more than the F1-score quantitatively even when they 
can both agree that this one instance is bad. Thus, IoU metric tends to have a 
"squaring" effect on the errors relative to the F1-score. Henceforth, the F1-score in 
our experiments gives an indication on the average performance of our proposed 
classifier, while the IoU score measures the worst-case performance. 

4.5.2 Quantitative and qualitative assessments 

4.5.2.1 Feature influence 

Our first experiment uses SF1 independently and combined with SF2 to 
highlight performances and influence consequences on a representative sample from 
the S3DIS dataset. We list in Table 10 the main results regarding timings, number of 
CEL, elements (PE, SE, TE and RE) extracted as well as global metrics.  

Table 10. Analyses of the impact of feature sets over samples of the S3DIS dataset 

Method Zone 
Time 

(min) 

CEL 

number 
mIOU oAcc 

F1-

score 

SF1 Room 0.7 214 0.53 0.73 0.77 
 Area 1 42.4 10105 0.35 0.58 0.63 

SF1SF2 Room 1.0 125 0.83 0.95 0.95 

  Area 1 55.0 5489 0.47 0.75 0.75 

We note that SF1SF2 takes 30% longer but permits to obtain 12 IoU points 
overall for Area-1, as well as 17 overall accuracy points and 12 F1-score points. For 
some rooms where the connectivity predicates are predominant, we can obtain more 
than 30 IoU points increase. It also is very important to limit over-segmentation 
problematics while being versatile enough depending on different application needs. 
Thus, if we look at both the room and area 1 S3DIS samples, we note that the global 
number of CEL drops significantly, which permits classifier to reach a more 
representative detection (E.g. Table 11 gives an SF1SF2 instance detection 
comparison to ground truth) 
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Table 11. Quantitative CEL segmentation compared to nominal number of elements per class 
for both a room (Conference room) and area (area 1) 

CEL 

number 

Ceiling Floor Wall Beam Door Table Chair Bookcase 

0 1 2 3 6 7 8 10 

Room 1 1 1 4 1 1 1 13 1 

Tagged 

CEL 
1 1 4 1 1 1 11 1 

Area 1 56 44 235 62 87 70 156 91 

Tagged 

CEL 
52 44 146 47 23 67 129 70 

We then applied our specific knowledge-based classification approach over 
both SF1 alone and SF1SF2. The metrics per class over the Area 1 are shown in Table 
12. 

Table 12. Global per-class metrics concerning the Area-1 of the S3DIS dataset. SF1 alone and 
combined SF1SF2 are compared. 

Global 

metrics 

Area-1 

Ceiling Floor Wall Beam Door Table Chair Bookcase Clutter 

0 1 2 3 6 7 8 10 12 

SF1 IoU 0.81 0.75 0.61 0.39 0.10 0.24 0.06 0.02 0.14 

SF1 Prec. 0.99 0.99 0.84 0.67 0.11 0.96 0.09 0.15 0.32 

SF1 Recall 0.82 0.75 0.69 0.48 0.57 0.25 0.14 0.03 0.20 

SF1 F1 score 0.90 0.86 0.76 0.56 0.18 0.39 0.11 0.05 0.24 

SF1SF2 IoU 0.95 0.92 0.67 0.49 0.14 0.32 0.32 0.15 0.31 

SF1SF2 Prec. 0.98 0.95 0.79 0.88 0.29 0.9 0.69 0.2 0.41 

SF1SF2 Rec. 0.97 0.97 0.82 0.53 0.2 0.33 0.37 0.37 0.56 

SF1SF2 F1 0.97 0.96 0.8 0.66 0.24 0.48 0.48 0.26 0.47 

If we look at IoU scores, combining SF1 and SF2 permits to obtain between 
+6 and +26 points (+13 points in average) compared to SF1 alone, which is a 
notable increase of performances. The highest growth is achieved for the ‘chair’ class, 
and the lowest for the ‘door’ class. The ‘chair’ detection rate increase is mostly 
explained by the 3D connectivity information given by SF2 through {PE, RE} isolation 
and clustering, which permits to overcome SF1 matching limitations due to large 
varying signatures within voxels. Concerning doors, the low increase is explained by 
its low SF2 connectivity information as within the S3DIS dataset, door elements don’t 
show any clear ‘cuts’ with wall elements, and therefore aren’t identified clearly 
within RE. This can be solved by accounting for colour information to better segment 
the point cloud, or by using the spatial context and empty voxels within wall 
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segments. Also, the high recall score for bookcase shows that the combination 
permits to better account for the right number of bookcase elements. Overall, while 
we notice a slight precision score decrease for planar-based classes (ceiling, floor, 
wall), recall rates largely increases between SF1 and SF1SF2. This highlight the 
ability of our classifier to better identify all the positive samples. This is translated in 
F1-scores which are superior for all classes up to +37 points. 

Then we studied the impact of influential factors over the results and 
performance of the algorithm (experiments were run 50 times each to validate the 
time output) as show in Figure 37. 

 
Figure 37. Normalized score and processing time in function of the defined octree level 

We observe that our different metrics rise in a similar manner, with a great 
score increase from octree level 4 to 5 (38 IoU points), and then not a distinctive 
increase. On the other end, we see an increase in processing time from octree level 5 
to 6, and a great increase from octree 6 to 7. This orient our choice toward a base 
process at octree level 5, sacrificing some score points for an adequate performance. 

4.5.2.2 Full S3DIS benchmark 

We see that combining both SF1 and SF2 outperform a sole independent use 
of SF1 feature sets. Therefore, SF1SF2 method is compared against state-of-the-art 
methodologies. Due to the rise of deep learning approaches, we related our 
knowledge-based procedure to the best-performing supervised architectures. 

We first tested our semantic segmentation approach on the most complex 
area, Area 5, which holds a wide variety of rooms with varying size, architectural 
elements and problematic cases. This is our worst-case scenario area. It holds 
different complex cases that the knowledge-based classification approach struggles 
to handle, and results can be found in Appendix B. Concerning performances and 
calculation times for Area-5 (68 rooms), our approaches finishes in 59 minutes 
(3538.5 seconds) in average (10 test-run) whereas the well-performing SPG 
approach [161] allows the classification of the Area (78 649 682 points) in 128.15 
minutes (7689 seconds). Thus, while results have a large improving margin for non-
planar elements, the approach (without parallelization and low optimization) is very 
efficient. We provide more details in Section 4.5.3. 
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We then execute our approach on the full S3DIS dataset, including varying 
problematic cases of which non-planar ceiling, stairs, heavy noise, heavy occlusion, 
false-labelled data, duplicate points, clutter, non-planar walls (See Appendix B for 
examples). This is a very good dataset for getting a robust indicator of how well a 
semantic segmentation approach performs and permitted to identify several failure 
cases as illustrated in Figure 38. 

 
Figure 38. Problematics cases which often include point cloud artefacts such as heavy noise, 

missing parts, irregular shape geometries, mislabelled data. 

We didn’t use any training data and our autonomous approach treats points 
by using only X, Y, Z coordinates. Again, we first use 𝐼𝑜𝑈̅̅ ̅̅ ̅ metric to get an idea of the 
worst-case performances achieved by our classifier based on established Connected 
Elements summarized in Table 13. 

Table 13. Benchmark results of our semantic segmentation approach against best-
performing deep-learning methods 

𝐼𝑜𝑈̅̅ ̅̅ ̅ 
Ceiling Floor Wall Beam Door Table Chair Bookcase Clutter 

0 1 2 3 6 7 8 10 12 

PointNet [101] 88 88.7 69.3 42.4 51.6 54.1 42 38.2 35.2 

MS+CU(2) [82] 88.6 95.8 67.3 36.9 52.3 51.9 45.1 36.8 37.5 
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SegCloud 

[160] 
90.1 96.1 69.9 0 23.1 75.9 70.4 40.9 42 

G+RCU [82] 90.3 92.1 67.9 44.7 51.2 58.1 47.4 39 41.9 

SPG [161] 92.2 95 72 33.5 60.9 65.1 69.5 38.2 51.3 

KWYND [88] 92.1 90.4 78.5 37.8 65.4 64 61.6 51.6 53.7 

Ours 85.4 92.4 65.2 32.4 10.5 27.8 23.7 18.5 23.9 

We note that our approach proposes 𝐼𝑜𝑈̅̅ ̅̅ ̅ scores of 85.4, 92.4 and 65.2 
respectively for the ceiling, floor and wall classes. It is within a 3% to 15% range of 
achieved scores by every state-of-the-art method. This gives enough range for 
further improvements as discussed in Section 4.6. The ‘table’ elements present 
meagre performances explained by looking at  (high precision, low recall). 
Concerning bookcases our approach achieves poorly, partly due to the limitations of 
the knowledge-based approach. Indeed, the definition of a bookcase in Section 4.3.4 
is not very flexible and doesn’t allows a search for hybrid structures where clutter 
on top of a bookcase hides planar patches thus classifying a bookcase as clutter and 
impacting 𝐼𝑜𝑈̅̅ ̅̅ ̅ score of both classes. Yet, the ground-truth dataset presents a very 
high variability and discussable labelling as illustrated in Appendix B. The lowest 
score achieved concerns doors as identified previously. These elements are often 
misclassified as clutter, due to their SF1 signature and low SF2 characterization. 
Overall, our classification approach is comparable to the best deep learning 
approaches, and the very low computational demand as well as promising 
improvement flexibility due to the nature of Connected Elements will be further 
discussed in Section 4.6. Indeed, while the score is in general lower than the best 
performing deep-learning approaches, this is mainly due to the classification 
approach. 

It is interesting to note that the deep learning architecture in Table 1 make 
use of colour information, whereas ours solely considers X, Y, Z attributes. A small 
benchmark is executed to account for this and provided in Table 14. 

Table 14. Benchmark results of our semantic segmentation approach against deep-learning 
methods without any colour information used. 

Method 
Ceiling Floor Wall Beam Door Table Chair Bookcase Clutter 

0 1 2 3 6 7 8 10 12 

PointNet 84 87.2 57.9 37 35.3 51.6 42.4 26.4 25.5 

MS+CU(2) 86.5 94.9 58.8 37.7 36.7 47.2 46.1 30 31.2 

Ours 85.4 92.4 65.2 32.4 10.5 27.8 23.7 18.5 23.9 

We see that we outperform PointNet when using only X, Y, Z data for ceiling, 
floor, and wall classes. To better understand where our classifier presents 
shortcomings, we studied F1-scores per Area and per class to obtain insights on 
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problematic cases and possible guidelines for future works. The analysis can be 
found in Appendix C. 

To summarize SF1SF2 performances, we present in Table 15 and the 
associated confusion matrix (Figure 39) per class scores over the full S3DIS dataset. 

Table 15. Per class metrics for the full S3DIS dataset using our approach 

S3DIS 

class 

metrics 

Ceiling Floor Wall Beam Door Table Chair Bookcase Clutter Average 

0 1 2 3 6 7 8 10 12   

Precision 0.94 0.96 0.79 0.53 0.19 0.88 0.72 0.28 0.33 0.75 

Recall 0.90 0.96 0.79 0.46 0.19 0.29 0.26 0.36 0.47 0.72 

F1-score 0.92 0.96 0.79 0.49 0.19 0.43 0.38 0.31 0.39 0.72 

We note that we obtain in average a precision score of 0.75, a recall score of 
0.72 thus a F1-score of 0.72. These are relatively good metrics considering the 
complexity of the test dataset, and the naïve classification approach.  

The largest improvement margin is linked to the ‘door’ and ‘bookcase’ 
classes as identified earlier and confirmed in Table 15. While for horizontal planar-
dominant classes being ceiling and floor, the F1-scores of 0.92 and 0.96 give little 
place for improvement. It orients future work toward problematic cases handling 
(presented in Appendix B), and irregular structures targeting.  

The wall class detection scores of 0.79 gives a notable place for 
improvements, aiming both at a more precise and coherent classification approach. 
While table and chair precision are relatively good, their recall rate orients future 
work to better account for the full number of positive samples ignored with the 
present classification iteration.  

Looking at the normalized confusion matrix (denominator: 695 878 620 
points in S3DIS), a large proportion of false positives are given to the clutter 
concerning all classes, which also demands a better precision in the recognition 
approach. 
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Figure 39. Confusion matrix of our semantic segmentation approach over the full S3DIS 

dataset 

While the above metrics were compared against best-performing deep 
learning approaches, Table 16 permits to get a precise idea about how good the 
classifier achieves against the well-performing unsupervised baseline accessible in 
[133]. 

Table 16. Overall precision on the full S3DIS dataset against non-machine learning baselines. 

Overall 

precision 

Ceiling Floor Wall Beam Door Table Chair Bookcase 

0 1 2 3 6 7 8 10 

Baseline (no 

colour) [133] 
0.48 0.81 0.68 0.68 0.44 0.51 0.12 0.52 

Baseline (full) 

[133] 
0.72 0.89 0.73 0.67 0.54 0.46 0.16 0.55 

Ours 0.94 0.96 0.79 0.53 0.19 0.88 0.72 0.2 
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The used feature sets SF1/SF2 largely outperforms the baseline for the 
ceiling, floor, wall, table and chair classes permitting satisfying results as illustrated 
in Figure 40.  

 
Figure 40. Results of the semantic segmentation on a room sample. (a) RGB point cloud, (b) 

Connected Elements, (c) Ground Truth, (d) Results of the semantic segmentation 

However, we identified issues with the class ‘bookcase’ and ‘door’ where our 
approach performs poorly compared to both the baseline with all features and 
without the colour. While the door performance is mostly explained by the initial lack 
of SF2-related connectivity information as stated previously, the latter (bookcase) is 
partially linked to the variability under which it is found in the dataset and our too 
specialized classifier (indeed, we consider mostly ground-related bookcases which 
complicates the correct detection of wall-attached open bookcases). We thus noticed 
that several points were tagged as bookcase whereas they specifically are desks, or 
clutter (E.g. Appendix B). 

4.5.3 Implementation and performances details 

The full autonomous parsing module was developed in Python 3.6. A limited 
number of libraries were used in order to easily replicate the developing 
environment thus the experiments and results. As such several functions were 
developed and will be accessible as open source for further research. All the 
experiments were performed on a 5 years old laptop with a CPU Intel Core i7-
4702HQ CPU @ 2.20Ghz, 16 Gb of RAM and an Intel HD Graphics 4600. As currently 
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standing (no optimization and no parallel processing), the approach is quite efficient 
and permit to process in average 1.5 million points per minute. This allows offline 
computing to include in server-side infrastructures. If we compare its performance 
to a state-of-the-art approach like [161] (2018), our approach is 54% faster, does not 
necessitate any GPU and does not need any (important) training data. 

 
Figure 41. Relative temporal performances of our automatic semantic segmentation 

workflow 

By looking at the relative temporal performances (Figure 41), we note that 
the first computational hurdle is the creation of Connected Elements. This is mainly 
explained by the amount of handled points without any parallel computing, which 
can majorly reduce the needed time. Then, it is followed by the classification 
approach, but as our main goal was to provide a strong 3D structural connectivity 
structure for a Smart Point Cloud parsing module, we did not targeted classification 
performances. Loading/Export times can be reduced if input files are in the .las 
format. The voxelisation approach and following steps until the semantic leaf 
extraction can also be parallelized for better performances. In the current version, 
1.5 million points per minute are processed on average using the above configuration 
without any GPU acceleration. It uses around 20% of the CPU and 900 Mb of RAM 
under full load. As it stands, it is therefore deployable on low-cost server-side 
infrastructures while giving the possibility to process in average 90 million points 
per hour. 

4.6  DISCUSSION 

From the detailed analysis provided in Section 4.5 we first summarize 
identified strengths in the sub-section 4.6.1 and then we propose 5 main research 
directions for future work addressing limitations in sub-section 4.6.2. 
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4.6.1 Strengths 

First, the presented method is easy to implement. It is independent from any 
high-end GPUs, and in its current state mainly leverage the processor and the 
Random-Access Memory (around 1 Gb). This is crucial for a large number of 
companies that do not possess high-end servers, but rather web-oriented (no GPU, 
low RAM and intel Core processors). As such, it is easily deployable on a client-server 
infrastructure, without the need to upgrade the server-side for offline computations. 

Secondly, the approach is majorly unsupervised, which gives a great edge 
over (supervised) machine learning approaches. Indeed, there is currently no need 
for a huge amount of training data, thus avoiding any time-consuming process of 
creating (and gathering) labelled datasets. This is particularly beneficial if one wants 
to create such a labelled dataset, as the provided methodology will speed-up the 
process by recognizing the main “host” elements of infrastructures leaving mainly 
moveable elements supervision.  

Third, on top of such a scenario, the approach gives acceptable results for 
various applications that mainly necessitate the determination of structural 
elements. As such, it can be used for extracting the surface of ceilings, walls or floors 
if one wants to make digital quotations; it can provide a basis to extract semantic 
spaces (sub-spaces) organized regarding their function; it can be used to provide a 
basis for floor plans, cut and section creation… 

Fourth, the provided implementation delivers adequate performances 
regarding the time needed for obtaining results. As it stands, without deep 
optimizations, it permits offline automatic segmentation and classification, and the 
data structure provides a parallel-computing support. 

Fifth, there is a low input requirements which only necessitate unstructured 
X, Y, Z datasets, contrary to benchmarked Deep Learning approaches that leverage 
colour information and provides a complete directed graph of the relations within 
CELs or classified objects. This information permits reasoning services to use the 
semantic connectivity information between objects and subspaces for advanced 
queries using both spatial and semantic attributes. 

Finally, the unsupervised segmentation and rule-based classification is 
easily extensible by improving the feature determination, enhancing the 
performances or providing a better and more flexible classifier. For example, one can 
differentiate clutter based on connectivity and proximities to further enhance the 
classification (E.g., clutter on top of a table may be a computer; clutter linked to the 
ceiling and in the middle of the room is a light source …). Some of these potentials 
are addressed as research tracks for future works, as presented in the following sub-
section 4.6.2. 
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4.6.2 Limitations and research directions 

First, we note that the new relational features are very useful for the task of 
semantic segmentation. Plugged to a basic knowledge-based graph, it permits good 
planar-elements detection such as floor, ceiling and wall. At this point, it is quite 
useful for the creation of Connected Elements as all the remaining points cover 
mainly remaining “floating” elements, which can then be further defined through 
classification routines. This is a very interesting perspective for higher end 
specialization per application, were the remaining elements are then looped for 
accurate refinement depending on the level of specialization needed, as expressed in 
[117]. Future work will also further study learning-based feature extraction such as 
the ones presented in [167,168] proposing a design of the shape context descriptor 
with spatially inhomogeneous cells. The parsing methodology can also be extended 
through other domain ontologies such as the CIDOC-CRM as presented in [4], which  
highlight the flexibility to different domains. 

Secondly, the creation of links between CEL is a novelty which provides 
interesting perspectives concerning reasoning possibilities that plays on 
relationships between elements. Indeed, the extracted graph is fully compatible with 
the semantic web and can be used as a base for reasoning services, and provide 
counting possibilities such as digital inventories [4] and semantic modelling [5]. 
Additionally, the decomposition in primary, secondary, transition and rest elements 
is very useful in such contexts as one can specialize or aggregate elements depending 
on the intended use and application [108]. Indeed, the approach permits to obtain a 
precise representation of the underlying groups of point contained within Connected 
Elements and homogenized in Semantic Patches. 

Third, the extended benchmark proved that untrained schemes can reach 
comparable recognition rate to best-performing deep learning architectures. 
Particularly, detecting the main structural elements permits to achieve a good first 
semantic representation of space, opening the approach to several applications. 
However, the scores for ‘floating’ CEL (moveable elements) is poor in its current 
version. Shortcomings are linked to the naïve knowledge-based classifier which lacks 
flexibility/generalization in its conception and gives place for major improvements 
in future works. Specifically, it will undergo an ontology formalization to provide a 
higher characterization and moving thresholds to better adapt the variability in 
which elements are found in the dataset. 

Fourth, some artefacts and performances hurt the approach due to the 
empirical octree-based voxelization determination and enactment, but as it stands, 
it provides a stable structure robust to aliasing and block effect at the borders. 
Further works in the direction of efficient parallel computing will permit both an 
increase in time performances and deeper depth tree selection (thus better 
characterization). Also, the octree definition will be looked for variable octree depth 
depending on pre-define sensor-related voxel leaf size. Other possibilities include 
using a local voxelated structure such as proposed in [69] to encode the local shape 
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structure into bit string by point spatial locations without computing complex 
geometric attributes. On the implementation side, while the dependency to 
voxelization is limited due to the octree structure to allow a constant point density 
per voxel in average, it will be further studied to avoid exponential time explosion 
when changing the deepness level. As such, the structure is already ready for parallel 
computing and it will be studied in future works. 

Finally, while our dedicated approach was tested on the S3DIS dataset, it can 
easily be adapted to other point clouds which provide an additional research 
direction. The approach will be tested against indoor and outdoor point clouds from 
different sensors and the classification adapted to account for various well-
established classes. As such, a large effort is currently undergoing to create accurate 
labelled datasets for AEC and outdoor 3D mapping applications, to be shared as 
open-data. 

Our focus is driven by a general global/local contextualization of digital 3D 
environments where we aim at providing a flexible infrastructure which should be 
able to scale up to different generalization levels. As such, the proposed 
unsupervised segmentation approach in Connected Elements and Semantic patches 
acts as a standard module within the Smart Point Cloud Infrastructure and permit to 
obtain a full autonomous workflow for the constitution of semantically rich point 
clouds [2]. 

4.7  CONCLUSIONS 

In this article, a point cloud parsing module for a Smart Point Cloud 
Infrastructure was presented. It provides a semantic segmentation framework that 
groups points in a voxel-based space where each voxel is studied by analytic 
featuring and similarity analysis to define semantic clusters, that retain highly 
representative SF1 and SF2 signatures. This process is conducted regarding an initial 
connected component from multi-composed graph representations after 
automatically detecting different planar-dominant elements leveraging their 
prevalence in man-made environments. A classification approach to automatically 
detect main classes in the S3DIS dataset and to obtain a measure of performance 
against best-performing deep learning approaches is provided. While the method is 
well performing for floor, ceiling and wall classes, extended research is needed if one 
wants to use the classification as a robust approach for moveable elements detection. 
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Point Cloud voxelisation of the church of Germigny-des-Prés, France. 
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CHAPTER 5 
- Application to archaeology 
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CHAPTER’S PREFACE  

 

The previous chapter 4 permitted to establish a parsing methodology, 
interoperable enough that it can be used for different applications at different scales. 
E.g., it was the starting-point of a knowledge-based classification approach for indoor 
point cloud data, aimed at the detection of specific infrastructure-related elements 
and assets. In this chapter 5, we will dive into the applicability of the SPCI – 
specifically the Parsing module and the Point Cloud Database module – to a different 
domain: archaeology. After largely reviewing the usage of 3D point clouds within 
archaeological frameworks, we provide a methodology to use formalized knowledge 
to guide the classification approach through adequate language manipulation. As 
such, this chapter targets the classification module, the language and query process 
module and the Visualisation & Interaction module as highlighted in Figure 42. 

 
Figure 42. Chapter 5: Extension of the Smart Point Cloud Infrastructure to the archaeological 

domain 

Details about the integration and compatibility of each module are also given. It 
also permit to test on another scale with different data artefacts (see chapter 2) 
and other reality capture sensors the integration of dense point cloud data within 
the SPCI. The following chapter  6 is linked to chapter 4 and presents the non-
described modules so far.  
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Based on Article [4] 

3D Point Clouds in Archaeology: Advances in 

Acquisition, Processing and Knowledge Integration 

Applied to Quasi-Planar Objects  

Abstract: Digital investigations of the real world through point clouds and 
derivatives are changing how curators, cultural heritage researchers and 
archaeologists work and collaborate. To progressively aggregate expertise and 
enhance the working proficiency of all professionals, virtual reconstructions demand 
adapted tools to facilitate knowledge dissemination. However, to achieve this 
perceptive level, a point cloud must be semantically rich, retaining relevant 
information for the end user. In this paper, we review the state of the art of point 
cloud integration within archaeological applications, giving an overview of 3D 
technologies for heritage, digital exploitation and case studies showing the 
assimilation status within 3D GIS. Identified issues and new perspectives are 
addressed through a knowledge-based point cloud processing framework for multi-
sensory data and illustrated on mosaics and quasi-planar objects. A new acquisition, 
pre-processing, segmentation and ontology-based classification method on hybrid 
point clouds from both terrestrial laser scanning and dense image matching is 
proposed to enable reasoning for information extraction. Experiments in detection 
and semantic enrichment show promising results of 94% correct semantization. 
Then, we integrate the metadata in an archaeological smart point cloud data 
structure allowing spatio-semantic queries related to CIDOC-CRM. Finally, a WebGL 
prototype is presented that leads to efficient communication between actors by 
proposing optimal 3D data visualizations as a basis on which interaction can grow. 

Keywords: point cloud; data fusion; laser scanning; dense image-matching; feature 
extraction; classification; knowledge integration; cultural heritage; ontology 
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5.1  INTRODUCTION 

Gathering information for documentation purposes is fundamental in 
archaeology. It constitutes the groundwork for analysis and interpretation. The 
process of recording physical evidence about the past is a first step in archaeological 
study for a better understanding of human cultures. In general, the goal is to derive 
spatial and semantic information from the gathered and available data. This is 
verified in various sub-disciplines of archaeology that rely on archaeometry [169]. 
In this setting, remote sensing is particularly interesting as a means to not only safely 
preserve artefacts and their context for virtual heritage [170], but also to 
complement or replace techniques presenting several limitations [171]. 

An archaeological breakthrough given by this technique is the moving of 
interpretation from the field to a post-processing step. The possibility to gather 
massive and accurate information without transcripts interpretation or in situ long 
presence is a revolution in archaeological workflows. It started with stereo-vision 
and photogrammetry to derive 3D information, but recent development deepened 
the representativity of digital 3D data through higher resolution, better accuracy and 
possible contextualization [172]. The study of materials is often linked with on-site 
related information, forever lost if not correctly transmitted. Digital preservation is 
therefore necessary to document a state of the findings, and this at different 
accessible temporal intervals. Visions shared by [173,174] for the digital 
documentation and 3D modelling of cultural heritage states that any project should 
include (1) the recording and processing of a large amount of 3D multi-source, multi-
resolution, and multi-content information; (2) the management and maintenance of 
the 3D models for different applications; (3) the visualization of the results to share 
the information with other users allowing data retrieval “through the Internet or 
advanced online databases”; (4) digital inventories and sharing “for education, 
research, conservation, entertainment, walkthrough, or tourism purposes”. In this 
paper, we propose such a solution. 

The information as we see it is mostly 3D: “when we open our eyes on a 
familiar scene, we form an immediate impression of recognizable objects, organized 
coherently in a spatial framework” [1]. Therefore, tools and methods to capture the 
3D environment are a great way to document a 3D state of the archaeological context, 
at a given time. Analogous to our visual and cognitive system, 3 steps will condition 
the completeness of the surveyed object. First, the perception, i.e., how the visual 
system processes the visual information to construct a structured description of the 
shape of the object/scene. Second, the shape recognition or how the product of the 
perceptual treatment will contact stored representations in the form of known 
objects (it will construct a perceptual depiction that will be a representation of the 
same nature stored in memory). Finally, the identification (labelling), i.e., when a 
stored structural representation is activated, it will in turn activate the unit of 
meaning (concept) that corresponds to it, located in the semantic system. Sensors 
are the analogue to our perception and aim at extracting the visual stimuli it is 
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sensitive to (spatial information, colour, luminance, movement, etc.). At this stage, 
neither the information on the shape of the object nor the label is extracted. In the 
case of 3D remote sensing, the quality of observation is therefore critical to enable 
high quality and relevant information extraction about the application. As such, the 
sensory perceptive processing capable of extracting visual primitives must be as 
objective and complete as possible, making sensors for point cloud generation 
favourable. Constituted of a multitude of points, they are a great way to reconstruct 
environments tangibly, and enabling further primitive’s extractions (discontinuity, 
corners, edges, contour,, etc.) as in our perceptive visual system (described in [1]). 
However, their lack of semantics makes them a bona-fide [127] spatial 
representation, thus of limited value if not enhanced. 

Deriving semantic information is fundamental for further analysis and 
interpretation. This step is what gives a meaning to the collected data and allows to 
reason on sites or artefacts. All this information must be retained and structured for 
a maximum interoperability. In an archaeological context, many experts must share 
a common language and be able to exchange and interpret data through ages, which 
necessitate the creation of formalized structure to exchange such data. Multiple 
attempts were made, and the CIDOC Conceptual Reference Model (CRM) is a 
formalization that goes in this direction. “It is intended to promote a shared 
understanding of cultural heritage information by providing a common and 
extensible semantic framework that any cultural heritage information can be 
mapped to. It is intended to be a common language for domain experts and 
implementers to formulate requirements for information systems and to serve as a 
guide for good practice of conceptual modelling. In this way, it can provide the 
semantic glue needed to mediate between different sources of cultural heritage 
information, such as that published by museums, libraries and archives”. It is used in 
archaeology such as in [175] and provides semantic interoperability. Ontologies 
offer considerable potential to conceptualize and formalize the a-priori knowledge 
about gauged domain categories [176] that relies primarily on expert’s knowledge 
about real world objects. If correctly aggregated and linked to spatial and temporal 
data, digital replicas of the real world can become reliable matters of study that can 
survive through times and interpretations, which reduces the loss or degradation of 
information related to any site study in archaeology. 

However while promising structures and workflow provide partial solutions 
for knowledge injection into point clouds [117,177], the integration, the maturation 
state as well as the link between semantic and spatial information is rudimentary in 
archaeology. Concepts and tools that simplify this process are rare, which 
complicates the merging of different experts’ perceptions around cultural heritage 
applications. Being able to share and exchange contextual knowledge to create a 
synergy among different actors is needed for planning and analysis of conservation 
projects. In this context, we explore ways to (1) better record physical states of 
objects of interest; (2) extract knowledge from field observations; (3) link semantic 
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knowledge with 3D spatial information; (4) share, collaborate and exchange 
information.  

This paper is structured in a dual way to provide both a background of 3D 
used techniques in archaeology, and technical details of the proposed point cloud 
workflow for quasi-planar heritage objects. 

In the first part, we carefully review the state of the art in digital 
reconstruction for archaeology. This serves as a basis to identify research 
perspectives and to develop a new methodology to better integrate point clouds 
within our computerized environment.  

Secondly, we propose a framework to pre-process, segment and classify 
quasi-planar entities within the point cloud based on ontologies, and structure them 
for fast information extraction. The methodology is illustrated on the case of the 
mosaics of Germigny-des-Prés (France) and then applied to other datasets (façade, 
hieroglyphs). Finally, the results are presented, and we discuss the perspectives as 
well as data visualisation techniques and WebGL integration. 

5.2  DIGITAL RECONSTRUCTION IN ARCHAEOLOGY: 
A REVIEW 

3D digital exploration and investigations are a proven way to extract 
knowledge from field observations [178,179]. The completeness and 
representativity of the 3D data gathered by sensors are critical for such 
digitalization. Equally, methodologies, materials and methods to “clone” a scene are 
important for the extensiveness of any reconstruction. The 3D-capturing tools and 
software drastically evolved the last decade; thus, we review the current state of the 
art in digital reconstruction for archaeology.  

5.2.1 Archaeological Field Work 

Even if an increasing number of archaeological contributions deal with 3D 
and related management of information, archaeologists are still sceptical about 3D 
technologies and often use manual drawings for cautious observations and first 
analyses on the field [180]. The literature gravitates around a controversial or 
diverging hypothesis which illustrates this reticence to adopt new technologies in 
remote sensing [179,181]. During an empirical recording of monuments or sites, 
measurements are taken (by hand), taking distances between characteristic points 
on the surface of the monument. The definition of the coordinates is done on an 
arbitrary coordinate system on a planar surface of the structures. The method is 
simple, reproducible and low-cost but limiting factors such as limited accuracy, time 
demand and necessary direct contact makes it unfavourable in many scenarios 
including for inaccessible areas. However, archaeologists will often use such an 
approach over remote sensing to gather insights that are otherwise considered 
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incomplete. The 3D methods are frequently regarded as intricate, expensive and not 
adapted to archaeological issues [182]. On most sites, for buildings studies or in 
excavations, the data gathering and acquisition are made with drawings and pictures 
in 2D. In some cases, 3D can come after the analyses process and is used as a “fancy” 
means to present results and rebuilt a virtual past. As noticed by Forte [183]: “there 
was a relevant discrepancy between bottom-up and top-down processes. The phase 
of data collecting, data-entry (bottom-up) was mostly 2D and analogue, while the 
data interpretation/reconstruction (top-down) was 3D and digital”. However, the 
new possibilities given by 3D remote sensing extend the scope of possible 
conservation and analysis for digital archaeology, and can progressively move to 
post-processing a part of the interpretation process, making the underlying data (if 
complete) the source on which different reading and conclusions can be mined. Yet, 
such techniques cannot replace a field presence when complementary semantics 
(from other senses such as hearing, taste, smell, touch) are necessary. 

The different data types from these remote sensing platforms played a vast 
role in complexifying the diversification in methodologies to derive the necessary 
information from the data (data-driven). However, the 3D spatial data extracted 
from the bottom-up layer for most of these techniques are surveyed points, in mass, 
creating point clouds. They are driven by the rapid development of reality capture 
technologies, which become easier, faster and incur lower costs. Use cases in 
archaeology show the exploration and acceptation of new techniques, which are 
assessed not only in regard to their accuracy, bust mostly in accordance to their fit 
to a specific context, and the associated costs. Following the categorization defined 
in [181], we distinguish “(1) the regional scale, to record the topography of 
archaeological landscapes and to detect and map archaeological features, (2) the 
local scale, to record smaller sites and their architecture and excavated features, and 
(3) the object scale, to record artefacts and excavated finds”. In their article, the 
authors reviewed some passive and active sensors for 3D digitization in archaeology 
at these different scales. They conclude that the principal limiting factor for the use 
of the different remote sensing technologies reviewed (Synthetic Aperture Radar 
(SAR) interferometry, Light Detection and Ranging (LiDAR), Satellite/Aerial/Ground 
imagery, Terrestrial Laser Scanning (TLS), Stripe-projection systems) is the ratio 
added value of a digital 3D documentation over the time and training that 
inexperienced users must invest before achieving good results. In their paper, [184] 
state that 3D recording is the first step to the digitization of objects and monuments 
(local and object scales). They state that a 3D recording method will be chosen 
depending on the complexity of the size and shape, the morphological complexity 
(Level of Detail—LoD), and the diversity in materials. While this is accurate looking 
purely at a technical replication, other factors such as user experience, available time 
or budget envelope will constrain the instrument or technique of choice. They 
propose a 9-criteria choice selection as follows: cost; material of digitization subject; 
size of digitization subject; portability of equipment; accuracy of the system; texture 
acquisition; productivity of the technique; skill requirements; compliance of 
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produced data with standards. While this extends the global understanding and 3D 
capture planning, it lacks a notion of time management (implied in productivity) or 
constraints in line with contextual laws and regulations (no contact survey only, 
etc.). Although they separate “accuracy” from “texture acquisition”, both can be 
related, as well as additional features provided by the sensors (e.g., intensity) that 
can extend the criterion table. 

We note a large discrepancy between scales of the remote sensing and 
related costs/methods tested for point cloud generation.  

At a regional scale, airborne LiDAR is sparsely used in archaeology, mostly 
as a 2.5 D spatial information source for raster data analysis. It is a powerful tool to 
analyse past settlement and landscape modification at a large scale. Use cases such 
as in [185–188] helped remove preconceptions about settlements size, scale, and 
complexity by providing a complete view of the topography and alterations to the 
environment, but while it provided new research and analysis directions, the LiDAR 
data did not leverage 3D point clouds considered too heavy and too raw to provide a 
source of information.  

At both the local scale and the object scale, several use cases exploit active 
sensoring, specifically terrestrial laser scanners (TLS) using phase-based and time-
of-flight technologies [32]. Archaeological applications vary such as in [189] to 
reconstruct a high-resolution 3D models from the point cloud of a cave with 
engravings dating back to the Upper Palaeolithic era, in [190] to study the damage 
that affected the granitic rock of the ruins of the Santo Domingo (Spain), or in [191] 
for the 3D visualization of an abandoned settlement site located in the Central 
Highlands (Scotland). More recent procedures make use of TLS to reconstruct the 
Haut-Andlau Castle (France) [192], or in [193] to map the Pindal Cave (Spain). These 
showed that to capture fine geometric details, laser-scanning techniques provide 
geometric capabilities that have not yet been exceeded by close-range 
photogrammetry, especially when concave or convex forms need to be modelled. 
Rising from the static concept, Mobile laser scanning (MLS) [33] has scaled up the 
data rate generation of TLS by allowing dynamic capture using other sensors 
including GNSS position and inertial measurements for rapid street point cloud 
generation and public domain mapping. New concepts and technology including 
Solid State LiDAR and simultaneous localization and mapping (SLAM) have pushed 
dynamic acquisition for quickly mapping with a lower accuracy the surroundings, 
extending cases using HMLS (Hand-held mobile laser scanning) [34], MMS (Mobile 
Mapping System) [35], or more recently MMBS (Mobile Mapping Backpack System) 
[36]. At the object scale, active sensors namely for active triangulation, structured 
light and computer tomography for 3D modelling is widely used due to its high 
precision, and adaptation to small isolated objects [27]. Moving to ground 
technologies, surveys are precise in detecting sub-surface remains. Different 
geophysical processing techniques and equipment (such as ground penetrating 
radar (GPR), magnetometry and resistivity) are usually integrated together, to 
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increase the success rate of uncovering archaeological artefacts, for example in [194] 
to delineate the extent of the remains of a small town that has been submerged (Lake 
Tequesquitengo, Mexico). 

Passive sensing gained a lot of attention in the heritage community following 
terrestrial use cases and image crowdsourcing, allowing a wide range of 
professionals and non-expert to recreate 3D content from 2D poses (exhaustive 
software list from [16,17,195,18–25]). The rapidly growing interest for light aerial 
platforms such as UAV (Unmanned Aerial Vehicle) based solutions and software 
based on multi-view dense image matching [15,71] and structure from motion [13] 
swiftly provided with an alternative to active sensoring. Use cases for 3D 
archaeological and heritage reconstruction are found at the object scale through 
terrestrial surveys [10,172,179,196] and the local scale through light aerial 
platforms, making this technique a favourable way to obtain quick and colour 
balanced point clouds. Moreover, the cost and accessibility (hardware and software) 
of dense-image matching reconstruction workflows have allowed its spread in 
archaeological studies. For example, in the Can Sadurní Cave (Spain), [197] 
successfully reconstructed an object via dense-image matching and georeferenced 
the obtained 3D model using TLS point cloud data of the Cave. They state that capture 
from different positions is fundamental to generate a complete model that does not 
lack important information.  

While reconstruction accuracy is increasing [26], remote sensing via active 
sensors is favoured in the industry for local scales. There are discussions in which 
computer vision would replace LiDAR [192,198]; however, practical cases tend to a 
merging of both (Reconstruction of the Amra and Khar-anah Palaces (Jordan) [199], 
the castle of Jehay (Belgium) [200]), and predilection applications for each 
techniques, combining strength of natural light independence with low-cost and 
highly visual image-based reconstruction [200]. Particularly in the case of mosaics, 
decorations and ornaments, the combination of features from sensors generating 
accurate and complementary attributes permits the overcoming of limits arising 
from a small set of features. Indeed, use case such as in [201] results in a high 
richness of detail and accuracy when combining TLS and close range 
photogrammetry which was not achievable otherwise. Thus, multisensory 
acquisition provides an interesting method that will be investigated.  

The high speed and rate generation of 3D point clouds has become a 
convenient way to obtain instant data, constituting datasets of up to Terabytes, so 
redundant and rich that control operation can take place in a remote location. 
However, they often go through a process of filtering, decimation and interpretation 
to extract analysis reports, simulations, maps, 3D models considered as deliverables. 
A common workflow in archaeology concerns the extraction of 2D profiles and 
sections, 2D raster to conduct further analysis or to create CAD deliverables, 
particularly looking at ornaments, mosaics or façades. This induces several back and 
forth movements within the pipeline, and the general cohesion, storage system often 



 

132 

lack extensibility. This challenge is particularly contradictory, and a solution to 
automate recognition such as [202] in the context of mosaics would therefore 
provide very solid ground for tesserae detection, extended to 3D by combining many 
more sets of features. This will be specifically studied in Section 5.3. 

While all the reviewed literature specifically points out the problems linked 
with data acquisition and summarize the strength and weakness of each regarding 
the recorded spatial information, few specifically link additional semantic 
information. Gathered in situ or indirectly extracted from the observation, the 
measurements often rely on specific interest points. While this is handy looking at 
one specific application for one archaeologist, this practice is dangerous regarding 
the problematic of curators and conservation. Indeed, preserving at a later stage the 
interpretation through sketches, drawings, painting or text description based on 
interest points makes any possible data analysis impossible from the raw source. 
Therefore, 3D point selectivity should not arise at the acquisition step, but in a post-
processing manner, to benefit of the flexibility given by 3D data archives, which was 
impossible before the emergence of automatic objective 3D capturing devices. 

We postulate that when designing data processing workflow, specific care 
must be given to the objectivity linked with the spatial data, which multisensory 
systems and point clouds specifically answer. As such, they can constitute the 
backbone of any powerful spatial information system, where the primitive is a 0-
simplex [203]. Their handling in archaeology, however, is a considerable challenge 
(often replace by 3D generalization such as meshes, parametric models, etc.) and 
thus presents many technical as well as interpretation difficulties.  

5.2.2 Integration of 3D Data 

As demonstrated in [204], the evolution of remote sensing for archaeological 
research and the acceptance in archaeology has grown linearly since 1999 looking at 
the number of publications (Sources SCOPUS, ScienceDirect & Web of Science search 
engines) related to remote sensing per year. While this provides new possibilities, 
the reliability and heterogeneity of the spatial information are issues in heritage for 
the conservation, interoperability and storage of data. 3D GIS linked to 
archaeological databases have been thought and proposed for the management of 
this information at different scales and on different type of sites such as large 
excavated sites [205–208]. In their paper [206], the authors discuss the possibility 
and the ultimate goal of having a complete digital workflow from 3D spatial data, to 
efficiently incorporate the information into GIS systems while relying on formal data 
model. After stating the limits and difficulties of integrating efficiently 3D data (as 
well as time variations), they interestingly express the domain specifications and 
formalization through ontologies. Within a knowledge system, standards and 
procedures are key to warrant the consistent meaning of collective contents and to 
trace the “history” of the processed data [207]. In their use case, they create a 3D 
model segmented regarding semantic information to allow the independent 
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manipulation as well as GIS query between elements. They claim to provide new 
standards in 3D data capture to be usable by all archaeologist, but their method is 
empirically defined and the integration of knowledge sources is blurry regarding 
segmentation and semantic injection. Building archaeology is also a field where 3D 
applications are used mainly for conservations purpose [209–211]. In these 
contributions, the authors highlight two characteristics of archaeological cases: the 
heterogeneity of data and the difficulty of processing 3D spatial entities from 
irregular archaeological objects (artefacts, buildings, layers, etc.). Several solutions 
have been offered in the mentioned papers and specific software have been designed 
(see [212] for a relevant 3D GIS use case and [213] for the most recent summary). In 
these studies, the definition of archaeological facts rests on their representation as 
raster data, specific point of interest, polygons and 3D shapes, but never the direct 
source of spatial information: point clouds. 

At this step, several criterions should be considered to choose the most 
suitable spatial data model. Many researchers proposed 3D grid representation 
(voxels) as the most appropriate data format for handling volumetric entities and 
visualizing continuous events [214,215]. Generalizing point cloud entities by volume 
units such as a voxels allows 3D GIS functionalities such as object manipulation, 
geometry operations and topology handling regarding [125]. Although Constructive 
Solid Geometry (CSG) and 3D Boundary representations (B-rep) can roughly depict 
a spatial entity, the level of generalization of the underlying data has an impact on 
the accuracy and representativity of GIS functionalities’ results. Thus, point cloud 
brings an additional flexibility by giving the possibility to recover the source spatial 
data information. The limits with available commercial and open source database GIS 
systems (which are mostly used by archaeologist) made point clouds a secondary 
support information for primarily deriving 3D model generalizations. This of course 
limits the conservation potential of archaeological findings, as the interpretation 
behind data modelling workflows is unique and irreversible (one-way). As such, to 
our knowledge, no 3D archaeological GIS system is directly based on 3D point cloud. 
They are rather considered heavy and uninterpretable datasets. Furthermore, the 
constitution and leveraging of knowledge sources is still limited, with some 
experiences by manual injection reviewed in [205–208]. This of course constitutes a 
major issue that needs to be addressed for scaling up and generalizing workflows. 
The different literature involved in the constitution of 3D GIS delineates the need of 
standardization, especially regarding the variety of data types. In this direction, one 
specific use case in [206] demonstrated that the main advantage of the 3D GIS 
methodology is the link between attribute information to discrete objects defined by 
the archaeologist. Their implementation is done regarding the CIDOC-CRM ISO 
21127 standard and the design patterns from the ontological model of the workflow 
of the Centre for Archaeology to achieve semantic compatibility. As opposed, the 
approach presented in [216] allows linking of 3D models of buildings and graph-
based representation of terms. It describes its domain-linked morphology to provide 
new visual browsing possibilities. In this approach, one expert creates a graph for 
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one specific application. This allows the comparison of semantic descriptions 
manually established by experts with divergent perspectives but lacks extensibility 
to match general rules. Indeed, while the description flexibility within one field can 
benefit from this, it can lead to interoperability problems when a formalization needs 
to be established, especially regarding geometrical properties or for structuring the 
semantics according to a pattern. Even though there are several works dedicated to 
ontology-based classifications of the real-world entities, the ontologies developed so 
far are rarely integrated with the measurements data (physical data). As such, [217] 
proposes an observation-driven ontology that plays on ontological primitives 
automatically identified in the analysed data through geo-statistics, machine-
learning, or data mining techniques. These provide a great standpoint to semantic 
injection and will be further studied. In particular, the possibility to specialize the 
ontology through extensions such as CIDOC CRMba (an extension of CIDOC CRM to 
support buildings archaeology documentation) or CIDOC CRMgeo (an extension of 
CIDOC CRM to support spatiotemporal properties of temporal entities and persistent 
items) provides new solutions for higher interoperability. 

The literature review showed a shift at an acquisition phase toward better 
means to record physical states of an environment, an object. TLS and dense-image 
matching showed an increase in popularity, and their combination provide new and 
promising ways to record archaeological artefacts and will thus be investigated. 
However, both methods generate heavy point clouds that are not joined directly with 
knowledge sources or structured analogously to GIS systems. Rather, their use is 
limited to providing a reference for other information and deliverables (2D or 3D). 
While this is a step forward toward higher quality documentation regarding other 
reviewed field methods, this is not a long-term solution when we look at the 
evolution of the discipline, the quantity of generated data and the ensuing ethics. The 
identified problem concerns the link between domain knowledge and spatial 
information: it evolves in parallel, partially intersects or is hardcoded and manually 
injected. Moreover, the flexibility regarding possible analysis is often null due to 
interpreted documents that force a vision over elements that no longer physically 
exist, or which were poorly recorded. Therefore, a strong need for ways to integrate 
knowledge to point clouds is essential. This “intelligence spring” is categorized 
regarding 3 sources as identified in [117], being device knowledge (i.e., about tools 
and sensors), analytic knowledge (i.e., about algorithms, analysis and their results) 
and domain knowledge (i.e., about a specific field of application). Their 
rapprochement to point clouds is, however, a bottleneck that arises early in the 
processing workflow. If we want to better integrate point clouds as intelligent 
environments [100], we must correctly assemble knowledge sources with the 
corresponding “neutral” spatial information. This relies on different procedures to 
(1) pre-process the point cloud, (2) detect the entities of interest within the initial 
point clouds and (3) attach the knowledge to classify and allow reasoning based on 
the classification. As such, our work proposes to leverage the use of ontologies as 
knowledge sources, as well as defining a workflow to directly process and integrate 
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point clouds within 3D GIS systems, creating virtual heritage [170]. In the next part, 
we describe our technical method for integrating knowledge within reality-based 
point-clouds from TLS and close-range photogrammetry. While the following 
methodology can be extended to different applications with examples such as in 
Section 5.5, it is illustrated and applied to quasi-planar objects of interest. 

5.3  MATERIALS AND METHODS 

The applied workflow of object detection and classification is organized as 
follows: in the data pre-processing step, the different point clouds are treated using 
the procedure described in Section 5.3.1 (Step 1, Figure 43). Subsequently, point 
cloud descriptors as well as object descriptors such as the extent, shape, colour and 
normal of the extracted components are computed (Step 2, Figure 43) and imported 
into the next classification procedure using a converter developed in this study (Step 
3, Figure 43). In the last step, the objects are classified based on the features 
formalized in the ontology (Step 4, Figure 43). 

 
Figure 43. Overview of the methodology developed in this paper. (1) Data pre-processing; 

(2) Feature computation and segmentation; (3) Object features to ontology; (4) Object 
classification in regard to ontology 
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The process to identify features of interest within the signal is the 
foundation for the creation of multi-scale ensembles from different datasets. The 
work described in [218] extensively reviews data fusion algorithms defined by the 
U.S department of Defense Joint Directors of Laboratories Data Fusion Subpanel as 
“a multilevel, multifaceted process dealing with automatic detection, association, 
correlation, estimation and combination of data and information from single and 
multiple sources to achieve refined position and identify estimates, and complete 
and timely assessments of situations and threats and their significance”. The 
combination of different sensors generating complementary signatures provides 
pertinent information without the limitations of a single use and creates a 
multisensory system [219]. Thus, following the postulate of the state of the art, we 
decide to adopt a multi-sensory workflow for maximizing information (Section 
5.2.1) 

5.3.1 Point Cloud Data Acquisition and Pre-Processing 

A pre-processing step is necessary to obtain a highly representative signal 
of the value measured as defined in [53]. Indeed, to avoid external influential sources 
that degrade the information, this step demands adapted techniques to minimize 
errors including noise, outliers and misalignment. Filtering the data strongly 
depends on device knowledge [117].  

Several sets of data from various contexts were acquired to perform 
different tests. The Carolingian church located in Germigny-des-Prés (Loiret, France) 
houses ancient mosaics dating from the 9th century, composed of about one hundred 
thousand tesserae (the average surface of a tessera is 1 cm2, square of 1 cm by 1 cm). 
The preserved works offer a unique opportunity for the study of mosaics and glass. 
Indeed, the tesserae that composes it are mainly made in this material, which is rare 
in the archaeological context of the early Middle Ages [220]. However, part of the 
mosaic was restored in the 19th century; therefore, tesserae are from two periods; 
thus, we must first distinguish the different tesserae types (based on their age) for 
accessing alto-medieval glass information. The study could reveal important 
predicates, considering each tessera taken independently or by analysing different 
properties, while conjecturing with expert’s domain knowledge. The mosaic of the 
vault culminates at 5402 m above the ground, presenting many challenges for 3D 
capture from active and passive sensors. The dome is protected, and the limited 
accessibility tolerates only a light scaffolding, too narrow for the positioning of 
tripods, illustrating the need to adapt means to the context Figure 44. 
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Figure 44. The vault of Germigny-des-prés being captured for dense-image matching 

processing. 

The first sample was acquired using a phase-based calibrated terrestrial 
laser scanner: the Leica P30. The different scans were registered using 1338 
reflective targets, of which 127 were shot by a total station (Leica TCRP1205, 
accuracy of 3 mm + 2 ppm) and used for indirect georeferencing afterwards. The 
mean registration error is 2 mm, and the mean georeferencing deviation is 2 mm 
(based on available georeferenced points measured from the total station). Two 
point cloud segments of the same zone (mosaic) were extracted: one unified point 
cloud that includes measurements from 8 different positions with varying range and 
resolutions, and one high resolution point cloud (HPC) from one optimized position 
by using an extended mounted tribrach. A comparison emphasized the influence of 
the angle of incidence and the range over the final resolution, precision and intensity 
of the point cloud. Thus, we chose the HPC for its higher representativity (Figure 45). 
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Figure 45. Point cloud of the church of Germigny-des-Prés. Top View (left) and zone of 

interest (right). 

The TLS was operated at 1550 nm for a maximum pulse energy of 135 NJ. 
Initial filtering was conducted such as deletion of intensity overloaded pixels (from 
highly retro-reflective surfaces) and mixed pixels to flag problematic multi-peak 
scan lines and keep the right return via full-waveform analysis. The final accuracy of 
a single point at 78% albedo is 3 mm. The final HPC is composed of 30,336,547 points 
with intensity ranging from 0.0023 to 0.9916, and covers solely the mosaic. Several 
pictures were taken at different positions to obtain a 3D point cloud of the mosaic. 
These pictures were shot using a Canon EOS 5D mark III camera equipped with a 24–
105 mm lens. In total, 286 pictures of 5760 × 3840 in RAW, radiometrically equalized 
and normalized, were used to reconstruct the photogrammetric point cloud (Figure 
46). 

 
Figure 46. Point cloud from a set of 2D poses reconstructed via dense-image matching using 

the software ContextCapture  v 4.4.6, Bentley Systems, Exton, United States [17]. 
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The knowledge around the acquisition methodology provides important 
information as missing/erroneous data, misadjusted density, clutter and occlusion 
are problems that can arise from an improper or impossible capture configuration 
on the scene [38], resulting in a loss of transmitted information or data quality. 
Combining different sensors with diverse acquisition methodologies allows the 
overcoming of this challenge and provides a better description of the captured 
subject through (1) higher quality features (i.e., better colour transcription, better 
precision, etc.); (2) specific and unique attribute transfer; (3) resolution and scale 
adaptation, sampling or homogenizing [221]. The knowledge extracted from a 
device, analytical knowledge or a domain formalisation constitutes the fundamental 
information repository on which a multi-level data structure is constructed (Section 
5.3.2). 

The first step is therefore to correctly reference point clouds, known as data 
registration. The method is derived from previous work to perform accurate 
attribute transfer [200]. The main idea is that a priority list processing is established 
and influences data fusion regarding knowledge. When combining different point 
clouds, their geometry and attributes in overlapping areas are then properly 
addressed. The complementary information needs to be combined from the different 
available sources if relevant, keeping the most precise geometry as a structure. 
Avoiding heterogeneous precisions is essential, leading to point deletion rather than 
point caching and fusing. Once correctly registered, every point cloud data source 
goes through a pixel and attribute level fusion (if not previously fused at the sensory 
level). 

5.3.2 Knowledge-Based Detection and Classification 

Our approach for object extraction relies on domain knowledge that relays 
through point cloud features. Segmentation [76] and feature extraction are well 
studied areas within point cloud processes. However, the integration of knowledge 
is still rare, with few example of hybrid pipelines [72,222]. Our proposed approach 
constitute a hybrid method inspired by previous work in shape recognition 
[148,223–225], region growing pipelines [38,226,227] and abstraction-based 
segmentation [228–232] relying on 3D connected component labelling and voxel-
based segmentation. As such, different features presented in Table 1 constitute the 
base for segmentation.  

Table 17. Point features computed from the point cloud data after data fusion, before 
segmentation. 

Type Point Features Range Explanation 

Sensor desc. 

X, Y, Z 
Bounding-

box 
Limits the study of points to the zone of 

interest 

R, G, B 1 
Material 
Colour 

Limited to the colour range that domain 
knowledge specifies 

I  
Clear noise and weight low intensity 

values for signal representativity 
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Shape desc. RANSAC 2 - Used to provide estimator of planarity 

Local desc. Nx, Ny, Nz 3 [−1,1] 
Normalized normal to provide insight 

on point and object orientation 

 Density 4 - 
Used to provide insights on noise level 

and point grouping into one object 

 Curvature [0,1] 
Used to provide insight for edge 

extraction and break lines 

 
KB 5 Distance 

map 
 

Amplitude of the spatial error between 
the raw measurements and the final 

dataset 
Structure 

desc. 6 
Voxels - Used to infer initial spatial connectivity 

1 [233]; 2 [149]; 3 [234]; 4 [234]; 5 Knowledge-based; 6 [117]. 

The point cloud data processing was implemented using the programming 
interfaces and languages MATLAB, Python, SQL, SPARQL, OWL, Java as well as the 
C++ Library CCLib from CloudCompare [230] and the software Protégé [63]. 

First, the point cloud is segmented regarding available colour information 
by referring to the database table containing float RGB colour ranges for each 
material composing the dataset. Then, the gap is enhanced by superimposing 
intensity values over colour information (this allows us to refine and better access 
point filtering capabilities) as in Equation (1). 

Re = R × I,  Ge = G × I, Be = B × I (1) 

A statistical outlier filter based on the computation of the distribution of 
point to neighbour distances in the input dataset similarly to [235] is applied to 
obtain a clean point cloud. This step can be avoided if the colour range and the 
datasets are perfectly in line.  

The segmentation developed is a multi-scale abstraction-based routine that 
decomposes the 3D space in voxels at different abstraction levels and by constructing 
an octree structure to speed up computations. The three-dimensional discrete 
topology (3DDT) proposed by [236] generates a voxel coverage by intersection with 
another representation model (parametric or boundary) of an object. This is possible 
by playing on the different configurations of voxel adjacencies. A voxel has 6 
neighbour voxels by one face, 18 neighbour voxels by a face or an edge and 26 
neighbours by a face, an edge or a vertex. Our approach is based on a 26-connectivity 
study that groups adjacent voxels if not empty (i.e., voxels containing points). It is 
conditioned by the analytical knowledge where the density information constrains 
the initial bounding-box containing the point cloud. An initial low-level voxel 
structure is then computed, retaining the number of points as attribute. Let vI ∈ ℝ3 
be a voxel. Let vI be its neighbour voxel. We define VCEL as the connected element 
(segment) as in Equation (2):  

∀ vi∈ R3, ∃ vj = n(vi) | VCEL =  [vI, vj] ↔ vj≠ ∅  (2) 
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where n(vi) is the neighbour voxel of and vi, VCEL is the group segment from 
a 26-connectivity adjacency study. 

 

The topological grouping also permits us to clean the remaining noise N 
from difficult colour extraction regarding the equations Equations (3) and (4). Let 
p

n
∈ ℝ3 be the n-th point of VCEL. There exists PCEL as follows: 

∀ p
1
, …, p

n
 ∈ ℝ3, ∃ PCEL | PCEL = {p

1
, …, p

n
} 1 (3) 

PCEL =  N ↔ SNumber_CEL < d(PCEL) × min(S
m
) & SSize_CEL < min(V

m
) 2 (4) 

1 where p is a point (x, y, z) in space, 2 where N is the remaining noise, 
SNumber_CEL is the number of points in PCEL, d(PCEL) is the point density of PCEL, min(S

m
) 

is the minimum of the surface of the material Sm, SSize_CEL is the voxel volume 
occupancy of the CEL, min(V

m
) is the minimum of the volume of the material Vm; 

therefore, N is the group composed of fewer points than the knowledge-based 
assumption from the density achievable from the sensor, the minimum surface of the 
object and the minimum volume of the object. 

Then, our multi-scale iterative 3D adjacency algorithm at different octree 
levels recursively segments under-segmented groups (detected by injecting 
analytical knowledge regarding minimum bounding-box size of processed material 
as in Equation (4)), refining the voxel-based subdivision until the number of 
generated voxels is inferior to the density-based calculation of estimated voxel 
number. When subgroups dimensions correspond to material’s available knowledge, 
segments are added to the “Independent Tesserae” segments. Otherwise, a 
convolution bank filter is applied regarding the longest side of the calculated best fit 
P.C.A Bounding Box. For absorbent materials or objects sensitive to the sensor 
emitting frequency (implies low intensity, thus high noise), the 3D distance map as 
in Table 1 is used to detect points that belong to each object of interest. The accuracy 
of the extracted segments is assessed by ground truth manual counting of different 
samples. 

Then, on each detected segment, every point is projected on the RANSAC 
best fit plane, and we extract the 2D outline through the convex hull of the projected 
points p

I
 to constrain the plane. Let PpCEL be the projected points of PCEL onto the best 

fit plane. Then, we obtain Conv(PpCEL) as in Equation (5):  

Conv(PpCEL) = { ∑ αI × p
i

|PpCEL|

I = 1

| ∀ p
I
 ∈  PpCEL, ∀ αI  ≥  0) : ∑ αI = 1

|PpCEL|

I =1

} (5) 

where Conv(PpCEL) is the convex polygon of PCEL as a finite point set (x, y) in 
R2 (x, y, z). It can be extended to 3D, nD if necessary. 
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We calculate the compactness (CS) and complexity (CP) of the generated 
polygon in regard to the work of [237], as well as its area, and its statistically 
generalized (gaussian mixture) colour (Table 2). 

Table 18. Segment features computed from the extracted segments. 

Type 
Point 

Features 
Range Explanation 

Sensor 
generali- 

zation 

Xb, Yb, Zb 
barycent

re 
Coordinates of the barycentre 

Rg, Gg, Bg 1 - 
Material unique colour from statistical 

generalization 

I - 
Intensity unique value from statistical 

generalization 

Shape desc. 

CV 2 - 
Convex Hull, used to provide a 2D shape 
generalization of the underlying points 

Area - 
Area of the 2D shape, used as a reference 

for knowledge-based comparison 

CS, CP [0,1] 
Used to provide insight on the regularity 

of the shape envelope 

Local 
generalization 

Nx, Ny, Nz 3 [−1,1] 
Normalized normal of the 2D shape to 

provide insight on the object orientation 

 1 [233]; 2 Convex-hull; 3 [234]. 

The final classification of the delineated objects is based on the available and 
constituted domain ontology of point cloud features for archaeology. The idea behind 
the ontology is that the integrated cultural information from a variety of sources is 
brought together into an integrated environment where we can ask broader 
questions than we can ask from individual pieces. 

Ontologies can be expressed using different knowledge representation 
languages, such as the Simple Knowledge Organization System (SKOS), the Resource 
Description Framework (RDF), or the Web Ontology Language 2 (OWL2) 
specification. These languages contrast in terms of the supported articulateness. The 
SKOS specification, for instance, is widely used to develop thesauri, the CIDOC CRM 
is mainly used for describing heritage sites, the Basic Formal Ontology [238] at a 
higher conceptualization level to incorporates both 3D and 4D perspectives on 
reality within a single framework. The OWL2 ontology language is based on the 
Description Logics (DL) for the species of the language called OWL-DL. DL thus 
provides the formal theory on which statements in OWL are based and then 
statements can be tested by a reasoner. The OWL semantics comprise three main 
constructs: classes, properties and individuals. Individuals are extensions of classes, 
whereas properties define relationships between two classes (Object Properties), an 
individual and a data type (Data Properties). 
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We used the OWL and the RDF languages to define ontologies for their high 
flexibility and interoperability within our software environment (Protégé & Java). As 
for the study of mosaics, the ontology is set upon the point cloud data and its 
attributes, thus indirectly leveraging domain ontologies. Indeed, sensor related 
knowledge is needed to understand the link between features and their 
representativity. The following meta-model is formalised in UML and provides a 
conceptual definition for implementations. We therefore used the model to provide 
a clear vision and comprehension of the underlying system, but the ontology creation 
slightly differs from privilege performances; therefore, adaptations are made at the 
relation scheme modelling level. 

The characterization (knowledge representation and data modelling) in 
Figure 47 is a Level-2 domain meta-model, that can plug to a Smart Point Cloud 
structure [108]. The general idea is that different hierarchical levels of abstraction 
are constituted to avoid overlapping with existing models and to enhance the 
flexibility and opening to all possible formalized structure. The core instruction is 
that the lower levels are closer to a domain representation than higher levels (level-
0 being the higher level), but they impose their constraints. The overall structure is 
a pyramidal assembly, allowing the resolution of thematic problems at lower levels 
with reference to constraints formally imposed by the higher levels. 

 
Figure 47. UML meta-model of the ontology. Tesserae have one or multiple geometries, 
which are characterized by their regularity (determined by the ontological reasoning 

framework), and an area. Tesserae also have a temporality (characterized as a time interval, 
being placed at early Middle Ages or during a restoration at the 19th century) and different 

materials. These materials retain various properties including light sensitivity. 

The ontology implementation was structured as triplets. Each triplet 
corresponds to a relation (subject, predicate and object), which expresses a concept. 
The end goal is to reason based on the constituted ontology to extract information 
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about the tessera geometric regularity, its material and temporal classification 
(ClassifiedTessera) as in Figure 48. 

 
Figure 48. Sub-ontology for the classification of point cloud tessera objects. Blue arrows 
represent links regarding the tree structure (these are “subClassOf”). The oranges links 
represent the “hasProperty” relationship that we created to describe the relationship 

between a Tessera and its properties. It is a simple relationship from domain (Tessera) to 
Range (Properties). 

The ontology is then populated with the domain knowledge as detailed in 
Figure 49, and the different predicates are established to obtain a final classification 
of the point cloud. Note that a tolerance of 20% regarding the definition of 
geometries was used to allow relative variations within one tesserae family. 
Analogously, any quasi-planar object may be substituted and described by the afore-
mentioned properties, thus extending the provided ontology. 

 
Figure 49. Detailed ontology for the classification of the mosaic’s point cloud. The yellow 
lines are the links of sub-assumptions, of reasoning. They are in fact links of equivalence 

between a class and its definition. 

The different results allow to classify the point cloud, after determining the 
regularity of the 2D outline regarding different constraints (examples in Table 3). 
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Table 19. Example of tessera classification using RDF constraints.  

RDF Triple Store Effect 

((CS some xsd:double[> “1.1”^^xsd:double]) or (CS some 

xsd:double[< “1.05”^^xsd:double])) 

 and (CP some xsd:double[> “4.0E-4”^^xsd:double])* 

Tessera is 

irregular (1) 

(CP some xsd:double[<= “4.0E-4”^^xsd:double]) 

 and (CS some xsd:double[>= “1.05”^^xsd:double, <= 

“1.1”^^xsd:double]) 

Tessera is square 

(1) and (hasProperty some ColorGold) 

 and (hasProperty some NonReflective) 

 and (Area some xsd:double[<= “1.2”^^xsd:double]) 

Tessera is alto-

medieval  

(hasProperty some ColorWhite) 

 and (Area some xsd:double[>= “16.0”^^xsd:double, <= 

“24.0”^^xsd:double]) 

Material is Faience 

The domain knowledge including size, geometry and spatial distribution 
leads to object classification. For enhancing its interoperability, the developed DSAE 
(Digital Survey-based Architectural Element) ontology can directly be extended 
using the well-established CIDOC-CRM formal ontology. Indeed, the CIDOC-CRM is 
purely descriptive, and does provide only “factual” tests (a node is linked to an arc, 
which is linked to another node). The provided DSAE ontology can reason based on 
complex declaration of conditions (such as AND, OR, ONLY, etc.), thus is much more 
structured than the CIDOC-CRM, and allows to reason. As such, it permits automatic 
classification that can be plugged to the CIDOC-CRM enabling archaeologists to better 
understand the underlying point cloud data. In the case of tesserae, each tessera 
material is then considered as a E57 Material specialization which comprises the 
concept of materials (Specialization of E55 Type), LightProperties and Color can be 
seen as S9 Property (it describes in a parametric way what kind of properties the 
values are) and Area, CP and CS as SP15 Geometry attributes (which comprises the 
union of geometric definitions and the linked declarative places) from the extension 
CIDOC-CRMgeo (based on the ontology GeoSPARQL), as in Figure 50. 

 
Figure 50. Connectivity relationship between the CIDOC-CRM and the DSAE ontology to 

extend interoperability and allow descriptive knowledge for archaeologist to be included. 
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Finally, semantic information is transferred to the point cloud that can be 
used for information extraction. Once extracted semantics have been successfully 
linked to the spatial information, we address structuring for interaction purposes. 
The data structuration is made in regard to [108]. The main idea is that the structure 
is decomposed in three meta-models acting at three different conceptual levels to 
efficiently manage massive point cloud data (and by extension any complex 3D data) 
while integrating semantics coherently. The Level-0 describes a meta-model to 
efficiently manage and organise pure point cloud spatial data information. The Level-
1 is an interface between the level-0 and the level 2 (specific domain-based 
knowledge). As such, the data integration methodology relies on incorporating the 
point cloud data in the Smart Point Cloud data structure [108] in regard to the 
workflows described in section 5.3. The structuration therefore follows the object 
decomposition, where points of each object are grouped together to form world 
objects (i.e., Independent Tesserae) once concepts and meaning have been linked. 
This constitutes the entry point of the ontology which acts as a Level-2 specialization 
to inject relevant knowledge. To facilitate the dissemination of information, query 
results from specific queries need to be visualized properly. For users to access and 
share a common viewpoint result of a semantic query, we enhanced the approach in 
[239] by applying over each object (i.e., tessera) one unique colour per instance for 
each class (e.g., faience pieces); all non-requested tesserae are coloured in black as 
in Figure 51. 

 
Figure 51. Unique colourisation of a group of golden tesserae (bottom-up view). 

For each class of object, we compute a bounding box and we locate its centre. 
The bounding box centre becomes the centre of the sphere on which the camera will 
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move to determine the optimal camera position. The coordinates of the camera on 
the sphere are computed according to the following formulae [239]: 

X = xcenter + r × cos(ф) × cos(Ѳ) , Y = ycenter + r × sin(ф) , Z = zcenter +
r × cos(ф) × sin (Ѳ) 1 

(6) 

1 where X, Y and Z are the camera coordinates, xcenter, ycenter and zcenter are the 
coordinates of the centre of the sphere, r is the radius of the sphere, ф is the vertical 
angle, Ѳ is the horizontal angle. 

 

From each camera position, we compute the number of visible tesserae from 
the user request observed in the produced image. Since each instance of one sort of 
tesserae is coloured uniquely, the algorithm performs by counting the number of 
different pixels colours. Hence, the number of distinct colours in the image 
corresponds to the number of tesserae seen from this camera position. The camera 
position that maximises the view of requested tesserae corresponds to the optimal 
viewpoint. If two camera locations present the same number of observed tesserae, 
we apply a maximisation criterion regarding the pixels to determine the optimal 
camera position. 

5.4  RESULTS 

We tested the method on different samples from different zones of the 
mosaic to identify the influence of the segmentation and the classification in different 
scenarios, as well as another point cloud from terrestrial laser scanner captured in 
Jehay (Belgium). To assess the quality of the segmentation, knowledge-based tessera 
ground truth was extracted from the point cloud and compared to the segmentation 
method extracts. Results (Table 4) show an average 95% segmentation accuracy for 
point cloud gold tesserae, 97% for faience tesserae, 94% for silver tesserae and 91% 
for coloured glass. 

Table 20. Segmentation accuracy of tesserae samples. 

Tesserae 
Segmentation 

Number of Points 
Accuracy 

 Ground truth Tesserae C.  

Gold 

Sample NO. 1 10,891 10801 99% 

Sample NO. 2 10,123 11,048 91% 

Sample NO. 3 10,272 10,648 96% 

Sample NO. 4 11,778 12,440 94% 

Faience 
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Sample NO. 1 27,204 28,570 95% 

Sample NO. 2 23,264 22,978 99% 

Sample NO. 3 23,851 24,440 98% 

Sample NO. 4 22,238 22,985 97% 

Silver 

Sample NO. 1 1364 1373 99% 

Sample NO. 2 876 931 94% 

Sample NO. 3 3783 3312 88% 

Sample NO. 4 1137 1098 97% 

C. Glass 

Sample NO. 1 1139 1283 87% 

Sample NO. 2 936 1029 90% 

Sample NO. 3 821 736 90% 

Sample NO. 4 598 625 95% 

The tesserae recognition pipeline including segmentation, classification and 
information extraction was conducted over 3 different representative zones of the 
point cloud to be exhaustive and to be able to count manually each tessera for 
assessing the results. In the first zone containing 12,184,307 points, three types of 
tesserae were studied: 138 Gold tesserae from the 19th century renovation (NG), 239 
ancient gold (AG) and 11 faience pieces (FT) (Figure 52). The automatic 
segmentation correctly recognized all FT (100% accuracy) and 331 golden tesserae 
(GT) (88% accuracy), remaining ones being 5% of under-segmentation (in groups of 
2/3 tesserae), 7% of tesserae not detected. The classification correctly labelled 
respectively 100% FT, 98% NG, and 99% AG. 

 
Figure 52. Zone 1: Classification workflow of tesserae in Zone 1. From left to right: Colour 
point cloud; abstraction-based segmented point cloud; classified point cloud; 2D geometry 

over point cloud. 

In the second zone containing 12,821,752 points, 313 gold tesserae (195 NG 
and 118 AG) and 269 silver tesserae (ST) were processed. In total, 284 (91%) golden 
tesserae were correctly segmented, of which 93% were correctly labelled NG and 
95% AG, and 93% of ST were correctly segmented, of which 87% were correctly 
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labelled. The third larger sample composed of 34,022,617 points includes 945 gold 
tesserae and 695 CG (coloured glass) tainted in black. The other tesserae in the 
sample had an insufficient resolution for ground truth generation. In total, 839 
(89%) golden tesserae were correctly segmented, of which 86% were correctly 
labelled NG and 95% AG. Concerning CG, (494) 71% were correctly segmented, and 
98% were correctly labelled. While classification results are very high, segmentation 
is heavily influenced by the quality of the data; hence, CG shows lower results 
because of its harsh sensor representation (tesserae are not easily discernible). 

Globally, 59,028,676 points and 2610 tesserae were processed; 2208 (85%) 
were correctly detected and segmented, of which 2075 (94%) were correctly 
labelled (Table 5). 

Table 21. Recapitulation of tesserae detection results. 

ID 
Tesserae Segmentation Classification Res. 

Type Nb Nb % Nb % Nb 

1 
NG 138 

331 88% 
131 98% 7 

AG 239 196 99% 43 
FT 11 11 100% 11 100% 0 

2 
NG 155 

284 91% 
128 93% 27 

AG 158 139 95% 19 
ST 269 249 93% 216 87% 53 

3 
NG 396 

839 89% 
297 86% 99 

AG 549 471 95% 78 
CG 695 494 71% 486 98% 209 

Total 2610 2208 85% 2075 94% 535 

 

The full workflow was also conducted over a point cloud acquired using a 
TLS at a local scale to detect specific stones and openings of the façade of the castle 
of Jehay (Belgium). The point cloud comprises around 95 million points and has an 
uneven density due to the acquisition set-ups. The segmentation allowed us to 
correctly detect calcareous stones as in Table 6, as well as openings regarding the 
surface of reference (best fit plane through convolutional bank filter) and the full 
limestone bay frames. 

Table 22. Segmentation accuracy of the façade of the castle of Jehay over calcareous stones. 

Elements 
Segmentation 

In Number of Points 
Accuracy 

 Ground truth Method  

Calcareous Stones 

Sample NO. 1 37,057 35,668 96% 

Sample NO. 2 30,610 27,100 88% 
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Sample NO. 3 34,087 32,200 99% 

Sample NO. 4 35,197 30,459 86% 

 

The same reasoning engine was used based on the DSAE ontology. The 
DSAE-based classification first studied the material Limestone (related to the 
property colour, same as S9 from CIDOC-CRM) and the geometry regularity (related 
to SP15 attribute from geometry) in regard to CS, CP and Area (in the case of 3D 
objects, the area was extended to a volume feature by taking into account every 
spatial dimension.), then differentiated openings through dimension-based 
predicates (SP15 Geometry) as presented in Figure 53. The CIDOC-CRM and its 
extension CIDOC-CRMba [240] provide an added descriptive value for archaeologists 
that can be directly plugged as in Figure 53. 

 
Figure 53. DSAE ontology and plugged CIDOC-CRM + CIDOC-CRMba for the detection of 

objects of interest: calcareous stones, openings and limestone bay frames. 

The detected segments are classified, with 85% accuracy for independent 
calcareous stones, and 100% for woodworking openings (differentiated by size and 
geometric regularities) and limestone bay frames. The results over the Renaissance 
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façade recognition pipeline are illustrated in Figure 54. We notice the fine detection 
for each element and the irregularity for some stones due to the uneven quality of 
the point cloud colorization. Calcareous stones classification was largely impacted by 
the segmentation inaccuracy within certain zones that led to over-segmentation and 
thus incorrect labels due to shape irregularity. These influential factors are discussed 
in Section 5.5. 

 
Figure 54. Ontology-based classification of the South-South-West façade of the castle of 

Jehay. From left to right: the façade studied; the result of the segmentation (stones only); the 
result of the full segmentation; the result of the classification for quasi-planar objects of 

interest. 

It is interesting to note that the DSAE ontology can be further used for 
distinguishing wide woodworking openings from smaller ones based on Area (or 
Volume) properties, and their geometric regularity. However, their label is 
considered weak for archaeological purposes, and extending the ontology as in 
Section 5.5 would provide a better automatic characterization for archaeological 
analysis. 

The established data infrastructure gravitate around a client-server protocol 
that allows maximum flexibility and extensibility in regard to the 4 prerequisites of 
digital archaeology as defined in [173,174]. The platform can scale up to multiple 
simultaneous connexions and handles multi-source datasets. Every client that 
connects to the server as in Figure 55 benefits of functionalities from both the 
ontology reasoner and SQL statements (e.g., in Section 5.4).  

The implementation was made using PostgreSQL DBMS enhanced with 
plugins (PostGIS and pgPointCloud). The software Protégé alongside the 
programming toolkit JENA (Java) was also used to create and link ontologies. 
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Figure 55. Server-side data management system. Point clouds go through different 

processing steps regarding Section 5.3, and point groups based on the definition of objects 
regarding domain knowledge are constituted and populate the SPC database. 

As for the client-side, it was constructed to be as open and accessible as 
possible. As such, the World Wide Web is a democratized way to share and exchange 
information. It constitutes a long-term means to collaborate, and is independent of 
the location which is very important considering the need to be able on site to work 
with digital copies. Indeed, an application accessible anywhere and by multiple users 
at the same time is key for an archaeological 3D platform. Thus, we implemented the 
application in WebGL, a JavaScript API for rendering 3D graphics within any 
compatible web browser. We used Three.js, a cross-browser JavaScript library which 
uses the WebGL framework and enhances it. By a simple interaction with the GUI, 
the users can access and share a common viewpoint result of a semantic query. 
Figure 56 presents the optimal viewpoint for two classes of tesserae similarly to 
[177]. 

 
Figure 56. Query result in the WebGL prototype of the optimal viewpoint for faience pieces 

and gold tesserae in an extracted zone through SQL query. 
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The complete workflow therefore us allows to (1) pre-process multi-
sensory point cloud data, (2) compute features of interest, segment and classify the 
point cloud according to domain knowledge formalized in ontologies; (3) structure 
the data in a server-side SPC point cloud 3D GIS; (4) disseminate the information 
through a client-side app built upon WebGL with a specific visual processing engine 
to provide optimal viewpoints from queries. 

5.5  DISCUSSION 

The democratization of TLS and dense-image matching in archaeological 
workflows makes them a preferred way to record spatial information. Point clouds 
are very interesting for their objectivity and flexibility in interpretation processes. If 
the acquisition is complete, they transcript every visual element that was observed 
on the field. However, other components that can arise to our other senses such as 
mechano-reception (touching, hearing) or chemo-reception (taste, smell) are not 
captured by these remote sensors. However, their integration and link to the point 
clouds can be important as they constitute another source for better comprehension 
of the observed subject. Sensors that can capture such information as objectively as 
possible would be another step toward a possible better acquisition automatization. 
Today, archaeologists rely mostly on field-work to extract necessary information 
from human senses, eventually with the use of other sensors to detect additional 
patterns (e.g., x-fluorescent characterization in Germigny-Des-Prés). Exploring 
combination of multisensory surveys with sensor-level data fusion provides a great 
opportunity for further research and to keep a record of a more complete context. 
Indeed, archaeological studies deal with more and more information including 
archaeological observations but also data coming from other sciences (e.g., geology, 
chemistry, physics, etc.) and all these must be organized and considered together for 
an optimal understanding of the site. To avoid loss of information, recording of the 
fact and interpretation must be integrated in the same process [183] and specific 
tools should be investigated. 

Regarding spatial information, 3D point clouds constitute a very exhaustive 
source for further archaeological investigations. However, their lack of integration in 
workflows narrows the possibilities and interpretation work. We identified their 
main weakness to propose better handling and combinatory potential between 
different information sources: how to coherently aggregate semantics, spatial (and 
temporal information in a later stage). With respect to the number of observations 
(points), autonomous processing is very important. When dealing with thousands of 
archaeological objects of interest (composed of millions of points) in a scene 
(composed of billions of points), manually segmenting and classifying would be a 
very time consuming and an error prone process. In this paper, we presented an 
effective approach to automate tesserae recognition from terrestrial laser scanning 
data and dense image-matching. Knowledge-based feature constraints are defined to 
extract gold, silver, coloured glass and ceramic tesserae from a hybrid point cloud. 
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Then convex hull polygons are fitted to different segment separately. Knowledge is 
introduced again to generate assumptions for problematic parts. Finally, all 
polygons, both directly fitted and assumed, are combined to classify and inject 
semantics into the point cloud. Tests on three datasets showed automated 
classification procedures and promising results (Figure 57). 

 
Figure 57. Classification results over the different zones of the mosaics. 

The developed method tackles data quality challenges including 
heterogeneous density, surface roughness, curvature irregularities, and missing, 
erroneous data (due to reflective surfaces for example). We see that in zones where 
the colour quality is good and blur is low, classification results exceeds 95% 
accuracy. However, the method is very sensitive to 3D capture conditions and 
representativity such as colour, intensity, resolution and sharpness. Therefore, 
segmentation will fail when the input data does not allow correct feature extraction 
and abstraction-based connectivity estimation. More complete tesserae knowledge 
will help to better understand and detect complex shapes and patterns. While the 
classification results using domain knowledge are promising, the full point cloud 
labelling scheme could be enhanced by improving specifically the segmentation step. 
The data quality influences the final results. As illustrated, a challenge is brought 
about by varying densities and poor point-feature quality that can lead to over-
segmentation when predominant features rely on point-proximity/density 
criterions. While this is not an issue for dense point clouds that describe continuous 
surfaces, it can constitute a hindrance for heterogeneous density or uneven datasets. 
Equally, colour/intensity that create imprecise colorization/featuring leads to rough 
classification. A solution would be to move the colour-based segmentation to the 
DSAE ontology to provide new discriminative possibilities. Also, the combination of 
dense image matching with laser data and 3D distance map improves the outline 
generation in a later stage, and allows a better shape estimation (Figure 58). Yet, an 
efficient registration is mandatory for accurate results. To improve the classification 
results, the segmentation can be enhanced using a watershed algorithm as well as 
obtaining higher representativity colour attribute for example. These are research 
directions that will be investigated. Also, to improve the robustness of the 
segmentation, a region-growing from a seed point located at every centroid of each 
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detected connected element potentially provides a solution to under-segmentation, 
and investigations are necessary in this direction. 

 
Figure 58. Classification and semantization of dark coloured glass. 

The constituted ontology provides a reasoning engine based on available 
information that can be further enhanced to integrate new triple stores. As such, an 
acquisition campaign using a portable X-Ray Fluorescent device was carried out to 
quantify the relative quantity of chemical component within some tesserae. 
Integrating this semantic information could provide new reasoning capabilities such 
as detecting every gold tesserae that contain a quantity X of Plumb.  

The method will also be refined and extended to the full point cloud by 
implementing a machine learning framework using obtained labelled data as 
training data. First results are encouraging using supervised classification [241], and 
other approaches such as reinforcement learning will be investigated for they high 
reasoning potential and complementarity to ontologies. However, the computer 
memory-demand of point clouds may impose a link to 2D projective raster’s and to 
leverage existing training datasets (e.g., DeepNet). 

The data structure relies on PostgreSQL RDBMS while indirectly integrating 
ontology reasoning results. It allows specific queries over the classified point cloud 
to extract spatial, semantic or a combination of both information. The blend of 
SPARQL and SQL allows us to combine efficiently the strength of both the relational 
database structuration and block-wise storage capabilities with the powerful 
reasoning proficiencies provided by ontologies. Different queries are therefore 
available, which are big leap forward regarding point cloud processing for 
archaeology (e.g., in Table 7). 
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Table 23. Example of queries over the point cloud. 

Language RDF Triple Store Effect 

SPARQL 

  PREFIX rdf:<http://www.w3.org/1999/02/22-

rdf-syntax-ns#> 

  PREFIX npt: 

<http://www.geo.ulg.ac.be/nyspoux/> 

SELECT ?ind 

    WHERE { 

    ?ind rdf:type npt:AltoMedievalTessera 

} ORDER BY ?ind 

Return all alto-

medieval tesserae 

(regarding initial data 

input) 

SQL 

SELECT name, area FROM worldObject WHERE 

ST_3Dintersects(geomWo::geometry, 

polygonZ::geometry); 

Return all tesserae 

which are comprised 

in the region defined 

by a selection polygon 

and gives their area 

SPARQL 

& SQL 

SELECT geomWo FROM worldObject WHERE 

ST_3Dintersects(geomWo::geometry, 

polygon2Z::geometry) AND area > 0,0001;  

PREFIX rdf: <http://www.w3.org/1999/02/22-

rdf-syntax-ns#> 

PREFIX npt: <http://www.geo.ulg.ac.be/ 

nyspoux/> 

SELECT ?ind 

    WHERE { 

    ?ind rdf:type npt: XIXCentTessera 

} ORDER BY ?ind 

Return all renovated 

tesserae in the region 

2 where the area is 

superior to 1 cm² 

However, while the temporal integration was inferred, only static intervals 
and fixed point in time were treated. Better integration such as continuous data or 
the storage and reasoning over datasets covering one location at different time 
intervals has yet to be further investigated. Indeed, new descriptors emerging from 
change detection could provide new insights and possibilities for cultural heritage 
conservation. 

The proposed methodology (described in Section 5.3) was as general as 
possible to be extended to other use cases, at the object and local scales. It provides 
a potential solution for bringing intelligence to spatial data, specifically point clouds 
as seen in [108]. For example, we tested a point cloud from dense-image matching 
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captured in Denmark (Ny-Calsberg Museum) and processed using Bentley 
ContextCapture (Figure 59). It constitutes an interesting object scale dataset where 
the interest lies in deciphering the hieroglyphs.  

 
Figure 59. 3D point cloud of the statue of the Egyptian priest Ahmose and his mother, Baket-

re. Diorite. C.1490–1400 BC. 18th Dynasty. New Empire. Ny Carlsberg Glyptotek Museum. 
Copenhagen. Denmark. From left to right: 3D point cloud; feature extraction and 

segmentation; 3D visualization. 

The methodology was applied, and each hieroglyph was successfully 
detected independently. As the spatial context is conserved, we can locate the 
relative position of each hieroglyph regarding the others, and using a lexicon or a 
structured ancient hieroglyph ontology, each sign could be detected by shape 
matching (e.g., RANSAC), and a reading order extracted as in [242]. Thus, the 
methodology is suitable to reason from information extraction, and possibilities are 
very encouraging. Deepening the classification through well-established ontologies 
such as CIDOC-CRMba as illustrated in Section 5.4 is possible, and the extension to 
other use cases requires us to identify specific specializations and the level of detail 
within the tree depth. If we consider the Renaissance façade of the castle of Jehay, 
the CIDOC-CRM ontology as well as the CIDOC-CRMba and the CIDOC-CRMgeo add 
flexibility for moving deduction capabilities from the analytic part to the ontology. 
This is very interesting as it maximizes the DSAE reasoning capabilities instead of 
determining analytically discriminative features (such as bounding-box “is 
contained in” relationship from coordinates). As an example, the classification of the 
façade can be related to the specialization levels from B1 to B5 of the CIDOC-CRMba, 
and directly plugged as in Figure 53. Then, specifically looking at full limestone bay 
frames (same as B5 Stratigraphic Building Unit), an element that is contained within 
a limestone bay frame is classified as an empty section regarding Figure 54. The 
topological relations are introduced with the use of the well-known GeoSPARQL 
ontology to allow the detection of openings based on a AP12 “contains” relationship. 



 

158 

 
Figure 60. CIDOC-CRM ontology for the detection of objects of interest: calcareous stones and 

openings. Considering the castle of Jehay (B1), it has a building section (BP1) being the 
studied façade (B2), composed of different elements such as calcareous stones (B3), 

embrasures (B3) and openings (B4). 

Therefore, by integrating attributes such as Color and ProjectedArea of the 
different elements (as well as topological “is Within” test), the ontology can be used 
for reasoning. Based on general axioms, it semantically recognises building parts of 
a façade as in Table 8. 

Table 24. Classification of elements based on numerical attributes and topological relations. 

Language Equivalent To Definition Effect 

OWL 

(Protégé) 

(hasProperty some ColorLimestone) 

 and (hasProperty some NonReflective) 

 and (CP some xsd:double[<= “4.0E-

4“^^xsd:double]) 

 and (CS some xsd:double[>= 

“1.05”^^xsd:double, <= “9.0”^^xsd:double]) 

 and (ProjectedArea some xsd:double[>= 

“0.05”^^xsd:double, <= “0.4”^^xsd:double]) 

Defines an element as 

a BayFrame 

OWL 

(Protégé) 

(not (hasProperty some ColorLimestone)) 

 and (sfWithin some BayFrame)  

and (BoundingBox some xsd:double[>= 

“2.9”^^xsd:double, <= “3.5”^^xsd:double]) 

Defines an element as 

a DoorSection 
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It is interesting to note that further reasoning is made possible due to 
extended knowledge over Renaissance-style mullioned windows. Indeed, double 
mullioned openings are a complex architectural element present over this façade. 
They are 2 mullioned openings where the separation by stones is inexistent. Each 
can be described regarding CIDOC CRMba as: 1 frame (B5) and 6 openings (B4 Empty 
morphological Building Section). Thus, an extended ontology can recognize double 
mullioned windows and a reason such as the one presented in [243] would provide 
extended automatization. 

The final step for the visualization and presentation of the results is to share 
and distribute the information to other users and relies on virtual environments with 
specific interaction. The perception in 3D spaces is a dynamic phenomenon and 
concerns firstly behaviours and effects [244]. Data visualization is important to 
explore the data, to obtain some idea of what they contain, and therefore, to develop 
some intuitions about how to go about solving a problem from that data, determining 
what features are important and what kinds of data are involved. Visualization is also 
important when looking at the output of data science systems: data summarization 
for creating useful exploratory statistics, essential to understanding what was 
collected and observed. Although used before for tackling models and algorithms to 
avoid missing crucial information, data visualization is important for translating 
what might be interpretable only to a specialist for a general audience. In the context 
of point cloud, semantics and domain can highly influence the type of rendering used 
to directly transmit the correct information in a correct way to the end user. New 
ways of interacting with the data—Virtual reality, augmented reality, real time 
exploration and collaboration, holograms—are redefining possible interactions and 
exploration. [245] list different surface representations that can be used to represent 
and use a point cloud, including parametric modelling, implicit and simplicial 
representation, approximated and interpolated surfaces. The time-consuming task 
of accurate 3D surface reconstruction from point cloud requires many steps of pre-
processing, topology determination, triangular mesh generation, post-processing 
and assessing. For example, [246] propose two simplification algorithms for LoD 
generation by decimating and simplifying meshes, thus reducing accuracy and 
quality. The development of an Internet browser-based solution allows maximum 
flexibility regarding theses identified problems, including data indexation vis-à-vis 
[61] to provide streaming capabilities independently of the size of the dataset. 

Based on the algorithm developed by [239], we manage the 3D viewpoint so 
as to determine an optimal position and orientation of the camera for the 
visualisation of three kinds of tesserae distinguished by their material: faience, gold 
and silver. Through the previous steps of recognition and semantization described, 
we are now able to exploit the semantically rich point cloud data structure [117] to 
visualise efficiently the different sorts of tesserae. To achieve this, we performed a 
pre-processing step, totally transparent to users, in which we compute the optimal 
camera positions on a 3D COLLADA model of the mosaic which is constituted of the 
minimum convex hull of each tesserae information stored in the database. This 
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technical implementation will be enhanced to enable more direct integration of the 
geometry generalizations from the database. The algorithm looks at the pixels of the 
computational display which avoids the under-object recognition phenomenon. It 
also allows us to directly work on the final rendering of the 3D model which already 
integrates the use of an algorithm to process hidden faces. Finally, it can be used on 
any kind of 3D data structure (vector, raster or point cloud). It is worth mentioning 
that additional viewpoints could be computed which depends on the initial query. 
For instance, we can calculate multiple optimal camera positions for one specific sort 
of tesserae, depending on a needed surface, distance to rotation center, density 
estimate, etc. The latest could be particularly interesting for the golden tesserae since 
they are quite scattered in space. Furthermore, we can also investigate the impact of 
the statistical parameter used when two viewpoints present the same number of 
objects (maximum, average, etc.). 

To integrate the semantically rich point cloud and the viewpoint 
management of queried tesserae, we developed web software using jQuery, Three.js, 
Potree (an Open Source JavaScript library for point cloud rendering) and tween.js. 
The platform includes a tool to directly allow semantic extraction and visualisation 
of pertinent information for the end users. It enables efficient information relay 
between actors. The web application is accessible on any HTML5-compatible 
browser. It enables real time point cloud exploration of the mosaics in the Oratory of 
Germigny-des-Prés, and emphasises the ease of use as well as performances. 
However, the integration of a natural language processor would allow us to extend 
the possibilities for users to formulate queries that are translated into SQL and 
SPARQL analogues.  

5.6  CONCLUSIONS 

In this paper, we first reviewed the state of the art in digital archaeology. We 
pointed out gaps in the integration of spatial information with semantic components 
and the limited management of 3D point clouds within 3D GIS. The recording and 
processing of 3D multi-source complex data were addressed, as well as their 
management, conservation, visualization and presentation for different users. In this 
paper, we propose a new solution to integrate archaeological knowledge within 
point cloud processing workflows. Specifically, we decompose point clouds 
regarding available features and estimated geometric properties that generate 
ontologies to classify and reason based on information extraction. We developed a 
data-driven ontology for point cloud analysis to facilitate interoperability to other 
formal ontologies such as the CIDOC-CRM, and applied the workflow over different 
point clouds. Quasi-planar objects (doors, windows, tesserae, calcareous stones, 
hieroglyphs) were successfully detected, and an HTML-5 cross-platform web 
application was created to facilitate the knowledge dissemination such as ancient 
mosaic located in the oratory of Germigny-des-Prés. Then, we extracted the 
necessary requested information from the semantically rich point cloud data to 
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efficiently visualise user’s request based on computed optimal camera positions and 
orientations that maximise the visibility of requested objects (e.g. tesserae). Then, 
the optimal viewpoints are dynamically rendered to users through the platform on 
which interactions can grow. 
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Point Cloud voxelisation of Raster Digital Elevation Model from Lidar data, Canada. 
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CHAPTER’S PREFACE  

 

The previous chapters 4 and 5  dealt with automatic segmentation and 
domain-related object recognition. All the extracted knowledge is then structured 
within the SPCI along point data. In this chapter 6, we provide a way to leverage such 
a structure for the tasks of automated reasoning, specifically 3D part-modelling. As 
such, we target the language and query processor module as well as the reasoner 
module as illustrated in Figure 61. 

 
Figure 61. Chapter 6: The Smart Point Cloud reasoning possibilities. 

In this chapter, we start with an indoor classified point cloud previously processed 
(details presented in Chapter 4), and we show a domain-related part segmentation 
to refine the object toward the application at hand. On top, the reasoner permits to 
automatically extract different 3D representations mode, which can be useful for 
interoperable workflow and direct connexion to domains such as BIM and asset 
management.  
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Based on Article [5] 

3D Point Cloud Semantic Modelling: Integrated 

Framework for Indoor Spaces and Furniture  

Abstract: 3D models derived from point clouds are useful in various shapes 
to optimize the trade-off between precision and geometric complexity. They are 
defined at different granularity levels according to each indoor situation. In this 
article, we present an integrated 3D semantic reconstruction framework that 
leverages segmented point cloud data and domain ontologies. Our approach follows 
a part-to-whole conception which models a point cloud in parametric elements 
usable per instance and aggregated to obtain a global 3D model. We first extract 
analytic features, object relationships and contextual information to permit better 
object characterization. Then, we propose a multi-representation modelling 
mechanism augmented by automatic recognition and fitting from the 3D library 
ModelNet10 to provide the best candidates for several 3D scans of furniture. Finally, 
we combine every element to obtain a consistent indoor hybrid 3D model. The 
method allows a wide range of applications from interior navigation to virtual stores. 

Keywords: 3D modelling; 3D point cloud; ModelNet10; PCA; Point Cloud Database; 
cognition systems; feature extraction; procedural modelling; semantic 
segmentation; voxel 
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6.1  INTRODUCTION 

3D point cloud geometric depiction is addressed through many 3D 
modelling techniques to best represent underlying shapes. This need is driven by 
applications in numerous industries16 for tasks such as structural deformation 
scenarios [247,248], quality and progress control [249] or even for asset creation in 
the entertainment business [250,251] . To extend this range of applications, the data 
mining and processing research communities focus on adding additional information 
to the 3D model through semantic descriptors [252]. This in turn leads to more 
advanced uses of 3D virtual data of which many indoor scenario benefits. For 
instance, we employ 3D semantic models to plan/monitor emergency routes [253–
257], for serious gaming [258,259], 3D waves propagation simulations [260–263], 
localization of safety-relevant features [113], virtual museums [264] or product 
lifecycle management [265]. More recently, the field of robotics demonstrated a 
great interest in these enhanced 3D geometries for their creation [65,266], scan 
planning [267] or for 3D autonomous indoor navigation [268–270] related to 
transportation and mobility problematics [271]. But bridging the gap between point 
cloud data, 3D models and semantic concepts is a very complicated task which 
usually requires a good knowledge of the specific applicative domain. 

Our contribution is an attempt to narrow this gap by leveraging formalized 
knowledge and expert systems [272] based on point clouds. We want to take 
advantage of computer reasoning over semantic representations of our 
environment. However, this demands very challenging knowledge processing due to 
the heterogeneity of application domains and various 3D representations.  

Our approach addresses Knowledge Extraction (KE), Knowledge Integration 
(KI) and Knowledge Representation (KR) [2] to better assimilate point cloud data 
with various quality [70]. Indeed, most software and tools existing in our 
computerized environment were developed to work primarily with 3D models. The 
landscape in standards, practices and usages is mostly established for these 
representations. This motivates a flexible and modular infrastructure of which point 
clouds can be the starting point [4,54,108,117] to allow interoperable and two ways 
exchanges (from and to the point cloud enrichment frameworks). If enhanced with 
additional information (geometry/topology/semantics), they could be used for 
deriving more representative 3D shapes and provide a higher compatibility with 3D 
modelling workflows. As such, we need new methods that can directly derive 
application-driven 3D semantic representations while conserving interoperability 

                                                                    

16 Main industries object of 
this study includes: Architecture, 
Construction, Engineering, and 
Facility Management (AEC/FM); Risk 
Assessment and Emergency planning; 

Simulations; Marketing; 
Entertainment; Robotics; 
Transportation and mobility 
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over centralized semantics. This hypothesis considers that point clouds are 
semantically-rich17 and efficiently organized for various processing tasks. 

While the present paper is based on the Smart Point Cloud (SPC) 
Infrastructure [108], it can be replicated over any segmented dataset that benefits 
from different sets of attribute information. The main idea is that based on a 3D point 
cloud describing an indoor environment, we can extract 3D models of each object 
instance regarding an application ontology and combine them to generate tailored 
3D representations suited for specific indoor scenarios. To provide a multi-LoD18 
framework for different utilisations, we support the modelling process by a 
characterization mechanism that can deepen the geometric analysis of shapes. We 
study the structuration and reasoning aptitude of ontologies to pull contextual 
information enhancing the modelling fit. Thus, we explore the possibility to leverage 
formalized knowledge to recreate occluded area and infer non-existent geometry. 
Our approach is extended with a 3D shape-matching approach through data mining 
using the 3D library ModelNet10 [273]. The end goal of this contribution is to derive 
a comprehensive 3D model extended with semantic information. In this paper, we 
focus on indoor reconstructions and asset management. 

In the first part (Section 6.2), we review significant related work studying 
3D point cloud modelling approaches and several use cases on which they were 
successfully employed. Driven by this state of the art, we then present in Section 6.3 
our designed 3D reconstruction framework following a part-to-whole outline. We 
finally show the results (Section 6.4) looking at precisions and performances for 
different datasets. From a critical analysis, we provide the main findings, the 
limitations and the perspectives (Section 6.5) that the approach brings to 3D point 
cloud modelling of building’s interior.  

6.2  RELATED WORK  

In this section, we briefly review most recent methods for point cloud 
modelling. We organize the related works in (6.2.1) recent methods for geometric 
reconstruction from indoor point clouds; (6.2.2) instance-based recognition, 
featuring and model fitting; (6.2.3) knowledge integration for object relationship 
modelling. 

                                                                    

17 A point cloud is considered 
semantically-rich if it contains 
semantics linking group of points 
together such as segment or class 
information 

18 LoD stands for Level of 
Detail. In this paper, it is considered as 

a set of discrete 3D shape 
representations of a geometry with a 
narrowed precision and is not 
employed regarding an establish 
formalism.  
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6.2.1 Methods for 3D point cloud geometric modelling 

3D reconstruction from indoor point cloud data gravitates around different 
approaches for automatic modeling with different granularities. The chosen method 
is often guided by the application needs in term of precision, resolution, complexity 
and completeness. For example, semantic model utilizations [274] include creating 
as-built models for the monitoring of construction processes whereas visually-
appealing virtual models of historical sites enable immersive experiences. While the 
latter emphasize high quality visuals, semantic applications often rely on 
approximate reconstructions of the global scene which conveys the object 
arrangement. Both semantic and virtual indoor 3D models can be extended using 
precise metric information to provide key information for public buildings or to 
assist indoor navigation. Several work address these different characteristics 
through shape representation which has been extensively studied in the last century. 
Generally, we look for perceptually important shape features on either the shape 
boundary information or the boundary plus interior content as noted in [275].  

We can primarily distinguish explicit versus implicit shape representations. 
Explicit representations translate the shape of an object (e.g. a triangle mesh), while 
implicit representations indirectly encode the shape using a set of features 
(histograms, normal, curvature …). Explicit representations are well suited for 
modeling 3D objects, whereas implicit representations are most often used for 3D 
object recognition and classification [276]. In most reviews, point cloud modelling 
approaches are categorized regarding the type of representation, the type of input 
data or the type of algorithms used. In this section we will study the algorithms 
depending on the context and the available information similarly to F. Remondino in 
[277]. 

3D reconstructions that make solely use of the spatial attributes within point 
cloud data are found in many works. Delaunay-based methods are quite common in 
this area, and we invite the reader to study [278] for a comprehensive survey of these 
methods. These approaches place rather strong requirements on the data and are 
impractical for scanned real-world scenes containing significant imperfections. Also, 
it is often necessary to optimize the polycount (total number of triangular polygons 
it takes to draw the model in 3D space) for memory efficiency. As such, quad meshing 
[279] can lighten the representation and smoothness. A practical example of 
Boundary-Representation (B-Rep) can be found in Valero et al. [280] for the 
reconstruction of walls. While these are interesting for the low input requirements, 
we investigate techniques more fitted toward dealing with challenging artifacts such 
as occlusion. Berger et al. [37,281] propose an exhaustive state of the art in surface 
reconstruction from point clouds. They reviewed thirty-two point cloud modelling 
methods by comparing their fit to noisy data, missing data, non-uniform sampling, 
outliers, but also their requirements in term of input features (normal, RGB data, 
scan data …) and shape class (CAD, indoor, primitives, architectural …). While 
surface smoothness approaches such as tangent planes, Poisson and Graph-Cut [37] 
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can quickly produce a mesh, they often lack robustness to occlusion and 
incompletion. Sweeping models, primitive instancing, Whitney regular stratification 
or Morse decompositions [282] may be used for applications in robot motion 
planning and generally provide a higher tolerance for missing data. 

By looking at the flexibility to generalize, the storage facility and applications 
scenarios, primitives are good candidates for indoor modelling. Indeed, as noticed by 
the authors in [283], parametric forms are “mathematically complete, easily 
sampled, facilitate design, can be used to represent complex object geometries and 
can be used to generate realistic views”. They describe a shape using a model with a 
small number of parameters (e.g. a cylinder may be represented by its radius, its axis, 
and the start and end points). They can also be represented non-parametrically or 
converted through the process of tessellation. This step is used in polygon-based 
rendering, where objects are broken down from abstract primitive representations 
to meshes. As noted by authors in [284], indoor environments are often composed of 
basic elements, such as walls, doors, windows, furniture (chairs, tables, desks, lamps, 
computers, cabinets) which come from a small number of prototypes and repeat 
many times. Such building components are generally formed of rigid parts whose 
geometries are locally simple19. An example is given in the work of Budroni and 
Boehm [285] where authors model walls by fitting CAD primitives. Furthermore, 
although variability and articulation are central (a door swings, a chair is moveable 
or its base rotates), such changeability is often limited and low dimensional. Thus, 
simple shapes are extensively used in the first steps of as-built modelling due to their 
compactness and the low number of parameters that allows efficient fitting methods 
[286]. For more complex shapes, explicit parametric representations are still 
available (e.g. Bézier curves, B-spline, NURBS) but they are mostly used as design 
tools. Since their control points cannot easily be inferred from point cloud data, these 
representations are rarely used in shape analysis. An example of parametric 
collection is given by Lee et al. [287]. They propose a skeleton-based 3D 
reconstruction of as-built pipelines from laserscan data. The approach allows a full 
automated generation of as-built pipelines composed of straight cylinders, elbows, 
and tee pipes directly fitted. While the method provides good results, its specificity 
restrains a possible generalization. Fayolle and Pasko [288] highlight the interaction 
potential given by parametrized objects within indoor environments. Indeed, 
through a clever binary (CSG20) or n-ary (FRep) construction tree structure, they 
store object-relations such that the user could modify individual parts impacting the 
entire logic of the object construction including its topology. Such a parametrized 
model reconstruction is required in many fields such as mechanical engineering or 
computer animation. Other relevant works highlight the papers of Fathi et al. [274] 

                                                                    

19 they consist of surfaces 
that are well approximated by planar, 

cylindrical, conical and spherical 
shapes. 

20 Constructive Solid Geometry 
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for civil infrastructure reconstruction or Adan and Huber [289] which provides a 3D 
reconstruction methodology (wall detection, occlusion labelling, opening detection, 
occlusion reconstruction) of interior wall surfaces which is robust to occlusion and 
clutter. Both results are a primitive-based assembly based on these surfaces. 

While parametric assemblage gives a lot of flexibility, for some cases such as 
highly complex shapes, there is a need of low geometric modelling deviations. In such 
scenarios, non-parametric representations such as polygonal meshes are employed 
to better fit underlying data. However, the lack of compactness of these 
representations limits their use especially when dealing with large point clouds. 
Hence, using a combination of both representations is advisable when a global 
representation is required. In such approaches, parametric representations are 
usually used as local representations and decomposed into parts (e.g using CSG to 
represent each part with one or more geometric primitives). In contrast, triangle 
meshes are flexible enough to be used as global representations, since they can 
describe free-form objects in their entirety [276]. For example, Stamos et al. [290] 
present such a 3D modeling method on a church environment by combining planar 
segments and mesh elements. Using a different approach, Xiao and Furukawa [264] 
propose the “Inverse CSG” algorithm to produce compact and regularized 3D models. 
A building is sliced and for each slice different features (free space constraint, line 
extraction, iterative 2D CSG model reconstruction) are extracted, then stacked and 
textured to obtain a 3D model of walls. The method is interesting for its approach 
leveraging 2D features and its noise robustness, but it will not process complex 
structures, furniture or non-linear walls. Other hybrid approaches introduced 
knowledge within workflows to try to overcome main challenges, especially missing 
data. A significant work was brought by Lafarge et al. [291] which develops a hybrid 
modeling process where regular elements are represented by 3D primitives whereas 
irregular structures are described by mesh-based surfaces. These two different types 
of 3D representation interact through a non-convex energy minimization problem 
described in [292]. The approach successfully employed for large outdoor 
environments shows the benefits of leveraging semantics for better point cloud 
fitting. The authors in [293] present a reverse engineering workflow based on a 
hybrid modeling approach also leveraging knowledge. They propose a linear 
modelling approach through cross-section of the object by fitting splines to the data 
and then sweeping the cross-section along a trajectory to form the object model. To 
realize such operation, they first extracted architectural knowledge based on the 
analysis of architectural treaties to be used for guiding the modelling process. An 
example illustrated in [72] provide a method to reconstruct the boundary of 
buildings by extracting walls, doors, roofs and windows from façade and roofs point 
clouds. The authors use convex or concave polygons adjusted to different features 
separately. Interestingly, we note that the author use knowledge to generate 
assumptions for the occluded parts. Finally, all polygons are combined to generate a 
polyhedron model of a building. The approach is interesting for its whole-to-part 
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consideration which leverage knowledge for optimizing the ratio 
approximation/compactness. 

While triangulation and hybrid modelling are successfully used for various 
indoor scenarios, we notice that the most prominent module is the parametric 
modelling method. Its fit to both B-Rep and volumetric modelling accompanied by its 
high flexibility in representativity at different granularity levels will thus be further 
investigated in Section 6.3. Also, we notice that in some works, the use of knowledge 
permits to better describe shapes when used within the modelling workflow. We will 
thus investigate the literature for KI and KR in Section 6.2.3. 

6.2.2 Instance-based object recognition and model fitting 

Man-made objects populating indoor scenes often have low-degree of 
freedom and are arrangements of simple primitives. Beneath representation and 
compression efficiency [290–292], there is a real need to model independently 
different objects of interest that can in turn host different relationship information. 
The process of instance-based object recognition is required for identifying objects 
with a known shape, or objects that are repeated throughout a facility. The 
predominance of primitive forms in these environments gives specific shape 
descriptors a major control over the implicit representation. These can be 
categorized as geometric feature descriptors, and symmetric feature descriptors. In 
many works we find that planar detection plays a predominant role for the detection 
of elements in KE, specifically segmentation workflow.  

Geometric feature descriptors: As such, predominant algorithms for 
geometric featuring in scientific literature are RANSAC [140,147–149,221,226,294–
296], Sweeping [297], Hough [224,298–300] and PCA [121,152,226,301–304]. The 
authors [226,305] provide a robust PCA approach for plane fitting. The paper of 
Sanchez [295] makes primarily use of RANSAC to detect most building interiors, that 
may be modeled as a collection of planes representing ceilings, floors, walls and 
staircases. Mura et al. [306] partitions an input 3D model into an appropriate number 
of separate rooms by detecting wall candidates then study the layout of possibility 
by projecting in a 2D space the scenarios. Arbeiter et al. [75] present promising 
descriptors, namely Radius-Based Surface Descriptor (RSD), Principal Curvatures 
(PC) and Fast Point Feature Histograms (FPFH). They demonstrate how they can be 
used to classify primitive local surfaces such as cylinders, edges or corners in point 
clouds. More recently, Xu et al. [307] provide a 3D reconstruction method for 
scaffolds from a photogrammetric point cloud of construction sites using mostly 
point repartitions in specific reference frames. Funkhouser et al. [308] also propose 
a matching approach based on shape distributions for 3 models. They pre-process 
through random sampling to produce a continuous probability distribution later 
used as a signature for each 3D shape. The key contribution of this approach is that 
it provides a framework within which arbitrary and possibly degenerate 3D models 
can be transformed into functions with natural parameterizations. This allows 
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simple function comparison methods to produce robust dissimilarity metrics and 
will be further investigated in this paper. 

We find that using other sources of features both from analytical workflow 
as well as domain knowledge can contribute heavily into better segmentation 
workflows or for guiding 3D modelling processes. 

Symmetry feature descriptors: Many shapes and geometrical models show 
symmetries: isometric transforms that leave the shape globally unchanged. If one 
wants to extract relationship graphs among primitives, symmetries can provide 
valuable shape description for part modelling. In the computer vision and computer 
graphics communities, symmetry has been identified as a reliable global knowledge 
source for 3D reconstruction. The review in [309] both at a global and local scale 
provide valuable insights on symmetry analysis. It highlights the ability of 
symmetries to extract features better describing furniture using a KR, specifically an 
ontology. In this paper, the extracted symmetric patches are treated as alphabets and 
combined with the transforms to construct an inverse-shape grammar [310]. The 
paper of Martinet et al. [311] provides an exhaustive review of accurate detection of 
symmetries in 3D Shapes. These are used for planar and rotational symmetries in 
Kovacs et al. [312] to define candidates symmetry planes for perfecting CAD models 
in reverse engineering. The paper is very interesting for its ability to leverage 
knowledge about the sape symmetries. Adan et Huber [289] list façade 
reconstruction methods, mainly based on symmetry study and planar patches 
reconstitution and then proposes a method that can handle clutter and occluded 
areas. While it can achieve a partial indoor reconstruction of walls and openings, it 
necessitates the position and each scan which is treated independently by ray-
tracing. All these features play an important role for implicit geometric modelling, 
but also in shape matching methods. 

Feature-based shape matching: For example, symmetry descriptors are used 
to query a database for shape retrieval in [313]. The authors in [314] propose a 
model reconstruction by fitting from a library of established 3D parametric blocks or 
Nan et al. [315] make use of both geometric and symmetric descriptors to best fit 
candidates from a 3D database, including a deformable template fitting step. 
However, these methods often include a pre-segmentation step and post-registration 
phase, which highly condition the results, and constrain the methodology to perfect 
shapes without outliers or missing data. Following this direction, F. Bosché [316] 
proposes a method using CAD model fitting for dimensional compliance control in 
construction. The approach is robust to noise, and includes compliance checks of the 
CAD projects with respect to established tolerances for validating the current state 
of construction. While the approach permits significant automation, it requires a 
coarse registration step to be performed by manually defining pair points in both 
datasets. To automate the registration of models with candidates, the Iterative 
Closest Point (ICP) method [317] is often used for fine registration, with invariant 
features in [318], based on least squares 3D surface and curve matching [319], non-
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linear least squares for primitive fitting [320] or using an energy minimization in 
graph [321]. The recent works of Xu et al. in [322] and [323] present a global 
framework where co-segmented shapes are deformed by scaling corresponding 
parts in the source and target models to fit a point cloud in a constrained manner 
using non-rigid ICP and deformation energy minimization. These works are 
foundations and provide research directions for recovering a set of locally fitted 
primitives with their mutual relations. 

We have seen that knowledge extraction for indoor scenario is mostly driven 
by three categories of features namely geometric, symmetric and for shape matching. 
On top, as noticed by [284], object-relationships among the basic objects of these 
scenes satisfy strong priors (e.g. a chair stands on the floor, a monitor rests on the 
table) which motivates the inclusion of knowledge through KI for a better scene 
understanding and description.  

6.2.3 Knowledge integration (KI) for object-relationship modelling 

3D indoor environments demand to be enriched with semantics to be used 
in applications depicted in Section 6.1. It led to the creation of standards such as 
LADM [324], IndoorGML [325] or IFC (Industry Foundation Class) [326], that were 
motivated by utilizations in the AEC industry, navigation systems or land 
administration. Indeed, the different models can deal with semantically annotated 
3D spaces and can operate with abstract spaces, subdivision views and have a notion 
of geometry, topology maintaining relationship between objects. The choice toward 
one model or another is mainly guided by the usage and its integration within one 
community. Therefore, semantically rich 3D models provide a great way to extend 
the field of application and stresses new ways to extract knowledge a priori for a fully 
autonomous Cognitive Decision System (CDS). The CDS can in turn opens new 
solutions for industries listed in the Global Industry Classification Standard [327]. 

In their work, Tang et al. [276] separate this process in geometric modelling, 
object recognition, and object relationship modelling. Whereas a CAD model would 
represent a wall as a set of independent planar surfaces, a BIM model would 
represent the wall as a single, volumetric object with multiple surfaces, as well as 
adjacency relationships between the wall and other entities in the model, the 
identification of the object as a wall, and other relevant properties (material 
characteristics, cost ...). These includes topological relationships between 
components, and between components and spaces. Connectivity relationships 
indicate which objects are connected to one another and where they are connected. 
Additionally, containment relationships are used to describe the locations of 
components that are embedded within one another (e.g. a window embedded within 
a wall). 

Ochmann et al. [224] present an automatic reconstruction of parametric 
walls and opening from indoor point clouds. Their approach reconstructs walls as 
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entities with constraints to other entities, retaining wall relationships and 
deprecating the modification of one element onto the other. The authors of 
[81,267,328,329] extend the processes of parametric modelling of walls and 
openings for BIM modelling applications. More recently, the paper of Macher et al. 
[298] presents a semi-automatic approach for the 3D reconstruction of walls, slabs 
and openings from a point cloud of a multi-storey building, and provides a proof of 
concept of OBJ to IFC manual creation. While these approaches contributed to new 
possibilities for walls and slabs semantic modelling, the object-relationship is limited 
to topological relationships.  

The work of Fisher in [330] introduces domain knowledge of standard 
shapes and relationships into reverse engineering problems. They rightfully state 
that there are many constraints on feature relationships in manufactured objects and 
buildings which are investigated in this paper. Indeed, for a general workflow, one 
must provide a recovery process even when data is very noisy, sparse or incomplete 
through a general shape knowledge. Complete data acquisition (impossible in 
practice for some situations) through inference of occluded data permits the 
discovery of shape and position parameters that satisfy the knowledge-derived 
constraints. Formalizing knowledge would therefore be useful to apply known 
relationships when fitting point cloud data and get better shape parameter 
estimates. It can also be used to infer data about unseen features, which orients our 
work to consider ontologies. In this area, the work of Dietenbeck et al. [252] makes 
use of multi-layer ontologies for integrating domain knowledge in the process of 3D 
shape segmentation and annotation. While they provide only example and a manual 
approach over meshes, they describe an expert knowledge system for furniture at 
three conceptual layers, directly compatible with the three meta-models of the Smart 
Point Cloud Infrastructure introduced in [108] and extended in [2]. The first layer 
corresponds to the basic properties of any object, such as shapes and structures 
whereas the upper layers are specific to each application domain and describe the 
functionalities and possible configurations of the objects in this domain. By using 
domain knowledge, the authors perform searches amongst a set of possible objects 
while being able to suggest segmentation and annotation corrections to the user if 
an impossible configuration is reached. This work will be further investigated within 
our workflow. Using a different approach, Son and Kim [151] present a semantic as-
built 3D modeling pipeline to reconstruct structural elements of buildings based on 
local concavity and convexity. They provide different types of functional semantics 
and shapes with an interesting parameters calculation approach based on analytic 
feature and domain knowledge. These works are fundamental and greatly illustrate 
the added benefit of leveraging knowledge. 

KI and KR are an important part of any intelligent system. In this review we 
noticed that the use of ontologies provided an interesting addition to knowledge 
formalization and permits to better define object-relationships. Coupled with a KE 
approach treating geometric, symmetric and shape matching features, they could 
provide a solid foundation for procedural modelling based on a 3D point cloud. 
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Therefore, we develop a method (Section 6.3) inspired by these pertinent related 
works. 

6.3  MATERIALS AND METHODS 

In this section, we present a global framework for modelling pre-
segmented/classified indoor point cloud data. The approach is divided into four 
steps A, B, C, D (as illustrated in Figure 62) respectively described in the four sub-
sections 6.3.1, 6.3.2, 6.3.3 and 6.3.4. The methodology follows a part-to-whole design 
where each instance is treated separately before aggregation to reconstruct a 
semantically rich global 3D model.  

 

 
Figure 62. Global workflow for modelling indoor point cloud data. Our approach takes as an 
input semantically-rich point cloud21, and process it regarding knowledge-based processes. 

In the next sub-section (6.3.1), we describe how semantics are integrated 
within point cloud data and we provide details on the design of a multi-LoD ontology 
and its interactions (Figure 62: A). 

                                                                    

21 The data is extracted from the 
Smart Point Cloud Infrastructure 
which host several semantic 
information as well as a specific data 

structuration which makes point 
cloud handling and enrichment 
easier. 



 

180 

6.3.1 Knowledge-base structuration 

Indoor 3D point clouds that host semantic information such as segments and 
classes are the starting point of our methodology to generate semantic models, which 
give insight to the morphology and geometry of building’s interiors. For this purpose, 
we leverage the flexibility given by the Smart Point Cloud (SPC) Infrastructure [2] to 
consider point cloud data at different granularity levels (expressed in the Tower of 
Knowledge22 concept [331]). The SPC conceptual model [108] permits to integrate 
annotated 3D point clouds, can operate with abstract space definitions and can 
handle multiple geometric representation. Its structure handles datasets at three 
levels as illustrasted in Figure 63. 

 
(a) 

 
(b) 

 
(c) 

Figure 63. In red the handled geometry: (a) point level; (b) patch level; (c) object level. 

At the point level (lowest level) the geometry is sparse and defines the 
lowest possible geometric description. While this is convenient for point-based 
rendering [332] which can be enhanced through deep learning [333] leading to 
simpler and more efficient algorithms [334], geometric clustering covers 
applications identified in Section 6.1. At the patch level, subsets of points are grouped 
to form small spatial conglomerates. These are better handled in a Point Cloud 
Database Management System (PC-DBMS) using a block-scheme approach which 
gives additional hints on the spatial context. At the object level, patches are grouped 
together to answer the underlying segmentation or classification approach. These 
three geometric levels are management within the PC-DBMS module (Figure 64) and 
directly integrate semantics (segment, class, function …) and space (abstract, 
geometric …) information. While 3D modelling approaches solely based on spatial 
attributes can leverage both the SPC point and patch levels, using the additional 
information linked to the object level extend the range of shape representations, thus 
applications.  

Moreover, the SPC provides enough elasticity to centralize knowledge for 
decision-making scenarios. Its conception allows a mapping between domain 
specializations such as formalized IFC-inspired ontologies to provide additional 
reasoning possibilities. As a first step toward 3D point cloud modelling and to permit 
knowledge-based reasoning for indoor applications, we tailored the SPC Server-Side 

                                                                    

22 The Smart Point Cloud permits to 
reason solely spatially, semantically, 
but also includes functionality 

description and descriptors 
characterization, following the 4 
levels of the Tower of Knowledge. 



 

   181 

Infrastructure as in Figure 64 with an applicative context ontology (ACO) for efficient 
KE, KI and KR. 

 

 
Figure 64. The Smart Point Cloud [2] tailored Infrastructure for 3D modelling. 

In this infrastructure, we added a two-way mapping expert 3D modelling 
module (agent layer) to link 3D geometries to point data with semantic enrichment. 
The expert system consumes the semantically-rich point cloud data as well as the 
ACO and will be further described in Sections 6.3.2, 6.3.3 and 6.3.4. 

To achieve semantic injection, we construct a multi-LoD IFC-inspired 
ontology (see Supplementary Materials). It provides knowledge about the object 
shapes, knowledge about the identities of objects and knowledge about the 
relationships between objects. Integrated in the knowledge layer (Figure 64) of the 
SPC, this ACO is used to best describe the morphological features of indoor elements 
in an interoperable manner. This new knowledge-base is mainly used for refining the 
definition of objects within the SPC (Section 6.3.2), inferring modelling rules (Section 
6.3.2) and providing clear guidelines for object-relationship modelling through the 
reasoner module (Section 6.3.4). For example, if the considered point cloud dataset 
benefits of additional information handled by the SPC such as the “space” definition, 
the reasoner will permit higher characterization (e.g. if the object is within an “office 
room”, high chances that the chair is a “desk chair” with rolls). Moreover, the local 
topology available through the SPC provides additional information that is crucial 
regarding CSG-based modelling or for our object-relationship modelling approach 
(e.g. if a chair is topologically marked touching the floor, occlusion at its base can be 
treated accordingly). 

In a will to pool our ontology in the Web of Linked Data, each object concept, 
if it exists, is defined as an extension of the DBpedia knowledge base. Providing such 
a link is an important interoperable feature when it comes to an object that is 
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referred as a DBpedia resource (e.g. for a chair object, 
http://dbpedia.org/page/Chair.). The classes hierarchy as illustrated in Figure 65 is 
split in three main conceptual levels. 

 
Figure 65. Classes hierarchy in the ACO 

The level 0 is the first level of classified elements and defines properties 
established on point cloud features (shape, orientation ...). These features are stored 
in the knowledge base as datatype properties. Datatypes properties are relations 
pointing from entities to literals (characters string, numbers …). The values describe 
different bounding boxes characteristics: (length, width ...).  

The level 1 englobes Sub-Elements (SE) that are part of an Aggregated-
Element (AE), defined in level 2. All entities that are not described within this 
hierarchy are categorized as “Unclassified”. Modelling rules of higher definition 
levels restrict the lower levels inference through hierarchical constraints, similarly 
to [252]. These are strictly based on Sub-Elements, except for the topology relations 
between building parts and/or furniture.  

This consistency check permits the construction of complex definitions but 
maintains a modularity for interoperability purposes. Semantic definitions of pre-
labelled objects are extracted from the ACO ontology such as depicted in Figure 66. 
Input variables are nothing more than labels of the retrieved object capsuled into a 
JSON object part of the language processing module (Figure 64).  

Labels are then used to set SPARQL queries on a graph structure to query 
the ontology. 

 

http://dbpedia.org/page/Chair
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Figure 66. Framework for the extraction of an object definition from ACO to be readable by 

other modules of the SPC Infrastructure 

The ontology-based extraction of object’s definition is the reverse-process 
of classification. It is thus possible to extract mandatory elements of objects for 
reconstruction and to guide their modelling. As each level is independent, 
reconstruction can be made at different LoD considerations.  

Graph-mining is guided on relation types between elements of each level. 
E.g. a “chair” is composed of a chair back (BackrestPart) located somewhere above23 
a seat (oneSeat), and some ground transition parts (GroundTransitionPart) under it.  

Ontologies as XML-written files are well suited for hierarchical structure. A 
dedicated parser finally allows structuring the answer in a JSON-file and 
communicating with the object characterization step (Section 6.3.2). 

Listing 1 shows the results of querying ACO/SPC Ontology about the 
“KitchenChair” label. It is structured as a hierarchical tree of characteristics where 
each level is detailed by its sub-levels. In this tree, each line specifies a triple that 
refers to the object description (e.g. “hasNormale some PerpendicularOrientation” 
specify that the normal need to be perpendicular to the main orientation for this 
specific Sub-Element). 

 

 

                                                                    

23 This information is 
extracted from gravity-based 

topology analysis described in Section 
6.3.2 
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Listing 1 Kitchen Chair semantic definition extracted from the ACO 

Label queried: “KitchenChair” 

1. Detected element : http://www.geo.ulg.ac.be/nyspoux/SPC#KitchenChair 

2.   hasPart min 4 

http://www.geo.ulg.ac.be/nyspoux/SPC#GroundTransition 

3.       hasNormale some PerpendicularOrientation 

4.   hasIntersectionPerpendicular some 

http://www.geo.ulg.ac.be/nyspoux/SPC#FurniturePart 

5.       hasAverageHistogram maxExclusive 0.25 

6.   hasContext some 

http://www.geo.ulg.ac.be/nyspoux/SPC#ContextKitchen 

7.   hasPart some http://www.geo.ulg.ac.be/nyspoux/SPC#OneSeat 

8.       hasWidth maxInclusive 0.45 

9.       hasThickness maxInclusive 0.45 

10.       hasLength maxInclusive 0.45 

11.       hasNormale some MainOrientation 

12.   hasPart some http://www.geo.ulg.ac.be/nyspoux/SPC#BackrestPart 

13.       hasNormale some PerpendicularOrientation 

14.   hasIntersectionPerpendicular some 

http://www.geo.ulg.ac.be/nyspoux/SPC#SeatPart 

15.       hasNormale some MainOrientation 

16.       hasAverageHistogram minInclusive 0.75 

17.       hasFlatness maxExclusive 0.5 

18.       hasElongation minInclusive 0.5 

 

The reasoning module depends on the language processing module (Figure 
64). As the OWL formalism is a Description-Logic-based language, it allows logical 
consequence inferences from a set of stated axioms.  

We describe asserted facts in both the terminological box (TBox) and 
assertional box (ABox). TBox is constituted of classes definitions in the ACO ontology 
whereas individuals are populating the ABox. Because of editing rules and 
restrictions on class definitions, those boxes are inferred and constitute our 
structure for knowledge discovery on logical reasoning. 

Listing 2 provides a simple example of inference based on both TBox and 
ABox. While TBox rules define the conditions for classifying an object as a Wall, ABox 
specify that three objects exist. The first object is constituted of the two others as a 
collection and these two subparts are defined as WallSurfaces. 
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Listing 2 Simple example of inferences on TBox and ABox 

TBox rules and restrictions: 

1. :Wall owl:equivalentTo (hasPart min 2 :WallSurface) 

ABox population:  

1. :SubElement1 a :WallSurface 

2. :SubElement2 a :WallSurface 

3. :Object hasPart :Collection(:SubElement1 and :SubElement2) 

Inferences: 

1. :Object a :Wall 

Our approach was though for indoor point clouds, thus the ACO retain 
information for the following elements: beams, ceilings, floors, chairs, columns, 
doors, tables, walls and windows. These were primarily chosen due to existing 
workflows providing robust recognition. The elements are considered correctly 
categorized but it is not necessary to filter point cloud artefacts. In the next sub-
section (6.3.2) we present the second step (Figure 62: B) of our workflow which aim 
at generating modelling rules holding each element specificity. 

6.3.2 Instance-based characterization, feature extraction and 
description refinement 

While the SPC-integrated point cloud holds a minima class or segment 
information, these are not necessarily optimal regarding indoor applications. The 
ACO permits to deepen the classification of considered classes presented in Table 25 
through the Web of Linked Data. For each class, every element is extracted 
independently from the point cloud and considered for instance characterization. 

Table 25. Objects to be modelled from the S3-DIS point cloud dataset [133] highlighted in 
red, identified by a major primitive (Cuboid, Plane, or CSG model assembly) and a category 

being Normal-Element (NE), Sub-Element (SE) or Aggregated-Element (AE) 
Beam CeilingS Chair Column Door Table WallS Window 

        
Cuboid Plane CSG model Cuboid CSG model CSG model Plane Cuboid 

NE SE AE NE AE AE SE NE 

Let 𝑝𝑖  be a point in ℝ𝑠, with 𝑠 the number of dimensions. We have a point 
cloud 𝒫 = {𝑝𝑖}𝑖=1

𝑛  with 𝑛 the number of points in the point cloud. Let ℰ𝑖  be an element 
of 𝒫 identified by a label ℒ𝑖 , containing 𝑚 points from 𝒫. Let ℊ be a directed graph 
defined by a set 𝓋(ℊ) of inner nodes, a set ℯ(ℊ) of edges and a set 𝓋𝑒(ℊ) of end nodes. 
Each edge is oriented regarding a specified topology relation between one or 
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multiple nodes (its ends). Then, three processing cases arise from the definition of 
elements (Figure 65) where:  

 (a) ℰ𝑖  is an element that is described in ℊ as an end 𝓋𝑒(ℊ) (the final level of 
the elements decomposition, e.g a wall, a beam…). These elements are directly 
identified as Normal-Elements (NE) in the ACO Level 2 (Table 25) and refer to a 
DBpedia resource. Such a case does not necessitate a part segmentation, and 
therefore allow the expert system to directly address the modelling phase (Section 
6.3.3).  

(b) When ℰ𝑖  is an element described in ℊ as a combination of multiple Sub-
Elements (therefore is in the category of Aggregated-Element from the SPC), it goes 
through part-segmentation (Section 6.3.2) before modelling the entity. This 
segmentation is guided by inferred rules extracted from the ACO ontology. For 
instance, if an object is labelled as a “kitchen chair”, its definition will specify that 
segmentation need to find an upper-part, which is a backrest, a middle-part, which 
is a oneSeat, and some ground transition parts, at least 3 for the example of the 
“kitchen chair”. 

(c) When ℰ𝑖  is a Sub-Element as in the ACO and refer to an Aggregated-
Element, the point cloud subset goes through an aggregation step before modelling. 
This step is guided by semantic definitions and symmetric operations to find 
(recreate) other Sub-Elements of the Aggregated-Element. For instance, when a 
WallSurface is considered as ℰ𝑖 , its parallel wall surface will be search for in the SPC 
database, to constitute the Aggregated-Element “Wall”. 

 
(a) 

 
(b) 

 
(c) 

Figure 67. (a) ℰ𝑖 is a Normal-Element; (b) ℰ𝑖 is an Aggregated-Element, it goes through part-
segmentation; (c) ℰ𝑖 is a Sub-Element. 

The main processes of this second step are described in Algorithm 1 part of 
the global workflow. 

Algorithm 1 Element characterization, featuring and generation of modelling 

rules (Figure 62: B) 

Require: A point cloud 𝒫 ∈ ℝ𝑠 , decomposed in n ℰ𝑖 each with a label ℒ𝑖 

1. For each ℰ𝑖 do 

2.   ∁ℰ𝑖
← characterization of ℰ𝑖 (NE, SE or AE) 

3.   if ∁ℰ𝑖
== ′𝐴𝐸′ then 
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4.     specialization of ℰ𝑖 through part-segmentation 

5.   end if 

6.   ℰ𝑖
+ ← Add Bag of features, Object relationship information and 

Contextual semantics 

7.   ℛ ← Generation of modelling rules through ACO 

8. end for 

9. end 

10. return (ℰ𝑖
+, ℛ) 

While NE and SE’s characterization avoid part-segmentation, AE goes 
through the case (b) for a higher representativity. Looking at considered AE classes 
(chair, door, table), the “chair” class provides the highest variability for testing and 
will thus be used as the main illustration of AE specialization and shape featuring 
(Figure 62: B). We decompose this mechanism (Algorithm 1: line 4) in three sub-
steps. 

Sub-Step 1. Pose determination of 3D shapes: we use a robust variant of 
Principal Component Analysis (PCA) inspired by Liu and Ramani [152], to compute 
the principal axis of points composing ℰ𝑖  (Algorithm 1.1). The eigen vector with the 
largest value in the covariance matrix is chosen as the first estimate of the principal 
direction.  

Algorithm 1.1 Robust Principal Axis Determination (RPAD) 

Require: A point cloud object ℰ𝑖 ∈ ℝ3 filtered for considering only spatial 

attributes along 𝑥 , 𝑦 , 𝑧 , max_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 the maximum number of iteration (by 

default: 1000),  

1. 𝓅 ← inliers candidates from Statistical Outlier Identification Filter 

[335] applied to ℰ𝑖 

2. while 𝑗 < max_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do 

3.   ℴ, 𝑒1⃗⃗  ⃗, 𝑒2⃗⃗  ⃗, 𝑒3⃗⃗  ⃗ ← origin and three principal axes of 𝓅 through PCA 

4.   𝑟 ←  ℰ𝑖 − 𝓅, remaining points as a matrix in ℝ3, 𝑟𝑖 being a point 𝑝𝑖 ∈

𝑟 

5.   𝑟𝑒𝑠(𝑟𝑖) ← the distance between 𝑟𝑖 and its projection onto 𝑒1⃗⃗  ⃗ 

6.   if |𝑟𝑒𝑠(𝑟𝑖)| < |𝑚𝑒𝑎𝑛(𝑟𝑒𝑠) + 𝜎| then 

7.    𝓅.𝑎𝑝𝑝𝑒𝑛𝑑(𝑟𝑖) 
8.   end if 

9. end while 

10. 𝑒2⃗⃗  ⃗, 𝑒3⃗⃗  ⃗ ← Update by a 2D RPAD over ℰ𝑖 projection onto the plane 

defined by 𝑒2⃗⃗  ⃗, 𝑒3⃗⃗  ⃗ 

11. end 

12. return (ℴ, 𝑒1⃗⃗  ⃗, 𝑒2⃗⃗  ⃗, 𝑒3⃗⃗  ⃗) 
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We provide an additional refinement layer leveraging georeferenced 
datasets and gravity-based scenes by constraining the orientation of Sub-Elements 
(Algorithm 1.2): 

Algorithm 1.2 Gravity-based constraints for Sub-Elements ℰ𝑠𝑢𝑏−𝑖 

Require: A point cloud Sub-Element ℰ𝑠𝑢𝑏−𝑖 ∈ ℝ3 and ℴ, 𝑒1⃗⃗  ⃗, 𝑒2⃗⃗  ⃗, 𝑒3⃗⃗  ⃗, the output of 

Algorithm 1.1 

1. ℴ𝑠 , 𝑠1⃗⃗  ⃗, 𝑠2⃗⃗  ⃗, 𝑠3⃗⃗  ⃗ ← origin and three principal axes of ℰ𝑠𝑢𝑏−𝑖 through RPAD 

2. 𝑝𝑠1⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ ← projection of the main axis 𝑠1⃗⃗  ⃗ onto the plane defined by the 

normal 𝑒3⃗⃗  ⃗ from 𝑚𝑎𝑖𝑛𝐸𝑙𝑒𝑚𝑒𝑛𝑡(ℰ𝑖) as defined in ACO 

3. 𝛼1, 𝛼2 ← angle respectively (𝑒1,⃗⃗ ⃗⃗ 𝑝𝑠1⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗)̂  and (𝑒2,⃗⃗ ⃗⃗  𝑝𝑠1⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗)̂  

4. if 𝛼1 ≤ 𝛼2 then 

5.   𝑠2⃗⃗  ⃗ ←  𝑅𝑧(𝛼1)𝑠2⃗⃗  ⃗ and 𝑠3⃗⃗  ⃗ = 𝑠1⃗⃗  ⃗ × 𝑠2⃗⃗  ⃗ 

6. elif: 𝑠2⃗⃗  ⃗ ←  𝑅𝑧(𝛼2)𝑠2⃗⃗  ⃗  

7. end 

8. return (ℴ𝑠 , 𝑠1⃗⃗  ⃗, 𝑠2⃗⃗  ⃗, 𝑠3⃗⃗  ⃗)  

Sub-Step 2. The 2nd sub-step in the part-segmentation process is to extract 
several shape features which guide the process. Every point 𝑝𝑖  composing ℰ𝑖  is 
processed following Algorithm 1.3: 

Algorithm 1.3 Histogram and bin featuring of an element ℰ𝑖 

Require: A point cloud object ℰ𝑖 ∈ ℝ3 filtered for considering only spatial 

attributes 𝑋, 𝑌, 𝑍 along (𝑥 , 𝑦 , 𝑧 ) axis, 𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒 the spatial attributes along 

principal directions (𝑒1⃗⃗  ⃗, 𝑒2⃗⃗  ⃗, 𝑒3⃗⃗  ⃗) 

1. ℬ ← bin gridded elementary subset of ℰ𝑖, by default an octree-based 

voxel [4] 

2. 𝑑𝑜𝑛𝑒 ← ∅ 
3. for each ℬ do 

4.   if ℬ. 𝑖𝑛𝑑𝑒𝑥 is not in 𝑑𝑜𝑛𝑒 then 

5.     𝑑𝑜𝑛𝑒 ← 𝑑𝑜𝑛𝑒. 𝑎𝑝𝑝𝑒𝑛𝑑(ℬ. 𝑖𝑛𝑑𝑒𝑥)  
6.     ∁ℬ  ← Coordinates (𝑋ℬ𝑐 , 𝑌ℬ𝑐 , 𝑍ℬ𝑐) of the center of ℬ as a vector in ℝ3 

7.     ℱ(𝑒2⃗⃗ ⃗⃗  ,𝑒3⃗⃗ ⃗⃗  )
← count number of bin ℬ with same (𝑌ℬ𝑐 , 𝑍ℬ𝑐) along 𝑒2⃗⃗  ⃗, 𝑒3⃗⃗  ⃗, 

and 

    different 𝑋ℬ𝑐 along 𝑒1⃗⃗  ⃗ 

8.     ℱ𝑒1⃗⃗⃗⃗  
← count number of bin ℬ with same 𝑋ℬ𝑐 along 𝑒1⃗⃗  ⃗, and 

    different (𝑌ℬ𝑐 , 𝑍ℬ𝑐) along 𝑒2⃗⃗  ⃗, 𝑒3⃗⃗  ⃗ 

9.     end if 

10. end for 
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11. end 

12. return (ℱ(𝑒2⃗⃗ ⃗⃗  ,𝑒3⃗⃗ ⃗⃗  )
, ℱ𝑒1⃗⃗⃗⃗  

) as a dictionary with the ∁ℬ as a key, and 

ℱ(𝑒2⃗⃗ ⃗⃗  ,𝑒3⃗⃗ ⃗⃗  )
, ℱ𝑒1⃗⃗⃗⃗  

 as values 

Outputs of Algorithm 1.3 are used as initial shape descriptors for studying 
local maxima. This is done through a gradient approach with different 

neighbourhood to avoid over/under segmentation. The gradient ∇⃗⃗ (𝑓) is computed 
using central difference in the interior and first differences at the boundaries: 

∇⃗⃗ (𝑓) =
𝛿𝑓

𝛿𝑥
𝑖 +

𝛿𝑓

𝛿𝑦
𝑗  (1) 

𝛿ℎ[𝑓](𝑥) = 𝑓 (𝑥 +
1

2
ℎ) − 𝑓 (𝑥 −

1

2
ℎ), with ℎ = 1 (interior) (2) 

∆ℎ[𝑓](𝑥) = 𝑓(𝑥 + ℎ) − 𝑓(𝑥) (boundaries) (3) 

From the extrema, we descend the gradient to find the two cuts candidates: 
downcut and upcut. This is iteratively refined by studying each extremum, and their 
relative cuts. When two extrema have a common value for their cuts, they are studied 
for possible under segmentation, and therefore aggregated into the initial candidate. 
Cuts candidates are extracted by fitting a linear least-square model to each gradient 
after extrema’s filtering to identify the baseline (Figure 68: line 5). This permits to 
be robust to varying sampling distance, missing point cloud data and outliers. We 
then extract the candidate for the Main-Element, and we further process Sub-
Elements. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 68. Each AE from (a) to (e) is projected in a voxelized space, studied against voxel 
count per unit over 𝑒1⃗⃗  ⃗, 𝑒2⃗⃗  ⃗, 𝑒3⃗⃗  ⃗ to extract extremums and find patterns that define each Sub-

Element as in the ACO. For each object, line 1 is the considered AE, line 2 to 4 illustrates the 
repartition histogram along 𝑒1⃗⃗  ⃗, 𝑒2⃗⃗  ⃗, 𝑒3⃗⃗  ⃗, line 5 the principal cuts extracted, line 6 the results. 

Sub-Step 3. The ontology contains a knowledge-based symmetry indicator 
which provides insights on possible symmetric properties of each class, expressed 
regarding the Main-Element (See Supplementary Materials). We first use these and 
if the test fails we undergo specific symmetry search using analytic knowledge 
similarly to [312]. In the context of indoor point clouds, we mostly deal with 
approximate symmetries due to measured data. Therefore, we use a measure of 
overlap by mapping the pixels as binary grid of the projection on a plane the normal 
of which is coplanar to the symmetry plane and vice-versa (Figure 69: line 2). The 
symmetry analysis is conducted over the repartition histogram projected onto the 
plane (𝑒2⃗⃗  ⃗, 𝑒3⃗⃗  ⃗). Then we run mean-shift clustering to detect candidate axis positions 
among all pairs of neighboring patches similarly to [313]. 

     

     

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 69. Symmetric feature characterization for Sub-Elements of chairs (a) to (e). line 1: 
symmetric planes; line 2: 2D projection featuring; line 3: similarity’s feature tag results to 

other Sub-Elements. 
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At this point, we benefit of a better characterization of AE through the ACO 
and the described threefold mechanism. Each initial element composing the scene 
(NE, SE and AE) is then processed to extract object relationships. We construct a 
connected component graph ℊ in a voxel-space based on the initial bounding-box 
parameters of  𝒫 and the one of the considered element ℰ𝑎. We then use available 
topology information 𝒯𝑣(𝑣𝑎 , {𝑣𝑖}𝑖=1

26 ) computed regarding DE-9IM [336] in the voxel 
space and extended using spatial operators to identify elements relation to ℰ𝑖  along 
𝑒1⃗⃗  ⃗:  

 

𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = {𝑔𝑢𝑒𝑠𝑡, ℎ𝑜𝑠𝑡, 𝑡𝑤𝑖𝑛},  

∀ 𝑖 ∈ 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, ∃ (ℰ𝑎 , ℰ𝑏) | 𝒯(ℰ𝑎 , ℰ𝑏) = 𝑖,  

ℯ(ℊ) =  𝒯(ℰ𝑎 , ℰ𝑏) 𝑤𝑖𝑡ℎ ℰ𝑎 = 𝓋(ℊ), ℰ𝑏 = 𝓋𝑒(ℊ) 

(4) 

(5) 

(6) 

 

The basic object relationship is defined as 𝒯(ℰ𝑎 , ℰ𝑏) and determined 
regarding Algorithm 1.4: 

 

Algorithm 1.4 Object-relationship definition for indoor elements 

Require: A point cloud object ℰ𝑖 ∈ ℝ3 filtered for considering only spatial 

attributes 𝑋, 𝑌, 𝑍 along (𝑥 , 𝑦 , 𝑧 ) axis, (𝑒1⃗⃗  ⃗, 𝑒2⃗⃗  ⃗, 𝑒3⃗⃗  ⃗) the principal directions, 𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒 

the spatial attributes along 𝑒1⃗⃗  ⃗, 𝑒2⃗⃗  ⃗, 𝑒3⃗⃗  ⃗ 

1. 𝒯𝑣(𝑣𝑎 , {𝑣𝑖}𝑖=1
26 ) ← SPC voxel-based feature for direct voxel topology 

between ℰ 

2. for each ℰ do 

3.   if 𝒯𝑣(𝑣𝑎 , {𝑣𝑖}𝑖=1
26 ) = 𝑡𝑟𝑢𝑒 and 𝑣𝑖  ∈ ℰ𝑏 then 

4.     if max𝑒1⃗⃗⃗⃗  
(𝐵𝐵𝑜𝑥(ℰ𝑏)) < min𝑒1⃗⃗⃗⃗  

(𝐵𝐵𝑜𝑥(ℰ𝑎))𝒂𝒏𝒅 |min𝑒1⃗⃗⃗⃗  
(𝐵𝐵𝑜𝑥(ℰ𝑎)) −

         max𝑒1⃗⃗⃗⃗  
(𝐵𝐵𝑜𝑥(ℰ𝑏))| < 𝐾𝐵𝑡ℎ then 

5.       𝒯(ℰ𝑎 , ℰ𝑏) = 𝑔𝑢𝑒𝑠𝑡 
6.     elif 𝒯(ℰ𝑏 , ℰ𝑎) = 𝑔𝑢𝑒𝑠𝑡 then 𝒯(ℰ𝑎 , ℰ𝑏) = ℎ𝑜𝑠𝑡 

7.     elif (𝒯(ℰ𝑎 , ℰ𝑏) = 𝑔𝑢𝑒𝑠𝑡 or 𝒯(ℰ𝑎 , ℰ𝑏) = ℎ𝑜𝑠𝑡) and 

|𝑋𝑒1⃗⃗⃗⃗  
(𝐶𝑒𝑛𝑡𝑒𝑟𝐵𝐵𝑜𝑥(ℰ𝑎)) −         𝑋𝑒1⃗⃗⃗⃗  

(𝐶𝑒𝑛𝑡𝑒𝑟𝐵𝐵𝑜𝑥(ℰ𝑏))| < 𝐾𝐵𝑡ℎ then 

𝒯(ℰ𝑎 , ℰ𝑏) = 𝑡𝑤𝑖𝑛 
8.     end if 

9.   end if 

10. end for 

11. end 

12. return (𝒯(ℰ𝑎 , ℰ𝑏)) for every ℰ composing 𝒫 
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Regarding AE, Sub-Elements creating new segments are refined similarly 
using the ACO (e.g. if ℰ𝑖  is a “Kitchen Chair” and the number of ℰ𝑠𝑢𝑏−𝑖  in “someDown” 
position is inferior to 3, then results are refined as a “Kitchen Chair” is described 
having at least 3 legs). ACO-guided, we cross-relate ℰ𝑖  information ℱℓ, 𝒲𝒾, ℒ𝑒, 
ℱ(𝑒2⃗⃗ ⃗⃗  ,𝑒3⃗⃗ ⃗⃗  )

, ℱ𝑒1⃗⃗⃗⃗  
, ℋℯ and ℰℓ with the highest maximas, where: 

∀ 𝑋𝑒 < 𝑌𝑒 , ∃ ℒ𝑒 ∈ ℝ | ℒ𝑒 = 𝑌𝑒 , ∀ 𝑋𝑒 > 𝑌𝑒 , ∃ ℒ𝑒 ∈ ℝ | ℒ𝑒 = 𝑋𝑒 (7) 

𝒲𝒾 = min(𝑒1⃗⃗  ⃗, 𝑒2⃗⃗  ⃗) , 𝒯𝒽 = 𝑍𝑒 , ℱℓ =
𝒯𝒽

𝒲𝒾
, ℰℓ =

𝒲𝒾

ℒ𝑒
 (8) 

These are grouped as a bag of features24 and we infer modelling rules (e.g. 
Figure 70) after going through a language processing step to provide three group of 
features being: 

- Bag of features: Flatness ℱℓ, Width 𝒲𝒾, Length ℒ𝑒, Histogram features 
(ℱ(𝑒2⃗⃗ ⃗⃗  ,𝑒3⃗⃗ ⃗⃗  )

, ℱ𝑒1⃗⃗⃗⃗  
), Height ℋℯ, Elongation ℰℓ, Thickness 𝒯𝒽, main orientation 𝑒1⃗⃗  ⃗. 

- Object-relationship information: Topology relation 𝒯(ℰ𝑎 , ℰ𝑏), Relative 
position to elements in fixed radius ℛ(ℰ𝑎 , ℰ𝑏), Direct Voxel-based Topology 
𝒯𝑣(𝑣𝑎 , {𝑣𝑖}𝑖=1

26 ) 

- Contextual semantics: Semantic Position ℛ𝑠(ℰ𝑎 ,𝒫), Function ℱ𝑖 , Label ℒ𝑖  

Contrary to [252], we do not reason on decision trees that are extracted from 
an ontology. Indeed, we create a JSON object per element ℰ𝑖  that holds the Bag of 
features, Object-relationship information and Contextual semantics. These include 
concepts of physics and causation such as stability, clearance, proximity and 
dimensions defined as Knowledge Primitives by Sutton et al. [337]. The reasoning 
module of the expert system can in turn provide the guiding modelling rules ℛ for 
the considered object as developed in Section 6.3.1.  

                                                                    

24 For elements that have 
rectangular cross-sections, the length 
and width are defined by the size of 
the minimum bounding rectangle, 
whereas for elements that have 

circular cross-sections, the radius is 
defined by the size of the minimum 
bounding circle. 
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Figure 70. The ACO graph-representation of the chair and the relations within Sub-Elements 

In the next sub-section (Figure 62: C) we explain the third step of our global 
workflow, which provides a modelling approach for obtaining multiple geometries 
for each ℰ𝑖  composing 𝒫. 

6.3.3 Procedural instance 3D modelling 

As reviewed in Section 6.2.1, most of indoor scene are primitive-based 
decompositions. As such we provide a simple yet efficient parametric instance-
modelling described in Algorithm 2 that reconstruct each element ℰ𝑖  using cuboid 
and bounded plane representations. 

Algorithm 2 Multi-LoD object instance modelling (Figure 62: C) 

Require: Algorithm 1 output: (ℰ𝑖
+, ℛ) 

1. For each ℰ𝑖
+ do 

2.   if ∁ℰ𝑖
+== ′𝐴𝐸′ then 

3.     ℰ𝑖
+ goes through part-modelling and part-assemblage 

4.   end if 

5.   ℰ𝑖
+ parameters refinement through context adaptation following ℛ 

specifications 

6.   {ℳ𝐿0,ℳ𝐿1,ℳ𝐿2,ℳ𝐿3} ← Primitive fitting for multi-LoD 3D model 

generation 

7.   ℳ3𝐷𝑀 ← Model from 3D Data mining using ModelNet10 based on 

{ℳ𝐿0,ℳ𝐿1,ℳ𝐿2} 
8. end for 

9. end 

10. return (ℳ𝐿0,ℳ𝐿1,ℳ𝐿2,ℳ𝐿3,ℳ3𝐷𝑀) 
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Similarly to Step 2 (Figure 62: B, Section 6.3.2) of the global workflow, the 
characterization of AE element as ℰ𝑖

+ is accounted for by going through a specific 
part-modelling and part-assemblage processing (necessitate AE’s characterization 
and part-segmentation as detailed in Section 6.3.2). This is done by considering each 
Sub-Element of the initial element ℰ𝑖  an independent element. Then, using intra-ℰ𝑖  
topology (relations between Sub-Elements from part-segmentation) defined within 
the ACO, geometric parameters are adjusted (Figure 71).  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 71. The different phases of the primitive fitting for AE. (a) point cloud; (b) Raw 
parameters and generation of grid-aligned cuboid; (c) Refinement by non-constrained PCA-
Analysis; (d) Refinement by constrained PCA-Analysis; (e) parameters refinement through 

ACO 

The parametrization of generated models gives users the ability to alter the 
entire logic of the object construction by adjusting individual parts. 

We parametrize a cuboid with three orthogonal directions 𝑐1⃗⃗  ⃗, 𝑐2⃗⃗  ⃗, 𝑐3⃗⃗  ⃗ where:  

𝑐3⃗⃗  ⃗ = 𝑐1⃗⃗  ⃗ × 𝑐2⃗⃗  ⃗ (9) 

The cuboid parameters also include the center coordinates 𝑋𝑐 , 𝑌𝑐 , 𝑍𝑐, as well 
as the length, width and height respectively along 𝑐1⃗⃗  ⃗, 𝑐2⃗⃗  ⃗, 𝑐3⃗⃗  ⃗. Its finite point set 
representation is obtained by tessellation and generated as an .obj file. A bounded 
plane is represented by a set of parameters 𝑝 = {𝑝1, 𝑝2, 𝑝3, 𝑝4}  that defines a plane, 
and a set of edge points 𝑒 that lies in the plane and describes the vertices of the 
plane’s boundary. 

Depending on ℰ𝑖 ’s characterization, we obtain a geometric model composed 
of a bounded plane, a cuboid, a cuboid assembly or a cuboid and bounded plane 
aggregation. These geometries are then refined to provide multiple LoD. ℰ𝑖  are found 
represented as Bounding-box (ℳ𝐿0), Trivial knowledge-based parametric shape 
(ℳ𝐿1), Parametric assemblage (ℳ𝐿2) and hybrid voxel-based refined model (ℳ𝐿3) 
as illustrated in Figure 72 and executed in Algorithm 2: line 6. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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Figure 72. (a) Bouding-box ℳ𝐿0; (b) KB model ℳ𝐿1; (c) Assemblage ℳ𝐿2; (d) hybrid model 
ℳ𝐿3 

As an alternative to the 3D models extracted from the procedural engine, we 
study a 3D database shape matching approach for higher geometric flexibility, but 
also to provide a way to extract additional information from external database 
sources through mining. We consider database objects from the ModelNet10 [273] 
library, specifically the chair, desk and table furniture due to the non-availability of 
wall, beam, ceiling and floor models (Figure 73). Each candidate is oriented in the 
same way (Main-Element’s 𝑒3⃗⃗  ⃗ is 𝑧 -aligned, 𝑒2⃗⃗  ⃗ is 𝑦 -aligned) which allows to avoid 
global alignment search and local refinement via ICP. Only a rigid translation and 
deformable step is executed. The main challenges include the present noise in 
scanned data, isotropic shapes, partial views and outliers. As such, global matching 
methods based on exhaustive search (efficient if we can strongly constrain the space 
of possible transformations), normalization (not applicable to partial views, or 
scenes with outliers) and RANSAC (need at least 3 pairs of points) are limited. We 
investigate an invariance-based method to try and characterize the shapes using 
properties that are invariant under the desired transformations. We describe each 
database 3D model by computing a rank 𝑅𝐿𝑒𝑣𝑒𝑙−1 to define a first set of best fit 
candidates 𝐶𝑖, where:  

𝑅𝐿𝑒𝑣𝑒𝑙−1(𝐶𝑖) = |
ℋℯ(ℳ𝐿1)

ℒ𝑒(ℳ𝐿1)
−

ℋℯ(𝐶𝑖)

ℒ𝑒(𝐶𝑖)
| + |

ℋℯ(ℳ𝐿1)

𝒲𝒾(ℳ𝐿1)
−

ℋℯ(𝐶𝑖)

𝒲𝒾(𝐶𝑖)
| (10) 

We then compare each rank for each candidate within the database and filter 
by score. We narrow the set of candidates by comparing its symmetry pointer to ℰ𝑖

+ 
and each Sub-Element (when applicable) that highly constrain the repartition. This 
is done regarding the symmetry descriptors as defined in Section 6.3.2. The new rank 
descriptor 𝑅𝐿𝑒𝑣𝑒𝑙−2 is given by: 

𝑅𝐿𝑒𝑣𝑒𝑙−2(𝐶𝑖) = 𝑅(𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑟𝑎𝑡𝑖𝑜) + 𝑅𝐿𝑒𝑣𝑒𝑙−1(𝐶𝑖) (11) 
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search R20 R31 R36 R53 R69 R77 R94 
(a) (b) (c) (d) (e) (f) (h) (i) 

Figure 73. Results of the shape matching over different datasets (a). The rank RXX represent 
the score of each candidate. The closer to 0 the best the shape fits the search from (b) to (i). 

We compute the transformation parameters by matching the centroids of 𝐶𝑖 
and ℳ𝐿1, refined using ℳ𝐿2 and ACO-inferred ℰ𝑖

+ for its orientation. We finally 
adjust scale by matching shape parameters. This is done using the symmetry 
indicators and planes as coplanar constraints for global transformation with 
independent shape deformation along each principal axis.  

Finally, we present in the next section the closing step to aggregate every 
modelled element to create a 3D model accompanied by object relationships (Figure 
62: D, Section 6.3.4). 

6.3.4 3D Aggregation for scene modelling 

At this stage, every element ℰ𝑖  composing 𝒫 is enhanced to retain contextual 
information and object-relationship through Algorithm 1, becoming ℰ𝑖

+. It is then 
processed in accordance to ℛ from the ACO to obtain a set of models 
{ℳ𝐿0,ℳ𝐿1,ℳ𝐿2,ℳ𝐿3,ℳ3𝐷𝑀} using Algorithm 2. The final step (Figure 62: D) 
leverage the context with related elements for general modelling, with adjusted 
parametric reconstruction following notably the topology and symmetric 
considerations. E.g, the constraints extracted by processing the ACO such as “the feet 
have the same height” derived from topological reasoning with the ground permit 
contextual inference. Every element is then aggregated as described in Algorithm 3, 
and object-relationships ℛ𝐺3𝐷 are retained to be usable concurrently to the global 
3D indoor model ℳ𝐺3𝐷. This step follows a part-to-whole design which starts with 
the floors, ceilings, walls, beams/columns and then goes to doors, windows then 
furniture. 

Algorithm 3 Elements aggregation for global geometric and relationship 

modelling (Figure 62: D) 

Require: Algorithm 1 output (ℰ𝑖
+, ℛ) and Algorithm 2 output 

(ℳ𝐿0,ℳ𝐿1,ℳ𝐿2,ℳ𝐿3,ℳ3𝐷𝑀) 

1. ℳ𝐺3𝐷 ←  ∅ 
2. For every ℰ𝑖

+ ∈ 𝒫 do 

3.   if ℒ𝑖  ≠ 𝑑𝑜𝑜𝑟 or ℒ𝑖  ≠ 𝑤𝑖𝑛𝑑𝑜𝑤 then 

4.     ℳ𝐺3𝐷 ← ℳ𝐺3𝐷 ∪ ℳ𝑋𝑖 : Aggregate desired ℰ𝑖 geometry (ℳ𝑋𝑖) from 

the set of models 

    {ℳ𝐿0,ℳ𝐿1,ℳ𝐿2,ℳ𝐿3,ℳ3𝐷𝑀} for natural or hybrid models 

5.   elif: ℳ𝐺3𝐷 ← (ℳ𝐺3𝐷 ∩ ℳ𝑋𝑖)
𝐶 + ℳ𝑋𝑖 ∩ (ℳ𝐺3𝐷 ∩ ℳ𝑋𝑖)

𝐶  

6.   end if 
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7.   ℛ𝐺3𝐷 ← Object Relationship modelling of ℳ𝐺3𝐷 

8. end for 

9. end 

10. return (ℳ𝐺3𝐷 , ℛ𝐺3𝐷) 

 

To be topologically consistent in the sense of 3D modelling, we treat 
overlapping similarly to Fayolle and Pasko [288]. We represent a constructive model 
by a binary (CSG) construction tree structure with primitive solids at the leaves and 
operations at the internal nodes of the tree. For any given point in space, an 
evaluation procedure traverses the tree and evaluates membership predicate at this 
point. After evaluation, we obtain a consistent 3D model of the entire scene retaining 
object-relationships. We use the Union (U) and Intersection (∩) operators and their 
set complements to refine the CSG-tree for modelling the point cloud (Figure 74). 
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Figure 74.  (a) S3-DIS Point Cloud extract; (b) SE modelling (walls, floors, ceillings); (c) NE 
completion and CSG operations; (d) 3D global model with point cloud super-imposition 

The ability to use several representations from the set of instance models 
{ℳ𝐿0,ℳ𝐿1,ℳ𝐿2,ℳ𝐿3,ℳ3𝐷𝑀} permit to obtain hybrid models following the same 
mechanism as illustrated in Figure 75. 
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Figure 75. (a) S3-DIS; (b) (ℳ𝐿0 ,ℳ𝐿1) model; (c) (ℳ𝐿0,ℳ𝐿2) model; (d) (ℳ𝐿0 ,ℳ𝐿3) model; 
(e) (ℳ𝐿1 ,ℳ3𝐷𝑀) model 

In a will to aggregate semantics outside the SPC Infrastructure and for 
interoperability with existing standards, we obtain a parsing-ready JSON object for 
IFC file construction. ℳ𝐿0,ℳ𝐿1,ℳ𝐿2,ℳ𝐿3 and ℳ3𝐷𝑀 geometries follow the .obj 
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physical file format to be mapped in the IFC scheme using the EXPRESS data 
definition language. For beams, floors, and walls, IFC entity types, such as IfcBeam, 
IfcWall, IfcWallStandardCase, IfcBulidingElementProxy, IfcRelDecomposes and 
IfcRelConnects are defined with their geometric and connectivity properties 
following the IFC scheme. In this way, an as-built 3D model of the structural elements 
compliant with industry standards can be inferred.  

6.4  RESULTS 

In this section we detail the results of our methodology through several 
comparisons. We start by describing the underlying datasets, we then present the 
results of our evaluations to finally provide the details of our implementation and 
computation time. Then we provide identified limitations and research directions. 

6.4.1 Datasets 

The methodology was tested over three different datasets. The first dataset 
(SIM) is simulated data using the ModelNet10 library as scanning environment. The 
second (DAT) contains real data from actual sites using both the Leica P30 and 
Trimble TX5 terrestrial laser scanner. The last dataset is the S3-DIS created using the 
Matterport. The main idea behind using these various datasets is to use the simulated 
one to test the theoretical base of the proposed approach, while the real datasets 
cover the difficulties and the efficiency of the method. The two real world scenes 
(DAT and S3-DIS) represent indoor built environments. For the simulated cases 
(SIM), the point cloud was generated by 3D mesh tessellation and then adding 2 mm 
of noise, which is representative of many current laser scanners. Subsampling is not 
employed at any stage here, both for point clouds and 3D models. The simulated 
dataset is solely constituted of furniture (chair, desk, table), with around 1 million 
points per element. The DAT dataset is constituted of 800 million points whereas the 
S3-DIS dataset contains over 335 million points, with an average of 55 million points 
per areas (6 Areas). The DAT present many large planar surfaces and a high device 
accuracy resulting in low noise and a homogeneous point repartition. In contrast, the 
S3-DIS dataset is very noisy and presents many occluded areas. As these are typical 
scenes from the built environment, it is worth noting that they all present some 
significant levels of symmetry and/or self-similarity. Moreover, the DAT and 3D-DIS 
rely on a scan acquisition methodology that do not cover the full environment 
presenting many occluded areas. 

6.4.2 Comparisons 

We tested our approach on both simulated and real-world point clouds of 
indoor buildings. We first provide in Table 26 results regarding the part-
segmentation for AE characterization (Section 6.3.2). 
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Table 26. Results of the part-segmentation mechanism against manually annotated Sub-
Elements. The precision and recall were obtained by studying True Positives, False Positive 

and False Negatives. 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
, 𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Dataset Element legs oneSeat backRest 

  precision recall precision recall precision recall 

 chair_0001 99.99% 97.34% 93.52% 99.62% 99.99% 96.87% 

 chair_0007 59.18% 99.99% 99.99% 87.22% 99.99% 99.99% 

SIM chair_0008 99.99% 99.99% 98.60% 99.99% 99.99% 98.56% 

 chair_0029 99.99% 90.93% 95.82% 99.72% 99.99% 99.99% 

 chair_0041 99.99% 99.99% 96.68% 99.99% 99.99% 97.31% 

 overall 91.84% 97.65% 96.92% 97.37% 99.99% 98.55% 

 F1-score 94.66% 97.14% 99.27% 

        

  precision recall precision recall precision recall 

 chair_0001 99.99% 99.90% 98.32% 99.99% 99.99% 99.29% 

 chair_0002 99.99% 93.57% 93.59% 83.68% 92.09% 98.97% 

 chair_0005 99.99% 99.99% 99.99% 38.36% 29.70% 99.99% 

DAT chair_0006 96.14% 99.99% 87.29% 99.56% 95.02% 96.50% 

 chair_0007 96.60% 99.99% 92.35% 88.25% 83.89% 98.79% 

 overall 98.55% 98.69% 94.31% 81.97% 80.14% 98.71% 

 F1-score 98.62% 87.71% 88.46% 

  precision recall precision recall precision recall 

 chair_0001 99.99% 99.99% 89.26% 99.99% 99.99% 87.56% 

 chair_0002 87.53% 99.99% 80.76% 73.31% 94.98% 91.85% 

 chair_0003 99.99% 99.99% 97.51% 99.99% 99.99% 97.54% 

S3-DIS chair_0004 99.99% 99.99% 90.88% 99.99% 99.99% 92.13% 

 chair_0005 99.99% 99.99% 90.55% 72.25% 74.94% 92.66% 

 overall 97.51% 99.99% 89.79% 89.11% 93.98% 92.35% 

 F1-score 98.74% 89.45% 93.16% 

Firstly, we notice an overall precision and recall score above 90% for every 
Sub-Element of the SIM dataset. Relatively, while the backRest gives the higher F1-
score (99.27%), the oneSeat and the legs achieve respectively lower scores of 
97.14% and 94.66% . Indeed, these Sub-Elements are more subject to missing data 
which induce False Negatives. Specifically, the SIM chair_0007 retain a problematic 
case where the point distribution’s feature impact the segmentation through a high 
number of True Negatives. This can be solved if we include a connectivity step to 
merge similar Connected Components from looking at their Bag of feature and their 
voxel topology. As for the recall indices, the problematic zones are often localized at 
the joints between each Sub-Element, which could be further refined if an additional 
(time-consuming) nearest neighbour search was implemented.  

Logically, the non-simulated datasets DAT and S3-DIS achieve lower scores 
for the backRest and oneSeat robustness detection. Recall drops by 7.43% in average 
and precision by 8.90%. This is specifically due to the non-uniform sampling of real 
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world datasets which on top present many occluded areas for these Sub-Element, 
inducing many False Positive.  

Interestingly, we note that both DAT and S3-DIS datasets present an increase 
of around 4% for the F1-score. Indeed, the low precision and scan angle play in 
favour of joint identification between the oneSeat and the legs which in turn increase 
the segmentation accuracy. We could highlight that the quality and robustness of our 
AE’s characterization approach depends on the plane detection quality which is 
influenced by scanner noise, point density, registration accuracy, and clutter inside 
of the building. 

Secondly, we assess the different LoD ℰ𝑖  models obtained following Section 
6.3.3. As the modelling approach does not aim at a perfect fitting of the underlying 
point cloud, we used an RMSE indicator for comparison between the model and the 
different reconstructions (Figure 76). We also compared the different sizes of 
generated geometries to obtain ratios of precision over complexity. 
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Figure 76. 3D modelling results over ℳ𝐿1 ,ℳ𝐿2 ,ℳ𝐿3 of the DAT dataset. (a) 3D 
representation; (b) colour-coded deviations to (a); studied repartition in (c); main indicators 

presented in (d). 

We notice that the higher the LoD, the better the accuracy but also the higher 
the data size. Generalized to the elements processed, we extract that RMSE is 
expected at 5 cm for ℳ𝐿1 (very sensitive to point repartition), whereas ℳ𝐿2 is 
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expected to give a representation with an RMSE of 2 cm, and ℳ𝐿3 is expected to 
model giving an RMSE of 1 cm. The latest can of course be reduced if the octree level 
of the voxelisation is lower, causing a higher model size which can become 
impractical for very large scene. Additionally, ℳ𝐿3 could be refined using the 
parametric model in zones with a high overlap (e.g. OneSeat area), resulting in a 
reduced number of vertices. If we look at well-known triangulation modelling 
methodologies illustrated in Figure 77, while they can provide a higher accuracy, 
their representation is often incomplete and cannot successfully model occluded 
areas. On top, their size is in average 6 times bigger than ℳ𝐿3, and the trade-off 
precision over complexity shows overly complex structures for the precision gains. 
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Figure 77. 3D modelling by triangulation. (a) Poisson reconstruction [338]; (b) Ball-pivoting 
approach [339]; (c) Marching-Cubes approach [340] 

As for ℳ3𝐷𝑀 , our 3D data mining approach provides interesting results 
concerning the SIM dataset, but the extension to real world case presents many 
challenges. Primarily, the fact that the model doesn’t exist in the database forces to 
search for a close candidate and to accommodate intra-ℰ𝑖  variability. Secondly, the 
heterogeneity in shapes and forms within the database presents some cases that our 
algorithm cannot handle, typically when two shapes have a ℳ𝐿0 match, the 
distinction can provide False Positive. We illustrated the mining results in Figure 78 
while assessing the fit’s precision. 
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Figure 78. 3D modelling accuracy over the hybrid model. (a) constitute the results of the 3D 
modelling through database mining; (b) presents the colour coded deviations to the 

corresponding model (a) and studied by repartition in (c); gaussian, deviation and size are 
presented in (d). 

We notice that using the different LoD for the models within the shape 
matching approach permit to extract candidates of which the function best fits the 
indoor scenario. However, the obtained deviations to the S3-DIS point cloud range 
between 4 and 6 cm which can limit the scenarios of use. Yet, it is important to note 
that those numbers are heavily influenced by the very high noise of the S3-DIS 
dataset as well as the large occluded areas. Indeed, one advantage of this 3D mining 
mechanism is that it provides exhaustive representations from existing models, 
benefiting asset-management applications. Finally, the proposed methodology 
permit to reconstruct a global 3D model (Figure 62: C, Section 6.3.4) which was 
analyzed and illustrated in Figure 79. 
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Figure 79. 3D area-decomposed global model of S3-DIS in (ℳ𝐿0 ,ℳ𝐿1). (a) constitute the 
results of the 3D reconstruction modelling; (b) presents the colour coded deviations to (a): 

(c) represent the deviation analysis; (d) regroups main indicators. 

We notice that RMSE deviations for (ℳ𝐿0,ℳ𝐿1) range from 2 cm to 5 cm 
which are correlated with the scanning method accuracy. On top, the modelling 
approach which leverages primitives produces an “as-built” reconstruction and 
therefore doesn’t model small deviations relatively to the global assemblage. If we 
look closely at the reconstruction of a hybrid (ℳ𝐿1,ℳ3𝐷𝑀) global model as illustrated 
in Figure 80, we first notice a very good trade-off between precision reconstruction 
and size, which is given by its hybrid nature. Moreover, we obtain a coherent 
watertight CSG assembly usable for simulations as well as 3D printing. On top, the 
different relations between components allow a selectivity for this printing task. 
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Figure 80. 3D modelling accuracy over the hybrid model. (a) constitute the results of the 3D 
modelling through database mining; (b) presents the colour coded deviations to the 

corresponding model (a) and studied by repartition in (c), and the main indicator are 
presented in (d). 

If we compare to the existing Poisson’s modelling approach (Figure 81), we 
see that achieved reconstruction’s precisions are often better. Moreover, the size on 
disk is much larger for the Poisson’s reconstruction. An interesting approach would 
be to combine a triangulation mechanism such as Poisson to account for small 
deviations which would extend to “as is” scenarios vs “as-built”. 
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Figure 81. Poisson reconstruction of the S3-DIS dataset. (a) Global view; (b) High sensivity to 
noise and occlusion; (c) Poisson’s deviation analysis; (d) main indicators 
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By looking at (b) from Figure 81, we also note the high sensitivity to noise 
and occlusion in the analysed dataset. This is particularly striking for the S3-DIS 
dataset and strengthen the robustness of our approach to these common artefacts 
(Figure 82). 

 

    

(a) (b) (c) (d) 

Figure 82. Noise and occlusions sensitivity. (a) and (c) shows a Poisson's reconstruction; (b) 
and (d) shows the (ℳ𝐿0 ,ℳ𝐿2) reconstruction. 

In the next sub-section, we will investigate the performances and 
implementation aspects of our approach. 

6.4.3 Computation time 

We made a prototype implementation of the algorithms described in this 
paper in different programming languages. All the developments regarding the ACO 
were made in Java. The different application layers are built on top of RDF and ARQ 
API of Jena Apache (Java). Jena is an OWL-centric framework that is particularly well 
suited for our ontology more than OWLAPI, which is RDF-centric. The software 
Protégé was used as an interface to construct the ACO ontology. The part-
segmentation, multi-LoD modelling and database matching were implemented in 
python using a minimal number of libraries: numpy (for numeric calculations), 
scikitLearn (for least squares, PCA analysis and signal analysis), matplotlib (for 
visualization), laspy (for point cloud loading), networkx (for graph and connectivity 
inference), psycopg2 (for a link to the SPC in-base data, stored in PostgreSQL) and 
rdfLib (for a connection to RDF triplestore). Visualisations and rendering were made 
using Three.js or CCLib. All the experiments were conducted on a computer with an 
Intel Core i7 at 3.30 GHz and 32 GB of RAM. The exchange of information is made 
through a language processing module which can link SQL statements to JSON, RDF 
and OWL data, and be manually extended for natural language processing. 
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Figure 83. Relative time processing regarding the main elements of the 3D modelling engine 

The running times (Figure 83) for the examples presented in this paper as 
well as some additional experimental datasets range from some seconds for the 
simpler shapes to several minutes for the more complex shapes. In average the 
approach takes 85 seconds for the SIM dataset, 32 seconds for the DAT dataset, and 
16 seconds for the S3-DIS dataset. Only one thread was used for the computation. 
The totalling time depends essentially on the size of the point cloud, and therefore 
the voxelization level retained. We note that there are some threshold and 
parameters that were determined empirically from our observation, and often their 
definition has an impact on the runtime. Relatively, the ontology information 
extraction and inference is quick, followed by the calculation and features in the 
point cloud (for part-segmentation). The voxelisation is the part that consumes the 
most memory but can be further optimized by parallelizing its calculation. The 
structure is already ready for parallel processing. The data mining step can take up 
to 30 seconds for looking up 900 models in the .off file format and provide the 
ranking as well as the necessary transformation parameters. Such a search can also 
be optimized if the models are previously indexed. The CSG integration is quite fast, 
and usually is done in under 5 seconds. The full workflow from SPC data extraction 
to multi-LoD modelling and shape matching takes around 5 minutes for a full scene. 
The IFC file creation is made based on attributes in the JSON file format using the 
FreeCAD python wrapper. 
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6.4.4 Limitations 

In an attempt to provide a clear list of research directions, we identified ten 
main points that can be further investigated: 

1. In our approach, we consider planar shapes only or manufactured shapes. It 

would be interesting to extend the method to more complex parametric 

representations as reviewed in Section 6.2.1. 

2. We consider the initial segmentation perfect. While the proposed algorithms 

are robust to false positives on planar shapes, handling failure cases that can 

arise when detecting furniture elements would permit to extend the depth 

of the framework. 

3. In our comparison and results analysis, we noticed deviations with elements 

which present a non-planar morphology. Adding a layer of shape 

deformation processing to best fit shapes is an opening to provide a compact 

hybrid model. 

4. The ACO was defined using expert’s knowledge, shape grammars and 

standards in use in Europe, thus presents limitations linked to knowledge 

standardization. Extending the “standards” and features through machine 

learning could help to better generalize. 

5. Our voxel-based clustering approach is dependent on the underlying point 

data and density, and therefore it can have a high memory footprint thus 

time execution. We investigate the parallelization of computation to 

alleviate the processing and extend it to multi-LoD octree-based analysis. 

6. The binning and model fitting step (Section 6.3) depend on the initial axis 

orientation’s determination. Extending its sturdiness to highly noisy and 

non-uniform point sampling would extend the flexibility of the workflow. 

7. The considerations in this paper and tests were conducted in indoor built 

environments only. Research to extend it to other scenes and outdoor 

scenarios is compelling. 

8. Non-standard shapes are difficult to describe through a knowledge-based 

approach. This limitation comes from the nature of ontologies to be 

integrated in standardisation and interoperability workflows. A solution 

would be to compute robust features through a learning network on the 

existing set of 3D shapes. 

9. In our experiments we mainly considered gravity-based scenes with an 

initial constraint regarding the object orientation. A global registration 

method would give additional flexibility about the prerequisites for the 

input dataset. 
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10. We used the ACO for guiding the modelling process only. Due to its 

conception, it could be used as an ontology of classification to classify a point 

cloud in elements described within the OWL. 

6.5  PERSPECTIVES 

Admittedly, the presented work is merely making one step forward in 
solving the general problem of 3D Point Cloud modelling. It raises several research 
directions described in Section 6.4.4, which arise from several identified limitations. 
It is important to note that our approach is based on a contextual analysis of our 
environment looking at how elements interact with each other. As such, extending 
the methodology needs a generalization effort regarding knowledge processing. 
Indeed, as it is based on an ACO knowledge representation of a specific application, 
the establishment of the ontology as it stands can in turn limit the interoperability 
with another domain. However, the approach shows how the context and all its 
implications regarding object relationships can be used for efficiently modelling 
point clouds. Going into details, the initial characterization of input shapes needs to 
be sufficiently meaningful especially the part-segmentation for AE. Furthermore, 
stitching parts as models together especially for man-made shapes is quite a difficult 
problem. It often requires resolving topological inconsistencies between parts and 
the global problem is still an active research area. Our current solution to part 
assemblage is undeniably simplistic, thus tackling the general problem presents 
interesting directions for future research. We are seeing a rapid accumulation of 3D 
models, yet most of these are not semantically described and solely represent 
geometric shapes. We believe that the analogy to a set of shapes as presented in 
Section 6.3.4 is a great way for shape retrieval and semantic completion. It can also 
be used for producing new variations of existing objects as observed by Xu et al. 
[322]. As shown in this paper, context-based categorization can be an effective mean 
to this end. Also, Description Logic (DL) complexity of ACO ontology is SHOIQ(D)25. 
OWL2 and its defined relations are the higher level of definition currently defined by 
OGC specifications. Therefore, in terms of calculation complexity, the proposed 
ontology is a high-level semantic definition, which requires a heavy calculation 
process. To reduce this complexity: functional (F), inverse (I), reflexive and disjoint 
(R) relations will be rethought as much as possible in future work. It is worth 
mentioning that, while in this work we use the KR for guiding the modelling engine, 
it can also be used as a classification ontology. Pellet [341] or HermiT [342] 

                                                                    

25 SHOIQ(D) is a naming 
convention in Description Logic 
describing the complexity of 
reasoning in a knowledge base. SHOIQ 
is a level of complexity between 

OWL2, which is SROIQ and OWL-DL, 
which is SHOIN. Each character in the 
naming convention means that a logic 
constructor is used. 
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reasoners are required because of their support of OWL2 and SWRL built-in 
functions. 

Our part-based segmentation mechanism cannot efficiently handle non-
standardized conception which presents problematics for precise identification. On 
top, complex configurations such as folding chairs are currently not processed by our 
modelling engine. This could be solved by extending our ACO or through 3D database 
mining (if models exist in database). Our 3D shape matching procedure is also very 
interesting for two reasons. Firstly, by using topology, feature similarity and 
contextual information we can recognize within a given space similar shapes, which 
provide a new way of modelling incomplete scene, or for variability analysis. 
Secondly, by looking up a 3D database, we can in turn extract the attached semantics 
to the fitted candidates and enrich the semantics of the 3D models as well as the 
underlying point cloud. Finally, it can be used as a mean not only to reconstruct and 
model an object as a B-Rep or primitive based representation, but to create an open 
link on the database model and its affiliate information. Indeed, this permits to 
extract the added information (dimensions, price, availability …) that a hosting 
database stores for asset management. This provides a great opening to 
interconnected networks of information that transit and avoid unnecessary multi-
existence.  

The scalability to bigger building complexes was proven over the real-world 
datasets, but as denoted, the efficiency can be improved through a better 
implementation. We focused on a geometry from terrestrial sensors with varying 
quality, but we intentionally left out color and texture for their high variability in 
representativity. However, it can be useful in future considerations to better describe 
shapes or as a mean to extract better feature discrimination. Finally, in our approach 
we tried to keep in mind the final use of the extracted 3D models similarly to [284]. 
Whether the goal is the production of indoor CAD models for visualization, more 
schematic representations that may be enough for navigation or BIM applications, or 
simply for scene understanding and object localization. In all these scenarios the 
representation of the final objects differs, but the workflow of our modelling engine 
to generate several shape representations coupled with object relationship is 
particularly adapted. 

To our eyes, one of the most important perspective concerns the 
interoperability of the approach within the SPC Infrastructure, acting as a module. 
Indeed, both are concerned with domain generalization, and the ability to extend 
workflows to all possible applications. Shape representation in different 
granularities is a step toward such a flexible use of semantically rich point cloud data. 
The 3D representation variability given by our multi-LoD approach provides a high 
flexibility when we look at attaching geometries to subset of points (specifically class 
instances). This in turn provides queries and filtering capabilities which offer better 
insight for a new range of scenarios. It also shows how the SPC Infrastructure can be 
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used to provide deliverables for applications such as BIM modelling, virtual 
inventories or 3D mapping. 

6.6  CONCLUSIONS 

We presented an automatic method for the global 3D reconstruction of 
indoor models from segmented point cloud data. Our part-to-whole approach 
extracts multiple 3D shape representations of the underlying point cloud elements 
composing the scene before aggregating them with semantics. It provides a full 
workflow from pre-processing to 3D modelling integrated in a knowledge-based 
point cloud infrastructure. This permits to leverage domain knowledge through a 
constructed applicative context ontology for a tailored object characterization at 
different conceptual considerations. Comprising a 3D modelling step including shape 
fitting from ModelNet10 for furniture, our approach act as an expert system which 
output different .obj files as well as a semantic tree. The framework contributes an 
IFC-inspired as-built reconstruction of the global scene usable by reasoners for 
automatic decision-making. 
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Point Cloud voxelisation of my creator’s home, Toulouse, France. 
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7.1  KEY FINDINGS AND CONTRIBUTION 

The concept of Smart Point Cloud resolves many interrogations that were 
formulated along this dissertation. Its definition as an integrated knowledge-based 
point cloud structure extendable through domain formalizations solves several 
application challenges. The research presents a general automation framework for 
the development of point cloud semantic representations. The SPC Infrastructure is 
interoperable and can be used as a starting point for integrating and collaborating 
around digital reality. Following are short answers regarding the questions initially 
formulated in Section 1.3. 

7.1.1 How to structure efficiently point clouds with domain 
knowledge for interoperable workflows?   

Main answers in Chapter 3  

The purpose of the SPC is to establish a versatile knowledge-base which can 
produce domain-dependent 3D semantic representations. It is conceived around an 
elastic 3-block categorization: device-related knowledge, domain-based knowledge 
and analytical knowledge. These are co-dependent and can be used in synergy for 
specific processes as shown in Chapters 3, 4, 5, 6 and summarized in Figure 84.  

 
Figure 84. Meta-model articulation for the creation of a SPC 

This categorization is found at the structuration level to permit information 
extraction while retaining meaning and concepts for the creation of semantic 
depictions. This is made possible by the proposed generic model which defines a 
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conceptualization on which different knowledge formalization can be attached. The 
approach was thought to allow a maximum flexibility. The data model divides the 
characterization in different hierarchical levels of abstraction to avoid overlap to 
existing models and enhance the opening to all possible formalized structure. The 
core instruction is that the higher levels are closer to a domain representation than 
lower levels imposing their constraints. The overall structure is a pyramidal 
assembly, allowing the resolution of thematic problems at higher levels with 
reference to constraints formally imposed by the lower levels. 

7.1.2 How to leverage a data structure to automate object detection 
over massive and heterogeneous point clouds?   

Main answers in Chapter 4 

The SPC Infrastructure is initially guided by an unsupervised clustering 
approach conditioning the data structure (Figure 85). Conceived as a parser module, 
it enables a spatio-semantic structuration of the point cloud in Connected Elements. 
By extracting segments without going too deeply in their characterization, the SPC is 
highly interoperable permitting a compatibility to several application domain. One 
can also leverage massive point cloud data using the block-storage model 
constructed using semantic patches and generalized geometries. These entities host 
compact and representative feature sets such as low-level descriptors and 
connectivity cues (Chapter 4). They are a flexible and efficient starting point for 

object detection frameworks such as knowledge-based approaches (4,5) or 

supervised approaches such as convolutional neural networks (3). 

 
Figure 85. The SPC parser module for a block-model structuration. 
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7.1.3 How to connect reasoning services for autonomous decision-
making scenarios? 

Main answers in Chapter 6 

One of the most important feature of the SPC is its interoperability through 
a modular conception. While it can be used off-the-shelf as a full-versed solution, its 
flexibility permits to connect existing decision-making sub-modules. One can link 
efficiently agent decision support systems for reasoning purposes. While 
developments were carried in a 3D voxel space with gravity constraints using CEL 
Bounding-Boxes, shape representation in different granularities is a step toward 
such a flexible use of semantically rich point cloud data. The 3D representation 
variability given by our multi-LoD approach provides a high flexibility when we look 
at attaching geometries to subset of points (specifically class-instances). This in turn 
provides queries and filtering capabilities which offer better insight for a new range 
of scenarios. It also shows how the SPC Infrastructure can be used to provide 
deliverables for applications such as BIM modelling, virtual inventories or 3D 
mapping. 

 

Figure 86. The 3D modelling module part of the agent layer to permit a link to different 
generalizations and data representations 
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7.1.4 How can open-source database systems integrate point cloud 
data and semantics? How should one provide domain 
connectivity?  

Main answers in Chapter 3 

The Point Cloud DBMS module of the SPCI follows a block-storage model 
(semanticPatches). The integration in open-source databases such as PostgreSQL is 
then able to handle massive amounts of point data and semantics.  

 

Figure 87. The SPCI conceptual meta-model (level 0) for the structuration of point and 
semantics. 

SemanticPatches are in fact pure voxels or leaf from voxels when features orient a 
division, then combined to form Connected Elements. To open on different 
applications, domain knowledge formally expressed as an ontology can directly be 
connected via two entry-points (Subspaces and Connected Elements) to permit a 
flexible domain connectivity. For example, we connect the SPC to archaeological  
ontologies (5) such as CIDOC-CRM, to IFC-inspired ontology (3), to ontology of 

classification (4, 5, 6) or to objects definition in sub-Elements (6). 
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7.1.5 How can a system handle the heterogeneity found within point 
clouds datasets and semantics for object detection? Can 
unsupervised frameworks relate to domain concepts?  

Main answers in Chapter 4 and Chapter 5 

Point clouds from reality capture devices suffer from missing data 
(occlusion, material properties, Improper set-up), erroneous data (noise, outliers, 
misalignment) and resolution variations which often delivers incomplete datasets. 
These artefacts augment the heterogeneity in which point clouds are found 
complicating generalized workflows. The SPC parsing module by only using X,Y and 
Z attribute is capable of integrating any point cloud, further extracting voxel-based 
feature sets. This automatic process is very robust to artefacts listed above with an 
in-depth test on the S3DIS dataset, subject to very high missing and erroneous data. 
On top, the SPC integrates point cloud from dense-matching sources, TLS, MLS, BMLS, 
HHLS with no difficulties thanks to a fully unsupervised clustering approach 
leveraging both low-level features and connectivity cues. It leads to Connected 
Elements, which are then directly connectable to domain knowledge sources to 
attach further semantics to these conceptual objects through classification routines. 
These can be expressed as decision trees, graph-based structures or ontologies. 

 
Figure 88. Server-side data management system. Point clouds go through different 

processing steps, and point groups based on the definition of objects regarding domain 
knowledge are constituted and populate the SPC database. 
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7.1.6 How modular is the Smart Point Cloud Infrastructure? How 
efficient are the proposed point cloud processing modules 
(segmentation, classification, semantic injection, semantic 
modelling)? 

Main answers in Chapter 4 , Chapter 5  and Chapter 6 

The SPC provides enough elasticity to centralize knowledge for decision-
making scenarios. Its conception allows a mapping between domain specializations 
thanks to the different modules.  

 

Figure 89. The Smart Point Cloud Infrastructure and its modular architecture associated to 
the thesis chapters. 

The point cloud parsing module is provided as an unsupervised voxel-based 
clustering approach delivering spatially sound segments. It extracts features at 
different levels of detail, from the point level to any generalized geometry. It can be 
extended by adding new feature extraction possibilities or by choosing another 
neighbouring approach. 

The Point Cloud Database module hosts the point cloud in semantic patch 
with its related semantics. It leverages GIS functionalities and extend 3D analysis by 
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giving multiple geometries of references for detailed and efficient analysis. It can be 
extended by providing an indexing structure  

The Point Cloud Classification Module includes multiple solutions. First, a 
deep learning method based on PointNet Vanilla to permit supervised learning and 
the integration of new training data giving more robust results. Then, a decision- tree 
permitting a well performing classification with a high F1-score (>85%) for planar-
dominant classes comparable to state-of-the-art deep learning. Finally, a domain 
specialization for tesserae extraction giving an average 95% recognition accuracy for 
gold tesserae, 97% for faience tesserae, 94% for silver tesserae and 91% for coloured 
glass. 

The reasoner module was populated with a 3D modelling agent that permit 
initially part-segmentation (F1-score>95% for chair elements) followed by efficient 
multi-modal modelling. Comprising a 3D modelling step including shape fitting from 
ModelNet10 for furniture, the module act as an expert system which output different 
.obj files as well as a semantic tree.  

The visualisation module as a web-based platform is oriented to permit 
efficient collaboration by different actors and constitute an interactive human-in-
the-loop opportunity to establish training datasets. 

7.2  RESEARCH DIRECTIONS  

7.2.1 Better generalization 

Any modelling choice is arbitrary and depends on the conscious or 
unconscious aspirations of the designer. Although our work responds to a concern 
for generalization at a spatio-semantic level, it nevertheless remains that it is not 
totally independent of a certain context. It is for this reason that we wanted to clearly 
illustrate a privileged domain of application: indoor environments (for BIM, 
emergency response, inventory management, UAV collision detection …). This choice 
permits to explore different scales and configurations for deeply and entirely testing 
our developments. It is also ideal for the definition of new virtual spaces, and the GIS 
demand associated to such environment is ever increasing. Therefore, as the 
formalization of domain constantly evolve, research tracks for testing the SPC against 
other environments and applications is important to improve and tweak its core for 
a wider deployment. 

7.2.2 Better domain knowledge integration 

While the SPCI provides direct integration of formalized or inferred domain 
knowledge, future work including the extensibility of the proposed model to other 
data types, as well as a better integration of learning routines and knowledge sources 
is very interesting. As such, some work has been undertaken for backpropagating 
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learning parameters in fuzzy networks to provide a very high flexibility in the 
definition of ontologies thresholds. Also, the Semantic Web and resources present a 
variability which is to be thoroughly studied to provide a more flexible way to 
directly integrate knowledge from trusted sources. 

7.2.3 Improve reasoning through AI-based inference 

The SPC infrastructure permits to link agent decision support systems and 
reasoning. However, finding an efficient AI-based agent can become complicated for 
one application, so generalizing software agents is a massive challenge. To have an 
intelligent agent that performs reactively and/or pro-actively, interactive tasks need 
to be tailored to a user's needs without humans or other agents telling it what to do. 
To accomplish these tasks, it should possess the following general characteristics in 
regard to [130]: (1) Independence, (2) learning, (3) Cooperation, (4) Reasoning, (5) 
Intelligence. This relates to the exploratory research field of for Artificial General 
Intelligence26 [131] which explicitly justify a need of virtual environments that 
incentivize the emergence of a cognitive toolkit, such as the SPC infrastructure. As 
such, SPC-based multi-agent environments provide an opening thanks to its variety 
(the optimal strategy must be derived optimally) and natural curriculum (the 
difficulty of the environment is determined by the skill of other agents). This 
direction while being extremely exciting to avoid purpose-specific algorithm is still 
a research question that need to be further explored, in which deep Learning may 
provide a suitable answer. 

7.2.4 Dynamic data and temporality integration 

While 3-dimensional spaces are strongly inferred in the SPC model, 4-
dimension spaces integrating time or by extension n-dimensional spaces are possible 
characterizations for a greater interoperability. Tests were conducted with static 
point data only, but varying positions in space and time present additional 
problematics that could be addressed through new modules or an extended SPC data 
model. Better integration such as continuous data or the storage and reasoning over 
datasets covering one location at different time intervals has yet to be further 
investigated. Indeed, new descriptors emerging from change detection could provide 
new insights and possibilities for many industries. Also, this opens on continuous 

                                                                    

26 Artificial General Intelligence is the 
intelligence of a machine that could 
successfully perform any intellectual 
task that a human can do, including 
reasoning; judgment calls under 
uncertainty; KR; planning; learning; 
natural language communication. 

Other important capabilities include 
the ability to sense (e.g. see) and the 
ability to act (e.g. move and 
manipulate objects) in the world 
where intelligent behaviour is to be 
observed. 
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Level of Detail possibilities which can provide better ways of handling the amount of 
data within the Infrastructure. 

7.2.5 Enhanced unsupervised feature extraction and segmentation 

It is important to retain an unsupervised approach to prepare the data to be 
usable by many classifiers thus applications. On top, the creation of links between 
Connected Elements is a novelty which provides interesting perspectives concerning 
reasoning possibilities that plays on relationships between elements. Additionally, 
the decomposition in primary, secondary, transition and rest elements is very useful 
in such contexts as one can specialize or aggregate elements depending on the 
intended use and application. Indeed, the approach permits to obtain a precise 
representation of the underlying groups of point contained within Connected 
Elements and homogenized in Semantic Patches. This can be enhanced by providing 
a more defined segmentation for non-planar scenes where other features could be 
extracted permitting an over-segmentation suited for very complex scenarios. 
Promisingly, the currently extracted relational graph is fully compatible with the 
Semantic Web and can be used as a base for reasoning services, opening on several 
possible applications (digital inventories, 3D modelling, BIM, Facility Management 
…) to be further studied. Of course, it is also easily extensible by improving the 
feature determination and enhancing the performances. 

7.2.6 Enhanced classification approaches 

The established ontology-based classification method (indoor assets and 
archaeological tesserae) is improvable by providing more flexible definition of 
classes. For example, one can differentiate clutter based on connectivity and 
proximities to further enhance the classification (E.g., clutter on top of a table may 
be a computer; clutter linked to the ceiling and in the middle of the room is a light 
source …). Specifically, it can undergo an ontology refinement to provide a higher 
characterization and moving thresholds to better adapt the variability in which 
elements are found in different datasets. Also, supervised learning approaches are 
promising ways to define a well-performing classifier, but the constitution of several 
training datasets for each application represent a largely time-consuming task. As 
such, the ontology approach permits to quickly obtain training data, even in a semi-
automatic manner using the SPC visual interface to define the different concepts 
interactively. As such, the present infrastructure can be used as a training platform 
for the creation of annotated datasets in a semi-automated manner, with minimal 
supervision by just giving insight on the domain specialisation. E.g., the ACO 
(Application Context Ontology) was defined using expert’s knowledge, shape 
grammars and standards in use in Europe, thus presents limitations linked to 
knowledge standardization. Extending the “standards” and features through 
machine learning could help to better generalize. 
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7.2.7 Integrate a natural language processing module 

The integration of a natural language module would allow us to extend the 
possibilities for users to formulate queries that are translated into SQL and SPARQL 
analogues. Indeed, this would participate into a better automatization and human-
machine interface while extending the possible applications to online processing. 

7.2.8 Extending the smart modelling process 

In the 3D modelling provided method, we consider planar shapes only or 
manufactured shapes. It would be interesting to extend the method to more complex 
parametric representations. In the comparison and results analysis, there exist 
deviations with elements which present a non-planar morphology. Adding a layer of 
shape deformation processing to best fit shapes is an opening to provide a compact 
hybrid model. The binning and model fitting step depend on the initial axis 
orientation’s determination. Extending its sturdiness to highly noisy and non-
uniform point sampling would extend the flexibility of the workflow. The 
considerations in this paper and tests were conducted in indoor built environments 
only. Research to extend it to other scenes and outdoor scenarios is compelling. Also, 
non-standard shapes are difficult to describe through a knowledge-based approach. 
This limitation comes from the nature of ontologies to be integrated in 
standardisation and interoperability workflows. A solution would be to compute 
robust features through a learning network on the existing set of 3D shapes.  
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APPENDIX A 
We decided to hold 𝐼𝑜𝑈̅̅ ̅̅ ̅ metrics to get an idea of the worst possible scores 

and compare them with the three methods listed in Table 27. 

Table 27. Intersection-over-Union on Area 5 of our methodology compared to PointNet 
[101], SegCloud [160] and SuperPoint Graphs (SPG [161]) 

IoU for 

Area-5 

Ceiling Floor Wall Beam Door Table Chair Bookcase Clutter 

0 1 2 3 6 7 8 10 12 

PointNet 

[101] 
88.8 97.33 69.8 0.05 10.76 58.93 52.61 40.28 33.22 

SegCloud 

[160] 
90.06 96.05 69.86 0 23.12 70.4 75.89 58.42 41.6 

SPG [161] 91.49 97.89 75.89 0 52.29 77.4 86.35 65.49 50.67 

Ours 85.78 92.91 71.32 0 7.54 31.15 29.02 23.48 21.91 

We see that scores obtained for the floor and the ceilings are comparable to 
the ones obtained by the three deep learning approaches. However, the wall 
detection ratio outperforms both PointNet and SegCloud, but SPG are still showing 
better performances. This is explained by the high level of noise and irregular 
structure. The beam presents a null score (as benchmarked methods) due to the very 
little number of points and specificity of the 3 beams in the ground truth dataset 
labelled containing 22 424 points. 
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APPENDIX B 
 

 
  



 

 

APPENDIX C 
We provide the summary of our analysis conducted per area in Table 28.  

Table 28. F1-score summary of the 6 areas using our semantic segmentation  

F1-

score 

Ceiling Floor Wall Beam Door Table Chair Bookcase Clutter 

0 1 2 3 6 7 8 10 12 

Area-1 0.97 0.96 0.80 0.66 0.24 0.48 0.48 0.26 0.47 

Area-2 0.85 0.94 0.70 0.15 0.22 0.11 0.12 0.26 0.32 

Area-3 0.98 0.98 0.78 0.61 0.21 0.41 0.61 0.38 0.50 

Area-4 0.90 0.97 0.78 0.00 0.12 0.25 0.40 0.24 0.35 

Area-5 0.92 0.96 0.83 0.00 0.14 0.48 0.45 0.38 0.36 

Area-6 0.95 0.97 0.78 0.58 0.24 0.54 0.53 0.28 0.43 

We note that Area-2 is responsible for a drop of performance in ceiling and 
floor detection, as well as Area-4, which is explained by the very irregular structures 
of the ceiling and the presence of multilevel stairs. Wall detection is constant among 
areas whereas beams are very irregular and explain the drop of performances in 
non-weighted. The classes in Areas 2, 4 and 5 are very specific and in a very low 
number of occurrences. Table and chair detection rates are very constant and give 
place for future improvements. Bookcase and clutter also show very similar 
detection rates per area and demand a global classification optimization for higher 
performances. As seen above, ‘table’ presents an unsatisfying detection rate. This is 
due to the very low recall score, as our classifier only tagged points which were 
surely a table.  
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