
Preoperative Surgical Planning
Fauser, Johannes Ludwig

(2020)

DOI (TUprints): https://doi.org/10.25534/tuprints-00011752

Lizenz:

CC-BY-SA 4.0 International - Creative Commons, Namensnennung, Weitergabe un-
ter gleichen Bedingungen

Publikationstyp: Dissertation

Fachbereich: 20 Fachbereich Informatik

Quelle des Originals: https://tuprints.ulb.tu-darmstadt.de/11752

https://doi.org/10.25534/tuprints-00011752
https://creativecommons.org/licenses/by-sa/4.0/
https://tuprints.ulb.tu-darmstadt.de/11752


Computer Science
Department
Interactive Graphics
Systems Group
Medical and Environmental
Computing

Preoperative Surgical
Planning
Toward an Automatic Pipeline for Segmentation and Nonlinear Trajectory Planning in
Robot-Assisted Interventions
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
genehmigte Dissertation im Fachbereich Informatik von Johannes Ludwig Fauser aus Tübingen
Tag der Einreichung: 20.02.2020, Tag der Prüfung: 29.04.2020

1. Gutachten: Prof. Dr.-techn. Dieter W. Fellner
2. Gutachten: Prof. Dr. Arjan Kuijper
3. Gutachten: Prof. Dr. Caroline Essert
Darmstadt – D 17



Preoperative Surgical Planning
Toward an Automatic Pipeline for Segmentation and Nonlinear Trajectory Planning in
Robot-Assisted Interventions

Doctoral thesis in Computer Science by Johannes Ludwig Fauser

1. Review: Prof. Dr.-techn. Dieter W. Fellner
2. Review: Prof. Dr. Arjan Kuijper
3. Review: Prof. Dr. Caroline Essert

Date of submission: 20.02.2020
Date of thesis defense: 29.04.2020

Darmstadt – D 17

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-117526
URL: http://tuprints.ulb.tu-darmstadt.de/id/eprint/11752

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung-WeitergabeuntergleichenBedingungen4.0Internationalhttps:
//creativecommons.org/licenses/by-sa/4.0/deed.de

http://tuprints.ulb.tu-darmstadt.de/id/eprint/11752
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
https://creativecommons.org/licenses/by-sa/4.0/deed.de
https://creativecommons.org/licenses/by-sa/4.0/deed.de


To Janine,
for following my rather short-termed decision to do a PhD,
for her constant and enduring support and encouragement,

for her most generous tolerance to my self-deceiving forecasts
about the duration of our stay.

I would also like to thank Dr. Anirban Mukhopadhyay, Prof. Geor-
gios Sakas and Prof. Arjan Kuijper for their excellent supervision
and guidance. I would like to thank Prof. Dieter Fellner for giving
me the opportunity to follow my passion for medical computing. I
am especially grateful to Prof. Caroline Essert for her valuable feed-
back during conferences and her participation in my thesis commit-
tee.
I would like to thank my colleagues at the Interactive Graphics Sys-
tem Group for the constructive feedback and fruitful discussions, es-
pecially my fellow PhD student David Kügler. I am especially grate-
ful to Georgia Agelopoulou for her exceptional skills in massively
parallel short-term bureaucratic exception handling. I would also
like to thank the students I supervised who contributed significantly
to my research and open source framework.
I would like to thank my colleagues from different research projects,
especially Dr. Igor Stenin and Dr. Julia Kristin at the Heinrich Heine
University Düsseldorf for their expert guidance in temporal bone
surgery, Prof. Bernhard Dorweiler and Dr. Ahmed Gahzy at the
Johannes Gutenberg University Mainz for their introduction to en-
dovascular aortic repair as well as Romol Chadda and Markus Hes-
singer at the Department of Electrical Engineering and Information
Technology for their commitment to our joint work.
Finally, a special thank goes to Florian Jung for his support with a
certain library.





Erklärungen laut Promotionsordnung

§8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der schrift-
lichen Version übereinstimmt.

§8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht
wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthe-
ma und Ergebnis dieses Versuchs mitzuteilen.

§9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter
Verwendung der angegebenen Quellen verfasst wurde.

§9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, den 20.02.2020
J. Fauser

v





Abstract

Since several decades, minimally-invasive surgery has continuously improved both clinical
workflow and outcome. Such procedures minimize patient trauma, decrease hospital
stay or reduce risk of infection. Next generation robot-assisted interventions promise to
further improve on these advantages while at the same time opening the way to new
surgical applications.

Temporal Bone Surgery and Endovascular Aortic Repair are two examples for such
currently researched approaches, where manual insertion of instruments, subject to a
clinician’s experience and daily performance, could be replaced by a robotic procedure.
In the first, a flexible robot would drill a nonlinear canal through the mastoid, allowing a
surgeon access to the temporal bone’s apex, a target often unreachable without damaging
critical risk structures. For the second example, robotically driven guidewires could
significantly reduce the radiation exposure from fluoroscopy, that is exposed to patients
and surgeons during navigation through the aorta.

These robot-assisted surgeries require preoperative planning consisting of segmentation
of risk structures and computation of nonlinear trajectories for the instruments. While
surgeons could so far rely on preoperative images and a mental 3D model of the anatomy,
these new procedures will make computational assistance inevitable due to the added
complexity from image processing and motion planning. The automation of tiresome and
manually laborious tasks is therefore crucial for successful clinical implementation.

This thesis addresses these issues and presents a preoperative pipeline based on CT images
that automates segmentation and trajectory planning. Major contributions include an
automatic shape regularized segmentation approach for coherent anatomy extraction as
well as an exhaustive trajectory planning step on locally optimized Bézier Splines. It also
introduces thorough in silico experiments that perform functional evaluation on real and
synthetically enlarged datasets. The benefits of the approach are shown on an in house
dataset of otobasis CT scans as well as on two publicly available datasets containing aorta
and heart.
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Zusammenfassung

Seit mehreren Jahrzehnten verbessern minimal-invasive Eingriffe sowohl klinische Ar-
beitsabläufe als auch chirurgische Ergebnisse. Diese Verfahren minimieren beispielsweise
das Trauma für Patienten, verkürzen deren Klinikaufenthalt oder reduzieren das Risiko
von Infektionen. Momentan sich in der Forschung befindliche roboter-assistierte Interven-
tionen versprechen, diese Vorteile weiter zu verbesssern sowie neue chirurgische Eingriffe
zu ermöglichen.

Felsenbeinchirurgie und Endovaskuläre Aortenreparatur sind zwei Beispiele für derartige
Ansätze, bei denen das manuelle Einführen von Instrumenten, das von der Erfahrung eines
Arztes und seiner täglichen Leistungsfähigkeit abhängt, durch eine robotergeführte Lösung
ersetzt wird. Der erste Fall sieht einen flexiblen Bohrroboter vor, der einen nichtlinearen
Kanal durch das Mastoid bohrt und dem Chirurgen so einen Zugang zur Felsenbeinspitze
ermöglicht. Diese ist mit derzeitigen Verfahren oft nur unter Beeinträchtigung kritischer
Risikostrukturen zu erreichen. Im zweiten Beispiel wird ein Führungsdraht für Katheter
automatisch in die Aorta eingeführt. Bei diesem unter Fluoroskopie durchgeführten Ver-
fahren verspricht eine robotische Lösung sowohl Ärzten als auch Patienten eine deutliche
Verminderung der ihnen ausgesetzten Strahlung.

Derartige roboter-assistierte Operationen benötigen präoperative Planung, die aus der
Segmentierung von Risikostrukturen und der Berechnung nichtlinearer Trajektorien für
die flexiblen Instrumente besteht. Während sich Chirurgan bisher auf präoperative Bild-
daten und ein daraus erstelltes mentales Modell der Anatomie verlassen konnten, werden
diese neuartige Ansätze eine rechnergestützte Lösung jedoch aufgrund der zusätzlichen
Komplexität aus Bildverarbeitung und Pfadplanung zwingend benötigen. Um eine er-
folgreiche Umsetzung dieser Eingriffe zu erreichen, ist daher eine Automatisierung von
ermüdenden oder arbeitsaufwändigen Aufgaben entscheidend.

Diese Thesis adressiert diese Aspekte und präsentiert eine präoperative Pipeline auf
Grundlage von CT-Daten, die automatisch sowohl eine Segmentierung von Risikostruktu-
ren als auch eine Trajektorienplanung durchführt. Der Hauptteil der Arbeit beinhaltet
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einen automatische Form-erhaltenden Segmentierungsansatz für kohärente Extraktion
von Anatomien sowie einen mehrstufigen Pfadplanungsschritt, der zu lokal optimierten
Bézier Splines führt. Die Arbeit stellt außerdem gründliche In Silico Experimente vor, die
eine funktionale Auswertung von Algorithmen auf echten und synthetisch erweiterten
Datensätzen durchführt. Die Vorteile des vorgeschlagenen Ansatzes werden anhand Ex-
perimenten auf CT-Bilder der Otobasis sowie zweier öffentlich zugänglicher Datensätze
evaluiert.
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1. Introduction

Minimally-invasive procedures are an ongoing trend in surgery [12, 85]. Applications such
as laparoscopic keyhole surgery or endovascular treatment of aneurysms tremendously
increase patient benefit and clinical outcome. These solutions reduce trauma as well
as scarring and result in both shorter recovery time and hospital stay [52, 274]. Major
benefits also lie in reduced risk of infections [219] or other complications during surgery
[93], thus decreasing morbidity associated to the particular disease. Consequently, a
variety of continuum robots for medical applications are currently researched to further
improve these procedures. The survey of Burgner-Kahrs et al. [26] gives a great outlook
on upcoming solutions promising advantages such as access to yet unreachable surgical
sites or applicability to new clinical applications. The presented flexible instruments
(Figure 1.1) replace manual insertion and instrument handling by a robotically-driven
procedure along nonlinear trajectories.

However, a robotic procedure heavily increases the complexity of the minimally-invasive
approach and requires preoperative surgical planning. The envisioned applications, e.g.
needle insertion into soft tissue [187], drilling access canals through bone [126], ribbon
design for intracavitary brachytherapy [188] or steerable guidewires [88], all share the
same setup: Based on an image volume that is acquired before surgery, e.g. a Computed
Tomography (CT) image, a segmentation algorithm extracts organs at risk which are
then used to create a 3D representation of the patient’s anatomy. In a subsequent
trajectory planning step, a designated motion planning algorithm computes feasible
trajectories for the underlying instrument which circumvent the previously detected risk
structures. Successful clinical implementation would require automation of major parts
of this workflow while still keeping the surgeon in the loop for control of critical sub-steps.
Consequently, automatic segmentation algorithms [15, 225], fast and robust motion
planning algorithms [38, 194] as well as tools for intuitive and suitable workflows [90]
are an active research field and crucial for successful clinical implementation.
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Figure 1.1.: Example applications that could benefit from robotically-driven flexible in-
struments. This thesis presents a preoperative planning pipeline for custom
applications in otolaryngology and endovascular surgery. Figure adapted
from [26] © [2015] IEEE.

Current research focuses on individual tasks of these new approaches, such as segmenta-
tion, path planning or robot development. While these works achieve important results
on specific sub-steps, their experiments often give an isolated view on the presented task.
This results, for example, in method evaluation with metrics such as Dice that looks at
image processing performance only. However, the clinical implementation and workflow
rely on all these parts working together. Evaluation of an algorithm for preoperative
surgical planning should thus consider the complete procedure. This thesis introduces
a full preoperative surgical planning pipeline for minimally-invasive interventions using
flexible instruments. It proposes two strategies for retrospective in silico experiments:
Functional evaluation on downstream tasks, e.g. rating segmentation performance on
path planning outcome, and experiments on synthetic anatomies for extensive tests where
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Jugular vein Carotid artery Facial nerve Chorda tympani External auditory
canal Internal auditory canal Cochlea Semicircular canals Ossicles

Figure 1.2.: Example applications in this thesis are Temporal Bone Surgery (Left: using a
bendable drilling unit, colored object on green trajectory) and Endovascular
Aortic Repair (Right: catheter insertion into a side branch of a 3D printed
aortic model).

only limited expert annotated data is available. It contributes a segmentation method
combining Deep Learning with Active Shape Models for extraction of coherent anatomies.
It proposes an extensive trajectory planning step for a novel motion planning problem,
solving a two-point boundary problem in the presence of obstacles, including initial
planning, optimization and generalization. Finally, it presents an open source framework
with GUI for interactive preoperative planning, so the research community can benefit
from this work.

Experiments are conducted for two example applications that benefit from robotically-
driven procedures: Temporal Bone Surgery and Endovascular Aortic Repair.

In Temporal Bone Surgery an access canal needs to be drilled through the mastoid
to reach the surgical site while avoiding vessels, nerves and organs of the hearing and
equilibrium senses (Figure 1.2 left). For procedures such as a cochlear implantation or
vestibular schwannoma removal, curved access canals would allow larger clearance to
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risk structures and access to regions deeper within the temporal bone, thus increasing
accessibility of the surgery for more patients. Despite the rigid environment, tiny structures
such as the nerves and high anatomical variability between patients remain a serious
challenge for segmentation. During cochlear implantation, robust and precise trajectory
planning could benefit the proper insertion of the electrode. For this purpose, path
planning algorithms should consider an optimal angle at the entry point of the electrode
to the cochlea, such that it aligns with the centerline of its basal turn. Preoperative
surgical planning could therefore greatly benefit the necessary navigation accuracy [211]
during surgery.

Endovascular Aortic Repair requires the insertion of a catheter into the aorta or its side
branches (Figure 1.2 right) and the subsequent deployment of tools, e.g. stent grafts,
at the aneurysm’s position. Beforehand, the extraction of a 3D surface model from 3D
angiography images is necessary [54], which is currently done via manual segmentation.
This allows to create a 3D print of the patient’s aortic model that can be used for both
patient education and treatment planning. During surgery, the surgeon navigates under
fluoroscopy, i.e. x-ray guidance, which offers limited support for 3D orientation. In cases
with complex aortic anatomy, insertion of the catheter into side branches of the aorta is
very difficult. Repeated attempts to navigate into these branches extends the length of
the procedure and results in accumulated high doses of radiation for the surgeon. Here,
preoperative planning could again greatly reduce the time needed for segmentation and
enable a robotically-driven procedure with less radiation by computing feasible nonlinear
trajectories for the instrument.

1.1. Preoperative Surgical Planning

The following section describes the four major parts of preoperative surgical planning
(Figure 1.3), each having a significant impact on clinical workflow:

1. 3D-image acquisition using, for example, CT or Magnetic Resonance Imaging (MRI),

2. segmentation of Organs at Risk (also called risk structures, obstacles in the remaining
thesis),

3. trajectory planning for the underlying instrument,

4. retrospective in silico evaluation.
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Figure 1.3.: Schematic view of a preoperative surgical planning pipeline for robot-assisted
surgery. Based on a CT image (1), risk structures of the surgery are segmented
(2). The extracted 3D environment enables motion planning for nonlinear
trajectories (3), where segmented objects are used for collision detection. In
silico evaluation (4) assesses the suitability of individual segmentation and
planning algorithms even on small datasets.

Image Acquisition follows dedicated hardware acquisition protocols for the application.
For temporal bone surgery, this could include CT and MRI scans to measure clinical
characteristics such as the cochlear duct length [86] influencing implant design or to
detect malformations [218] such as aplasia or incomplete partitions of the cochlea. While
this step is not considered in this thesis, knowledge about this part is important. Especially
computer scientists can benefit from dedicated articles [109, 128] around clinical practices
in this field.

Segmentation is the process of partitioning an image into several regions. In medical
image processing for preoperative planning this results in either a 3D label image dis-
tinguishing between foreground and background voxels or a triangle mesh representing
the organs’ boundaries. It has been a core unsolved problem in the medical field. While
model-based algorithms like Active Shape Model (ASM) have shown promising results, the
rise of Deep Learning in recent years has since shown that outstanding general architec-
tures such as U-Net often outperform the former. Independent of the method, automation
of segmentation can benefit the clinical workflow. First, it can significantly reduce time
and thus free the surgeon from a laborious and tiresome task. For endovascular surgery,
a combination of Deep Learning prediction and ASM regularization would reduce manual
aortic segmentation for 3D printing [54, 104], currently done in roughly 2 hours per
patient at our collaborators institute, to an automatic procedure of 10 minutes. These
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Cochlea

Obstacle1

Obstacle2

qG

qI
W1

W2

R

Skull Surface

Figure 1.4.: Sketch of the novel motion planning problem in surgical planning for Tempo-
ral Bone Surgery, which includes hard constraints on position and direction
at qI and qG of a potential trajectory. The goal qG marks the entry point of
the electrode at the cochlea and should be reached along the centerline of
the lower ductus. The initial state qI should align with the robot’s orienta-
tion either preoperatively at the skull’s surface or during navigation, when
replanning is required from the current pose of robot R to a waypoint W2.

models could be used for planning, patient education or surgeon training [92]. Second,
it reduces intra- and inter-clinician bias [252], leading to a more robust and reproducible
procedure.

Trajectory Planning is responsible for finding feasible trajectories for the underlying
instrument. This thesis covers interventions with instruments that follow curvature
constrained trajectories, e.g., needles, drilling units or catheters. Figure 1.4 sketches the
problem. From an initial state cI with given position and direction a trajectory has to be
found to a goal state cG with given position and direction. In temporal bone surgery, this
initial state could be given by a positioning unit for the instrument. The goal state could
be given by the optimal insertion angle at the round window at the cochlea [240]. The
problem occurs in two phases: First, a preoperative confirmation of the feasibility of the
minimally-invasive approach is needed by providing at least one collision-free trajectory
for the instrument from cI to cG. Second, during navigation of the instrument along the
path, misalignment might require a replanning for feasible trajectories from R to W2.
Suitable motion planning algorithms thus have to quickly solve a two point boundary value
problem in the presence of obstacles. Beside this technical challenge, clinical constraints
for a safe procedure require for example optimized distances to obstacles along a path,
further increasing problem complexity.
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Aorta Heart Esophagus Trachea

Figure 1.5.: Surfaces models from (left to right) expert annotations, U-Net segmentation
and shape regularization. Because Deep Learning architectures perform only
pixel-wise classification, results may contain fragmented structures. The com-
putation of nonlinear trajectories (green lines) thus requires the extraction
of plausible anatomies, possible by our shape regularized approaches.

Retrospective In Silico Evaluation Preoperative surgical planning thus combines two
orthogonal research fields, segmentation and motion planning, where the latter heavily
relies on the quality of the former. However, segmentation quality is usually measured
by objective measurement functions such as Dice or Hausdorff Distance (HD). These
metrics are useful for general assessment of segmentation algorithms or applications
such as volume estimation of the left ventricle [171]. In contrast, segmentation for
surgical planning provides representations of organs at risk, which are used for collision
detection in downstream tasks such as trajectory planning (see Figure 1.5). The topology
and shape of a segmented object matter and fragmented surface meshes or isolated
labels, unrecognized by metrics such as Dice, are problematic. Finally, motion planning
algorithms for our clinical applications should be robust, converging to solutions in the
highly varying anatomies of patients. In motion planning, this is usually done using
random worlds, randomly created setups with obstacles and start and goal states, in
which algorithms have to find solutions. However, for these clinical settings only scarce
datasets are usually available and experiments on a statistically meaningful sample size
could greatly benefit evaluations. Such in silico experiments, performed before the use of
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phantoms, could thus add significant scientific value because it thoroughly evaluates the
interplay of these two parts.

1.2. Problems & Contributions

Combining all aspects, the problem of preoperative surgical planning can be described
as follows: Automatically segment a patient’s anatomy that enables the computation
of collision-free nonlinear trajectories, such that these paths optimize clinical outcome
by guaranteeing optimal alignment and clearance to risk structures. In particular, such
planning faces the following challenges:

• a thorough evaluation of the preoperative pipeline regarding both scarcity of data
and influence of segmentation on trajectory planning.

• automatic segmentation for Temporal Bone Surgery with results suitable for collision
detection.

• motion planning capable of quickly solving and optimizing the two point boundary
value problem under clinical constraints.

This thesis contributes to each of these problems, resulting in automated segmentation
and trajectory planning steps. The methods are evaluated on both in house and publicly
available datasets and published as open source code in a framework with GUI that allows
both technical and clinical researchers to improve and evaluate the suggested preoperative
surgical workflow. Future work can thereby address individual parts of this pipeline while
improving the complete preoperative surgical planning task through evaluation of the
whole procedure. In particular, this thesis includes the following contributions:

• It introduces automatic shape regularized segmentation as a prerequisite for surgical
planning, proposing a combination of Deep Learning and Probabilistic Active Shape
Models as a solution.

• It describes a general motion planning problem formulation for nonlinear interven-
tions.

• It propose a three step solution for this formulation by presenting

– Trajectory planning with Bidirectional RRTs on cubic Bézier Splines,

– Sequential convex optimization on these paths for local optimality,
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– Translation of these paths to Circular Arcs, making this 3 step approach suitable
to instruments such as bevel-tip needles

• It shows the applicability of this solution on different applications using instruments
such as drilling units, flexible needles and guidewires.

• It makes the complete open source framework with GUI available to the research
community, enabling interactive segmentation and trajectory planning employing
Deep Learning based segmentation, trajectory planning and optimization.

1.3. Thesis structure

The remaining of the thesis is structured as follows: Chapter 2 first gives an introduction
to preoperative surgical planning (Section 2.1). It then gives a short introduction to
model and learning based semantic segmentation (Section 2.2) with methods such as
ASM, Conditional Random Field (CRF)s and influential state of the art Deep Learning
architectures. This section on segmentation finishes with a review on specialized solutions
for Temporal Bone Surgery, endovascular procedures and shape regularization. Finally,
the chapter summarizes the state of the art for motion planning (Section 2.3) with a focus
on random sampling and solutions for surgical instruments.

The next three chapters contain contributions to preoperative surgical planning, segmen-
tation and motion planning. In Chapter 3, a thorough retrospective in silico evalua-
tion strategy for a preoperative surgical planning pipeline is proposed, using synthetic
anatomies and functional evaluation [73, 75]. It finishes with the presentation of an
interactive planning pipeline, which is suitable to setup the experiments. The shape
regularized segmentation using a slice-by-slice U-Net approach followed by Probabilistic
Active Shape Models [75] is presented in Chapter 4. Chapter 5 proposes an extensive
trajectory planning step. It starts with motivating the technical and clinical constraints and
then follows the common motion planning step of deriving a custom Problem Formulation
for the two point boundary value problem. This formulation can be solved by to Bi-RRTs
proposed by me [74]. It follows optimization of the Bézier Spline variant [77] and a
generalization adapted to the clinical workflow [76]. Finally, it presents an extension to
movement along circular arcs, extending the methodology to more instruments and thus
more applications [72].

In Chapter 6, extensive evaluation of the complete pipeline is presented for Temporal
Bone Surgery and Endovascular Aortic Repair. The thesis finishes with a summary and
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look into the future in Chapter 7. The appendix lists my publications, awards as well as
supervision activities, includes my resumé and contains a glossary.
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2. State of the Art

This chapter reviews in three sections the concepts of preoperative surgical planning and
its two major parts: segmentation and trajectory planning. Section 2.1 gives an overview
on approaches combining both segmentation and trajectory planning to a complete
workflow. Specifically, it takes a deeper look on experimental validation. Section 2.2
introduces state of the art segmentation approaches such as Active Shape Model (ASM)s,
Conditional Random Field (CRF)s and Convolutional Neural Network (CNN)s. It then
reviews segmentation techniques for the twomajor applications targeted in the experiment
section: Temporal Bone Anatomy and Endovascular Aortic Repair. It concludes with a
survey on spatially-consistent segmentation and shape regularization. Finally, Section 2.3
gives an introduction to motion planning focusing on sampling based approaches such as
Rapidly-exploring Random Tree (RRT)s. The survey starts with a general review onmotion
planning algorithms for nonlinear curvature constrained trajectories. It then specifically
targets publications for minimally-invasive interventions with flexible instruments such
as bevel-tip needles or guidewires.

2.1. Preoperative Surgical Planning

Minimally-invasive surgery has been extensively studied in the last decades and new
solutions for various applications are an active research field [12, 26]. These include,
among others, drilling linear canals for multi-port Temporal Bone surgery [230], steerable
needles for soft tissue [201, 203, 236], flexible endoscopes [35, 81] or guidewires [69,
88] to insert catheters for stenting or treatment of aneurysms. Such robotically-driven
approaches promise preciser interventions, easier ways through complex anatomies or
safe access to yet unreachable regions. They come, however, at a cost: They now require
extensive preoperative planning, where segmentation of risk structures provides a 3D
environment for trajectory planning.
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canal Internal auditory canal Cochlea Semicircular canals Ossicles

Figure 2.1.: Evaluation of pipelines for preoperative surgical planning usually performs
isolated experiments on segmentation and trajectory planning before mov-
ing on to phantom evaluation. Thorough analysis in an extensive in silico
simulation that considers both steps is often missing.

Research for new approaches evaluates the pipeline shown in Figure 2.1 in different ways.
Most works present unique solutions for a particular step and evaluate it in isolation. That
means, segmentation algorithms are evaluated on segmentation metrics such as Dice,
Hausdorff distance or volume overlap. Papers proposing new planning algorithms are
evaluated using ground truth risk structures as obstacles. The results report feasibility of
the algorithm and show performance compared with existing solutions. The next step
often consists of experiments on cadaver specimens or phantoms. However, works on
new Computer Assisted Interventions are often based on only a very small dataset and
thorough in silico evaluation on a large test set is not feasible.

The following presents a survey on publications addressing such a complete view on
preoperative planning (see Table 2.1) and gives an overview on their evaluation strategy.
These works either utilize open source tools (such as MITK [257], Slicer 3D [79], SOFA
[71], ROS [198]) or present own customized solutions. For Temporal Bone Surgery in
particular, the survey of Dahroug et al. [49] gives a good review on existing systems and
approaches, including concepts and robotic solutions for cochlear implantation.

Noble et al. [179] combined a registration based segmentation of risk structures with
a planning step for linear cochlear access. Monte Carlo simulation on 18 samples was
performed to evaluate the computation of an optimal trajectory. Eilers et al. [63] evaluated
the drilling of a linear canal to the cochlea planned by a custom surgical planning tool that
makes use of the automatic segmentation algorithm for facial nerve and chorda by [178].
Experiments on five cadaver specimens of the human temporal bone were conducted and
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Table 2.1.: Preoperative planning papers. Abbreviations: Statistical Shape Model (SSM).
Reference Segmentation Trajectory Topic Datasets
Noble et al. (2007) automatic monte carlo optimization Temporal Bone Surgery 18 CT images
Eilers et al. (2009) automatic linear drilling Temporal Bone Surgery 5 cadaver specimen
Seitel et al. (2011) semi-automatic, MITK pareto optimization Needle Insertion 10 CT images
Spottiswoode et al. (2013) semi-automatic 3D printing for neurosurgery 2 MRI images
Gerber et al. (2014) semi-automatic interactive planning Temporal Bone Surgery 8 cadaver experiments
Liu et al. (2014) manual segmentation, ITK-SNAP none Temporal Bone Surgery 2 cadaver experiments
Ren et al. (2014) manual segmentation, ITK-SNAP integer programming Brain Tumor Ablation 1 phantom, 1 swine experiment
Mangado et al. (2016) registration, SSM none Temporal Bone Surgery 25 CT images
Chen et al. (2017) semi-automatic, Slicer 3D interactive planning Implant Placement Surgery 1 phantom, 1 cadaver experiment
Golkar et al. (2019) interactive segmentation, MITK none Percutaneous Cryoablation 1 phantom & 5 MRI scans
Essert et al. (2019) interactive segmentation, MITK none Percutaneous Cryoablation 5 MRI scans
Herz et al. (2019) automatic none Prostate Biopsy 10 + 73 MRI images
Liu et al. (2019) manual, Slicer 3D interactive planning Radiofrequency Ablation 1 phantom, 1 swine experiment

no damage of risk structures were reported. Seitel et al. [216] presented a trajectory
planning framework based on MITK for needle insertion in liver biopsy. It uses MITK’s
software tools for manual interactive segmentation and computes linear trajectories
optimizing hard and soft constraints. An evaluation on 10 datasets from interventions
resulting in complications showed that the framework would propose clinically safer
alternatives than the ones that were actually chosen by surgeons. Spottiswoode et al. [228]
presented a software package for neurosurgery that computes a 3D printable model of the
brain and computes linear trajectories for brain tumor biopsy. Experiments on 2 patients
allowed evaluation of the accuracy of the printed 3Dmodels. Gerber et al. [90] presented a
custom surgical planning tool for robotic cochlear implantation that was evaluated on eight
cadaver heads. The solution included a semi-automatic segmentation procedure, patient
on image registration using fiducial markers and interactive definition of a safe drilling
trajectory. A cadaver study showed the feasibility of cochlear implantation using a master-
slave–system [147]. Using a da Vinci surgical system, these experiments on 2 specimen
manually segmented obstacles using [277] and performed a mastoidectomy with a custom
drill adapter for the system. A pipeline for treatment planning for radiofrequency ablation
of large tumors was presented by Ren et al. [202]. Using ITK-SNAP an interactive semi-
automatic segmentation was performed before computing trajectories and subsequent
ablation in phantom and animal studies.

Mangado et al. [158] proposed to physically simulate the insertion of a cochlear implant
electrode array. The authors presented a framework that includes registration of a
SSM, build from µCT, onto a preoperative CT image, electrode placement, creation
of auditory nerve fibers of the inner ear and finally the building of a mesh for finite
element simulation. A surgical navigation system based on Slicer 3D that made used of its
semi-automatic segmentation and linear path planning modules was presented by Chen
et al. [34]. Phantom and cadaver experiments for implant placement were conducted
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to show the accuracy of the system. Golkar et al. [95] and Essert et al. [67] performed
planning for cryoablation by modeling the iceball of the probe and solving the Partial
Differential Equation (PDE) of a heat equation that describes the propagation of heat in
human tissue. The planning accounted for risk structures that were manually segmented
using MITK. SliceTracker [110] is a recently published open source framework based on
Slicer 3D for prostate biopsy. The system included the automatic segmentation method
DeepInfer [161] for prostate segmentation and supervised manual placement of needles.
A functional evaluation regarding biopsy targeting error and mean landmark registration
error evaluated in 10 prospective and 73 retrospective experiments. [146] presented a
planning and insertion procedure for radiofrequency ablation using only a single incision
port. The planning pipeline relied on manual segmentation of risk structures using Slicer
3D. Experiments on a phantom and a swine showed the feasibility of the robot-assisted
system.

2.2. Segmentation

Segmentation is the task of dividing an image into distinctive regions [96] that together
cover the whole image. The result is either a label image (Figure 2.2), masking each
pixel that corresponds to a certain region, or a direct extraction of each surface. An
exhaustive introduction into image processing is given by Gonzalez and Woods [96],
with detailed chapters about segmentation, feature extraction and an early introduction
to deep learning with CNNs. A focus on medical image processing is found in [2, 57]
which cover, among others, extensive description of level set methods and deformable
models, including ASM. The Probabilistic Active Shape Model (PASM) used in this thesis
is introduced in [124].

Classic gray level algorithms such as thresholding or region growing and early model
based approaches such as level set methods or graph cuts are still being applied for
cases with very limited available data or unique challenging features [19]. While more
advanced model based approaches such as atlas-based registration [24, 120] or ASMs [45]
achieve good results in many applications, the field has been dominated by Deep Learning
solutions for several years, now. The recent surveys by Shen et al. [222] and Litjens
et al. [144] give a good overview of Machine Learning advances regarding different
modalities such as Computed Tomography (CT), Computed Tomographic Angiography
(CTA), Magnetic Resonance Imaging (MRI) or Ultrasound, applications such as breast-,
cardiac-, or abdominal image analysis, or tasks such as segmentation and classification.
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Figure 2.2.: Left to Right: A raw CT images of the temporal bone. Overlayed by seg-
mentation masks representing an objects volume and boundary. Surface
representation.

The following sections focus on the two application domains covered by experiments in
Chapter 6: Temporal Bone Surgery (Section 2.2.3) and Abdominal Aortic Repair (Sec-
tion 2.2.4). Section 2.2.5 then gives a broader look on shape regularization. Summaries
of publications are also listed in Table 2.2, Table 2.3 and Table 2.4, each giving remarks
on image modality, segmented anatomy and general methodology. For the sake of com-
pleteness, short reviews on ASM and Deep Learning are given first in Section 2.2.1 and
Section 2.2.2.

2.2.1. Active Shape Models

Active Shape Models, first presented byCootes et al. [45], are a local search algorithm
that iteratively adjusts a learned representation of an object onto a new image. The
setup of the whole method is complex and usually subject to lot of parameter tuning
[15, 124]. Figure 2.3 shows a figurative example of creating a SSM and performing
ASM segmentation. The training set consists of labeled images, from which surface
representations are extracted using, e.g. Marching Cubes [150]. In order to generate a
SSM, each of the surface meshes has to have the same number of landmarks NL. These
can be generated using remeshing algorithms such as approximated centroidal voronoi
diagrams [244] that generate topology conserving triangle meshes with a predefined
number of vertices. The vertices of these meshes then form the landmark vector of the
respective shape. For the subsequent computation of a point distribution model, the
landmark vectors of each training shape have to correspond to each other. For this
correspondence search, several methods have been proposed in the past. Linear or kernel
Principal Component Analysis (PCA) [154] can be used to transform the shapes into a
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Figure 2.3.: Setup of Active Shape Models. First, surface models with an equal number of
vertices are generated from a training set. Applying correspondence search
brings the landmark vectors containing the vertices in a common coordinate
frame and allows the computation of a statistical shape model. Using the
SSM’s mean shape as a first guess, it can be iteratively adapted to the image
by searching along the normal of each landmark for corresponding image
features.

common coordinate system whereas strategies such as nonrigid surface registration [124]
for objects of arbitrary topology or consistent parameterization for shapes with specific
genus [17] find corresponding vertices. Once these correspondences are defined, the
original shape model [45] includes a point distribution model to describe the statistical
variation between samples.

The ASM procedure is shown in Algorithm 1. A necessary prerequisite is the SSM that
encodes a vector space (or shape space) of valid forms of the object. The algorithm
is usually initialized with the mean shape of this shape space, which is manually or
automatically placed within the image. It then repeatedly switches between deformation
of the current shape and restriction to the shape space. For deformation, new positions
for the landmark vector are computed along each landmark’s normal. Then, a fitness
function computes scores for each of those new positions, e.g. based on image gradients
or intensity values [108, 245]. For restriction, the deformed landmark vector is then
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Algorithm 1 Active Shape Model algorithm
Input: Image I, Statistical Shape Model (SSM) S, mean shape x = (x1, . . . , xNL

).
Output: Label Image, Label Surface.
1: procedure
2: x← place_mean_shape()
3: while i < Imax && !converged do
4: F ← image_features(x)
5: xnew ← best_fitness(x, F )
6: x← constrain_shape(S, xnew)
7: end while
8: end procedure

projected back into the shape space. This procedure is repeated until either convergence or
a maximum iteration limit. Due to restriction to only valid representations, the algorithm
returns segmentations with only anatomically plausible shapes [261].

As an example, Becker [13] performed an extensive evaluation for the nine risk structures
in Temporal Bone Surgery. This resulted in a unique combinations of landmark vector
sizes, parameter choices for multi-scale correspondence search, fitness functions for
feature classifications and different weighing parameters in a PASM.

2.2.2. Convolutional Neural Networks and Conditional Random Fields

Convolutional Neural Networks (CNNs) were shown to outperform existing model-based
approaches for many applications in medical image processing [144] and are currently
the method of choice for semantic segmentation. These networks are based on the idea
of Multi-Layer Perceptrons (MLPs) (see e.g. [96]), where each perceptron p consists of a
nonlinear activation function σ that evaluates a trainable biased weighted sum, that is

MLPM (x) = p0(. . . pM (x)),M > 0,where

pj(x) = σj(
N∑
i=1

wj,ixi + bj), x ∈ RN , N > 0, 0 ≤ j ≤M,σ : R→ R.

A popular choice for σ is ReLU (Rectified Linear Unit) activation [168] to prevent the
vanishing gradients problem in deep neural networks. A CNN now uses convolutional
kernels as linear functions inside activation and thus takes an image instead of a vector as
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Figure 2.4.: A CNN architecture. Starting from an input image (green), a series of layers
consisting of two successive feature maps (yellow boxes) and pooling func-
tions (red) creates a latent representation (yellow box fc8) of K > 0 feature
maps. These are deconvoluted to the original image size (blue). Softmax
activation (purple) on this final layer then creates the K segmentation maps,
one for each label.

input. Multiple pooling layers are typically added, combining several perceptrons using
max or mean operations. This reduces the size of feature maps and thus the number of
overall network parameters. Figure 2.4 shows this architecture in a fully convolutional
neural network [148].

One of the most successful and widely adopted networks for semantic segmentation is
the U-Net architecture [41, 204]. The use of skip-connections to the upsampling part
(Figure 2.5) of an auto-encoder network greatly increase the performance of CNNs. This
outstanding performance was backed up by the recent work of Isensee et al. [118], which
outperformed competing methods in almost all of the ten segmentation challenges of the
2019 Medical Segmentation Decathlon with the use of three different vanilla U-Nets and
suitable preprocessing schemes.

One major drawback of these CNNs lies in their pixelwise classification of the label image.
Unlike for model-based approaches such as active contours, there is no guarantee that
the segmented object keeps a smooth surface or is a completely filled region. Segmented
structures thus might include holes, appear as fragmented contours, or suffer from very
high curvature at the boundary. A popular way in current research that deals with this
problem is the use of CRFs as a post processing method after CNN segmentation. A CRF
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is a discriminative undirected probabilistic graphical model that consists of two random
fields connected via unary and pairwise edge potentials [132] (Figure 2.6). The first
models the intensity values of an input image I of size N ×M , considering each pixel Pi,j

as a random variable Xi,j , 0 ≤ i, j ≤ N,M that maps into the set of possible intensities.
The second tries to infer the label image, using an equal number of random variables

Figure 2.5.: A 2D U-Net architecture with a single input image (green). The Encoder-
Decoder structure is represented by a set of convolution (orange), pooling
(red) and upsampling operations (blue). In each encoder layer, 2D convo-
lution filters are applied to generate two successive sets of feature maps
(orange boxes), doubling the numbers of maps each time. In the decoder
layer, the introduced skip-connections concatenate the last feature maps of
the respective encoder layer (transparent yellow box) with the upsampled
maps (blue box). From these two concatenated tensors, two more sets of
feature maps (orange boxes) are created. The final layer performs a softmax
activation to generate the desired label image (purple).
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Figure 2.6.: Conditional Random Fields can be used for segmentation while boosting
spatial consistency. Unary potentials between fields X and Y capture image
information for individual pixels while pairwise connections in field Y enforce
label similarity in local neighborhoods.

Yi,j , 0 ≤ i, j ≤ N,M that map into the set of possible labels. The unary potentials depend
only on the corresponding pixel could incorporate apart from intensity values additional
information such as location. The pairwise potentials connect neighboring pixels and
enable the CRF to learn spatial consistency. In fully connected CRFs, each random variable
Yi,j is connected with pairwise potentials to all other variables of the random field Y in
order to maximize the effect. A highly efficient inference algorithm using Gaussian kernels
and mean field approximation Krähenbühl and Koltun [127] reduced the computational
complexity from quadratic to linear in the number of variables. This made the whole
problem tractable and applicable to the medical field, where it was applied either on the
segmentation output of a CNN or directly on the last activation layer [1, 82, 180]. Finally,
the mean field iteration of [127] consists of a combination of differentiable functions,
making it applicable in forward and backward passes of Deep Learning architectures. Fu
et al. [83] exploited this property to setup a CRF as an Recurrent Neural network (RNN).
This combination of a CNN and an RNN, or CRF-RNN, represents a convolutional neural
networks that is both trainable end-to-end and enforces spatial consistency.
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Figure 2.7.: Left: Typical CT scan of the temporal bone with ground truth annotations.
Right: Respective surface models for all risk structures.

2.2.3. Temporal Bone Segmentation

The temporal bone includes the following major risk structures [230]: external and
internal auditory canal (external auditory canal (EAC), internal auditory canal (IAC)),
ossicles (ossicles (Oss)), cochlea (Cochlea), semicircular canals (semicircular canals
(SCC)), facial nerve (facial nerve (FN)), chorda tympani (chorda tympani (Chorda)),
jugular vein (jugular vein (JV)) and internal carotid artery (internal carotid artery (ICA))
(Figure 2.7). As shown in Figure 2.8, several of these structures provide a serious challenge
for segmentation. They appear as fragmented structures that observe only limited image
contrast and have in some directions open boundaries, leading to often diverse expert
annotations. Depending on the application, some papers just segment the posterior canal
wall (PCW) of the EAC or differentiate between malleus, incus and stapes rather than
extracing the ossicles as a whole. Other papers segment the whole inner ear or labyrinth
instead of giving individual labels to SCC, vestibule and Cochlea.

An early review on ear segmentation is given by [80]. To the best of our knowledge, Becker
et al. [15] provides the only work targeting surgery at the petrous apex and therefore
segments all of these risk structures. The authors use the Probabilistic Active Shape Model
(PASM) [124], but manual initialization is still needed where bounding boxes and points
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Figure 2.8.: Zoom in on a saggital (left) and coronal (right) slice with ground truth
annotation for chorda tympani (cyan) and facial nerve (yellow).

on the medial axis of individual structures have to be selected. Most other approaches
focus on cochlear implantation and therefore segment only structures at the middle ear.

Due to the severe constraints, several works provide semi-automatic solutions for a limited
selection of organs. Early work in this field uses customized solutions [80] for individual
structures such as a safety zone for the facial nerve [246] or level set methods with
interactive pre- and post-adaptations [259]. Caversaccio et al. [30] realized a successful
clinical implementation of a cochlear implantation. They present a custom planning
tool [90] that allows interactive segmentation of the outer wall of the EAC, the facial
nerve and chorda tympani, the ossicles and the cochlea. Lu et al. [152] add a refinement
strategy for the facial nerve based on a super resolution approach on in Cone Beam
Computed Tomography (CBCT) images.

For some structures automatic solutions exist: Noble et al. [176] use a registration proce-
dure based on radial basis functions for facial nerve and chorda tympani. The approach
was labeled NOMAD and generalized to tubular structures such as the optic tracts [173].
Together with customized solutions for intracochlear anatomy [175] and refined segmen-
tation of these nerves [174] the majority of temporal bone anatomy can be segmented.
More recent work includes a non rigid registration approach on µCT data by Kjer et
al. [125] that uses skeleton similarity as a metric. Recent work of Zhu et al. [284] seg-
ments the SSC, the vestibule and the cochlea in MRI data also via SSMs but uses additional
post processing with level sets. In Powell et al. [196] present an atlas based approach
for Cochlea, superior semicircular canal (SSC), ossicles and facial nerve. In [195], they
extend their approach on tegmen, sigmoid sulcus, EAC, ICA and the posterior canal wall.
In recent years, Deep Learning solutions have been proposed. Ruiz Pujadas et al. [206]
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Table 2.2.: Segmentation for temporal bone and aortic anatomy. Pre- and postprocessing
includes simple filters such as thresholding, morphological or binary opera-
tions. Abbreviations: contrast-enhanced CT (ce-CT), Support Vector Machine
(SVM).

Reference Modality Anatomy Method
Temporal bone
Xianfen et al. (2005) CT labyrinth manual preprocessing + level sets
Salah et al. (2006) CT mastoid region growing, manual refinement
Noble et al. (2008) CT FN, Chorda NOMAD
Noble et al. (2009) CT labyrinth, Oss, EAC atlas-based registration
Noble et al. (2011) CT, µCT Intracochlear Anatomy ASM
Voormolen et al. (2012) CT FN centerline + safety zone
Oliveira et al. (2014) CT incus and malleus registration, postprocessing
Becker et al. (2014) CT Cochlea, Oss, SCC, EAC, IAC, FN, Chorda, JV, IAC PASM
Kjer et al. (2016) µCT Cochlea free-form registration based on skeleton similarity
Powell et al. (2017) CT Cochlea, Oss, SCC, FN Atlas-Based Segmentation
Lu et al. (2018) CBCT, CT, µCT FN refinement super resolution classification
Zhu et al. (2017) MRI Cochlea, SCC, vestibule SSM registration + level set refinement
Ruiz Pujadas et al. (2018) µCT Cochlea, SCC Random walks with SSM priors
Zhang et al. (2018) CT labyrinth Bounding Box Deep Volume-to-Volume Regression Network
Powell et al. (2019) CT EAC, PCW, IAC, tegmen, sigmoid sulcus Atlas-based segmentation, postprocessing
Wang et al. (2019) MRI vestibular schwannoma 2.5D CNN
Aorta
Bruijne et al. (2004) CTA Abdominal Aortic Aneurysm (AAA) 2D active contours
Zhuge et al. (2006) CTA AAA 3D level set method, SVM
Macía et al. (2009) CTA AAA, lumen and thrombus radial functions
Zohios et al. (2012) CTA AAA, thrombus and outer wall 2D level sets
Martínez-Mera et al. (2013) CTA AAA active contour, graph matching
Czajkowska et al. (2014) ce-CT AAA active contour, graph matching
Maiora et al. (2014) CTA aorta, thrombus Random Forest Active Learning
Wang et al. (2017) MRI AAA lumen and outer wall registration based active contours
Lalys et al. (2017) CTA aortic thrombus centerline extraction, deformable models
Trullo et al. (2017) CT aorta, heart, esophagus, trachea SharpMask + CRF
López-Linares et al. (2018) CTA aortic thrombus DCNN
Siriapisith et al. (2018) CTA outer wall of AAA active contours, graph cut
Lareyre et al. (2019) ce-CT AAA, lumen, thrombus, calcification morphological snakes
Han et al. (2019) CT aorta, heart, esophagus, trachea multi-res VB-nets
Tahoces et al. (2019) CT aortic lumen estimation Hough-trafo, ellipse tracking
Lu et al. (2019) CT, ce-CT aorta segmentation + classification 3D-U-Net + ellipse fitting

utilize SSMs to segment the cochlea in micro CT images. Also following a Deep Learning
approach, Zhang et al. applied a Regression Network [280] for bounding box localization
of the inner ear in CT data. Most recently, segmentation of vestibular schwannoma via
CNN has been investigated by Wang et al. [249].

2.2.4. Endovascular Aortic Repair

Automatic segmentation of Abdominal Aortic Aneurysm (AAA) could enabled the use of
routine abdominal CT scans for AAA detection [42], which can be determined by fitting
an ellipse on the aorta in axial slices of an abdominal ce-CT scan. It also speeds up
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Aortic lumen Aortic outer wall

Figure 2.9.: Examples of aortic aneurysms and thrombi. High variety in size and extent
of pathologies is a serious challenge for automatic segmentation. The same
is true for the sometimes winding course of the aorta.

segmentation during planning for Endovascular Aortic Repair (EVAR), where surgeons
use a 3D printed aortic model to determine the size of stent grafts. Proposed solutions
therefore segment the aorta, aortic lumen, outer wall and thrombus (see Figure 2.9),
sometimes followed by ellipse fitting for a classification of aneurysm existence.

The majority of EVAR cases are AAA and research focuses on both detection and segmen-
tation of these pathologies. Early work relied on semiautomatic solutions that can be
corrected easily. Others use a variety of methods such as level set functions, deformable
models, graph matching techniques or different deep learning architectures. To the best
of our knowledge, publicly available datasets showing aortic aneurysms do not exist,
but evaluation on data of the SegTHOR challenge allows testing algorithms for both
segmentation and planning on patient data having labeled both ascending and decending
aorta on a chest CT scan.
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We first look at semi-automatic solutions that require a manual initialization by the user.
Early work in this field proposed interactive methods on AAA segmentation on CTA images
using manually initialized a 2D active contour that is automatically propagated through
subsequent slices [25]. Zohios et al. [286] segment AAA thrombus and outer wall for
a reliable estimate of rupture risk on 10 patients. The authors used 2D active contours
with a custom stopping criteria to prevent boundary leaking and a refinement scheme
for thrombus and outer wall. For each slice, the active contour is interactively initialized.
Maiora et al. [157] proposed an interactive active learning approach to overcome the
limitations of previous work that were sensitive to noise. The authors used a random
forest classifier to classify thrombus voxels in a slice-by-slice manner, requiring user input
for where uncertainty of the classification was high. Wang et al. [251] investigated
a registration approach to segment AAA lumen and outer wall in MR images. Their
approach combines both MRI and contrast enhanced MR angiography information to
segment lumen and outer wall using active contours where the first contour has to be
initialized manually. Lalys et al. [133] proposed a thrombus segmentation solution based
on manually initialized centerline extraction using minimal cost paths and deformable
models applied to a preprocessed image. The authors performed an extensive analysis on
145 patients and showed the versatility of the approach for both preoperative planning as
well as postoperative monitoring. Lareyre et al. [134] use 2D and 3D active contours and
morphological operations to segment the aortic lumen, calcifications and thrombi in a
complete preoperative planning tool. The system allows interactive online error-correction
to improve the iterative process.

Automatic solutions have also been presented. Zhuge et al. [285] presented an automatic
approach, using a connected component analysis to find an initial surface and trained
a SVM to serve as a local prior in a 3D level set iteration. Martínez-Mera et al. [159]
segment the thoracic aorta on 10 patients using a multi step approach that distinguishes
four different parts of the aorta and uses custom region growing and level set methods for
the individual parts. The Hough transform is used for automatic initialization. Czajkowska
et al. [48] proposed a registration between pre- and post-operative ce-CT scans based on
graph matching of aortic lumen skeletons and evaluated it on 8 patients. The required
segmentation for skeletonization of the aortic lumen was performed using level sets.
López-Linares et al. [149] proposed a 2 step approach for thrombus segmentation with a
region of interest detection followed by fine segmentation both on customized dep CNNs.
The method is designed for postoperative thrombus volume estimation and validated on
13 CTA scans. Siriapisith et al. [225] proposed an alternating scheme of active contours
and graph cuts to overcome the limitations of previous solutions: converging to local
minima. By switching between two search spaces the method outperforms previous
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solutions on a dataset of 20 subjects. Tahoces et al. [238] propose an optimization
scheme for a slice-by-slice active contour in aortic lumen segmentation. It consists of
ellipse tracking and optimization of the aortic cross section’s 3D orientation. The authors
show the robustness of their method on a dataset of 385 CT scans, with both normal
and pathological cases. Most recently, Lu et al. [151] proposed a solution on 3D U-Net
and ellipse fitting for segmentation and detection of AAA. The method is evaluated on
a dataset of 378 patients, exhibiting contrast and non-contrast CT images as well as
different acquisition characteristics.

Although recent publications show promising results on large datasets [151, 238], most
of the approaches are evaluated on only a small number of samples. Unfortunately,
neither of these datasets is publicly available. This limits comparability due to high
inter-patient variety in aortic anatomy and aneurysm size, different image modality and
specific volume of interest. There is thus further need for segmentation methods related
to preoperative surgical planning. More publicly available data from challenges could also
benefit the comparison of different approaches. For example, challenges such as ISBI’s
SegTHOR [190] and MICCAI’s MMWHS [68] currently allow evaluation on parts of the
aorta. Trullo et al. [241] proposed a CNN to segment aorta, heart, esophagus, trachea in
the thoracic CT scans of SegTHOR. In the follow up ISBI challenge [190], a combination
of custom multi-resolution V-Nets [162] achieved best performance [103]. The MMWHS
challenge [68] focuses on the individual heart chambers but includes segmentation of the
ascending aorta.

2.2.5. Shape Regularization

Deep Learning solutions achieve unprecedented accuracy in terms of segmentation metrics
such as Dice and predict segmentation masks in a fraction of the time than preceding
model based approaches. However, by design the architectures’ results are pixelwise
predictions, contrary to model-based solutions that give strong topological guarantees
(Figure 2.10). This drawback limits the use of Deep Learning in preoperative planning [73,
75], where segmentation masks are required in subsequent steps such as 3D printing or
trajectory planning. While larger datasets might solve this issue, it is neither guaranteed
nor is the acquisition of such an unknown amount of expert annotated images reasonable
in clinical settings. The following section reviews the resulting increasing interest to bring
strong model assumptions into Deep Learning architectures. It starts with a look into
CRFs as a learning based approach that regards spatial consistency. Here, the work of
Krähenbühl and Koltun [127] on CRFs with Gaussian edge potentials influenced many
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Semicircular canals Ossicles

Figure 2.10.: Shape regularization enforces topological constraints on the output of a
segmentation algorithm. Mesh generated from U-Net segmentation (Left)
and after Active Shape Model postprocessing (Right).

papers that added CRFs as post processing steps into Deep Learning solutions. Fu et al.
[83] proposed an influencial RNN architecture that resembles a CRF, allowing end-to-end
training and optimization of a shape regularized CNN. Table 2.3 and Table 2.4 list the
individual papers presented in this section.

Many solutions follow the approach of [122] that enforces spatial consistency by using
fully-connected CRFs for post processing. Alansary et al. [1] utilize a 3D CNN with 3D CRF
postprocessing for segmentation of the human placenta. Fu et al. [82] utilize holistically-
nested edge detection [260] with CRF post processing for retinal vessel segmentation on
the DRIVE [58] and STARE [229] datasets. Christ et al. [40] proposed a cascaded CNN
based on two 3D U-Nets, one for liver, one for lesions segmentation, and utilize a 3D
CRF [127] for further postprocessing. Shakeri et al. [220] segment subcortical regions in
MRI slices using a CNN and a Markov Random Field (MRF), where the CNN output serves
as potentials for a MRF. Gao et al. [89] propagate partial annotations for the lung using a
CNN to predict a first label mask and a fully connected CRF to postprocess the results.
For pancreas segmentation in MRI, Cai et al. [28] used two CNNs, one for pancreatic
and non-pancreatic tissue classification, the other for pancreatic boundary segmenta-
tion, and forwarded these features to a CRF for fine-tuned segmentation. Nogues et al.
[180] addressed lymph node segmentation, where Holistically-Nested Neural Network
(HNN)s [260] predict volume and boundary masks as initial predictions. The authors
then evaluated different postprocessing schemes (CRF, graph-cut and Boundary Neural
Fields [21]) for refinement of the segmentation. Shen and Zhang [223] improved the
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initialization of a CRF using learned priors that include anatomic features such as tumor
centroids into a probabilistic model. Li et al. [141] applied a CRF as a postprocessing
step on a CNN in low-grade glioma segmentation. Kamnitsas et al. [122] adapt a post-
processing scheme with fully connected CRF to a 3D CNN for brain tumor, injuries and
ischemic stroke evaluated on both BRATS 2015 and ISLES 2015 challenges. Dou et al.
[56] apply a CRF for postprocessing to a deeply supervised 3D CNN for liver (CT) and
whole heart and vessel (MRI) segmentation. Rajchl et al. [199] introduced a combination
called DeepCut that uses a Fully Convolutional Neural Network (FCNN) to classify voxels
in a bounding box into foreground and background. The result is refined using a fully
connected CRF as post-processor. Wachinger et al. [247] applied a CRF as a postprocess-
ing step on a custom CNN for brain anatomy segmentation on the MICCAI Multi-Atlas
Labeling challenge dataset. Xia et al. [258] propose a two step approach, where a CNN
predicts an initial mask and a MRF combines label image, a priori spatial information and
smoothing information into a final segmentation. Jin et al. [119] applied a 3D CRF on
the results of a slice-by-slice 2D CNN for left ventricle appendage segmentation. Hu et al.
[116] combined a FCNN and a CRF such that in can be trained end-to-end and segmented
brain tumors. Postprocessing using connected component analysis and threshold was still
applied. Hu et al. [116] proposed the use of a cascaded CNN and a postprocessing CRF
for brain tumor segmentation, evaluated on three datasets of the BraTS challenge. Zhai
and Li [279] use CNNs with atention modules and apply CRFs as a postprocessing step
for brain tissue segmentation on the Brats, MSSEG and MRBrainS datasets. Yaguchi et al.
[265] address multi component lung nodule segmentation by a 3D CNN with CRFs as
postprocessing method.

End-to-end trained CNN + CRF architectures have also been investigated. Fu et al. [83]
proposed an end-to-end framework consisting of a CNN with intermediate layers and
a CRF-RNN to add spatial coherency. The authors reported competitive performance
on fundus image datasets of DRIVE, STARE, and CHASE DB1 [33]. An alternative was
proposed in [282, 283], where a three step straining scheme was proposed for brain tumor
segmentation. First, the FCNN and the CRF were trained separately while an end-to-end
training scheme for the combined CRF-RNN was applied afterwards. Monteiro et al. [165]
applied the idea of implementing a CRF as a RNN on 3D medical images and evaluated it
on two publicly available dataset for prostate and glioma segmentation (PROMISE 2012,
BraTS 2015). Their evaluation against a sole CRF indicated no performance gain by the
end-to-end trained RNN. Xu et al. [264] proposed the use of a CNN with a fully connected
CRF-RNN for automatic bladder segmentation. In comparison with a V-Net architecture
and CNNs with CRF postprocessing, their approach showed increased Hausdorff Distance
(HD), but better accuracy in Dice score, volume overlap, relative volume difference and
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Table 2.3.: Shape regularization papers using CRFs as regularizers. Abbreviations: My-
ocardial Contrast Echocardiography (MCE), High Resolution Computed To-
mography (HRCT), Magnetic Resonance Neurography (MRN), Active Contour
(AC), Myocardium (MYO), Left Ventricle (LV), Right Ventricle (RV), Adver-
sarial Variational Autoencoder (aVAE), Markov Random Field (MRF).

Reference Modality Anatomy Notes
CNN + CRF
Alansary et al. (2016) MRI placenta CRF
Fu et al. (2016) RGB retinal vessels CRF
Dou et al. (2016) ce-CT liver CRF
Christ et al. (2016) ce-CT liver, lesions CRF
Shakeri et al. (2016) 2D MRI subcortical regions MRF postprocessing
Gao et al. (2016) HRCT lung + pathologies label propagation
Cai et al. (2016) MRI pancreas CRF
Nogues et al. (2016) CT lymph nodes CRF
Shen and Zhang (2017) MRI brain tumor FC-CRF pipeline
Li et al. (2017) MRI brain tumor CRF for postprocessing
Kamnitsas et al. (2017) MRI brain tumors, injuries, ischemic stroke CNN + CRF for
Dou et al. (2017) MRI MYO, blood pool CRF for postprocessing
Rajchl et al. (2017) MRI fetal lung & brain CRF regularization during training
Wachinger et al. (2018) MRI brain anatomy CRF for postprocessing
Xia et al. (2018) CT kidney MRF postprocessing
Jin et al. (2018) CTA left atrial appendage CRT
Hu et al. (2019) MRI brain tumor CRF for postprocessing
Zhai and Li (2019) MRI brain tissue CRF postprocessing
Yaguchi et al. (2019) CT lung nodules CRF
End-to-end trained CNN & CRF
Fu et al. (2016) RGB retinal vessels CRF-RNN
Zhao et al. (2016) MRI brain tumor 3 step training, CNN, RNN, CRF-RNN
Monteiro et al. (2018) MRI brain tumor, prostate CRF-RNN
Xu et al. (2018) CT bladder CNN + CRF-RNN

average symmetric surface distance.

Model-based post processing with methods such as active contours or ASM were also
proposed [31, 261]. Cha et al. [31] proposed a two step approach for urinary bladder
segmentation. First, a CNN classified patches lying inside or outside the bladder and the
resulting label mask is fine-tuned by thresholding and hole-filling. A level set method is
initialized with this information and produced a regularized contour. For nucleus seg-
mentation in histopathology images, Xing et al. [261] train a CNN to predict a probability
map that initializes a shape model. Repulsive constraints on deformable models are then
used to segment the numerous nuclei in the images. A similar approach by Zhao et al.
[281] uses a CNN to initialize an active contour than refines the segmentation based
on internal and external energies. Hatamizadeh et al. [106] proposed a combination
of CNNs and AC for lesion segmentation and evaluated it on different modalities of the
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Multiorgan Lesion Segmentation dataset. A pixelwise weighting function is added to the
ACM’s energy function while both are initialized from a CNN. Recently, Xu et al. [263]
followed the strategy of using a CNN do initialize an ACM for breast histopathological
images. As a final step, they performed ellipse fitting to deal with cluttered and overlaying
nuclei. For teeth segmentation in CBCT, Ma and Yang [155] employ a CNN for initial
labeling and a geodesic AC for refined segmentation. Fang et al. [70] segment breast
tumor in ultrasound images by initializing a phase-based AC with V-Net. Hu et al. [117]
followed the same approach but used a dilated CNN for initialization.

An alternative way is to use shape models and compute their features or deformation fields
by Depp Learning architectures. Rupprecht et al. [207] propose an interactive AC approach
by training a CNN that predicts motion vectors for evolving the underlying contour. The
algorithm is evaluated on the STACOM challenge dataset for left ventricle segmentation.
Cheng et al. [37] use an atlas-based Active Appearance Model for prostate segmentation
employing a CNN to classify feature points along the normal of the propagating contour.
Tang et al. [239] proposed the use of a level set method for both boosting training of and
applying postprocessing on a CNN. In their evaluation on CT and MRI data for liver and
left ventricle segmentation the combined method outperforms the individual solutions.
Li et al. [140] use a level set method on the segmentation result of a VGG16 net as one
of several postprocessing steps for segmentation of the left ventricle in the SunnyBrook
database. Hoogi et al. [111] propose a CNN-based AC for liver lesion segmentation. The
CNN predicts for each voxel a probability for the voxel lying far inside, far outside or
close to the boundary. The AC then uses these values to adapt the weighting function of
the two Heaviside functions within the energy function. Li et al. [138] propose random
forest segmentation with priors from a statistical shape model to segment the MYO in
MCE. The method uses a CNN to detect the bounding box of the MYO. Salimi et al. [209]
proposed to use a multi-layer perceptron to predict a rough segmentation of he prostate.
Applying an additional image processing step with connected component search to extract
the largest volume initializes an active contour for final segmentation. He et al. [107]
refine an active contour with a CNN, that classifies voxels into inside, outside and close
to the boundary. Guo et al. [99] presented an AC that includes the label map of a CNN
output in the external force. The authors report competitive results on the SLIVER07
and LiTS training dataset. For knee menisci segmentation in MRI, Tack et al. [237]
regularize the results of slice-by-slice U-Nets by statistical shape models. The authors
then use a 3D U-Net to predict a final segmentation based on the extracted ROI from
the regularization step. Ambellan et al. [4] follow a similar approach for knee bone and
cartilage segmentation in MRI.

More recently, strong model assumptions have found their way into deep learning archi-
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tectures. Oktay et al. [181] incorporate shape priors by making utilizing learned vector
representations of objects [94] in the latent space of an underlying network. The proposed
anatomically-constrained neural network features an additional euclidean distance loss in
the training phase based on this latent representation to achieve accurate results during
inference. Ma et al. [153] presented a combination of Dense U-Net and a robust kernel

Table 2.4.: Shape regularization papers using model-based approaches or unique solu-
tions as regularizers. Abbreviations: Myocardial Contrast Echocardiography
(MCE), High Resolution Computed Tomography (HRCT), Magnetic Resonance
Neurography (MRN), Active Contour (AC), Myocardium (MYO), Left Ventri-
cle (LV), Right Ventricle (RV), Adversarial Variational Autoencoder (aVAE),
Markov Random Field (MRF).

Reference Modality Anatomy Notes
CNN + model-based
Cha et al. (2016) CT bladder CNN initializes 2D/3D level-set
Xing et al. (2016) RGB nucleus CNN initializes ASM
Zhao et al. (2018) RGB nucleus CNN initializes ACM
Hatamizadeh et al. (2019) MRI, CT lung nodules, liver lesion CNN + AC
Xu et al. (2019) RGB nucleus CNN initializes ACM
Ma and Yang (2019) CBCT teeth CNN initializes ACM
Fang et al. (2019) US breast tumor V-Net initializes ACM
Hu et al. (2019) US breast tumor CNN initializes ACM
Others
Rupprecht et al. (2016) MRI left ventricle ACM with CNN features
Cheng et al. (2016) MRI prostate AAM, CNN for feature classification
Tang et al. (2017) CT, MRI liver, left ventricle ACM iteratively, deep Level Set
Li et al. (2017) MRI left ventricle ACM
Hoogi et al. (2017) MRI, CT liver lesion CNN for parameter estimation of AC
Li et al. (2018) MCE myocardium Random forests + ASM
Salimi et al. (2018) MRI prostate MLP initializes ACM
He et al. (2018) MRI prostate ASM, CNN for feature classification
Guo et al. (2019) CT liver ACM with CNN energy
Tack et al. (2018) MRI knee menisci 2D U-Net + SSM + 3D U-Net
Ambellan et al. (2019) MRI knee bone & cartilage 2D U-Net + SSM + 3D U-Net
Deep Neural Networks only
Oktay et al. (2018) MRI, US left ventricle Auto-Encoder + shape loss
Ma et al. (2018) CT pancreas DenseNet + SSM
Navarro et al. (2019) CT whole-body, thorax U-Net + new output layer
Qin et al. (2019) CT airways U-Net + new output layer
Yao et al. (2019) CT liver U-Net + Graph-based CNN
Balsiger et al. (2019) MRN peripheral nerve PointCNN
Painchaud et al. (2019) MRI LV, RV, MYO aVAE
Zeng et al. (2019) MRI liver CNN for deformation
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SSM to segment the pancreas in CT images. The authors train a Gaussian Mixture Model
on the probability output of U-Net to initialize the shape model. Navarro et al. [169]
propose to use multiple output images in a U-Net architecture, resulting in a segmentation
map, a distance map and a contour map. Based on a sum of individual loss functions
the networks is trained end-to-end. Qin et al. [197] presented a 3D U-Net like approach
that, instead of a segmentation mask, predicts a 26-channel-sized connectivity encoding,
on channel for each neighboring voxel in a 26-neighborhood. The resulting masks are
postprocessed using graph refinement. Yao et al. [273] proposed a novel graph-based
CNN [250] that is trained together with a normal U-Net like architecture for segmentation.
By combining different loss function for both segmentation and mesh quality, the network
is capable of predicting accurate and high quality meshes starting from an initial ellipsoid.
Balsiger et al. [8] combine the PointCNN architecture [139] for point cloud inference
with and the output probability map from a CNN. Experiments on nerve segmentation
outperformed both CNNs and baseline PointCNN on Dice, HD and volumetric similarity.
Painchaud et al. [184] proposed to use the latent space representation of a aVAE for
constraining output masks of LV, RV and MYO segmentation in short-axis cardiac MR
image stacks. By sampling valid a high number of valid shapes in the latent space during
training, a back projection onto the nearest training sample during inference allows to
predict an anatomically plausible result. Zeng et al. [278] present an approach that
predicts a deformation field for an organs mean shape. The authors evaluate the use of a
FCNN for liver segmentation on the LiTS dataset.

2.3. Motion Planning

Motion Planning addresses the computation of collision-free trajectories from initial to
goal configurations of a robot as well as the theoretical understanding of the underlying
algorithms, e.g. in terms of determinism, run-time or probabilistic behavior. An exhaustive
introduction can be found in [135]. Consider, for example, the problem of moving an
object through 2-dimensional space while avoiding risk structures (see Formulation 1).
This is formalized by a world spaceW = R2 partially covered by a number of obstaclesO.
With given initial and goal configurations qI , qG for a robot, this forms a well defined
problem for finding a set of collision free configurations Cfree connecting start and goal.
More precisely, the task is to find a trajectory γ : [0, 1] → Cfree from start to goal,
represented by a set of configurations qjj with collision free transitions from qj to qj+1.

In the medical field, research focuses on nonholonomic systems such as flexible steerable
needles, guidewires or drilling robots [3, 26], where instrument steering is limited to
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Formulation 1 Basic Problem Formulation
1: Let O ⊂ R2 be the obstacle region.
2: Let Cfree = {q ∈ R3|q /∈ O} be the space of collision free configurations.
3: Let qI ∈ Cfree be an initial configuration.
4: Let qG ∈ Cfree be a goal configuration.
5: Let Tmax ∈ R+ be the maximally allowed run-time of a motion planning algorithm.
Task
6: Find a collision free trajectory from start to goal, i.e. a path γ(t) : [0, 1] → Cfree

satisfying
• γ(0) = qI ,
• γ(1) = qG.

If no such solution exists, report that no path was found in Tmax.

certain directions and one major common characteristic is a constraint on the instrument’s
curvature. In other fields such as autonomous driving [10], Underwater Glider (UWG)s
[29] or Unmanned Aerial Vehicle (UAV) [268], similar characteristics occure. This section
first gives a short introduction to different approaches in motion planning, specifically the
Rapidly-exploring Random Tree (RRT). It then presents a survey on curvature constrained
motion planning in general (Section 2.3.2), introducing different approaches for finding
feasible trajectories. Finally, a more distinct review for surgical instruments is given in
Section 2.3.3.

2.3.1. Approaches in Motion Planning

Two main strategies to solve Formulation 1 include discrete planning on a grid and sam-
pling based approaches as shown in Figure 2.11. An alternative method is optimization
[214], which starts with a, sometimes infeasible, solution connecting start and goal and
then iteratively adjust it, thereby improving a cost function than penalizes constraints
such as distance to obstacles.

In discrete planning, the road map is already collision free and a shortest path definitely
exists. Here, Dijkstra’s algorithm [51] can be used to find the shortest path or an heuristic
approach such as A∗ [105] that speeds up the search. However, the extraction of a feasible
road map can be computationally prohibitive or even impossible. In such cases, which is
often the case in clinical settings, sampling based motion planning offers an efficient
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Figure 2.11.: Motion Planning can be performed on a discrete grid or road map in Cfree

(left, black lines and nodes) or in continuous space by sampling valid states
with collision free transitions (right). Blue lines show explored states. In
discrete planning, feasible solutions already exist as part of the road map.
In sampling based planning, existence of solutions is not guaranteed and
both building the road map and finding a solution is done simultaneously.

alternative. A review on existing methods is given in [64]. The RRT, introduced in 1998
by Steve M. LaValle, is still one of the most used algorithms to solve a motion planning
problem with a sampling-based approach.

A randomized search with no prior knowledge of existence of solutions either returns a
solution or reports failure for convergence within the given time frame Tmax. Algorithm 2
presents the general principle and Figure 2.12 shows a visual impression: The search
tree is initialized with the initial state qI (Line 1) before the algorithm searches for a
solution within the given time Tmax (Line 2). The search first picks either the goal state
qG or create a new random state in Cfree (Lines 3-7). This goal biasing draws the search
towards the goal based on the bias ρ. In the remaining steps, the algorithm will try to
expand the tree towards qrand. To this purpose (Line 8), the nearest neighbor within the
search tree T is computed using, for example, a kd-Tree. In Line 9, the steering function
computes a motion towards the random sample, thereby creating a new state qnext. This
steering function depends on the respective robot and application. This could be, for
example, a circular arc describing the precise motion of a steerable needle [254] or a
Bézier Spline with upper curvature constraint which approximates the motion of a UAV
[267]. If the whole path between the nearest neighbor qnear and the newly created state
qnext is collision free, the state is added to the search tree (Lines 10-12). Finally, a check
for convergence ends the current iteration (Lines 13-15).

An alternative to searching for a feasible trajectory from a a given start configuration is
the optimization of an existing one. Algorithms like Covariant Hamiltonian Optimization
for Motion Planning (CHOMP) [200] and its adaptations [121, 185, 287] can start with a
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Algorithm 2 Rapidly-exploring Random Tree
Input: qI , qG
Output: a set of states, {qj}j , j ≥ 0
Parameters: step size ∆t, goal bias ρ, search time Tmax

1: T ← initial_states()
2: while time_spend() < Tmax do
3: if random(0,1)< ρ then
4: qrand ← qG
5: else
6: qrand ← sample_state(Cfree)
7: end if
8: qnear ← nearest_neighbor(T , qrand)
9: qnext ← steer(qnear, qrand,∆t)

10: if collision_free(qnear, qnext) then
11: extend_tree(T , qnear, qnext)
12: end if
13: if goal_reached() then
14: return extract_solution(T )
15: end if
16: end while

trajectory in collision and optimize it until a feasible trajectory has been found. Similarly,
Schulman et al. [214] proposed a sequential convex optimization approach to find feasible
trajectories from a path initially in-collision.

2.3.2. Curvature Constrained Motion Planning

This section gives an overview of the papers listed in Table 2.5, which address curvature
constrained motion planning in different fields. The listing differentiates between motions
of Circular Arcs, mainly developed by [61] for bevel-tip needles [254]. These motions
are suitable to reach a sphere like target such as a tumor. To solve the two point
boundary value problem that interpolates between two states in R3 × S2 (see Figure 1.4),
approaches such as Dubins Paths [60, 235] have to be solved in 3D. An alternative for
curvature constrained movement in 3D was developed by Yang and Sukkarieh [268] using
cubic Bezier Splines. Finally, further approaches and some important acceleration
strategies are considered.
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cI

cG

Figure 2.12.: Environments that are cluttered with obstacles (brown blobs) might not
provide enough space to connect start and goal states qI , qG. A Rapidly-
exploring Random Tree is a sampling based approach that grows a search
tree (blue lines) until it connects it with the goal state. The solution (green
lines) is then easily extracted by a traversing the search tree reversely from
the final node.

Regarding Circular Arcs, the nonholonomic modeling of needle steering [254] led to
several planning methods. Duindam et al. [61] presented a formulation describing screw-
based motions for bevel-tip needles. This early work considered an analytic solution for a
cost function based on a discrete set of motions. Xu et al. [262] integrated circular motions
into an RRT and used a backchaining approach, that computed feasible solutions starting
from the target and converging to the initial state. Duindam et al. [62] also presented
an inverse kinematics approach for bevel-tip needles. However, obstacle avoidance was
only possible by providing proper waypoints that split the original problem into several
sub-tasks. Duan et al. [59] used SCO [214] to compute feasible trajectories for both bevel-
tip needles and channel layouts in intracavitary brachytherapy. The authors compared
initial linear trajectories in collision with obstacles with feasible solutions computed by
RRTs, showing that the SCO procedure often failed to push infeasible initial solutions
out of obstacles. Finally, Nikolajevic and Belanger [172] investigated the use of motion
primitives to connect two states in R3 × S2 obeying constraints on torsion but with no
obstacles. The core idea was an approximation of the Dubins path problem in 3D by
varying the curvature.
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Table 2.5.: Curvature constrained planning along different motions. This table gives
an overview on different approaches. Abbreviations: Sequential Convex
Optimization (SCO), Rapidly-exploring Random Tree (RRT), Unmanned Aerial
Vehicle (UAV), Underwater Glider (UWG), Genetic Algorithm (GA).

Reference Method Vehicle Remarks
Circular Arcs
Duindam et al. (2008) analytic Bevel-tip needles discrete
Xu et al. (2008) RRT steerable needles uses backchaining
Duindam et al. (2009) inverse kinematic Bevel-tip needles no obstacles
Duan et al. (2014) SCO Bevel-tip needles, cI ∈ R3, cG ∈ R3 × S2

3D printed implants
Dong et al. (2016) SCO Bevel-tip needles addresses uncertainty
Nikolajevic and Belanger (2016) analytic helicopters circular motion primitives
Dubins Paths
Ambrosino et al. (2006) RTT UAV no obstacles
Hota and Ghose (2010) analytic theory geometric solution
Hota and Ghose (2013) waypoint following aerial vehicle no obstacles
Lin and Saripalli (2014) RRT UAV 3D Aerial Dubins Curves
Wehbe et al. (2015) analytic theory, UAV, UWG 2D Dubins Paths
Pharpatara et al. (2015) analytic aerial vehicle adaptation of [112]
Pharpatara et al. (2015) RRT∗ aerial vehicles optimality guarantees
Cao et al. (2016) GA UWG Dubins Paths in 2D
Cubic Bézier Splines
Yang and Sukkarieh (2008) RRT UAV smoothing in 2D & 3D
Yang et al. (2014) RRT UAV planning in 3D
Yang et al. (2014) RRT∗ UAV optimality guarantees
Sudhakara et al. (2017) Bi-RRT cars 2D Dubins cars
Others
Shanmugavel et al. (2007) analytic UAV pythagorean hodographs, cG ∈ R3

Acceleration
Shkolnik et al. (2009) RRT cars, pendulum sampling on reachability set
Yang et al. (2014) RRT∗ UAV attractive & repulsive forces

Complete solutions using Dubins Paths got a lot of attention with varying approaches
in 2D, 2.5D and 3D. Ambrosino et al. [5] proposed an interpolation scheme based on
2D Dubins paths and evaluate it on an environment for UAVs without obstacles. Similar
approaches that divide the task into two seperate problems are found, for example, in
[143, 255]. Lin and Saripalli [143] incorporated the solution of Dubins Airplane Paths
[183] in an RRT to compute feasible trajectories for UAV in the presence of obstacles.
Wehbe et al. [255] proposed the use of two 2D Dubins paths, one in the XY-plane, the
other in the XZ-plane, to solve motion planning problems for UAV and UWG. Hota and
Ghose [112] presented the first analytical solution to the 3D Dubins problem but without
regarding helicoidal types. A geometric ansatz for paths of CSC type lead to a 4-DOF
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nonlinear system of equations that could be solved numerically. The authors applied the
solution to solve interpolation between position and orientation in 3D for aerial vehicles
without obstacles [113] and presented a waypoint following strategy to iteratively solve a
motion planning problem with a two point boundary value problem [114]. Pharpatara et
al. [192] built on the geometric solution of [112] to consider circular motions of variable
curvature for a hypersonic aerial vehicle. The authors used the method for the steering
function in an RRT∗ [193] and presented an acceleration for the optimal search by using
artificial potential fields [191]. The latter altered the random states using attractive forces
towards the goal and repulsive forces away from obstacles. Finally, Cao et al. [29] used a
GA to solve a Dubins path like problem for UWGs that is expressed in terms of an energy
function. However, direction constraints were only considered in 2D on the water surface.

Cubic Bézier Splines were extensively studied by Yang and Sukkarieh [268]. The com-
plete work presented an RRT that computes collision-free trajectories in R3 based on
2D cubic Bézier Splines with bounded upper curvature [248]. The work started with
path smoothing algorithms using the curvature constrained cubic Bézier Splines in 2D
[268, 269]. These were applied on feasible piecewise linear solutions computed by an
RRT. The authors extended the smoothing part to directly planning in 3D with an RRT
[267]. Finally a probabilistic complete and asymptotically optimal RRT∗ version [266]
was proposed. Sudhakara et al. [232] applied the 2D Bézier Spline approach by [269] in
a Bi-RRT* to connect two states in R2 × S1 in the presence of obstacles.

Other work includes the approach of Shanmugavel et al. [221], that investigated the
use of 5th order pythagorean hodographs for multiple UAVs. The application required
simultaneous arrival of vehicles, which motivated the use of hodographs that describe
paths of equal length.

Regarding Acceleration of RRTs, Shkolnik et al. [224] introduced the Reacha-bility-
Guided RRT for motion planning problems in narrow regions such as tube like structures.
By including an optimized sampling strategy that favored nodes with higher probability
of expansion, it speeded up the search in kinodynamic environments. Yang et al. [270]
proposed an altered steering function that took obstacles into consideration. The extension
of an RRT∗ during the steering part towards the random node is altered by a vector field
representing repulsive and attraction forces based on ellipsoids that cover the obstacles.
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2.3.3. Surgical Motion Planning

With over 5000 different approaches in the last 30 years [212], robot-assisted interventions
remain an active research field. Topics address insertion of instruments, soft tissue
deformation and their physical modeling as well as optimization of clinical outcome [3].
This thesis targets minimally-invasive procedures where the underlying instrument moves
along nonlinear trajectories. Beside the design and modeling of prototypes, the research
of adequate motion planning algorithms [46] is an important issue for the realization of
such approaches. The following section thus takes a closer look into curvature constrained
motion planning in surgical robotics, with related work summarized in Table 2.6. The
following starts with methods for Steerable Needles, continues with a short look at
suturing and then covers individual solutions. Due to the focus on Temporal Bone
Surgery in this thesis, the survey finishes with a look on Linear planning.

Planning for Steerable Needles has been done since the modeling of needle steering
[163, 254] and the subsequent experimental validation using duty-cycled spinning [65].
Duindam et al. [61] presented a formulation for screw-based motions for bevel-tip needles
and an analytic solution to a cost function based on a discrete set of motions. Xu et al.
[262] proposed the use of an RRT with sampling in control space, i.e. in terms of velocities
of forward (insertion) and rotational movement. Experiments were performed of a virtual
environment with spheres as obstacles for urethra, prostate, pubic arch and penile bulb.
Patil and Alterovitz [186] use the reachability-guided RRT [224] for rapid planning of
bounded curvature trajectories for bevel-tip needles. Experiments in a virtual environment
for percutaneous prostate access show the benefits of the approach.

Patil et al. [187] presented a needle steering system based on Electromagnetic Tracking
(EMT) feedback and evaluated it both on a tissue phantom and an ex-vivo porcine tissue
sample. The system consisted of an RRT that computes trajectories based on a novel
distance metric and a replanning strategy within a closed-loop. Sanan et al. [210] used
an A∗ like heuristic search on a dynamically extended graph. A path set, i.e. a number of
feasible motion primitives for a bevel-tip needle, is initially created and the current node
of the search is extended by each of these possible motions. Duan et al. [59] adapted the
SCO approach for bevel-tip needle motions with either forward or backward integration.
Experiments were performed for multiple needle trajectories in prostate access as well as
channel layouts in intracavitary brachytherapy. Sun and Alterovitz [234] investigated
belief space planning for liver biopsy with a flexible bevel-tip needle. Trajectory planning
for an initial solution was performed using an RRT and an iterative LQG optimization
[18] resulted in optimal trajectories regarding sensor and input uncertainty. Sun et
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Table 2.6.: Motion planning papers for flexible curvature constrained clinical instruments.
Abbreviations: Adaptive Fractal Tree (AFT), Genetic Algorithm (GA), Linear-
Quadratic-Gaussian (LQG), Reinforcement learning (RL), Sequential Convex
Optimization (SCO).

Reference Method Topic Remarks
Steerable Needles
Duindam et al. (2008) inverse kinematics spherical obstacles first planning method
Xu et al. (2008) RRT prostate control space sampling, prostate
Patil and Alterovitz (2010) RRT prostate bounded-curvature trajectories
Patil et al. (2014) RRT liver tumor ablation replanning on EMT feedback
Sanan et al. (2014) A∗ brain tumor paths sets / motion primitives
Duan et al. (2014) SCO prostate cancer multiple collision-free paths
Sun and Alterovitz (2014) RRT + LQG liver biopsy belief space planning
Sun et al. (2016) LQG liver biopsy novel linear quadratic regulator
Liu et al. (2016) AFT liver tumor GPU-based
Comber et al. (2017) simplex method transforamenal hippocampotomy trajectory optimization
Fu et al. [84] RRT lung cancer image-based cost maps
Suturing
Sen et al. (2016) SCO soft tissue phantom da Vinci surgical system
Pedram et al. (2017) brute force search soft tissue phantom Raven II surgical system
Others
Bano et al. (2012) inverse kinematics neurosurgery steerable probe STING
Caborni et al. (2012) RRT neurosurgery 2D, post optimization
Duan et al. (2014) SCO Intracavitary Brachytherapy channel design
Patil et al. (2015) RRT + SCO Intracavitary Brachytherapy torsion and curvature constraints
Kuntz et al. (2015) medial axis + RRT Lung Access Three-Stage Multilumen Transoral Lung Access System
Chen et al. (2017) neural dynamic algorithm transoral surgery tendon-driven serpentine manipulator
Kuntz et al. (2017) RRT pleural effusion planning for the CRISP robot
Azizi et al. (2017) centerline extraction vascular catheterization piecewise linear paths
Chi et al. (2018) RL endovascular access addressing flow dynamics inside blood vessels
Pinzi et al. (2019) AFT neurosurgery, STING GPU-based, geometric Hermite Curves
Granna et al. (2019) particle swarm optimization Laser-induced thermotherapy Concentric Tube Robot
Linear
Noble et al. (2007) monte carlo cochlear implantation planning on segmented obstacles
Seitel et al. (2011) sampling liver tumor hard & soft constraints
Essert et al. (2012) simplex method Deep Brain Stimulation hard & soft constraints
Becker et al. (2014) sampling Temporal Bone Surgery multi-port access
Hamzé et al. (2016) multi-objective dominance Deep Brain Stimulation Pareto ranking scheme
Hamze et al. (2017) evolutionary Deep Brain Stimulation Pareto ranking scheme
Liang et al. (2019) sampling liver tumor ablation Pareto ranking scheme

al. [233] propose the Stochastic Extended Linear-Quadratic-Regulator which builds on
previous work [234] to consider motion and sensor uncertainty for liver biopsy. Liu
et al. [145] proposed to implement planning algorithms on the GPU to accelerate the
search for feasible trajectories. Their approach, called AFT, uses a set of motion primitives
to extend search tree’s nodes and distributes the computation of different subbranches
to GPU threads. The overall path planning algorithm then consists of three parts: tree
extension, collision detection and back-tracing. Comber et al. [43] proposed a strategy
to compute optimal trajectories for a robotically-driven curved needle in transforamenal
hippocampotomy. The hippocampus medial axis was extracted using a skeletonization
approach [137]. A manually created trajectory was then planned following the medial
axis and the Nelder-Mead simplex method [170] as used to further optimize according
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to length, curvature, torsion and distance to the medial axis. Fu et al. [84] proposed an
extended version of an RRT [131] that considers in collision detection the use of a cost
map extracted from CT images. Experiments for planning access to the lung shows that
quality based on a cost function is increased compared to the original RRT.

For Suturing, Sen et al. [217] presented a complete setup for automated suturing with
a da Vinci system using SCO [215] as a path planning approach where the kinematic
model of the needle is expressed in terms of the Lie group SE(3) and its corresponding
Lie algebra se (see e.g. [167]). The approach is evaluated on soft tissue phantom and
showed promising results. Pedram et al. [189] presented a kinematic model for needle
suturing obeying clinical suturing guidelines. Based on these formulation a multi-objective
optimization formulation is derived for planning needle trajectories and numerically solved
using a brute force sampling approach.

Individual solutions for other curvatures constrained instruments are also available.
Bano et al. [9] planned curvature constrained trajectories for a neurosurgical probe.
Their method consisted of a gradient-based nonlinear optimization regarding distance to
risk structures as an additional cost, thus starting with initially infeasible paths that are
transformed to such ones out of collision. Caborni et al. [27] used the reachability-guided
RRT Shkolnik et al. [224] to plan multiple feasible trajectories for a flexible neurosurgical
probe. Resulting feasible paths are then sorted according to a weighted cost function.
Patil et al. [188] adapted the initial planning and subsequent SCO approach for planing
curvature and torsion constrained ribbons for intracavitary brachytherapy. Kuntz et al.
[131] presented a planning algorithm for a three stage lung access system, consisting of
a bronchoscope, a concentric tube robot and a steerable needle. The bronchoscope is
guided along sampled points on the medial axis of the bronchial tree, the tube is deployed
and an RRT searches for feasible trajectories towards the target within the lung. Chen
et al. [36] employ a novel neural dynamic model [271] for a tendon-driven serpentine
manipulator in transoral surgery. Comparison with classic algorithms such as RRT∗ and
previous models [272] show competitive computational performance and lower sweeping
area. Kuntz et al. [130] present a planning algorithm based on an RRT for CRISP robot,
which consists of multiple flexible tubes. For vascular navigation of catheters, Azizi et al.
[7] proposed the extraction of a tree representation of the vascular structure’s centerlines.
Chi et al. [38] plan for robotically-inserted guidewires in endovascular procedures using
RL. Experiments on aortic models showed that the approach leads to shorter paths and
less contact to the aortic wall. Pinzi et al. [194] proposed a variant of the AFT that extends
via optimized geometric Hermite curves [275] to meet position and heading constraints at
both start and goal. The algorithm is applied on planning trajectories for the STING probe
in neurosurgery. Granna et al. [98] worked on laser-induced thermotherapy for brain
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tumor ablation using a concentric tube robot that deploys a variable number of curved
laser fibers. The authors proposed the use of multi-objective particle swarm optimization
to solve first the task specific problems, i.e. number and type of fibers, and then the robot
specific problem, i.e. feasible robot parameters.

Finally, several works addressed linear trajectories for insertion of needles into soft
tissue as well as for drilling access canals in Temporal Bone Surgery. The following
publications have proposed both planning and optimization schemes. Noble et al. [179]
presented a monte carlo approach for computing linear trajectories to the cochlea. An
improved version is presented in [177]. The presented algorithm estimates for a given
path the probability that it is effective and stays out of collision, resulting in a cost that is
minimized. Seitel et al. [216] presented a solution for planning a linear liver access for
tumor ablation considering multiple hard and soft constraints such as obstacles, occlusion,
safety margins needle length and insertion angle. The authors proposed a weighted cost
function as well as a pareto front approach to guide a clinician to a safe trajectory. Essert
et al. [66] considered planning needle trajectories for deep brain stimulation and construct
a weighted cost function on multiple hard and soft constraints. A rough pre-computation
of feasible candidate trajectories followed by the Nelder-Mead simplex method [170] for
optimization is used to compute optimal paths.

Becker et al. [14] presented an interactive planning scheme for multi-port temporal
bone surgery, where a surgeon manually defines start and entry regions for three linear
canals by clicking on voxels in CT data. Based on a weighted cost function on clinical
and technical constraints the parameter space is discretized and an exhaustive search
finds optimal solutions. Hamzé et al. [102] proposed a multi-objective method for path
planning in Deep Brain Stimulation, resulting in a set of Pareto-optimal solutions and
compared it against the mono-objective approach in [66]. Hamze et al. [101] further
evaluated an evolutionary multi-objective method, NSGA-II [50], for finding a better
Pareto-front of non-dominant solutions that can be presented to the surgeon. Multi-
port approaches for the temporal bone were also considered by [76] in a general path
planning formulation for nonlinear minimally-invasive approaches. Liang et al. [142]
considered liver tumor treatment using microwave ablation with linear electrodes. Their
multi-objective optimization for maximum coverage with minimal number of insertions
lead to a Pareto front and considered a number of trajectories computed from sampled
voxels at the target and entry.
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2.4. Summary

Robot-assisted surgery requires multi-disciplinary research including robotics, image
processing and motion planning. In Section 2.1, linear approaches for Temporal Bone
Surgery have been presented that combined individual solutions in these field to a
complete pipeline. For Endovascular Aortic Repair (EVAR), current work is focusing only
on image processing to detect or classify the targeted diseases. Due to limited available
data, an extensive retrospective in silico evaluation for robot-assisted surgery is available
for neither of these two examples. Section 2.2 then presented isolated segmentation
approaches for both applications. While there are automatic solutions for EVAR, the
proposed methods are designed for classifying aortic aneurysms and thrombi. The results
may thus not be suitable for computer-assisted interventions that rely on downstream
task such as trajectory planning. An automatic solution for the complete Temporal Bone
is missing and promising Deep Learning techniques such as U-Net perform only pixelwise
classification. Extracted risk structures may thus be fragmented and likewise hinder the
computation of feasible trajectories. With Section 2.2.5, this chapter also introduced
methods on shape regularization as a suitable countermeasure. Regarding trajectory
planning, Section 2.3 reported suitable methods using Circular Arcs, 3D Dubins Paths and
cubic Bézier Splines for the computation of curvature constrained motions. Each of those
used sampling based approaches on RRT. However, neither of these are designed for the
solving of the two point boundary value problem in the presence of obstacles motivated
in Chapter 1 . While 3D Dubins Paths principally solve the problem, the proposed ansatz
requires the two states to be sufficiently far away [112] while solving a computational
expensive nonlinear system of equations [193].

We address these issues in Chapters 3, 4 and 5. For an extensive in silico evaluation of
preoperative surgical planning pipelines, we introduce synthetic anatomies. These clinical
equivalents to random worlds allow the sampling of an infinite amount of anatomical
variations, thereby enabling a statistically robust analysis of motion planning algorithms.
With an evaluation of segmentation algorithm quality on down stream task, we further
expand these in silico experiments. In Chapter 4, we propose a shape regularized
Deep Learning solution that first computes an initial label from a slice-by-slice U-Net
architecture. It then registers the mean shape of a statistical shape model against the
extracted surface mesh and refines this segmentation using Probabilistic Active Shape
Models of the individual organs. For trajectory planning (Chapter 5), we introduce
the first solution that efficiently solves the two point boundary value problem in dense,
cluttered environments using Bidirectional Rapidly-exploring Trees. We propose two
different steering methods: cubic Bézier Splines and Circular Arcs. We also present a
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optimization scheme for Bézier Splines based on sequential convex optimization as well
as a translation of such trajectories to motions of Circular Arcs.
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3. Preoperative Surgical Planning

This chapter serves two purposes: First, it introduces the preoperative clinical workflow
addressed in this thesis, so the work in Chapter 4 and Chapter 5 is put into context. It
then contributes an extensive retrospective in silico evaluation of this step.

Preoperative Surgical Planning for image-guided robot-assisted surgery is built upon
an extensive pipeline (Figure 3.1). Risk structures are extracted from a CT or MRI
image, usually taken a few days before surgery, using either manual interaction or
(semi-)automatic algorithms. A 3D environment of the surgical site is created from these
results, which allows visualization and serves for further planning. In this extracted
representation, a surgeon has to define target and entry points for the instrument. In
Temporal Bone Surgery, this could include marking the surface of the lateral skull base
as possible entry points of a drilling robot and marking the round window of the cochlea
as the designated target [90]. During computation of feasible trajectories, the extracted
geometry is used for collision detection. For planning of trajectories by sampling based
approaches, no guarantee of global optimality exists and instead of a final path a pool
of sub-optimal solutions is usually presented [14, 102, 187]. This workflow relies on
the clinician to select the most suitable path based on technical and clinical constraints.
A complete automation of these two tasks might lead to faster interventions and more
reproducible results, benefiting clinical workflow and patient health. Automation of these
two steps would also relieve the surgeon of tedious and complex tasks, allowing more
time for preparation or patient education.

The review in Chapter 2 shows that a thorough evaluation of such a pipeline is often prob-
lematic. In silico evaluation is often performed isolated for just the two major parts before
going on to ex vivo experiments on phantoms. This ignores the influence of segmentation
on trajectory planning, because image metrics such as Dice or Hausdorff Distance (HD) do
not cover topological irregularities which might prevent a successful subsequent step, such
as fragmentation or holes in segmentation results. If both tasks are instead considered as
a single entity, experiments could evaluate the whole procedure. Quantitative evaluation
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Figure 3.1.: A preoperative surgical planning pipeline first performs segmentation to
extract a 3D representation of the surgical site. In this 3D environment the
surgeon defines start and goal of the robots path and lets a motion planning
algorithm compute feasible trajectories. Thorough in silico evaluation should
analyse these steps both individually and as a single entity.

of this complete pipeline could then be based on relevant CAI parameters such as the
abundance of feasible paths and their distance to risk structures. Moreover, the lack of
sufficiently large datasets limit experimental validation of path planning algorithms in
terms of both robustness and path quality for the specific application. While in motion
planning, random worlds offer a suitable method for evaluation, a clinical equivalent
does not exist.

Extensive in silico evaluation could thus benefit

1. segmentation algorithms, because they could be judged whether or not they
provide topologically coherent shapes that do not interfere with collision detection.

2. motion planning algorithms, because experiments could be based on synthetically
enlarged datasets that allow drawing results from a statistically sound sample size.

This chapter is based on two papers I co-authored [73, 75]. My contributions consist of

• an interactive preoperative pipeline combining shape regularized deep neural net-
works with a precise trajectory planning step.

• synthetic anatomies as a novel implementation of random worlds in the field of
Computer-Assisted Interventions (CAI).

• a functional evaluation on down stream tasks to evaluate segmentation and trajec-
tory planning methods as a single entity.
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3.1. Interactive Preoperative Pipeline

With both medical image segmentation and motion planning for a novel problem formu-
lation, evaluation of the complete pipeline requires the combination of state of the art
algorithms of multiple fields within a single framework. While open source tools such as
Slicer 3D of the medical community or ROS in the field of robotics provide adequate and
extendable frameworks for complex approaches, a solution for nonlinear interventions
has not yet been presented.

Along with our publications on segmentation [73, 75], trajectory planning [72, 74, 76,
77] and pipeline evaluations [73, 75], we published our algorithms within a custom
open source framework with interactive GUI on MUKNO-Framework. Our framework
provides an interactive setup for image processing pipelines (see Figure 3.2), covering
algorithms from ITK and VTK, remeshing algorithms required for active shape models
[243] using ACVD, and deep learning inference algorithms using tensorflow [160]. It
features an interactive definition and setup of the motion planning formulations presented
in Chapter 5 for placement of suitable start and goal configurations as well as mesh
adaptation for correction of segmentation errors. It thereby allows the quick setup of
trajectory planning algorithms for different clinical applications such as endovascular
guidewire insertion, drilling access canals for temporal bone surgery or needle insertion
into soft tissue. Finally, it includes our path planning and optimization algorithms based
on OMPL and Gurobi, allowing fast execution of Bi-RRTs on Bézier Splines and Dubins
Paths (see Section 5.3.3), translation to circular arcs (Section 5.3.4) as well as sequential
convex optimization (Section 5.6). Overall, it gives the research community of CAI access
to a framework implementing a preoperative pipeline for nonlinear interventions.

In particular, an image processing pipeline is represented by a directed acyclic graph that
can be interactively generated using drag and drop. Figure 3.2 A) shows an example
consisting of deep learning segmentation, remeshing for initialization of the mean shape
of a Statistical Shape Model (SSM) and finally Active Shape Model (ASM) segmentation.
In the resulting 3D environment of extracted risk structures, necessary placement of start
and goal states of the motion planning formulation is possible with custom VTK widgets
that allow interaction with the surface models. For Temporal Bone Surgery (Figure 3.2
B), one could for example mark the surface of the skull as potential entry points for an
access to the cochlea and place an anchor at the facial recess to indicate proper orientation
at individual states at the surface. For the goal state at the round window, vertices at
the surface of the cochlea can be marked and the orientation manually aligned to the
centerline of the lower ductus as motivated by Torres et al. [240]. Finally, after computing
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Jugular vein Carotid artery Facial nerve Chorda tympani External auditory
canal Internal auditory canal Cochlea Semicircular canals Ossicles

Figure 3.2.: Examples of interaction. A: Image processing pipeline performing deep
learning inference with slice by slice U-Net, Marching Cubes surface extraction
with remeshing and finally ASM segmentation (orange nodes). B: Interaction
with custom VTK widgets to set up start and goal regions CI , CG based on
extracted surface models of risk structures (skull’s surface, orange arrow at
internal auditory canal). C: Visualization and selection based on a Pareto
front of feasible solutions (colored lines).

multiple solutions for feasible nonlinear access paths, a Pareto front optimization allows
a surgeon easy selection of the clinically most optimal path similar to the approach in
[102].

3.2. Synthetic Anatomies

Scarce datasets with only a very small number of patient images present a challenging
base for evaluation of different methods. Current work presents experiments with only a
very limited number of samples or even a single one [14, 194]. Statistical conclusion for
robustness of trajectory planning approaches or other metrics are hardly achievable. The
possibility of generating random patient data bases for more robust evaluation would
greatly benefit the significance of conducted experiments.

In the field of motion planning, a widely adopted strategy for investigating planner
properties is the use of Random Worlds (Figure 3.3 Left). First, a bounded environment
such as [0, B]2, B > 0 is defined as the working environment. Then, new motion planning
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problems are randomly created. For each new world, the space is filled with obstacles, for
example by randomly putting spheres inside it up to a certain percentage. Then, start and
goal configurations are randomly chosen and the planner under investigation has to find
a feasible trajectory. This strategy can be repeated arbitrarily often until a statistically
meaningful sample size is reached. However, the approach does not translate one-to-one
into our CAI scenario.

Neither the creation of random obstacles in an anatomical workspace nor placement
of random start and goal configuration makes sense in a clinical setting. We propose
Synthetic Anatomies, anatomically plausible and clinically meaningful random worlds
[74] (Figure 3.3 Right), as a clinical adoption of random worlds. These anatomies can
be built from a scarce dataset of patient label images. First, we create statistical shape
models [45] of the available segmented risk structures. For each new synthetic anatomy,
one of the real anatomies is then chosen randomly to serve as an atlas that creates a
corresponding 3D environment. This replaces the creation of a simple bounded scenario
as in the case of random worlds. The sampling of randomly created obstacles is replaced
by the use of statistical variation of organs. For each SSM, its corresponding eigenmodes
are changed between ±δ times their standard deviation, δ > 0, to create an anatomically
plausible variation. This altered version is then registered to the atlas to replace the
original structure. Finally, the random placement of start and goal configurations has
to be replaced by a clinical more meaningful alternative. We propose the inclusion of
these states within the atlas and the use of anatomical landmarks for further adjustment.
An atlas for Synthetic Anatomies thus consists of surface models of organs as well as
predefined positions for start and goal configurations. Because their original pose in the
atlas might be invalid due to the deformation of shape models, a modification is necessary
for each new sample. This modification is dependent on the application and we present
two examples in the experiment section, one for cochlear implantation and the other for
vestibular schwannoma removal at the internal auditory canal. Using these Synthetic
Anatomies, a proper evaluation of the robustness of planning methods is possible.

3.3. Functional Evaluation

Image metrics such as Dice or HD allow an objective comparison between expert anno-
tations and segmentation algorithm results and thus serve as a major quality criteria to
analyze different segmentation approaches. For tasks such as volume estimation of organs,
e.g. the left ventricle, these metrics are fully associated to the clinical application (mass

49



Jugular vein Carotid artery Facial nerve Chorda tympani External auditory
canal Internal auditory canal Cochlea Semicircular canals Ossicles

qI

qG

Figure 3.3.: Left: A RandomWorld to evaluate a 2Dmotion planner based on a bounded en-
vironment filled to 30% with spherical obstacles. Right: A Synthetic Anatomy
based on SSMs of risk structures of the temporal bone. Planned paths from
modified start and goal configurations of the atlas are shown in green for a
cochlear access and two different accesses to the internal auditory canal.

volume, stroke volume, wall motion [140]). However, for robot-assisted interventions
and the preoperative planning of trajectories in particular, additional analysis on the
results is required. Consider, for example, Figure 3.4 that shows results from two different
segmentation algorithms in a CT image of the lateral skull base. While the expert annota-
tion as well as both algorithms capture the clinically relevant characteristic of the jugular
vein, i.e. the bulb of the jugular vein reaching into the temporal bone, segmentation of
the complete vein varies resulting in mediocre scores for Dice and Hausdorff distance.
For Temporal Bone Surgery, though, volume estimation is of less importance. Instead,
segmentation output should allow proper trajectory planning and suitable metrics should
thus quantify the quality of the subsequent step in the preoperative pipeline.

A functional evaluation of a preoperative pipeline considers the final goal of the procedure
and analyses the quality of individual sub steps such as segmentation on the downstream
task, i.e. trajectory planning. This gives, together with existing image metrics, additional
feedback on the usefulness of algorithms for the complete pipeline.

We proposed three different scores for functional evaluation of a preoperative planning
step for robot-assisted surgery [73, 75] (Table 3.1). Each is based on two rounds of
trajectory planning, once using surface models from ground truth risk structures, MGT ,
and once using surface models from segmentation output,MP . Scores are then computed
using the resulting sets of trajectories, TGT and TP , respectively. First, a success rate φs for
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Figure 3.4.: Examples for low Dice coefficient of EAC (brown), IAC (pink) and jugular
vein (blue). Left to right: ground truth, algorithm 1, algorithm 2.

motion planners is computed, defined as the percentage of datasets where at least one path
was found for TGT and TP . This indicates the robustness of trajectory planning algorithms
for the clinical task by measuring how often planning was possible with segmentation
result when it was already possible with ground truth annotations. Next, the distances to
risk structures for TGT and TP using only shapesMGT as obstacles is computed. This gives
for each trajectory the true distance to risk structures when planning on segmentation
results. We then introduced the mean minimal distance φd of computed trajectories. This
gives an indicator to the quality of computed trajectories as it allows comparing the
maximally achieved clearance to different organs between planning on ground truth and
segmentation output. Finally, we define the failure rate φf as the number of datasets were
a path computed on segmentation results was actually in collision. Pipeline evaluations
resulting non-zero failure rates indicate that either trajectory planning or segmentation
algorithms have to be improved before further evaluations such as phantom experiments
should be considered.

3.4. Summary

While designated experiments on segmentation and trajectory planning methods with
specialized metrics give a good view on isolated tasks, their significance as a metric for
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Table 3.1.: Functional metrics for downstream analysis of combined segmentation and
trajectory planning.

Symbol Range Remarks
success rate φs [0, 1] success when planning with segmenta-

tion, robustness
failure rate φf [0, 1] violation when planning with ground

truth, quality criteria
mean minimal distance φd R0+ distance to risk structures, quality crite-

ria

preoperative surgical planning is limited. First, global metrics such as Dice or Hausdorff
distance neither adequately capture variations in expert annotations nor to they detect
topological irregularities. Second, the limited sample size in clinical research for new CAI
procedures do not allow proper evaluation of sampling-based motion planner on random
worlds, a standard approach in motion planning.

This chapter introduced a thorough in silico evaluation of the complete pipeline. It
proposed synthetic anatomies as a clinical equivalent to random worlds. These setups
combine statistical variations of risk structures with calibrated motion planning formu-
lations, i.e. predefined parameters as well as templates for start and goal states. The
resulting environment allows the sampling of an indefinite number of new scenarios for
evaluation of motion planning algorithms. It introduced metrics for a functional analysis
of segmentation algorithms on downstream tasks. By comparing the performance of path
planning and the quality of resulting paths on both expert annotations and segmented
surfaces, the suitability of segmentation algorithms can be efficiently evaluated. These
metrics ignore diversity in inter-clinician bias on ground truth labeling and are sensitive
to shape irregularities. Together with existing scores on Dice or Hausdorff distance, they
add substantial information to the evaluation of a preoperative surgical pipeline.

Finally, a C++ framework with interactive GUI, implementing the entire preoperative
surgical pipeline, is made publicly available. The code allows reproduction of our experi-
ments that are based on publicly available datasets. It also presents an implementation of
the individual segmentation and trajectory planning methods that are proposed in the
following two chapters.
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4. Shape-regularized Segmentation

Contrary to radiologists, who analyze image intensities and textures in a slice-by-slice
manner for diagnosis, surgeons are more interested in organ shapes for treatment planning.
A 3D representation of the risk structures can be compared with the surgeon’s mental
model of the patient’s anatomy, used for 3D printing in endovascular surgery or utilized
in collision detection when planning trajectories in Temporal Bone Surgery. These last
two examples also emphasize why strong topological guarantees are an important quality
measure for segmentation algorithms in preoperative surgical planning. State of the
art deep learning solutions such as U-Net achieve outstanding accuracy but perform
pixelwise classification. Their results may thus contain irregularities such as holes or
isolated regions, preventing 3D printing or collision-free paths to the surgical site. In
complex environments with many tiny or accentuated structures, CNN segmentation
even provides only fragmented pieces [75]. Using model-based algorithms such as Active
Contours (ACs) or Active Shape Models (ASMs) could result in smooth shapes with defined
topology. However, these methods are outperformed by deep neural networks and suffer,
for example, from initialization problems as well as complex and parameter-heavy setup.

A combination of Deep Learning architectures with model-based approaches could provide
the best of both worlds:

1. Automatic segmentation with state of the art accuracy,

2. Modeling of plausible anatomical shapes.

Our proposed automatic pipeline is shown in Figure 4.1: For segmentation, we adapt the
shape regularized U-Net approach of Tack et al. [237] from knee menisci segmentation:
U-Net architectures [204] achieve a first localization of every risk structure. Then, ASMs
regularize the fragmented contours to realistic structures. In our experiments we showed,
that this shape regularized deep learning approach is capable of detecting both the
cluttered tiny structures of temporal bone anatomy as well as the highly varying course
of the aorta.
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Figure 4.1.: Pipeline for automatic segmentation consisting of a slice-by-slice U-Net ap-
proach for initialization and a Probabilistic Active Shape Model (PASM) for
shape regularization.

This chapter is based on two papers I co-authored [73, 75]. My contributions consist of

• an automatic segmentation approach for Temporal Bone Surgery and Endovascular
Guidewire Insertion.

• a novel initialization of PASMs based on (non-)rigid registration against a deep
neural network’s output.

• shape-regularized segmentation for preoperative surgical planning.

4.1. Deep Learning Initialization

Due to the small number of annotated training datasets, we abandoned a potential 3D
U-Net approach in favor of 2D architectures with slice-by-slice prediction. For each axial,
sagittal and coronal slice (Figure 4.1) we predict 2D segmentations of all risk structures
using individually trained U-Nets UA, US , UC . These three predictions are then combined
to an initial 3D segmentation UASC .

Approach The ratio of available class labels in datasets is often highly unbalanced.
Consider for example a CT image of the otobasis in temporal bone surgery. Here, a
huge percentage (99%) of the whole image is usually just background. Even worse,
within class labels, the chorda tympani appears with a much lower percentage than other
structures (Figure 4.3). In such cases, we further subdivide the nets UA, US , UC into
two parts, subnets UAm, USm, UCm for multi class segmentation of all labels and subnets
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Figure 4.2.: Representative fragmented structures and regularized counterparts.

Figure 4.3.: A typical temporal bone CT observes widely different volumes for different
risk structures.

UAc, USc, UCc for binary classification between background and underrepresented label.
Equation 4.1 shows this setup as a function of a Hounsfield calibrated CT slice in ZN×M

with N rows and M columns to a predicted label image Ŷ2D ⊂ LN×M ,L := {0, . . . , NL}
with NL positive labels for the list of risk structures:

UAm, USm, UCm : ZN×M → LN×M

UAc, USc, UCc : ZN×M → {0, 1}N×M
(4.1)

After slice-by-slice prediction of all nets for a N ×M ×K dimensional CT scan, K > 0, a
majority vote first unites the results of the three multi class nets to a prediction of the
whole volume. The results of the individual binary nets are then added to this vote for
the final prediction Ŷ3D ⊂ LN×M×K .

Architecture CT datasets usually have a fixed dimension, e.g. 512× 512, in the xy-plane
and varying size in the xz- and yz-planes due to inter-patient variation. Prediction on
the axial plane is therefore straight forward implemented by networks with input size
512× 512. For prediction on the saggital and coronal planes, a fixed network size has to
be defined dependent on the available data. Each input slice then needs to be resampled.
This can be done by either cropping of region of interests [75] or resampling [73]. The
architectures of our used networks are shown in Figure 4.4: In each block, we have two
3× 3 convolutions with ReLU-activation. Max pooling then halves the image size to the
next block. After five blocks we go back with standard concatenation and upsampling.
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Figure 4.4.: 2D U-Net architecture for networks UAm, USm, UCm and UAc, USc, UCc. Input
and output size depends on application (512× 512 for axial and 128× 512
for sagittal and coronal slices.

In the end, classification is done for both multi class nets UAm, USm, UCm and binary
prediction of the chorda UAc, USc, UCc via a softmax operation.

Training Our implementation is based on tensorflow [160] with Keras [39]. During
training we use as loss function a custom weighted loss for multi class nets UAm, USm, UCm

(see Algorithm 3), where we weight all entries in w equally, i.e. w = 11×L. For the binary
nets UAc, USc, UCc we use tensorflow’s ’binary_crossentropy’. All nets are trained for 30
epochs. In each epoch, every slice of the dataset is given to the respective U-Net once.

Output The initial 3D segmentation often suffers from small artifacts or small missing
pieces as no shape knowledge of the individual structures is built into the neural nets.
Figure 4.2 shows some representative examples for temporal bone surgery: The internal
carotid artery (red) is broken in several pieces and the semicircular canals (orange)
observe holes in their arcs. The stapes of the ossicles (purple) are decayed and the facial
nerve (yellow) often has missing parts. We propose the following procedure to regularize
these fragmented structures.
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Algorithm 3 Sample of our weighted loss function for multi class training on 512× 512
slices.
procedure class_weighted_crossentropy(w, ytrue, ypred)

// weights w ∈ RL×1, images ytrue, ypred ∈ Z512×512

ypred ← ypred/Σ
M×N
i,j ypred(i, j)

loss← ytrue ∗ log(ypred) ∗ w
return loss

end procedure

4.2. Active Shape Model Regularization

Unlike U-Net - trained in an end-to-end fashion with no knowledge of geometry - Active
Shape Models (ASM) [45] inherently respect the shape by restricting the segmentation
to the trained shape space. We proposed the use of Probabilistic Active Shape Models
[124], because these allow a more flexible adaptation by leaving the shape space if
image features provide enough evidence. Applying these PASMs to the result of a U-Net
approach gives us the best of both worlds: Deep Learning segmentation accuracy with
shape regularization.

Approach The original ASM projects a shape vector v ∈ RT×3, with T > 0 landmarks in
R3, into the learned shape space. The PASM instead minimizes an energy function E to
enforce shape constraints via

E : RT×3 × RT×3 → R
E(v, v̄) = α[EI(v, v̄) + EM (v)] + ES(v).

(4.2)

During each iteration, it balances between a weighted local energy term α[EI+EM ], α > 0,
and a global shape energy ES . In short, EI(v, v̂) represents the distance from landmarks
v to image features v̄. These are defined by the appearance model and push, in each
iteration, the landmark vector to learned features such as high gradients. EM (v) controls
the mesh regularity by setting, for example, constraints on its smoothness. Finally, ES(v)
punishes unknown shapes based on a distance in feature space (DIFS) and distance from
feature space (DFFS) [164]. This way, a PASM allows the mesh to adapt to geometries
outside the learned space. In particular, we use the parameter setup proposed by Becker
et al., which outperforms classic ASM for Temporal Bone Anatomy, and refer the reader
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to [15] for a detailed description. For each of the individual risk structures we learn
PASMs Pl, 1 ≤ l ≤ 9.

Initialization: ZN×M×K UASC===⇒ LN×M×K

Mesh Building: LN×M×K MC
==⇒ RK̃l×3 ICP

==⇒ RKl×3

Regularization: RKl×3 Pl=⇒ RKl×3 × LN×M×K , 1 ≤ l ≤ L,

(4.3)

Equation 4.3 now shows the connection to the trained U-Nets: After our U-Net initial-
ization, we create landmark vectors RK̃l×3, K̃l > 0, 1 ≤ l ≤ L, from the fragmented
structures using marching cubes (MC) [150]. It follows a rigid registration of the mean
shape of each model to these vectors using the iterative closest point algorithm (ICP) [22],
resulting in initialized probabilistic active shape models. We then start the iterative seg-
mentation of PASM to receive both regularized meshes and corresponding segmentation
masks.

Architecture The use of active shape models requires a parameter-heavy setup during
mesh generation, remeshing, correspondence analysis for shape model generation and
finally feature extraction during segmentation. We extract meshes from label images
using marching cubes [150] and course the resulting triangles meshes using approximated
centroidal voronoi diagrams [244] to a fixed number of vertices. These vertices form land-
mark vectors in the following correspondence problem. For establishing correspondence ,
we first perform nonrigid registration with a symmetric similarity measure [44] and use
the root mean square difference between surfaces as underlying metric [124]. We also
employ a multi-scale approach, starting with a coarse mesh and subsequent refinement.
As shown by Becker et al. [16], this optimization achieves robust registration even in case
of highly variable shapes of the temporal bone. After registration, landmark propagation
is performed using shape similarity trees [166] based on the approach discussed in [124]
using shortest paths in Jordan centered graphs. Using the resulting corresponding meshes,
we create a linear shape model as in [45]. During segmentation, we follow the PASM
adaptation of Becker et al. [15]. The approach, thoroughly evaluated for Temporal Bone
Anatomy, used image intensity values as image features. It uses a k-nearest-neighbor
classifier as fitness function for differentiating voxels lying either on or off the shape
model’s boundary [108] or inside or outside the shape model’s volume [245].
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4.3. Summary

This chapter presented an automatic segmentation approach based on Deep Learning
initialization with a post processing regularization scheme on Probabilistic Active Shape
Models. It motivates the necessity of shape regularization for preoperative surgical
planning with two examples from Temporal Bone Surgery and Endovascular Aortic
Repair. Finally, it introduced a specialized solution for the tiny and unevenly distributed
risk structures of the otobasis.

Preoperative surgical pipelines for robot-assisted interventions greatly benefit from an
automated procedure that can relieve surgeons from tedious and tiresome tasks. Such
implementations reduce inter-clinician bias and reduce the time necessary for planning,
benefiting both clinical output and workflow. The proposed solution is suitable for
both applications investigated in this thesis and is applicable to other scenarios where
risk structures are representable by Statistical Shape Models. It thus fully meets the
requirements of the preoperative surgical pipeline motivated in Chapter 1.
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5. Curvature-Constrained Trajectory
Planning

Minimally-invasive interventions often operate in narrow regions with highly sensitive
structures such as the organs of the hearing sense or blood vessel. These obstacles provide
only minimal clearance for surgical instruments. In existing solutions with rigid linear
tools, such structures then either block potential paths to the surgical site completely or
allow access only from a sub-optimal angle. Flexible instruments following nonlinear
trajectories could provide larger distances to risk structures and optimized orientations of
tool-tips, thus improving clinical outcomes when compared to existing linear approaches.

In the linear case, trajectory planning usually consists of an optimization procedure based
on a predefined set of start and goal states. When planning for novel flexible instruments,
algorithms have to consider differential constraints such as the maximum curvature that
these tools can achieve during turning. For these problems, Rapidly-exploring Random
Trees (RRTs) are currently the most successful solutions when fast computation is a
requirement [145, 187, 191]. For novel robot-assisted approaches, new motion planning
algorithms thus have to be developed that obey technical as well as clinical constraints.
Suitable algorithms should

1. interpolate between predefined positions and directions to allow precise alignment
at initial as well as goal configurations.

2. show robustness in complex anatomies.

3. converge quickly to a feasible solution if one exists, so rapid feedback to the clinician
is possible.

4. generalize to different instruments such as guidewires, drilling units or flexible
needles.
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Figure 5.1.: Feasible trajectories for nonlinear access in temporal bone surgery (A),
catheter insertion into pulmonary arteries (B), needles in spine biopsy (C)
and guidewires approaches for Abdominal Aortic Aneurysm (AAA) (D).

This chapter is based on the following publications I co-authored [73, 74, 76, 77]. My
contributions consist of

• a planning formulation suitable for a variety of approaches such as cochlear implan-
tation, needle biopsy, or endovascular access for catheter or guidewires (Figure 5.1).

• two novel Bi-RRTs, one using Circular Arcs with 3D Dubins Paths, and another
using cubic Bézier Splines, to find collision-free, curvature constrained trajectories
interpolating given positions and directions at start and goal.

• a geometric translation scheme to transform Bézier Spline trajectories to move-
ments along Circular Arcs, rendering these methods suitable for bevel-tip needles,
guidewires or nonlinear drilling units.

• an adaptation of sequential convex optimization that works on Bézier Spline trajecto-
ries, providing locally optimal solutions with maximum clearance to risk structures.

In this chapter, we first briefly describe the two flexible instruments used in our projects,
their technical limitations as well as resulting challenges in trajectory planning. We
then define a strict problem formulation for precise interpolation between two states in
R3 × S2, i.e. position and direction, in the presence of obstacles. Section Section 5.3.3
presents two steering functions that create curvature-constrained trajectories suitable for
flexible instruments. The section then introduces a Bidirectional RRT with two different
steering functions that solves the problem formulation. The following two sections extend
planning with Bézier Splines by an optimization scheme on convex optimization and
an extension to planning in SE(3). Finally, a relaxed problem formulation that allows
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deviation of the direction is presented and we show how this extension represents the
clinical workflow of a preoperative surgical planning pipeline.

5.1. Problem Description

Flexible instruments are tailored to specific applications and observe unique clinical
challenges (Figure 5.1). Temporal Bone Surgery operates in a very small and dense
environment compared to other setups. Numerous obstacles - nerves, blood vessels and
the organs of the hearing and equilibrium senses - limit the free space and thus complicate
motion planning. This raises special needs for the extension of the search tree as well
as the collision detection. In endovascular procedures, trajectories have to be planned
through tube-like structures. Motion planning algorithms have to find feasible paths
through risk structures instead of around these. Such narrow environments often need
tailored algorithms for sufficiently fast planning [270]. Needle biopsy acts in environments
with highly sensitive regions where precise planning is critical. An example would be liver
tumor treatment, where branches of the hepatic artery and portal vein create cluttered
obstacles.

This thesis considers two novel robot-assisted applications as examples, creating non-
linear access paths in Temporal Bone Surgery (Figure 5.1) and catheter insertion using
guidewires for endovascular access.

At the lateral skull base (Figure 5.1, Left), a custom drilling unit creates an access canal
from the surface of the skull to a clinical target within the temporal bone. Along its path
the robot avoids organs of the hearing and equilibrium senses, blood vessels, cranial
nerves and the brain’s dura. We consider planning for the prototype design shown in
(Figure 5.2, left). Two base cylinders (red) are connected via a flexible inflatable bellow
(yellow). Each cylinder has three inflatable pads (cyan) attached in angles of 120°. Finally,
an independently controlled drill tip (grey) is attached to the front side. By iteratively
inflating all three pads of one cylinder, deflating the others and adjusting the flexible
bellow, this continuum robot performs a worm-like movement. Bending is achieved by
asymmetric inflation.

For endovascular applications, we envision heart catheterizations, which are the most
administered invasive examinations in western countries for diagnostic and therapeu-
tic purposes, and Endovascular Aortic Repair (EVAR) supported by robotically-driven
guidewires (Figure 5.1, Right). A clinical implication for the first application would be a
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Figure 5.2.: Left: Drilling robot for temporal bone surgery. Model (top) and current
prototype (bottom) with length = 6.8 cm and diameter 1.5 cm. Right: Smart
Guide Wire for catheter insertion (model & current prototype with length =
40mm and diameter = 3.6mm).

percutaneous transluminal coronary angioplasty (PTCA) due to arteriosclerosis where
guidewires are used to position catheters to dilate an occlusion in coronary vessels. Recent
research focuses on steerable guidewires based on shape memory alloy (SMA) actuators
to facilitate navigation through complex vessel geometries. This is achieved by integrating
a spring element (Figure 5.2) where three SMA wires of 50µm diameter, are fixed at the
tip of a guidewire. Due to the shape memory effect, the SMA wires contract when heated
up to their transition temperature which is done by applying current. Thus, the guide
wire bends when one or two SMA wires are activated. By actuating all wires the spring
element contracts and the tip of the guide wire stiffens. Actuating one wire by applying
a current of 110 mA results in a bending of the guidewire up to 98°. This guidewire is
inserted at the groin and follows the aorta right before the entrance to the left ventricle
where it branches off into one of the coronary vessels. In conclusion, trajectories in this
scenario thus run through several blood vessels and have to avoid piercing or otherwise
harming their boundaries.

We search for sequences of circular arcs (guidewire) and trajectories of Bézier Splines
(drilling unit), both with bounded curvature, that interpolate between the given start and
goal states (Figure 5.3). Moreover, an automatic procedure requires to continuously re-
evaluate the planned path, because navigation errors typically result in slight deviations.
Thus, given the latest sensory inputs, a new trajectory has to be replanned from the
currently measured pose of the instrument to the target of the intervention. As these are
highly sensitive anatomical regions, a robust and clinically acceptable workflow requires
quick feedback from a motion planning algorithm whether such a feasible trajectory still
exists.
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Figure 5.3.: Left: Bidirectional RRTs grow two search trees - one from the initial region
(blue), the other from the goal region (green)- and attempts to connect them
in between. A successful connection results in a feasible nonlinear trajectory.
Right: Catheter insertion into the heart’s coronary vessels with the help of
guidewires enables easier access. Navigating through the aorta (yellow) is
the first challenge during such interventions.

5.2. Strict Problem Formulation in R3 × S2

In motion planning, parameters and tasks of the application dependent problem are
expressed in a specific Problem Formulation [135]. The following Formulation 2 rep-
resents the challenging environment described above for a motion planning algorithm
that precisely interpolates between given start and goal configurations (or states) in
R3 × S2 ≡ {(x, ω)|x, ω ∈ R3, ‖ω‖ = 1} while circumventing risk structures and obeying
technical and clinical constraints.

Item1%2 of this Problem Formulation introduce obstacles in R3 that have to be circum-
navigated, as well as the free space, which defines potential positions the instrument can
occupy. Item3 corresponds to potential positions, e.g. at the body’s surface, that serve as
entry points for instruments, whereas Item4 defines potential targets at the surgical site.
For the robots shown in Figure 5.2, we consider the z-Axis in the local coordinate frame
of each model as the its line of view, and have to match it with the predefined directions at
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Formulation 2 Strict Problem Formulation in R3 × S2

1: LetO ⊂ R3×S2 be the obstacle region, defined by the location of several risk structures
{R}i ⊂ R3, 0 ≤ i ≤ N :
O := {q = (x, h) ∈ R3 × S2|∃i, 0 ≤ i ≤ N : x ∈ Ri}.

2: Let Cfree =
{
q ∈ R3 × S2|q /∈ O

}
be the free space of the configuration space.

3: Let CI ⊂ Cfree be the initial region.
4: Let CG ⊂ Cfree be the goal region.
5: Let dmax ∈ R+ be the safety distance to risk structures and κmax ∈ R+ the maximum

curvature constraint of the instrument.
6: Let Tmax ∈ R+ be the maximum time constraint available for planning.

Task
7: Find a path γ(t) : [0, 1]→ R3 × S2 satisfying

(i) γ(0) ∈ CI

(ii) γ(1) ∈ CG

(iii) ∀t ∈ (0, 1) : ‖γ′′(t)‖ < κmax

(iv) ∀t ∈ [0, 1], o ∈ O : ‖γ(t)− o‖R3 > dmax

or report that no path could be found in the available time Tmax.

start and goal states: Initial states should be close to the body’s surface normal in order to
minimize deviation from the desired trajectory due to forces applied during insertion. For
a cochlear implantation, for example, goal states at the round window would represent
the optimal insertion angle. Here, work has been done to limit the deviation from the
optimum to less than 5° [240]. In a multi-port cochlear implantation, more states could
represent different optimal directions for tools such as endoscopes or light sources [230].

The instrument’s limitations are then included via Item5: A safety distance dmax accounts
for navigation errors or heat generation and can be used as a distance constraint in
collision detection. Additionally, the maximum turning angle of the tool results in a
curvature constraint. Item6: Potential misalignment during navigation requires an
intra-interventional replanning step to either provide a new corrected trajectory or stop
insertion. Therefore, an algorithm has to be fast enough to provide a smooth intervention
which is enforced via a time constraint Tmax. Item7: A motion planning algorithm for
this procedure will then try to find a feasible path in the available time which would
result in a trajectory connecting both a start and a goal state (i, ii), observing a maximally
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allowed curvature (iii) and last, a necessary distance to risk structures (iv).

Note 1: This formulation remains valid in the case of replanning where the initial region
CI of Item3 will be set to the current pose of the robot.

Note 2: This formulation extends the problem of trajectory planning in soft tissue for
bevel-tip needles, where alignment of instruments [214] and regular fast replanning
[187] is needed, by introducing constraints on both start and goal directions. We expect
our planners to be useful for this kind of applications as well.

5.3. Motion Planning in R3 × S2

The major novelty in Formulation 2 lies in the introduction of the two point boundary
value problem, represented by start and goal states in R3 × S2. We investigate two
kinds of curvature-constrained trajectories, one based on Bézier Splines and another on
Circular Arcs, to solve the problem. Short introductions to these two types are given in
Section 5.3.1 and Section 5.3.2. An intuitive way to solve for such trajectories is to use an
RRT-Connect [129]. This method, unlike basic RRTs, grows search trees from both the
goal and the initial region in an attempt to connect these two. With this strategy more
possible connections are available than just those between search tree and goal regions.
Thus, successfully finding an access path is more likely. In Section 5.3.3, we propose a
suitable version that is both robust and fast. For Bézier Spline trajectories, also present a
way to translate these paths to such ones following circular arcs. This allows algorithms
that work on Bézier Splines to be useful for applications with instruments characterized
by movements along circular arcs.

5.3.1. Curvature constrained Bézier Splines

Sequences of cubic Bézier Splines can be used to form a curvature constrained trajectory
interpolating between two given states in R3× S2. The basis of our 3D trajectories are 2D
Bézier Splines that connect a given start state (Pb, Tb) ∈ R2 × S1 with a given end state
(Pe, Te) ∈ R2 × S1 (Figure 5.4, left). Such a spline consists of two cubic Bézier spirals, i.e.
Bézier curves where the first three control points are colinear (without loss of generality
(w.l.o.g.) B0, B1, B2, blue curve). Given an upper bound κmax on the curvature and an
arbitrary upper bound on the angle γ, Walton and Meed’s theorems [248] give limits
on where the control points B0 . . . B3 and E0 . . . E3 can be placed with respect to the
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Figure 5.4.: A Bézier spline (left) connecting two points with predefined directions and
obeying an upper curvature constraint can be constructed from two Bézier
spirals with control points B0, . . . , B3 and E0, . . . , E3 (blue & red). This
strategy can be used (right) to interpolate between two points with given
directions by properly placing a series of waypoints in 3D, where each triple
(Wi,Wi+1,Wi+2) implicitly defines a spline interpolating between the middle
of WiWi+1 and Wi+1Wi+2.

waypoint W to generate a curvature constrained Bézier spline. We refer the reader to
[248] for a more detailed description and proof of theorems.

This implicit definition can be extended to 3D (Figure 5.4, right): Suppose we have given
three waypoints W1,W2,W3 ∈ R3. We then set Pb = 1

2 · (W1 + W2), Tb =
−−−→
PbW2 and

Pe =
1
2 ·(W2+W3), Te =

−−−→
PeW3. We can therefore use the above 2D Bézier Spline approach

to interpolate between these two states within the plane defined by W1,W2,W3. If a new
waypoint W4 is added, its distance to W3 and the angle ∠(

−−−−→
W2W3,

−−−−→
W3W4) has to conform

with constraints from Walton and Meed’s theorems to guarantee the curvature constraint
κmax. We refer the reader to [268] for details on the construction and smoothness
guarantees.

Using this scheme, we create a series of waypoints W1, . . . ,WN ∈ R3, N > 0. The
resulting series of Bézier triples {Wi}i,= (Wi,Wi+1,Wi+2) ∈ R3×R3×R3, 0 ≤ i ≤ N −2,
implicitly defines 2D Bézier Splines of the above fashion within the planes defined by Wi

and interpolating between the centers of WiWi+1 and Wi+1Wi+2. By respecting the 2D
construction scheme these splines conform with the upper bounded curvature κmax. The
common tangents at start and end points result in smooth transition from one spline to
the next. Overall, this generates a sequence of Bézier Splines that interpolate between
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the given start and goal states qI and qG.

5.3.2. Circular Arcs

Sequences of circular arcs of bounded curvature can also be used to form a trajectory
interpolating between two given states in R3×S2. An application for such movement is for
example given by the nonholonomic modeling of Bevel-tip needles described byWebster III
et al. [254]. Following the approach of Duan et al. [59], this movement can be expressed
as two incremental twists ω1, ω2 in the Lie-Algebra se(3) of SE(3) = R3 × SO(3) (see
[167] for an introduction to SE(3) = R3 × SO(3), se(3)). Given poses Xi, Xi+1 ∈ SE(3),
we then reach the latter via

Xi+1 = exp(ξ̂2) · exp(ξ̂1) ·Xi.

Now we set (Figure 5.5)

ξ1 = (0, 0, 0, 0, 0, φ)>, (5.1)
ξ2 = (0, 0, l/r, l, 0, 0)>, (5.2)

where l describes the length of the arc, r its radius and φ the rotation to align the x-axis
of local coordinate system at Xi with the one at Xi+1. In short, we move from one pose
to the next via a rotation ξ1 about the local z-Axis followed by an incremental push ξ2
along the line of view while rotating around the local x-Axis.

While the above formulation gives a nice representation for needle propagation, it does
not solve the two point Boundary Value Problem (BVP). However, we can adopt the
method of Hota and Ghose [113] for numerically solving the Dubins Path problem in 3D.
Using an approach for a Dubins CSC Path, their mathematical ansatz results in a 5× 5
nonlinear system of equations that can be efficiently solved using, for example, a forward
Euler scheme. Combining both methods, a propagation along circular arcs together with
the solving of a two point boundary value problem is possible in R3 × S2.

5.3.3. An RRT-connect for the Strict Problem Formulation

The motion planning problem described by Formulation 2 can be efficiently solved using
our custom RRT-Connect [74]. It uses either Bézier Splines or Circular Arc motions and
can be described as follows (Algorithm 4): two trees TI , TG are initialized with states of
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Figure 5.5.: Left: Needle movement according to Patil et al. [187] by rotating an instru-
ment along the line of view z and a push forward along a circular arc. Right:
The two types of 2D Dubins paths, CSC (curve, straight line, curve) and CCC,
that interpolate between positions (Pb, Pe) and directions (vb, ve). For the
first type, an equivalent exists in 3D to connect two states in R3×S2 following
the ansatz in [113].

the initial and the goal region, respectively. Both trees are iteratively extended until either
the maximally allowed time Tmax is reached or the graphs are connected successfully.
In each iteration the two search trees take turn in the following procedure: a random
state is drawn from the free space Cfree. Then, the nearest neighbors to the current tree
are computed according to a previously defined distance function. For each of these
configurations the local steering function computes an expansion towards the random
state. If no collision with obstacles occurs along this path the state is added to the tree.
Last, the algorithm tries to connect both trees according to the state space’s constraints
(in our case the path needs to be two times continuously differentiable). If both trees are
connected within the given time threshold Tmax the resulting path is returned. Otherwise,
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Algorithm 4 κ-RRT-Connect
Input: qI ∈ CI , qG ∈ CG

Output: a set of states, {qj}j , j >= 2
Parameters: step size ∆t, goal bias ρ, search time Tmax, maximum number of children
nc, nearest neighbor radius r, cone radius cr, cone height ch
1: TI ← initial_states()
2: TG ← goal_states()
3: while time_spend() < Tmax and not_connected(TI , TG) do
4: qrand ← sample_state(Cfree)
5: T , T̃ ← alternate(TI , TG)
6: {q}k ← nearest_ball(r, T , qrand)
7: for all qnear in {q}k do
8: qnext ← steer(qnear, qrand,∆t)
9: if collision_free(qnear, qnext) then

10: extend_tree(T , qnear, qnext)
11: qother ←inside_cone(qnext, T̃ , cr, ch)
12: if qother then
13: attempt_connection(qnext, qother)
14: end if
15: end if
16: end for
17: end while

failure is reported.

The individual steps in Algorithm 4 (lines 4,6,8,12) are then as follows:

sample_state: Sampling in R3 × S2 would require solving a two point boundary value
problem, i.e. matching both location and orientation at the random state. This is not
possible with either of the two strategies presented in sections Section 5.3.1 and Sec-
tion 5.3.2. Instead, a state is merely sampled in R3 and the direction is implicitly defined
according to the respective method.

nearest_ball: The nearest neighbor function and its underlying metric have significant
impact on the time efficiency and the theoretical properties of the algorithm. For curvature
constrained instruments the Euclidean metric does not represent a good approximation
on the actual distance. On the other hand, the computation of a more complex metric
like the reachable set of a particular state [224] can be very time consuming. As the main
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interest in this application lies in the fast computation of a feasible path, we return the
nearest neighbors within a ball of predefined radius r.

steer: For Bézier Splines we use the strategy presented in section Section 5.3.1 by Yang
et al. [267]. For Circular Arc motions we adopt the strategy of Patil et al. [187].

attempt_connection: The original RRT-Connect does not address nonholonomic planning
and considers the trees connected if both trees meet at the random sample. This approach
would result in a discontinuous orientation at the connecting state as we sample only
in R3 and do not enforce a specific orientation. Instead, a two point boundary value
problem has to be solved in our approach to match both position and orientation:

First, we search for a state of the other tree in the vicinity of qnext. Specifically, we check
if a state lies within a cone C ≡ C(ch, cr) with apex located at qnext and direction given
by the current line of view. If such a state is found, we try to connect these two:

If using Circular Arcs, we connect two corresponding states by solving the 3D Dubins
problem with the geometric approach presented in [112]. A similar method is used in
[191]. Both papers address the computational complexity of their approach. However,
our C++implementation requires on average only 45 microseconds to solve the underlying
nonlinear system of equations which makes it suitable for fast computation.

If the algorithm is based on Bézier Splines, we iteratively use the local steering function
to steer from qnext to its counterpart and vice versa. For each iteration we get a triple
(W I

j ,W
I
j+1,W

I
j+2), j ≥ 0, of TI and a triple (WG

k ,WG
k+1,W

G
k+2), k ≥ 0, of TG. Then, the

two triples (W I
j+1,W

I
j+2,W

G
k+2) and (WG

k+1,W
G
k+2,W

I
j+2) define two new Bézier Splines

that would connect the trees. For each such resulting pairs of triples we check for
feasibility of the curvature constraint and their underlying trajectory for collision. If both
are satisfied, the connection attempt is successful. This procedure is repeated until either
the interpolation criterion of the Bézier-Spline is satisfied during an iteration or the states
missed each other and thus no connection is possible.

5.3.4. Translation to Circular Arcs

While we showed that the use of circular arcs and Dubins Paths was feasible for temporal
bone surgery, experiments for steering through vascular structures showed weak perfor-
mance. On the other hand, steering with Bézier Splines proved to be effective in various
different environments such as the temporal bone, vascular structures of aorta and heart
as well as through liver tissue avoiding vessels [73].
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Figure 5.6.: Translation from Bézier Splines (red/blue) to circular arcs (orange).

We proposed a hybrid planning scheme as a general solution for circular arc motions that is
both robust and safe [72]: An RRT-connect with cubic Bézier Splines as a steering function
to quickly solve for curvature constrained trajectories, followed by a transformation of the
resulting paths to such that follow circular arcs. The implicitly defined cubic Bézier Splines
provide a fast and robust way to interpolate along a curvature constrained trajectory.
Their use circumvents computing Dubins Paths in 3D, which directly solve the two point
BVP for circular movements but are computationally expensive. They still are close enough
to being of circular shape to obtain collision-free trajectories.

This transition works as follows: A successful search of the Spline-Based RRT-connect
returns a series of waypoints {Wi}i, 0 ≤ i ≤ N in R3. Its corresponding series of Bézier
triples {Wi}i, 0 ≤ i ≤ N − 2, defines a smooth curvature constrained trajectory using
cubic Bézier Splines. Consequently, instead of using Bézier Splines, we can search for
other implicitly defined trajectories. If all of these new transitions are collision free, the
resulting path is feasible and interpolates between the given initial and goal states qI , qG.
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We therefore explore geometric translations from our Bézier triples {Wi}i to circular arcs
(Figure 5.6). As shown in [248], a Bézier spline consists of two Bézier spirals with the
first observing a continuously increasing (blue) and the second having a continuously
decreasing (red) curvature. Due to this varying curvature, we can always find circular
arcs with minimal and maximal radius (rmin, rmax ∈ R) within the triangle B0WE0 that
interpolate between the pairs (B0, Tb) and (E0, Te).

W.l.o.g, we assume that B0W is longer than E0W . Then, the intersection Cmax of the
normals at E0 and Bmax is the center of a circle with radius rmax. Due to first increasing
(blue) and then decreasing (red) curvature, the underlying arc has a lower curvature than
the original spline and interpolates, together with the line B0Bmax, smoothly between B0

and E0. For the same reason, a circular arc of minimally allowed radius rmin = 1/κmax

exists that smoothly translates from a trajectory at B0 in direction Tb to E0 in direction
Tb. Here, the transition points Bmin and Emin are given by the Intercept Theorem with

dmin = dE ·
rmin

rmax
.

Using this relationship, we iterate over each set {Wi}i created by a successful call to the
Spline-Based RRT-connect. For each triple we create a maximal circle (Cmax, rmax) and a
minimal circle (Cmin, rmin) and check for collision. If for all triples Wi at least one of the
circles is collision free, an implicit conversion to circular arcs is possible.

5.4. Relaxed Problem Formulation in R3 × S2

Having multiple start and goal regions, e.g. in the case of a start region representing posi-
tions at the bodies’ surface (Figure 5.7), can significantly reduce a Bi-RRT’s computational
efficiency. In such cases, the use of a simple RRT is favorable to generate a first list of feasi-
ble solutions, connecting individual pairs of start and goal states (qiI , qiG) ∈ CI ×CG, i ≥ 0.
However, RRTs are not suitable to precisely interpolate between two states, i.e. solving
Formulation 2, which motivates the following formulation for an approximated problem.
Using these initial solutions, one can then go back to the Bi-RRT case for precise rapid
planning under Formulation 2.

Planning is again done in SE(3) = R3 × SO(3), to account for the instrument’s position
(R3) and its orientation (SO(3)), the latter represented by quaternions. The configuration
space C ⊂ SE(3) = R3 × SO(3) is then divided into an obstacle region CObs ⊂ C
and the free space Cfree = {q ∈ C|q /∈ CObs}. Valid start and goal states of trajectories
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Figure 5.7.: Different initial and goal regions for cochlear implantation. (Left) Multiple
initial states at the skull’s surface (blue arrows). (Middle) A single initial state
pointing in the robot’s current direction. (Right) Three precise goal states for
a multi-port cochlear access.

are defined via subsets of Cfree: Given a set M ⊂ Cfree and the quaternion metric
ρ : SO(3)× SO(3)→ R (e.g. [135])

ρ(h1, h2) = min {ρs(h1, h2), ρs(h1,−h2)}
ρs(h1, h2) = cos−1(a1a2 + b1b2 + c1c2 + d1d2),

(5.3)

we define the approximated set M̃(ε, φ) of M , ε ∈ R+, φ ∈ [0, π], as

M̃(ε, φ) = {q(x, h) ∈ Cfree | ∃ q̂(y, g) ∈M : ‖x− y‖R3 < ε, ρ(h, g) < φ}. (5.4)

Given a number of clinically ideal configurations for trajectories, such sets resemble
clinically acceptable states that lie in the vicinity of the position and observe only a small
perturbation in orientation. Further constraints are given by the minimum distance dmin

to risk structures, the instrument’s curvature constraint κmax and the time Tmax, in which
a feedback is required. The problem formulation for an individual intervention is then
expressed as:

Figure 5.7 shows examples of initial and goal regions, MI ,MG, for a multi-port cochlear
access. For preoperative planning of potential access canals, a surgeon manually defines a
set of initial states at the surface of the lateral skull base (blue arrows, left image). Three
goal states are defined at the round window of the cochlea as the ideal end points of the
three canals for multi-port access (orange arrows, right image). Once the intervention
starts, replanning of a feasible trajectory might be necessary. Here, the current pose of
the drilling unit replaces the initial region (middle image, orange arrow) and one of the
three goal states is fixed as the single target state.
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Formulation 3 Relaxed Problem Formulation in R3 × S2

1: LetO ⊂ R3×S2 be the obstacle region, defined by the location of several risk structures
{R}i ⊂ R3, 0 ≤ i ≤ N :
O := {q = (x, h) ∈ R3 × S2|∃i, 0 ≤ i ≤ N : x ∈ Ri}.

2: Let Cfree =
{
q ∈ R3 × S2|q /∈ O

}
be the free space of the configuration space.

3: Let MI ⊂ Cfree, εI ∈ R+, φI ∈ [0, π].
4: Let MG ⊂ Cfree, εG ∈ R+, φG ∈ [0, π].
5: Let dmin ∈ R+, κmax ∈ R0+, Tmax ∈ R+.

Task
6: Find a path γ(t) : [0, 1]→ R3 × S2 satisfying

(i) γ(0) ∈ M̃I(εI , φI)

(ii) γ(1) ∈ M̃G(εG, φG)

(iii) ∀t ∈ (0, 1) : ‖γ′′(t)‖ < κmax

(iv) ∀t ∈ [0, 1], o ∈ CObs : ‖γ(t)− o‖R3 > dmin

or report that no path could be found in the available time Tmax.

Note: This definition extends the strict formulation Formulation 2 to individual approxi-
mations at both start and goal. With κmax = 0 it is suitable for linear approaches. With
φI = π or φG = π it falls back to more general cases where the direction at only one end
point of the trajectory is relevant.

5.5. Motion Planning in SE(3)

While R3 × S2 well describes the clinically relevant directions that an instrument should
point along, robot configurations are often given in the Lie-Group SE(3) = R3× SO(3) to
describe its pose, i.e. position and orientation. Such a representation is especially helpful,
when movement of the instrument can be modeled in the Lie-Algebra se(3) [167]. This
section reflects the possibility of planning using Bézier Splines, translating the results to
circular arcs and further to trajectories in SE (Figure 5.8).

For each triple (Wi,Wi+1,Wi+2) we therefore define a local coordinate system at B0,i =

1/2 · (Wi +Wi+1) with axis zi =
−−−−−→
WiWi+1, yi = zi × zi+1, xi = zi × yi (Figure 5.4 right).

We then use two incremental twists ω1, ω2 ∈ se(3) in the Lie-Algebra [167] of SE(3) to
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Jugular vein Carotid artery Facial nerve Chorda tympani External au-
ditory canal Internal auditory canal Cochlea Semicircular canals Ossicles

Figure 5.8.: Temporal bone scenario with surface models from real patient data. A
minimally-invasive intervention requires the drilling unit to create a cur-
vature constrained access canal through the mastoid bone (empty space)
while avoiding risk structures (colored). Colored lines show replanned tra-
jectories to the internal auditory canal (pink) along circular arcs.
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model movement along a circular arc. Similar to the approach for needle movement
introduced in section Section 5.3.2, we set

ξ1 = (0, 0, 0, 0, 0, φi)
>, (5.5)

ξ2 = (0, 0, li/ri, li, 0, 0)
>, (5.6)

where li describes the length of the arc, ri its radius and φi the rotation to align the x-axis
of the local coordinate system atB0,i with the one atB0,i+1. Given posesXi, Xi+1 ∈ SE(3)
at B0,i and B0,i+1, we then reach the latter via

Xi+1 = exp(ξ̂2) · exp(ξ̂1) ·Xi.

Note: Using this representation, our method conforms with planning for steerable needles
[187], which are used in clinical scenarios such as liver [234] or lung nodule biopsy [84].

5.6. Optimization for Bézier Splines

Trajectories computed by RRTs or Bi-RRTs naturally observe twists and closeness to
risk structures due to the stochastic nature of the algorithms. We proposed a convex
optimization approach featuring clearance-optimized Bézier Splines that respects the
strict formulation Formulation 2 while at the same time optimizing distance to obstacles
[77].

We use our RRT-connect [74] with Bézier Splines as steering function to find an initial
solution that interpolates between qS and qG while staying away from obstacles. To extract
a locally optimal solution we use the computed waypoints as optimization variables in
a Sequential Convex Optimization (SCO)-formulation. The convex optimization solver
then rearranges these waypoints such that the implicitly defined Bézier Splines feature
larger clearance to obstacles.

Bézier Spline RRT-connect: The Bézier Spline RRT-connect of section Section 5.3.3
provides fast and accurate initial solutions for curvature constrained trajectories around
obstacles. A computed path consists of a series of waypointsW ≡ {Wi}i ⊂ R3, 0 ≤ i ≤
NW (Figure 5.10). Each triple (Wj−1,Wj ,Wj+1), 1 ≤ j ≤ NS ≡ NW − 1, implicitly
defines a Bézier Spline Sj , a combination of two cubic Bézier Spirals, that respects the
curvature constraint κmax.
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Jugular vein Carotid artery Facial nerve Chorda tympani External au-
ditory canal Internal auditory canal Cochlea Semicircular canals Ossicles

Figure 5.9.: A 3D surface representation of the temporal bone. Trajectories for a micro
robot to the internal auditory canal via the superior semicircular canal (top)
and retrolabyrinthine region (bottom). Paths locally optimized with SCO
(green) achieve larger clearance to risk structures than those initially planned
with RRTs (red).

Clearance Optimization: We then define a constrained optimization objective over these
set of waypointsW ⊂ R3 that minimizes a cost function f while satisfying a set of NE

equality and NI inequality constraints hi, gj , i.e.

minimize
W

f(W)

subject to hi(W) = 0, i = 0, . . . , NE

gj(W) ≤ 0, j = 0, . . . , NI .

Efficient numerical solvers require each of these functions to be linear or quadratic convex
functions [23]. In our case, these functions are, however, nonconvex and we thus consider
an approximation rather than the original problem. By formulating adequate convex
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Figure 5.10.: Left: The RRT-connect is used to compute a series of waypoints W =
{W1, . . . ,W9}. Each triple of three subsequent waypoints defines a Bézier
Spline (combination of one blue and one red path). Right: A Bézier Spline
is a combination of two cubic Bézier Spirals, i.e., Bézier Curves with three
colinear sample points (e.g. B0, . . . , B3). Each spline then interpolates
between the middle of subsequent waypoints, e.g. B0 = 1/2 · (W1 +W2)
and E0 = 1/2 · (W2 +W3) on the left.

quadratic versions, convexifications, of the respective cost and constraint functions f, hi
and gj , we derive an approximation of our original problem that is suitable for numerical
solvers.

In particular, our cost function measures the quality of trajectories by a weighted sum of
its length fΓ and distance to obstacles fi,O, 0 ≤ i ≤ NS , i.e.

f = αΓfΓ +
∑
i

αOfi,O,

with αΓ, αO ∈ R0+. We approximate the length as

fΓ =

NW−1∑
i=0

∑
k={x,y,z}

|Wi,k −Wi+1,k|2.

Similar to [214], we measure distance to obstacles via linearized signed distances

sdSO(x) = sdSO(x0) + n(x0)>(x− x0),
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Figure 5.11.: One sample iteration of SCO. Spline S3 ≡ S3(W2,W3,W4) (opaque) is
close enough to the obstacle such that the convexified cost function f3,O
tries to enforce a distance of threshold θ from the nearest neighbor N3 by
translating W3 several times. Spline S6 violates the curvature constraint,
resulting in constraint g6,κ translating corresponding waypoints W5,W6,W7

to a smoother configuration W 5,W 6,W 7.

where sdSO(x0) is the signed distance from a spline S to the nearest obstacle O, x0 ∈ O
is a point on the surface and n the obstacle’s normal at x0. The point x0 stays fixed within
an inner convex iteration sequence and is computed by a nearest neighbor search for
x. The weighted convexified clearance cost functions fi,O then try to match a distance
threshold θ ∈ R+ on the central waypoint Wi of a spline Si, i.e.

fi,O = θ − sdSiO(Wi).

We add constraints to guarantee the upper curvature bound κmax, the safety distance dmin

and position and direction at qS , qG. To ensure that the upper bound κmax on the curvature
and the minimal distance dmin to obstacles stay valid during the optimization we introduce
for each spline constraint functions gi,κ and gi,O, 0 ≤ i ≤ NS . Each curvature constraint
gi,κ smooths its spline, if the upper bound κmax is exceeded, by slightly translating the
three corresponding waypoints. With Pi = 1/2(Wi−1 +Wi+1) and Qi = 1/2(Wi + Pi),
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new waypoints W i−1,W i,W i+1 are given as

W i−1 = Qi + (Wi−1 − Pi),

W i =
1

2
(Wi +Qi),

W i+1 = Qi + (Wi+1 − Pi).

A constraint gi,κ then penalizes the difference between the original positions and these
translations, i.e.

gi,κ =
1∑

j=−1

∑
k={x,y,z}

|Wi+j,k −W i+j,k|2.

The gi,O are defined like the distance cost functions via signed distances. Note, that we
have to set θ >> dmin to achieve significant improvement on clearance. Finally, we
enforce that position and direction at start and goal stay the same by disallowing any
changes in position of the first and last two waypoints.

We then use SCO [214] to solve for a locally optimal solution given the above costs and
constraints. This iterative method repeatedly creates convexified functions based on the
current solution and makes progress on this approximated objective. We refer the reader
to [214] for a detailed description and show in Figure 5.11 one iteration of the proposed
clearance optimization method as an example.

5.7. Summary

This chapter described the clinical and technical constraints of the trajectory planning
step. It translated the requirements of the precise interpolation between start and goal
states into a strict Formulation 2. The interactive workflow of the preoperative surgical
pipeline (Figure 3.1) was represented by a relaxed Formulation 3 . The novel challenge
- quickly solving the two point boundary value problem of interpolating in R3 × S2 in
the presence of obstacles - is then solved by a combination of several methods. First, a
Bi-RRT on Bézier Splines solves for multiple collision-free trajectories. These are further
optimized regarding distance to risk structures using a sequential convex optimization
scheme, where constraints on position, direction, curvature and length are approximated
by linear and quadratic functions. For applications, where motions along Circular Arcs
are required, the Bézier Spline trajectories are translated by a geometric solution to a
sequence of linear and circular motions.
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The presented formulations together represent clinical workflow and technical constraints.
Once the start and goal states are defined, the proposed successive trajectory planning
step can be executed automatically and results in a set of feasible and locally optimal
solutions. Using, for example, Pareto front optimization [102], a surgeon could then
chose between different trajectories depending on competing constraints such as distance
to individual risk structures or length of the paths.
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6. Experimental Results

The main task of a preoperative surgical pipeline for robot-assisted surgery is the provision
of feasible trajectories for the underlying instrument. A thorough evaluation should
therefore quantitatively measure desirable properties of automated computation of risk
structures and trajectories. Suitable segmentation algorithms should extract necessary
parts of organs such that subsequent trajectory planning is feasible. Proper motion
planning algorithms should be robust, fast and precise enough for the investigated surgery.
Finally, a general planning approach could be applied to a diverse set of anatomies.

This chapter is based on our publications [72, 73, 74, 75, 76, 77]. First, the used datasets
(Section 6.1) and metrics (Section 6.2) are introduced. Then, a broad overview of the
published open source framework (Section 6.3) is given. Finally, Section 6.4 describes
the setup of real as well as synthetic anatomies.

We first show the feasibility of our proposed interactive pipeline on two different ap-
plications: Temporal Bone Surgery and Endovascular Aortic Repair. In our functional
evaluations (Section 6.5), we show that

• our shape regularized segmentation results in anatomically plausible shapes while
achieving Dice and Hausdorff scores similar to state-of-the-art solutions.

• planning on segmented surface meshes was almost as successful as planning on
expert annotations.

In Section 6.6, we apply our relaxed Formulation 3 and planning methods to several more
applications to show the general applicability. Here, we consider

• a linear approach for cochlear implantation.

• a nonlinear approach for liver and spine biopsy.

• a pulmonary access via the right heart chambers using again the nonlinear approach.

85



Finally, we perform a thorough robustness analysis of our multi-step planning approach
consisting of Bi-RRTs, convex optimization and translation from Bézier Splines to Circular
Arcs (Section 6.7). In particular, we

• successively show the robust performance of our optimized planning approach by

1. outperforming state-of-the-art Rapidly-exploring Random Trees (RRTs) with
our Bi-RRT counterparts on the strict Formulation 2.

2. providing locally optimal solutions, suitable for clinical experiments, with our
sequential convex optimization scheme on Bézier Splines.

3. planning for instruments such as needles and guidewires by successfully apply-
ing our translation method from Bézier Splines to Circular Arc.

• extend our novel in silico evaluation on synthetic anatomies to achieve statistically
significant performance in scarce clinical datasets.

All experiments were carried out on a system with an Intel Core i5-6500 CPU @ 3.20 GHz
and 32,0 GB RAM. Training of the U-net models was done on a Geforce GTX 1080 Ti.

6.1. Datasets

For our experiments we mainly used 3 different datasets.

Dataset 1 An in-house dataset of 42 temporal bone CT images (Siemens Somatom). The
acquired volumes had an average resolution of 0.2× 0.2× 0.4mm3. For each 3D image,
corresponding ground truth data of external auditory canal (EAC) and internal auditory
canal (IAC), facial nerve (FN) and chorda tympani (Chorda), internal carotid artery (ICA)
and jugular vein (JV), ossicles (Oss), semicircular canals (SCC) and cochlea (Cochlea)
was available. Further labels for the skull’s surface and brain’s dura were available in 24
of these label images. A representative example is shown in Figure 6.1.

Dataset 2 The training dataset of 40 CT images from the SegTHOR challenge [190].
The acquired volumes had an average resolution of 0.43 × 0.43 × 0.58mm3. The seg-
mented Organs at Risk (OAR) included the visible aorta, esophagus, trachea and heart. A
representative example is shown in Figure 6.2.
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Jugular vein Carotid artery Facial nerve Chorda tympani External auditory
canal Internal auditory canal Cochlea Semicircular canals Ossicles

Figure 6.1.: Representative CT data of the temporal bone with 3D view of risk structures.

Aorta Heart Esophagus Trachea

Figure 6.2.: Representative chest CT image of the SegTHOR challenge with 3D view of
risk structures.
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Aorta Pulmonary Artery Left Ventricle Right Ventricle Left Atrium Right
Atrium Myocardium

Figure 6.3.: Representative chest CT image of the MMWHS challenge with 3D view of
risk structures.

Dataset 3 The two training CT datasets of totally 20 images from the MMWHS challenge
[68]. The acquired volumes had an average resolution of 1.0× 1.0× 2.35mm3. Expert
annotations of organs showed Left Ventricle (LV) and Right Ventricle (RV), Left Atrium
and Right Atrium, Pulmonary Artery (PA), Ascending Aorta, and Myocardium (MYO)
(Figure 6.3).

We subdivided each of these datasets into two equally sized subsets. Two instances of
our complete segmentation method (U-Nets and PASM models) were then created. Each
instance was trained on only one subset and evaluated on the held out subset, thereby
realizing cross validation.

6.2. Metrics

We compare segmentation quality in terms of Dice score and Hausdorff Distance (HD).
Consider two label images Y, Ŷ ⊂ LN×M ,L := {0, NL} with NL positive labels for an
individual dataset’s list of risk structures. The Dice score then measures the similarity
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between the two label images as

Dice : LN×M × LN×M → [0, 1]

Dice(X,Y ) =
2|X ∩ Y |
|X||Y |

.

This is an indicator for the average volume overlap between expert annotation and
segmentation results. While it is useful for quantifying competing methods, the range
for a good or satisfying value depends on the individual risk structure’s size, intra- and
inter-clinician variability and the application.

The Hausdorff Distance (HD) gives the maximum symmetric surface distance between
the two sets by

HD : LN×M × LN×M → R

HD(X,Y ) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
.

In addition to Dice scores, the Hausdorff function serves as a significant indicator for
capturing the boundary of an organ.

6.3. Open Source Repository

We made the C++ and python code of our preoperative surgical planning framework
publicly available 1 so that the research community can benefit from these methods and
reproduce our experiments. This environment supports the comparison of methods for
individual sub tasks, the execution of clinical studies with the use of an interactive GUI
for surgeons and finally provides transparency and reproducibility for our work.

The repository itself consists of a modular framework for 3D data processing (using ITK
[276], VTK [213], ACVD [244] and tensorflow [160]), trajectory planning (using OMPL
[231]) and convex optimization (under Gurobi [100]). The integrated GUI based on Qt
offers visual-interactive support for the generation of image processing pipelines, the setup
of problem formulations (Formulation 2, Formulation 3) and analysis of performance
of motion planning algorithms from Chapter 5. Finally, it includes the code to run our
experiments in [72, 73, 75, 77].
1https://github.com/MECLabTUDA/MUKNO
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6.4. Planning in Real & Synthetic Anatomies

Computation of feasible trajectories and subsequent optimization, i.e. execution of the
motion planning algorithms of Chapter 5, requires to define the parameter set of either of
the two formulations Formulation 2 or Formulation 3. This in turn requires the placement
of start and goal states for the initial and goal regions CI , CQ, which takes place in
the 3D surface representation extracted from CT label images. For all experiments,
we followed the following procedure to generate the planning setup for both real and
synthetic anatomies. In the upcoming sections, we refer to these basic setups and add
minor modifications if needed.

Real Anatomies For each CT image a corresponding label image with segmentations of
risk structures was available. We extracted surface meshes using Marching Cubes [150]
and refined those to uniformly dense meshes using approximated centroidal voronoi
diagrams [244]. These meshes were then used for interactive placement of start and goal
regions in Formulation 2 and Formulation 3 as well as during the collision detection calls
in Algorithm 2 and Algorithm 4. The obstacle region CObs was defined as the set of all
vertices of these meshes. For each anatomy we then manually placed initial and goal
states qI , qG in the environment:

For Temporal Bone Surgery we considered three different clinical scenarios: Planning of
(non-)linear access canals for a cochlear implantation (Cochlea-Access, Fig. 6.4) and
computing nonlinear trajectories for a drilling unit in vestibular schwannoma removal.
For the latter, we considered two different approaches both ending at the internal auditory
canal: one through the superior semicircular canal (SSC-Access), the other through the
retrolabyrinthine region [230] (RL-Access). In each dataset and for each of the three
applications (RL-, SSC-, Cochlea-Access) we placed one state within the temporal bone and
one state on the skull’s surface to define the regions CI and CG of the strict Formulation 2.
Start states were positioned at the bottom of the internal auditory canal, at its top and
finally at the round window for the RL-, SSC- and Cochlea-Access, respectively. This
resembled a potential position of an acoustic neuroma (RL-, SSC-Access) or the entry
point of the electrode in a cochlear implant (Cochlea-Access). The directions (resembling
the instrument’s line of view) at these goal states were defined as a compromise between
the respective organ’s normal at this position and a direction towards the skull’s surface.
Last, three states were placed on the skull with orientations approximately orthogonal to
its surface which served as start states for the individual access paths. For the relaxed
Formulation 3, we allowed deviations of the direction at the single goal state qG via the
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Figure 6.4.: Examples of the access paths (Cochlea-/SSC-/RL-Access) for real (A) and
synthetic (B) anatomies.

parameter φG > 0 and replaced the single state cI with a set of states on the skull by
interactively drawing a polygon on its surface and extracting the corresponding vertices
inside to define MG. The directions for each of these states were defined by placing an
anchor point at the facial recess (Cochlea-Access), in between the superior semicircular
canal (SSC) (SSC-Access), or within the retrolabyrinthine region anterior to the facial
nerve (RL-Access).

For Endovascular Aortic Repair and Pulmonary Artery Access we created single start and
goal states qI , qG. Planning for those scenarios was done using the strict formulation, i.e.
with no deviation from the direction. For the first scenario, using the SegTHOR dataset,
we placed qI within the lower part of the descending aorta pointing upwards along the
medial axis and qG inferior to the ascending aorta (Figure 6.5) pointing to the heart.
For the second scenario, we placed qI within the right atrium close to the superior vena
cava pointing towards the tricuspid valve and qG within the visible part of the pulmonary
artery pointing along its centerline away from the pulmonary valve. This resembles a
typical course of a catheter in pulmonary artery catheterization within the risk structures
labeled in the MMWHS dataset.

Synthetic Anatomies For evaluation of motion planning algorithms on temporal bone
surgery, we also used synthetically altered versions of real environments, including risk
structures as well as start and goal regions. To this purpose, we first created linear
statistical shape models [45] of the manually segmented organs. For each new synthetic
anatomy, one of the real anatomies was chosen randomly to serve as an atlas, including
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Aorta Heart Esophagus Trachea

Figure 6.5.: A trajectory through the aorta to the heart for a SegThor sample with 3D
surface representations of aorta, heart, esophagus and trachea.

its risk structures and its goal regions. For each new synthetic anatomy, random varia-
tions of the individual statistical shape models’ modes were computed by sampling the
corresponding eigenvalues between ±1.0 times of their standard deviation. The resulting
model was then rigidly registered with the reference atlas to replace the original structure
with its altered variant (Figure 6.4). For the respective goal states we used the ones in
the atlas. The start states required a new strategy for positioning, as their original pose in
the atlas might be invalid. Thus, new start states were placed above/below the center of
mass of the internal auditory canal (SSC-/RL-Access) and below the center of mass of the
cochlea (Cochlea-Access). For orientation, individual reference points Pref ∈ R3 were
computed: For the RL-Access slightly inferior to the lower side of the bounding box of
the facial nerve; for the SSC-Access above the center of mass of the semicircular canals
and for the Cochlea-Access in the center of mass of the chorda tympani. The start states
were then oriented so that the z-axis of the local coordinate frame points to the respective
reference point.
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6.5. Functional Evaluation

This section evaluates the preoperative surgical pipeline presented in Chapter 3 by applying
the shape regularized U-Net for segmentation of risk structures and performing subsequent
planning of trajectories using the Bi-RRT on Bézier Splines. Thus, this resembles a
functional evaluation of a real clinical workflow by planning on the results of segmentation
methods rather than ground truth label images.

Specifically, we evaluate the usability of segmentation algorithms for planning access
canals to the cochlea and the internal auditory canal on 24 CT datasets of real patients.
We show that our shape regularized U-Net approach achieves similar results to the existing
semi-automatic method by Becker et al. [15] in terms of Dice but provides more accurate
organ shapes for the subsequent trajectory planning step. We then generalize these
results by successfully applying our method on a planning problem based on the publicly
available data of the SegTHOR challenge.

6.5.1. Shape-Regularized Segmentation

For both scenarios (Temporal Bone, Endovascular Access), we split the respective datasets
in two equally sized subsets (first & second half) to achieve two-fold cross validation.
U-Nets and Probabilistic Active Shape Model (PASM)s were trained on one subset. Pre-
dictions and shape model iterations were performed on the other.

Experimental Setup for Temporal Bone: We first trained PASM models on the two
datasets. We then manually selected, according to [15], three points on the medial axis
of the nerves (at the start, end and in the middle of the object) and bounding boxes of
the remaining structures within the 24 CT datasets. These were used to initialize the
PASM models, resulting in 24 volume segmentations IS based on the semi-automatic
method. Next, the U-Nets of our proposed methodology were trained. We then predicted
an initial segmentation IU , which resulted in cluttered structures shown in Figure 6.6.
Afterwards, we computed surface meshes from these initial U-Net results, rigidly registered
the mean shape of the respective PASM models against them and performed the iterative
segmentation of PASM, resulting in an automatically regularized IA. In summary, we
computed three segmentations for each risk structure and each of the 24 datasets: one
from the semi-automatic method, one from Deep Learning initialization and one from
our shape regularized U-Net approach. Our proposed segmentation procedure needed on
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Figure 6.6.: Representative dataset with fragmented structures and regularized counter-
parts.

average about 4 minutes ( 15.5 s for each of the 6 nets + 16, 5 s for each of the 9 PASMs).

Results: We compared the two segmentation algorithms (manual PASM, shape regular-
ization) as well as the results after initialization (U-Net). As quality metric we used the
Dice coefficient, which measures the overlap between ground truth and segmentation
algorithm output. Figure 6.7 shows a quantitative analysis of the computed Dice coeffi-
cients for each of the risk structures. Best results were achieved by all methods for the
ICA, the cochlea, the ossicles and the SSC, as they are usually clearly visible in CT images.
Lesser Dice scores were achieved for the jugular vein, IAC and EAC. Segmentation of the
two nerves provided the least Dice scores.

However, many of the organs of the temporal bone do not end - within the CT images - at a
clearly visible boundary (see Figure 3.4). For example, the IAC (pink) extends on the left to
the brain, the EAC extends on the right outside of the skull and the jugular vein is centered
around the bulb that is visible in the CT scan. On one of their boundaries, these structures
therefore continue and have similar texture and gray values like surrounding tissue such
that clinicians stopped their expert annotations quite arbitrarily. Regarding this issue,
both semi-automatic and our solution actually provided good alignment to the respective
structure’s boundaries, as shown in Figure 3.4. A visual inspection (Figure 6.8, left)
showed that similar reasons apply for both nerves. While Dice scores give a quantitative
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Figure 6.7.: Box-Plots of Dice coefficients from all 24 datasets for the three segmentation
techniques and all obstacles.

measurement of the global overlap, a segmentation algorithm does not necessarily provide
bad result for preoperative planning even with a low Dice score. As the right image in
Figure 6.8 shows, a more useful metric would weight regions around the planning area
higher than parts farther away. By considering the success rate of motion planning
algorithms and the computed path’s closeness to planning on ground truth annotations,
the following downstream evaluation of the entire pipeline provides more meaningful
metrics.

Experimental Setup for Endovascular Access: Similarly to the Temporal Bone experi-
ments, we trained PASM models and U-Nets on the two datasets (first and second half
of SegTHOR training data) for two-fold cross validation. We again computed an initial
segmentation IU via a slice-by-slice U-Net approach and used the results to properly place
the mean shape of the PASM’s models within the CT data. Contrary to the Temporal Bone
scenarios, this was done using nonrigid registration because the structures were large
enough and would not degenerate. An iterative step of the PASM models then produced
a final segmentation IA. For the two outputs IU and IA, we then compared Dice scores
and Hausdorff distances.

Results: Table 6.1 shows Dice and Hausdorff distances (HD) for esophagus, heart, trachea
and aorta in the SegTHOR dataset. While dice is comparable, our approach achieves for
most anatomies significant improvement on Hausdorff distance. The qualitative example
in Figure 6.9 shows that a combination of fragmentation and isolated regions is often
responsible for bad quality in the U-Net approach whereas our shape regularized solution
provides realistic and accurate segmentation for planning.
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Figure 6.8.: Low Dice coefficient example of facial nerve (yellow) and chorda tympani
(cyan). Ground truth annotations in light red. Left: Higher Dice sample
(0.61, 0.45) where planning was infeasible. Middle: Lower Dice sample
(0.55, 0.44), where planning was possible. Right: The lower dice sample
with computed linear trajectory.

Table 6.1.: Results on Dice and HD with mean(SD) for SegTHOR.
Dice Hausdorff

U-Net Ours U-Net Ours
Esophagus 0.46(0.18) 0.55(0.18) 23.91(11.08) 21.92(8.97)
Heart 0.90(0.03) 0.91(0.03) 37.05(32.82) 16.33(5.18)
Trachea 0.84(0.09) 0.87(0.09) 23.08(11.62) 19.19(9.61)
Aorta 0.80(0.09) 0.86(0.08) 26.46(9.86) 20.86(9.68)

6.5.2. Downstream Analysis

In the 3D environment represented by extracted surface meshes we computed trajectories
for two different scenarios: Planning nonlinear trajectories for a drilling unit in vestibular
schwannoma removal and for a guidewire in endovascular aortic access. According to
the strong formulation for nonlinear trajectory planning in minimally-invasive surgery
Formulation 2, four main items have to be defined for the underlying general motion
planning formulation:

• start and goals states qI , qG ∈ R3 × S2,

• a safety distance dmax ∈ R+ to obstacles that combines the instrument’s size and
potential navigation errors,

• a curvature constraint κmax ∈ R0+ based on the instrument.
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Figure 6.9.: Qualitative results on a SegThor sample (Ground Truth, U-Net & Ours).
Contrary to U-Net, our shape regularized approach provided shapes for
feasible planning.

Table 6.2.: Access canals’ major obstacles and planning parameters.
Obstacles dmin(mm) εI , φI , εG, φG

SSC-Acces IAC, SSC, FN 1.5 0.0, 0.0,0°,0°RL-Acces IAC, SSC, FN, JV

Experimental Setup for Temporal Bone: We try to find nonlinear trajectories to the
internal auditory canal, a clinical application being vestibular schwannoma removal. We
consider two alternatives with the same parameter setup (Table 6.2): an access via the
superior semicircular canal (Figure 6.10, right top) and an access via the retrolabyrinthine
region (Figure 6.10, right bottom). The maximum curvature constraint κmax is set to our
custom drilling robot’s limit of 0.05mm−1. We use a safety margin of 0.5mm to the robot’s
radius of 1.0mm which results in a safety distance dmin = 1.5mm to obstacles. We then
proceed to define one specific start and one specific goal state with εI = φI = εG = φG = 0
and utilize Bidirectional Rapidly-exploring Random Trees with cubic Bézier-Splines as
steering method [74] to plan for feasible curvature constrained trajectories.

The segmentations served as obstacles during collision detection. Here, we had three
different references for collision detection available: (A) ground truth annotations, (B)
semi-automatic segmentation results and (C) label images from shape regularization.
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Figure 6.10.: Nonlinear trajectories to the IAC that interpolate given start and target
states.

For each of these references we computed trajectories for each of the two scenarios
(SSC-Access, RL-Access) along with these path’s true distances to risk structures, i.e based
on ground truth annotations. This procedure therefore quantified overall planning quality,
clinically most relevant for CAI applications.

Results: Table 6.3 shows the results for all three scenarios. For the SSC-Access we see
from Table 6.3, that in all cases planning with ground truth annotations and our proposed
method found collision-free paths. The semi-automatic solution however provided only
in 66% cases feasible trajectories. Figure 6.11 shows a representative example for the
SSC-Access: Both segmentation methods provided accurate extraction of the two main risk
structures (semicircular canals (orange) and facial nerve (cyan)) along the way, respecting
the required safety distance of 1.5mm. However, due to a large oversegmentation of
the internal auditory canal, the proper setup of the goal state was possible only in a
third of the semi-automatic cases. Figure 6.11 also shows that our proposed method
undersegments the IAC towards the medial part. However, this did not negatively affect
the planning pipeline.

RL-Access: Figure 6.12 shows a representative example for the RL-Access: Like in the pre-
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Table 6.3.: Success rate for planning, mean minimal distance to risk structures for the
three experiments (safety distance as reference) as well as failure rate.

success rate mean safety distance failure rate
SSC RL SSC (1.5) RL (1.5) SSC RL

ground-truth 1.0 1.0 2.19 2.35 - -
semi-automatic 0.66 0.66 2.17 2.60 0.0 0.0
ours 1.0 1.0 2.16 2.42 0.0 0.1

Figure 6.11.: Segmented IAC (pink) over the ground truth (yellow) for nonlinear trajec-
tories to the IAC. Contrary to the semi-automatic solution (left), successful
planning through the SSC was only feasible with our proposed approach
(right).

vious case, an accurate segmentation of the IAC was necessary for a setup of proper goal
states. This time, we ignored misalignment for this structure and only required precise
segmentation of the two main structures along the way: facial nerve and the jugular vein.
Consulting once again Table 6.3, our proposed method outperforms the semi-automatic
version in terms of success rate in collision-free planning. The required safety distance
was met with an average minimum distance of 2.6mm and 2.4mm, respectively. In 10%
of the cases however the automatic solution provided paths below the safety threshold
due to an inaccurate segmentation of the jugular vein.

Experimental Setup for Endovascular Access: We used the three sets MGT ,MU ,MP

of surfaces meshes. First, the interactive setup of the motion planning formulation in a
preoperative pipeline was performed manually based on ground truth structures MGT .
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Figure 6.12.: Transparent segmented jugular vein (blue) over the ground truth (yellow)
for nonlinear trajectories to the IAC. Contrary to the semi-automatic solution
(left), successful planning through the retrolabyrinthine region was achieved
with our proposed approach (right).

Then, we again computed access paths using the Bi-RRT on Bézier Splines three times in
a row: Once using obstacles based on MGT , once on MU and once on MP , resulting in
three sets of trajectories TGT , TU , TP . We then measured the success rate for planning
on both U-Net and PASM results, i.e. the percentage of datasets where at least one path
was found for TGT , TU and TP . We then computed the distances to risk structures for
TGT , TU , TP using only shapes MGT as obstacles. This resulted in computing the true
distance to risk structures when planning on U-Net and PASM, respectively. We then
measured the mean distance of the minimum distances along each trajectory as well
as the failure rate, i.e. the number of datasets were a path computed on segmentation
results was actually below the critical safety distance dmin.

Results: A downstream analysis on trajectory planning evaluates the overall quality and
usefulness of the segmentation results by adding metrics on motion planning. Table 6.4
shows the success rate of the motion planning algorithm from Section 5.3.3. The frag-
mented structures from U-Net do not provide suitable obstacles for planning, whereas
shape regularized meshes lead to almost equal rates compared to ground truth planning.
In successful cases, both U-Net and our approach achieve slightly lower but still acceptable
mean minimal distances to risk structures due to the optimization step. The failure rate
of 22% shows that improvement of the segmentation procedure is still necessary and is
further discussed on the conclusion.

This evaluation of the entire pipeline consequently more realistically evaluated the us-
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Table 6.4.: Quantitative results on planning metrics for SegThor.
success rate mean safety distance failure rate

(%) (mm) (%)
Ground-Truth 98 4.70 -
U-Net 43 4.44 17
Ours 90 3.59 22

ability of segmentation algorithms for preoperative planning. By considering trajectory
planning with metrics such as success rate and the computed path’s closeness to ground
truth annotations a more meaningful interpretation of the segmentation step is possible.

6.6. Generalization

Planning trajectories in a preoperative surgical planning pipeline appears in more ap-
plications that just vestibular schwannoma removal or endovascular aortic repair. We
evaluated our complete approach for several more applications to show the general
applicability of the shape regularized planning approach as well as the robustness of
our proposed nonlinear trajectory planning methods. This section applies the relaxed
formulation of section Section 5.4 first to linear access canals for minimally-invasive
cochlear implantation and then to nonlinear trajectories for endovascular pulmonary
artery access. Our motion planner then samples unit vectors deviating up to five degrees
from the optimal entry direction. In each case, the points of the initial point cloud are
projected onto the line that starts at the goal position and points along this sampled
direction. If the projected point is less than εI mm away from the original start state, the
planner checks for collision with obstacles and returns a feasible linear path if no collision
occurred.

6.6.1. Linear Cochlea-Access

Experimental Setup: The preoperative step for a minimally-invasive cochlear implan-
tation requires a linear canal has to be planned from the surface of the skull to the round
window at the cochlea (Figure 6.13). To ensure, the electrode can be inserted into the
cochlea from a direction that optimizes its functionality, we set start and goal deviations,
according to required precision [240], to εI = 1.0, φI = π, and εG = 0.0, φG = π/36 (5°).
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Figure 6.13.: Linear paths (colored lines) from start states (orange arrows) to the cochlea.
Found solutions observe lower (red) to higher (green) distances to risk
structures.

Using parameter setups of exemplary linear drilling units for cochlear implantations
[253] that consider navigation errors and heat exposure, we combine drilling radius and
additional safety margin to a minimum distance to obstacles of dmin = 0.8mm. For linear
canals the maximum curvature constraint defaults to zero.

Results: In 90% of the cases, planning on ground truth annotations resulted in a collision
free path with the required safety distance, i.e. a preoperative surgical planning of the
minimally-invasive procedure should have been possible (Table 6.5). The remaining 10%
observed not enough clearance to obstacles. With our procedure, planning of a linear
canal to the cochlea was equally successful, whereas with the semi-automatic variant [15]
only in 66% of the cases planning was successful. In all cases, this infeasible trajectory
planning was due to an oversegmentation of the internal auditory canal. On average, the
resulting paths achieved a true minimum distance to risk structures of 1.15mm for the
semi-automatic and 1.04mm for our solution. In Figure 6.14 we see segmentations and
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Figure 6.14.: Linear paths to the cochlea resulting from planning on ground truth (green),
semi-automatic (orange, left) and our procedure (blue, right).

Table 6.5.: Success rate for planning and mean minimal distance to risk structures for the
three experiments (safety distance as reference).

success rate mean safety distance failure rate
(%) (mm) (d < dmin, %)

ground-truth 0.9 1.39 -
semi-automatic 0.65 1.15 0.0
ours 0.9 1.04 0.18

paths for both the semi-automatic (left, orange) and shape regularized procedure (right,
blue) together with the most important obstacles as a qualitative example. We note, that
in 10% of the cases solutions of the automatic method fell below the safety distance when
evaluated on ground truth obstacles. This was due to an inaccurate segmentation of the
superior part of the chorda tympani.

6.6.2. Endovascular Access to Pulmonary Arteries

We evaluate a preoperative surgical planning workflow using the MMWHS dataset. The
corresponding pipeline, automating laborious tasks while at the same time giving the
surgeon control over crucial parts, is shown in (Figure 6.15).
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Figure 6.15.: Preoperative pipeline for pulmonary artery access: A CT scan serves as
input for 2D U-Nets to predict an initial segmentation (A). Probabilistic
ASMs regularize the shapes of fragmented structures (B). A surgeon then
interactively defines start and goal states (pink circles) and creates openings
(yellow circles) (C). Bi-RRTs find feasible trajectories (D, search graphs in
pink & cyan). Computed paths can be locally optimized using SCO (E).

Experimental Setup: Based on a CT scan, our segmentation algorithm automatically
extracts organs at risk while guaranteeing realistic shaped boundaries. Given the 3D
environment of risk structures, a surgeon initializes the motion planning problem. We
consider a parameter setup of the relaxed Formulation 3 with qI ∈ C = R3 × S2, qG ∈
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Table 6.6.: Results on Dice and HD with mean(SD) for MMWHS.
Dice Hausdorff

U-Net Ours U-Net Ours
Left Ventricle 0.89(0.07) 0.90(0.07) 14.63(10.99) 8.56(3.03)
Right Ventricle 0.86(0.05) 0.86(0.08) 23.05(15.01) 12.07(5.80)
Left Atrium 0.91(0.05) 0.90(0.08) 17.67(14.07) 11.55(6.26)
Right Atrium 0.86(0.05) 0.88(0.05) 23.30(14.85) 10.98(3.16)
Left Myocardium 0.86(0.05) 0.88(0.03) 19.35(15.96) 9.62(3.05)
Ascending Aorta 0.90(0.20) 0.92(0.16) 17.22(12.31) 14.82(17.51)
Pulmonary Artery 0.83(0.09) 0.83(0.08) 32.80(15.80) 29.42(15.52)

R3 × S2, dmin = 3.5 and κmax = 0.2. This step requires interactive placement of a
suitable start configuration qS for the instrument within the right atrium as well as a
specific goal state qG within the pulmonary artery. Moreover, it includes the creation
of transitions between neighboring labels: at the tricuspid valve between right atrium
and ventricle, at the pulmonary valve between right ventricle and pulmonary artery. We
use our Bi-directional Rapidly-exploring Random Tree with Bézier-Splines as steering
functions to compute multiple feasible trajectories. The planner parameters were set to
∆t = 10.0, ρ = 0.05, Tmax = 1.0, nc = 10, r = 1.0, cr = 20, ch = 40.0. An iteration of
sequential convex optimization [77, 214] improves clearance to obstacles for these paths.
We weighted between obstacle distance and path length setting αO = 10 and αΓ = 0.1.

Results: The evaluation on the MMWHS dataset shows similar results to the SegTHOR
experiment of section Section 6.5.1, with comparable Dice between shape regularization
and U-Net but HD scores clearly outperforming the U-Net approach (Table 6.6). Having
the same success rate of 90% but an even lower failure rate of 6% we conclude that
shape regularization on deep learning solutions provides a promising approach for future
endovascular procedures.

A downstream analysis on trajectory planning evaluates the overall quality and usefulness
of the segmentation results by adding metrics on motion planning. Table 6.7 shows
the success rate of the motion planning algorithm from Section 5.3.3. The fragmented
structures from U-Net do not provide suitable obstacles for planning, whereas shape
regularized meshes lead to almost equal rates compared to ground truth planning. In
successful cases, both U-Net and our approach achieve slightly lower but still acceptable
mean minimal distances to risk structures due to the optimization step.
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Table 6.7.: Quantitative results on planning metrics for MMWHS.
success rate mean safety distance failure rate

(%) (mm) (%)
Ground-Truth 100 4.39 -
U-Net 70 4.20 0
Ours 90 3.75 6

6.7. Curvature-Constrained Motion Planning

This section demonstrates the advantageous of planning with Bi-RRTs, their optimization
using sequential convex optimization and finally the applicability of translating from
Bézier Splines to Circular Arcs. First, the benefits of κ-RRT-Connect , our proposed Bi-RRT
of section Section 5.3.3 on Bézier Splines and Circular Arcs, are demonstrated on real
temporal bone CT data of patients. Their general performance is then shown on a large set
of anatomically plausible synthetic anatomies. Finally, we show that these new algorithms
outperform state of the art RRT approaches for this specific problem.

While our Bi-RRT on Bézier Splines efficiently solves the two point Boundary Value
Problem (BVP) in Formulation 2, access paths computed by this method do not pro-
vide optimal distance to surrounding anatomy. We show that the sequential convex
optimization approach of Section 5.6, that rearranges Bézier Splines computed by an
RRT-connect, achieves locally optimal clearance. Experiments were performed for two
scenarios: catheter insertion through the aorta using the SegTHOR dataset and Temporal
Bone Surgery using our in-house data. We compare distances to risk structures along
computed trajectories from κ-RRT-Connectwith those optimized by Sequential Convex
Optimization (SCO).

Finally, translating Bézier Splines, as introduced in Section 5.3.4, is an alternative way
to compute feasible trajectories along Circular Arcs for Formulation 2. Our evaluation
on real patient data of both temporal bone and aorta showed that our proposed hybrid
two step approach achieves on average 55% higher replanning rates and provides 31%
larger clearance to risk structures than the κ-B-RRT-Connectalgorithm that solves the
BVP with 3D Dubins Paths. For temporal bone surgery, we additionally evaluated our
approach on synthetic anatomies using the same setup as in Section 6.7.1. Consequently,
our translation approach improves trajectory quality with regard to clinical safety and
provides a robust alternative to planning for circular arcs.
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Table 6.8.: Parameters for the relaxed Formulation 2 of the three access paths.
κmax εI φI (deg) dmin (mm) Tmax (s)

Cochlea-Access 0.05 1.0 5 0.8 20
SSC-Access 0.05 1.0 5 1.5 20
RL-Access 0.05 1.0 5 2.0 20

6.7.1. Comparison between Bi-RRT and RRT

Experimental Setup: We consider real and synthetic anatomies in temporal bone surgery
and compute nonlinear trajectories for a cochlear access (Cochlea-Access) and two accesses
to the internal auditory canal (IAC) (SSC-Access and RL-Access). For computation of
trajectories, we use two state of the art RRT planners ( Bevel-Tip-RRTfor Circular Arcs
[187] and SB-RRTfor Bézier Splines [267]) and our Bi-RRT counterparts presented in
section Section 5.3.3 (κ-B-RRT-Connectand κ-SB-RRT-Connect, respectively). For each
scenario, we set up the relaxed Formulation 2 so RRT planners were able to find solutions,
too.

In both setups we let each of the four planners (Bevel-Tip-RRT vs. κ-B-RRT-Connectand
SB-RRT vs. κ-SB-RRT-Connect) calculate as many paths as possible within 20 seconds for
all three applications (Cochlea-, SSC-, RL-Access). We used the number of found paths
to quantify the performance of each planner. In order to compare the quality of paths
computed by each planner, we measured for each trajectory both the deviation at the
goal state and the minimal distance to risk structures. For goal biasing we chose a value
of ρ = 0.25. The attempt_connection method of κ-RRT-Connect was most successful with
parameters ch = 5.0mm and cr = 11, 19mm for height and radius of the cone. Parameters
for the relaxed formulation are shown in Table 6.8.

Results: We start with analyzing the motion planners’ results on real anatomies. Then,
we discuss their generalization on synthetic data.

Real Anatomies First, we look at the number of paths found in a specific time to ensure
a planner is fast enough for intra-operative replanning [187]. Figure Figure 6.16 and
Table 6.9 show the statistical distributions: For both the Cochlea- and the SSC-Access
our RRT-Connect algorithms clearly outperformed standard RRT planners. In the case of
the RL-Access the Spline-Based-RRT showed similar performance but none of the three
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Table 6.9.: Performance of each planner for the real anatomies (A=Bevel-Tip RRT,
B=Bevel-Tip Bi-RRT, C=Spline-Based RRT , D=Spline-Based Bi-RRT).
Measured in median number of paths (#), median number of paths per
second (#/s) and percentage of failed scenarios (F).

Cochlea-Access SSC-Access RL-Access
# #/s F(%) # #/s F(%) # #/s F(%)

A 0 0 80 1 0.05 50 0 0 75
B 2635 131.75 5 760 38 0 4 0.2 45
C 17 0.85 5 14 0.7 5 9 0.45 25
D 2031 101.55 0 442 22.1 0 17 0.85 40

algorithms really stands out. The number of paths found per second and the low number
of failures indicate that κ-RRT-Connects work very well for the first two access canals and
we can expect that successful intra-operational planning can be performed in minimal
time. In contrast, the search through the retro-labyrinthine region was unsuccessful for
almost half of the anatomies. This is, however, not unexpected because the risk structures
vary highly between patients: in case of a narrow passage between facial nerve and
chorda tympani, a small semicircular canal or a high reaching bulb of the jugular vein, the
creation of a feasible access path was impossible. Indeed, a careful inspection showed that
in the 6 cases algorithm C failed, a high reaching jugular vein bulb made a trajectory of
the requested size completely impossible. The discrepancy between the first two problem
formulations and the latter is also due the nature of relevant obstacles in the respective
area. In the first two cases a bottleneck had to be passed (two nerves / the SSC), whereas
for the RL-Access the facial nerve and the jugular vein had to be circumnavigated.

Now we look at the matching of the goal’s pose. Naturally, RRT-Connect algorithms
matched the orientation of goal states perfectly, whereas the RRTs were limited to an
approximation (Figure 6.17). We also note, that in all three cases both Bevel-Tip-RRT and
Spline-Based-RRT tended to accomplish the maximal allowed deviation rather than a
perfect match.

Next, we focus on the minimal distance an access path had to risk structures as this is
usually the most relevant metric to clinicians. To this purpose, we interpolated between
the states of the search tree at a resolution of 0.1mm. For each of those interpolated
states, we then sampled points on a circle with radius rd and orthogonal to the state’s
direction and computed the minimal distance to the next obstacle. Figure Figure 6.18
shows in small images the narrowest region that had to be passed together with three
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Figure 6.16.: Box-Plots for each access canal about the number of paths found by the
individual planners in 22 real anatomies (higher=better).

Figure 6.17.: Box-Plots about deviation at the goal for real anatomies (lower=better).

statistics for each planner across all 22 anatomies: the percentage how often it computed
the best path for a specific anatomy (Best), the mean minimal distance its best path had
to risk structures (Mean) and the overall best path it computed across all anatomies
(Max). Clear superiority of a specific algorithm was not observable although the Spline-
Based-RRT tended to find paths with the largest distance more often. Hence, our new
κ-RRT-Connect did not suffer from lower quality. From the observed distances we also got
an impression of the average size of the passed bottleneck. This can help in the design for
the robot prototype. According to Table 6.9, for example, κ-RRT-Connect always found
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A=Bevel-Tip RRT, B=Bevel-Tip Bi-RRT, C=Spline-Based RRT , D=Spline-Based Bi-RRT

Figure 6.18.: Close-Up of the narrowest region of each access canal. The corresponding
shows the mean and max distance of each planner over all real anatomies
together with the percentage of how often each planner found the best path
according to the maximum distance.

Figure 6.19.: RL-Access planned by a standard RRT (pink tube) with safety distance
1.0mm and by a κ-RRT-Connect (green, orange) with safety distances
1.0mm and 1.5mm, respectively.

trajectories for an SSC-Access with the specifications in Table 6.8, having on average still
a minimal distance above 1.0mm to the nearest obstacle.

Last we address the issue that in many scenarios the Spline-Based-RRT found paths with
the highest minimal distance. A closer inspection showed that the κ-RRT-Connect just
quickly found a solution as soon as the relevant obstacle had been passed. When we
enlarged the allowed safety distance, the κ-RRT-Connect computed paths with similar
minimal distances. Figure Figure 6.19 shows an example of this behavior for the RL-Access
with safety distance 1.0mm and 1.5mm.

Synthetic Anatomies To study the generalization of these specific cases, we then looked
at synthetic scenarios. Instead of real anatomies we now worked with variances based on
atlases of real data combined with the shape space of the statistical shape models. Our
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Table 6.10.: Performance of each planner for the synthetic anatomies (A=Bevel-Tip RRT,
B=Bevel-Tip Bi-RRT, C=Spline-Based RRT , D=Spline-Based Bi-RRT). Mea-
sured in median number of paths (#), median number of paths per second
(#/s) and percentage of failed scenarios (F).

Cochlea-Access SSC-Access RL-Access
# #/s F (%) # #/s F (%) # #/s F (%)

A 0 0 80 0 0 57 0 0 66
B 208 10.4 0 398 19.9 12 27 1.35 37
C 15 0.75 7 14 0.7 7 15 0.75 26
D 762 38.1 0 1144 57.2 0 273 13.65 30

evaluations then included a much broader variety of anatomies. By randomly sampling
the shape space we also made sure that the individual real anatomies did not provide
edge cases for the algorithms, a standard approach in motion planning [87, 123].

Figure 6.20.: Box-Plots about success rates of the planners in 100 synthetic anatomies
(higher=better).

The results in Figure 6.20 and Table 6.10 show how the planners performed for each
access canal. From the box plots we can conclude, that κ-RRT-Connect again tended to
find many more paths. Their performances according to Table 6.10 supported the results
of the real cases: For the given parameters of Table 6.8 access paths for the Cochlea- and
SSC-Access were always possible whereas for the RL-Access a high reaching jugular vein
often prevented a feasible trajectory to be found. The number of paths found per second
again indicated that Bi-directional RRTs are suitable for intra-operational planning. An
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Figure 6.21.: Box-Plots about deviation at the goal for 100 random synthetic anatomies
(lower=better).

analysis of the orientation at the goal showed equivalent results to the real cases: RRTs
hardly realize a good match of the desired orientation (Figure 6.21). Although this was
expected, it clearly supports our claim, that bidirectional planners are required, if precise
replanning is necessary.
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Aorta Heart Esophagus Trachea

Figure 6.22.: Two examples of the Aorta-Access with initial (red) and corresponding
optimized (green) trajectories. The weighted cost function on length and
clearance to risk structures lead to smooth trajectories close to the aorta’s
centerline.

6.7.2. Optimization of Bi-RRT trajectories

Both temporal bone surgery and Endovascular Aortic Repair (EVAR) benefit from opti-
mized clearance to risk structures, because damage of Organs at Risk (OAR) could lead
to facial nerve paresis in temporal bone surgery or severe complications in EVAR due
to piercing or otherwise damaging the aortic wall. As the previous experiments showed
superior performance of Bézier Spline trajectories, we further improved on this scheme
using sequential convex optimization.

Experimental Setup: We extracted surface meshes from expert annotations of both the
40 SegTHOR CT images as well as our temporal bone dataset. We then defined a strong
formulation, planned trajectories using Bi-RRT on Bézier Splines and tried to optimize
the resulting paths.

Catheter insertion: Initially, we planned trajectories for catheters through the aorta
(Figure 6.22). The start state qS was placed at the lowest part of the descending aorta,
the goal state qG at the entrance to the left ventricle. We set the curvature constraint
to κmax = 0.1mm−1 and safety distance to dmin = 20.0mm. The RRT-connect used a
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Table 6.11.: Quantitative Comparison for Aorta-Access.
Aorta-Access

RRT [74] Ours
success rate - 81.0
mean distance 7.1 11.2
Aorta 1.9± 0.3 3.0 ± 1.6
Heart 8.4± 2.1 10.3 ± 1.7

Table 6.12.: Quantitative Comparison for RL- and SSC-Access.
RL-Access SSC-Access

RRT [74] Ours RRT [74] Ours
success rate - 87.8 - 94.8
mean distance 4.9 5.5 5.0 5.2
Brain 1.8± 0.5 2.0 ± 0.6 2.0± 0.8 2.1 ± 0.8
facial nerve (FN) 1.8± 0.7 1.8± 0.9 2.8± 0.5 2.9 ± 0.5
jugular vein (JV) 3.3± 2.1 3.3± 2.1 - -
SSC 1.5± 0.7 1.6 ± 0.7 1.0± 0.2 1.1 ± 0.3

step size of 15mm, resulting on average in NW = 25 waypoints for the optimization.
Figure 6.22 shows two representative examples with distance threshold θ = 30mm and
cost weights αΓ = 0.1, αO = 10.

Temporal Bone Surgery: We placed a start state qI at the surface of the lateral skull base
and a goal state qG at the internal auditory canal for two different approaches: An access
via the retrolabyrinthine region (RL-Access) and an access via the superior semicircular
canal (SSC-Access). Initial parameters were set to κmax = 0.1 mm−1 and dmin = 1.5 mm
and a step size of 6mm, resulting inNW ≈ 8waypoints. Figure 5.9 shows a representative
example with distance threshold θ = 5mm and cost weights αΓ = 1, αO = 10.

Results: Running the optimization sequence for Catheter insertion took on average
1.1 s. With a success rate of 80.97% we were able to optimize the majority of trajectories,
showing that the convexifications are suitable. Along the entire trajectory our clearance-
optimized paths achieved a much higher mean and minimum distance to the two obstacles
aorta and heart (Table 6.11, Aorta-Access). Such improved trajectories thus significantly
reduce the risk of harming organ boundaries.

Temporal Bone Surgery: Table 6.11 (RL- & SSC-Access) shows a comparison between
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Table 6.13.: Parameters for the Problem Formulations and Planners.
κmax dmin Tmax ∆Tmax ∆t (Ch, Cr)

Temporal 0.05 2.0 1.0 0.1 6 (12,6)
Aorta 0.1 2.0 5.0 1.0 15 (45, 5)

initial and optimized planning. The high success rate demonstrates that our convexified
cost and constraint functions for length and curvature are suitable to optimize Bézier
Spline trajectories. As a consequence of the increase in overall mean distance, minimally-
invasive approaches using our method would stay farther away from risk structures until
the respective bottle necks (the SSC for SSC-Access; facial nerve, jugular vein and brain
for RL-Access). Due to the very narrow passages in temporal bone surgery (Figure 5.9,
closeup) the differences in minimal distance at the bottlenecks were negligible.

6.7.3. Translation to Circular Arcs

The previous optimization scheme is only applicable to Bézier Spline trajectories. A
translation of such paths for instruments such as Bevel-Tip needles that follow Circular
Arcs would make the whole approach accessible to more clinical applications. This section
investigates the potential of our translation approach for temporal bone surgery as well
as percutaneous transluminal coronary angioplasty.

Experimental Setup: We compared our method with the state of the art RRT-connect
solution that directly steers via circular arcs and connects its two search trees with 3D
Dubins Paths [74]. Planners were given the same fixed time constraint Tmax of the
strong problem formulation to compute as many trajectories as possible. Each planner
restarted the search, if they failed to connect their trees within a smaller time frame
∆Tmax. This strategy was more successful than ongoing planning for the entire time
Tmax. After setting up the strong Formulation 2 for each individual dataset, we computed
initial trajectories with both planners. From these initial trajectories, the one with largest
distance to obstacles was chosen as a reference Γopt for replanning. This Γopt consisted
of a sequence of states {q}i ⊂ R3 × S2, 0 ≤ i ≤ N . For replanning, we then repeatedly
planned trajectories to the goal based on reference Γopt, replacing the initial state qI in
each step with the next qj ∈ {q}i, 1 ≤ j ≤ N − 1, of Γopt until no further solutions had
been found. This provided a robustness quality metric, named percental replanning rate,
that indicated from how many states of the original trajectory replanning was possible.
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Jugular vein Carotid artery Facial nerve Chorda tympani External auditory
canal Internal auditory canal Cochlea Semicircular canals Ossicles Aorta
Heart Esophagus Trachea

Figure 6.23.: Left: Motion planning in a synthetic temporal bone anatomy. Replanned
trajectories (colored lines) from different states along the initial path. Right:
Search graph of a Spline-Based RRT-connect (blue & green). Its steering
function provides a more robust way to travel through narrow or cluttered
environments than the use of circular arcs and 3D Dubins Paths.

For Temporal Bone Surgery, we targeted a miniaturized version of our prototype with
a radius of 1.0mm and added a safety distance of 1.0mm to account for heat exposure
during drilling, resulting in a safety distance dmin of 2.0mm. The curvature constraint
κmax = 0.05mm−1 reflected the maximum turning angle of the robot (Table 6.13).
Although the temporal bone exhibits highly varying anatomies such hardware capabilities
would allow feasibility of the approach in the majority of cases with an average length
of trajectories of 4.25mm. For both methods, we then tried to find feasible initial and
replanning trajectories within Tmax = 1.0 s with∆Tmax = 0.1 s. These values were chosen
as a trade off between speed and high success rate. In addition to using 20 real patient
examples, we extrapolated 1000 random worlds by using synthetic anatomies [74]. A
synthetic anatomy consisted of a small perturbation of the obstacles, where statistical
shape models [45] of the individual risk structures were used to slightly alter their shape.
This methodology led to anatomically realistic and clinically meaningful random worlds.
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For percutaneous transluminal coronary angioplasty, we used the publicly available SegTHOR
dataset [241] to evaluate the motion planners within the aorta, i.e. on the first part of the
guidewire’s path to the coronary arteries. The dataset consisted of 40 CT images along
with segmentations of aorta, heart, esophagus and trachea Figure 6.23). For each scenario,
we placed the start state qI at the inferior part of each dataset’s segmented descending
aorta pointing up. The goal state qG we placed within the left ventricle pointing down,
slightly below the lowest part of the ascending aorta. This prevented planners from
search within the heart for feasible trajectories. We set rmax = 0.96µm, comparable to
existing catheters, and added an additional safety margin to keep away from the vessel’s
boundaries, resulting in a safety distance dmin = 2.0mm. With our guidewire design we
targeted currently existing catheters with a maximum bend between 30−70 °/mm. We set
the curvature constraint to κmax = 0.1mm−1 which generously respected catheter designs
and allowed for easier planning. Once these parameters were defined we performed the
initial and replanning procedure with Tmax = 5.0 s with ∆Tmax = 1 s, once again as a
trade off between speed and high success rate.

Results: For Temporal Bone Surgery, the results of both planners on real as well as
synthetic data are shown in Table 6.14. For all experiments, we first measured the success
rate on initial planning, i.e., for how many datasets at least one trajectory could be found.
As we manually placed the start and goal states in a favorable way for motion planning, a
high success rate was expected. Overall, our proposed planner achieved only a slightly
lower success rate than the original version, showing its robustness for temporal bone
surgery. In the rare cases where it failed, the extremely narrow environment provided
not enough free space for the translation from Bézier splines to circular arcs. Next, we
measured the number of trajectories computed within Tmax and derived the average time
it would need to find a feasible solution. As is took only a few steps to plan through the
retrolabyrinthine region to the internal auditory canal and only two obstacles (facial nerve
and jugular vein) had to be circumnavigated, both planners required only milliseconds
to find a feasible path. In terms of quality, we realized a significant increase in distance
to risk structures of on average 35% with our proposed approach and thus an improved
clinical quality of trajectories. This beneficial effect can be explained by the steering
mechanism of Bézier splines which only approximate the waypoints drawn by the planner
(Figure 5.4). Finally, the replanning rate of our approach was on average 41.8% higher
compared to the existing solution, showing that the Bézier approach with translation to
arcs is very robust.

We then evaluated the 1000 synthetic anatomies. Figure 6.23 shows one of the random
worlds as a quality example with replanned trajectories. From Table 6.14 we observe
that the results from real data were almost matched. Only the number of paths found per
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Table 6.14.: Results of temporal bone planning. While Circular Arcs show slightly better
scores in initial success rate, our translation scheme provides safer paths and
robust replanning.

Temporal Bone (Real Data) Arcs[74] Proposed
success rate (%) 100.0 93.3
# paths 268.7± 229.8 216.9± 152.2
average time (ms) 18.61± 8.58 23.06± 11.86
min distance (mm) 2.0± 0.1 2.7± 0.4
replanning rate (%) 54.4± 27.2 96.2± 9.7

Temporal Bone (Synthetic Data) Arcs[74] Proposed
success rate (%) 100.0 86.4
# paths 62.2± 44.4 53.4± 40.4
average time (ms) 16.08± 6.71 18.73± 8.51
min distance (mm) 2.0± 0.1 2.8± 0.4
replanning rate (%) 53.8± 26.1 92.1± 17.8

planner dropped. However, this was an expected result: While start and goal states were
tailored for the real scenarios, they were sub-optimal for altered synthetic anatomies.

Aorta Experiment: Planning through the aorta provided a different scenario, as motion
planners had to cope with a narrow tube-like environment instead of the cluttered one
described before. Figure 6.23 shows a qualitative example of the variation of curved
aortas in the SegTHOR dataset together with the search tree of our proposed version.
Quantitative results are shown in Table 6.15. Both in initial and in replanning success
rate, our Bézier approach outperformed the existing solution by about 55% and 55.2%,
respectively. Again, this can be explained by the approximated waypoints that are used in
the search tree. This construction mechanism naturally allows the planning to stay slightly
farther away from boundaries than the direct approach. We emphasize that quality in
terms of distance to risk structures was again improved around 27%.

6.8. Summary

This chapter performed retrospective in silico evaluation of preoperative surgical planning
as presented in Chapter 3 for Temporal Bone Surgery and endovascular procedures. The
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Table 6.15.: Results of aorta planning.
Aorta (Real Data) Arcs[74] Proposed
success rate 45.0 100.0
# paths 0.7± 1.0 8.0± 3.2
average time (s) 7.4± 4.4 0.6± 0.1
min distance (mm) 2.9± 0.6 3.7± 0.5
replanning rate (%) 13.4± 13.8 68.6± 24.2

automatic shape regularized segmentation approach of Chapter 4 showed competitive
performance on Dice scores and Hausdorff distances while providing suitable label images
for further trajectory planning. The trajectory planning step was thoroughly evaluated
on real and synthetic anatomies. The proposed Bi-RRTs on Bézier Splines and Circular
Arcs with 3D Dubins Paths proved to be more suitable than their RRT counterparts.
The sequential convex optimization scheme on Bézier Splines improved distance to risk
structures while smoothing out the stochastic nature of typical RRT paths. The translation
approach showed superior performance compared to planning directly with the Bi-RRT
on Circular Arcs.

Preoperative surgical planning employing shape regularized U-Nets and optimized trajec-
tory planning with cubic Bézier Splines is a robust and fast solution to finding feasible
access paths for flexible nonlinear instruments. The in silico evaluation of this solution
allows a thorough analysis of the preoperative step in new robot-assisted approaches.
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7. Conclusion

This chapter first gives a short summary and list of contributions. It then discusses
limitations of each part in the pipeline and suggests directions for future work.

7.1. Summary

Robot-assisted interventions with flexible instruments are an ongoing trend in minimally-
invasive surgery that improve clinical outcome at the expense of added complexity. Before
clinical translation of these new approaches, a thorough evaluation of these procedures is
essential even though only limited available data is usually accessible for specific cases.
This thesis covers the preoperative surgical planning step of these approaches and provides
automatic solutions for the two major parts, segmentation and trajectory planning.

In particular, this thesis presents a complete preoperative surgical planning pipeline for
robot-assisted minimally-invasive procedures, performing successive steps of automatic
segmentation and optimized trajectory planning. Contributions lie in three fields: in
silico evaluation, segmentation and motion planning (Table 7.1). For segmentation, a
shape-regularized deep learning approach for plausible shape extraction in minimally-
invasive temporal bone surgery as well as Endovascular Aortic Repair (EVAR) is presented
[73, 75]. New methods in curvature constrained trajectory planning cover Bi-RRTs using
either Bézier Splines or Circular arcs together with 3D Dubins Paths [74]. An optimization
scheme on sequential convex optimization [77] together with a translation from one
technique to the other [72] makes the whole concept widely adoptable to approaches
with flexible needles and endoscopes, drilling units as well as guidewires.

In silico experiments are based on three different datasets: the training sets of both
the MMWHS [68] and SegTHOR [241] challenge as well as an in-house dataset of the
temporal bone. For Temporal Bone Surgery, experimental results on the whole pipeline
prove the feasibility of our combined approach of automatic segmentation and trajectory
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Table 7.1.: Contributions in this thesis for preoperative surgical planning.
Contribution Benefits
In silico evaluation
Synthetic Anatomies clinical motion planning evaluation
Downstream Metrics Functional evaluation of segmentation
Segmentation
Shape Regularized U-Nets Automation for Temporal Bone

Suitable results for motion planning
Motion Planning
Bi-RRT on Bézier Splines robust and precise planning in R3 × S2
Bi-RRT on Circular Arcs
Bézier Spline Optimization locally optimal solutions
Bézier Spline Translation optimal planning on Circular Arcs

planning, making a vital step to robust and safe robot-assisted procedures in this field.
For Endovascular Aortic Repair, our experiments show promising results for automatic
segmentation for 3D printing as well as feasibility of an Electromagnetic Tracking (EMT)
guided insertion of guidewires, the latter with the potential of minimizing radiation
exposure for both patients and clinicians. In short, the proposed automatic pipeline
leads to an efficient and unbiased workflow for preoperative surgical planning. Finally,
an open-source framework is published that enables the proposed experimental setup
of synthetic anatomies for statistically significant evaluation on scarce datasets, the
interactive execution of preoperative planning as well as the functional evaluation on
downstream tasks with new application driven metrics.

7.2. Discussion & Future Work

While the proposed solutions allow complete preoperative surgical planning for flexible
instruments, individual steps still show limitations and can be further improved or ex-
panded. The following three sections list in detail future work for in silico experiments,
automatic shape regularized segmentation and curvature constrained trajectory planning.
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7.2.1. In Silico Evaluation

The proposed pipeline, performing successive steps of segmentation, interactive problem
definition and trajectory planning, can be quickly setup in our interactive framework,
thoroughly evaluated using functional evaluation on planning metrics and experimentally
validated by synthetic anatomies. To the best of our knowledge, existing tools such
as Slicer 3D do not provide equivalent or similar opportunities in such a general way.
However, due to their wide adoption and rich available features in terms of both image
processing and visual interaction, a migration of our works into these framework would
come with many benefits. First, such tools already provide extensive tools for image
post processing, allowing for manual correction during evaluation of the pipeline in a
clinical workflow. Together with existing plugins for these frameworks, individual parts
of our work, such as nonlinear trajectory planning and optimization, would be easily
extendable to other applications and thus more useful for the research community. Finally,
the interactive tools is not yet properly evaluated by clinicians on a clinical workflow
but only used for setup of our experiments. An implementation of a user interface for
ergonomic execution of the pipeline in a clinical workflow by clinicians would be a
valuable contribution and result in hints to further improve on the individual solutions
within the whole procedure.

While our functional evaluation shows promising results for both Temporal Bone Surgery
and Endovascular Aortic Repair, it is not considered a replacement of phantom exper-
iments. Further analysis should therefore setup experiments using real prototypes of
the investigated instruments. For temporal bone surgery using the proposed drilling
units, a suitable next step could include trajectory planning and subsequent navigation
in styrofoam blocks. However, due to the current state of the drilling robot prototype,
experiments for EVAR seem more realistic. Here, 3D printing of the aorta allows for easy
creation of suitable upscaled environments. Such enlarged phantoms could be used to
create trajectories for the currently existing guidewires.

The evaluation on synthetic anatomies is still a novelty in the community. First, new
samples are created using multiple atlases together with rigid registration. This does
not cover varying poses of organs, which is naturally the case in between patients. By
leveraging the statistical variety in articulated atlases [120], it might be possible to cover
these variations as well and build more advanced samples for evaluation. Second, these
synthetic worlds only allow the creation of new samples for trajectory planning. A system
that provides new samples for segmentation would also greatly benefit the evaluation
of these pipelines in data scarce environments. To this purpose, the use of Generative
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Adversarial Nets [97], e.g. generating new random CT volumes of the temporal bone,
would allow a simulation of the complete pipeline.

Finally, the focus of this pipeline should be extended to include intraoperative navigation.
For applications such as EVAR or needle insertion, this would require to simulate or track
soft tissue deformation [3]. Otherwise, navigation would be performed on preoperative
data only, thereby ignoring changes induced by respiratory or heart motion as well as by
deformations resulting from instrument forces. Intraoperative navigation thus requires
regular replanning. For the trajectory planning step of the pipeline, this could mean to
perform anytime path planning [135], where the search tree of the current solutions is
kept and the RRT keeps searching for more or lower cost solutions. If misalignment of
instruments increases too much, rapid replanning from the current pose of the instrument
would be necessary.

7.2.2. Shape Regularized Segmentation

The experiments show that global metrics such as Dice are of limited use and that an
evaluation on distances to risk structures provides a more realistic analysis in Computer-
Assisted Interventions (CAI) settings. The main reason for this is the necessity to extract
anatomically plausible shapes of organs, resulting in feasible collision-detection during
planning. However, the proposed slice-by-slice U-Net initialization with a PASM post
processing should be viewed as an early work, showing the value of shape regularization
for preoperative surgical planning. A major contribution would compare existing solutions
using Conditional Random Field (CRF)s, CRF-Recurrent Neural network (RNN) and other
model-based approaches such as slice-by-slice Active Contour (AC) for the investigated ap-
plications. Having multiple such solutions in a publicly available framework would greatly
benefit other researchers in using and setting up a thorough evaluation of Preoperative
Surgical Planning (PSP).

To improve on the current metrics, hybrid loss guided networks [190] would probably
boost the performance of our U-Nets. The initialization of PASMs could then better capture
critical features: the inferior part of the descending aorta (Figure 6.9), the transitions of the
right ventricle to both pulmonary artery and right atrium, and finally the tiny structures of
the temporal bone, where currently the chorda tympani is sometimes completely missing.
However, our review in section Section 2.2.5 shows that regularization is an active field
with the search for including true shape spaces in deep learning architectures being a
prominent topic [181, 184, 273]. An end-to-end trainable solution for anatomically
plausible segmentation could exceed the existing approaches. Finally, Statistical Shape
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Models are only adoptable, if the underlying organs exhibit a statistical variation. The
presented pipeline should thus include solutions for more diverse structures such as the
coronary arteries.

7.2.3. Trajectory Planning

Our curvature constrained planning demonstrated that preoperative surgical planning
for nonlinear access paths is possible for cluttered environments such as the otobasis
as well as for narrow regions such the aorta or heart chambers. The proposed tailored
RRT-Connect algorithms using either Bézier Splines or Circular Arcs with 3D Dubins Paths
outperform state of the art one-directional planners and provide a robust and fast method
for planning access paths. With the clearance optimization scheme, resulting trajectories
are also locally clinically optimal. With our solution for translating Bézier Splines to
circular arcs trajectories we made this planning method available for applications using
instruments such as bevel-tip needles that move along circular motions.

Currently, our planning method is a purely geometric approach and does not consider
uncertainty of any kind. But during intra-operative navigation, noisy sensor measurements
or soft tissue deformation might invalidate preoperatively feasible paths and thus have to
be considered. In future, the pipeline should therefore address these kinds of uncertainty
by modeling each of these factors. Sensor uncertainty could for example be included
into the convex optimization scheme similar to the approach by Sun and Alterovitz [234]
for needle insertion for liver biopsy. Soft tissue simulation on the other hand has been
investigated in [3].

Deriving the optimal translation from a Bézier Spline to a Circular Arc is also an interesting
topic, i.e. computing the arc closest to the original spline. For this problem, either an
analytic expression or a cheap numerical solution has to be found. Likely, this would
further increase the success rate of planning as well as decrease the failure rate reported
in the experiment section.

As convex optimization results in locally instead of globally optimal paths, incorporation
of an RRT∗-like stochastic optimization scheme is a promising research direction for
future work as well. In this case, a Bi-RRT could plan a first solution γI . The RRT∗-like
optimization could improve γI by sampling within this trajectory, resulting in a clearance
optimized γO that still observes the typical wiggly course. The proposed SCO scheme
on Bézier Splines could then remove these irregularities by smoothing γO due to its cost
function on both clearance and length to a final path γf .
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Finally, the guidewire approach could be extended to cases such as percutaneous translu-
minal coronary angioplasty due to arteriosclerosis where guidewires are used to position
catheters to dilate an occlusion in coronary vessels. This would require to perform preop-
erative surgical planning on the whole path from incision at the surface to locations of
stenosis. This could be achieved by a subdivision of the problem: planning first from the
groin to the aortic arc, then to the transition from aorta to coronary arteries and in a final
step to the clinical target.
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4. Johannes Fauser, Igor Stenin, Markus Bauer, Wei-Hung Hsu, Julia Kristin, Thomas
Klenzner, Jörg Schipper, and Anirban Mukhopadhyay. “Toward an automatic
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5. Johannes Fauser, Igor Stenin, Julia Kristin, Thomas Klenzner, Jörg Schipper, Di-
eter Fellner, and Anirban Mukhopadhyay. “Generalized Trajectory Planning for
Nonlinear Interventions”. In: OR 2.0 Context-Aware Operating Theaters, Computer
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Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis.
Cham: Springer International Publishing, 2018, pp. 46–53

6. Johannes Fauser, Georgios Sakas, and Anirban Mukhopadhyay. “Planning nonlinear
access paths for temporal bone surgery”. In: Intern. J. of Comp. Ass. Radiology and
Surgery 13.5 (May 2018), pp. 637–646
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B. Awards

My works Toward an automatic preoperative pipeline for image-guided temporal bone
surgery [75] and Preoperative Planning for Guidewires Employing Shape-Regularized Seg-
mentation and Optimized Trajectories [73] were both acknowledge with a Best Paper Runner
Up in IPCAI 2019 and in MICCAI 2019 OR 2.0 workshop, respectively. For my work
Optimizing Clearance of Bézier Spline Trajectories for Minimally-Invasive Surgery [77] in
MICCAI 2019, I was awarded with a Graduate Student Travel Award.
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C. Teaching Assistance

2017-2019 Deep Learning for Medical Imaging, TU Darmstadt, Winter Term, 1
lecture each semester: Segmentation

2019 Computer Graphics 2, TU Darmstadt, Summer Term, 8 lectures:: Bézier-
Curves & -Surfaces, Mesh Compression

2016-2019 Image Processing, TU Darmstadt, Summer Term, 1-2 lectures: Color,
Morphology, Image Compression

2016-2019 Medical Image Processing, TU Darmstadt, Winter Term, 2-3 lectures:
Segmentation 1-3
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D. Supervising Activities

Bachelor Theses

1. Karanveer Singh Chahota. “Optimierung nichtholonomer Pfadplanung entlang
mehrerer Wegpunkte”. Bachelor’s Thesis. Darmstadt: Technische Universität, 2018

2. Christoph Bauer. “Segmentierung des Unterkiefergelenks und der Mastoidzellen in
CT-Daten des Felsenbeins”. Bachelor’s Thesis. Darmstadt: Technische Universität,
2017

3. MoritzWeissenberger. “Interaktive Analyse von geplantenmedizinischen Bohrkanälen”.
Bachelor’s Thesis. Darmstadt: Technische Universität, 2017

4. Wei-Hung Hsu. “Felsenbeinsegmentierung”. Bachelor’s Thesis. Darmstadt: Tech-
nische Universität, 2017

Master Theses

1. Felix Bernhard. “Nichtholonome Pfadplanung im Felsenbein unter Verwendung des
Bevel-Tip-RRT”. Master’s Thesis. Darmstadt: Technische Universität, 2017

2. Evgheni Croitor. “Automatische Pfadplanung für nicht-lineare Bohrkanäle im Felsen-
bein”. Master’s Thesis. Darmstadt: Technische Universität, 2017

3. Alexander Geurts. “Identifikation und Visualisierung unzugänglicher Zugangswege
in nichtholonomer Pfadplanung”. Master’s Thesis. Darmstadt: Technische Univer-
sität, 2017

4. Yeimy Paola Valencia Usme. “Automatische Segmentierung der Paukenhöhle und
des Antrum Mastoideum”. Master’s Thesis. Darmstadt: Technische Universität,
2017
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E. Curriculum Vitae

Personal Data
Name Johannes Ludwig Fauser
Date (Place) of Birth 04.02.1987 (Tübingen)
Nationality German

Work Experience
10/2015 - 12/2019 Research Associate, Technical University Darmstadt, Depart-

ment of Computer Science, Interactive Graphics Systems Group,
Darmstadt.

07/2013 - 09/2015 Research Associate, FraunhoferInstitute for Factory Operation
and Automation IFF, Business Unit Measurement and Testing
Technology, Magdeburg.

Education
10/2006 - 08/2012 Diploma in Mathematics, Karlsruhe Institute of Technology,

Karlsruhe.
Thesis: Implementation of a Mumford-Shah Functional for
Segmentation and Inversion of CT-Data using the Level-Set
Method.

1997 - 2006 High School Diploma (Abitur), Gymnasium Langensteinbach,
Langensteinbach.
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Glossary

A∗ (pronounced ”ay star”) A heuristic search algorithm for motion planning. 33, 39, 40

ACVD A VTK extension for remeshing of triangle meshes based of the works of Valette
and Chassery [244] (presenting Approximated Centroidal Voronoi Diagrams) and
Valette et al. [243]. Found at https://github.com/valette/ACVD. 47, 89

Bi-RRT Bi-directional Rapidly-exploring Trees grow two RRT search trees and try to
connect both in between [129]. Also called RRT-connect. 9, 62, 74, 78, 82, 86, 92,
106–108, 110, 111, 113, 119–121, 125

CRISP The Continuum Reconfigurable Incisionless Surgical Parallel (CRISP) robot is a
new type of continuum robot for minimally-invasive surgery [6]. 40, 41

Dice An objective measurement function for segmentation quality. 2, 7, 45, 49, 88

Gurobi The Gurobi Optimizer offers state of the art performance for a variety of (non-
)convex optimization problems [100] and is freely available for academic purposes.
47, 89

ITK The Insight Segmentation and Registration Toolkit (ITK) [276] is an open-source,
cross platform framework offering an exhausting number of both basic and state-of-
the-art image processing algorithms written in C++. 47, 89

ITK-SNAP ITK-SNAP [277] is a software application dedicated to medical image segmen-
tation that provides, among others, methods for semi-automatic segmentation using
active contours and easy intuitive manual delineation. 13
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MITK TheMedical Imaging Interaction Toolkit (MITK) [257] is an open-source framework
for interactive medical image processing extending the functionality of ITK and VTK.
12–14

MMWHS The Multi-Modality Whole Heart Segmentation challenge offers a publicy avail-
able dataset of chest CT scans with labels for the major heart chambers as well as
visible parts of the pulmonary artery and the ascending aorta. 26, 88, 91, 103, 105,
121

NOMAD atlas-navigated optimal medial axis and deformable model algorithm (NOMAD),
proposed in [173] for tubular structures. 22, 23

OMPL The Open Motion Planning Library (OMPL) is an open-source library offering state-
of-the-art sampling-based motion planning algorithms [231] and an outstanding
design for trajectory planning. 47, 89

ROS The Robot Operating System (ROS) [198] is a flexible framework for writing robot
software [205]. 47

RRT∗ (pronounced ”RRT star”) A modification of the RRT that guarantees probabilistic
completeness and asymptotic optimality. 37, 38, 41, 125

RRT-connect RRT-connect grows two RRT search trees and tries to connect both in
between [129]. Also called Bi-RRT. 137

SegTHOR Segmentation of THoracic Organs at Risk is a challenge of ISBI 2019 with
thoracic CT images and labels for the heart, aorta, esophagus and trachea. 26

Slicer 3D Slicer 3D [79] is an open source software platform for medical image infor-
matics, image processing, and three-dimensional visualization [226]. 12–14, 47,
123

SOFA The Simulation Open Framework Architecture (SOFA) [71] is an open-source
framework primarily targeted at real-time simulation, with an emphasis on medical
simulation [227]. 12

stent graft A stent graft or endograft is a tubular implant that is placed within the lumen
of a vessel. It is used in EVAR to regulate blood flow around aneurysms. 4, 24
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U-Net One of the most robust and widely used CNNs for segmentation [204]. 23, 43, 53,
93, 105, 138

V-Net An adaptation of the U-Net architecture using dense blocks [162]. 28, 30

VTK The Visualization Toolkit (VTK) is an open-source, freely available software system
for 3D computer graphics, modeling, image processing, volume rendering, scientific
visualization, and 2D plotting [213]. 47, 89, 137
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Acronyms

AAA Abdominal Aortic Aneurysm 23–26

AC Active Contour 29–31, 53, 124

AFT Adaptive Fractal Tree 40, 41

ASM Active Shape Model 5, 9, 11, 14–16, 23, 29, 47, 53, 57

aVAE Adversarial Variational Autoencoder 29, 31, 32

BVP Boundary Value Problem 69, 106

CAI Computer-Assisted Interventions 46, 47, 49, 124

CBCT Cone Beam Computed Tomography 22, 23, 30, 31

ce-CT contrast-enhanced CT 23, 25, 29

Chorda chorda tympani 21, 23, 86

CNN Convolutional Neural Network 11, 14, 17, 18, 20, 23

Cochlea cochlea 21–23, 86

CRF Conditional Random Field 9, 11, 18, 20, 26–28, 124

CT Computed Tomography 1, 4, 14

CTA Computed Tomographic Angiography 14, 23, 25, 29

EAC external auditory canal 21–23, 86

EMT Electromagnetic Tracking 39, 122

EVAR Endovascular Aortic Repair 24, 43, 63, 112, 121, 123, 124
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FCNN Fully Convolutional Neural Network 28, 32

FN facial nerve 21, 23, 86, 114

GA Genetic Algorithm 37, 38, 40

HD Hausdorff Distance 7, 28, 32, 45, 49, 88, 89, 105

HNN Holistically-Nested Neural Network 27

HRCT High Resolution Computed Tomography 29, 31

IAC internal auditory canal 21, 23, 86, 107

ICA internal carotid artery 21, 22, 86

JV jugular vein 21, 23, 86, 114

LQG Linear-Quadratic-Gaussian 39, 40

LV Left Ventricle 29, 31, 32, 88

MCE Myocardial Contrast Echocardiography 29–31

MLP Multi-Layer Perceptron 17

MRF Markov Random Field 27–29, 31

MRI Magnetic Resonance Imaging 4, 14

MRN Magnetic Resonance Neurography 29, 31

MYO Myocardium 29–32, 88

OAR Organs at Risk 86, 112

Oss ossicles 21, 23, 86

PA Pulmonary Artery 88

PASM Probabilistic Active Shape Model 14, 17, 21, 23, 54, 57, 58, 93, 95, 124
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PCA Principal Component Analysis 15

PCW posterior canal wall 21, 23

PDE Partial Differential Equation 14

PSP Preoperative Surgical Planning 124

RL Reinforcement learning 40, 41

RNN Recurrent Neural network 20, 27, 28, 124

RRT Rapidly-exploring Random Tree 11, 33, 34, 37, 43, 61, 62, 74, 78, 86, 106, 107,
119, 124, 137

RV Right Ventricle 29, 31, 32, 88

SCC semicircular canals 21, 23, 86

SCO Sequential Convex Optimization 36, 37, 39–41, 78, 82, 106, 125

SSC superior semicircular canal 22, 91

SSM Statistical Shape Model 13, 15–17, 22, 23, 31, 32, 47, 49, 50

SVM Support Vector Machine 23, 25

UAV Unmanned Aerial Vehicle 33, 34, 37, 38

UWG Underwater Glider 33, 37, 38
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