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Abstract
We apply the theory of moments to develop computationally efficient meth-
ods for real-time rendering of shadows and reconstruction of transient im-
ages from few measurements. Given moments of an unknown probability
distribution, i.e. the expectations of known, real random variables, the the-
ory of moments strives to characterize all distributions that could have led
to these moments. Earlier works in computer graphics only use the most
basic results of this powerful theory.
When filtering shadows based on shadow maps, the distribution of depth
values within the filter region has to be estimated. Variance shadow map-
ping does this using two power moments. While this linear representation
admits direct filtering, it leads to a very coarse reconstruction. We general-
ize this approach to use an arbitrary set of general moments and benchmark
thousands of possible choices. Based on the results, we propose the use of
moment shadow mapping which produces high-quality antialiased shadows
efficiently by storing four power moments in 64 bits per shadow map texel.
Techniques for shadow map filtering have been applied to a variety of prob-
lems. We combine these existing approaches with moment shadow mapping
to render shadows of translucent occluders using alpha blending, soft shad-
ows using summed-area tables and prefiltered single scattering using six
power moments. All these techniques have a high overhead per texel of the
moment shadow map but a low overhead per shaded pixel. Thus, they scale
well to the increasingly high resolutions of modern displays.
Transient images help to analyze light transport in scenes. Besides two
spatial dimensions, they are resolved in time of flight. Earlier cost-efficient
approaches reconstruct them from measurements of amplitude modulated
continuous wave lidar systems but they typically take more than a minute
of capture time. We pose this reconstruction problem as trigonometric mo-
ment problem. The maximum entropy spectral estimate and the Pisarenko
estimate are known closed-form solutions to such problems which yield con-
tinuous and sparse reconstructions, respectively. By applying them, we re-
construct complex impulse responses with m distinct returns from measure-
ments at as few as m non-zero frequencies. For m = 3 our experiments with
measured data confirm this. Thus, our techniques are computationally effi-
cient and simultaneously reduce capture times drastically. We successfully
capture 18.6 transient images per second which leads to transient video. As
an important byproduct, this fast and accurate reconstruction of impulse
responses enables removal of multipath interference in range images.
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Chapter 1
Introduction

The plausible rendition of shadows is one of the most intensely studied prob-
lems in rendering. Given their strong influence on the perceived realism of
rendered scenes, this is unsurprising. Even laymen can immediately notice
a lack of shadows. Shadows also provide important visual cues for geometric
relations. Especially contact of two objects can hardly be conveyed without
the use of shadows.

The prevalent approach for rendering dynamic shadows in modern real-
time applications is shadow mapping [Williams 1978]. A shadow map is an
image rendered from the point of view of the light source where each texel
stores the depth z of the foremost surface. By comparing the depth of a
fragment zf to the corresponding depth from the shadow map, it can be
decided whether the surface is visible to the light source and thus lit. While
this image-based approach maps to rasterization hardware nicely and scales
well with scene complexity, it is prone to aliasing. Applying texture filtering
directly to the shadow map is not meaningful because it would smooth the
shadow-casting geometry rather than the shadow signal.

The correct way to apply filtering to the shadow intensities is to sample the
shadow map within a filter region to obtain depth values z0, . . . , zn−1 [Reeves
et al. 1987]. Then these depth values are converted to shadow intensities
and filtered using weights from a filter kernel w0, . . . , wn−1 ∈ [0, 1]:

n−1∑
l=0

wl ·

0 if zf ≤ zl

1 if zf > zl
(1.1)

Since this procedure depends on the fragment depth zf , it can only be
performed per fragment making it quite costly.

13



14 1. Introduction

Variance shadow maps are an alternative approach that makes the shadow
map directly filterable [Donnelly and Lauritzen 2006]. Rather than storing
z only, they store z and z2 in a two-channel texture. Then this texture is
filtered within the filter region leading to values of the form

b1 :=
n−1∑
l=0

wl · zl and b2 :=
n−1∑
l=0

wl · z2
l .

These values are power moments of the distribution of depth values within
the filter region. The first power moment b1 is simply the mean. By combin-
ing it with the second power moment, we compute the variance b2− b2

1. For
a given zf we then use mean and variance to compute a lower bound to the
expression in Equation (1.1) which serves as an approximation. In many
relevant cases this works well but under some circumstances the shadow
intensity will be underestimated substantially leading to objectionable ar-
tifacts known as light leaking. A lot of follow-up work has picked up this
idea using shadow maps with different numbers of channels and different
contents to reduce light leaking [Annen et al. 2007; Salvi 2008; Annen et al.
2008b; Lauritzen and McCool 2008].
In our work we generalize this idea. We consider shadow maps with m ∈ N
channels storing a1(z), . . . , am(z) where a1, . . . , am : [−1, 1] → R are arbi-
trary continuous functions. We then demand that the shadow intensity is
always underestimated but never more than necessary. This way, we im-
mediately obtain a well-defined shadow mapping technique. Furthermore,
we demonstrate how to compute its result in a discretized setting. This
method is not fast enough for real-time rendering but provides a practical
way to compare different choices of functions a1, . . . , am. We evaluate 66054
candidate techniques on real scenes.
Through this evaluation, we find that storing z, z2, z3 and z4 in a shadow
map with four channels is one among many choices which lead to minimal
light leaking. For this particular case, we develop a highly optimized algo-
rithm to evaluate the lower bound to the shadow intensity. This leads to our
main technique for shadow mapping; moment shadow mapping (Fig. 1.1a).
Thanks to an optimized quantization scheme, it only takes 64 bits per texel
of the shadow map. At this memory consumption, it outperforms compet-
ing techniques quality-wise.
Just like previously proposed filterable shadow maps, this new type of
shadow maps is useful for more than filtered hard shadows. We render shad-
ows for translucent occluders by simply rendering to the moment shadow
map with alpha blending (Fig. 1.1b). Approximate soft shadows for rectan-
gular area lights are rendered very efficiently using summed-area tables of
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(a) Moment shadow mapping for filtered
hard shadows (4.0 ms)

(b) Moment shadow mapping for translucent
occluders (4.1 ms)

(c) Moment soft shadow mapping (3.5 ms) (d) Prefiltered single scattering with six
power moments and filtering (5.4 ms)

Mirror
Mirror

Wall

Shadow stencil 1

Shadow stencil 2Shadow stencil 3

Laser

(e) Experimental setup (left) and a corresponding transient image captured in 2.3 s (right)

Ground truth
Point cloud

(f) Elimination of diffuse multipath interfer-
ence, single frequency (left) and ours (right)

(g) Real-time separation of direct (left) and
indirect illumination (right)

Figure 1.1: An overview of the major applications of our work. The shown
timings are full frame times for rendering at a resolution of 3840·2160 with
4× multisample antialiasing on an NVIDIA GeForce GTX 970.
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a moment shadow map (Fig. 1.1c). By combining our work with prefiltered
single scattering [Klehm et al. 2014b], we render shadows of directional
lights in homogeneous participating media using only two texture reads per
pixel (Fig. 1.1d). Compared to techniques based on sampling of a common
shadow map, all these techniques have a higher overhead per texel of the
shadow map but a low overhead per shaded fragment. Thus, they scale well
to the ever-increasing resolutions of modern displays.

In all of this work, we draw on the theory of moments. Broadly speaking,
this theory is concerned with the reconstruction of a probability distribution∑n−1
l=0 wl·δzl

described by points of support z0, . . . , zn−1 ∈ R and probabilities
w0, . . . , wn−1 ∈ [0, 1] from its general moments aj := ∑n−1

l=0 wl · aj(zl) where
j ∈ {0, . . . ,m}. Such moment problems are very well-understood and a
large body of mathematical literature provides diverse closed-form solutions
to these inverse problems.

In the second part of our work, we apply related techniques to a problem
from an entirely different field; transient imaging. As input data we use
measurements from amplitude modulated continuous wave (AMCW) lidar
systems. These imagers consist of an active illumination and a special
sensor. The illumination is modulated with a periodic signal while the
sensitivity of the sensor is modulated with a shifted version of the same
signal. Thus, the contribution of light from the active illumination to the
measurement at a pixel depends on the time of flight of the light through
a periodic function.

The main application of AMCW lidar is range imaging. Four measurements
with different shifts between the modulation of the illumination and the sen-
sitivity of the sensor are captured. Assuming that all light reaching a pixel
has the same time of flight, these measurements suffice to reconstruct the
phase shift of the returning signal, which is proportional to range. Unfortu-
nately, the assumption of a unique time of flight does not hold in presence of
global illumination effects. Light scatters through the scene on many paths
of varying length and a superposition of this light reaches each pixel. This
effect is known as multipath interference and it leads to strong, systematic
errors (Fig. 1.1f).

Transient images capture this complicated reality more completely. Rather
than storing a single time of flight, they store a time-resolved impulse re-
sponse per pixel. Equivalently, they can be regarded as videos with high
temporal resolution recording the return of light to the sensor after illu-
minating the scene with an infinitesimally short light pulse. Capturing
transient images directly is possible but the involved hardware is very ex-
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pensive and capture times are in the magnitude of hours [Velten et al. 2013;
Gkioulekas et al. 2015]. Still, this work has served to demonstrate their use-
fulness for applications such as non-line-of-sight imaging [Velten et al. 2012]
and decomposition of illumination into direct lighting, indirect lighting and
subsurface scattering [Wu et al. 2014].
Faster and more cost-efficient approaches for the acquisition of transient
images use AMCW lidar [Heide et al. 2013; Kadambi et al. 2013]. The
sensor effectively provides the correlation between a periodic signal and
the transient image. By using many different modulation signals, enough
information can be extracted to reconstruct the impulse responses approx-
imately. In our work, we observe that a specific measurement procedure
turns this reconstruction problem into a so called trigonometric moment
problem. Again the theory of moments provides efficient solutions.
We use the maximum entropy spectral estimate to reconstruct continu-
ous impulse responses (Fig. 1.1e) and the Pisarenko estimate for sparse
impulse responses. Both solutions incorporate all measurements as hard
constraint. Thus, few measurements suffice to reconstruct complex impulse
responses. This is particularly true, if the impulse response is temporally
sparse as it would be when specular global illumination dominates. Under
such idealizing assumptions, a perfect reconstruction can be accomplished.
Compared to related work, we reduce the necessary capture time heavily to
the point where we record transient images at video frame rates (18.6 Hz,
Fig. 1.1g). Once the full impulse response is available, the direct return can
be extracted efficiently to reduce multipath interference in range imaging
(Figs. 1.1g, 1.1f).
Until now, the theory of moments has barely found any attention in the
graphics community. With our work we hope to establish moment-based
methods as a standard tool in graphics research and practice. They are
theoretically well-founded, computationally efficient and can often extract
surprisingly much information from few moments, especially in presence
of sparsity. Thus, they are a good match for many problems in graphics
where solutions need not be exact but robust, fast and plausible in the most
common cases.

1.1 Publications
Most of the work described in this dissertation has been previously pre-
sented at conferences and published in proceedings. In particular, we de-
scribe results from the following three publications:
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• Peters, C. and Klein, R. (2015). Moment shadow mapping.
In Proceedings of the 19th ACM SIGGRAPH Symposium on In-
teractive 3D Graphics and Games, i3D ’15, pages 7–14. ACM,
doi: 10.1145/2699276.2699277,

• Peters, C., Klein, J., Hullin, M. B., and Klein, R. (2015).
Solving trigonometric moment problems for fast transient imag-
ing. ACM Trans. Graph. (Proc. SIGGRAPH Asia 2015), 34(6),
doi: 10.1145/2816795.2818103,

• Peters, C., Münstermann, C., Wetzstein, N., and Klein, R. (2016).
Beyond hard shadows: Moment shadow maps for single scattering, soft
shadows and translucent occluders. In Proceedings of the 20th ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games, i3D
’16, pages 159–170. ACM, doi: 10.1145/2856400.2856402.

The majority of the results in the first publication [Peters and Klein 2015]
goes back to my master thesis [Peters 2013]. It introduces the relation be-
tween moment problems and filterable shadow maps, evaluates candidate
techniques and describes moment shadow mapping for filtered hard shad-
ows.

The second publication [Peters et al. 2015], which deals with transient imag-
ing, has also been presented as an invited poster at the International Con-
ference on Computational Photography 2016 in Evanston, Illinois. Besides,
I held invited talks about this work at the University of Siegen on 19th of
February 2016 and at the headquarters of pmdTechnologies AG in Siegen
on 5th of April 2016.

The third publication [Peters et al. 2016], which transfers moment shadow
mapping to three new applications, has been invited for an extended version
to the Journal of Computer Graphics Techniques. This extension has not
been submitted yet but some additional research has been conducted which
is included in this dissertation. An overview of these and other previously
unpublished results is provided in Appendix A.

Additionally, I disseminated the work on moment shadow mapping [Peters
and Klein 2015; Peters et al. 2016] through a one hour lecture at the Game
Developers Conference Europe in Cologne on 15th of August 2016.

I am also a coauthor on the following publication but its contents are not
covered by this dissertation:

http://dx.doi.org/10.1145/2699276.2699277
http://dx.doi.org/10.1145/2816795.2818103
http://dx.doi.org/10.1145/2856400.2856402
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• Klein, J., Peters, C., Martín, J., Laurenzis, M., and Hullin, M. B.
(2016). Tracking objects outside the line of sight using 2D intensity
images. Scientific Reports, 6(32491), doi: 10.1038/srep32491

1.2 Outline
The thesis consists of two major parts. Part I discusses our work on real-
time rendering of shadows using moment shadow maps and the many appli-
cations thereof. Part II discusses fast transient imaging and range imaging
based on AMCW lidar systems. The common foundation of both parts in
the theory of moments is laid out in Chapter 2.
Our generalized view on filterable shadow maps and the evaluation of candi-
date techniques is discussed in Chapter 3 [Peters and Klein 2015]. We then
introduce moment shadow mapping and apply it to filtered hard shadows
in Chapter 4 [Peters and Klein 2015]. Next, we discuss the three advanced
applications of moment shadow mapping [Peters et al. 2016]. Shadows for
translucent occluders are described in Chapter 5, soft shadows in Chapter
6 and single scattering in Chapter 7 [Peters et al. 2016].
All of our work on transient imaging and range imaging using AMCW lidar
systems [Peters et al. 2015] is described in Chapter 8. Finally, we draw
some conclusions and look at possible future work in Chapter 9.
The appendix provides some less important proofs and derivations (Ap-
pendix B) and describes additional implementation details including HLSL
code listings (Appendix C). For easy reference, we also provide an index on
page 211 and a nomenclature on page 213.

http://dx.doi.org/10.1038/srep32491




Chapter 2
Moment Problems

Before we focus on specific moment problems in practical applications, it
is useful to define them more rigorously and to derive some fundamental
statements. In particular, we define different kinds of moments, discuss the
solubility of corresponding moment problems and analyze their behavior in
boundary cases.
It should be noted that none of this is to be considered as a contribution of
our work. Almost all solutions to moment problems discussed in this the-
sis go back to the literature and adequate references are given throughout
the text. The only notable exception is an alternative to moment shadow
mapping named trigonometric moment shadow mapping that we discuss in
Appendix B.4. Other than that, our contribution lies mostly in connect-
ing this mathematical work to a variety of practical applications and in
crafting tailor-made algorithms. We also rephrase some existing proofs in
hopes of making the theory of moments more accessible to an audience of
graphics researchers. Usually, we refer to the literature for proofs of exis-
tence and uniqueness but provide constructive proofs whenever they help
the understanding of algorithms.

2.1 Moments
Moments provide information about finite measures. Such measures are
the fundamental primitives of our work and all methods that we consider
attempt to characterize them in one way or another. A measure M assigns
non-negative values to measurable1 subsets A of a measurable space X ⊆ Rd.

1For a rigorous definition of measurable sets and functions we refer to the literature
[Georgii 2008, Chapter 1].

21
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The quantity M(A) can be seen as a weighted, d-dimensional volume of A
and is called the measure of A. The measureM is called finite ifM(X) <∞.
The precise definitions do not concern us because throughout this thesis
only two special cases are truly relevant; measures with finite support and
measures given by density functions.

Definition 2.1 (Dirac-δ distribution). Let X ⊆ Rd and x0 ∈ X. The
Dirac-δ distribution with support at x0 is the finite measure δx0 defined by

∀A ⊆ X : δx0(A) :=
1 if x0 ∈ A,

0 otherwise.

Integrating a function a : X → R with respect to the measure δx0 means
evaluating it at x0: ˆ

a(x) dδx0(x) := a(x0)

We endow measures with vector-like operations, so a measure with support
w0, . . . , wn−1 > 0 at the n ∈ N points x0, . . . , xn−1 ∈ X can be written as
M := ∑n−1

l=0 wl · δxl
. The corresponding integral of a is given by

ˆ
a(x) dM(x) :=

n−1∑
l=0

wl · a(xl).

Definition 2.2 (Density function). Let X ⊆ Rd and let D : X → R≥0
be an integrable, non-negative function. The measure M with density D
associates each measurable set A ⊆ X with the integral

M(A) :=
ˆ
A
D(x) dx.

Correspondingly, the integral of a measurable function a : X → R with
respect to the measure M is given by

ˆ
a(x) dM(x) :=

ˆ
X

a(x) ·D(x) dx.

By means of finite measures, these two distinct cases are cleanly unified in
one notation. At the same time, this notation opens up our work to an
intuitive interpretation based on probability theory. Special finite measures
are the foundation of this discipline.
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Definition 2.3 (Probability distribution). Let P be a finite measure over
X ⊆ Rd. If P (X) = 1, the measure P is called a probability distribution.
For a measurable set A ⊆ X, P (A) is interpreted as the probability of the
event x ∈ A and is also written as P (x ∈ A) where x(x) := x. In general, a
measurable function a : X→ R is called a random variable and its integral
with respect to P is called its expectation. We write

EP (a) :=
ˆ

a(x) dP (x),

i.e. integration and expectation are synonymous.

Note that 1
M(X) · M is a probability distribution for any non-zero, finite

measure M on X. Therefore, statements about probability distributions
apply similarly to general finite measures. With these definitions at hand,
we can now define precisely what we mean by general moments.

Definition 2.4 (General moments). Let I ⊆ R and let M be a finite
measure over I. Let m ∈ N and let a1, . . . , am : I → R be measurable
functions. Then for j ∈ {1, . . . ,m}, the numbers

aj :=
ˆ

aj(x) dM(x) ∈ R

are called general moments of M . Let a0(x) := 1 for all x ∈ I. The zeroth
moment is defined by

a0 :=
ˆ

a0(x) dM(x) = M(I) ≥ 0.

If M is a probability distribution, a0 = 1. Therefore, the number of used
moments m does not count the zeroth moment throughout our work. The
vector (a0, . . . , am)T ∈ Rm+1 is referred to as vector of general moments and
the function a : I→ Rm+1 with

a(x) := (a0(x), . . . , am(x))T

is referred to as moment-generating function.

For the case of probability distributions, a general moment is simply the
expectation of some random variable. Integration leads us from a measure
to its general moments. Though, in the end we are more interested in going
the other way, i.e. reconstructing the measure from its general moments.
To answer when this is possible at all, we need means to tell when a vector
in Rm+1 is a vector of moments for some measure M .
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Proposition 2.5 (Solubility of general moment problems). A vector a ∈
Rm+1 is a vector of general moments with respect to the moment-generating
function a : I → {1} × Rm for some probability distribution P on I if and
only if a lies in the convex hull conv a(I).

Proof. “⇒” Let a = EP (a).
We only consider the case where P has finite support. The general case can
be reduced to this case [Mulholland and Rogers 1958, p. 178]. Let n ∈ N,
x0, . . . , xn−1 ∈ I and w0, . . . , wn−1 ≥ 0 such that P = ∑n−1

l=0 wl · δxl
. Then

we know ∑n−1
l=0 wl = P (I) = 1 and thus

a = EP (a) =
ˆ

a(x) dP (x) =
n−1∑
l=0

wl · a(xl) (2.1)

is a convex combination of points in a(I), i.e. a ∈ conv a(I).
“⇐” Let a ∈ conv a(I).
By Caratheodory’s theorem [Schrijver 1986, p. 94] a can be written as a
convex combination of points in a(I). This convex combination induces a
probability distribution with a = EP (a) as in Equation (2.1).

General moments can be used to model many inverse problems. On the
other hand, the use of an arbitrary moment-generating function limits us
in deriving useful statements. Ultimately, we are interested in efficient al-
gorithms that reconstruct information about measures given only some of
their moments. To this end, we turn our attention towards very specific
moment-generating functions, namely polynomials and Fourier basis func-
tions.

Definition 2.6 (Power moments). Let m ∈ N be even. Let b : R→ Rm+1

such that for all j ∈ {0, . . . ,m} and x ∈ R

bj(x) := xj.

Let M be a finite measure on R. Then

bj :=
ˆ

bj(x) dM(x) =
ˆ
xj dM(x) ∈ R

is called the j-th power moment of M .

Of course, power moments are a special case of general moments and
therefore Proposition 2.5 applies. However, the specific properties of the
moment-generating function allow a far more specific criterion.
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Definition 2.7 (Hankel matrix). Let b ∈ Rm+1 with m ∈ N even. The
associated Hankel matrix of b is defined by

B(b) := (bj+k)
m
2
j,k=0 =


b0 b1 · · · bm

2

b1 b2 . .
. ...

... . .
.

. .
.

bm−1
bm

2
· · · bm−1 bm

 ∈ R( m
2 +1)×( m

2 +1).

We define b̂ : R→ Rm
2 +1 with b̂j(x) := xj for all j ∈ {0, . . . , m2 } and x ∈ R

and call it the Hankel-matrix-generating function.

Proposition 2.8 (Solubility of power moment problems [Akhiezer and
Krĕın 1962, p. 2 ff., 8 ff.]). A vector b ∈ Rm+1 admits a measure M on
R with b =

´
b(x) dM(x) if and only if B(b) is positive semi-definite. Then

B(b) =
ˆ

b̂(x) · b̂T(x) dM(x).

Proof. “⇒” Suppose M is a measure on R such that b =
´

b(x) dM(x).
We observe that

B(b) =
ˆ

x0 x1 · · · x

m
2

x1 x2 . .
. ...

... . .
.

. .
.

xm−1

x
m
2 · · · xm−1 xm

 dM(x) =
ˆ

b̂(x) · b̂T(x) dM(x).

Now for an arbitrary u ∈ Rm
2 +1 it follows that

uT ·B(b) ·u =
ˆ
uT · b̂(x) · b̂T(x) ·u dM(x) =

ˆ  m
2∑
j=0

uj · xj
2

dM(x) ≥ 0.

Thus, B(b) is positive semi-definite.
“⇐” For the proof of sufficiency we refer to the literature [Akhiezer and
Krĕın 1962, p. 8 f., 11 f.].

Proposition 2.8 provides a concise and practical definition of power mo-
ments. If the Hankel matrix B(b) is positive semi-definite, b consists of
power moments for some measure, otherwise it does not. It also introduces
an important foundation for the theory of moments. The Hankel matrix
B(b) plays a crucial role whenever we solve a power moment problem.
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Since we admit arbitrary finite measures on R, the moment problem de-
scribed above is referred to as Hamburger moment problem. In some situ-
ations, we are only interested in measures on some interval I ⊂ R. If this
interval is half-open (e.g. I = [0, ∞)), we are dealing with a Stieltjes mo-
ment problem. If it is compact (e.g. I = [−1, 1]), the problem is referred to
as Hausdorff moment problem (see Appendix B.3). Solubility criteria simi-
lar to the one in Proposition 2.8 exist for both cases [Krĕın and Nudel’man
1977, p. 62 f., 175 f.].
Moment problems are studied similarly well for one other type of moments.
This time, Fourier basis functions serve as moment-generating function.

Definition 2.9 (Trigonometric moments). For m ∈ N let c : R → Cm+1

such that for all j ∈ {0, . . . ,m} and x ∈ R

cj(x) := exp(j · i · x) = exp(i · x)j

where i denotes the imaginary unit. Let M be a finite measure on R. Then

cj :=
ˆ

cj(x) dM(x) =
ˆ

exp(j · i · x) dM(x) ∈ C

is called the j-th trigonometric moment of M .

Essentially, trigonometric moments are Fourier coefficients of a measure.
Equivalently, they may be seen as power moments of a measure on the
complex unit circle. Therefore, they have a lot in common with power
moments. The counterpart of the Hankel matrix is the Toeplitz matrix.

Definition 2.10 (Toeplitz matrix). Let c ∈ Cm+1. For all j ∈ {1, . . . ,m}
let c−j := cj where cj denotes the complex conjugate. The associated
Toeplitz matrix of c is defined by

C(c) := (cj−k)mj,k=0 =


c0 c1 · · · cm

c1 c0
. . .

...
...

. . .
. . . c1

cm · · · c1 c0

 ∈ C(m+1)×(m+1).

Proposition 2.11 (Solubility of trigonometric moment problems [Krĕın
and Nudel’man 1977, p. 64 f.]). A vector c ∈ Cm+1 admits a measure M on
R with c =

´
c(x) dM(x) if and only if C(c) is positive semi-definite. Then

C(c) =
ˆ

c(x) · c∗(x) dM(x)

where c∗ = cT denotes the conjugate transpose.
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Proof. “⇒” Suppose M is a measure on R such that c =
´

c(x) dM(x).
For all x ∈ R consider entry j, k ∈ {0, . . . ,m} of the matrix c(x) · c∗(x):

(c(x) · c∗(x))j,k = cj(x) · ck(x)
= exp(j · i · x) · exp(k · i · x)
= exp(j · i · x) · exp(−k · i · x)
= exp((j − k) · i · x)

We can use this equation to rewrite the Toeplitz matrix:

cj−k =
ˆ

(c(x) · c∗(x))j,k dM(x)

⇒ C(c) =
ˆ

c(x) · c∗(x) dM(x)

Now for all u ∈ Cm+1 we get

u∗ · C(c) · u =
ˆ

(u∗ · c(x)) · (c∗(x) · u) dM(x) =
ˆ
|u∗ · c(x)|2 dM(x) ≥ 0.

“⇐” For the case with positive-definite C(c), we provide a constructive
proof in Appendix B.5. For the general case (including singular C(c)), we
refer to the literature [Krĕın and Nudel’man 1977, p. 64 f.].

It is interesting to note that this proof is completely analogous to the proof
of Proposition 2.8. The reason for the differences between the Hankel matrix
B(b) and the Toeplitz matrix C(c) is simply that complex conjugation turns
the entries of c into their reciprocal whereas it does nothing at all to the
entries of b.

2.2 Boundary Cases
It is natural to ask what happens as the Hankel or Toeplitz matrix stops
being positive semi-definite? Analyzing this boundary case turns out to be
very fruitful. It provides us with the first algorithms that actually solve mo-
ment problems, albeit only in special cases, and simultaneously reveals the
greatest strength of the theory of moments with respect to the applications
at hand.
We find that the boundary case is present whenever the underlying measure
is sufficiently sparse. In this case, the ground truth can be reconstructed
perfectly. The following proposition makes this claim more precise.
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Proposition 2.12 (The boundary case for power moment problems [Krĕın
and Nudel’man 1977, p. 63, 78]). Let b ∈ Rm+1 such that B(b) is positive
semi-definite. The following statements are equivalent:

1. B(b) is singular,

2. There exists exactly one measure M on R with b =
´

b(x) dM(x),

3. A measure of the form M := ∑m
2 −1
l=0 wl · δxl

with x0, . . . , xm
2 −1 ∈ R and

w0, . . . , wm
2 −1 > 0 exists such that b =

´
b(x) dM(x).

Suppose B(b) is singular and let q ∈ kerB(b) with q 6= 0. Then x0, . . . , xm
2 −1

are roots of the polynomial ∑m
2
j=0 qj · xj.

Proof. “1. ⇒ 3. and 2.” Let q ∈ kerB(b) with q 6= 0.
By Proposition 2.8 there exists a measure M with b =

´
b(x) dM(x) and

we can use it to represent the Hankel matrix B(b):

0 = qT ·B(b) · q =
ˆ
qT · b̂(x) · b̂T(x) · q dM(x) =

ˆ  m
2∑
j=0

qj · xj
2

dM(x)

(2.2)
The integrand

(∑m
2
j=0 qj · xj

)2
is non-negative. Furthermore, ∑m

2
j=0 qj ·xj is a

non-zero polynomial of degree m
2 or less and cannot have more than m

2 roots.
Since the integral evaluates to zero, M must have all of its support at these
roots which proves 3. and the claim about the locations of x0, . . . , xm

2 −1.
Equation (2.2) uniquely determines the locations of the points of support
x0, . . . , xm

2 −1 ∈ R. Suppose, the first n ∈ {1, . . . , m2 } of these points of
support are distinct. Then the system of linear equations

1 1 · · · 1
x1

0 x1
1 · · · x1

n−1
...

...
...

xn−1
0 xn−1

1 · · · xn−1
n−1

 ·

w0
w1
...

wn−1

 =


b0
b1
...

bn−1


uniquely determines the corresponding weights w0, . . . , wn−1 because the
matrix in this system is a square Vandermonde matrix constructed from
pairwise different values. Also, these weights have to be non-negative be-
cause otherwise this would contradict existence ofM . Thus, we have proven
2..
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“3. ⇒ 1.” Let M = ∑m
2 −1
l=0 wl · δxl

such that b =
´

b(x) dM(x).

We note that the matrix b̂(xl)·b̂T(xl) has rank one for all l ∈ {0, . . . , m2 −1}.
Thus, the rank of

B(b) =
ˆ

b̂(x) · b̂T(x) dM(x) =
m
2 −1∑
l=0

wl · b̂(xl) · b̂T(xl)

cannot be greater than m
2 . It follows that B(b) ∈ R( m

2 +1)×( m
2 +1) is singular.

“¬1. ⇒ ¬2.” Suppose detB(b) is positive definite.
Let M be a measure on R with b =

´
b(x) dM(x). Let x0 ∈ R such that

M({x0}) = 0, i.e. M does not have support at x0. There exists an ε > 0
such that B(b− ε ·b(x0)) is still positive semi-definite. Let N be a measure
on R with b− ε · b(x0) =

´
b(x) dN(x). Then

b =
ˆ

b(x) dM(x) =
ˆ

b(x) dN(x) + ε · b(x0) =
ˆ

b(x) d(N + ε · δx0)(x)

and thus we have constructed two different measures representing the vector
of power moments b.

While Proposition 2.12 may seem rather abstract, its relevance for our work
is tremendous. It tells us exactly in which situation the boundary case
detB(b) = 0 occurs, it tells us that there is a unique measure corresponding
to b and it even tells us how to reconstruct it perfectly. The algorithm is
implicit in the proof and we summarize it in Algorithm 2.1. When we
apply the theory of moments to shadow mapping, this boundary case is
relevant because it is very common that a filter region in a shadow map
only touches one or two shadow casting surfaces. Whenever this is the
case, the distribution of depth values can be approximated well using two
points of support and we are close to the boundary case for m = 4. The
reconstruction will not be perfect but highly accurate.
Again a completely analogous result, which is just as relevant, can be ob-
tained for trigonometric moments.

Proposition 2.13 (Boundary case for trigonometric moment problems
[Krĕın and Nudel’man 1977, p. 65, 78]). Let c ∈ Cm+1 such that C(c)
is positive semi-definite. The following statements are equivalent:

1. C(c) is singular,

2. There exists exactly one measureM on (0, 2 · π] with c =
´

c(x) dM(x),
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Algorithm 2.1 Perfect reconstruction of a measure from power moments
in the boundary case.
Input: b ∈ Rm+1 such that B(b) is positive semi-definite but singular.
Output: The unique measure M with b =

´
b(x) dM(x).

1. Compute q ∈ kerB(b) with q 6= 0.

2. Solve ∑m
2
j=0 qj · xj = 0 for x to obtain all n ∈ {1, . . . , m2 } pairwise

different, real roots x0, . . . , xn−1 ∈ R.

3. Solve the system of linear equations
1 1 · · · 1
x1

0 x1
1 · · · x1

n−1
...

...
...

xn−1
0 xn−1

1 · · · xn−1
n−1

 ·

w0
w1
...

wn−1

 =


b0
b1
...

bn−1

 .

4. Return M := ∑n−1
l=0 wl · δxl

.

3. There exists x0, . . . , xm−1 ∈ (0, 2 · π] and w0, . . . , wm−1 > 0 such that
M := ∑m−1

l=0 wl · δxl
yields c =

´
c(x) dM(x).

Suppose C(c) is singular and let q ∈ kerC(c) with q 6= 0. Then x0, . . . , xm−1
are solutions of the equation q∗ · c(x) = 0.

Proof. The proof is completely analogous to the proof of Proposition 2.12.
For completeness we provide it in Appendix B.6 nonetheless.

For shadow mapping, we end up using power moments rather than trigono-
metric moments and Proposition 2.13 is not very relevant. However, it is
extremely relevant for transient imaging. In many application scenarios,
the indirect returns observed by an AMCW lidar system are dominated by
specular interreflections. Thus, the impulse responses are sparse. Unless
the number of returns is greater than the number of acquired trigonometric
moments, we can expect a nearly perfect reconstruction. In fact, this works
so well that Proposition 2.13 gives rise to one of the two reconstruction
methods that we use for transient imaging. It is known as Pisarenko esti-
mate and we describe it in Algorithm 8.2 on page 131 which is analogous
to Algorithm 2.1.
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2.3 Overview of Moment Problems and
Solutions

We now turn our attention to more general instances of moment problems.
By moment problems we do not mean a single well-defined problem but a
rather big and diverse class of problems. Their common goal is to derive
some statement about the set of measures that match a given sequence of
moments. Some literature deals with infinite sequences of power moments
or trigonometric moments [Krĕın and Nudel’man 1977, p. 64, 66]. Moment
problems dealing with a finite number of moments, are sometimes referred
to as truncated moment problems.
Throughout this thesis, we employ solutions to a variety of truncated mo-
ment problems. They will be described in the context of their respective
applications. As an outline and for reference, we now provide an overview
of all described solutions to moment problems including some historical
comments on their origins.

Criteria for Solubility It is natural to begin the discussion of moment
problems with the question of solubility as we did above. If a given sequence
of moments does not match any measure, there is nothing more to say about
the set of matching measures. Criteria for solubility of the general, power
and trigonometric moment problem are given in Propositions 2.5, 2.8 and
2.11, respectively.

Construction of Canonical Representations Simply put, a canonical rep-
resentation of a sequence of power or trigonometric moments is a matching
measure with support at a minimal number of points [Krĕın and Nudel’man
1977, p. 77]. In some contexts these representations are of interest by
themselves but more often they serve as a tool in the construction of other
quantities. For the boundary cases, we have seen their construction in
Propositions 2.12 and 2.13. In the general case, there is a whole family
of canonical representations. They are uniquely determined, once a single
point of support is prescribed. We describe their construction for power
moments in Section 4.1.1 and for trigonometric moments in Appendix B.4.

Chebyshev-Markov Inequalities Chebyshev-Markov inequalities provide
sharp upper and lower bounds for the cumulative distribution function of a
matching measure. For general moments, this can be solved numerically as
demonstrated in Section 3.2.1. For power moment problems, we find in Sec-
tion 4.1.1 that the bounds are always realized by canonical representations
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[Krĕın and Nudel’man 1977, p. 125]. For trigonometric moment problems
the solution is more complicated. Canonical representations are part of it
but do not fully solve the problem. For the case m = 2, we present a solu-
tion in Appendix B.4, which is the only truly novel mathematical result in
this thesis and the underlying publications.

These inequalities are at the core of all of our novel shadow mapping tech-
niques. The results that we utilize go back to the work of P. L. Chebyshev
[Tchebichef 1874]. The proofs for his work and some generalizations were
completed by his student A. A. Markov [Markov 1884]. Later the theory was
further extended and formalized by M. G. Krĕın, A. A. Nudel’man and N.
I. Akhiezer [Akhiezer and Krĕın 1962; Akhiezer 1965; Krĕın and Nudel’man
1977] as well as S. Karlin and W. J. Studden [Karlin and Studden 1966].
These later works are the primary source for our work.

Reconstruction from Three Power Moments In Section 7.2, we will find
use for a simple method that reconstructs a probability distribution with
two points of support from three power moments b1, b2, b3.

Maximum Entropy Spectral Estimate For transient imaging we do not
work with conservative estimates and we are primarily interested in the
density of the measure. The maximum entropy spectral estimate, which we
introduce in Section 8.2.2, reconstructs a density function that matches all
given trigonometric moments and simultaneously minimizes the so called
Burg entropy. This prior serves to ensure that the reconstruction does
not produce features that are not warranted by the given measurements.
The cumulative distribution function is also efficiently evaluable (Section
8.4.4). The Burg entropy and the maximum entropy spectral estimate were
introduced by J. P. Burg during his doctoral studies. Our primary sources
are his Ph.D. thesis [Burg 1975] and an article that reformulates some of
the proofs [Landau 1987].

Pisarenko Estimate The Pisarenko estimate is the counterpart of Algo-
rithm 2.1 for trigonometric moments and we provide a detailed discussion
in Section 8.4.1 and Appendix B.6.

Uncertainty Bounds In general, the maximum entropy spectral estimate
will not provide a perfect reconstruction of the ground truth. Still, we can
provide rather strong guarantees on the quality of the approximation. To
this end we utilize work by Karlsson and Georgiou [2013], which provides
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sharp upper and lower bounds for the density of matching measures after
application of a specific smoothing kernel.





Part I

Moment Shadow Mapping
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Chapter 3
Filterable Shadow Maps

Having fully dynamic shadows in real-time applications is commonplace
nowadays. Unfortunately, these shadows are a frequent source of artifacts.
A widely used technique is percentage-closer filtering [Reeves et al. 1987]
where a common shadow map is sampled in a neighborhood of the relevant
fragment. A shadow intensity is computed from each individual sample
and the results are filtered to diminish shadow map aliasing. This way, a
bandlimiting filter is applied during reconstruction of the shadow signal at
the cost of many texture reads per shaded fragment.

Percentage-closer filtering provides no remedies for aliasing that arises dur-
ing initial sampling of the shadow map [Eisemann et al. 2011, p. 75 ff.].
Shadows are binary in nature and thus discontinuous. From a signal-
theoretic standpoint, this means that they contain arbitrarily high frequen-
cies and with common shadow maps there is no way to eliminate these high
frequencies before sampling. In consequence, the sampling rate is never
high enough. The best option is to ensure a constantly high sampling rate
throughout the scene coupled with a large filter for percentage-closer fil-
tering. However, dense sampling is hard to accomplish since the shadow
map is rendered in light space but sampled in screen space and larger filters
make the sampling procedure more expensive.

For textures that admit linear filtering, powerful solutions to these prob-
lems are implemented in graphics hardware. When rendering a scene to a
texture, multisample antialiasing serves to diminish high-frequency signal
components. Afterwards, further low-pass filters (e.g. a two-pass Gaus-
sian blur) can be applied efficiently. During sampling bilinear filtering,
mipmapping and anisotropic filtering are available. If they were applicable
to shadow maps, these features could diminish aliasing tremendously.

37
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Filterable shadow maps offer just that. Following the introduction of vari-
ance shadow mapping [Donnelly and Lauritzen 2006], a variety of such
techniques has been proposed. All of them provide an equally good so-
lution to the problem of aliasing but introduce various new artifacts such
as light leaking or ringing. In the present chapter, we provide a general-
ized view onto these works that culminates in the systematic evaluation of
66045 potential new techniques. The most promising candidates are turned
into practical new shadow mapping techniques in Chapter 4, followed by a
variety of applications in Chapters 5, 6 and 7.

3.1 Related Work
The prevalent approaches for rendering dynamic, hard shadows are based on
ray tracing, shadow volumes or shadow mapping. Monte-Carlo ray tracing
is the standard approach in offline rendering and yields accurate hard or soft
shadows for arbitrary light sources [Cook et al. 1984]. For real-time applica-
tions it used to be prohibitively expensive. Recent works use shadow maps
as basis for acceleration structures to make real-time ray tracing of hard or
soft shadows practical but the cost remains comparatively high [Wang et al.
2014; Wyman et al. 2015]. Shadow volumes [Crow 1977] enable pixel perfect
hard shadows by rasterizing geometry for the shadow boundaries. Exten-
sions to soft shadows exist [Akenine-Möller and Assarsson 2002]. However,
all these techniques scale poorly with scene complexity.

Currently, shadow mapping [Williams 1978] serves as basis for the vast
majority of practically relevant techniques. A shadow map is a texture
rendered from the point of view of the light source, i.e. each view ray of
the used camera corresponds to a light ray of the light source. Each texel
stores the depth of the first opaque surface thus describing the segment of
the light ray that is lit. A single sample reveals whether an arbitrary point
is lit. Besides the aliasing problems discussed above, shadow mapping is
prone to one more artifact known as surface acne. Since the surface samples
available from the shadow map will always be slightly offset with respect
to the surface samples on screen, a simple comparison of depth values will
often falsely classify a surface sample as shadowed (Fig. 3.1a). This can be
avoided by subtracting a depth bias from the fragment depth but excessive
biasing leads to missing shadows at contact points. Normal vectors help to
determine the bias adaptively [Dou et al. 2014].

In any case the sampling of the scene in the shadow map should closely
resemble the sampling on screen to avoid undersampling and oversampling.
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(a) Surface acne, shadow mapping (b) Light leaking, variance shadow mapping

(c) Missing shadows at boundaries,
exponential shadow mapping, cesm = 80

(d) Light leaking, exponential variance
shadow mapping, c−

evsm = c+
evsm = 5.54

Figure 3.1: Failure cases of various shadow mapping techniques. Each
example is chosen to provoke a specific artifact.

Light space perspective shadow maps [Martin and Tan 2004; Wimmer et al.
2004] optimize a single perspective transform based on the view frustum.
Parallel-split shadow maps [Zhang et al. 2006] subdivide the view frustum
along multiple planes and use one shadow map per resulting cascade. Sam-
ple distribution shadow maps [Lauritzen et al. 2011] analyze the screen
space depth buffer to place these planes optimally. Virtual shadow maps
for many point lights [Olsson et al. 2014, 2015] use omni-directional shadow
maps and decide which part of which shadow map needs to be rendered at
which resolution per frame. All these techniques greatly diminish problems
with aliasing but still filtering is needed for visually pleasing results.

Percentage-closer filtering [Reeves et al. 1987] is the reference for shadow
map filtering and we will now interpret it in a probabilistic framework. The
technique takes n ∈ N samples z0, . . . , zn−1 ∈ [−1, 1] from a neighborhood
of the relevant fragment in the shadow map1 and weights each of them

1We follow the convention that the near-clipping plane of the shadow map projection
corresponds to z = −1 and the far-clipping plane corresponds to z = 1. The practical
advantages of this choice are elaborated in Section 4.1.5.



40 3. Filterable Shadow Maps

(a) Shadow map (b) Filter region
and kernel

(c) Shadow intensity graph (i.e.
cumulative distribution function)

Figure 3.2: A visualization of percentage-closer filtering. The depth-
dependent shadow intensity (3.2c) coincides with the cumulative distribu-
tion function of the depth distribution Z. This distribution is constructed
from the depth values in the filter region, weighted by a filter kernel (3.2b).
The depth samples stem from the shadow map (3.2a). Note how the three
distinct surfaces in the filter region correspond to the three steep increases
of the shadow intensity.

with a weight w0, . . . , wn−1 ∈ [0, 1] based on a low-frequent filter kernel.
Given the biased depth of the shaded fragment zf ∈ [−1, 1], it then turns
each depth into a shadow intensity and filters these. We define the depth
distribution within the filter region as

Z :=
n−1∑
l=0

wl · δzl
. (3.1)

Using the random variable z(z) := z we find that the filtered shadow-
intensity can be written as

Z(zf > z) =
n−1∑
l=0

wl ·

0 if zf ≤ zl,
1 if zf > zl.

Thus, percentage-closer filtering evaluates the cumulative distribution func-
tion of the depth distribution within the filter region (see Figure 3.2).
To avoid sampling filter regions in the shadow map per fragment, a compact
representation of the depth distribution Z needs to be precomputed. Deep
shadow maps [Lokovic and Veach 2000] construct the cumulative distribu-
tion function of Z explicitly and then approximate it by a piecewise linear
function while maintaining quality guarantees. This does provide a com-
pact, precomputed representation of Z but this representation still cannot
be filtered directly because it depends on Z in a non-linear manner.
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Figure 3.3: The shadow intensity produced by various types of filterable
shadow maps (green) next to the ground truth produced by percentage-
closer filtering (blue). The parameters used for the techniques correspond
to the lower-quality option in Table 3.1. In particular, cesm = 11.09, c+

evsm =
c−evsm = 5.54 and αb = 6 · 10−5 (see Section 4.1.4).

Variance shadow maps [Donnelly and Lauritzen 2006] offer a linear repre-
sentation. Since they can be filtered directly, we refer to them as filterable
shadow maps. Unlike common shadow maps, variance shadow maps have
two channels. The first one stores the depth z like a common shadow map
but the second one stores z2. Initially this information is redundant but
if we filter the variance shadow map within our filter region, we obtain
two power moments b1 = EZ (z) and b2 = EZ (z2). Additionally, we know
b0 = 1 because the filter weights are normalized. The two power moments
correspond to the mean µ := b1 and variance σ2 := b2 − b2

1 of the depth
distribution. By Cantelli’s inequality (referred to as one-tailed version of
Chebyshev’s inequality by Donnelly and Lauritzen), we know for all zf > µ

Z(zf > z) = 1− Z (z− µ ≥ zf − µ) ≥ 1− σ2

σ2 + (zf − µ)2 .

This lower bound is used as approximation to the shadow intensity. Failure
cases arise when σ is large because then the lower bound converges to one
slowly such that light leaks through occluders (Figs. 3.1b and 3.3). Layered
variance shadow maps [Lauritzen and McCool 2008] avoid this case by using
multiple variance shadow maps for subintervals of the depth interval [−1, 1].

Convolution shadow mapping [Annen et al. 2007] approximates the cumula-
tive distribution function by a truncated Fourier series. Just like the power
moments, the Fourier coefficients can be filtered linearly. However, a large
number of coefficients is needed for an acceptable approximation, especially
in large scenes and ringing is a problem (Fig. 3.3).
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Exponential shadow maps [Salvi 2008; Annen et al. 2008b] approximate the
shadow intensity by an exponential function that is scaled to be very steep
using a fixed factor cesm � 1 (e.g. cesm = 80). The exponential shadow
map stores EZ (exp(cesm · z)) and then by Markov’s inequality

Z(zf ≥ z) = 1− Z (exp(cesm · z) ≥ exp(cesm · zf )) ≥ 1− EZ (exp(cesm · z))
exp(cesm · zf )

.

This works very well for the hindmost receiver of partial shadow and for
all receivers of full shadow but the bound is meaningless for smaller values
of zf (Fig. 3.3). Therefore, artifacts occur at boundaries of shadow casters
(Fig. 3.1c).
Exponential variance shadow maps [Lauritzen and McCool 2008] combine
exponential shadow mapping and variance shadow mapping to cancel out
the complementary weaknesses of these techniques. For fixed c+

evsm, c
−
evsm >

1 they store

EZ
(
exp(c+

evsm · z)
)
and EZ

(
exp(c+

evsm · z)2
)

as well as

EZ
(
− exp(−c−evsm · z)

)
and EZ

(
exp(−c−evsm · z)2

)
.

Having two power moments for the random variables exp(c+
evsm · z) and

− exp(−c−evsm · z), variance shadow mapping is used to compute two lower
bounds to the shadow intensity and the larger one functions as approxima-
tion. This technique produces decent filtered hard shadows in most cases.
Though, some light leaking remains, especially when c+

evsm is chosen small
enough to enable the use of half-precision floating point textures (Figs. 3.1d
and 3.3).
Since bandwidth is the limiting factor, the run time of all sorts of filterable
shadow maps is primarily determined by the amount of memory that is
used per texel in the shadow map, which is in turn dependent on the quality
requirements. An overview of typical values is given in Table 3.1.
Applications of filterable shadow maps are not restricted to filtered hard
shadows. For example, variance shadow maps have been used for approxi-
mations to screen-space ambient occlusion [Loos and Sloan 2010]. The same
goal is accomplished with first-order moments when different surfaces are
separated [Hendrickx et al. 2015]. Shadows for translucent occluders can
be rendered efficiently as described in Section 5.1. Filtered hard shadows
resemble soft shadows and in Section 6.1 we discuss techniques exploiting
this fact for approximate soft shadows. Even single scattering due to direc-
tional lights in homogeneous participating media can be accelerated using
filterable shadow maps as shown in Section 7.1.1.
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Technique Lower quality Higher quality
Variance shadow mapping 2 · 16 = 32 2 · 32 = 64

Layered variance shadow mapping 8 · 16 = 128 16 · 16 = 256
Convolution shadow mapping 16 · 8 = 128 32 · 8 = 256
Exponential shadow mapping 1 · 16 = 16 1 · 32 = 32

Exponential variance shadow mapping 4 · 16 = 64 4 · 32 = 128
Moment shadow mapping (ours) 4 · 16 = 64 4 · 32 = 128

Table 3.1: The typical memory consumption in bits per texel for various
kinds of filterable shadow maps in two typical configurations. The formulas
are to be understood as “number of channels · bits per scalar = total bits
per texel”. For layered variance shadow mapping and convolution shadow
mapping other configurations are practical.

3.2 Generalized Filterable Shadow Maps
The common ground of all filterable shadow maps is that they take the
depth of the shadow casting geometry as input for a fixed, vector-valued
function to determine what to store in the shadow map. Let us say that
this function produces a vector with m ∈ N dimensions and denote the
component-functions by a1, . . . , am : [−1, 1] → R. Then what a filterable
shadow map really stores after filtering, are the general moments of the
depth distribution in Equation (3.1)

aj = EZ (aj) for j ∈ {1, . . . ,m}.

Since we assume a filter with normalized weights, we additionally know
a0 = EZ (1) = 1. The filterable shadow map is fully characterized by its
moment-generating function

a : [−1, 1]→ {1} × Rm with a(z) := (1, a1(z), . . . , am(z))T.

Going from a depth-distribution Z to its compact representation in the
shadow map a := EZ (a) works the same for each possible choice of a. The
inverse problem of reconstructing Z from a is far less trivial. Solutions em-
ployed by the related work are diverse. However, most of them share one
crucial property: They may underestimate the shadow intensity but they
will never overestimate it. This is true for variance, layered variance, ex-
ponential and exponential variance shadow mapping. Convolution shadow
mapping does not guarantee it by default but the biasing employed in prac-
tice serves to avoid overestimation of the shadow intensity.
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Figure 3.4: An example demonstrating why it is preferable to underestimate
the shadow intensity. Although the whole graph is shown, the shadow
intensity is only evaluated at three surfaces at biased depth zf,0, zf,1 and
zf,2. The surfaces at zf,0 and zf,1 coincide with increases in shadow intensity
because they are visible in the shadow map. For them the lower bound is
in close agreement with the ground truth. On the other hand, the upper
bound overestimates the shadow intensity in a manner that would lead to
wrong self-shadowing. Between zf,0 and zf,1 the lower bound provides a
very poor approximation but is never used. Only at zf,2 the approximation
error of the lower bound will lead to visible light leaking.

There are two motivations behind this design decision: It avoids surface
acne and it tends to produce strong approximation errors in regions where
the shadow intensity is never evaluated. As an example, we consider Figure
3.4. It demonstrates that overestimation of shadow intensities is likely to
cause wrong self-shadowing while underestimation avoids it. Even if zf,0
and zf,1 were slightly shifted to the right, variance shadow mapping would
still provide a correct result whereas percentage-closer filtering would lead
to surface acne. While this is just one example, it is representative of a
very common situation. Whenever the filter region overlaps the silhouette
of one shadow caster, it will cover two surfaces and yield a similar depth
distribution. In fact, this case is so common that Donnelly and Lauritzen
[2006] proved that variance shadow mapping produces the correct result at
zf,0 and zf,1.

The downside is the light leaking found at zf,2. Although we want to un-
derestimate the shadow intensity, we do not want to underestimate it more
than necessary. Given all the knowledge that we have, it should be at least
possible that the ground truth agrees with the lower bound. This simple
requirement immediately leads to a well-defined reconstruction technique
for each and every moment-generating function. To implement it, we have
to solve the following problem.
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Problem 3.1 (Chebyshev-Markov inequality for general moments [Krĕın
and Nudel’man 1977, p. 118 ff.]). Suppose we know that all shadow map
depth values lie in a set I ⊆ R and for some moment-generating function
a : I→ {1}×Rm we are given the vector of general moments a := EZ (a) of
an unknown depth distribution Z on I. Let P(I) denote the set of probability
distributions on I. For a given zf ∈ R compute the optimal lower bound

GI,a(a, zf ) := inf
S∈P(I)
ES(a)=a

S(zf > z).

We note that this problem has a well-defined solution if and only if a ∈
conv a(I) because by Proposition 2.5 this is necessary and sufficient for
distributions S on I with ES (a) = a to exist. If indeed a = EZ (a), this is
guaranteed. Then the optimal lower bound will be a value in [0, 1] with

GI,a(a, zf ) ≤ Z(zf > z).

Thus, it is indeed a lower bound for the shadow intensity. At the same
time, it is the sharpest possible lower bound because given our knowledge
about Z we cannot rule out the possibility that the optimal S equals Z.
Choosing I as proper subset of R introduces apriori knowledge into the
approximation that leads to a sharper lower bound. With respect to our
conventions I = [−1, 1] yields the sharpest possible bound. Variance shadow
mapping and exponential shadow mapping both employ solutions to Prob-
lem 3.1 for I = R. For layered variance shadow maps this is true as long as
the depth intervals of the layers do not overlap. The lower bound computed
by exponential variance shadow maps is not optimal because exp(c+

evsm · z)
and − exp(−c−evsm · z) are treated as independent random variables.

3.2.1 Numerical Solution
As of yet, Problem 3.1 only provides a generic way to describe the recon-
struction for filterable shadow maps but it is not an actual technique to
work with. In the present section we develop an algorithmic solution to the
problem, which solves arbitrary problem instances as long as I is a finite set.
However, it is significantly too slow for use in real-time rendering. Instead
it will serve as foundation for our evaluation of candidate techniques.
We observe that the set of distributions P(I) is a linear space subjected to
linear inequality constraints that enforce non-negative probabilities. The
equation ES (a) = a additionally enforces linear equality constraints. Within
this constrained search space we strive to minimize the functional S(zf > z)
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Algorithm 3.1 Solution to Problem 3.1 for finite I.
Input: I = {z0, . . . , zn−1}, a : I→ {1} × Rm, a ∈ {1} × Rm, zf ∈ R
Output: GI,a(a, zf ) ∈ [0, 1] or error “a /∈ conv a(I)”

1. A := (a(z0), . . . , a(zn−1)) ∈ R(m+1)×n

2. Construct p ∈ Rn with pl :=
0 if zf ≤ zl,

1 if zf > zl.

3. Using a linear programming solver, compute w ∈ Rn with
w0, . . . , wn−1 ≥ 0 such that A · w = a and pT · w is minimal.

a) On success: Return pT · w.
b) On failure: Indicate a /∈ conv a(I).

which is also linear in S. The form of this problem is exactly that of a
linear programming problem. As soon as the search space is made finite-
dimensional, standard solvers for linear programming are applicable. We
accomplish this by discretizing the interval I. The result is Algorithm 3.1.
Prékopa [1990] uses a similar approach for a special case.

Proposition 3.2. Algorithm 3.1 is correct.

Proof. Suppose the algorithm terminates successfully. Let S := ∑n−1
l=0 wl·δzl

.
We note that

ES (a) =
n−1∑
l=0

wl · a(zl) = A · w.

In particular, S(I) = ∑n−1
l=0 wl = (A ·w)0. Thus, S is a probability distribu-

tion in P(I) if and only if w0, . . . , wn−1 ≥ 0 and (A ·w)0 = a0. Furthermore,
ES (a) = a if and only if A · w = a. Overall, the constraints of the linear
programming problem agree with the constraints for the search space in
Problem 3.1. The functional also agrees:

S(zf > z) =
n−1∑
l=0
zf>zl

wl =
n−1∑
l=0

pl · wl = pT · w

If Problem 3.1 has a solution, the linear programming solver will find and
return it. Otherwise, the problem is infeasible and the algorithm will cor-
rectly indicate a /∈ conv a(I).



3.3. Benchmark of Candidate Techniques 47

Since we make excessive use of Algorithm 3.1, it is worthwhile to optimize
it as good as we can. To this end, we observe that the reconstructed dis-
tribution S = ∑n−1

l=0 wl · δzl
never has more than m + 1 points of support

because it corresponds to a vertex of the polytope that is the search space
[Schrijver 1986, p. 96]. Most entries of w ∈ Rn vanish. The number of
potential points of support n ∈ N is the most crucial parameter for the
run time of Algorithm 3.1 but we only really need the points of support
of the ground truth solution. Thus, we initially run Algorithm 3.1 with
only n = 251 uniformly distributed samples. Then we refine the sampling
near the points of support of the solution and rerun the algorithm using
the previous output as initialization. This refinement is repeated one more
time such that we solve three linear programming problems in total. The
result is still a globally optimal solution to Problem 3.1 but for a potentially
suboptimal set I.

To solve the linear programming problems we use the implementation of
the simplex algorithm in GLPK 4.542. In some cases this implementation
fails for numerical reasons and we fall back to Gurobi3 which turned out to
be slower in our application.

3.3 Benchmark of Candidate Techniques
Problem 3.1 defines an infinite supply of potential new shadow mapping
techniques and Algorithm 3.1 allows us to test them. To evaluate their
suitability for real-world applications we now want to test a selection of
these techniques on real scenes. We care about robustness so the test cases
should be challenging without being unrealistic. Thus, we prepare three
scenes of moderate scale but high depth complexity and illuminate them
using a single directional light source. The used shadow maps are shown in
Figure 3.5.

Our ground truth is defined by percentage-closer filtering. To obtain rea-
sonably complex depth distributions, we utilize a 9 · 9 Gaussian filter ker-
nel with a standard deviation of 2.4 texels. Of course, percentage-closer
filtering is prone to surface acne and we must avoid that in the ground
truth. Otherwise, candidate techniques would be rewarded for reproducing
this artifact. Therefore, we use a sophisticated slope-based depth bias for
percentage-closer filtering and all candidate techniques.

2See www.gnu.org/software/glpk/ (retrieved on 1st of September 2016).
3See www.gurobi.com/ (retrieved on 1st of September 2016).

https://www.gnu.org/software/glpk/
http://www.gurobi.com/
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(a) Temple (b) Seaport (c) Ship (back) (d) Ship (side)

Figure 3.5: The shadow maps used in our benchmark of candidate tech-
niques. Their resolution is 10242. Sources of the models are detailed in the
acknowledgments on page 9.

Having the ground truth, we need means of comparison. All artifacts pro-
duced by the candidate techniques are known to be some sort of light leaking
because they never overestimate the shadow intensity. For the sake of sim-
plicity, we quantify this light leaking through a 1-norm. It is applied to the
error in the irradiance field of the directional light on the scene surfaces.
Conveniently, the irradiance without the shadow term is proportional to the
area covered in the shadow map. This enables a convenient image-based
evaluation of the error term.

We render a stack of shadow maps showing not only the foremost surface but
all surfaces. Then we iterate over all fragments in these images. For each
fragment, we sample the shadow map to compute the depth distribution,
which allows us to evaluate the shadow intensity with percentage-closer fil-
tering and the candidate technique. The arithmetic mean of the differences
between the two results is our error term. Except for discretization errors,
this value is proportional to the error in the irradiance field. A value of
zero is only accomplished by the ground truth whereas a value of one would
mean that all surfaces should be fully shadowed but are not shadowed at
all. The image data required to reproduce this benchmark are available4.

Finally, we need to define the candidate techniques themselves, i.e. we
have to define functions a : [−1, 1]→ {1} × Rm mapping a depth z to the
data stored in the shadow map a(z). A priori it is unclear which functions
may perform well. This is the question we are concerned with after all.
The component functions a1, . . . , am can be defined independently. We
pick them from a set of 37 rather elementary, smooth functions to have
any hope of deriving an efficient closed-form solution afterwards. These

4cg.cs.uni-bonn.de/aigaion2root/attachments/BenchmarkData.zip (retrieved on 1st
of September 2016).

http://cg.cs.uni-bonn.de/aigaion2root/attachments/BenchmarkData.zip
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Figure 3.6: Lower bounds as defined by Problem 3.1 for different moment-
generating functions shown in the legend. Note that the results obtained
with m = 4 (green) are significantly better than those with m = 3 (cyan).

functions have been defined with a depth in [0, 1] so it is convenient to
remap z ∈ [−1, 1] to this interval via y := z+1

2 . The used component
functions are:

• Polynomials y, y2, . . . , y8,

• Roots √y, 3
√
y, 4
√
y,

• Rational functions 1
(y+1)1 , . . . , 1

(y+1)4 ,

• Scaled exponential functions exp(1 · y), . . . , exp(4 · y),

• Shifted logarithm functions log(y + 1), . . . , log(y + 4),

• Fourier basis functions sin(1 ·2 ·π ·y), . . . , sin(4 ·2 ·π ·y), cos(1 ·2 ·π ·y),
. . . , cos(4 · 2 · π · y),

• Trigonometric functions cosh y, sinh y, arcsin y, arcsin(2·y−1), arctan y,

• The probability density of a Gaussian exp(−y2).

The last quantity to determine is the number of component functionsm ∈ N
that we use at once. There is clearly a need for techniques that provide
a higher quality than variance shadow mapping and exponential shadow
mapping but use less memory than layered variance shadow mapping and
convolution shadow mapping. Currently the only technique in this category
is exponential variance shadow mapping. Thus, we want m > 2. Looking
at the examples in Figure 3.6, m = 4 looks significantly more promising
than m = 3 and therefore we fix this number.
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We consider all combinations of the 37 component functions above leading
to a total of

(
37
4

)
= 66045 candidate techniques. Performing the benchmark

for all of them requires 392 billion evaluations of Algorithm 3.1. To process
this massive workload in parallel, we use a cluster of 18 computers controlled
by HT Condor5.

3.4 Results and Discussion
The original publication on moment shadow mapping [Peters and Klein
2015] includes a complete benchmark of all 66045 candidate techniques. It
took about one month of computing time on the cluster. In retrospect, this
data turned out to be compromised significantly by the default numerical
tolerances in the used linear programming solvers6. Therefore, we repeated
the experiment with smaller tolerances on a random sample of 6605 candi-
date techniques. We discuss the issues in the original experiment and the
implications below.

For now, we focus on the results of the repeated experiment shown in Figure
3.7. Our key observation is that more than 13000 candidate techniques
perform nearly identical to the best technique in the sample. Visually the
results of these candidate techniques are nearly indistinguishable. Only the
shadow intensities reconstructed for complicated depth distributions, such
as the one in Figure 3.2, differ by a few percent. Such distributions are
rare. This is a very positive result because it means that there is a large
pool of promising candidate techniques to choose from.

Our explanation for this phenomenon is based on a generalization of Propo-
sitions 2.12 and 2.13. These Propositions imply that the depth distribution
can be reconstructed perfectly from four power moments or two complex
trigonometric moments if it only contains two surfaces at constant depth.
As discussed before, this situation is very important because it corresponds
to the case where the filter region overlaps the silhouette of one shadow
caster. The generalization of these propositions provides the same guaran-
tee whenever the basis a0, . . . , am spans a so-called Chebyshev system, i.e.
no function in the span has more than m roots [Krĕın and Nudel’man 1977,
p. 31, 78]. Apparently this holds for many candidates, at least approxi-
mately. Thus, they perform nearly identical in the most common cases. In

5research.cs.wisc.edu/htcondor/ (retrieved on 1st of September 2016).
6The relevant parameters in GLPK are tol_bnd and tol_dj. By default they are set

to 10−7 but in the repeated experiment we use 10−11. In Gurobi the relevant parameter
is named GRB_DoubleParam_FeasibilityTol.

http://research.cs.wisc.edu/htcondor/
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Figure 3.7: Histograms showing how many of the 66045 candidate tech-
niques produce an error within particular bins. The counts are estimated
based on a random sample of 6605 candidate techniques and the trans-
parent red bars show confidence intervals for confidence level 95%. The
upper four plots refer to the shadow maps in Figure 3.5. The plot at the
bottom shows an arithmetic mean of these results weighting each shadow
map by the number of shaded fragments. The errors of some noteworthy
techniques are annotated: Percentage-closer filtering (PCF), trigonomet-
ric moment shadow mapping (a(z) = c(π · z), TMSM), Hausdorff moment
shadow mapping (a = b, MSM), exponential variance shadow mapping
(c+

evsm = 40, c−evsm = 5.54, EVSM), variance shadow mapping (VSM) and
exponential shadow mapping (cesm = 80, ESM). The dashed line indicates
the error of the best candidate technique in the sample.
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Figure 3.8: The counterpart of the bottom graph in Figure 3.7 when operat-
ing the linear programming solvers with default tolerances. This previously
published data set [Peters and Klein 2015] includes all 66045 candidate
techniques. Note that many candidates perform significantly worse.

more complex situations, the amount of information conveyed by the four
general moments is still similar and results agree roughly.
Other candidates perform significantly worse but many are still competi-
tive with regard to exponential variance shadow mapping and other related
work. Note that the x-axis of the histograms is cut off. The worst measured
average score is 23.5% and it is realized by

a(z) = (1, cos(1 · π · z), cos(2 · π · z), cos(3 · π · z), cos(4 · π · z))T.

The reason for this poor performance is that this function is even, i.e.
a(z) = a(−z), and thus the lower bound has to be zero for zf ≤ 0.
Figure 3.8 shows results of the original experiment, which allow some in-
teresting conclusions in spite of their flaws. The data also suggest that
thousands of candidate techniques perform nearly as good as the best one
but many measured errors are larger leading to a drastically spread out
histogram. This difference is entirely due to tolerance thresholds in GLPK
governing the accuracy with which the equality constraints for the gen-
eral moments are maintained. The exact meaning of these thresholds is
not stated in the documentation but using the default value of 10−7, we
observed outputs which violate the equality constraints with an absolute
error of as much as 10−3 on a value of 0.028.
GLPK uses these tolerances in such a way that its computed minimum
is less than the true minimum of the linear programming problem. Thus
light leaking is introduced, especially for short-range shadows. Given the
relatively small distortions in the general moments, the strength of this light
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leaking is surprising. It is a strong indication that moment problems are
ill-conditioned in practically relevant cases. Indeed, precision of the stored
moments is an issue of major importance and in our derivation of moment
shadow mapping Sections 4.1.3, 4.1.4 and 4.1.5 are dedicated to it.
Another interesting observation is that the smallest measured error is nearly
unchanged across the two experiments. This supports the hypothesis that
the full set of candidate techniques does not contain one that is significantly
better than the best in the smaller sample. We expect the best candidate
in the original experiment to be particularly robust with regard to errors in
the given general moments. This candidate is

a(z) = c(π · z) = (1, cos(π · z), sin(π · z), cos(2 · π · z), sin(2 · π · z))T

which corresponds to two complex trigonometric moments. Since we have
already attributed some useful algebraic properties to trigonometric mo-
ments, a closed-form solution could be practical.
The power moments obtained with a(z) = b(z) = (1, z, z2, z3, z4)T are an-
other promising candidate for which a closed-form solution seems feasible.
In the repeated experiment, its average error of 1.93% is only insignificantly
worse than the least measured error of 1.92%. In the original experiment,
the average error of 2.19% is clearly worse than the least average error of
1.93% that is realized by trigonometric moments. Therefore, we expect
increased light leaking when the power moments are given with low preci-
sion.





Chapter 4
Moment Shadow Maps

Knowing that power moments and trigonometric moments are among the
many good choices that we could make, we now approach the development
of fast and robust algorithms. We have implemented and evaluated shaders
for three novel techniques:

Hamburger Moment Shadow Mapping solves Problem 3.1 for a(z) =
b(z) = (1, z, z2, z3, z4) and I = R, i.e. it uses four power moments and does
not incorporate the prior knowledge that valid depths lie in [−1, 1]. It
even generalizes to any even number of power moments and an application
using six power moments is given in Section 7.4. In nearly all situations it
is the most compelling novel technique because it is fast and robust. When
there is no need to distinguish it from the other two techniques, we refer to
it as moment shadow mapping. However, it is slightly worse than the other
two techniques in terms of light leaking.

Hausdorff Moment Shadow Mapping is very similar to Hamburger mo-
ment shadow mapping. It takes the same four power moments as input but
solves Problem 3.1 for I = [−1, 1], i.e. it does incorporate the knowledge
about the valid domain of depth values. In practice, this introduces an ad-
ditional branch to the algorithm. Most of the time the result is computed
in the same way as for Hamburger moment shadow mapping but in some
situations the computed shadow will be slightly darker. This affects mostly
shadows cast over a very short range. The downside is that it amplifies ar-
tifacts arising due to the quantization of the moment shadow map. Overall
we find Hamburger moment shadow mapping preferable but we still provide
a detailed derivation of Hausdorff moment shadow mapping in Appendix
B.3.

55
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Trigonometric Moment Shadow Mapping solves Problem 3.1 for a(z) =
c(π · z) and I = [−1, 1], i.e. it uses two complex trigonometric moments.
In the benchmark this technique has performed very well even in presence
of errors in the trigonometric moments. Indeed, our experiments in Section
4.2.1 confirm that it is more robust to such errors than Hamburger moment
shadow mapping. Unfortunately, the derivation of an efficient algorithm is
substantially more difficult than for Hamburger moment shadow mapping.
We have been able to derive a novel closed-form solution but it is far more
expensive than Hamburger moment shadow mapping because it involves
the solution of a complex, quartic equation. We do not recommend the use
of this technique for any serious application but still provide a derivation
in Appendix B.4.
In the following, we provide a detailed derivation of Hamburger moment
shadow mapping. The basic principles of this technique are the same as for
Hausdorff and trigonometric moment shadow mapping. Though, the latter
two techniques require additional considerations which are quite specific to
these techniques and, at times, more intricate.

4.1 Hamburger Moment Shadow Mapping
Solutions to Problem 3.1 for power moments go back to the work of Markov
[1884]. They require computation of the roots of a polynomial of degree m

2 ,
so they are closed forms up to m = 8. More recent work [Tari 2005] inves-
tigates the development of efficient and robust algorithms. However, this
work has an entirely different application in mind and thus the algorithms
are not optimized adequately for our application. In the following, we de-
rive and implement an algorithm that is tailor-made for the present use
case. It employs the same principles as earlier algorithms but in a different
fashion. We formulate it for an arbitrary even number of power moments
m ∈ N but only discuss the robust implementation for m = 4 and m = 6
(see Section 7.4).

4.1.1 Algorithm
The key insight for the solution is that optimal distributions S on R have
a very special structure. They can always be chosen to have no more than
m
2 + 1 points of support (see Figure 4.1). One of these points is the point
at which the cumulative probability is to be minimized. Thus, the infinite-
dimensional search space P(R) can be reduced to a search space with a mere
m + 1 dimensions for the locations and probabilities of the points of sup-
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Figure 4.1: Examples of optimal solutions to Problem 3.1 for a single ground
truth. The ground truth and the four representations share the same power
moments b0, b1, . . . , b4. The upper and lower bound touch the representa-
tions at the respective zf . Note that all representations use exactly three
depth values zf , z1, z2.

port. This dimensionality matches the number of constraints provided by
ES (b) = b and therefore the minimization problem is simplified to solving
a system of m+ 1 equations.
This result is known as Chebyshev-Markov inequality [Krĕın and Nudel’man
1977, p. 125] or Markov-Krĕın theorem [Karlin and Studden 1966, p. 82].
It has been formulated for a more general class of moment-generating func-
tions and objective functions but to avoid the additional definitions we only
state the relevant special cases.

Theorem 4.1 (Markov-Krĕın for I = R). Let b ∈ Rm+1 such that b0 = 1
and B(b) is positive definite. Let zf ∈ R such that

(B−1(b) · b̂(zf ))m
2
6= 0. (4.1)

Then there exists exactly one probability distribution S with ES (b) = b
having support at zf and exactly m

2 additional points. It solves Problem 3.1,
i.e.

S(zf > z) = GR,b(b, zf ) = inf
S′∈P(R)
ES′ (b)=b

S ′(zf > z).

The corresponding optimal upper bound is attained when we include the
support at zf , i.e.

S(zf ≥ z) = GR,b(b, zf ) + S(zf = z) = sup
S′∈P(R)
ES′ (b)=b

S ′(zf ≥ z).

Proof. We refer to the literature for the proof of existence [Akhiezer and
Krĕın 1962, p. 8 f.] and optimality [Krĕın and Nudel’man 1977, p. 125
f.].
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Theorem 4.1 describes the sought-after solution in nearly all cases. There
are two exceptions though. First, it demands that B(b) is positive definite.
We know that B(b) has to be positive semi-definite from Proposition 2.8. If
B(b) is singular, Proposition 2.12 tells us that there is exactly one matching
distribution, which is necessarily the solution to Problem 3.1. Algorithm
2.1 can compute it.

The condition formulated in Inequality (4.1) excludes a case where there
really is no minimizing distribution. The infimum is rather realized by the
limit of an infinite sequence of distributions spreading out their support
towards infinity. In practice, this case is only a minor problem because
(B−1(b) · b̂(zf ))m

2
is a polynomial of degree m

2 in zf . Thus, it can only
have m

2 roots, i.e. out of all real numbers m
2 will cause problems. Upon

close observation our results do indeed exhibit a few instabilities at indi-
vidual fragments which are related to this case. They are rare enough to
be ignored. Alternatively, one can use Hausdorff moment shadow map-
ping where another code branch takes over. We also demonstrate how to
compute the exact result for this case in another context in Section 7.2.

The remaining problem is to compute the (existent and unique) distribu-
tion S described in Theorem 4.1. More precisely, we have to compute its
points of support. Once they are known, the corresponding probabilities
are uniquely determined by the system of linear equations ES (b) = b. We
now reduce computation of the m

2 unknown points of support to polynomial
root finding for a polynomial of degree m

2 .

Proposition 4.2 ([Akhiezer and Krĕın 1962, p. 8 f.]). Let z0, . . . , zm
2
∈ R

be pairwise different and let w0, . . . , wm
2
> 0 with ∑m

2
l=0wl = 1. Let S :=∑m

2
l=0wl · δzl

and b := ES (b). Then for all l ∈ {1, . . . , m2 }

b̂T(zl) ·B−1(b) · b̂(z0) = 0.

Proof. We note that B(b) is regular by Proposition 2.12. Let

A := (b̂(z0), . . . , b̂(zm
2

)) ∈ R( m
2 +1)×( m

2 +1).

This matrix is a square Vandermonde matrix and since z0, . . . , zm
2

are
pairwise different, it is invertible. We recall from Proposition 2.8 that
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B(b) = ES
(
b̂ · b̂T

)
and thus:

A−1 ·B(b) · A−T = A−1 · ES
(
b̂ · b̂T

)
· A−T

= A−1 ·

 m
2∑
l=0

wl · b̂(zl) · b̂T(zl)
 · A−T

=
m
2∑
l=0

wl ·
(
A−1 · b̂(zl)

)
·
(
A−1 · b̂(zl)

)T

=
m
2∑
l=0

wl · el · eT
l = diag(w0, . . . , wm

2
)

Note that el := (0, . . . , 0, 1, 0, . . . , 0)T ∈ Rm
2 +1 denotes the l-th canonical

basis vector. Then the inverse matrix AT · B−1(b) · A is still a diagonal
matrix and thus for all l ∈ {1, . . . , m2 }

b̂T(zl) ·B−1(b) · b̂(z0) = (AT ·B−1(b) · A)l,0 = 0.

Proposition 4.2 provides the last missing piece. Putting everything together
we get Algorithm 4.1 which constitutes the core of all of our recommended
shadow mapping techniques.

Theorem 4.3. If it does not abort in Step 1 or 3, Algorithm 4.1 solves
Problem 3.1 correctly.

Proof. If the algorithm fails, there is nothing to prove. Thus, consider
the case that it terminates without failure. In this case, the conditions of
Theorem 4.1 are met and there exists a unique distribution

S :=
m
2∑
l=0

wl · δzl

with z0 = zf , z1, . . . , zm
2
∈ R, w0, . . . , wm

2
> 0 and ES (b) = b. Then by

Proposition 4.2 z1, . . . , zm
2
are the roots of b̂T(z) · B−1(b) · b̂(z0) which is

exactly the polynomial in Step 4, i.e. the algorithm computes these points
correctly.
The system of linear equations in Step 6 is equivalent to

ES
(
b̂
)

= (b0, b1, . . . , bm
2

)T
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Algorithm 4.1 Hamburger moment shadow mapping, i.e. the solution to
Problem 3.1 for a = b and I = R.
Input: Power moments b ∈ Rm+1 and the fragment depth zf ∈ R.
Output: The lower bound GR,b(b, zf ) as defined in Problem 3.1 or failure.

1. If B(b) is not positive definite: Indicate failure.

2. Solve B(b) · q = b̂(zf ) for q ∈ Rm
2 +1.

3. If qm
2

= 0: Indicate failure.

4. Solve the polynomial equation ∑m
2
j=0 qj · zj = 0 for z and denote the

distinct solutions by z1, . . . , zm
2
∈ R.

5. Set A := (b̂(zf ), b̂(z1), . . . , b̂(zm
2

)) ∈ R( m
2 +1)×( m

2 +1).

6. Solve A · w = (b0, b1, . . . , bm
2

)T for w ∈ Rm
2 +1.

7. Return ∑m
2
l=1, zl<zf

wl.

and thus ES (b) = b implies that the probabilities are recovered correctly as
well. Note that A cannot be singular because it is a square Vandermonde
matrix constructed from pairwise different points of support.
Finally, the algorithm returns

m
2∑

l=1, zl<zf

wl = S(zf > z) = GR,b(b, zf )

by Theorem 4.1.

Additional branches utilizing Algorithm 2.1 and 7.1 could be added to com-
pute a correct result for the two failure cases. However, we found that it
is more practical to implement the Algorithm such that it behaves stable
near these cases.

4.1.2 Implementation
In terms of the framework, Hamburger moment shadow mapping is no dif-
ferent from other filterable shadow maps. The best practice for creation of
the moment shadow map is to first create a common shadow map as depth
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buffer with hardware-accelerated multisample antialiasing. Computation of
the moments z, z2, z3, z4 is done during a custom resolve into a four-channel
texture that is no longer multisampled. Subsequently, a low-frequent filter
such as a two-pass Gaussian may be applied. When shading a fragment,
this texture is sampled with appropriate filtering and Algorithm 4.1 is used
to approximate the filtered shadow intensity.
However, the implementation of Algorithm 4.1 is non-trivial for numerical
reasons. Care has to be taken to implement each step in a numerically stable
manner. At the same time, the implementation has to be very efficient
because it is invoked per fragment. Only single precision arithmetic should
be utilized. We note that there has been an earlier attempt by M. Salvi to
implement moment shadow mapping, which is vaguely documented in a blog
post [Salvi 2007]. It was unsuccessful due to the aforementioned challenges
and M. Salvi moved on to derive exponential shadow mapping [Salvi 2008].
Pertaining his attempt to implement moment shadow mapping, he writes:

“Moreover even though inequalities that handle three or four
moments exist, they are mathematical monsters and we don’t
want to evaluate them on a per pixel basis. In the end I decided
to give it a go only to find out that this incredibly slow and inac-
curate extension to variance shadow maps was only marginally
improving light bleeding problems, and in some cases the origi-
nal technique was looking better anyway due to good numerical
stability that was sadly lacking in my own implementation.”

We now describe our solutions to these problems for m = 4 and summarize
them in Algorithm 4.2. A robust implementation for m = 6 is described in
Section 7.4. Shader code is given in Appendices C.1 and C.3.3.
To solve the 3 × 3 linear system B(b) · q = b̂(zf ), we exploit that B(b) is
symmetric and positive definite. These are exactly the conditions under
which a Cholesky decomposition is usable. This way, the system is solved
in a manner that is efficient and backward stable in all cases [Trefethen and
Bau 1997, p. 176].
Simply solving the quadratic equation ∑2

j=0 qj · zj = 0 with the quadratic
formula works well.
Concerning the solution of the 3 × 3 linear system A · w = (1, b1, b2)T, we
observe that we do not require the full solution. For convenience, we assume
z1 < z2. If zf ≤ z1, the output is zero, if z1 < zf ≤ z2, the output is w1
and if z2 < zf the output is w1 +w2 = 1−w0. Starting from Cramer’s rule
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Algorithm 4.2 Robust implementation of Hamburger four moment shadow
mapping, i.e. Algorithm 4.1 for m = 4.
Input: Power moments b′ ∈ R5 with b′0 = 1, fragment depth zf ∈ R.
Output: The lower bound GR,b(b′, zf ) as defined in Problem 3.1.

1. Use a Cholesky decomposition followed by forward and back substi-
tution to solve for q ∈ R3: 1 b′1 b′2

b′1 b′2 b′3
b′2 b′3 b′4

 · q =

 1
zf
z2
f


2. Solve q2 · z2 + q1 · z+ q0 = 0 for z using the quadratic formula and let
z1, z2 ∈ R with z1 < z2 denote the solutions.

3. If zf ≤ z1: Return 0.

4. Else if zf ≤ z2: Return

zf · z2 − b′1 · (zf + z2) + b′2
(z2 − z1) · (zf − z1) .

5. Else: Return
1− z1 · z2 − b′1 · (z1 + z2) + b′2

(zf − z1) · (zf − z2) .

and simplifying reveals the closed forms given in Algorithm 4.2. We also
experimented with the approach described in Section 7.4.2 but found that
it is slightly slower without noticeable advantage.
If such an implementation of Algorithm 4.1 is implemented in double pre-
cision arithmetic and provided with double precision power moments, its
results agree with the results of Algorithm 3.1. However, artifacts appear
as soon as the power moments are provided in single precision.

4.1.3 Biasing
Rounding errors in the given power moments may invalidate the vector
of moments. From Proposition 2.12 we know that the vector of moments
lies on the topological boundary of the set of valid vectors of moments
whenever the depth distribution has only one or two points of support.
The majority of all relevant situations is approximated well by such depth
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Figure 4.2: Various reconstructions for a single ground truth (blue). The
green graph uses the exact moments, the red graph shows the lower bound
obtained when the moments are only constrained to tolerance intervals[
bj − εbj

, bj + εbj

]
and the cyan graph uses the exact moments with a mo-

ment bias as defined in Equations (4.2) and (4.3). The value of αb = 8 ·10−5

is sufficient to compensate the rounding errors admitted by the tolerances.
Notice how the tolerance and the moment bias both increase light leaking
slightly but in a very similar manner.

distributions because the filter region in the shadow map covers no more
than two surfaces. Thus, vectors of moments are commonly very close to
the boundary and vulnerable to rounding errors. We need a robust and
efficient method to counteract these rounding errors.
In Section 3.2 we argue that it is beneficial to always underestimate the
shadow intensity to avoid surface acne. However, even when the vector of
moments remains valid, rounding errors in the power moments may lead to
overestimation. If we still want to guarantee underestimation, we have to
incorporate knowledge about the rounding errors into the reconstruction.
As a means of analysis, we note that this is easily accomplished with the
linear programming approach in Algorithm 3.1. Suppose we are given a
vector of moments b ∈ Rm+1 with rounding errors. Rather than knowing
the power moment j ∈ {1, . . . ,m} exactly, we only know that it lies in an
interval

[
bj − εbj

, bj + εbj

]
for an implementation-dependent constant εbj

>
0. Linear programming enables the replacement of the equality constraints
by such inequality constraints. As shown in Figure 4.2, this has the effect
of smoothing the lower bound in a conservative manner.
Of course, we require a more efficient scheme for real-time rendering. A
lot of effort went into experiments with many different approaches but the
most robust results were obtained with the simplest solution. We bias
the rounded vector of moments by interpolating towards a fixed vector of
biasing moments using a fixed weight.
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More precisely, we fix a moment bias 0 < αb � 1 and a vector of biasing
moments b? ∈ conv b([−1, 1]). The vector of moments with rounding errors
b is biased by setting

b′ := (1− αb) · b+ αb · b?. (4.2)

This bias cannot increase the estimate of the shadow intensity by more
than αb. To see that this is true suppose that S,Z? are distributions on
R with ES (b) = b and EZ? (b) = b?. Then the biased vector b′ represents
(1− αb) · S + αb · Z? and thus

GR,b(b′, zf ) ≤ ((1− αb) · S + αb · Z?)(zf < z) ≤ S(zf < z) + αb.

Since this relation holds for each choice of S, we obtain

GR,b(b′, zf ) ≤ GR,b(b, zf ) + αb.

On the other hand, a decrease of the lower bound is possible to an arbitrary
extent. This behavior nicely matches up with our goal to guarantee under-
estimation in spite of rounding errors. Without using an unnecessarily high
value of αb, we do not get a strong guarantee but Figure 4.2 demonstrates
that the results nicely resemble those obtained with linear programming.
We have observed this behavior across many randomly generated examples.
It remains to choose b?. Our main concern is robust behavior in all situa-
tions. Thus, we optimize for the worst case by choosing a b? ∈ conv b([−1, 1])
that has maximal distance to the topological boundary of conv b(R). The
details of this optimization are described in Appendix B.1. The result is

b? = (1, 0, 0.375, 0, 0.375)T. (4.3)

Using single precision throughout the pipeline our implementation yields
robust results consistently with a moment bias of αb = 3 · 10−7.

4.1.4 Quantization
The most important factor for the run time of a filterable shadow map is
still the amount of memory per texel because bandwidth is the bottleneck.
Therefore, it is crucial to store the power moments b1, b2, b3 and b4 in as
little memory as possible. The most practical options are to use either 64
or 128 bits per texel. Using 128 bits in the form of four single precision
floating point values works well but when we use four 16-bit fixed precision
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values, a strong moment bias is required to avoid artifacts and light leaking
increases. The quantized power moments simply do not provide enough
information.
Information theory enables us to improve on this situation. We recall that
the vector of moments b always lies in the convex hull conv b([−1, 1]). There
is a closed-form expression for the m-dimensional volume of this convex hull
[Karlin and Shapley 1953, p. 57]:

vol conv b([−1, 1]) =
m∏
j=1

2j · ((j − 1)!)2

(2 · j − 1)! = 64
1575

The naïve way to store the four power moments in four fixed precision
numbers is to cover the axis-aligned bounding box of b([−1, 1]). It has
volume

vol [−1, 1]× [0, 1]× [−1, 1]× [0, 1] = 4
because odd moments lie in [−1, 1] and even moments in [0, 1]. From an
information theoretic standpoint it follows that we dedicate approximately

log2
vol [−1, 1]× [0, 1]× [−1, 1]× [0, 1]

vol conv b([−1, 1]) ≈ 6.62

bits to encode the information b ∈ conv b([−1, 1]) for every single texel. In
other words, only one percent of the 264 possible vectors encodes a meaning-
ful vector of moments. This unnecessary redundancy reduces the entropy
of the stored data.
Though, we are not willing to give up on the possibility to filter moment
shadow maps linearly. Therefore, our only option is to apply an invertible,
affine transform to the vector of moments before storing it. Since the zeroth
moment is always one, it does not need to be stored and we define

b+ := (b1, b2, b3, b4)T ∈ Rm,
b+(z) := (b1(z), b2(z), b3(z), b4(z))T ∈ Rm.

We are looking for an affine transform Θ?
m : Rm → Rm with

Θ?
m(conv b+([−1, 1])) ⊆ [0, 1]m ,

i.e. each vector of moments maps to a point in the unit tesseract [0, 1]4
that we can conveniently represent with four fixed precision values. The
objective is to maximize

vol Θ?
m(conv b+([−1, 1])) = vol conv b+([−1, 1]) · | det Θ?

m|

so we are looking for the transform with maximal determinant.
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Since we only need to determine this transform once, numerical optimization
is feasible. Though, there is no need to consider the (m+1)×m-dimensional
search space consisting of all affine transforms. Given a linear transform,
we can shift and scale each component function (Θ?

m(b))j such that it maps
[−1, 1] to [0, 1]. To this end, we simply compute minima and maxima of
quartic polynomials. We sample the remaining (m − 1) × m-dimensional
search space with random initializations and then perform a local optimiza-
tion using Ceres Solver1. This recovers the following transform which we
expect to be globally optimal:

Θ?
4(b+) =

(
0.94835322 0.07453389 0.32881232 0.94980125

)T

+


−0.78917548 −2.89102075 1.27119753 2.46064546
−0.91449110 2.63455252 1.41327106 −2.21030645
0.94159908 0.53380326 −0.49488033 −0.41589682

0 0.54849905 0 −1.49830030

 · b+

Its determinant is 4.85 which means that entropy increases by 4.28 bits
compared to the naïve approach.

Application of this transform does have a measurable impact on the run
time. Without having a proper explanation for this phenomenon, we found
that results degrade only slightly if odd and even moments are transformed
separately. In particular, the following transform still increases entropy by
4.21 bits but can be evaluated twice as fast due to the vanishing entries:

Θ?
4(b+) =


3
2 0 −2 0
0 4 0 −4

1
2 ·
√

3 0 −2
9 ·
√

3 0
0 1

2 0 1
2

 · b+ +


1
2
0
1
2
0

 (4.4)

It is our recommended solution. The way in which it expands conv b+([−1, 1])
is visualized in Figure 4.3. We have also adapted the biasing to the fact
that rounding errors apply to Θ?

4(b+) rather than b+ (see Appendix B.1).
In this setting the optimal biasing is

b? = (1, 0, 0.628, 0, 0.628)T

and for 16-bit quantization we found a moment bias of αb = 6 · 10−5 to be
sufficient in all experiments.

1See ceres-solver.org (retrieved on 1st of September 2016).

http://ceres-solver.org
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(a) Naïve quantization. (b) Optimized quantization Θ?
4.

Figure 4.3: A visualization of the quantization transform in Equation (4.4).
The red line is the curve indicated by the axis labels. The yellow area is its
convex hull. Note that the convex hull has a substantially larger area for the
optimized quantization and that the graphs for the optimized quantization
arise from the ones for naïve quantization through a simple affine transform.

4.1.5 Scaling and Translation of Depth Values
Using the optimized quantization transform is reasonable when using 16
bits per power moment but pointless when the power moments are stored
in single precision because for evaluation of Algorithm 4.2 they have to be
transformed back in single precision. Still we want to minimize the negative
effect of rounding errors.
One option that we do have is to redefine the range of depth values by
applying a linear transform x · z + y with x, y ∈ R and x 6= 0. Doing so
transforms the moments linearly. For all j ∈ {0, . . . ,m}

EZ
(
(x · z + y)j

)
= EZ

 j∑
k=0

(
j

k

)
· (x · z)k · yj−k

 =
j∑

k=0

(
m

k

)
· xk · yj−k · bk.

This linear transform corresponds to a lower triangular matrix with diagonal
entries x0, . . . , xm. Therefore, its determinant is ∏m

j=1 x
j.

If we apply such a transform, the resulting j-th power moment can have
a magnitude up to (|x| + |y|)j. Since we are using floating point numbers,
the relative precision remains unchanged if we divide by this magnitude to
get back to a maximal magnitude of one. Combining this with the previous
transform yields a determinant of

m∏
j=1

(
x

|x|+ |y|

)j
.

Obviously, the magnitude of this determinant is maximized by choosing
y = 0 and invariant under changes of x.
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We conclude that our decision to define depth on the interval [−1, 1] is
optimal. For m = 4, the volume of conv b([−1, 1]) is 2 · 22 · 23 · 24 = 1024
times larger than the volume of conv b([0, 1]) while precision remains the
same. Indeed, experiments confirm that a stronger moment bias is required
when using depth values defined in [0, 1]. In terms of light leaking, this
makes a notable difference.
Numerical issues aside, the above considerations reveal a unique property
of Hamburger moment shadow mapping. A linear transform applied to
the depth values does not change the information conveyed by the power
moments. In theory, this means that the definition of the near and far
clipping planes of the shadow map camera does not change the result of
moment shadow mapping at all as long as no geometry is clipped. In
Appendix B.2 we demonstrate that Hamburger moment shadow mapping
is the only technique based on Problem 3.1 with this property. In practice,
it is still advisable to choose the clipping planes tightly to minimize the
negative effect of the biasing.

4.2 Results and Discussion
Our implementation uses forward rendering in Direct3D 11. Output im-
ages are in sRGB. It is noteworthy that the conversion from linear colors
to sRGB, which is necessary for correct display on common monitors, con-
siderably strengthens light leaking as it increases small values. Therefore,
we scale the shadow intensity slightly as proposed by Annen et al. [2007].
For example, a computed shadow intensity of 98% may be mapped to full
shadow by dividing by 0.98. The amount of scaling is indicated per figure.
All scenes in our experiments use a single directional light. The frustum for
the corresponding shadow map is simply fitted to a bounding box around
relevant parts of the scene. Thus, undersampling occurs frequently and the
techniques for filtered hard shadows are crucial for the quality. Of course,
techniques such as sample distribution shadow maps discussed in Section
3.1 can greatly diminish this undersampling.

4.2.1 Qualitative Evaluation
Figure 4.4 shows how the implemented techniques for filtered hard shadows
perform in a moderately challenging situation with a 10242 shadow map
and a 9 · 9 Gaussian filter with a standard deviation of 2.4 texels. All tech-
niques expose some typical artifacts. Percentage-closer filtering yields sur-
face acne on some of the steep roofs but performs well otherwise (Fig. 4.4a).
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(a) Percentage-closer filtering (b) Variance shadow mapping

(c) Convolution shadow mapping, 32 · 8 bit (d) Exponential shadow mapping, 32 bit

(e) Exponential variance shadow mapping (f) Hamburger moment shadow mapping

(g) Hausdorff moment shadow mapping (h) Trigonometric moment shadow mapping

Figure 4.4: Results of all implemented techniques. Artifacts are magnified
(red) above the percentage-closer filtering ground truth (green). Unless
stated otherwise, the shadow maps use 16 bits per channel. Shadow inten-
sities are divided by 98% and we use cesm = 80 and c+

evsm = c−evsm = 5.54.
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The silhouettes of shadow casters lead to light leaking for variance shadow
mapping (Fig. 4.4b). Convolution shadow mapping exhibits ringing in spite
of its high memory consumption (Fig. 4.4c). Exponential shadow mapping
fails near boundaries of shadow casters (Fig. 4.4d). Note that our imple-
mentation does not fall back to percentage-closer filtering in these cases as
proposed by Annen et al. [2008b].

In comparison to the other filterable shadow maps, the techniques using
four channels produce substantially better results. The only artifact is
some light leaking in shadows cast over a very short range. The results
of Hausdorff and Hamburger moment shadow mapping are nearly identical
(Figs. 4.4f, 4.4g). Light leaking of exponential variance shadow maps is
slightly weaker in some places and stronger in others (Fig. 4.4e). Results of
trigonometric moment shadow mapping are consistently better (Fig. 4.4h).

Figure 4.5 shows a comparison of these techniques in a more challeng-
ing case. The three magnified regions receive shadow from the fence only
(green), the fence and the wall (cyan) or the fence, the wall and the direc-
tion sign (orange). The depth bias for percentage-closer filtering is set large
enough to avoid surface acne but in consequence contact shadows vanish
(Fig. 4.5a). For exponential variance shadow maps, the shadow of the fence
leads to light leaking that stretches on over a long distance when using 64
bits per texel. Besides short-range shadows exhibit strong noise (Fig. 4.5b).
Using 128 bits per texel diminishes the leaking and the noise (Fig. 4.5d).

Hamburger moment shadow mapping with 64 bits also produces light leak-
ing but it is a lot weaker and so is noise in short-range shadows (Fig. 4.5c).
Hausdorff moment shadow mapping with 64 bits behaves mostly identical
but darkens short-range shadows (Fig. 4.5e). Hamburger moment shadow
mapping with 128 bits eliminates light leaking due to the fence almost en-
tirely (Fig. 4.5f). The results of Hausdorff moment shadow mapping with
128 bits are virtually indistinguishable and hence not shown. Unlike ex-
ponential variance shadow mapping, Hamburger moment shadow mapping
with 128 bits fails for points on the ground receiving shadow from three dif-
ferent surfaces but does capture short-range shadows on the fence correctly
(Figs. 4.5d, 4.5f). The results of trigonometric moment shadow mapping
with 64 bits are similar in nature to those of Hausdorff moment shadow map-
ping with 64 bits but consistently better (Figs. 4.5e, 4.5g). When using 128
bits the two techniques produce nearly identical results (Figs. 4.5f, 4.5h).
These observations agree with our predictions from Section 3.4.

Overall, the 64-bit variants of moment shadow mapping are superior to
exponential variance shadow mapping with 64 bits. At 128 bits the tech-
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(a) Percentage-closer filtering, 16 bit (b) EVSM, 64 bit, c+
evsm = c−

evsm = 5.54

(c) Hamburger MSM, 64 bit, αb = 6 · 10−5 (d) EVSM, 128 bit, c+
evsm = 40, c−

evsm = 5.54

(e) Hausdorff MSM, 64 bit, αb = 6 · 10−5 (f) Hamburger MSM, 128 bit, αb = 3 · 10−7

(g) Trigonometric MSM, 64 bit, αc = 6 ·10−5(h) Trigonometric MSM, 128 bit, αc = 9·10−7

Figure 4.5: A bird’s-eye view of a thin wall lit by a directional light and
shadowed by a fence and a direction sign. This scenario provokes light
leaking in exponential variance shadow mapping (EVSM) and all variants
of moment shadow mapping (MSM). The shadow intensity is not scaled.
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Figure 4.6: The reconstructed shadow intensities of several techniques in
situations with two (left) or three (right) shadow casting surfaces.

niques yield artifacts under different circumstances and which technique is
preferable depends on the use case. The different behavior can be better
understood through Figure 4.6. As the exponents c+

evsm, c
−
evsm grow, the re-

construction of exponential variance shadow mapping approaches a function
with two steps representing the foremost and the hindmost shadow caster.
Thus, there is little light leaking behind the hindmost shadow caster but in-
termediate shadow casters are missed. Smaller exponents may not diminish
the light leaking of variance shadow mapping sufficiently.
Moment shadow mapping only generates a reconstruction with two steps if
it matches the ground truth (Proposition 2.12). For a ground truth con-
sisting of three surfaces, it generates a smoother function that still provides
a correct approximation at these three surfaces. However, the slow con-
vergence to one leads to light leaking behind the hindmost shadow caster.
Note that this behavior is entirely analogous to variance shadow mapping
in presence of two surfaces. In general, m power moments provide such
a guarantee for m

2 + 1 surfaces because whenever the fragment depth zf
matches the depth of one of the m

2 + 1 surfaces, Algorithm 4.1 will recon-
struct the other m

2 surface depths correctly (Theorem 4.1). For m
2 surfaces

or fewer, the reconstruction can be nearly perfect at all depths according
to Proposition 2.12 but biasing brings back some light leaking.
Figure 4.7 demonstrates why we find Hamburger moment shadow map-
ping preferable to Hausdorff moment shadow mapping at 64 bits per texel.
Wrong self-shadowing in Hausdorff moment shadow mapping can be very
high-frequent due to quantization errors. The slightly less accurate bound
of Hamburger moment shadow mapping, does not produce this artifact.
Additional results of moment shadow mapping are shown in Figure 4.8.
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(a) Hamburger moment shadow mapping (b) Hausdorff moment shadow mapping

Figure 4.7: An extreme close-up of a concave corner demonstrating quanti-
zation artifacts in 64-bit Hausdorff moment shadow mapping, which are a
lot weaker in 64-bit Hamburger moment shadow mapping.

Throughout this complex scene, we obtain plausible filtered hard shadows.
Noticeable light leaking does occur at some points, e.g. in the shadow of
the barrel on the bottom right, but it is not very strong and restricted to
short-range shadows.

4.2.2 Run Time
To assess the speed of the various techniques, we measure frame times
on an NVIDIA GeForce GTX 970 in a scene with 327397 triangles. The
results are shown in Figure 4.9. Hausdorff moment shadow mapping and
exponential shadow mapping perform very similar to Hamburger moment
shadow mapping and variance shadow mapping, respectively. Therefore,
their frame times are not shown separately.
The time spent per texel of the shadow map depends heavily on the amount
of memory used per texel (Fig. 4.9a). Overall, this is the dominating factor
for the frame time of most filterable shadow maps. For example, Ham-
burger moment shadow mapping with 64 bits is only slightly slower than
exponential variance shadow mapping in spite of the more complex algo-
rithm. Trigonometric moment shadow mapping is an exception due to its
high algorithmic complexity. The cost per shaded fragment is so high that
the higher quality of 64-bit trigonometric moment shadow maps cannot
justify the additional cost as long as run time is any concern (Fig. 4.9b).
For sufficiently large shadow maps, percentage-closer filtering is faster than
all sorts of filterable shadow maps (Fig. 4.9a). However, it should be noted
that the effective resolution of the filterable shadow maps is higher due to
the used 4× multisample antialiasing which cannot be utilized for common
shadow maps. With respect to the cost per shaded fragment, filterable
shadow maps are far less expensive than percentage-closer filtering because
they only require a single texture sample (Fig. 4.9b). Thus, the cost of
creating the filterable shadow map is amortized at higher output resolutions.
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Figure 4.8: Screenshots of shadows computed with 64-bit Hamburger mo-
ment shadow mapping. They are captured at a resolution of 3840 · 2160.
Shadow intensities are divided by 98%.

With filterable shadow maps, a two-pass Gaussian blur enables efficient
smoothing of hard shadows with large kernels. The run time barely in-
creases as the filter grows. On the other hand, the run time of percentage-
closer filtering grows quadratically with the kernel size (Fig. 4.9c). Note
that our implementation of percentage-closer filtering does use hardware-
acceleration to take four shadow map samples at once.

4.2.3 Conclusions
At identical shadow map resolution, filterable shadow maps are more ef-
ficient than percentage-closer filtering at high output resolutions. With
regard to ever increasing monitor resolutions and the recent trend towards
head-mounted displays, their use is becoming more attractive than ever.
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(a) Fixed output resolution 1920 · 1080 and
kernel size 92

(b) Fixed shadow map resolution 10242 and
kernel size 92

(c) Fixed shadow map resolution 10242 and
output resolution 1920 · 1080

(d) Scene used for the measurements

Figure 4.9: Frame time measurements for various shadow mapping tech-
niques. The frame times for scene rendering without shadows have been
subtracted. All measurements use 4× multisample antialiasing for the out-
put and where applicable also for the shadow map.
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Even at lower resolutions, a 64-bit filterable shadow map with multisample
antialiasing can be less expensive than percentage-closer filtering with a
higher shadow map resolution while aliasing is the same.
Until recently, exponential variance shadow mapping has been the most
practical shadow mapping technique using 64 bits per texel. At this memory
consumption, Hamburger moment shadow mapping produces substantially
less light leaking while taking only slightly more computation time. The
improved robustness opens up filterable shadow maps for broader ranges
of applications without the need for artist intervention to circumvent ob-
jectionable artifacts. Arguably, surface acne in percentage-closer filtering
is more likely to require artist intervention than light leaking in moment
shadow mapping (Fig. 4.4a).
Trigonometric moment shadow mapping provides an excellent quality at 64
bits per texel but for reasons that we consider fundamental, it cannot be
implemented efficient enough to make it competitive. At 128 bits per texel
the qualitative advantage vanishes as predicted in Section 3.4.
When using 128 bits per texel, moment shadow mapping is not necessar-
ily better than exponential variance shadow mapping. In rare situations
with three shadow-casting surfaces, light leaking is significantly stronger.
On the other hand, exponential variance shadow mapping produces many
artifacts near boundaries of shadow casters and leaks more light in common
situations.
Variance shadow mapping and exponential shadow mapping remain attrac-
tive when artifacts are more tolerable because they only use 32 bits per
texel. Convolution shadow mapping has the benefit of scaling to arbitrarily
high quality albeit at a high cost.



Chapter 5
Translucent Occluders

Prior art uses filterable shadow maps for far more than just filtered hard
shadows. Being able to apply arbitrary linear filtering operations means
that information for large filter kernels can be precomputed, which opens
up applications in soft shadows (see Chapter 6) and single scattering (see
Chapter 7).

Alpha blending is another linear operation that enables use of filterable
shadow maps for translucent occluders. In the following, we demonstrate
generation of shadows for translucent occluders by simply rendering to a
moment shadow map with alpha blending enabled. The same moment
shadow map is used for opaque and translucent occluders. Thus, there is
almost no overhead. Light leaking is increased slightly by the more complex
depth distributions but we demonstrate that moment shadow maps perform
better than other filterable shadow maps. Our approach handles neither
caustics nor subsurface scattering and requires sorted fragments.

5.1 Related Work
Transmittance from the light to a surface can depend upon the depth in
complex ways when translucent occluders are present. Deep shadow maps
[Lokovic and Veach 2000] approximate it by a piecewise linear function of
depth and compress this representation. This guarantees a high quality
but maps to graphics hardware poorly. Loosing these guarantees enables
an implementation using bounded memory that maps to graphics hardware
better [Salvi et al. 2010]. To provide a less intricate method opacity shadow
maps sample the function at predefined depths [Kim and Neumann 2001].
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Translucent shadow maps [Dachsbacher and Stamminger 2003] provide an
image-based solution for subsurface scattering.

Stochastic shadow maps [Enderton et al. 2010] randomly discard fragments
in the shadow map in proportion to their translucency. Percentage-closer
filtering then leads to a translucent shadow with little noise. McGuire
and Enderton [2011] extend this method to colored objects. To avoid the
costly filtering step, more recent work uses a variance shadow map and
adds heuristic caustics [McGuire and Mara 2016]. In this case, a separate
common shadow map for opaque occluders serves to avoid light leaking.

Fourier opacity mapping [Jansen and Bavoil 2010] introduced the idea of us-
ing filterable shadow maps, namely convolution shadow maps [Annen et al.
2007]. The authors represent the absorption function of translucent occlud-
ers by a convolution shadow map. Since absorption can be accumulated
additively, no sorting is needed when generating the convolution shadow
map. Translucent shadow maps [Delalandre et al. 2011] take a similar ap-
proach but represent transmittance by the convolution shadow map and
employ ray marching to render single scattering.

5.2 Moment Shadow Maps for Translucent
Occluders

Our approach is like translucent shadow maps in that the moment shadow
map represents transmittance. Representing an absorption function would
require an additional channel for the total absorption. Besides we want to
use a single moment shadow map for opaque and translucent occluders but
opaque occluders correspond to infinite absorption.

The disadvantage of this choice is that we require a method for order-
independent transparency when rendering to the moment shadow map. We
consider this orthogonal to our contribution and any existing method should
work (e.g. stochastic transparency [Enderton et al. 2010]). Our experiments
rely on sorted geometry.

We now demonstrate that alpha blending produces the vector of moments
of a depth distribution Z modeling transmittance of translucent occluders
correctly. Given ns ∈ N surfaces along a light ray at depths z0 < z1 <
. . . < zns−1 with opacities α0, . . . , αns−1 ∈ [0, 1], the amount of light trans-
mitted to depth zf ∈ R is the product of the relevant transmittance factors∏ns−1
k=0, zk<zf

(1 − αk). This transmittance is precisely modeled by the depth
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distribution

Z :=
ns−1∑
j=0

j−1∏
k=0

1− αk

 · αj · δzj

because at depth zj the fraction αj of the remaining light is blocked.
Suppose we render these surfaces back to front to a moment shadow map
using standard alpha blending. It is safe to assume zns−1 = αns−1 = 1
because we clear the moment shadow map accordingly. Through alpha
blending, the vector of moments b(zj) for zj is first multiplied by αj and
subsequently by (1 − αj−1), . . . , (1 − α0). Thus, we obtain the vector of
moments

b :=
ns−1∑
j=0

j−1∏
k=0

1− αk

 · αj · b(zj) = EZ (b)

which is exactly the sought-after result. Approximation errors are only
introduced during reconstruction of the shadow intensity from the power
moments through Hamburger moment shadow mapping. Note that b0 still
does not need to be stored because it corresponds to total alpha and due
to αns−1 = 1 we know b0 = 1.
Since alpha blending is required, translucent occluders have to be rendered
to the moment shadow map directly rather than generating the entire mo-
ment shadow map from a depth buffer. Besides, we need to work around
a limitation of current graphics APIs. The opacity value used for alpha
blending cannot be independent from the values written to RGBA textures.
Hence, we use two RG textures, each with 16 bits per channel, instead of a
single RGBA texture. Rendering is done using hardware support for mul-
tiple render targets, so performance is only mildly reduced. Of course, it is
still beneficial to use the optimized quantization transform.

5.3 Results and Discussion
While we have formulated the approach above for moment shadow maps, it
is applicable to any kind of filterable shadow map and related works utilize
that [Delalandre et al. 2011; McGuire and Mara 2016]. Figure 5.1 compares
results obtained with different filterable shadow maps. All shown techniques
underestimate the shadow intensity, so darker results are necessarily closer
to the ground truth. We observe that moment shadow mapping yields
the darkest self-shadowing in the smoke and the least light leaking on the
pipes (Fig. 5.1d). Overall it performs best, although the run time increase
in comparison to 64-bit exponential variance shadow maps is a bit higher
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(a) Variance shadow mapping, 32 bit,
2.6/2.5 ms

(b) Exponential variance shadow mapping,
64 bit, c+

evsm = c−
evsm = 5.54, 3.2/2.9 ms

(c) Exponential variance shadow mapping,
128 bit, c+

evsm = 40, c−
evsm = 5.54, 4.4/3.5 ms

(d) Hamburger moment shadow mapping,
64 bit, αb = 6 · 10−5, 3.7/3.3 ms

Figure 5.1: A scene with walls, colored pipes and smoke consisting of 30
textured planes. Various filterable shadow maps are used to compute the
shadows. Results exhibit different amounts of self-shadowing within the
smoke and partial shadow of the smoke on the opaque surfaces. The shadow
map resolution is 10242 and images are rendered at 3840 · 2160 with 4×
multisample antialiasing. Timings are full frame times for rendering to the
filterable shadow map with/without alpha blending. Shadow intensities are
divided by 98%.

than usual due to the high shading rate. Using 128-bit moment shadow
maps is not beneficial here because the negative effect of the biasing is less
significant when depth distributions are complex in the first place.

64-bit exponential variance shadow maps yield slightly weaker self-shadowing
in the smoke and there is strong light leaking at the boundary of the pipe
(Fig. 5.1b). The higher exponent in 128-bit exponential variance shadow
mapping actually makes both artifacts worse (Fig. 5.1c). With variance
shadow mapping the shadows cast by the smoke are reconstructed almost
as well as with 64-bit exponential variance shadow mapping but there is
unacceptable light leaking on opaque surfaces (Fig. 5.1a).
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(a) Light leaking on surfaces (b) Volumetric light leaking

Figure 5.2: Screenshots of two typical artifacts of shadows for translucent
occluders rendered with 64-bit Hamburger moment shadow mapping. The
complex depth distributions increase light leaking on surfaces and in the
volume. To make the artifacts more visible, shadow intensities are not
scaled and the image on the right does not use a two-pass Gaussian for
filtering of the shadows.

Figure 5.2 demonstrates artifacts encountered with moment shadow map-
ping for translucent occluders. The many layers of the smoke in our test
scene add to the complexity of depth distributions and thus light leaking
on the surfaces increases (Fig. 5.2a). 64-bit exponential variance shadow
maps exhibit very similar artifacts. Dividing shadow intensities by 95% re-
solves the issue in this example. More complex depth distributions degrade
the approximation quality at all depths. Therefore, the silhouette of the
blue pipe in the background leads to increased light leaking along elongated
stripes for the self-shadows of the smoke in the foreground in Figure 5.2b.
Note that rounding errors may accumulate through alpha blending. In some
experiments with 64-bit moment shadow maps we observed corresponding
artifacts. Accumulation of rounding errors is particularly strong when there
are many overlapping layers with a very low opacity. We found that a simple
alpha test discarding fragments with an opacity below 1% removed these
artifacts. If an alpha test is not an option, one may use 128-bit moment
shadow maps or a method for transparency other than alpha blending.
In spite of these artifacts, we believe that the technique is robust enough
for use in production. It is particularly attractive due to its simple imple-
mentation and its low overhead (e.g. 0.4 ms for the scene in Figure 5.1d).
The combination with stochastic shadow maps [Enderton et al. 2010] seems
compelling for situations where sorting the translucent geometry is not prac-
tical. The technique can also be extended to colored translucent occluders
by using one moment shadow map per color channel.





Chapter 6
Soft Shadows

So far, all shown results use a directional light, i.e. a point light at infinite
distance. In reality, light sources always have some extent and correspond-
ingly cast soft shadows with smooth penumbra regions where the light is
partially occluded. To some extent the assumption of a point light is inher-
ent in shadow mapping because the shadow map is rendered from a single
point of view. On the other hand, filtered hard shadows appear similar
to soft shadows. The most notable difference is that they remain soft at
contact points.
The currently most practical approximation to soft shadows in performance-
sensitive real-time applications exploits this similarity by adapting the size
of the filter kernel in percentage-closer filtering to the distance between
occluder and receiver [Fernando 2005]. As long as shadow casters of different
depth do not overlap, this yields convincing results at the cost of excessive
sampling of the shadow map.
In the following, we extend earlier work [Yang et al. 2010] to combine this
approach with moment shadow maps. The sampling step is made more
efficient by using a summed-area table. Our technique produces robust soft
shadows using only two queries to this four-channel summed-area table.

6.1 Related Work
Various techniques attempt to compute physically based shadows from
shadow maps. Backprojection takes a single shadow map as discrete ge-
ometry representation and estimates the occluded area on the light source
[Guennebaud et al. 2006]. Stochastic soft shadow mapping transfers depth
of field techniques using filterable shadow maps [Liktor et al. 2015]. GEARS
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accelerates exact ray-triangle intersection tests using a shadow map [Wang
et al. 2014]. While these techniques produce accurate soft shadows, they
are too costly for most interactive applications.
More practical methods, including ours, are derived from percentage-closer
soft shadows [Fernando 2005]. This technique can only get accurate re-
sults under the assumption of a single planar occluder which is parallel to
the planar light source. Per fragment it performs a blocker search, sam-
pling the shadow map to determine the average depth of the occluding
geometry. Then the adequate size of the penumbra is estimated by exploit-
ing the planarity assumption. For a directional light the penumbra size
is simply proportional to the distance between receiver and occluder. Fi-
nally, percentage-closer filtering with a corresponding filter size generates
the penumbra. Percentage-closer soft shadows generates plausible results
with few noticeable artifacts but the cost is high due to excessive sampling.
Temporal coherency may be exploited to amortize this cost over multiple
frames [Schwärzler et al. 2013]. Aliasing is a problem near contact points.
Therefore, Story and Wyman [2016] propose to blend over to hard shadows
computed with irregular z-buffers [Wyman et al. 2015].
Summed-area variance shadow maps [Lauritzen 2007] try to avoid the ex-
cessive sampling by means of a summed-area table. A summed-area table
[Crow 1984] is a prefiltered representation of a texture where each texel
stores the integral over a rectangle from the left top to its location. The
integral over an arbitrary rectangle is queried by sampling the summed-area
table at the four corners of this rectangle (see Figure 6.1a). A summed-area
table of a variance shadow map enables filtering with an arbitrary filter size
in constant time but the blocker search still requires sampling. Filtering is
done using a box kernel which corresponds to a rectangular area light.
Variance soft shadow mapping [Yang et al. 2010] accelerates the blocker
search using a heuristic based on a single query to a summed-area variance
shadow map. To improve performance and quality, a hierarchical shadow
map identifies the umbra and fully lit regions early. Where appropriate
smaller kernels are used to avoid artifacts. In some cases a fallback to
percentage-closer filtering is needed. Convolution soft shadow mapping
[Annen et al. 2008a] uses either a summed-area table or mipmaps to filter
based on convolution shadow maps. The blocker search uses a second set
of filterable textures. Exponential soft shadow mapping [Shen et al. 2013]
uses summed-area tables over smaller regions of an exponential shadow
map to avoid catastrophic precision loss. Again additional textures are
needed for the blocker search. The authors use kernel subdivision to better
approximate Gaussian filter kernels.
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6.2 Summed-Area Tables with Four Moments
Our technique follows the same basic steps as variance soft shadow mapping
but never resorts to smaller filter kernels. We generate a summed-area table
of a moment shadow map, use it to estimate average blocker depth during
the blocker search, estimate the appropriate filter size and use the summed-
area table to perform the filtering. We begin our discussion of the individual
steps with the generation of the summed-area table.
The summed-area table is created in two passes. The first one creates
horizontal prefix sums and the second one creates vertical prefix sums on
the output of the first pass. Both passes are implemented in a compute
shader using one thread per row/column as recommended by Klehm et al.
[2014a].
For small variance shadow maps the precision provided by summed-area
tables with single-precision floating point values may be sufficient but for
moment shadow maps it is generally insufficient (cf. Section 4.1.3). We
instead use 32-bit integers and modular arithmetic because this allows us
to exploit prior knowledge about maximal kernel sizes [Lauritzen 2007].
Suppose that the largest used kernel covers nt ∈ N texels (e.g. nt = 784 for a
28 ·28 kernel). The transformed power moments Θ?

4(b+) (see Equation (4.4)
on page 66) stored in the moment shadow map initially lie in [0, 1]4. If we
multiply them by 232−1

nt
and round to integers afterwards, the sum of power

moments in the largest relevant kernel is known to lie in {0, . . . , 232 − 1}.
Thus, this number can be represented by a 32-bit unsigned integer. At the
same time, we still have a precision of

log2
232 − 1
nt

which evaluates to 22.4 bits for the example above. This precision is only
slightly worse than the precision of single precision floats and we found that
a moment bias of αb = 6 ·10−7 is sufficient. For larger kernels, higher values
are needed.
In our implementation we generate such an integer moment shadow map
and generate an integer summed-area table for it. During this step over-
flows will occur frequently but they can be safely ignored because they
only subtract multiples of 232. When we query the summed-area table in
a kernel containing nt texels or fewer, we know that the result has to lie
in {0, . . . , 232 − 1} and thus computing it in integer arithmetic necessarily
leads to the correct result.
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Having a summed-area table, mipmapping becomes unnecessary. Therefore,
the memory requirements compared to 64-bit moment shadow mapping only
increase by 50%:

128 bit
64 bit · 4

3
= 6

4 = 150%

6.3 Blocker Search
During the blocker search we perform a single look-up in the summed-area
table to query four moments for the search region. We then use Algo-
rithm 4.1 to turn the biased moments and the unbiased fragment depth zf
into a matching depth distribution Z := ∑2

l=0wl · δzl
consisting of three

depth values z0 = zf , z1, z2 ∈ R with probabilities w0, w1, w2 > 0.
Our assumption is that this reconstruction matches up with the ground
truth. If the search region contains one or two surfaces, this assumption
is justified by Proposition 2.12. When the search region contains three
surfaces but one of them is at depth zf , the distribution is still uniquely
determined by the power moments according to Theorem 4.1 and is re-
constructed correctly. For this reason, it is beneficial to use the unbiased
fragment depth. More complicated cases are rare.
Since this distribution is correct by assumption, we can derive the average
blocker depth in analogy to percentage-closer soft shadows:∑2

l=1, zl<zf
wl · zl∑2

l=1, zl<zf
wl

However, this formulation is not robust. The divisor is exactly the shadow
intensity computed for the search region. It can be arbitrarily small or even
exactly zero. In this case the expression becomes meaningless. A small
shadow intensity implies an unoccluded fragment. For such fragments the
blocker search should return z0 = zf to indicate that a small filter kernel is
to be used.
This requirement is incorporated into the above formula robustly by setting
the average blocker depth to

εz0 · z0 +∑2
l=1, zl<zf

wl · zl
εz0 +∑2

l=1, zl<zf
wl

where εz0 > 0 is a small constant. We found that this parameter is not
crucial for the quality. Greater values move all shadow casters slightly
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C D

A+B+C+DA+C

A+BA

D=(A+B+C+D)+A-(A+B)-(A+C)

(a) Rectangular query

Query

Sample position
(grid aligned)

Intermediate integral
(grid aligned)

(b) Rectangular query with interpolation

Figure 6.1: (6.1a) Summed-area tables enable computation of the integral
over a rectangle D from four samples. (6.1b) To compute the integral over
an arbitrary rectangle, we load values of 16 texels and compute the integrals
over the nine shown rectangles.

towards the receivers thus making shadows harder. For small values, the
average blocker depth may be too far away leading to an unnecessarily large
filter kernel. However, this typically affects fully lit fragments, so the final
result does not change. We use εz0 = 10−3 in all our experiments.

6.4 Filtering
Once average blocker depth is available, the penumbra estimation [Fernando
2005] provides an adequate filter size. Combining it with the texture co-
ordinate of the fragment in the shadow map, we can compute the left top
and right bottom texture coordinates of the filter region. In general these
will not lie in the center of texels. This necessitates interpolation for our
integer summed-area tables.

Conversely to what one might expect, it is incorrect to apply bilinear inter-
polation directly to samples at the four corners of the filter region because
the underlying values of adjacent texels differ by unknown multiples of 232.
Such problems can be avoided by operating exceptionally on integrals over
regions containing fewer than nt texels. Figure 6.1b demonstrates how the
filter region can be partitioned into nine such regions. For each of these
regions it is safe to convert the held moments back to floating point values.
Then the results from the individual regions are summed, weighting them
by the area of their intersection with the filter region. This works reliably
but since 4 · 4 · 4 · 32 = 2048 bits need to be loaded per fragment, the cost
is significant (see Section 6.6.2). As an alternative we tried randomized
dithering but found that the noise is too strong at hard shadow boundaries.
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Having the four filtered power moments, Hamburger moment shadow map-
ping (Algorithm 4.2) yields the final shadow intensity. Due to the poten-
tially large filter size, it is important to use a sufficient depth bias. We
recommend increasing it in proportion to the filter size. Additionally, an
adaptive depth bias may be used [Dou et al. 2014].

6.5 Optimization
The most efficient way to optimize the technique is to reduce the number of
texture loads. To avoid the cost of interpolation during the blocker search,
we extend the search region to match the texel grid. Having grid-aligned
search regions leads to small discontinuities in the soft shadows but is easily
justified by the considerable speedup.
Another way to avoid texture loads is to skip filtering when the blocker
search reveals that the fragment lies in the umbra. We compute the shadow
intensity ∑2

l=1, zl<zf
wl from available quantities. If it surpasses a threshold

1 − εu where εu > 0, we assume that the fragment lies in the umbra and
immediately return a maximal shadow intensity. In our experiments a value
of εu = 0.01, coupled with division of the shadow intensity by 99% or less,
yields robust results while reducing the need for texture loads in large,
connected regions.
We also tried skipping the filtering step for fully lit fragments but the lower
bound provided by moment shadow mapping leads to too many false pos-
itives. It is possible to use the upper bound instead but then only few
fragments are classified as fully lit. Therefore, we do not recommend this
approach and do not use it in our experiments.

6.6 Results and Discussion
We compare moment soft shadow mapping against percentage-closer soft
shadows and a naïve implementation of variance soft shadow mapping in
a forward renderer using a single directional light. For percentage-closer
soft shadows we benefit from hardware-accelerated 2 · 2 percentage-closer
filtering to take four samples at once in the filtering step. The blocker search
loads all texels in the search region to avoid artifacts for fine structures. Our
implementation of variance soft shadow mapping uses neither a hierarchical
shadow map nor kernel subdivision. It is essentially identical to moment
soft shadow mapping but with two instead of four power moments. Thus,
we expect it to be faster than the actual technique [Yang et al. 2010] but
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(a) Sintel (b) Quadbot

Figure 6.2: Moment soft shadow mapping with a search region of 272 ren-
dering shadows for two models above a plane. Note that the shadows are
contact hardening.

with more artifacts. All techniques skip filtering if the result of the blocker
search allows it. We divide shadow intensities by 98% throughout this
chapter.

6.6.1 Qualitative Evaluation
Figure 6.2 shows two examples where moment soft shadow mapping pro-
duces plausible soft shadows. It works well for character models (Fig. 6.2a)
but also for complex models with many fine details (Fig. 6.2b). As ex-
pected, shadows harden at contact-points. Note that short-range shadows
exhibit slight light leaking. Since precision in the summed-area table is high,
the light leaking is only slightly stronger than for single-precision moment
shadow maps (see Figure 4.5f).
Figure 6.3 compares all implemented techniques for soft shadows. Percentage-
closer soft shadows generates a good result but to get an acceptable run time
the search region has to be limited to 152 and therefore long-range shadows
are too hard (Fig. 6.3a). The other techniques support large search regions
efficiently. Our naïve implementation of variance soft shadow mapping pro-
duces objectionable light leaking (Fig. 6.3b). Note that kernel subdivision
would fix this but at an increased cost. Moment soft shadow mapping with-
out interpolation produces visible stripe patterns at hard shadow bound-
aries (Fig. 6.3c). Interpolation eliminates this artifact (Fig. 6.3d).
A failure case is shown in Figure 6.4. Like all techniques based on the
framework of percentage-closer soft shadows, moment soft shadow mapping
does not fuse occluders at different depths correctly. It rather replaces
them by a single occluder at the average occluder depth. Therefore, the
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(a) Percentage-closer soft shadows,
152 search region

(b) Naïve variance soft shadow mapping,
272 search region, interpolated

(c) Moment soft shadow mapping,
272 search region, not interpolated

(d) Moment soft shadow mapping,
272 search region, interpolated

Figure 6.3: Various techniques for soft shadows in a scene where shadows
are cast over a long range.

short-range shadow of a pillar becomes soft due to the shadow of the more
distant brick wall (Fig. 6.4a). This artifact occurs whenever the search
region contains more than two occluding surfaces. Thus, it coincides with
increased light leaking making the artifact more noticeable for moment soft
shadow mapping (Fig. 6.4b). A stronger depth bias strengthens this light
leaking.
The effect of an insufficient depth bias is shown in Figure 6.5. Lighting
that is nearly parallel to a surface, coupled with large filter regions, is
likely to cause wrong self-shadowing. Moment soft shadow mapping is less
susceptible to this artifact than percentage-closer soft shadows but when
using large search regions, it is an issue. In our implementation the depth
bias is proportional to the filter size but not adaptive with respect to the
surface. We believe that an adaptive depth bias will offer robust results
without parameter tweaking, even for large search regions [Dou et al. 2014].
Overall, we found moment soft shadow mapping to be more robust than
percentage-closer soft shadows. With percentage-closer soft shadows miss-
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(a) Percentage-closer soft shadows (b) Moment soft shadow mapping

Figure 6.4: An example of wrong occluder fusion. The hardness of the con-
tact shadows in the two magnified insets should be the same. Both shown
techniques exhibit this artifact but light leaking of moment soft shadow
mapping strengthens it.

Figure 6.5: The shadow of a column rendered with moment soft shadow
mapping using a 272 search region. The ground is lit at an angle of incidence
of 80°. Fragments that are just outside the penumbra still use a large
filter size and wrong self-shadowing occurs due to an insufficiently biased
fragment depth.

ing contact shadows due to a strong depth bias are hard to avoid (Fig. 6.4a
bottom). While moment soft shadow mapping does not solve this problem
entirely, it does diminish it by using lower bounds. The light leaking, which
is not present in percentage-closer soft shadows, is weak thanks to the high
precision in the summed-area table.

6.6.2 Run Time
Figure 6.6 shows run time measurements recorded in our Direct3D 11 imple-
mentation running on an NVIDIA GeForce GTX 970. As for filtered hard
shadows, the cost per texel of the shadow map increases with the memory
per texel (Fig. 6.6a). However, it is less crucial here due to the high cost
per shaded fragment. Even for a 20482 shadow map, all techniques using
filterable shadow maps are faster than percentage-closer soft shadows with
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(a) Fixed output resolution 1920 · 1080 (b) Fixed shadow map resolution 10242

Figure 6.6: Frame times for rendering soft shadows with various techniques
for the scene in Figure 4.9d. The frame time for rendering without shad-
ows has been subtracted. All techniques with filterable shadow maps use
4× multisample antialiasing for the shadow map. The output always uses
4× multisample antialiasing.

a small 92 search region. We provide more insights on the time it takes to
generate the summed-area table in Appendix C.3.2.

The cost per shaded fragment is immense for percentage-closer soft shadows,
especially when using a 152 search region (Fig. 6.6b). Note that such a
search region is still not large enough to generate sufficiently soft shadows
over long range (Fig. 6.3a). Without interpolation during filtering, moment
soft shadow mapping has a slightly lower cost per fragment than naïve
variance soft shadow mapping with interpolation. Enabling interpolation
increases this cost significantly, but moment soft shadow mapping is still
consistently faster than percentage-closer soft shadows with a 92 search
region.
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6.6.3 Conclusions
Percentage-closer soft shadows is easily the most widely used real-time tech-
nique for dynamic soft shadows of moderately large area lights. Moment
soft shadow mapping is substantially faster, scales better to large search
regions and large output resolutions and is less susceptible to wrong self-
shadowing, which plagues percentage-closer soft shadows. The only newly
introduced artifact is light leaking, which is weak due to the high precision
in the summed-area table.
Therefore, we believe that it may become the new technique of choice for
affordable soft shadows. A notable limitation is that the summed-area
table supports exclusively rectangular light sources. This may not be ideal,
e.g. for sun shadows, but the smooth penumbra regions are still plausible.
Rendering soft shadows at 1920 · 1080 with a 10242 shadow map in 2.1 ms
used to require more compromises in terms of quality. More natural kernels
may be constructed from multiple rectangles at an increased cost. While
other techniques are more accurate (e.g. Wang et al. [2014]), their run time
makes them uncompetitive for most real-time applications.





Chapter 7
Single Scattering

Another common simplification in rendering is to assume that all relevant
light interactions happen at surfaces. This neglects volumetric scattering
occurring in participating media such as smoke, dusty air, moist air and
so forth. Light can be reflected towards the camera in midair. When this
effect is coupled with proper computation of shadows, it provides great
artistic value. Holes in geometry lead to visible shafts of light known as
crepuscular rays. These are perceived as aesthetic and provide a tool to
direct the attention of the viewer.
Unsurprisingly, industrial practitioners like to use this effect but it still
comes at a high cost. Scattering occurs everywhere within the volume. At
the same time, the visibility of the light source can change arbitrarily along
a view ray. This visibility term makes the integration expensive. One way
to evaluate it is based on classic shadow mapping coupled with ray marching
but this leads to many shadow map reads with poor cache coherence.
Prefiltered single scattering [Klehm et al. 2014b] accelerates this procedure
by precomputing the relevant integrals into a convolution shadow map. In
the following, we improve upon this idea by using moment shadow maps
with four (Section 7.3) or six moments (Section 7.4). Besides we demon-
strate how to apply filtering during the necessary resampling step (Section
7.2).

7.1 Related Work
Just like surfaces, participating media exhibits global illumination effects
known as multiple scattering. In real-time rendering these are commonly
ignored to accommodate tight frame-time budgets. What remains is single
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scattering; light coming directly from a light source is scattered into the
view ray. We focus on this effect.
Early works for rendering single scattering rely on shadow volumes [Max
1986] but more recent works employ shadow mapping. Dobashi et al. [2002]
render translucent planes with shadow mapping. This is equivalent to ray
marching and on modern hardware more efficient implementations use pro-
grammable shaders with interleaved sampling [Tóth and Umenhoffer 2009].
For acceleration, it has been proposed to use shadow volumes to identify
regions containing shadows and to render single scattering at a lower reso-
lution followed by bilateral upscaling [Wyman and Ramsey 2008].
Engelhardt and Dachsbacher [2010] apply more aggressive subsampling in
screen space placing samples intelligently along few epipolar lines through
the light source. Voxelized shadow volumes [Wyman 2011] provide a more
cache-friendly way to store shadow information for scattering. The boolean
results of 128 shadow tests along a view ray are queried at once. With
proper parallelization this can be extended to area lights [Wyman and Dai
2013].
Baran et al. [2010] exploit the simplicity of the shadow test function to
perform ray marching at amortized logarithmic time. Building upon this
work Chen et al. [2011] propose use of a 1D min-max-mipmap to traverse
ray segments that are fully lit or fully shadowed in a single step. Both tech-
niques use epipolar coordinates and the latter technique is easily mapped
to graphics hardware.

7.1.1 Prefiltered Single Scattering
Prefiltered single scattering [Klehm et al. 2014b,a] introduces the concept of
filterable shadow maps to single scattering. The authors generate a convo-
lution shadow map in a rectified coordinate system where rows correspond
to epipolar planes containing the camera position while being parallel to
the directional light. Computing weighted prefix sums along rows effec-
tively precomputes the result of single scattering for the whole epipolar
slice at once. While this method works fast, independent of scene complex-
ity, the Fourier series used in convolution shadow maps introduces ringing
and memory requirements are high. Our work is an extension of prefiltered
single scattering and in the following we provide enough details on this
technique to make our discussion self-contained.
Besides the restriction to single scattering, prefiltered single scattering makes
a few additional simplifying assumptions that we inherit. The participat-
ing media has to be homogeneous, i.e. its physical properties must be the
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same everywhere. Namely, these properties are the extinction coefficient σt
defining transmittance, the phase function f(ωl, ωp) which is the volumetric
pendant of a BRDF and the scattering albedo ρ. We also assume homoge-
neous lighting from a single directional light with direction ωl and maximal
irradiance El. Multiple directional lights can be handled by superposition.
Now consider a surface element at distance s from the camera with outgoing
radiance Ls towards the camera. The camera lies in direction ωp at position
p. Let V (q) be a visibility function for the light source mapping a position
in 3D-space to one if it is lit and to zero if it is shadowed. Then the radiance
received at the camera is

exp(−σt · s) · Ls + f(ωl, ωp) · El ·
ˆ s

0
exp(−σt · t) · V (p− t · ωp) dt.

The first summand is the radiance from the surface that remains after ab-
sorption and out-scattering. The second summand models single scattering.
At each lit segment along the view ray a differential radiance of f(ωl, ωp)·El
is added but only the part exp(−σt · t) of it is transmitted to the camera.
The cost of computing single scattering lies in the integration, which in-
cludes the visibility term. When we view it as one-dimensional function
along a light ray, the visibility function is a simple Heaviside step function.
It is one up to the first occluder and then it is zero. The filterable shadow
maps described in Section 3.1 provide means to store such functions in a way
that enables the application of filters. We utilize them to turn integration
of single scattering into an integration over rows of a shadow map.
To this end, the parametrization of the shadow map has to meet two re-
quirements. View rays have to map to rows in the shadow map and the
depth of view rays within the shadow map has to be constant. In most cases
such a parametrization can be constructed as simple perspective transform
[Klehm et al. 2014b]. We have implemented this linear rectification but
for reasons given in Section 7.2 we opted for the other proposed solution;
a non-linear rectification transform applied by means of resampling [Baran
et al. 2010].
To convert coordinates from world space to rectified coordinates, we first
convert to light view space and move the origin of the coordinate system
into the camera location. In this space the light direction corresponds to
the z-axis and the other axes are chosen arbitrarily but orthogonal as shown
in Figure 7.1. Then the horizontal texture coordinate in the shadow map
corresponds to the distance to the origin after projecting to the x-y-plane,
r. This agrees with the distance between light ray and camera. For the
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(a) Rectified coordinates
r, ϕ and θ

(b) Rectified moment shadow map
(first three channels)

(c) Rectified and prefiltered
moment shadow map

Figure 7.1: Prefiltered single scattering resamples the shadow map into
a coordinate system where each view ray maps to a row. Computation
of weighted prefix sums over these rows effectively precomputes the single
scattering result for every possible view ray.

other two coordinates, we convert to spherical coordinates. The vertical
texture coordinate corresponds to the azimuth ϕ ∈ (0, 2 · π]. Depth stored
in the shadow map corresponds to the flipped inclination π − θ ∈ [0, π]
which is the angle to the negative light direction.
Since ϕ and θ are independent of the distance to the camera, view rays
map to shadow map rows and have constant depth as required. At the
same time the parametrization is valid for a shadow map because each light
ray has constant r and ϕ and thus maps to a single texel. In terms of
epipolar geometry ϕ indexes epipolar slices containing the light direction
and going through the camera. Single scattering computations for different
epipolar slices are independent. To fit the shadow map tightly, bounds for
r, ϕ and θ are computed such that the entire view frustum is covered (see
Appendix C.3.1). Along the dimension of θ we add a guard band to avoid
light leaking. The length of the interval of values for θ is stretched by 10%.
We generate a filterable shadow map a(u, v) in this coordinate system in-
dexed with integer texel indices u, v. Each texel stores a representation
of the visibility function along a light ray (e.g. Fourier coefficients [Klehm
et al. 2014a] or power moments) and filtering a row corresponds to filter-
ing along all view rays in the corresponding epipolar slice. To precompute
the relevant integrals, we need to know the world-space distance ∆(v) be-
tween successive view ray samples per slice. Since this quantity depends
upon the inclination θ, a heuristic is required. Sophisticated heuristics have
been proposed [Klehm et al. 2014a] but we simply compute the distance
for the arithmetic mean of the minimal and maximal values of θ. Then
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transmittance-weighted prefix sums are computed as

aΣ(u, v) :=
∑u
j=0wj,v · a(j, v)∑u

j=0wj,v

wu,v :=
[
− 1
σt
· exp(−σt · t)

](u+ 1
2)·∆(v)

(u− 1
2)·∆(v)

.

To compute the scattering for a view ray ending at some location q ∈ R3,
we sample the prefiltered shadow map aΣ at the appropriate location, re-
construct a shadow intensity between zero and one as one would for filtered
hard shadows, subtract it from one to get visibility and then multiply by
the maximal possible scattering

f(ωp, ωl) · El ·
[
− 1
σt
· exp(−σt · t)

]‖q−p‖2

0
.

This procedure only requires a single lookup in the prefiltered shadow map
per pixel on screen. Thus, the run time of the technique is independent of
the scene complexity.

7.2 Rectification with Filtering
The linear rectification proposed by Klehm et al. [2014b] tends to allocate
major parts of the shadow map for geometry near the camera while farther
geometry is compressed. This can be alleviated by moving away the near
clipping plane or by using split shadow maps but neither solution is quite
satisfactory. Besides, non-linear rectification still has to be implemented
for the case where an epipole is near the field of view.
On the other hand, the non-linear rectification described above requires re-
sampling of shadow maps to be implemented efficiently with rasterization
hardware. Since common shadow maps cannot be filtered during resam-
pling, this introduces considerable aliasing artifacts. Straight silhouettes
exhibit staircase artifacts that lead to visible stripes in the crepuscular rays
(Fig. 7.5a on page 108). These stripes are not stable with regard to move-
ments or rotations of the camera which makes them quite noticeable.
Ideally, the shadow map could be filtered during resampling. We have
accomplished this using moment shadow maps. Instead of taking a sample
without filtering from a common shadow map, we take a filtered sample
from a moment shadow map. We then turn the obtained power moments
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Algorithm 7.1 Construction of a distribution with two points of support
from three power moments.
Input: A vector of power moments b ∈ R4 with b0 = 1 and b2 − b2

1 > 0.
Output: A distribution Z on R such that EZ (zj) = bj for all j ∈ {0, 1, 2, 3}.

1. Set q2 := b2 − b2
1.

2. Set q1 := b1 · b2 − b3.

3. Set q0 := −b1 · q1 − b2 · q2.

4. Solve q2 · z2 + q1 · z + q0 = 0 to get solutions z1, z2 ∈ R.

5. Set w2 := b1−z1
z2−z1

and w1 := 1− w2.

6. Return w1 · δz1 + w2 · δz2 .

back into a distribution of depth values because we need to distort depth
in a non-linear fashion. It is appropriate to expect simple distributions
because we are working with small filter regions. In most relevant cases the
filter region will not cover more than two different surfaces.

In Section 4.1.1 we explained how to reconstruct a distribution with three
depth values z0, z1, z2 from four power moments where z0 = zf is prescribed.
This leaves us with the question how to choose z0. To avoid an arbitrary
choice and to obtain a more efficient solution we let z0 go to infinity. As
this happens, w0 approaches zero and we can discard the depth value z0.
The remaining distribution w1 · δz1 + w2 · δz2 is still compatible with the
power moments b0, b1, b2, b3. Only the fourth power moment b4 does not
match. Under the assumption of two or fewer surfaces at nearly constant
depth, we can be certain that the reconstruction is adequate. Otherwise it
provides a reasonable approximation that is certainly better than a single
shadow map sample.

The described distribution is constructed by Algorithm 7.1. It fails for in-
puts with non-positive variance σ2 := q2 = b2−b2

1 but this case is adequately
handled by simply returning δb1 .

Proposition 7.1. Given a valid input, Algorithm 7.1 works correctly.

Proof. We recall from Proposition 2.12 that a distribution with two points
of support corresponds to a singular 3 × 3 Hankel matrix. Implicitly, the
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algorithm computes the missing fourth power moment b4 such that the
Hankel matrix is singular and then proceeds like Algorithm 2.1.

For all b4 ∈ R the multilinearity of the determinant implies

detB
(
b
b4

)
= b4 · det

b0 b1 0
b1 b2 0
b2 b3 1

+ detB
(
b
0

)

= b4 · (b2 − b2
1) + detB

(
b
0

)
.

Thus, we can choose the unique b4 ∈ R that makes the Hankel matrix
singular and find ourselves in the situation of Proposition 2.12.

To prove that q := (q0, q1, q2)T lies in the kernel, we observe that the first
two rows of the Hankel matrix are linearly independent due to

det
(
b0 b1
b1 b2

)
= b2 − b2

1 > 0.

Thus, the third row is a linear combination of the first two rows and it
suffices to show that q is orthogonal to the first two rows:

(1, b1, b2) · q = (−b1 · q1 − b2 · q2) + b1 · q1 + b2 · q2 = 0
(b1, b2, b3) · q = (b2 − b2

1) · q1 + (b3 − b1 · b2) · q2 = q2 · q1 − q1 · q2 = 0

The remainder of Algorithm 7.1 is completely analogous to Algorithm 2.1
and correctness follows from Proposition 2.12.

Once we have obtained the distribution, we convert its depths z1, z2 to in-
clinations θ1, θ2 as described in Section 7.1.1 and normalize to the interval
[−1, 1] clamping out-of-range values. Then we convert both values to vec-
tors of moments and linearly combine them using the weights w1, w2. The
result is stored in a(u, v). At this point we can also generate more than
four power moments or other general moments.

Using this scheme is entirely optional. Our implementation creates the
rectified, filterable shadow map a(u, v) using a pixel shader. When filtering
is enabled, the pixel shader takes a filtered sample from a moment shadow
map, otherwise it just loads a texel from a common shadow map. The
sample from the moment shadow map is only slightly more expensive (see
Section 7.5.2).
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7.3 Prefiltered Single Scattering with Four
Moments

Exchanging convolution shadow maps for moment shadow maps in pre-
filtered single scattering is straightforward. Instead of storing values of the
Fourier basis in the shadow map, we store four power moments with the
usual quantization transform (see Section 4.1.4). When it comes to the
computation of the shadow intensity during evaluation of single scattering,
we can proceed as for hard shadows using Algorithm 4.2.

However, some assumptions made for surface shadows are inadequate for
single scattering. For surface shadows we always underestimate the shadow
intensity to avoid surface acne. For single scattering this is generally not
necessary but we may want to avoid other artifacts. Our solution is to
take a weighted combination of the sharp lower bound and the sharp upper
bound. By Theorem 4.1 the upper bound is obtained by adding w0 from
Algorithm 4.1 to the lower bound (see Figure 4.1 on page 57). Thus, the
overhead for computing both bounds is small.

7.3.1 Adaptive Overestimation
Having sharp upper and lower bounds, we need a weight β ∈ [0, 1] to
interpolate between the two. For β = 0 single scattering is underestimated,
for β = 1 it is overestimated. A simple approach would set β = 1

2 such that
the worst-case error is minimal. However, the weight can be set arbitrarily
per pixel and a more sophisticated choice avoids artifacts.

Figure 7.2a shows an artifact of prefiltered single scattering [Klehm et al.
2014a]. Light leaking is strongly increased at the epipole (i.e. when looking
into the light). The inclination of the corresponding view ray is θ = π
which corresponds to a minimal depth in the rectified shadow map. Thus,
no occluder can have a smaller depth. Near the epipole, inclinations are
still large and the leaking only falls off slowly.

If we use moment shadow maps with β = 1
2 , this problem persists (Fig. 7.2b)

but if we underestimate the single scattering it vanishes as expected (Fig.
7.2c). On the other hand, a constant choice of β = 0 degrades the ap-
proximation quality elsewhere. In particular, at the antipodal point of the
epipole, the inclination reaches θ = 0 and no depth values in the rectified
shadow map can be greater than the fragment depth. Thus, underestima-
tion of the single scattering leads to no single scattering, which is likely
incorrect.
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(a) Convolution shadow map,
32 · 8 bit [Klehm et al. 2014a]

(b) Moment shadow map,
4 · 16 bit, β = 1

2

(c) Moment shadow map,
4 · 16 bit, β = 0

Figure 7.2: A view of the pinnacles of a tower. The directional light is
hidden behind it but when single scattering is not underestimated, the
light is clearly visible due to leaking artifacts for large θ.

To avoid both artifacts while maintaining the best approximation quality
in intermediate cases, we set β dependent on the direction of the view ray
ωp. The weight β is supposed to be zero for ωp = −ωl, one for ωp = ωl and
near the epipoles it should vary slowly. In our experiments, we found that
the following choice reliably removes the artifacts discussed above while
providing a smooth and plausible result:

β = 1 + ωT
l · ωp
2

7.4 Prefiltered Single Scattering with Six
Moments

Four moment shadow mapping works well for surface shadows, because
individual points rarely receive shadow from more than two different sur-
faces. Prefiltered single scattering on the other hand computes the average
shadow received by an entire view ray. Such a view ray may be shadowed
by many different surfaces at different depths. Overall, depth distributions
are significantly more complex. Using only four power moments for their
representation is often insufficient.
Fortunately, Algorithm 4.1 is formulated for an arbitrary even number of
power moments. As a reasonable tradeoff between computational complex-
ity and quality, we investigate the use of six power moments. Similar to
our derivation in Section 4.1, the robust implementation of this method is
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non-trivial and we now discuss the necessary steps to avoid numerical noise.
Shader code for all steps is provided in Appendix C.3.3.

7.4.1 Computation of Roots
Solving the 4 × 4 linear system B(b) · q = b̂(zf ) using a Cholesky de-
composition still works well. Next we need to solve the cubic equation∑3
j=0 qj · zj = 0 for z. We have experimented with various iterative and

closed-form solutions and settled for a variation of a closed-form solution
proposed by Blinn [2007].
The algorithm presented in the article uses two different branches for com-
putation of the roots of minimal and maximal magnitude to avoid can-
cellation. In our application, we found that this overhead is unnecessary.
Using one of the two branches to compute all three roots yields results that
are free of artifacts. Other closed-form solutions suffered from artifacts for
|q3| � 1 and iterative solutions had a high computational overhead. Among
all attempted solutions, the one based on Blinn’s work is the fastest.

7.4.2 Computation of Bounds
The final step is to approximate the average visibility, which is proportional
to the strength of single scattering. It is a linear combination of the weights
w0, . . . , w3 subject to the moment constraints

1 1 1 1
z0 z1 z2 z3
z2

0 z2
1 z2

2 z2
3

z3
0 z3

1 z3
2 z3

3

 ·

w0
w1
w2
w3

 =


b0
b1
b2
b3

 .

The weights in the linear combination are

v0 := β and ∀l ∈ {1, 2, 3} : vl :=
0 if zf > zl,

1 if zf ≤ zl.

Written as a dot product, the linear combination is

w0
w1
w2
w3


T

·


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v1
v2
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 =


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b1
b2
b3
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·
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1
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·
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.
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Since the matrix in this last expression is a Vandermonde matrix, the vector
u ∈ R4 holds the coefficients of the interpolation polynomial ∑3

j=0 uj · zj
taking value vl for z = zl where l ∈ {0, 1, 2, 3}. We construct its Newton
form using divided differences and then transform back to the canonical
basis of polynomials [Greenbaum and Chartier 2012, p. 181 ff.]. This works
efficiently and sufficiently robust for our purposes.

7.4.3 Quantization and Biasing
In presence of complex depth distributions, even perfect accuracy in all
computations cannot yield a perfect reconstruction. Therefore, we expect
the effect of strong biasing to be less drastic for single scattering and using
moment shadow maps with low precision is attractive.

Again, rounding errors should be diminished by means of an affine trans-
form that is applied to the power moments before storing them in the
moment shadow map. As in Section 4.1.4 we use numerical optimization
to determine it. We have experimented with general transforms and with
transforms that operate on odd and even moments separately. The best
found transform belongs to the latter category. It increases the entropy of
the stored data by 12.5 bits per texel and is given by

Θ?
6(b+) =



 2.5 −1.87499864 1.26583039
−10 4.20757543 −1.47644883

8 −1.83257679 0.71061660


T

·

b1
b3
b5

+

0.5
0.5
0.5


 4 9 −0.57759806
−4 −24 4.61936648

0 16 −3.07953907


T

·

b2
b4
b6

+

 0
0

0.018888946




.

An optimal biasing is determined as for the case with four moments (see
Section 4.1.3 and Appendix B.1). The vector of biasing moments is

b? := (0, 0.5566, 0, 0.489, 0, 0.47869382)T.

For storage of the moments in our Direct3D 11 implementation we use two
textures with either three channels storing 10-bit fixed-precision numbers
(64 bits per texel, αb = 4 ·10−3), two and four channels storing 16-bit fixed-
precision numbers (96 bits per texel, αb = 8 ·10−5) or three channels storing
single-precision floating point numbers (192 bits per texel, αb = 5 · 10−6).
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7.5 Results and Discussion
We apply all scattering techniques in a deferred rendering pass with the
depth buffer as input. Multisample antialiasing is disabled. Note that
prefiltered single scattering is fast enough to be applied during forward
rendering thus avoiding problems with multisampling and transparencies.
Though, we have not tested this. Unless stated otherwise, the shadow map
resolution is 10242. The rectified shadow map is generated from the shadow
map for surface shadows and has the same resolution.

7.5.1 Qualitative Evaluation
For comparison we have implemented ray marching with equidistant, jit-
tered samples and prefiltered single scattering using convolution shadow
maps with 32 real coefficients [Klehm et al. 2014a]. The compute shader
generating the transmittance-weighted prefix sums is described in detail in
Appendix C.3.2. For common shadow maps we use 16-bit textures and for
convolution shadow maps we use 8 bits per channel.

Figure 7.3 shows a comparison of these techniques. The scene mostly con-
sists of occluders with a large area thus providing a simple case for ray
marching. Therefore, noise is acceptable using 32 ray samples (Fig. 7.3a).
Techniques based on prefiltered single scattering do not produce noise but
more systematic errors. When using prefiltered single scattering with convo-
lution shadow maps (Fig. 7.3b), ringing due to the truncation of the Fourier
series is strong. Techniques based on moment shadow mapping do not ex-
hibit ringing (Figs. 7.3c, 7.3d). An artifact that is shared by all techniques
with prefiltering is magnified (Figs. 7.3b, 7.3c, 7.3d). A window allows a
view onto the interior of the building, which is entirely shadowed. Thus,
there should be no additional single scattering but approximation errors let
the window appear brighter anyway. Although, the differences are subtle,
using six moments gives the best result in this example (Fig. 7.3d). Note
that Figures 7.3a, 7.3b and 7.3c exhibit some surface acne from percentage-
closer filtering which is not present in Figure 7.3d because the available
moment shadow map is used for shadowing.

Figure 7.4 shows a more challenging test case where all techniques exhibit
some characteristic artifacts. In spite of the increased number of samples,
ray marching still produces strong noise (Fig. 7.4a). Ringing in prefiltered
single scattering with convolution shadow maps leads to overly dark concen-
tric circles that change with camera movements (Fig. 7.4b). A characteristic
artifact of prefiltered single scattering with moment shadow maps are exces-
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(a) Ray marching with 32 samples (b) Prefiltered single scattering with a con-
volution shadow map, 32 · 8 bit

(c) Prefiltered single scattering with four mo-
ments and without filtering, 64 bit

(d) Prefiltered single scattering with six mo-
ments and filtering, 64 bit

Figure 7.3: A comparison of various single scattering techniques. Note the
ringing produced by convolution shadow maps and the window that appears
brighter than the surrounding wall (magnified). Contrasts in the magnified
insets are stretched by a factor of four.

sively sharp boundaries of shadow volumes (Fig. 7.4c). This occurs because
the approximation quality can change quickly as depth distributions become
more complex. Using six moments reduces this artifact heavily (Fig. 7.4d).
It is also slightly diminished by a greater moment bias αb.
Figure 7.5 demonstrates the positive effect of filtering during resampling in
an extreme case. Without filtering crepuscular rays exhibit fine structures,
which change rapidly as the camera moves or rotates (Fig. 7.5a). Especially
for slowly moving cameras this aliasing can be a very distracting artifact.
Applying bilinear filtering to a moment shadow map during resampling
(Section 7.5b) makes the shadows lose some detail but aliasing is reduced
to a point where it is unproblematic (Fig. 7.5b).
Figure 7.6 demonstrates a case where approximation errors can be prob-
lematic. As a dragon enters the view, the single scattering is not only
attenuated below but also above it. Especially for moving objects this can
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(a) Ray marching with 128 samples (b) Prefiltered single scattering with a con-
volution shadow map, 32 · 8 bit

(c) Prefiltered single scattering with four mo-
ments and without filtering, 64 bit

(d) Prefiltered single scattering with six mo-
ments and without filtering, 64 bit

Figure 7.4: A challenging scenario for single scattering techniques involving
shadows of trees. The scene itself is shaded black. Various artifacts are
shown in magnified insets (red) next to the ray marching result (green).
Contrasts in the magnified insets are stretched by a factor of four.

(a) Not filtered (b) Filtered

Figure 7.5: A view into the shadow of a gate rendered using prefiltered
single scattering with six moments (64 bit). Resampling a common shadow
map without filtering yields heavy aliasing that is not temporally stable.
Resampling a four moment shadow map with filtering (Section 7.2) produces
a much smoother result.
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Figure 7.6: A scene rendered using prefiltered single scattering with six
moments. As a dragon enters, crepuscular rays are not only darkened below
but also above it. Magnified insets stretch contrasts by a factor of four.

(a) Six moments in 6 · 10 bit, αb = 4 · 10−3 (b) Six moments in 6 · 16 bit, αb = 8 · 10−5

Figure 7.7: An indoors scene where light leaks through walls. The scene
is shaded black. Note that the use of 10 bits per power moment leads to
quantization noise and that the increased moment bias αb strengthens light
leaking.

be quite noticeable. However, this artifact is not associated with particular
locations in the scene but rather with particular view rays. If the moving
object were seen in a close up the artifact would likely be much weaker
because the distribution of depth values along the view ray would be less
complex.

Figure 7.7 demonstrates the slight quality improvement obtained by using
96 rather than 60 bits (plus four unused bits) for storage of six moments.
The high moment bias required with 60 bits increases light leaking, which is
problematic for indoors environments with thin walls. Besides, quantization
errors manifest as splotches in dark regions. In some scenarios, the higher
quality resulting from 96 bits may be required but in most situations the
lower contrast of single scattering and the surface shading will cover up the
artifacts.
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7.5.2 Run Time
We measure frame times on an NVIDIA GeForce GTX 970 and show the
results in Figure 7.8. The frame times for rendering without single scat-
tering have been subtracted. Since the single scattering is applied in a
deferred pass, this means that the shown timings are almost entirely scene-
independent.

As expected, the run time of ray marching only depends weakly on the
shadow map resolution because no post-processing is applied to the com-
mon shadow map (Fig. 7.8a). On the other hand, the cost of shadow map
sampling increases rapidly with the output resolution, especially when us-
ing 128 samples (Fig. 7.8b). At this number of samples, ray marching can
only compete with prefiltered single scattering with four or six moments
at very low resolutions such as 480 · 270. Note that these resolutions may
be sufficient when a bilateral upscaling is used but undersampling artifacts
have to be expected.

Prefiltered single scattering with convolution shadow maps gets more ex-
pensive rapidly with growing shadow map resolution because it stores 256
bits per texel. When using moment shadow maps, the cost per texel is
much lower (Fig. 7.8a). Using six moments stored in 64 bits is slightly
more costly than using four moments stored in 64 bits, which is likely due
to the use of two textures for six moments in our implementation. Filtering
during resampling adds to this cost slightly and so does the use of 96 bits
per texel.

Looking at the cost per pixel in the output, we observe that it is similar for
all techniques using six moments but lower for prefiltered single scattering
with four moments (Fig. 7.8b). This is a strong indication that arithmetic
operations are the bottleneck for techniques using six moments. Still, the
cost is moderate and even at a resolution of 3840 ·2160 the techniques finish
in about 1.5 ms.

7.5.3 Conclusions
Prefiltered single scattering with moment shadow maps outperforms the
approach with convolution shadow maps clearly. It is faster, does not suffer
from ringing and enables an explicit control over leaking artifacts by in-
terpolating between lower and upper bounds. Compared to ray marching,
the high performance at large output resolutions means that no upscaling is
needed. These traits make our techniques highly attractive for performance-
sensitive real-time applications.
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(a) Fixed output resolution 1920 · 1080 (b) Fixed shadow map resolution 10242

Figure 7.8: The contribution to the frame time due to single scattering tech-
niques as function of shadow map resolution and output resolution. Note
that shadow map generation is not included in these timings because the
same (moment) shadow map is used for single scattering and for rendering
of shadows.

In most cases, the variants with six moments stored in 64 bits should provide
the best tradeoff between quality and run time. When single scattering is
only used as a subtle effect, four moments may provide sufficient quality.
If a moment shadow map for the scene is already available, the overhead
for filtering is small and it should be used. Otherwise, it depends upon
the scene whether the reduced aliasing justifies the cost for creation of a
moment shadow map.
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Chapter 8
Fast Transient Imaging

Many consumers have access to amplitude modulated continuous wave
(AMCW) lidar systems such as Microsoft Kinect for Xbox One or the
depth sensors by pmdTechnologies used e.g. in mobile devices with Google’s
Project Tango. Typically, these cameras are used for range imaging where
the time of flight that light takes from an active illumination into the scene
and back to the camera is measured indirectly. The active illumination is
modulated with a high-frequent, periodic signal and the phase shift of the
signal scattered back to the sensor is measured.

In presence of global illumination effects, the assumption of a unique time
of flight no longer holds since light may reach points in the scene on many
different paths of different length. Assuming existence of a unique phase
shift during reconstruction leads to systematic distortions in range images,
which are often far greater than precision errors due to sensor noise. This
effect is known as multipath interference.

Transient images model this complex behavior more completely. In such
an image each pixel stores a time-resolved impulse response indicating how
much light returned after a particular time of flight. This enables applica-
tions such as separation of direct and indirect illumination [Wu et al. 2014]
or non-line-of-sight imaging [Velten et al. 2012].

It has been shown that an AMCW lidar system can be used to estimate a
transient image using measurements at many modulation frequencies [Heide
et al. 2013]. While this approach is among the most cost-efficient ways
to measure transient images, it has difficulties reconstructing complex im-
pulse responses, measurement takes a minute and reconstruction takes even
longer.
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Our key observation is that AMCW lidar systems can be configured such
that they measure trigonometric moments of the impulse response. We
then use two efficient closed-form solutions, which reconstruct an impulse
response matching the given trigonometric moments exactly. Our approach
drastically reduces the number of required measurements and still success-
fully reconstructs complex impulse responses. The technique scales well
from measurement of high-quality transient images to quick heuristic mea-
surements. The latter is useful for reduction of multipath interference in
range imaging.

The first used solution is known as maximum entropy spectral estimate
[Burg 1975] (see Section 8.2.2). It reconstructs a smooth, positive density
function matching given trigonometric moments c0, c1, . . . , cm ∈ C. If the
ground truth is close to an impulse response with m or fewer points of sup-
port, so is the maximum entropy spectral estimate. In the limit case, which
we already discussed in Section 2.2, the Pisarenko estimate (see Section
8.4.1) reconstructs the m points of support of the ground truth perfectly
from the trigonometric moments c1, . . . , cm ∈ C. In more difficult situa-
tions, the maximum entropy spectral estimate models the uncertainty by
broad peaks in the reconstructed density. Closed-form bounds for its error
are described in Section 8.4.2.

To measure trigonometric moments, we require sinusoidal modulation and
we describe a novel method to accomplish this on our prototype hardware
in Section 8.3.1. Using this method, we are capable of measuring up to
18.6 transient images of reasonable quality per second as demonstrated in
Section 8.5.3. Such images can also be used for improved range imaging as
demonstrated in Section 8.5.2. Higher quality measurements can take a few
seconds because it is advisable to average many captures for an improved
signal-to-noise ratio.

8.1 Related Work
In recent years transient imaging has been introduced as an exciting new
imaging modality. Such images can be understood as video recording the
return of light to a camera at an extreme frame rate when the scene is lit
by an infinitesimally short light pulse. The first general hardware setup for
their measurement uses a femtosecond laser and a streak camera [Velten
et al. 2011, 2013]. The laser sends repeated short light pulses into the scene
while the streak camera directs light returning at different times to different
rows of the image sensor. This way a transient image can be captured
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one row at a time with a temporal resolution around 2 ps. Capture takes
roughly one hour. Later work uses interferometry and several hours of
capture time to push temporal resolution to 33 fs within a small capture
volume [Gkioulekas et al. 2015].
Transient images add a fundamentally new dimension to images, thus en-
abling new applications. Velten et al. [2012] reconstruct geometry solely
by analyzing the light it reflects onto a diffuse wall. Similarly, Naik et al.
[2011] reconstruct surface reflectance around a corner. Wu et al. [2014]
separate images into direct illumination, subsurface scattering and indirect
illumination by analyzing impulse responses.
While these applications demonstrate the usefulness of transient images,
they are limited by the high cost and long measurement times of the in-
volved hardware. A drastically faster and more cost-efficient approach uses
AMCW lidar systems [Heide et al. 2013]. These cameras apply a modula-
tion signal at the light source and the sensor. Effectively this means that
they measure the correlation of a transient image with a time-dependent,
periodic signal. Using measurements at many different modulation fre-
quencies, the authors reconstruct the transient image by solving an inverse
problem with soft, linear constraints enforcing compatibility with the mea-
surements and additional temporal and spatial regularization priors. The
authors capture a transient image within a minute but the regularization
priors tend to lose high-frequency temporal details and reconstruction takes
several minutes.
Subsequent works explore various measurement procedures, priors and re-
construction algorithms. Kadambi et al. [2013] use a broadband modulation
and sample it at many phase shifts. The arising inverse problem is solved
with various linear and non-linear priors. Kirmani et al. [2013] assume sinu-
soidal modulation at several multiples of a common base frequency. These
measurements are used as soft constraint to reconstruct impulse responses
as distributions with two points of support. Lin et al. [2014] use a similar
input but employ an inverse Fourier transform with subsequent corrective
post-processing. Bhandari et al. [2014b] use measurements at many fre-
quencies and orthogonal matching pursuit to estimate a distribution with
few points of support. Qiao et al. [2015] use a logarithmic prior to re-
ward sparsity. Kadambi et al. [2016] consider measurements as a function
of frequency and derive times of flight from the frequencies in this signal.
Bhandari et al. [2014a] present a method using sinusoidal modulation at
2 · m + 1 frequencies to reconstruct a distribution with m ∈ N points of
support. With measurements from Microsoft Kinect for Xbox One they
successfully separate two returns using measurements at 21 frequencies.



118 8. Fast Transient Imaging

At the other end of the spectrum there are works using far fewer measure-
ments to reconstruct range images. In this context reconstruction of impulse
responses only servers as intermediate step to model multipath interference.
Using measurements at two modulation frequencies, Dorrington et al. [2011]
fit a distribution with two points of support to the measurements using
non-linear optimization. Godbaz et al. [2012] use measurements at four fre-
quencies to estimate parameters for a similar model in closed form. Using
linear programming in a manner that is quite similar to Algorithm 3.1 on
page 46, Freedman et al. [2014] minimize an L1-prior while allowing a tol-
erance on the measurements. For application in real time the authors store
the results in a four-dimensional look-up table to process three frequency
measurements quickly. Gupta et al. [2015] observe that diffuse multipath
interference tends to cancel out at high frequencies and thus propose to
reconstruct range from few measurements at high frequency.
The above works all capture transient images using an active illumination
to generate a repetitive event. Transient images of non-repetitive events
have been recorded in a single capture using compressed sensing, although
this approach sacrifices spatial resolution for temporal resolution [Gao et al.
2014]. When range imaging is the primary concern, it is also possible to
reduce multipath interference without additional measurements. To this
end, diffuse interreflections in the scene are modeled explicitly and the es-
timated multipath interference is then subtracted from the measurement
[Fuchs 2010; Jimenez et al. 2012]. While this saves measurement time, it
requires substantial post-processing time. Ground truth data for transient
imaging can be generated with specialized Monte Carlo renderers [Jarabo
et al. 2014].

8.2 Reconstruction of Impulse Responses
In the present section we demonstrate how to cast the inverse problem
encountered in transient imaging with AMCW lidar systems into a trigono-
metric moment problem. We propose the maximum entropy spectral esti-
mate as solution and analyze its properties. Though, before dealing with
the inverse problem, we need to describe the forward model.

8.2.1 Signal Formation Model
Suppose G is a finite measure on R modeling the impulse response for a
single pixel in a transient image. The measure G([α, β]) tells how much
of the returning light has a time of flight in [α, β] ⊂ R. When diffuse in-
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teractions scatter light, the impulse response is adequately modeled by a
density function as in Definition 2.2 on page 22 (Figs. 8.1a, 8.1b). In situ-
ations where specular interactions dominate, a measure with finite support
as in Definition 2.1 may be more adequate. Finite measures capture both
situations and combinations thereof in a single notation.
The active illumination of the AMCW lidar system is modulated by a T -
periodic signal si(τ) and the pixel receives the convolved signal

(si ∗G)(σ) =
ˆ

si(σ − τ) dG(τ).

The sensor is modulated with another T -periodic signal ss(τ). Through-
out the exposure time it integrates over the resulting signal (si ∗ G) · ss.
For simplicity we assume that it integrates exactly one period. Thus, the
measurement at the pixel is

1
T
·
ˆ T

0
(si ∗G)(σ) · ss(σ) dσ = 1

T
·
ˆ T

0

ˆ
si(σ − τ) dG(τ) · ss(σ) dσ

=
ˆ 1
T
·
ˆ T

0
si(σ − τ) · ss(σ) dσ dG(τ)

=
ˆ

si ? ss(τ) dG(τ)

where si ? ss denotes periodic cross-correlation.
We conclude that the sensor measures the correlation between the impulse
response G and the effective modulation se := si ? ss (Fig. 8.1b). At this
point, it is interesting to note that all information that can possibly be
captured by an AMCW lidar system is contained in the impulse response
G. Vice versa, many AMCW lidar systems allow customization of the
modulation and thus a lot of information about G can be inferred by using
many different modulations. Therefore, transient imaging and AMCW lidar
are closely linked imaging modalities.
Our method assumes measurements with a specific set of modulation func-
tions. We now introduce these assumptions and later demonstrate their
practical implementation in Section 8.3. First we fix a base frequency
f ∈ R. In most of our experiments this is 23 MHz. Furthermore, we
fix the number of non-zero frequencies m ∈ N to measure at. This is one of
two major factors allowing tradeoffs between capture time and quality. Our
experiments use m ∈ {3, . . . , 8}. Now for all j ∈ {0, . . . ,m} we sequentially
use the effective modulation functions

se(τ) = cos(j · 2 · π · f · τ) and se(τ) = sin(j · 2 · π · f · τ).
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(a) Transient
image

Correlate 
ground truth with 
modulation

(b) Signal
formation

(c) Moment
images

Maximum entropy
spectral estimate

(d) Reconstructed
impulse response

(e) Result

Figure 8.1: A schematic visualization of AMCW lidar signal formation and
our signal reconstruction. A lit scene implicitly defines a transient image
resolved in time of flight τ or equivalently phase ϕ = 2 · π · f · τ (8.1a, data
provided by Velten et al. [2013]). Per pixel, an AMCW lidar system corre-
lates this signal with m+ 1 = 4 periodic modulation functions (8.1b). This
yieldsm+1 images holding complex trigonometric moments per pixel (8.1c).
These images are the only input of our closed-form reconstruction. The sig-
nal is reconstructed as continuous density (8.1d top) which is the reciprocal
of a Fourier series (8.1d middle) and the absolute, squared reciprocal of a
polynomial of degree m on the unit circle (8.1d bottom). Reconstruction
per pixel yields the full time-resolved transient image (8.1e).
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For convenience let ϕ := 2 · π · f · τ denote the phase of τ with respect to
the base frequency f . Then s(ϕ) := se

(
ϕ

2·π·f

)
is a 2 · π-periodic version of

the effective modulation. The base frequency should be chosen such that
its wavelength is longer than all interesting light paths. Otherwise phase
ambiguity arises which we model by defining the measure

F (A) :=
∞∑

l=−∞
G

(
A + l · 2 · π

2 · π · f

)

for all measurable sets A ⊆ (0, 2 · π]. F measures sets of phases rather
than sets of times of flight. Since all our modulation functions have period
T := f−1, we can only reconstruct F but not the time-resolved G.
To further simplify notions, we combine the two real measurements at fre-
quency j ∈ {0, . . . ,m} into a single complex phasor (Figs. 8.1b, 8.1c):

cj :=
ˆ

cos(j · ϕ) dF (ϕ) + i ·
ˆ

sin(j · ϕ) dF (ϕ) (8.1)

=
ˆ

exp(i · j · ϕ) dF (ϕ) ∈ C

Rewritten like this, the definition of the AMCW lidar measurement cj agrees
exactly with Definition 2.9 on page 26, which introduces trigonometric mo-
ments. We recall the definition of the trigonometric moment-generating
function c : R→ Cm+1:

∀j ∈ {0, . . . ,m}, ϕ ∈ R : cj(ϕ) := exp(i · j · ϕ)

It is a vector-valued function encompassing all used modulations as function
of ϕ. Then

c :=
ˆ

c(ϕ) dF (ϕ) ∈ Cm+1 (8.2)

is a vector holding all the measurements defined in Equation (8.1) and
simultaneously it is the vector of trigonometric moments for F .

8.2.2 Reconstruction via Trigonometric Moments
With the above derivation, we are in a position to apply the theory of mo-
ments to reconstruct impulse responses. To make the most of our measure-
ments, we incorporate them into the reconstruction as a hard constraint;
that is, we only admit distributions F fulfilling Equation (8.2). However,
this does not lead to a well-posed problem by itself. In general, many
different distributions share the trigonometric moments c.
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We are left with uncertainty about the exact temporal distribution of light.
A good reconstruction should reflect this uncertainty. It should not localize
density unless the data enforces such a localization. Any other behavior
would be arbitrary and could lead to wrong conclusions. We implement
this requirement by asking for the distribution of minimal Burg entropy.

Definition 8.1 (Burg entropy [Burg 1975]). Let FD be a finite measure on
(0, 2 · π] with density D : (0, 2 · π]→ R. Then the Burg entropy1 of FD is
defined by

HBurg(FD) := HBurg(D) :=
ˆ 2·π

0
− logD(ϕ) dϕ.

For measures which do not have a density, Burg entropy is not defined.

By minimizing the Burg entropy, we punish small densities heavily because
− logD → ∞ as D → 0. On the other hand large densities are rewarded
only slightly because logD grows slowly. In terms of minimal Burg entropy,
a measure is optimal if it achieves moderate densities over large intervals.
In this sense, uncertainty is rewarded.
This prior is of particular interest to us because it admits a closed-form
solution to the trigonometric moment problem.

Theorem 8.2 (Maximum entropy spectral estimate [Burg 1975]). We recall
from Definition 2.10 on page 26 that

C(c) = (cj−k)mj,k=0 =


c0 c1 · · · cm

c1 c0
. . .

...
...

. . .
. . . c1

cm · · · c1 c0

 ∈ C(m+1)×(m+1)

denotes the Toeplitz matrix. Suppose that C(c) is positive definite. For all
ϕ ∈ (0, 2 · π] let

D(ϕ) := 1
2 · π ·

e∗0 · C−1(c) · e0

|e∗0 · C−1(c) · c(ϕ)|2 ∈ R (8.3)

where e0 := (1, 0, . . . , 0)T ∈ Cm+1. Then D(ϕ) is positive and the mea-
sure FD with density D fulfills the moment constraints c =

´
c(ϕ) dFD(ϕ).

Among all such measures it has minimal Burg entropy HBurg(FD).
1Burg entropy should not be confused with the more widely used Boltzmann-Shannon

entropy which is given by ˆ 2·π

0
−D(ϕ) · logD(ϕ) dϕ.
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Algorithm 8.1 Levinson’s algorithm [Burg 1975, p. 14 ff.].
Input: c ∈ Cm+1 with C(c) Hermitian and positive definite.
Output: q := C−1(c) · e0 ∈ Cm+1

1. q0 := 1
c0

2. For l ∈ {1, . . . ,m}:

a) d := ∑l−1
k=0 qk · cl−k

b) (q0, . . . , ql) := 1
1−|d|2 · ((q0, . . . , ql−1, 0)− d · (0, ql−1, . . . , q0))

3. Return (q0, . . . , qm)T.

Proof. See [Burg 1975, p. 8 ff.] or Appendix B.5.

The requirement of a positive-definite Toeplitz matrix C(c) is justified by
Propositions 2.11 and 2.13. If the Toeplitz matrix has a negative eigen-
value, there cannot be any solution to the trigonometric moment problem
according to Proposition 2.11. Thus, the measurements c must be faulty.
This is a useful test for validation of the measurement procedure. If it is
positive semi-definite but singular, Proposition 2.13 implies that there is a
unique reconstruction with finite support. We investigate this case in Sec-
tion 8.4.1. Otherwise, the maximum entropy spectral estimate2 provides a
valid reconstruction.

In spite of its remarkable properties of matching all measurements exactly
while minimizing the prior, Equation (8.3) can be evaluated easily. The
term mostly consists of dot products and basic arithmetic operations. To
compute e∗0 · C−1(c) we need to solve a system of linear equations of size
(m + 1) × (m + 1). This system has a very special structure which can
be exploited by fast algorithms solving it in time O(m2) or even superfast
algorithms solving it in O(m · log2m) [Ammar and Gragg 1988]. For our
values of m Levinson’s algorithm with its asymptotic run time of O(m2)
performs best. It is given in Algorithm 8.1 and for the correctness proof we
refer to the work of Burg [1975, p. 14 ff.].

2The name may seem counter-intuitive because Burg entropy is minimized, not max-
imized. This discrepancy is due to a dual interpretation where the defined density is the
power spectrum of a stochastic process with maximal Boltzmann-Shannon entropy. Burg
[1975] was primarily interested in this dual problem.
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8.2.3 Properties of the Reconstruction
At a very general level the maximum entropy spectral estimate provides an
alternative to a common inverse Fourier transform for a truncated series
of Fourier coefficients. While a common inverse Fourier transform would
simply set all unknown Fourier coefficients to zero, this solution chooses
them to minimize Burg entropy. Still, it matches the given Fourier coeffi-
cients (i.e. trigonometric moments) exactly. The major advantage is that
the reconstruction is known to be a positive density. Therefore, when the
application provides this prior knowledge, the maximum entropy spectral
estimate should be preferred over an inverse Fourier transform.

Effectively, Equation (8.3) defines the reciprocal of a positive Fourier series.
Everything except for the denominator with c(ϕ) is a constant. Exploiting
|y|2 = y · y for y ∈ C, this last expression can be rewritten as

|e∗0 · C−1(c) · c(ϕ)|2 = e∗0 · C−1(c) · c(ϕ) · c∗(ϕ) · C−1(c) · e0. (8.4)

The product c(ϕ) ·c∗(ϕ) is an (m+1)×(m+1) Toeplitz matrix with entries
exp(−i ·m · ϕ), . . . , exp(i ·m · ϕ) on its diagonals (cf. Proposition 2.11 on
page 26). Thus, the expression is a positive Fourier series with frequency
components ranging from −m to m (Fig. 8.1d middle).

It can be regarded as the Fourier series of minimal degree such that its
reciprocal produces the prescribed trigonometric moments. If C(c) is pos-
itive definite, this Fourier series has no root. Still, it can be close to zero.
Whenever this happens, the reconstructed density exhibits a sharp peak. In
practice, this situation is very common and the maximum entropy spectral
estimate handles it much better than the inverse Fourier transform.

Another useful interpretation of the maximum entropy spectral estimate
extends it to the whole complex plane. Each phase ϕ ∈ (0, 2 · π] is associ-
ated with a point on the unit circle x := exp(i · ϕ) ∈ C. With this identity
b(x) = c(ϕ) where b : C → Cm+1 with bj(y) := yj is the extension of the
power-moment-generating function to the complex plane.

In this notation,

e∗0 · C−1(c) · c(ϕ) = e∗0 · C−1(c) · b(x) (8.5)

is a complex polynomial of degree m or less. If its degree is m, it has
roots x0, . . . , xm−1 ∈ C which are known to lie outside the unit circle by
Lemma B.9 on page 179 (Fig. 8.1d bottom). Otherwise m can be reduced
accordingly. The roots determine the polynomial uniquely except for a
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constant factor, i.e. the density of the maximum entropy spectral estimate
is proportional to

D(ϕ) ∝ 1∣∣∣∏m−1
l=0 (x− xl)

∣∣∣2 =
m−1∏
l=0

1
| exp(i · ϕ)− xl|2

. (8.6)

A root near the unit circle leads to a large density at the corresponding
phase whereas farther roots correspond to smaller values. Any placement
of roots outside the unit circle is possible and thus the maximum entropy
spectral estimate achieves considerable expressive power.

8.3 Measurement Procedure
To use the maximum entropy spectral estimate with measured data, we
need to acquire measurements at specific frequencies with sinusoidal modu-
lation as explained in Section 8.2.1. In the following, we present methods to
achieve this robustly. Our experiments use a modified version of the hard-
ware setup by Heide et al. [2013], but we are confident that the proposed
methods are applicable to a wide range of hardware including the setup by
Shrestha et al. [2016], more recent sensors by pmdTechnologies as well as
Microsoft Kinect for Xbox One [Bamji et al. 2015].

8.3.1 Achieving Sinusoidal Modulation
It is difficult to achieve exact sinusoidal modulation by adjusting the elec-
tronics providing the modulation signal. Fortunately, there is a robust
workaround leading to a modulation that is arbitrarily close to a sinusoid.
For this to work, it has to be possible to adjust the phase shift between
the light modulation si and the sensor modulation ss. Doing so shifts the
effective modulation s.
Harmonic cancellation [Payne et al. 2010] uses nϕ ∈ N equidistant phase
shifts and builds a linear combination of the resulting measurements. This
is equivalent to generating a linear combination of the phase-shifted mod-
ulations. The used linear combination is

nϕ−1∑
k=0

sin
(

(k + 1) · π

nϕ + 1

)
· s
(
ϕ− k · π

nϕ + 1

)
.

This new effective modulation is free of harmonic frequencies up to harmonic
2 · nϕ − 1. Use of harmonic cancellation does not increase measurement
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times because each phase shift is used for a fraction of the exposure time
that reflects the weight in the linear combination [Payne et al. 2010].

We have adopted harmonic cancellation in our prototype hardware but only
get robust results up to nϕ = 3 due to timing issues. Therefore, we propose
an alternate scheme. We do not use equidistant phase shifts but split up
the exposure time evenly. The k-th interval of the exposure time uses phase
shift arccos

(
1− 2·k+1

nϕ

)
. Thus, the effective modulation becomes

1
nϕ
·
nϕ−1∑
k=0

s

(
ϕ− arccos

(
1− 2 · k + 1

nϕ

))
. (8.7)

For this scheme to work, four-bucket sampling should be used. This means
that values are measured with phase shifts of 0, π2 , π and 3

2 · π (in addition
to other phase shifts). By subtracting pairs of measurements with relative
phase shift π, the resulting values correspond to an effective modulation
with the symmetry s(ϕ − π) = −s(ϕ) for all ϕ ∈ R. By exploiting this
property, we can prove that the arccos-phase sampling in Equation (8.7)
converges to the desired result.

Proposition 8.3. Let s : R → R be 2 · π-periodic, continuous and for all
ϕ ∈ R let s(ϕ− π) = −s(ϕ). Then for all ϕ ∈ R

lim
nϕ→∞

1
nϕ
·
nϕ−1∑
k=0

s

(
ϕ− arccos

(
1− 2 · k + 1

nϕ

))
= π

2 · s ∗ sin(ϕ), (8.8)

i.e. by the convolution theorem Equation (8.7) converges to a scaled and
shifted sinusoid.

Proof. Equation (8.8) is a Riemann-sum in the sense that

lim
nϕ→∞

1
nϕ
·
nϕ−1∑
k=0

s

(
ϕ− arccos

(
1− 2 · k + 1

nϕ

))
=
ˆ 1

0
s(ϕ−arccos(1−2·k)) dk.
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Figure 8.2: The modulation arising from arccos-phase sampling for a trian-
gular original modulation s. For nϕ = 8 it is close to a sinusoid.

Now we apply integration by substitution with k := 1−cosψ
2 :

ˆ 1

0
s(ϕ− arccos(1− 2 · k)) dk

=
ˆ π

0
s

(
ϕ− arccos

(
1− 2 · 1− cosψ

2

))
· sinψ

2 dψ

= 1
2 ·
ˆ π

0
s(ϕ− ψ) · sinψ dψ

= 1
4 ·
(ˆ π

0
s(ϕ− ψ) · sinψ dψ +

ˆ 2·π

π

s(ϕ− ψ) · sinψ dψ
)

= π

2 · s ∗ sin(ϕ)

Looking at the constant factor in Equation (8.8) we observe that the sinu-
soidal component in s is reduced by a factor of π

4 ≈ 0.79. Thus, harmonic
cancellation and arccos-phase sampling have the same asymptotic effect on
the demodulation contrast [Payne et al. 2010].
In our experiments we use arccos-phase sampling with nϕ = 8. Figure 8.2
demonstrates that this yields a high-quality approximation to a sinusoid.

8.3.2 Calibration
The above methods make the effective modulation sinusoidal. Since we
use direct digital synthesis for generation of the modulation signal, we can
also rely on the accuracy of the frequency ratios. Thus, the only remaining
degrees of freedom for the modulation signal are the phase shift and the
amplitude. Measurements show that these need to be calibrated per pixel.
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Light source Sensor

Filter Diffuser

Figure 8.3: We point the laser at the sensor at short range using a neutral
density filter with 5.8h translucency to avoid overexposure and a diffuser
to ensure a uniform light distribution on the sensor. The filter has low
reflectivity to avoid undesired interreflections.

To this end, we point the light source at the sensor as shown in Figure 8.3.
This whole setup is designed to avoid multipath interference. We expect
that most light only passes through the filter once before it reaches the
sensor. Other light paths should be attenuated due to the low reflectivity
of the filter and either way they should be rather short.
In this calibration setup we assume that the impulse response for each pixel
is given by c0 · δ0, i.e. an amount of light c0 > 0 arrives at the pixel
immediately. If the setup were properly calibrated, we would measure the
trigonometric moments

cj = c0 ·
ˆ

exp(i · j · ϕ) dδ0(ϕ) = c0

for all j ∈ {0, . . . ,m}. The actual measured values will deviate from this.
The appropriate correction factor is the measured c0 divided by the mea-
sured trigonometric moment.
These factors are computed per pixel and frequency from a high-quality
calibration measurement and stored. Multiplying them onto the trigono-
metric moments obtained from a subsequent measurement simultaneously
compensates for non-normal phase shifts and amplitudes in the modulation.
Note that the setup in Figure 8.3 differs from the more common calibration
setup of pointing the light source and the camera at a white wall [Heide
et al. 2013; Lin et al. 2014]. We also experimented with this setup but
found that it makes it hard to avoid multipath interference leading to sys-
tematic errors. If the impulse response in the calibration is not a Dirac-δ,
calibration procedures effectively perform a deconvolution with the actual
impulse response leading to systematic distortions of the reconstruction.
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8.3.3 The Zeroth Moment

The zeroth moment is defined by c0 :=
´

1 dF (ϕ), so it captures total
brightness due to the active illumination without any modulation. All re-
lated work using AMCW lidar systems, except for Godbaz et al. [2012], only
incorporates measurements with zero-mean modulation, meaning that the
captured data are literally orthogonal to the zeroth moment. This misses
important information.

Consider a uniform impulse response F on (0, 2 · π]. All of its trigonometric
moments except for the zeroth moment are zero. If the zeroth moment is
not measured, an arbitrarily strong uniform component can be added to
the impulse response without changing the data. In this sense, the zeroth
moment governs sparsity of the distribution, as demonstrated in Figure 8.4.
If it takes its minimal value, Proposition 2.13 implies that the ground truth
has to be a unique measure with finite support.

The best practice for capturing the zeroth moment is to capture two images
without sensor modulation, one with and one without active illumination.
Their difference provides the zeroth moment. Since our prototype hardware
cannot measure without modulation, we instead perform measurements at
900 kHz. This corresponds to a wavelength of 333.1 m so the sinusoidal
modulation wave should be nearly constant across relevant lengths of light
paths.

Alternatively, we can exploit Proposition 2.11 to estimate c0 based on prior
knowledge about the sparsity of impulse responses. The zeroth moment c0
constitutes the main diagonal of the Toeplitz matrix C(c). If we have not
measured c0 yet, we set the main diagonal of C(c) to zero and compute its
smallest eigenvalue λm which will be negative. We then fix the estimated
uniform component ελ > 0 and set c0 := ελ−λm to ensure that the Toeplitz
matrix is positive definite with smallest eigenvalue ελ. Smaller values of ελ
lead to sparser reconstructions.

This method is also suited for correcting invalid measurements if we have
measured the zeroth moment. Whenever we encounter a Toeplitz matrix
with a smallest eigenvalue less than ελ, we replace c0 by ελ − λm as de-
fined above. This changes the measurement in a minimal way to make it
valid. Alternatively, c1, . . . , cm can be scaled down to avoid changing overall
brightness. We refer to this procedure as biasing (cf. Section 4.1.3). For
scenes with sparse impulse responses, sensor noise makes it indispensable.
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Figure 8.4: Top: Various reconstructions arising from the maximum en-
tropy spectral estimate for the transient pixel in Figure 8.1b with m = 5
and different values of the zeroth moment c0. The zeroth moment governs
sparsity of the reconstruction. The best result is obtained with the ground
truth c0 = 67.5. For c0 = 61 the Toeplitz matrix C(c) is nearly singular
and the reconstruction is nearly sparse. In between it changes continuously.
The strong changes illustrate the importance of measuring c0 accurately.
Bottom: The roots of the polynomial in the denominator of the maximum
entropy spectral estimate (see Equation (8.6)). The roots approach the unit
circle as the reconstruction approaches a measure with finite support.

8.4 Analysis of Impulse Responses
The maximum entropy spectral estimate provides efficient random access
to the density of a transient image. Though, in many application scenarios
we would like to infer other information immediately. In this section we
present various efficient methods to infer information about a transient
image without computing it completely. We also present upper bounds for
the error of the reconstruction.

8.4.1 Perfect Reconstruction of Sparse Responses
The maximum entropy spectral estimate fails if the ground truth F has
m or fewer points of support. This special situation is fully described by
Proposition 2.13 on page 29. The reason why the maximum entropy spec-
tral estimate fails is that the ground truth F is uniquely determined by
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Algorithm 8.2 Perfect reconstruction of a measure from trigonometric
moments in the boundary case.
Input: c ∈ Cm+1 such that C(c) is positive semi-definite but singular.
Output: The unique measure F with c =

´
c(ϕ) dF (ϕ).

1. Compute q ∈ kerC(c) with q 6= 0.

2. Solve ∑m
j=0 qj · xj = 0 for x to obtain all pairwise different roots

x0, . . . , xn−1 ∈ C.

3. Solve the system of linear equations
1 1 · · · 1
x1

0 x1
1 · · · x1

n−1
...

...
...

xn−1
0 xn−1

1 · · · xn−1
n−1

 ·

w0
w1
...

wn−1

 =


c0
c1
...

cn−1

 .

4. For l ∈ {0, . . . , n− 1} set ϕl := arg xl ∈ (0, 2 · π], i.e.

xl = |xl| · exp(i · ϕl).

5. Return F := ∑n−1
l=0 wl · δϕl

.

its trigonometric moments. There is no other valid reconstruction and in
particular there is no reconstruction having a finite density. Equation (8.3)
is not applicable because the Toeplitz matrix C(c) is singular.

While biasing may be used to avoid this failure case, handling it explicitly
offers an attractive alternate reconstruction. Since the ground truth is
uniquely determined by the measurements, it can be reconstructed perfectly.
Algorithm 8.2 computes it efficiently. Its correctness is a direct consequence
of Proposition 2.13 and the proof thereof. The polynomial solved in this
Algorithm is the limit of the polynomial in Equation (8.5) for c0 approaching
its minimal value (Fig. 8.4 bottom).

Although we have formulated this result for the case that C(c) is singular,
it is also applicable in the general case. We simply separate the distribution
into a uniform component and a sparse component. To this end we compute
the smallest eigenvalue λm of C(c) and a corresponding eigenvector q. Then
λm gives the strength of the uniform component and the sparse component
can be computed from q as in Algorithm 8.2 using c0 − λm in place of c0.
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If specular interactions dominate, the uniform component becomes small
and measurement of the zeroth moment may be skipped. This method is
known as Pisarenko estimate and optimized algorithms exist for its com-
putation [Cybenko and Van Loan 1986]. It is closely related to the work
by Bhandari et al. [2014a], except that their method requires more than
twice as many measurements and does not necessarily find a distribution
compatible with all of them. It can also be understood as closed-form im-
plementation of the work by Freedman et al. [2014] without error tolerance
because their technique minimizes c0. The Pisarenko estimate realizes the
theoretical best case of reconstructing the 2 ·m real parameters describing
a distribution with m points of support from m complex phasors.
While the Pisarenko estimate does not reflect uncertainty as reasonably
as the maximum entropy spectral estimate, it provides a more explicit re-
construction. This eases analysis of transient images and provides excellent
results if specular interactions dominate as demonstrated in Figure 8.5. The
reconstructed data directly provides insight into the strength and time of
flight of all returns per pixel.
A possible application is fast separation of direct and indirect illumination.
The direct component can be identified as first return with a weight above
a relative threshold. Its weight provides the strength of the direct return.
The sum of the other weights provides indirect returns.

8.4.2 Error Bounds
From Proposition 2.13 we know that we can obtain a perfect reconstruction
if the ground truth has m or fewer points of support. Intuitively, we ex-
pect that the reconstruction is still very close to the ground truth when the
ground truth has a small uniform component. This motivates the search
for bounds on the error of the reconstruction. We suppose that our mea-
surements are correct and ask for the maximal possible distance between
the unknown ground truth and our reconstruction.
For the trigonometric moment problem this question has been answered
[Karlsson and Georgiou 2013]. The authors observe that no meaningful
statements can be made if densities are considered directly. The construc-
tion used in Algorithm 4.1 works analogously for the trigonometric moment
problem (see Algorithm B.2). We can prescribe an arbitrary phase where
the reconstruction must have support in the form of a Dirac-δ and obtain a
reconstruction with a total of m+ 1 points of support. A Dirac-δ has infi-
nite density, so the density of reconstructions at any point can be anything
between zero and infinity.
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Figure 8.5: A scene where direct illumination and two mirrors are used to
illuminate a wall three times (cf. Figure 8.7). Four trigonometric moments
are measured by averaging 30 takes to improve the signal to noise ratio. Top:
The strength of the strongest three returns computed with the Pisarenko
estimate. Bottom: The corresponding time of flight. The different light
paths through the mirrors are separated clearly. Phase noise increases as
the strength of the return weakens.

To get a meaningful result, Karlsson and Georgiou [2013] propose to smooth
densities before analysis. This is done using the Poisson kernel (Fig. 8.6a)

Pr(ϕ) := 1
2 · π ·

1− r2

|1− r · exp(i · ϕ)|2 ,

where r ∈ [0, 1) governs the sharpness of the kernel. For r = 0 it is constant,
for r → 1 it converges to δ0.

After smoothing, sharp lower and upper bounds can be computed in closed
form.

Proposition 8.4 (Error bounds [Karlsson and Georgiou 2013]). Let F be
a finite measure such that c =

´
c(ϕ) dF (ϕ). Then for all ϕ ∈ (0, 2 · π] and
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all r ∈ (0, 1)

1
2 · π ·

(
<Q(r · exp(i · ϕ))−

√
R(r · exp(i · ϕ))

)
≤ (Pr ∗ F )(ϕ) =

ˆ
Pr(ϕ− ψ) dF (ψ)

≤ 1
2 · π ·

(
<Q(r · exp(i · ϕ)) +

√
R(r · exp(i · ϕ))

)
with < denoting the real part,

Q(x) :=
2

1−|x|2 + e∗(x) · C−1(c) · d(x)
d∗(x) · C−1(c) · d(x) ∈ C,

R(x) := |Q(x)|2 − e∗(x) · C−1(c) · e(x)
d∗(x) · C−1(c) · d(x) ∈ R

and d, e : C \ {0} → Cm+1 defined by

∀j ∈ {0, . . . ,m} : dj(x) := x−j−1, ej(x) := x−j−1 ·

c0 + 2 ·
j∑

k=1
ck · xk

 .

These bounds are sharp.

Proof. Let ϕ ∈ (0, 2 · π]. Karlsson and Georgiou [2013, proof of Proposition
12] prove that a wz ∈ C with

<wz = 2 · π · (Pr ∗ F )(ϕ)

exists if and only if

|wz −Q(r · exp(i · ϕ))|2 ≤ R(r · exp(i · ϕ)).

The claimed inequalities follow immediately and since this is an equivalence,
they are sharp.

The bounds rely solely on the knowledge that F fulfills the moment con-
straints c =

´
c(ϕ) dF (ϕ). Assuming correct measurements, the ground

truth is known to fulfill these constraints and we can compute an area con-
taining its smoothed density. The same holds for our reconstruction. If the
ground truth is reasonably close to a sparse distribution, this area is pleas-
antly small as demonstrated in Figure 8.6. In this case, we can be certain
that the reconstruction is close to the ground truth and we can give specific
bounds on possible locations of local maxima in the unknown ground truth.
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(a) Poisson kernel (b) Densities before smoothing (c) Error bounds

Figure 8.6: An example of error bounds using a synthetic ground truth (cf.
Figure 8.12b) with m = 5 and r = 0.93. The impulse responses (8.6b)
have to be smoothed using a Poisson kernel (8.6a) before meaningful error
bounds can be derived. After smoothing (8.6c), we obtain sharp bounds
on the smoothed density using solely the knowledge of the trigonometric
moments c0, . . . , c5 ∈ C. These bounds apply to the ground truth and the
maximum entropy spectral estimate such that the maximal reconstruction
error is bounded.

8.4.3 Estimating Range
Range imaging with AMCW lidar systems is typically done in real time with
a limited computing time budget. Therefore, it is worthwhile to implement
highly optimized methods. The natural candidates for estimates of range
are local maxima of the maximum entropy spectral estimate in Equation
(8.3).
Critical points of this function coincide with critical points of its scaled
reciprocal. For convenience we define q := C−1(c) ·e0 and rewrite the scaled
reciprocal as in Equation (8.4):

|e∗0 · C−1(c) · c(ϕ)|2 = q∗ · c(ϕ) · c∗(ϕ) · q

=
m∑

j,k=0
qj · exp(i · j · ϕ) · exp(i · k · ϕ) · qk =

m∑
j,k=0

qj · qk · exp(i · (j − k) · ϕ)

To compute critical points, we take the derivative with respect to ϕ:
∂

∂ϕ
|e∗0 · C−1(c) · c(ϕ)|2 =

m∑
j,k=0

qj · qk · i · (j − k) · exp(i · (j − k) · ϕ)

Now we substitute x = exp(i · ϕ) and multiply by i−1 · xm 6= 0 to arrive at
m∑

j,k=0
qj · qk · (j − k) · xm+j−k.
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This is a polynomial of degree 2 ·m so it can have up to 2 ·m roots on the
unit circle which are the critical points of the maximum entropy spectral
estimate. Since the reconstructed density is a smooth, periodic function, at
most half of the critical points correspond to local maxima. A reasonable
estimate for range is that it corresponds to the first local maximum above
a threshold.

If specular interactions are known to be the primary cause of multipath
interference, an even faster approach uses the Pisarenko estimate introduced
in Section 8.4.1. This way, the degree of the arising polynomial equation
is halved. It is interesting to note that both methods can reconstruct m
distinct peaks. The maximum entropy spectral estimate only requires the
additional measurement of the zeroth moment to estimate smoothness of
the impulse response and it only constructsm peaks when the data demands
it (see Figure 8.4).

8.4.4 Cumulative Transient Images
The density defined in Equation (8.3) describes the maximum entropy spec-
tral estimate completely. However, densities are not very informative by
themselves. A large density at a point could mean that a return carries a
lot of light, but it could also mean that a small amount of light is strongly
localized in time.

Integrals over densities are far more informative. For an interval [α, β] ⊆
[0, 2 · π] the measure

FD([α, β]) =
ˆ β

α

D(ϕ) dϕ

provides the amount of light that returned with a phase shift in [α, β].
The total amount of light is given by the zeroth moment c0 so we can
immediately relate these quantities. The cumulative distribution function
FD([0, ϕ]) provides a useful visualization of transient images that we refer
to as cumulative transient image. Burg [1975, p. 109 ff.] computes it using
a partial fraction expansion and we take a similar approach here.

To construct a closed form for the indefinite integral of Equation (8.3), we
rewrite it as a rational function of x = exp(i · ϕ). Let q := C−1(c) · e0 and
let x0, . . . , xm−1 ∈ C be the roots of the polynomial q∗ ·b(x) as in Equation
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(8.6). Then

D(ϕ) = 1
2 · π ·

q0∣∣∣qm ·∏m−1
l=0 (x− xl)

∣∣∣2
= q0

2 · π · |qm|2
· 1∏m−1

l=0 (x− xl) ·
∏m−1
l=0 (x−1 − xl)

= q0

2 · π · |qm|2
· xm∏m−1

l=0 (x− xl) ·
∏m−1
l=0 (1− x · xl)

= q0 · (−1)m
2 · π · |qm|2 ·

∏m−1
l=0 xl

· xm∏m−1
l=0 (x− xl) ·

∏m−1
l=0 (x− xl−1)

.

For all l ∈ {0, . . . ,m− 1} let

xm+l := xl
−1 = xl

|xl|2
and η := q0 · (−1)m

2 · π · |qm|2 ·
∏m−1
k=0 xk

such that
D(ϕ) = η · xm∏2·m−1

l=0 (x− xl)
.

For simplicity we assume that the poles x0, . . . , x2·m−1 are pairwise different.
Thus, we have written D as rational function of x ∈ C with 2 · m simple
poles. Its partial fraction decomposition takes the form [Fischer and Lieb
2012, p. 78 f.]

D(ϕ) =
2·m−1∑
l=0

rl
x− xl

=
2·m−1∑
l=0

rl
exp(i · ϕ)− xl

with residues

rl = lim
x→xl

(x− xl) · η ·
xm∏2·m−1

k=0 (x− xk)
= η · xml∏2·m−1

k=0, k 6=l(xl − xk)
.

Integrating the individual summands, we find the indefinite integral ofD(ϕ)

−
2·m−1∑
l=0

rl
xl
· (ϕ+ i · ln(exp(i · ϕ)− xl)). (8.9)

When evaluating this expression, care has to be taken to pick branches of
the complex logarithm that are continuous on the relevant domain.



138 8. Fast Transient Imaging

8.5 Results and Discussion
In the following, we present results measured with our prototype hardware.
The setup is similar to the one presented by Heide et al. [2013] but addi-
tionally features the arccos-phase sampling described in Section 8.3.1. The
sensor is a pmd PhotonICs 19k-S3 by pmdTechnologies with a resolution of
163·120 pixels taken from the reference design CamBoard nano.

To improve the signal to noise ratio of the data, we average multiple takes
for the results in Figures 8.5, 8.8c, 8.8d, 8.9, 8.10c, 8.10d, 8.11 and 8.13.
Note that our prototype hardware suffers from some systematic outliers due
to synchronization issues. 5-10% of all captured images differ significantly
from other images captured with the same configuration. When multiple
takes are given for averaging, we automatically discard such outliers before
averaging. In videos we fill in data missing due to outliers using data from
the previous frame.

To further reduce noise, we smooth trigonometric moment images using a
Gaussian filter with a standard deviation of 0.6 pixels. For the maximum
entropy spectral estimate we use biasing as described in Section 8.3.3 to
ensure that λm ≥ 4 · 10−3 · c0. Unless otherwise noted, this only affects few
pixels.

We have implemented evaluation of Equation (8.3) on the GPU in a pixel
shader and measure the run time on an NVIDIA GeForce GTX 780. The
shader reconstructs 2.9 · 105, 2.2 · 105 and 1.1 · 105 transient frames per
second for m = 3, m = 4 and m = 8, respectively. This includes repeated
computation of C−1(c)·e0, although this vector could be precomputed. This
means that Equation (8.3) is evaluated 163 · 120 · 1.1 · 105 = 2.2 · 109 times
per second for m = 8.

8.5.1 Transient Imaging
Our first experiment uses the scene shown in Figure 8.7 to provide a chal-
lenging test case with complex specular interactions. The impulse responses
encountered for a single pixel consist of up to three distinct returns with
high dynamic range. Light initially sweeps from left to right, then the right
mirror reflects it to the left and finally the left mirror reflects it to the right.
These three returns have different times of flight and the reconstruction has
to separate them.

Figure 8.8 shows results obtained with the maximum entropy spectral es-
timate for different measurement times using an exposure time of 1.92 ms.



8.5. Results and Discussion 139

Left mirror
Right mirror

Wall

Shadow stencil 1

Shadow stencil 2Shadow stencil 3

Laser

Figure 8.7: A schematic visualization of our experimental setup. The diffuse
wall is lit by the active illumination of the AMCW lidar system. Part of
the light is reflected by mirrors on both sides such that light sweeps over
the wall three times. There are cardboard stencils on both mirrors that
cast the shadow of a number onto the wall. Additionally, there is a stencil
perpendicular to the wall. This way, all three returns include a shadow
showing their index.

With m = 3 (i.e. measurements at four frequencies including the mea-
surement for the zeroth moment at 900 kHz) and a single take we already
successfully separate the three distinct returns (Fig. 8.8a). However, the
reconstruction includes significant uncertainty expressed by means of broad
peaks with low density. This behavior depends on the shape of the impulse
response. Therefore, the number two is slightly visible for τ = 11.3 ns.

Additional frequency measurements yield sharper peaks. At m = 4 some
visible artifacts remain but all important features are reconstructed (Figs.
8.8b, 8.8c). Using m = 8 further reduces these artifacts, leading to a recon-
struction with sharp peaks (Fig. 8.8d). On the other hand, the additional
measurements also introduce additional noise and potential contradictions,
thus making biasing mandatory for 90% of all pixels (see Section 8.3.3).

The additional takes used for Figure 8.8c and 8.8d reduce the noise in the
input and the output alike. Figures 8.8b and 8.8c show the same measure-
ment with one and 20 averaged takes, respectively. While the reconstructed
features are essentially identical, the averaging leads to a result with sub-
stantially less noise. In spite of the single take, Figure 8.8a appears less
noisy than Figure 8.8b because the greater uncertainty causes smoothing
of impulse responses.
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τ = 11.3 ns τ = 19.3 ns τ = 26.7 ns

(a) f = 23 MHz, m = 3, one take, capture time 91 ms

(b) f = 23 MHz, m = 4, one take, capture time 114 ms

(c) f = 23 MHz, m = 4, 20 takes, capture time 2.28 s

(d) f = 11.5 MHz, m = 8, 40 takes, capture time 8.21 s

Figure 8.8: A transient image of the scene shown in Figure 8.7 captured
with different tradeoffs between capture time and quality. The images show
the maximum entropy spectral estimate for different times of flight τ . Note
how the three returns are separated.
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Figure 8.9: A streak image for the data set in Figure 8.8c. Each row shows
the time-resolved density for one pixel on the scanline highlighted on the
left. Note how separate returns merge in regions of high uncertainty.

If two returns are temporally close, uncertainty may cause them to merge
into one as shown in Figure 8.9. It is not possible to specify generic lower or
upper bounds on the required distance of returns for successful separation.
It rather depends on the complexity of the impulse response and the amount
and quality of input data. Under the assumption of perfect data and perfect
sparsity, returns can be arbitrarily close (see Section 8.4.1), but in presence
of uniform components and noise they have to be farther apart.
Density images such as those shown in Figure 8.8 generally exhibit rather
strong noise because slight changes in the sharpness or phase of a peak
lead to strong changes in density at a fixed point in time. To analyze
whether this noise is systematic, we consider cumulative transient images
(see Section 8.4.4). Figure 8.10 shows the cumulative transient images
for the above experiment. We note that uncertainty in the reconstruction
translates to smeared out or misshaped wave fronts. However, the total
brightness contributed by the waves is always reconstructed correctly.
For an example with diffuse interactions we point the camera at a corner
but only illuminate the left wall of this corner directly. Most of the right
wall is lit indirectly. As shown in Figure 8.11, the measurement of the ze-
roth moment helps us to adequately reconstruct the corresponding transient
image. While the wave on the left wall is very sharp, the right wall receives
a smooth wave due to diffuse interreflections.
The comparison of our proposed methods to related work in Figure 8.12
uses synthetic data. For visualization we once more use the cumulative
distribution function because sparse reconstructions cannot be represented
by a density function. The first example in Figure 8.12a constitutes an
ideal case for all techniques and thus all techniques obtain an excellent
reconstruction without noise. However, the Dirac-δ model [Godbaz et al.
2012] and SPUMIC [Kirmani et al. 2013] are quite sensitive to noise.
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τ = 11.3 ns τ = 19.3 ns τ = 26.7 ns

(a) f = 23 MHz, m = 3, one take, capture time 91 ms

(b) f = 23 MHz, m = 4, one take, capture time 114 ms

(c) f = 23 MHz, m = 4, 20 takes, capture time 2.28 s

(d) f = 11.5 MHz, m = 8, 40 takes, capture time 8.21 s

Figure 8.10: Frames of the cumulative transient images corresponding to
Figure 8.8. Each image shows the total amount of light that returned earlier
than τ , reconstructed using Equation (8.9).
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Figure 8.11: Frames of a transient image showing a corner where only the
left wall is lit directly. Thanks to the measurement of the zeroth moment the
maximum entropy spectral estimate reconstructs a sharp peak for directly
lit parts and a smooth peak for indirectly lit parts. This measurement uses
f = 23 MHz, m = 4 and 40 takes at an exposure time of 1.92 ms per
capture. The capture takes 4.56 seconds.

The second example in Figure 8.12b provides a more realistic test case
consisting of three continuous returns modeled by exponentially modified
Gaussians [Heide et al. 2014]. The Dirac-δ model and SPUMIC, both tar-
geted at two sparse returns, only capture the first return adequately and
become even more sensitive to noise. SRA [Freedman et al. 2014] has a bias
towards stronger sparsity and less overall brightness. Therefore, it loses the
third return but successfully reduces the impact of noise. The Pisarenko es-
timate provides a better reconstruction but is more sensitive to noise. The
maximum entropy spectral estimate adequately reconstructs the continuous
return. Noise mostly affects sharpness of the peaks.

8.5.2 Range Imaging
As benchmark for range imaging, we place the camera and the light source
next to each other and capture a diffuse corner. This is a prime example
of diffuse multipath interference. Figure 8.13 shows our results. A naïve
reconstruction using measurements at a single frequency exhibits severe
distortions. Range is overestimated because long indirect paths contribute
to the estimate. Using the Dirac-δ model [Godbaz et al. 2012] reduces these
systematic distortions but does not behave robustly. The maximum entropy
spectral estimate (see Section 8.4.3) provides robust results and reduces
distortions due to multipath interference heavily. The Pisarenko estimate
suffers from severe outliers. This is understandable because its inherent
assumption of a sparse impulse response is inadequate for diffuse multipath
interference. This demonstrates the benefit of including the zeroth moment
in the reconstruction.
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(a) Reconstruction of a measure with two points of support.

(b) Reconstruction of a measure that localizes density around three points.

Figure 8.12: Reconstruction results of various techniques using synthetic
data with sinusoidal modulation. Red graphs use measurements without
noise, gray graphs originate from measurements with a simulated signal to
noise ratio of 70:1 due to Gaussian noise. Each plot contains the ground
truth as dotted blue line. The Dirac-δ model [Godbaz et al. 2012] uses
measurements at 11, 22, 33, 44 MHz, Kirmani et al. [2013] uses 11, 22, . . . ,
66 MHz and Freedman et al. [2014] uses 23, 46, 69 MHz and ε = 0.05. Our
proposed techniques use measurements at 0 (maximum entropy spectral
estimate only), 23, 46, 69 MHz.



8.5. Results and Discussion 145

(a) Single frequency, f = 23 MHz (b) Dirac-δ model [Godbaz et al. 2012], with
23, 46, 78, 92 MHz

(c) Maximum entropy spectral estimate
(proposed method), f = 23 MHz, m = 3

(d) Pisarenko estimate (proposed method),
f = 23 MHz, m = 4

Figure 8.13: Point clouds of a diffuse corner reconstructed with various
techniques. The images show an orthographic top view and the black line
is the ground truth. All reconstructions use the same data set with base
frequency f = 23 MHz and 4 averaged takes (without outliers). The capture
time is 365 ms for all results except (8.13a) where it is 91 ms.
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Mirror

Mirror

Actor

LaserAMCW lidar imager

Wall

Figure 8.14: A bird’s eye view of the experimental setup used for transient
video. Light from the active illumination of the AMCW lidar system reaches
the diffuse wall directly but also indirectly via two mirrors. An actor moves
through the scene from left to right.

8.5.3 Transient Video
Our hardware is capable of capturing transient images at video frame rate.
If we choose m = 3 and use a Pisarenko estimate or a maximum entropy
spectral estimate with biasing of the zeroth moment, we require measure-
ments at three frequencies. With four-bucket sampling this amounts to
twelve images per transient image. Using an exposure of 0.5 ms and
f = 23 MHz we can capture such sets of images at 18.6 Hz. The result
is a transient video, i.e. each pixel in each frame is an impulse response
resolved in time of flight.
Figure 8.14 shows our experimental setup. A mirror is placed in front of
a lit wall to reflect part of the light away from the wall and into another
mirror. The latter mirror reflects the light back onto the wall such that part
of it receives light at two different times of flight. An actor enters from the
left, waves and leaves to the right. Therefore, the scene exhibits interesting
features in the dimension of time of flight τ as well as common time t.
Figure 8.15 shows three frames of the transient images for three frames of
the transient video. Although the images are quite noisy due to the short
exposure time, all important features are reconstructed correctly. The light
first returns from the actor, then from the direct interaction with the wall
and finally it returns after being reflected by both mirrors and the wall.
We can use the Pisarenko estimate for separation of direct and indirect illu-
mination as proposed in Section 8.4.1. Figure 8.16 shows the same frames
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Figure 8.15: A transient video visualized through densities. It can be inter-
preted as four-dimensional image, parameterized over time of flight, time
and two spatial dimensions. The light wave progresses through the scene as
time of flight increases whereas the actor moves through the scene as time
increases.

as Figure 8.15 but this time direct and indirect illumination are separated.
The indirect component exhibits a few outliers but generally separates the
lighting due to the mirrors correctly from other lighting. Thanks to this
correct separation, the time of flight for the direct return is free of multipath
interference.

The sum of both components is the zeroth moment shown in Figure 8.16a.
This image has not been measured directly but has been computed from
three frequency measurements as described in Section 8.3.3. This is of
interest by itself because it provides a method to compute images including
solely active illumination.

8.5.4 Conclusions
Our proposed reconstruction algorithms provide powerful ways to transfer
AMCW lidar measurements from the frequency domain to the time domain.
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(a) Direct and indirect illumination (zeroth moment)

(b) Direct illumination only

(c) Indirect illumination only

(d) Time of flight for the direct return

Figure 8.16: Separation of direct and indirect illumination in a transient
video. Note that the lighting due to the mirrors is separated from direct
illumination and does not distort the time of flight.
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By using the data as hard constraints and making reasonable assumptions
about the structure of the solution, they achieve good reconstructions with
a minimal amount of data. At the same time, they are theoretically well-
understood and provide computationally efficient solutions for a wide range
of problems.
While our results demonstrate the robustness of the algorithms, their qual-
ity is limited by our prototype hardware. The used sensor began shipping in
2012 and cannot be considered state of the art. Among with the customiza-
tion of the hardware, this leads to longer capture times, lower signal-to-noise
ratios and temperature drifts that can invalidate the calibration. Since the
setup lacks active cooling, we performed the calibration and all measure-
ments after a warm-up phase but this further degrades the signal-to-noise
ratio.
AMCW lidar systems have seen massive improvements in recent years.
Newer sensors provide higher resolutions, better signal-to-noise ratios, faster
capture and greater robustness. These sensors are distributed to the mass
market with products such as Microsoft Kinect for Xbox One, Microsoft
HoloLens and mobile devices using sensors by pmdTechnologies with Goo-
gle’s Project Tango technology.
This hardware does support the required frequency ranges [Bamji et al.
2015]3. Application of our methods is a matter of implementing them at
the proprietary, lower levels of the software. The biggest problem in this
process will likely be the generation of a sinusoidal modulation. Since dif-
ferent hardware imposes different limitations, our novel approach may not
be applicable and there is potential for future work.
The most immediate use from implementing our techniques will be the
elimination of multipath interference in range images. Another advantage
is that mixed pixels at silhouettes of objects can be resolved. Beyond that,
the related work on transient imaging shows the potential of this imag-
ing modality in computational photography, non-line-of-sight imaging and
computer vision. With wide-spread availability of the required hard- and
software, research in this field could gain massive traction.
The temporal resolution of all transient imaging techniques using AMCW
lidar is limited by the maximal modulation frequency of current hardware
(ca. 100 MHz). Recent developments in engineering may raise this upper
limit substantially [Gupta et al. 2015]. Eventually, the temporal resolution

3www.infineon.com/dgdl/Infineon-REAL3+Image+Sensor+Family-PB-v01_00-
EN.PDF?fileId=5546d462518ffd850151a0afc2302a58 (retrieved on 1st of September
2016).

http://www.infineon.com/dgdl/Infineon-REAL3+Image+Sensor+Family-PB-v01_00-EN.PDF?fileId=5546d462518ffd850151a0afc2302a58
http://www.infineon.com/dgdl/Infineon-REAL3+Image+Sensor+Family-PB-v01_00-EN.PDF?fileId=5546d462518ffd850151a0afc2302a58
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might approach that of techniques with more expensive equipment [Velten
et al. 2013; Gkioulekas et al. 2015]. With access to finer time scales, tran-
sient imaging enables acquisition of subsurface scattering [Wu et al. 2014]
and fluorescence [Gao et al. 2014].
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Chapter 9
Conclusions

Our work draws directly on abstract mathematical literature but culminates
in methods of immediate practical use. They are easy to apply in spite of
their theoretical foundation. Substantial effort has been necessary to ensure
robust behavior in all situations while maintaining a low computational
complexity, especially for moment shadow mapping. However, these efforts
lead to techniques that are ready for widespread industrial application.

Indeed, the publications have sparked considerable interest among practi-
tioners. At least one game development studio1 is already using moment
shadow mapping in production. The lecture on moment shadow mapping
[Peters and Klein 2015; Peters et al. 2016] at the Game Developers Confer-
ence Europe 2016 was well received. There is clearly considerable interest
in the games industry.

Several ongoing trends will make moment shadow mapping highly attrac-
tive in the next years. In our evaluation we have seen that 64-bit moment
shadow maps are clearly superior to all other filterable shadow maps using
64 bits per texel. Whether they outperform common shadow maps pri-
marily depends on the output resolution. There is a trend towards higher
resolutions. Displays with a resolution of 3840·2160 have become affordable,
Sony is about to release a console to support these resolutions and Microsoft
will do so in 2017. Head-mounted displays are gaining importance rapidly
and require stereoscopic rendering at high resolutions and extreme frame
rates.

1www.readyatdawn.com. Use of moment shadow mapping has been con-
firmed by Matt Pettineo in private correspondence and publicly at twit-
ter.com/MyNameIsMJP/status/731613160503955456 (retrieved on 1st of September
2016).
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These developments make moment shadow mapping attractive because the
overhead per shaded fragment is low compared to approaches based on com-
mon shadow maps. While the cost per texel of the shadow map is higher, use
of multisample antialiasing diminishes the need for high-resolution shadow
maps and ultimately the required shadow map resolution is not linked to
the output resolution but to the intended hardness of the shadow.
Our techniques for translucent occluders, soft shadows and single scattering
inherit the same traits and are thus equally attractive. So far percentage-
closer soft shadows has been the most widely used technique for soft shad-
ows in performance-sensitive real-time applications. Moment soft shadow
mapping is faster in nearly all situations. It introduces slight light leaking
but diminishes aliasing and surface acne.
For single scattering, widely used solutions apply ray marching at low res-
olutions and then perform bilateral upscaling. In stereoscopic rendering,
such upscaling leads to discrepancies between the two images which con-
tribute to simulator sickness. Prefiltered single scattering with six moments
offers a comparably low run time at full resolution. The publication of these
three extensions to moment shadow mapping is too recent to judge their
actual impact in the industry but we hope that the recent lecture at the
Game Developers Conference Europe 2016 fosters it.
Our work on fast transient imaging is likely to find industrial use as well.
After presenting and discussing it at the headquarters of pmdTechnologies
AG, I know that there are plans to implement it. The technique has the
necessary traits to become the default way of processing AMCW lidar mea-
surements. It is well-understood, robust in presence of diffuse and specular
multipath interference, enables various tradeoffs between quality and mea-
surement time and provides efficient algorithms for a wide range of problems
besides the reconstruction of a transient image.
With its use in Microsoft HoloLens and Google’s Project Tango, AMCW
lidar is on its way to become the standard depth-sensing modality for mixed-
reality applications. In these applications, depth sensing is not only used
for acquisition but also for accurate positional tracking. Avoiding the sys-
tematic depth distortions that arise from multipath interference in adverse
environments is of utmost importance.

9.1 Future Work
Beyond the specific applications of the theory of moments described in
this dissertation, we hope that our work establishes this powerful set of
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tools in computer graphics. To the best of our knowledge, its extensive
use in a graphics context is novel. Variance shadow mapping [Donnelly
and Lauritzen 2006] uses second-order moments and some earlier works
on removal of multipath interference use methods that are related to the
Pisarenko estimate [Kirmani et al. 2013; Bhandari et al. 2014a]. However,
we are not aware of any earlier work in graphics that uses multiple higher-
order moments as hard constraint to reconstruct a finite measure.
Speaking very broadly, any application requiring a compact, filterable rep-
resentation and fast reconstruction of a non-negative function may benefit
from the theory of moments. This is particularly true, if the function is
sparse, i.e. if most of the area below its graph is found near few points. In
this case, few moments guarantee a surprisingly good reconstruction with
sharp bounds on the approximation error (see Section 8.4.2).
In real-time rendering, this situation often arises through filtering. Each
individual point on a surface is associated with a host of attributes such
as depth (in view or light space), normal and opacity. Aliasing arises if
these attributes are only evaluated at a single point. However, none of
these attributes can be filtered directly. Moments offer a generic way to
store the distribution of these attributes within a filter region compactly
and in such a way that it can be filtered directly. Then all the powerful
hardware-accelerated filtering efficiently resolves issues with aliasing.
Specific directions for future work would be the application to normal dis-
tributions for specular antialiasing [Toksvig 2005], order-independent trans-
parency [Enderton et al. 2010] and volumetric obscurance [Loos and Sloan
2010; Hendrickx et al. 2015]. Low-dimensional representations for spheri-
cal distributions of radiance hold the potential to improve heuristic global
illumination approaches [Papaioannou 2011].
Concerning our work on transient imaging, we are anticipating its imple-
mentation in commercial products. If cheap and fast transient imaging
becomes widely available in mobile devices, it can aid tasks in computa-
tional photography, computer vision [Wu et al. 2014] and non-line-of-sight
imaging [Velten et al. 2012]. To enable the implementation on a broad
range of hardware, future work should investigate further ways to robustly
construct sinusoidal modulation signals from the signals supported by the
hardware. Registration between trigonometric moment images captured at
slightly different times in dynamic scenes is another promising endeavor
[Lefloch et al. 2013].
We are looking forward to a long-lasting era of moments in graphics.
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Appendix A
Overview of Previously

Unpublished Contributions

The contents of this dissertation go beyond the contents of the three pub-
lications listed in Section 1.1. There are many minor contributions that
have not been published in a peer-reviewed paper yet. Most of them are
designated to become part of the invited extension of the most recent pa-
per [Peters et al. 2016] in the Journal of Computer Graphics Techniques.
For the convenience of readers who have already read the original publica-
tions, we provide a complete overview of these contributions in the present
Section.
In addition to these contributions, the related work sections have been
extended to include more recent publications.

A.1 Moment Shadow Mapping
Here we describe previously unpublished contributions pertaining to con-
tents of the first paper on moment shadow mapping [Peters and Klein 2015].

Evaluation of Candidate Techniques (Section 3.4) The evaluation of
candidate techniques in the paper has been distorted systematically by inap-
propriately large default tolerances in the used linear programming solvers.
Therefore, we repeated the evaluation with lower error tolerances on a sub-
set of 6605 randomly selected candidate techniques.

Accounting for Rounding Errors Explicitly (Section 4.1.3) We have
found that linear programming can incorporate the rounding errors in the
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provided power moments as inequality constraints. This observation and
the comparisons it leads to (see Figure 4.2) are novel.

Biasing for the Worst Case (Section 4.1.3) The vector of biasing mo-
ments b? in the paper is optimized for a particular average case. However,
it cannot guarantee good results in all cases. It corresponds to a depth
distribution with support at the two boundaries of the domain of depth
values. If biasing is applied to a vector of moments with the same property,
biasing may fail to result in a valid vector of moments. To achieve greater
robustness, the new vector of biasing moments is optimized for the worst
case and incorporates the effect of the quantization transform.

Signed Depth (Section 4.1.5) In the paper depth is consistently defined
as a quantity in the interval [0, 1]. Throughout the dissertation we define
it in the interval [−1, 1] because we found that this provides substantially
increased numerical stability. When storing the power moments in single-
precision floats, light leaking is reduced due to a weaker moment bias αb.

Optimized Quantization Transform (Section 4.1.4) The globally op-
timal quantization transform proposed in the original paper uses a 4 × 4
matrix without vanishing entries. As a consequence of the use of signed
depth values, it is now possible to use a quantization transform which is
only slightly worse while having eight vanishing entries. This reduces the
computational complexity.

sRGB and Overdarkening (Section 4.2) Imagery shown in the original
paper used linear colors. Throughout the dissertation, all shown images
are in sRGB. This conversion does strengthen the perceived light leaking
considerably and we discuss this effect. As a countermeasure we use over-
darkening as proposed by Annen et al. [2007].

Comparisons to Exponential Variance Shadow Mapping (Section 4.2)
The original paper discussed exponential variance shadow mapping but it
was not included in competitive comparisons. We now provide extensive
comparisons to exponential variance shadow mapping with 64 and 128 bits
per texel.

More Robust Trigonometric Moment Shadow Mapping (Appendix
B.4.2) The implementation of trigonometric moment shadow mapping in
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the paper used Cramer’s rule to compute C−1(c) ·c(π ·z). The implementa-
tion used for evaluation in the dissertation uses a complex Cholesky decom-
position. This results in improved robustness and makes 64-bit trigonomet-
ric moment shadow mapping superior to 64-bit Hamburger moment shadow
mapping in terms of light leaking. Still, a few robustness issues remain and
the technique is too slow for serious use.

Optimizations (Section 4.2.2) All evaluated techniques are implemented
more efficiently now. A list of all major optimizations follows:

• Common shadow maps are now created as depth buffer rather than
by rendering to a render target,

• Filterable shadow maps are created during a custom resolve of a mul-
tisampled depth buffer rather than by rendering to a render target,

• Mipmap hierarchies for filterable shadow maps are only created when
they are needed, i.e. only for the texture that arises after all other
filtering operations,

• The optimized quantization transform with the eight vanishing entries
is used for moment shadow mapping.

The new run time measurements include higher output resolutions.

A.2 Applications of Moment Shadow Mapping
Next we discuss previously unpublished contributions which apply specif-
ically to our three novel applications of moment shadow mapping [Peters
et al. 2016]. Note that the point about sRGB and overdarkening above also
applies here.

A.2.1 Translucent Occluders
More Comparisons (Section 5.3) We now compare our approach to anal-
ogous approaches with variance shadow mapping and exponential variance
shadow mapping using 64 or 128 bits per texel.

Discussion of Rounding Errors (Section 5.3) The potential of increased
rounding errors due to alpha blending is discussed now.
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A.2.2 Soft Shadows
Blocker Search (Section 6.3) In the original paper we recommend using
the biased fragment depth as input to the moment-based blocker search.
This does in fact degrade the quality of the results in situations with three
surfaces in the search region. Therefore, we now use the unbiased fragment
depth.

Adaptive Depth Biasing (Section 6.4) In the original paper the depth
bias was a global constant. Now we increase the depth bias in proportion
to the filter size to diminish the artifacts shown in Figure 6.5.

Optimizations (Section 6.6.2) The implementation of moment soft shadow
mapping and naïve variance soft shadow mapping has become more efficient
because it no longer generates a mipmap hierarchy for the summed-area ta-
ble. Mipmaps are not needed for filtering because the summed-area table
supports arbitrary rectangular filter regions. They may still be used to im-
prove cache efficiency but we opted against this because the overhead for
their generation is significant. The optimizations listed for moment shadow
mapping above are inherited.

A.2.3 Single Scattering
Adaptive Overestimation (Section 7.3.1) For results in the paper we
consistently used β = 0.5. Now we describe adaptive overestimation as an
efficient way to diminish leaking at epipoles.

Improved Six Moment Shadow Mapping (Section 7.4) Our implemen-
tation of six moment shadow mapping has become more efficient and more
robust. Just like four moment shadow mapping, it now uses signed depth
and a quantization transform where half of the entries vanish. Addition-
ally, the cubic equation is solved more efficiently now. This solution also
eliminates the artifacts that used to arise when the leading coefficient was
small.

Further Optimizations (Section 7.5.2) The implementation of all vari-
ants of prefiltered single scattering has become faster for various reasons:

• Mipmap hierarchies are only created when they are needed, i.e. for
the prefiltered convolution or moment shadow map,
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• Rectification is now done in a separate pixel shader pass rather than
doing it on the fly as part of the compute shader that generates prefix
sums. This way, parallelism for the computationally intense steps is
improved,

• The compute shader generating the prefix sums has been optimized
(see Section C.3.2).

A.3 Transient Imaging
Since our publication on transient imaging [Peters et al. 2015] is in a jour-
nal already, we have not revisited as many aspects as for moment shadow
mapping and its applications. Nonetheless, there is one noteworthy contri-
bution.

Efficient Computation of Cumulative Transient Images (Sections 8.2.3
and 8.4.4) In the paper we propose to compute cumulative transient im-
ages using numerical quadrature. Since impulse responses are often strongly
localized, this required roughly 105 samples for sound results. Here we de-
scribe a closed-form solution for computation of cumulative transient im-
ages. The only step which cannot be done with a closed form for m > 4
is polynomial root finding. To build up to this solution, we interpret the
maximum entropy spectral estimate in terms of its poles.





Appendix B
Derivations and Proofs

B.1 Optimal Biasing for Moment Shadow
Mapping

In Section 4.1.3 we explain our biasing strategy for moment shadow map-
ping. Though, we have not described the details of determining the vector of
biasing moments b? ∈ Rm+1. We now deliver a discussion of this procedure
for the various cases.
Our motivation in Section 4.1.3 explains that we are looking for a vector
of biasing moments that corresponds to a depth distribution on [−1, 1],
i.e. b? ∈ conv b([−1, 1]) by Proposition 2.5. At the same time we want to
maximize the minimal distance to the topological boundary1 of the domain
of valid vectors of moments ∂ conv b(R). Speaking formally, we need to
compute a b? ∈ conv b([−1, 1]) maximizing the functional

R∂(b?) := inf
b∈∂ conv b(R)

‖b− b?‖2.

Although we only need to solve it once, this optimization problem is too
complex to be approached with complete brute force. To make it tractable,
we first reduce the dimensionality of the set that could be containing the
optimal b?.

Proposition B.1. The functional R∂ is concave on conv b(R). Maximizing
it is accomplished with a vector b? ∈ conv b([−1, 1]) where all odd power
moments vanish, i.e.

b? = (b?0, 0, b?2, 0, . . . , b?m)T.
1We define this boundary using the subspace topology in {1} × Rm.
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Furthermore, the entry b?m can be chosen maximal in the sense that any
greater value would immediately violate b? ∈ conv b([−1, 1]).

Proof. To prove the concavity of R∂, we represent it using signed distances
to hyperplanes. Consider the set of hyperplanes having b(R) in their non-
negative half-space:

H := {(ν, d) ∈ Rm+1 × R | ν0 = 0, ‖ν‖2 = 1, ∀z ∈ R : νT · b(z) + d ≥ 0}

For all b? ∈ conv b(R) and (ν, d) ∈ H we know νT · b? + d ≥ 0 and we can
rewrite R∂ as minimal signed distance to a hyperplane that is tangent to
the convex hull:

R∂(b?) = inf
(ν,d)∈H

νT · b? + d

Now we verify the concavity for arbitrary b?, b′? ∈ conv b(R) and λ ∈ [0, 1]:

R∂(λ · b? + (1− λ) · b′?)
= inf

(ν,d)∈H
νT · (λ · b? + (1− λ) · b′?) + d

= inf
(ν,d)∈H

λ · (νT · b? + d) + (1− λ) · (νT · b′? + d)

≥ inf
(ν,d)∈H

λ · (νT · b? + d) + inf
(ν,d)∈H

(1− λ) · (νT · b′? + d)

= λ ·R∂(b?) + (1− λ) ·R∂(b′?)

Let b? ∈ conv b(R). By Proposition 2.5 there exists a distribution Z on R
such that b? = EZ (b). We consider the flipped vector

b′? := EZ (b(−z)) = (b?0, −b?1, b?2, −b?3, . . . , b?m)T.

By Proposition 2.5, this vector is still in conv b(R). Applying the same
transform to the nearest point on the boundary yields R∂(b?) = R∂(b′?).
Now we exploit the concavity of R∂ to conclude

R∂((b?0, 0, b?2, 0, . . . , b?m)T) = R∂

(
b? + b′?

2

)
≥ R∂(b?) +R∂(b′?)

2 = R∂(b?).

Combining Propositions 2.5 and 2.8, we know that b ∈ Rm+1 is in conv b(R)
if and only if the Hankel matrix B(b) is positive semi-definite. For all
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b ∈ conv b(R) and εm ≥ 0 we observe

detB(b+ εm · em) = detB(b) + det


b0 · · · bm

2 −1 0

b1 . .
. ...

...
... . .

. ... 0
bm

2
· · · bm−1 εm


= detB(b) + εm · detB((b0, b1, . . . , bm−2)T) ≥ detB(b).

Thus, the determinant of B(b) grows monotonically as the last power mo-
ment bm is increased. The determinant of the main minors of B(b) is com-
pletely independent of the last power moment. In consequence, the matrix
remains positive semi-definite and thus

b ∈ conv b(R) ⇒ b+ εm · em ∈ conv b(R).

Now for a point b? ∈ conv b([−1, 1]), consider an open ball of radius R∂(b?)
centered around b?. By definition, it lies completely within conv b(R) and
hence the same holds for a ball of radius R∂(b?) around b? + εm · em. We
conclude

R∂(b? + εm · em) ≥ R∂(b?).

Proposition B.1 reduces the dimensionality of the relevant search space
considerably. We know that b?0 has to be one, odd moments have to be zero
and the last moment b?m has to be maximal. For m = 4 only b?2 remains
to be optimized, for m = 6 it is b?2 and b?4. The concavity of R∂ could be
exploited for an efficient optimization but in such a small search space it is
easier to use brute force.
We begin with the case m = 4 and start by determining the maximal
admissible value for b?4. Let Z be a distribution on [−1, 1] and b? := EZ (b).
Then we know

b?4 = EZ (b4) = EZ
(
z4
)

= EZ
(
|z|2 · |z|2

)
≤ EZ

(
|z|2 · 1

)
= b?2.

This bound is sharp with equality if Z = b?
2
2 · (δ−1 + δ1) + (1− b?2) · δ0:

EZ (b4) = b?2
2 · (1 + 1) + 0 = EZ (b2)

At the same time this distribution realizes b?0 = 1 and b?1 = b?3 = 0. Thus,
the optimal vector of biasing moments for the case m = 4 takes the form

b? = (1, 0, b?2, 0, b?2)T. (B.1)
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A brute-force search leads to the optimum

b? = (1, 0, 0.375, 0, 0.375)T.

To incorporate the quantization transform Θ?
4 into our considerations, we

change the functional that is maximized to

inf
b∈∂ conv b(R)

‖Θ?
4(b)−Θ?

4(b?)‖2.

Thanks to the special structure of the transform in Equation (4.4), all
arguments used above carry over and the optimal solution still has the
structure shown in Equation (B.1). Another brute-force optimization with
the new functional then leads to

b? = (1, 0, 0.628, 0, 0.628)T.

Next we derive the bias for m = 6 using the optimal quantization from
Section 7.4.3. Again we start by maximizing b?6 in closed form. According
to Krĕın and Nudel’man [1977, p. 62 f.] b? ∈ Rm+1 is in conv b([−1, 1]) if
and only if B(b?) is positive semi-definite andb

?
0 − b?2 b?1 − b?3 b?2 − b?4
b?1 − b?3 b?2 − b?4 b?3 − b?5
b?2 − b?4 b?3 − b?5 b?4 − b?6


is also positive semi-definite. We substitute in our prior knowledge about
the structure of an optimal b? and then demand that all main minors have
positive determinant:

det
(
1− b?2

)
≥ 0

⇒ b?2 ≤ 1

det
(

1− b?2 0
0 b?2 − b?4

)
≥ 0

⇒ b?4 ≤ b?2

det

 1− b?2 0 b?2 − b?4
0 b?2 − b?4 0

b?2 − b?4 0 b?4 − b?6

 ≥ 0

⇒ (b?4 − b?6) · (b?2 − b?4) · (1− b?2)− (b?2 − b?4)3 ≥ 0
⇒ (b?4 − b?6) · (1− b?2) ≥ (b?2 − b?4)2

⇒ b?6 ≤ b?4 −
(b?2 − b?4)2

1− b?2
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Thus, an optimal bias has the structure

b? =
(

1, 0, b?2, 0, b?4, 0, b?4 −
(b?2 − b?4)2

1− b?2

)T

.

Performing brute-force optimization on b?2, b?4 leads to

b? := (0, 0.5566, 0, 0.489, 0, 0.47869382)T.

B.2 Scale and Translation Invariance of
Hamburger Moment Shadow Mapping

In Section B.2 we have claimed that Hamburger moment shadow mapping
is the only shadow mapping technique based on Problem 3.1 for which
changes of the near and far clipping planes do not change the outcome
unless geometry is clipped. Below we make this statement precise and
provide a proof.
We observe that the information conveyed by a filterable shadow map only
depends upon the space 〈a0, . . . , am〉 spanned by the component functions of
its moment-generating function. If two different moment-generating func-
tions span the same space, a linear transform maps the corresponding gen-
eral moments onto each other. To ensure that a technique is invariant under
scaling and translation of depth values, this space has to be invariant under
these operations. Only spaces of polynomials have this property:

Proposition B.2. Let V be an (m + 1)-dimensional vector space of func-
tions f : R→ R. The space V has the property

∀f ∈ V, x ∈ R \ {0}, y ∈ R : z 7→ f(x · z + y) ∈ V (B.2)

if and only if V = 〈b0, . . . ,bm〉, i.e. V consists of all polynomials up to
degree m.

Proof. “⇐” Let V = 〈b0, . . . ,bm〉.
Then f(x · z + y) is the concatenation of a linear polynomial with a poly-
nomial of degree m or less and thus still a polynomial of degree m or less.
“⇒” Suppose Statement (B.2) holds.
Let f ∈ V and for ε > 0 consider the divided difference

f(z + ε)− f(z)
ε

.
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Due to Statement (B.2), f(z + ε) is a function in V and since V is a vector
space, the entire divided difference is also in V. Since V is finite-dimensional,
this is also true for the limit

f ′(z) = lim
ε→0

f(z + ε)− f(z)
ε

.

In particular, f is differentiable. The differential d acts as a linear operator
d : V→ V. Let λ ∈ C be an eigenvalue of d with eigenvector v ∈ V where
v(0) = 1.
Suppose λ 6= 0: Then the initial value problem v′ = λ ·v with v(0) = 1 has
the unique solution v(z) = exp(λ · z). However, the functions

exp(λ · x · z) = exp(λ · z)x

are linearly independent for different values of x ∈ N. Still all of them lie
in V contradicting our knowledge that V has dimension m+ 1.
Thus, d only has vanishing eigenvalues and therefore it is a nilpotent oper-
ator. In consequence, dm+1 f = 0 for all f ∈ V and therefore f has to be a
polynomial of degree m or less.

B.3 Hausdorff Moment Shadow Mapping
Hamburger moment shadow mapping is not among the candidate tech-
niques evaluated in Section 3.4 because it does not incorporate the prior
knowledge that I = [−1, 1]. Incorporating this knowledge yields Hausdorff
moment shadow mapping which gives identical results in most cases but
better results in others. Generation of the moment shadow map, quantiza-
tion and biasing are the same as for Hamburger moment shadow mapping.
Only the solution to Problem 3.1 works differently.
We recall that Algorithm 4.1 constructs a distribution with m

2 + 1 points of
support. If all points of support lie in [−1, 1], this distribution provides the
optimal solution but to describe all cases, we need another version of the
Markov-Krĕın theorem.

Theorem B.3 (Markov-Krĕın for I = [−1, 1]). Let b ∈ conv b([−1, 1]) such
that B(b) is positive definite and let zf ∈ R. Then there exists exactly one
probability distribution S ∈ P([−1, 1]) with ES (b) = b having support at zf
and either at m

2 additional points or at −1, 1 and m
2 − 1 additional points.

It solves Problem 3.1, i.e.

S(zf > z) = G[−1,1],b(b, zf ) = inf
S′∈P([−1,1])
ES′ (b)=b

S ′(zf > z).
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As in Theorem 4.1, the corresponding optimal upper bound is attained when
we include the support at zf .

Proof. We refer to the literature for proofs of existence [Krĕın and Nudel’man
1977, p. 58, 79] and optimality [Krĕın and Nudel’man 1977, p. 125 f.].

In the case with support at zf and m
2 additional points, Algorithm 4.1 is

capable of constructing the relevant distribution but we need a new algo-
rithm for the other case. For simplicity we restrict this derivation to the
case m = 4. Again the difficulty lies in the computation of the points of
support. However, only m

2 − 1 = 1 point is unknown.

Proposition B.4. Let z0 := −1, z1 ∈ [−1, 1], z2 = zf ∈ [−1, 1] and z3 = 1
be pairwise different and let w0, w1, w2, w3 > 0. Let S := ∑3

l=0wl · δzl
and

let b := ES (b) with b0 = 1. Then

z1 = (b1 − b3) · zf + b4 − b2

(1− b2) · zf + b3 − b1
. (B.3)

Proof. Since b = ES (b), the following matrix has to be singular:

(A | b) :=


1 1 1 1 1
−1 z1 zf 1 b1
1 z2

1 z2
f 1 b2

−1 z3
1 z3

f 1 b3
1 z4

1 z4
f 1 b4


Then det(A | b) is a polynomial in z1 and zf . Obviously, it has roots for
z1 ∈ {−1, zf , 1} as well as zf ∈ {−1, 1} but since −1, z1, zf , 1 are pairwise
different, none of them is relevant. We perform polynomial division to
remove them and obtain

0 = det(A | b)
2 · (z1 + 1) · (z1 − zf ) · (z1 − 1) · (zf + 1) · (zf − 1)

= z1 · ((1− b2) · zf + b3 − b1) + (b3 − b1) · zf + b2 − b4.

This expression cannot be zero for all values of z1 because otherwise

b ∈ 〈b(−1), b(zf ), b(1)〉

and that would contradict w1 6= 0. Thus, we can solve for z1 and obtain
Equation (B.3).
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Algorithm B.1 Hausdorff moment shadow mapping, i.e. the solution to
Problem 3.1 for m = 4, a = b and I = [−1, 1].
Input: Power moments b ∈ conv b([−1, 1]), fragment depth zf ∈ [−1, 1].
Output: The lower bound G[−1,1],b(b, zf ) as defined in Problem 3.1 or
failure.

1. If B(b) is not positive definite: Indicate failure.

2. Solve B(b) · q = b̂(zf ) for q ∈ R3.

3. Solve q2 · z2 + q1 · z+ q0 = 0 for z. If solutions −1 ≤ z1 < z2 ≤ 1 exist:

a) Set A := (b̂(zf ), b̂(z1), b̂(z2)) ∈ R3×3.
b) Solve A · w = (b0, b1, b2)T for w ∈ R3.
c) Return ∑2

l=1, zl<zf
wl.

4. Otherwise:

a) Set

z1 := (b1 − b3) · zf + b4 − b2

(1− b2) · zf + b3 − b1
.

b) Solve the following system of linear equations for w ∈ R4:
1 1 1 1
−1 z1 zf 1
1 z2

1 z2
f 1

−1 z3
1 z3

f 1

 · w =


1
b1
b2
b3



c) Return w0 +
w1 if z1 < zf ,

0 otherwise.
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Combining this result with Algorithm 4.1 we obtain Algorithm B.1.

Proposition B.5. If it does not indicate failure, Algorithm B.1 solves Prob-
lem 3.1 correctly.

Proof. We distinguish two cases for the two branches of the algorithm.
Case 1: The algorithm terminates in Step 3c):
We observe that the algorithm performs the exact same steps as Algorithm
4.1 except that it ensures that zf , z1, z2 ∈ [−1, 1]. Thus, the optimal distri-
bution on R is in fact a distribution on [−1, 1] and also provides the optimal
solution there.
Case 2: The algorithm terminates in Step 4c):
By Theorem B.3, the optimal distribution S on [−1, 1] must have support
at −1, zf , 1 and one additional point z1 because if it had exactly three
points of support, Case 1 would be present. Thus, we are in the situation
of Proposition B.4 and Step 4a) computes z1 correctly. Let

S := w0 · δ−1 + w1 · δz1 + w2 · δzf
+ w3 · δ1.

The system of linear equations in Step 4b) is equivalent to ES (bj) = bj
for all j ∈ {0, 1, 2, 3}. Since −1, z1, zf , 1 are pairwise different, this Van-
dermonde system determines the weights w0, w1, w2, w3 uniquely. Finally,
S(zf > z) is returned.

The efficient computation of the shadow intensity in the new branch is
non-trivial but we describe a fast solution in Appendix C.2.

B.4 Trigonometric Moment Shadow Mapping
In terms of quality, trigonometric moment shadow mapping is the best
shadow mapping technique to date when using 64 bits per shadow map
texel (Section 4.2.1). On the other hand, our algorithm for it has a sub-
stantial computational complexity (Section 4.2.2). At 64 bits per texel, it is
significantly slower than the superior Hamburger moment shadow mapping
with 128 bits per texel. Thus, this technique is ultimately a dead end2. It is
interesting to study but not useful in practice for reasons that we consider
inevitable.

2We derived trigonometric moment shadow mapping in hopes that it would be appli-
cable to shadow mapping and transient imaging. Though, shortly after completing the
algorithm for trigonometric moment shadow mapping, we came across the maximum en-
tropy spectral estimate, which provides a more appropriate solution for transient imaging
in every regard.
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B.4.1 Derivation
In the following, we derive our novel algorithm for trigonometric moment
shadow mapping. More precisely, we solve Problem 3.1 for I = [−1, 1] and

a(z) := (1, cos(π · z), sin(π · z), cos(2 · π · z), sin(2 · π · z))T.

It is far more involved than the algorithm for Hamburger moment shadow
mapping and since the end result is not useful, we do not provide a rigorous
derivation. However, we have validated the results by means of extensive
comparisons to Algorithm 3.1 and could not find any discrepancies.

To solve the problem, we view the given general moments as complex
trigonometric moments. Rather than working with the a(z) above, we
work with c(π · z). Correspondingly, we set m := 2 because four real gen-
eral moments fit into two complex trigonometric moments. It is convenient
to define

ϕ := π · z ∈ [−π, π] . (B.4)

Rather than working with depth distributions, we will be working with
phase distributions that are related to depth distributions by Equation
(B.4).

We note that the Toeplitz matrix C(c) has to be positive semi-definite. If
it is singular, Algorithm 8.2 provides the solution. Thus, we only consider
the case of a positive-definite Toeplitz matrix C(c).

As for the solution of Hamburger moment shadow mapping, distributions
with m+ 1 = 3 points of support play a crucial role. Krĕın and Nudel’man
[1977, p. 149] prove their existence for positive-definite C(c) and arbitrary
prescribed points of support. Their construction is completely analogous to
the construction for Hamburger moment shadow mapping in Proposition
4.2.

Proposition B.6. Let ϕ0, . . . , ϕm ∈ (−π, π] be pairwise different and let
w0, . . . , wm > 0 with ∑m

l=0wl = 1. Let S = ∑m
l=0wl · δϕl

and c = ES (c).
Then for all l ∈ {1, . . . ,m}

c∗(ϕl) · C−1(c) · c(ϕ0) = 0.

Furthermore, the weight l ∈ {0, . . . ,m} is given by

wl = 1
c∗(ϕl) · C−1(c) · c(ϕl)

.
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Proof. We note that C(c) is regular by Proposition 2.13. Let

A := (c(ϕ0), . . . , c(ϕm)) ∈ C(m+1)×(m+1).

This matrix is a square Vandermonde matrix and since exp(i·ϕ0), . . . , exp(i·
ϕm) are pairwise different, it is invertible. We recall from Proposition 2.11
on page 26 that C(c) = ES (c · c∗) and thus:

A−1 · C(c) · A−∗ = A−1 · ES (c · c∗) · A−∗

= A−1 ·
(

m∑
l=0

wl · c(ϕl) · c∗(ϕl)
)
· A−∗

=
m∑
l=0

wl ·
(
A−1 · c(ϕl)

)
·
(
A−1 · c(ϕl)

)∗
=

m∑
l=0

wl · el · e∗l = diag(w0, . . . , wm)

Then the inverse matrix A∗ · C−1(c) · A is still a diagonal matrix and thus
for all l ∈ {1, . . . ,m}

c∗(ϕl) · C−1(c) · c(ϕ0) = (A∗ · C−1(c) · A)l,0 = 0.

For the weights we observe

c∗(ϕl) · C−1(c) · c(ϕl) = (A∗ · C−1(c) · A)l,l = w−1
l .

This proposition immediately leads to Algorithm B.2. From the proposition
it is clear that the algorithm provides the correct result if it terminates. The
fact that it terminates follows from the existence of the output distribution
[Krĕın and Nudel’man 1977, p. 149].
For Hamburger moment shadow mapping, the analog to Algorithm B.2
already solves Problem 3.1 by the Markov-Krĕın Theorem 4.1. This is
however not the case for the trigonometric moment problem. The Markov-
Krĕın theorem does not apply and optimal solutions to Problem 3.1 do
indeed have a more complicated structure. Based on observations on the
output of Algorithm 3.1, we make the following conjecture.

Conjecture B.7. Let c ∈ Cm+1 such that the Toeplitz matrix C(c) is posi-
tive definite. Then a phase distribution S on (−π, π] minimizing S((−π, ϕf ))
may be chosen to have support at ϕf , π and at most m additional points in
(−π, π]. The support at either ϕf or π may vanish.
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Algorithm B.2 Reconstruction of a phase distribution with m+ 1 points
of support matching m trigonometric moments.
Input: Trigonometric moments c ∈ Cm+1 such that C(c) is positive definite
and a prescribed point of support ϕf := π · zf ∈ (−π, π].
Output: A distribution S on (−π, π] with ES (c) = c and support at ϕf .

1. Solve C(c) · q = c(ϕf ) for q ∈ Cm+1.

2. Solve ∑m
j=0 qj · xj = 0 for x and denote the distinct solutions by

x1, . . . , xm ∈ C.

3. For all l ∈ {1, . . . ,m} set ϕl := arg xl ∈ (−π, π], i.e.

|xl| · exp(i · ϕl) = xl.

4. Set A := (c(ϕf ), c(ϕ1), . . . , c(ϕm)) ∈ C(m+1)×(m+1).

5. Solve A · w = c for w ∈ Rm+1.

6. Return ∑m
l=0wl · δϕl

.

For Hamburger moment shadow mapping solutions have a similar structure
but without support at π. Intuitively, this difference is plausible. The
trigonometric moment-generating function c is periodic. There is no reason
why the minimizing distribution should have support at one end of the
interval (−π, ϕf ) but not at the other. And for minimization this support
has to be placed at π rather than −π, which does not make a difference for
the trigonometric moments since c(−π) = c(π).

Unfortunately, this different structure introduces one additional degree of
freedom, namely the probability w3 := S({π}). Determining this degree
of freedom is non-trivial and we have only found a closed-form solution for
m = 2. In the following we let S := ∑3

l=0wl · δϕl
denote an optimal solution

with w0, w1, w2 ∈ [0, 1], ϕ1, ϕ2 ∈ (−π, π] with ϕ1 < ϕ2, ϕ0 := ϕf := π ·zf ∈
[−π, π] and ϕ3 := π.

Suppose we know the optimal value for w3. Then we can remove its con-
tribution to the trigonometric moments by computing c − w3 · c(ϕ3). The
corresponding distribution S−w3·δϕ3 has support at no more thanm+1 = 3
points of support. If there are two or fewer points of support, Algorithm
8.2 serves to reconstruct it. Otherwise, ϕf has to be one of the points of
support and Algorithm B.2 is applicable.
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The challenge lies in determining the w3 that minimizes

S((−π, ϕf )) =


0 if ϕf ≤ ϕ1,
w1 if ϕ1 < ϕf ≤ ϕ2,
w1 + w2 if ϕ2 < ϕf .

(B.5)

The case ϕf ≤ ϕ1 is trivial. In the case ϕ2 < ϕf we need to minimize
w1 + w2. By Proposition B.6 we can write this as

w1+w2 = 1−w0−w3 = 1− 1
c∗(ϕf ) · C−1(c− w3 · c(ϕ3)) · c(ϕf )

−w3. (B.6)

The following Lemma allows us to make the dependence on w3 more explicit.

Lemma B.8. Let c ∈ Cm+1, w3 ∈ [0, 1] and ϕ3 ∈ (−π, π] such that C(c)
and C(c− w3 · c(ϕ3)) are both invertible. Then

C−1(c− w3 · c(ϕ3)) = C−1(c) + w3 · C−1(c) · c(ϕ3) · c∗(ϕ3) · C−1(c)
1− w3 · c∗(ϕ3) · C−1(c) · c(ϕ3) .

Proof sketch. The proof can be completed by multiplying the Toeplitz ma-
trix C(c)−w3 ·c(ϕ3) ·c∗(ϕ3) by its claimed inverse. Expanding the product,
the first term is the identity matrix I. The other three terms all contain
the matrix factor w3 · c(ϕ3) · c∗(ϕ3) · C−1(c). After factoring it out, it is
evident that the scalar prefactor of this matrix evaluates to zero.

For the sake of more compact expressions, we introduce the function

Q(ϕ, ψ) := c∗(ϕ) · C−1(c) · c(ψ).

Applying Lemma B.8 to Equation (B.6), we obtain

w1 + w2 = 1− 1
Q(ϕf , ϕf ) + w3 · |Q(ϕ3,ϕf )|2

1−w3·Q(ϕ3,ϕ3)

− w3.

The dependence on w3 is now explicit enough to compute critical points.
We take the derivative with respect to w3 and compute two roots for w3:

w3 = ±|Q(ϕ3, ϕf )| −Q(ϕf , ϕf )
|Q(ϕ3, ϕf )|2 −Q(ϕf , ϕf ) ·Q(ϕ3, ϕ3)

Inserting + for ± minimizes w1 +w2 whereas − maximizes this probability.
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The most involved case is the one where ϕ1 < ϕf ≤ ϕ2 and we need to
minimize w1. To this end, we ask for the value of w1 as function of the
unknown ϕ1. We note that S−w1 · δϕ1 is a distribution with at most three
points of support representing c− w1 · c(ϕ1). Assuming a positive-definite
Toeplitz matrix, Proposition B.6 implies

c∗(ϕf ) · C−1(c− w1 · c(ϕ1)) · c(ϕ3) = 0.

By Lemma B.8, we can rewrite this as

Q(ϕf , ϕ3) + w1 ·Q(ϕf , ϕ1) ·Q(ϕ1, ϕ3)
1− w1 ·Q(ϕ1, ϕ1) = 0.

Solving for w1 yields

w1 = Q(ϕf , ϕ3)
Q(ϕf , ϕ3) ·Q(ϕ1, ϕ1)−Q(ϕf , ϕ1) ·Q(ϕ1, ϕ3) . (B.7)

The numerator in Equation (B.7) is independent of ϕ1. To find extrema
with respect to ϕ1, it suffices to find extrema of the denominator. This
denominator is a linear combination of exp(−2 · i · ϕ1), . . . , exp(2 · i · ϕ1).
Substituting x := exp(i · ϕ1) and multiplying by x2 6= 0, this becomes a
quartic polynomial. Its roots can be computed in closed form albeit at
considerable cost. Having all critical points, the ϕ1 minimizing w1 can be
found through Equation (B.7) and Algorithm B.2 serves to complete S.
Thus, we now have a closed-form expression for the minimizing S in all
cases. However, unless we want to try each case, we need a means of deter-
mining which case is present. Experiments with Algorithm 3.1 showed that
there is a very simple way to do this. Running Algorithm B.2 with input c
and ϕf = π, we obtain a distribution with support at points ϕ1, ϕ2 and π.
Using these phases for ϕ1, ϕ2 in Equation (B.5) correctly distinguishes the
various cases.

B.4.2 Implementation
Implementing the algorithm derived above is cumbersome. Rather than
discussing the details here, we note that an HLSL implementation has been
published in the supplementary material of the original paper [Peters and
Klein 2015]. The only change made to this code since then, is that the
current implementation uses a Cholesky-decomposition whenever it needs
to invert a Toeplitz matrix. Doing so considerably improves robustness.
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Trigonometric moments use the available range of values extensively and we
do not require an optimized quantization transform as for moment shadow
mapping (Section 4.1.4). However, we do apply biasing. The natural choice
for the vector of biasing moments is e0 = (1, 0, 0)T because this is the only
vector that is invariant under cyclic shifts of the depth-domain. For 64-bit
trigonometric moment shadow mapping we use αc := 6 · 10−5 and at 128
bits we use αc = 9 · 10−7. The biased vector of trigonometric moments is
defined by

c′ := (1− αc) · c+ αc · e0.

B.5 Maximum Entropy Spectral Estimate
The maximum entropy spectral estimate described in Theorem 8.2 is at
the core of our work on transient imaging. It was first introduced by Burg
[1975]. Here we provide a correctness proof in a manner that is consistent
with other proofs in our work. The underlying ideas go back to the work
of Burg [1975] and Landau [1987].
Before we can prove the theorem itself, we need two lemmata. The first one
helps us to prove that the reconstructed density D is well-defined and aids
in the computation of its trigonometric moments. It is concerned with the
poles shown in Figure 8.1d.

Lemma B.9. Let c ∈ Cm+1 such that C(c) is a positive-definite Toeplitz
matrix. Let b : C → Cm+1 with bj(x) := xj. Then all roots of the poly-
nomial e∗0 · C−1(c) · b lie outside the unit circle, i.e. they have magnitude
greater one.

Proof. This proof is analogous to the proof of Landau [1987, Proposition 1,
p. 51 f.]. Let x0 ∈ C be a root, i.e. e∗0 · C−1(c) · b(x0) = 0. Let p ∈ Cm

hold the conjugate coefficients of the polynomial resulting from division of
e∗0 · C−1(c) · b(x) by the linear factor (x− x0), i.e.:

∀x ∈ C : e∗0 · C−1(c) · b(x) = (x− x0) ·
(
p
0

)∗
· b(x)

⇔ ∀x ∈ C : e∗0 · C−1(c) · b(x) =
(

0
p

)∗
· b(x)− x0 ·

(
p
0

)∗
· b(x)

⇔ C−1(c) · e0 =
(

0
p

)
− x0 ·

(
p
0

)

⇔ x0 ·
(
p
0

)
=
(

0
p

)
− C−1(c) · e0 (B.8)
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Now we consider the dot product and norm induced by the Hermitian,
positive-definite matrix C(c):

〈·, ·〉C(c) : Cm+1 × Cm+1 → C ‖·‖C(c) : Cm+1 → R

u, v 7→ u∗ · C(c) · v u 7→
√
u∗ · C(c) · u

With respect to this dot product, the vectors
(

0
p

)
and C−1(c) · e0 are or-

thogonal:〈(
0
p

)
, C−1(c) · e0

〉
C(c)

=
(

0
p

)∗
· C(c) · C−1(c) · e0 =

(
0
p

)∗
· e0 = 0 (B.9)

Furthermore,
(

0
p

)
and

(
p
0

)
have the same norm due to the special structure

of the Toeplitz matrix C(c):∥∥∥∥∥
(

0
p

)∥∥∥∥∥
2

C(c)
=

m∑
j,k=1

pj−1 · Cj,k(c) · pk−1 =
m−1∑
j,k=0

pj · Cj+1,k+1(c) · pk

=
m−1∑
j,k=0

pj · Cj,k(c) · pk =
∥∥∥∥∥
(
p
0

)∥∥∥∥∥
2

C(c)
(B.10)

To complete the proof, we apply the norm on both sides of Equation (B.8):∥∥∥∥∥x0 ·
(
p
0

)∥∥∥∥∥
2

C(c)
=
∥∥∥∥∥
(

0
p

)
− C−1(c) · e0

∥∥∥∥∥
2

C(c)

(B.9)⇔ |x0|2 ·
∥∥∥∥∥
(
p
0

)∥∥∥∥∥
2

C(c)
=
∥∥∥∥∥
(

0
p

)∥∥∥∥∥
2

C(c)
+
∥∥∥C−1(c) · e0

∥∥∥2

C(c)

(B.10)⇔ |x0|2 = 1 +
‖C−1(c) · e0‖2

C(c)∥∥∥∥∥
(
p
0

)∥∥∥∥∥
2

C(c)

> 1

The next Lemma is concerned with the correctness of Algorithm B.3 which
implements the inverse of the map implemented by Levinson’s Algorithm.
This is potentially useful by itself but the main reason why we care about
it is that it establishes that the relation between c and q := C−1(c) · e0 is
bijective.
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Algorithm B.3 Inverse of Levinson’s Algorithm 8.1.
Input: q := C−1(c) ·e0 ∈ Cm+1 where C(c) is a Hermitian, positive-definite
Toeplitz matrix.
Output: c = C(c) · e0 ∈ Cm+1.

1. L := 0 ∈ C(m+1)×(m+1)

2. q(m) := q ∈ Cm+1

3. For l ∈ {m,m− 1, . . . , 0}:

a) p(l) := (q(l)
l , . . . , q

(l)
0 )T ∈ Cl+1

b) For j ∈ {0, . . . , l}:

i. Ll,j := p
(l)
j

c) q(l−1) := (q(l)
0 , . . . , q

(l)
l−1)T − q

(l)
l

p
(l)
l

· (p(l)
0 , . . . , p

(l)
l−1)T ∈ Cl

4. Compute c := L−1 · e0 by forward substitution.

5. Return c.

Lemma B.10. Algorithm B.3 is correct and terminates in time O(m2).

Proof. This proof follows the ideas of Landau [1987, Proposition 3, p. 53].
The run time of O(m2) can be seen directly from the structure of the al-
gorithm. To prove correctness, we consider main minors of the Toeplitz
matrix. For all l ∈ {0, . . . ,m} let

C(l)(c) := (Cj,k(c))lj,k=0 ∈ C(l+1)×(l+1),

i.e. C(l)(c) is the top-left part of C(c). We will prove for all l ∈ {0, . . . ,m}
that:

1. If C(l)(c) · q(l) = e0 ∈ Cl+1, then C(l)(c) · p(l) = el ∈ Cl+1,

2. C(l)(c) · q(l) = e0 ∈ Cl+1,

3. L · C(c) · e0 = e0 at the end of the algorithm.
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Step 1: Suppose that C(l)(c) ·q(l) = e0 and consider the permutation matrix

R :=


0 · · · 0 1
... . .

.
. .
. 0

0 1 . .
. ...

1 0 · · · 0

 ∈ C(l+1)+(l+1).

When multiplied from the left, this matrix reverts the order of rows, when
multiplied from the right, it reverts the order of columns. In some sense, it
commutes with Hermitian Toeplitz matrices because for all j, k ∈ {0, . . . , l}
we know j − (l − k) = k − (l − j) and thus

(C(l)(c) ·R)j,k = Cj,l−k(c) = Ck,l−j(c) = Cl−j,k(c) = (R · C(l)(c))j,k.

It follows that

C(l)(c) · p(l) = C(l)(c) ·R · q(l) = R · C(l)(c) · q(l) = R · e0 = el.

Step 2: We proceed by induction over l.

Base case, l = m: By definition of the input C(l)(c) · q(l) = e0.

Induction hypothesis: C(l)(c) · q(l) = e0.

Induction step, l → l − 1: We know C(l)(c) · q(l) = e0 and by Step 1 also
C(l)(c) · p(l) = el. The division by p(l)

l is well-defined because (C(l)(c))−1 is
positive definite and thus

p
(l)
l = e∗l · p(l) = e∗l · (C(l)(c))−1 · el > 0. (B.11)

We observe that the last entry of q(l)− q
(l)
l

p
(l)
l

·p(l) is zero by construction whereas
the other entries are stored in q(l−1). It follows that for all j ∈ {0, . . . , l−1}

e∗j · C(l−1)(c) · q(l−1) = e∗j · C(l)(c) ·
q(l) − q

(l)
l

p
(l)
l

· p(l)


= e∗j ·

e0 −
q

(l)
l

p
(l)
l

· el

 = e∗j · e0.

Hence, C(l−1)(c) · q(l−1) = e0.
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Step 3: The matrix L is lower triangular by construction and has non-
zero diagonal entries by Equation (B.11). Thus, forward substitution is
applicable. Now for all l ∈ {0, . . . ,m} we consider

e∗l · L · c =
(
p(l)

0

)∗
· c = ((C(l)(c))−1 · el)∗ · C(l)(c) · e0 = e∗l · e0.

We conclude that L · C(l)(c) · e0 = e0 and therefore L−1 · e0 = C(l)(c) · e0 is
the correct output.

Having proven these lemmata, we are now ready to prove correctness of the
maximum entropy spectral estimate. We repeat the corresponding theorem
here.

Theorem 8.2 (Maximum entropy spectral estimate [Burg 1975]). We recall
from Definition 2.10 on page 26 that

C(c) = (cj−k)mj,k=0 =


c0 c1 · · · cm

c1 c0
. . .

...
...

. . .
. . . c1

cm · · · c1 c0

 ∈ C(m+1)×(m+1)

denotes the Toeplitz matrix. Suppose that C(c) is positive definite. For all
ϕ ∈ (0, 2 · π] let

D(ϕ) := 1
2 · π ·

e∗0 · C−1(c) · e0

|e∗0 · C−1(c) · c(ϕ)|2 ∈ R (8.3)

where e0 := (1, 0, . . . , 0)T ∈ Cm+1. Then D(ϕ) is positive and the mea-
sure FD with density D fulfills the moment constraints c =

´
c(ϕ) dFD(ϕ).

Among all such measures it has minimal Burg entropy HBurg(FD).
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Proof. Since C−1(c) is positive definite, e∗0 · C−1(c) · e0 > 0. Furthermore,
the denominator is non-zero by Lemma B.9 because

e∗0 · C−1(c) · c(ϕ) = e∗0 · C−1(c) · b(exp(i · ϕ)) 6= 0.
Therefore, D is well-defined and positive. We complete the remainder of
the proof in the following steps:

1. Use Lemma B.9 to proveˆ
c(ϕ) · c∗(ϕ) dFD(ϕ) · C−1(c) · e0 = e0, (B.12)

2. Use Lemma B.10 to conclude that
´

c(ϕ) dFD(ϕ) = c,

3. Prove that the Burg entropy is minimal.

Step 1 (using the approach of Burg [1975, p. 9 ff.]): We consider entry
j ∈ {0, . . . ,m} of the vector in Equation (B.12) individually:

e∗j ·
ˆ

c(ϕ) · c∗(ϕ) dFD(ϕ) · C−1(c) · e0

=
ˆ 2·π

0
D(ϕ) · (e∗j · c(ϕ)) · (c∗(ϕ) · C−1(c) · e0) dϕ

=
ˆ 2·π

0

1
2 · π ·

e∗0 · C−1(c) · e0

e∗0 · C−1(c) · c(ϕ) · (e
∗
j · c(ϕ)) dϕ

= 1
2 · π ·

ˆ
|x|=1

e∗0 · C−1(c) · e0

e∗0 · C−1(c) · b(x) · x
j dx

= 1
2 · π · i ·

˛
|x|=1

e∗0 · C−1(c) · e0

e∗0 · C−1(c) · b(x) · x
j−1 dx

Note that
¸
|x|=1 denotes a counter-clockwise contour integral over the bound-

ary of the unit circle. Such an integral includes the derivative of the arc-
length parametrization of the contour as factor. In the present case this is

d
dϕ exp(i · ϕ) = i · exp(i · ϕ) which is why we divide the integrand by i · x.
For j ≥ 1 the integrand is a holomorphic function within the unit circle
because by Lemma B.9 the denominator has no roots within the unit circle.
By Cauchy’s integral theorem such an integral evaluates to zero. For the
case j = 0 we employ Cauchy’s integral formula:

1
2 · π · i ·

˛
|x|=1

e∗0 · C−1(c) · e0

e∗0 · C−1(c) · b(x) ·
1
x

dx

= e∗0 · C−1(c) · e0

e∗0 · C−1(c) · b(0) = e∗0 · C−1(c) · e0

e∗0 · C−1(c) · e0
= 1
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Thus, Equation (B.12) holds.
Step 2 (using the approach of Landau [1987, p. 55]): We recall from Propo-
sition 2.11 that

C ′ :=
ˆ

c(ϕ) · c∗(ϕ) dFD(ϕ) ∈ C(m+1)×(m+1)

is a positive semi-definite Toeplitz matrix. By Proposition 2.13 it is even
positive definite because D is a positive density. According to Equation
(B.12)

C ′ · C−1(c) · e0 = e0

and hence
C−1(c) · e0 = C ′−1 · e0.

By Lemma B.10 this uniquely determines c = C(c) · e0 = C ′ · e0. We
conclude

c =
ˆ

c(ϕ) · c∗(ϕ) · e0 dFD(ϕ) =
ˆ

c(ϕ) dFD(ϕ).

Step 3: To prove the optimality of D, let E : (0, 2 · π]→ R be another non-
negative density function with well-defined Burg entropy HBurg(E) < ∞
and
´ 2·π

0 E(ϕ) · c(ϕ) dϕ = c. Using Jensen’s inequality we obtain:

HBurg(D)−HBurg(E)
2 · π

= 1
2 · π ·

(ˆ 2·π

0
logE(ϕ) dϕ−

ˆ 2·π

0
logD(ϕ) dϕ

)

= 1
2 · π ·

ˆ 2·π

0
log E(ϕ)

D(ϕ) dϕ

≤ log 1
2 · π ·

ˆ 2·π

0

E(ϕ)
D(ϕ) dϕ

= log
ˆ 2·π

0
E(ϕ) · |e

∗
0 · C−1(c) · c(ϕ)|2
e∗0 · C−1(c) · e0

dϕ

= log e∗0 · C−1(c) ·
ˆ 2·π

0
E(ϕ) · c(ϕ) · c∗(ϕ)

e∗0 · C−1(c) · e0
dϕ · C−1(c) · e0

= log e
∗
0 · C−1(c) · C(c) · C−1(c) · e0

e∗0 · C−1(c) · e0
= log 1 = 0

Thus, HBurg(D) ≤ HBurg(E) and therefore D must have globally minimal
Burg entropy.
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B.6 Pisarenko Estimate
We use the Pisarenko estimate (Algorithm 8.2) as alternative to the maxi-
mum entropy spectral estimate in transient imaging. Its use is appropriate
whenever the ground truth is known to be sparse and it is the limit of the
maximum entropy spectral estimate for this case. At the same time it is
the analog of Algorithm 2.1 for trigonometric moments.
The correctness of the Pisarenko estimate is a direct consequence of Propo-
sition 2.13 which we now repeat and prove.

Proposition 2.13 (Boundary case for trigonometric moment problems
[Krĕın and Nudel’man 1977, p. 65, 78]). Let c ∈ Cm+1 such that C(c)
is positive semi-definite. The following statements are equivalent:

1. C(c) is singular,

2. There exists exactly one measureM on (0, 2 · π] with c =
´

c(x) dM(x),

3. There exists x0, . . . , xm−1 ∈ (0, 2 · π] and w0, . . . , wm−1 > 0 such that
M := ∑m−1

l=0 wl · δxl
yields c =

´
c(x) dM(x).

Suppose C(c) is singular and let q ∈ kerC(c) with q 6= 0. Then x0, . . . , xm−1
are solutions of the equation q∗ · c(x) = 0.

Proof. “1. ⇒ 3. and 2.” Let q ∈ kerC(c) with q 6= 0.
By Proposition 2.11 there exists a measure M with c =

´
c(x) dM(x) and

we can use it to represent the Toeplitz matrix C(c):

0 = q∗ ·C(c)·q =
ˆ
q∗ ·c(x)·c∗(x)·q dM(x) =

ˆ
|q∗ · c(x)|2 dM(x) (B.13)

The integrand |q∗ · c(x)|2 is non-negative. Furthermore, we can employ the
substitution y := exp(i · x) to obtain

q∗ · c(x) =
m∑
j=0

qj · exp(j · i · x) =
m∑
j=0

qj · yj.

Written like this, the integrand is the absolute square of a non-zero poly-
nomial of degree m or less and cannot have more than m roots. Since the
integral evaluates to zero, M must have all of its support at these roots
which proves 3. and the claim about the location of x0, . . . , xm−1.
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Since exp(i · x) maps (0, 2 · π] onto the unit circle bijectively, Equation
(B.13) uniquely determines the points of support x0, . . . , xm−1 ∈ (0, 2 · π].
Suppose, the first n ∈ {0, . . . ,m} of these points of support are distinct.
Then the system of linear equations

1 · · · 1
exp(1 · i · x0) · · · exp(1 · i · xn−1)

...
...

exp((n− 1) · i · x0) · · · exp((n− 1) · i · xn−1)

 ·

w0
w1
...

wn−1

 =


b0
b1
...

bn−1


uniquely determines the corresponding weights w0, . . . , wn−1 because the
matrix in this system is a square Vandermonde matrix constructed from
pairwise different values. Also, these weights have to be non-negative be-
cause otherwise this would contradict existence ofM . Thus, we have proven
2..
“3. ⇒ 1.” Let M = ∑m−1

l=0 wl · δxl
such that c =

´
c(x) dM(x).

We note that the matrix c(xl) ·c∗(xl) has rank one for all l ∈ {0, . . . ,m−1}.
Thus, the rank of

C(c) =
ˆ

c(x) · c∗(x) dM(x) =
m−1∑
l=0

wl · c(xl) · c∗(xl)

cannot be greater than m. It follows that C(c) ∈ C(m+1)×(m+1) is singular.
“¬1. ⇒ ¬2.” Suppose detC(c) is positive definite.
Let M be a measure on (0, 2 · π] with c =

´
c(x) dM(x). Let x0 ∈ (0, 2 · π]

such that M({x0}) = 0, i.e. M does not have support at x0. There exists
an ε > 0 such that C(c− ε · c(x0)) is still positive semi-definite. Let N be
a measure on R with c− ε · c(x0) =

´
c(x) dN(x). Then

c =
ˆ

c(x) dM(x) =
ˆ

c(x) dN(x) + ε · c(x0) =
ˆ

c(x) d(N + ε · δx0)(x)

and thus we have constructed two different measures representing the trigono-
metric moments c.





Appendix C
Implementation Details

C.1 Hamburger Moment Shadow Mapping
In Section 4.1 we describe the implementation of Hamburger moment shadow
mapping in detail. Listing C.1 provides a complete and tested implemen-
tation of Algorithm 4.2 in HLSL. Note that the implementation of the
Cholesky decomposition is highly specialized to only compute non-trivial
entries. Also note how the end result is computed by the same branch in
all cases. A conditional provides the appropriate inputs.

Listing C.1: An HLSL implementation of Hamburger moment shadow map-
ping with four power moments. b provides four biased power moments,
Depth provides the depth at which the shadow intensity is to be evaluated.
The function returns the approximate shadow intensity.
f l o a t Hamburger4MSM ( f l o a t 4 b , f l o a t Depth ) {

f l o a t 3 z ;
z [0 ]= Depth ;
// Cholesky decomposit ion
f l o a t L21D11=mad(−b [ 0 ] , b [ 1 ] , b [ 2 ] ) ;
f l o a t D11=mad(−b [ 0 ] , b [ 0 ] , b [ 1 ] ) ;
f l o a t SquaredDepthVariance=mad(−b [ 1 ] , b [ 1 ] , b [ 3 ] ) ;
f l o a t D22D11=dot ( f l o a t 2 ( SquaredDepthVariance ,−L21D11 ) ,

f l o a t 2 ( D11 , L21D11 ) ) ;
f l o a t InvD11 =1.0f/D11 ;
f l o a t L21=L21D11∗InvD11 ;
f l o a t D22=D22D11∗InvD11 ;
f l o a t InvD22 =1.0f/D22 ;
// So lu t i on o f a l i n e a r system with Cholesky
f l o a t 3 c=f l o a t 3 ( 1 . 0 f , z [ 0 ] , z [ 0 ] ∗ z [ 0 ] ) ;
c [1]−=b . x ;
c [2]−=b . y+L21∗c [ 1 ] ;
c [1 ]∗= InvD11 ;

189
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c [2 ]∗= InvD22 ;
c [1]−=L21∗c [ 2 ] ;
c [0]−= dot ( c . yz , b . xy ) ;
// Quadratic equat ion so lved with the quadrat i c formula
f l o a t InvC2 =1.0f/c [ 2 ] ;
f l o a t p=c [ 1 ] ∗ InvC2 ;
f l o a t q=c [ 0 ] ∗ InvC2 ;
f l o a t D=(p∗p ∗0 .25 f )−q ;
f l o a t r=s q r t ( D ) ;
z [1]=−p ∗0 .5 f−r ;
z [2]=−p ∗0 .5 f+r ;
// Condi t iona l computation o f the shadow i n t e n s i t y
f l o a t 4 Switch=

( z [2] < z [ 0 ] ) ? f l o a t 4 ( z [ 1 ] , z [ 0 ] , 1 . 0 f , 1 . 0 f ) : (
( z [1] < z [ 0 ] ) ? f l o a t 4 ( z [ 0 ] , z [ 1 ] , 0 . 0 f , 1 . 0 f ) :

f l o a t 4 ( 0 . 0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f ) ) ;
f l o a t Quotient=(Switch [ 0 ] ∗ z [2] − b [ 0 ] ∗ ( Switch [0 ]+ z [ 2 ] )+b [ 1 ] )

/ ( ( z [2] − Switch [ 1 ] ) ∗( z [0] − z [ 1 ] ) ) ;
r e turn s a t u r a t e ( Switch [2 ]+ Switch [ 3 ] ∗ Quotient ) ;

}

C.2 Hausdorff Moment Shadow Mapping
When implementing Hausdorff moment shadow mapping efficiently there is
one non-trivial aspect that has not been discussed yet. We need to compute
w0 or w0 + w1 where

1 1 1 1
−1 z1 zf 1
1 z2

1 z2
f 1

−1 z3
1 z3

f 1

 ·

w0
w1
w2
w3

 =


1
b1
b2
b3

 .

Let v1 ∈ {0, 1} such that w0 + v1 · w1 is our intended end result. With the
same approach as in Section 7.4.2 this can be turned into ∑3

j=0 uj · bj with

u :=


1 −1 1 −1
1 z1 z2

1 z3
1

1 zf z2
f z3

f

1 1 1 1


−1

·


1
v1
0
0

 .

This time u represents a polynomial ∑3
j=0 uj ·zj taking the value one at −1,

value v1 at z1 and having roots at zf and 1. Thus, it is the product of a
linear polynomial with the linear factors (z−zf ) ·(z−1). We first construct
this linear polynomial and then perform multiplication by the linear factors
on the coefficients.
The complete implementation in HLSL is given in Listing C.2. Most of this
code is identical to Listing C.1 but there is an extra branch implementing
computation of z1 and the procedure that we just described.
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Listing C.2: An HLSL implementation of Hausdorff moment shadow map-
ping with four power moments. The signature is the same as for Hamburger
moment shadow mapping.
f l o a t Hausdorff4MSM ( f l o a t 4 b , f l o a t Depth ) {

f l o a t 3 z ;
z [0 ]= Depth ;
// Cholesky decomposit ion
f l o a t L21D11=mad(−b [ 0 ] , b [ 1 ] , b [ 2 ] ) ;
f l o a t D11=mad(−b [ 0 ] , b [ 0 ] , b [ 1 ] ) ;
f l o a t SquaredDepthVariance=mad(−b [ 1 ] , b [ 1 ] , b [ 3 ] ) ;
f l o a t D22D11=dot ( f l o a t 2 ( SquaredDepthVariance ,−L21D11 ) ,

f l o a t 2 ( D11 , L21D11 ) ) ;
f l o a t InvD11 =1.0f/D11 ;
f l o a t L21=L21D11∗InvD11 ;
f l o a t D22=D22D11∗InvD11 ;
f l o a t InvD22 =1.0f/D22 ;
// So lu t i on o f a l i n e a r system with Cholesky
f l o a t 3 c=f l o a t 3 ( 1 . 0 f , z [ 0 ] , z [ 0 ] ∗ z [ 0 ] ) ;
c [1]−=b . x ;
c [2]−=b . y+L21∗c [ 1 ] ;
c [1 ]∗= InvD11 ;
c [2 ]∗= InvD22 ;
c [1]−=L21∗c [ 2 ] ;
c [0]−= dot ( c . yz , b . xy ) ;
// Quadratic equat ion so lved with the quadrat i c formula
f l o a t InvC2 =1.0f/c [ 2 ] ;
f l o a t p=c [ 1 ] ∗ InvC2 ;
f l o a t q=c [ 0 ] ∗ InvC2 ;
f l o a t D=(p∗p ∗0 .25 f )−q ;
f l o a t r=s q r t ( D ) ;
z [1]=−p ∗0 .5 f−r ;
z [2]=−p ∗0 .5 f+r ;
// The s o l u t i o n uses f our po in t s o f support
[ branch ] i f ( z [1] < −1.0f | | z [ 2 ] >1.0 f ) {

f l o a t zFree=((b [0] − b [ 2 ] ) ∗z [0 ]+ b [3] − b [ 1 ] )
/( z [0 ]+ b [2] − b [0] − b [ 1 ] ∗ z [ 0 ] ) ;

f l o a t w1Factor=(z [0] > zFree ) ?1 .0 f : 0 . 0 f ;
// Construct an i n t e r p o l a t i o n polynomial
f l o a t 2 Normalizers=f l o a t 2 (

w1Factor /( ( zFree−z [ 0 ] ) ∗mad( zFree , zFree , −1.0 f ) ) ,
0 . 5 f /( ( zFree +1.0f ) ∗( z [ 0 ]+1 . 0 f ) ) ) ;

f l o a t 4 Polynomial ;
Polynomial [0 ]=mad( zFree , Normalizers . y , Normalizers . x ) ;
Polynomial [1 ]= Normalizers . x−Normalizers . y ;
// Mult ip ly by ( z−z [ 0 ] )
Polynomial [2 ]= Polynomial [ 1 ] ;
Polynomial [1 ]=mad( Polynomial [1 ] , − z [ 0 ] , Polynomial [ 0 ] ) ;
Polynomial [0]∗=−z [ 0 ] ;
// Mult ip ly by ( z −1)
Polynomial [3 ]= Polynomial [ 2 ] ;
Polynomial . yz=Polynomial . xy−Polynomial . yz ;
Polynomial [0]∗= −1.0 f ;
// Evaluate the shadow i n t e n s i t y
re turn s a t u r a t e ( dot ( Polynomial , f l o a t 4 ( 1 . 0 f , b . xyz ) ) ) ;

}
// The s o l u t i o n uses three po in t s o f support
e l s e {
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f l o a t 4 Switch=
( z [2] < z [ 0 ] ) ? f l o a t 4 ( z [ 1 ] , z [ 0 ] , 1 . 0 f , 1 . 0 f ) : (
( z [1] < z [ 0 ] ) ? f l o a t 4 ( z [ 0 ] , z [ 1 ] , 0 . 0 f , 1 . 0 f ) :

f l o a t 4 ( 0 . 0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f ) ) ;
f l o a t Quotient=(Switch [ 0 ] ∗ z [2] − b [ 0 ] ∗ ( Switch [0 ]+ z [ 2 ] )+b [ 1 ] )

/ ( ( z [2] − Switch [ 1 ] ) ∗( z [0] − z [ 1 ] ) ) ;
r e turn s a t u r a t e ( Switch [2 ]+ Switch [ 3 ] ∗ Quotient ) ;

}
}

C.3 Prefiltered Single Scattering
For a detailed discussion of implementation details in prefiltered single scat-
tering we refer to Klehm et al. [2014a]. However, in the following we discuss
several details that are specific to our approach.

C.3.1 Bounds for Rectified Coordinates
In Section 7.1.1 we state that we compute sharp bounds for r, ϕ and θ
such that the entire view frustum is covered. We provide details on this
procedure in the following and note that a reference implementation has
been published as supplementary material [Peters et al. 2016].
Single scattering should be accumulated over the entire view ray. Thus,
we do not consider the near clipping plane. Let q0, q1, q2, q3 ∈ R3 be the
coordinates of the four vertices of the far clipping plane of the camera used
for main scene rendering in light view space. Without loss of generality let
the camera position be in the origin of the coordinate system. Then the
maximal value for r is given by

rmax := max
j∈{0,...,3}

√
(qj)2

0 + (qj)2
1.

Note that (qj)k denotes the k-th entry of the vector qj for k ∈ {0, 1, 2}.
Since we ignore the near plane, rmin := 0.
To compute ϕmin and ϕmax we compute the maximal pairwise angle enclosed
by the vectors ((qj)0, (qj)1)T ∈ R2 for j ∈ {0, 1, 2, 3}. The azimuth of one of
the two involved vectors provides ϕmin, the other provides ϕmax. A special
case arises if the light direction or flipped light direction lies within the view
frustum. This can be checked using the four side clipping planes. In both
cases we have to set ϕmin = 0 and ϕmax = 2·π to indicate that the boundary
of the far clipping plane surrounds the camera position in the shadow map.
The computation of θmin and θmax is more intricate because the extremal
inclination may be realized at the vertices, on the edges or within the area
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of the far clipping plane. It is convenient to exploit that inclinations depend
monotonically on the z-coordinate of normalized vectors, i.e.

θj := arccos (qj)2

‖qj‖2
.

Taking the minimal and maximal values of θ0, . . . , θ3 yields the extrema
at vertices. The inclination is extremal within the area of the far clipping
plane if and only if the light direction or flipped light direction lie within the
view frustum (see above). In this case an extremal inclination is θmin = 0
or θmax = π, respectively.
To find extrema on an edge of the far plane connecting corner points j, k ∈
{0, . . . , 3}, we take the derivative of the z-coordinate of normalized vectors
on the edge to find critical points:

∂

∂t

(qj + t · (qk − qj))2

‖qj + t · (qk − qj)‖2
= 0

This equation has the unique solution

t =
(qj)2 · qT

j · (qk − qj)− (qk − qj)2 · ‖qj‖2
2

(qk − qj)2 · qT
j · (qk − qj)− (qj)2 · ‖qk − qj‖2

2
.

If t ∈ [0, 1], we may need to adapt [θmin, θmax] to include the inclination at
this point on the ray.
Note that this whole algorithm only needs to be executed once per frame
to get single scattering for one directional light.

C.3.2 Transmittance-Weighted Prefix Sums
In terms of arithmetic, generation of transmittance-weighted prefix sums is
an inexpensive operation. We expect the corresponding compute shader to
be bandwidth limited. We benchmark our implementation on an NVIDIA
GeForce GTX 970 with a bandwidth of 196 GB

s . Thus, computation of prefix
sums over a 10242 texture with 64 bits per texel should take

2 · 10242 · 8 B
196 GB

s
= 85.6µs.

For a texture with 128 bits per texel we expect it to take 171.2µs.
We use GPU timings obtained with NVIDIA Nsight1 to compare this ex-
pectation to the actual run times. For the 128-bit textures used in moment

1developer.nvidia.com/nvidia-nsight-visual-studio-edition (retrieved on 1st of
September 2016).

https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
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soft shadow mapping, the simple scheme using one thread per row or per
column [Klehm et al. 2014a] is clearly bandwidth limited with a run time
around 190µs. However, the same approach is less efficient for textures
with 64 bits per texel. Our initial implementation for 64-bit shadow maps
with six moments took 620µs.
Our optimized implementation can process a 64-bit moment shadow map
with four moments in 110µs which is close to the theoretical optimum of
85.6µs. A 64-bit moment shadow map with six moments takes 180µs so
it is not quite optimal but still only twice as expensive as the theoretical
optimum and we were unable to optimize it further.
This is accomplished using thread groups of 8 × 8 threads. For a texture
of height ny ∈ N we spawn ny

8 such thread groups such that eight threads
run per row. At any point in time each thread group operates on one 8× 8
block in the texture, going through from left to right. Each thread will
independently compute all prefix sums for its row. However, it will only
write out the one prefix sum that corresponds to its location in the block.
This means that the overall amount of texture reads and additions is mul-
tiplied by a factor of eight but so is parallelism. Besides the writes to
the output texture are coalesced. We tried caching the texture reads into
thread-group-shared memory but the standard texture caches turned out to
be more efficient. If the shadow map consists of multiple textures, they are
processed in parallel by separate thread groups. Our HLSL implementation
of this approach for a single four-channel texture is shown in Listing C.3.
Of course other GPUs may exhibit different behavior and we do not recom-
mend using our code in production without performing benchmarks on the
targeted hardware.

Listing C.3: A compute shader for HLSL shader profile cs_5_0
or higher to compute transmittance weighted prefix sums for a
rectified moment shadow map with four channels. The shader
reads from RectifiedMomentShadowMap and writes prefix sums to
OutPrefilteredMomentShadowMap. Transmittance weighting uses the ex-
tinction coefficient Extinction. DistanceMax provides the maximal value
for r. InclinationMin and InclinationMax provide the extremal values
for θ.
Texture2D<f l o a t 4 > RectifiedMomentShadowMap ;
RWTexture2D<f l o a t 4 > OutPrefilteredMomentShadowMap ;
c b u f f e r ConstantBuffer{

f l o a t Extinction ;
f l o a t DistanceMax ;
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f l o a t InclinationMin ;
f l o a t InclinationMax ;

} ;
[ numthreads ( 8 , 8 , 1 ) ]
void Main ( u int3 ThreadID : SV_DispatchThreadID ) {

u int Width , Height ;
OutPrefilteredMomentShadowMap . GetDimensions ( Width , Height ) ;
f l o a t TexelLength=DistanceMax

/( s i n ( 0 . 5 f ∗( InclinationMin+InclinationMax ) ) ∗ f l o a t ( Width ) ) ;
f l o a t TexelTransmittance=exp(−Extinction∗TexelLength ) ;
u int DividedWidth=Width /8 ;
f l o a t Weight =1.0f ;
f l o a t TotalWeight =0.0f ;
f l o a t 4 PrefixSum=f l o a t 4 ( 0 . 0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f ) ;
[ loop ] f o r ( u int x=0;x<DividedWidth;++x ) {

u int BlockX=x ∗8 ;
f l o a t 4 StoredPrefixSum=PrefixSum ;
f l o a t StoredTotalWeight=TotalWeight ;
[ unroll ] f o r ( u int i=0;i!=8;++i ) {

PrefixSum+=Weight∗RectifiedMomentShadowMap . Load
( u int3 ( BlockX+i , ThreadID . y , 0 ) ) ;

TotalWeight+=Weight ;
Weight∗=TexelTransmittance ;
bool Store=(i==ThreadID . x ) ;
StoredPrefixSum=Store ? PrefixSum : StoredPrefixSum ;
StoredTotalWeight=Store ? TotalWeight : StoredTotalWeight ;

}
u int2 iOutputTexel=uint2 ( BlockX+ThreadID . x , ThreadID . y ) ;
f l o a t 4 Output=StoredPrefixSum/StoredTotalWeight ;
OutPrefilteredMomentShadowMap [ iOutputTexel ]=Output ;

}
}

C.3.3 Hamburger Moment Shadow Mapping with Six
Moments

The most challenging aspect about the implementation of six moment
shadow mapping is the robust computation of cubic roots. Our solution
based on the work of Blinn [2007] is shown in Listing C.4.

Listing C.4: An HLSL function for computing the roots of a cubic poly-
nomial in closed form robustly. It assumes that the polynomial has three
distinct, real roots. The polynomial is given by ∑3

j=0Coefficient[j]·zj.
The order of the returned roots is undefined.
f l o a t 3 SolveCubic ( f l o a t 4 Coefficient ) {

Coefficient . xyz/=Coefficient . w ;
Coefficient . yz/=3.0f ;
f l o a t 3 Delta=f l o a t 3 (

mad(−Coefficient . z , Coefficient . z , Coefficient . y ) ,
mad(−Coefficient . y , Coefficient . z , Coefficient . x ) ,
dot ( f l o a t 2 ( Coefficient . z ,−Coefficient . y ) , Coefficient . xy ) ) ;
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f l o a t Discriminant=dot ( f l o a t 2 ( 4 . 0 f∗Delta . x ,−Delta . y ) , Delta . zy ) ;
f l o a t 2 Depressed=f l o a t 2 (

mad( −2.0f∗Coefficient . z , Delta . x , Delta . y ) ,
Delta . x ) ;

f l o a t Theta=atan2 ( s q r t ( Discriminant ) ,−Depressed . x ) /3 .0 f ;
f l o a t 2 CubicRoot ;
s i n c o s ( Theta , CubicRoot . y , CubicRoot . x ) ;
f l o a t 3 Root=f l o a t 3 (

CubicRoot . x ,
dot ( f l o a t 2 ( −0.5f , −0.5 f∗ s q r t ( 3 . 0 f ) ) , CubicRoot ) ,
dot ( f l o a t 2 ( −0.5f , 0 . 5 f∗ s q r t ( 3 . 0 f ) ) , CubicRoot ) ) ;

r e turn mad( 2 . 0 f∗ s q r t (−Depressed . y ) , Root ,−Coefficient . z ) ;
}

Implementing the remainder of the algorithm robustly and efficiently re-
quires the use of a Cholesky decomposition and Newton interpolation poly-
nomials as described in Section 7.4. All of this is done in our HLSL imple-
mentation in Listing C.5.

Listing C.5: An implementation of Hamburger moment shadow map-
ping with six power moments in HLSL. b provides six biased moments,
Depth provides the depth at which the shadow intensity is to be esti-
mated. Overestimation blends linearly between guaranteed underestima-
tion (zero) and guaranteed overestimation (one). The approximate shadow
intensity is returned.
f l o a t Hamburger6MSM ( f l o a t b [ 6 ] , f l o a t Depth , f l o a t Overestimation ) {

f l o a t 4 z ;
z [0 ]= Depth ;
// Cholesky decomposit ion
f l o a t InvD11 =1.0f/mad(−b [ 0 ] , b [ 0 ] , b [ 1 ] ) ;
f l o a t L21D11=mad(−b [ 0 ] , b [ 1 ] , b [ 2 ] ) ;
f l o a t L21=L21D11∗InvD11 ;
f l o a t D22=mad(−L21D11 , L21 , mad(−b [ 1 ] , b [ 1 ] , b [ 3 ] ) ) ;
f l o a t L31D11=mad(−b [ 0 ] , b [ 2 ] , b [ 3 ] ) ;
f l o a t L31=L31D11∗InvD11 ;
f l o a t InvD22 =1.0f/D22 ;
f l o a t L32D22=mad(−L21D11 , L31 , mad(−b [ 1 ] , b [ 2 ] , b [ 4 ] ) ) ;
f l o a t L32=L32D22∗InvD22 ;
f l o a t D33=mad(−b [ 2 ] , b [ 2 ] , b [ 5 ] )−dot ( f l o a t 2 ( L31D11 , L32D22 ) ,

f l o a t 2 ( L31 , L32 ) ) ;
f l o a t InvD33 =1.0f/D33 ;
// So lu t i on o f a l i n e a r system with Cholesky
f l o a t 4 c ;
c [ 0 ]=1 . 0 f ;
c [1 ]= z [ 0 ] ;
c [2 ]= c [ 1 ] ∗ z [ 0 ] ;
c [3 ]= c [ 2 ] ∗ z [ 0 ] ;
c [1]−=b [ 0 ] ;
c [2]−=mad( L21 , c [ 1 ] , b [ 1 ] ) ;
c [3]−=b [2 ]+ dot ( f l o a t 2 ( L31 , L32 ) , c . yz ) ;
c . yzw∗=f l o a t 3 ( InvD11 , InvD22 , InvD33 ) ;
c [2]−=L32∗c [ 3 ] ;
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c [1]−= dot ( f l o a t 2 ( L21 , L31 ) , c . zw ) ;
c [0]−= dot ( f l o a t 3 ( b [ 0 ] , b [ 1 ] , b [ 2 ] ) , c . yzw ) ;
// Solve the cubic equat ion
z . yzw=SolveCubic ( c ) ;
// Determine the c o n t r i b u t i o n to the end r e s u l t
f l o a t 4 WeightFactor ;
WeightFactor [0 ]= Overestimation ;
WeightFactor . yzw=(z . yzw>z . xxx ) ? f l o a t 3 ( 0 . 0 f , 0 . 0 f , 0 . 0 f ) :

f l o a t 3 ( 1 . 0 f , 1 . 0 f , 1 . 0 f ) ;
// Construct an i n t e r p o l a t i o n polynomial
f l o a t f0=WeightFactor [ 0 ] ;
f l o a t f1=WeightFactor [ 1 ] ;
f l o a t f2=WeightFactor [ 2 ] ;
f l o a t f3=WeightFactor [ 3 ] ;
f l o a t f01=(f1−f0 ) /( z [1] − z [ 0 ] ) ;
f l o a t f12=(f2−f1 ) /( z [2] − z [ 1 ] ) ;
f l o a t f23=(f3−f2 ) /( z [3] − z [ 2 ] ) ;
f l o a t f012=(f12−f01 ) /( z [2] − z [ 0 ] ) ;
f l o a t f123=(f23−f12 ) /( z [3] − z [ 1 ] ) ;
f l o a t f0123=(f123−f012 ) /( z [3] − z [ 0 ] ) ;
f l o a t 4 Polynomial ;
// f012+f0123 ∗( z−z2 )
Polynomial [0 ]=mad(−f0123 , z [ 2 ] , f012 ) ;
Polynomial [1 ]= f0123 ;
// ∗( z−z1 ) +f01
Polynomial [2 ]= Polynomial [ 1 ] ;
Polynomial [1 ]=mad( Polynomial [1 ] , − z [ 1 ] , Polynomial [ 0 ] ) ;
Polynomial [0 ]=mad( Polynomial [0 ] , − z [ 1 ] , f01 ) ;
// ∗( z−z0 ) +f0
Polynomial [3 ]= Polynomial [ 2 ] ;
Polynomial [2 ]=mad( Polynomial [2 ] , − z [ 0 ] , Polynomial [ 1 ] ) ;
Polynomial [1 ]=mad( Polynomial [1 ] , − z [ 0 ] , Polynomial [ 0 ] ) ;
Polynomial [0 ]=mad( Polynomial [0 ] , − z [ 0 ] , f0 ) ;
// Evaluate the shadow i n t e n s i t y
re turn s a t u r a t e ( dot ( Polynomial , f l o a t 4 ( 1 . 0 f , b [ 0 ] , b [ 1 ] , b [ 2 ] ) ) ) ;

}
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Index

A
Adaptive overestimation, 102
Amplitude modulated continuous

wave (AMCW) lidar, 115,
118

arccos-phase sampling, 126
Average shadow intensity error, 48

B
Biasing, 62, 165

for four power moments, 64,
66, 167

for six power moments, 105,
168

for trigonometric moments, 129,
179

Blocker search, 84, 86
Burg entropy, 122

C
Candidate technique, 48
Canonical representation, 31, 133

Boundary case, see Perfect re-
construction

Construction, 60, 100, 172, 176
Existence, see Markov-Krĕın the-

orem

Chebyshev-Markov inequality, 31,
44, 60, 172, 177

Cubic roots, 104, 195

D
Density function, 22
Depth bias, 38
Depth distribution, 40
Dirac-δ distribution, 22
Distribution, see Probability dis-

tribution

E
Effective modulation, 119
Expectation, 23

F
Finite measure, see Measure

H
Hankel matrix, 25
Harmonic cancellation, 125

I
Integration, 22

L
Levinson’s algorithm, 123, 180
Light leaking, 41, 44, 52, 63, 68,

70, 80, 89, 109
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212 Index

M
Markov-Krĕın theorem, 57

for I = [−1, 1], 170
for I = R, 57

Maximum entropy spectral estimate,
32, 122, 183

Measure, 21
with a density, 22
with finite support, 22

Moment
General, 23, 43
Power, 24, 55
Trigonometric, 26, 56, 121
Zeroth, 23, 129

Moment bias, see Biasing
Moment problem, 31

Solubility, 31
Moment shadow mapping, 55

for translucent occluders, 77
Hamburger, 56, 103, 169, 189,

195
Hausdorff, 55, 170, 190
Trigonometric, 56, 173

Moment soft shadow mapping, 83
Moment-generating function, 23, 43
Multipath interference, 115, 128,

143

O
Occluder fusion, 89
Optimal lower bound, see Chebyshev-

Markov inequality
Optimized quantization, 64

for four power moments, 66
for six power moments, 105

P
Percentage-closer filtering, 39
Percentage-closer soft shadows, 84
Perfect reconstruction, 29, 44, 50,

72, 130

Phase ambiguity, 121
Phase distribution, 121, 174
Pisarenko estimate, 29, 32, 132,

186
Point of support, 22
Prefiltered single scattering, 96, 192

with four moments, 102
with six moments, 103

Probability distribution, 23

R
Range imaging, 115, 135, 143
Ray tracing, 38
Run time, 73, 79, 91, 110, 138, 193

S
Shadow map, 38

Aliasing, 37
Convolution, 41, 84, 96
Deep, 40, 77
Exponential, 41, 84
Exponential variance, 42
Filterable, 40
Layered variance, 41
Moment, 55
Six moment, 103
Trigonometric moment, 56
Variance, 40, 84

Shadow volumes, 38
Single scattering, 95, 97
Soft shadow, 83
Summed-area table, 84
Surface acne, 38

T
Toeplitz matrix, 26
Transient image, 115, 118, 138

Cumulative, 136, 141
Transient video, 146



Nomenclature

· Complex conjugate, page 26

·∗ Conjugate transpose, page 26

a General-moment-generating function, page 23

a Vector of general moments, page 23

αb Moment bias, page 63

b Power-moment-generating function, page 24

b Vector of power moments, page 24

B(b) Hankel matrix, page 25

b̂ Hankel-matrix-generating function, page 25

b? Vector of biasing moments, page 64

c Trigonometric-moment-generating function, page 26

c Vector of trigonometric moments, page 26

C(c) Toeplitz matrix, page 26

D Density of a measure, page 122

δx Dirac-delta distribution, page 22

e· Canonical basis vector, page 59

EP (a) Expectation, page 23
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214 Nomenclature

F Measure modeling the phase-resolved impulse response for a
transient pixel, page 121

FD Measure with density D, page 122

GI,a(a, zf ) Optimal, lower bound, page 45

G Measure modeling the time-resolved impulse response for a
transient pixel, page 118

HBurg Burg entropy, page 122

I Range of shadow map depth values, page 45

i Imaginary unit (i2 = −1), page 26

m Number of considered moments, page 23

P(I) Set of probability distributions on I, page 45

Pr Poisson kernel, page 133
´
· dM(x) Integral with respect to a measure, page 22

Θ?
m Optimized quantization transform, page 65

Z Depth distribution, page 40

z Depth random variable z(z) = z, page 40

zf Depth of fragment being shaded, page 39
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