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Abstract: Monte Carlo light transport simulation has recently been adopted by
the movie industry as a standard tool for producing photo realistic imagery. As
the industry pushes current technologies to the very edge of their possibilities,
the unprecedented complexity of rendered scenes has underlined a fundamental
weakness of MC light transport simulation: slow convergence in the presence
of indirect illumination. The culprit of this poor behaviour is that the sam-
pling schemes used in the state-of-the-art MC transport algorithms usually do
not adapt to the conditions of rendered scenes. We base our work on the ob-
servation that the vast amount of samples needed by these algorithms forms an
abundant source of information that can be used to derive superior sampling
strategies, tailored for a given scene. In the first part of this thesis, we adapt
general machine learning techniques to train directional distributions for biasing
scattering directions of camera paths towards incident illumination (radiance).
Our approach allows progressive training from a stream of particles while main-
taining bounded memory footprint. This progressive nature makes the method
robust even in scenarios where we have little information in the early stages of
the training due to difficult visibility. The proposed method is not restricted only
to path tracing, where paths start at the camera, but can be employed also in
light tracing or photon mapping, where paths are emitted from light sources, as
well as in combined bidirectional methods.

In the second part of this thesis we revisit Russian roulette and splitting, two vari-
ance reduction techniques that have been used in computer graphics for more than
25 years. So far, however, the path termination (Russian roulette) and splitting
rates have been based only on local material properties in the scene which can re-
sult in inefficient simulation in the presence of indirect illumination. In contrast,
we base the termination and splitting rates on a pre-computed approximation
of the adjoint quantity (i.e. radiance in the case of path tracing) which yields
superior results to previous approaches. To increase robustness of our method,
we adopt the so called weight window, a standard technique in neutron transport
simulations. Both methods, that is the biasing of scattering directions introduced
in the first part of the thesis and the adjoint-driven Russian roulette and splitting,
are based on the prior estimate of the adjoint quantity. Nevertheless, they consti-
tute two complementary importance sampling strategies of transported light and
as we show, their combination yields superior results to each strategy alone. As
one of our contributions, we present a theoretical analysis that provides insights
into the importance sampling properties of our adjoint-driven Russian roulette
and splitting, and also explains the synergic behaviour of the two strategies.
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Carlo, zero-variance sampling

ii
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Abstrakt: Monte Carlo (MC) simulace transportu světla byla nedávno přijata
filmovým pr̊umyslem jako standardńı nástroj pro tvorbu fotorealistických efekt̊u.
Jelikož filmový pr̊umysl posunul současné technologie na samou hranici jejich
možnost́ı, nev́ıdaná složitost zobrazovaných scén odhalila zásadńı nedostatek MC
simulace: pomalou konvergenci transportu nepř́ımého osvětleńı. Hlavńım vińıkem
této pomalé konvergence jsou vzorkovaćı schémata, která se obvykle nepřizp̊u-
sobuj́ı zobrazované scéně. My zakládáme naš́ı práci na pozorovańı, že velké
množstv́ı vzork̊u, které současné algoritmy transportu světla vyžaduj́ı, předsta-
vuj́ı bohatý zdroj informaćı. Tento zdroj využ́ıváme k vytvořeńı vzorkovaćıch
schémat pro zobrazovanou scénu. V prvńı části práce využ́ıváme metod stro-
jového učeńı, které jsme uzp̊usobily pro trénováńı směrových distribućı. Tyto dis-
tribuce využ́ıváme během rozptylu k ovlivněńı vzorkováńı směru cest od kamery
tak, aby se vzorkovaly směry úměrně př́ıchoźımu osvětleńı (radiance). Náš př́ıstup
umožňuje postupné trénováńı z proudu částic a zachovává tak omezené paměťové
nároky. Tento on-line př́ıstup zaručuje, že naše metoda funguje i v situaćıch, kdy
máme k dispozici pouze malé množstv́ı informace v raných fáźıch trénovaćıho pro-
cesu kv̊uli složité viditelnosti ve scéně. Navržená metoda se neomezuje pouze na
trasováńı cest od kamery (path tracing), ale jak ukazujeme, lze ji aplikovat také
na trasováńı cest od světel (light tracing) nebo v kombinovaných dvousměrových
algoritmech.

Ve druhé části této práce se vraćıme k ruské ruletě a větveńı cest, dvěma tech-
nikám snižováńı variance, které se použ́ıvaj́ı v poč́ıtačové grafice již v́ıce než
25 let. Nicméně dosud se mı́ra ukončováńı (ruská ruleta) a větveńı zakládala
pouze na lokálńıch vlastnostech materiál̊u, což může vést k neefektivńı simulaci
transportu nepř́ımého osvětleńı. My naproti tomu zakládáme mı́ru ukončováńı
a větveńı cest na předpoč́ıtané aproximaci adjungované veličiny (t.j. radiance v
př́ıpadě trasováńı cest od kamery), což vede k lepš́ım výsledk̊um ve srovnáńı s
předchoźımi př́ıstupy. Abychom zvýšili robustnost naš́ı metody, převzali jsme
takzvané váhové okno, standardńı techniku v simulaćıch transportu neutron̊u.
Obě metody, jak ovlivněńı vzorkováńı směru během rozptylu popsané v prvńı části
práce tak ruská ruleta a větveńı založené na adjungovaném řešeńı, jsou založeny
na předchoźım odhadu adjungované veličiny. Nicméně tvoř́ı doplňuj́ıćı se strategie
vzorkováńı d̊uležitosti přenášeného světla a jak ukazujeme, jejich kombinace vede
k lepš́ım výsledk̊um oproti použit́ı každé z těchto strategíı samostatně. Jako jeden
z našich př́ıspěvk̊u prezentujeme teoretickou analýzu, která vysvětluje vlastnosti
vzorkováńı d̊uležitosti naš́ı ruské rulety a větveńı cest založené na adjungovaném
řešeńı a také synergii obou výše zmı́něných strategíı.

Kĺıčová slova: poč́ıtačová grafika, simulace transportu světla, rendering, Monte
Carlo, vzorkováńı s nulovou varianćı
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Chapter 1

Introduction

The goal of this dissertation is to develop a light transport algorithm that can
efficiently compute transport in scenes with complex and difficult visibility (see
Fig. 1.1). Despite recent advances, robust and efficient light transport simulation
is still a challenging open issue. Current state-of-the-art algorithms are able to
cope with complex materials, various geometric settings, lighting effects such as
caustics, subsurface scattering and transport in participating media. However,
they are all highly inefficient in scenes where light reaches the camera only after
several bounces.

Most existing unidirectional and bidirectional methods rely on an incremen-
tal, local construction of transport sub-paths, which is oblivious to the global
distribution of radiance or importance. As a result, the probability of obtaining
a non-zero contribution upon sub-path connection in highly occluded scenes is
low and the rendering times can reach as much as thousands of CPU hours which
is unacceptable in practice.

While Metropolis light transport and related methods [Veach and Guibas,
1997, Kelemen et al., 2002, Cline et al., 2005] strive for importance sampling on
the entire path space, they suffer from sample correlation and are often outper-
formed by the classic Monte Carlo approaches. We aim for an unbiased solution
that retains the qualities of current MC algorithms without resorting to a com-
promise between the quality of computed images and efficiency.

In the rest of this chapter, we introduce light transport applications and de-
limit the impact of our research, we outline our approach to addressing the prob-
lem of inefficient simulations due to occlusions while presenting the structure of
the dissertation, and finally, we list our contributions and our original publica-
tions.

1.1 Light Transport

Simulation of light transport in virtual scenes that comprise description of ge-
ometry, materials, lights and cameras, allows us to achieve highly photo-realistic
images. Such level of realism is especially required in architectural visualisation,
product design and in the movie industry where accurate simulation is essen-
tial for seamless and believable composition of real footage with artificial scene
models and CG characters.
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Figure 1.1: In scenes with complex and difficult visibility, light reaches the camera
only after several bounces (complex) and it usually flows through relatively small
openings (difficult). This type of transport is especially difficult to sample which
makes state-of-the-art algorithms highly inefficient.

Recently, Monte Carlo light transport simulation has been adopted by the
movie industry as a standard tool for producing photo-realistic imagery [Seymour,
2014a]. Until then, computing global illumination (i.e. full light transport) in mo-
vies was traditionally achieved by hybrid approaches that split the calculation of
direct and indirect illumination. While direct illumination was rendered through
the Reyes [Cook et al., 1987] scan-line algorithm with ray-traced reflections, soft
indirect illumination was approximated using various approaches (distribution
ray-tracing and irradiance caching, point-based global illumination) [Christensen
and Jarosz, 2016]. Nowadays, Monte Carlo simulation computing the full light
transport has superseded these hybrid rasterization approaches [Keller et al.,
2015, Christensen and Jarosz, 2016]. This “revolution” [Keller et al., 2015] was
possible thanks to improvements in sampling and transport algorithms in the
last two decades and also thanks to a steady increase in computational power
and memory capacity. Remarkably, such a simulation has been adopted even
for the production of fully animated films as it notably simplifies the production
pipelines and saves artists’ time previously spent on lighting setup [Christensen
and Jarosz, 2016].

Because of the widespread acceptance of Monte Carlo transport simulation
by the industry, we believe that the results of this dissertation will find use also
outside of academia.

1.2 Our Approach

Current MC transport algorithms exhibit a poor convergence in scenes with com-
plex visibility for two main reasons. First, they do not utilize any global infor-
mation about the given scene to adapt their sampling schemes so that highly
contributing paths are discovered at a higher rate. Instead, they repeatedly sam-
ple paths that do not connect the camera to light sources. This is due to the
fact that all these methods (both unidirectional and bidirectional) sample paths
from the camera (or sources) incrementally while importance sampling only mate-
rial properties described by bidirectional scattering distribution function (BSDF).
Second, Russian roulette (RR) that is a common part of all MC path-sampling
based algorithms, aims to keep the rate of sampled paths with a potentially low
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contribution low. Unfortunately, the contribution is estimated based on the lo-
cal material properties and RR typically terminates paths that would contribute
significantly to the solution if they survived over a few more bounces.

In Chapter 3, we tackle the former problem by learning distributions of inci-
dent illumination (in case of e.g. path tracing) that we use to improve importance
sampling at each scattering event. We represent the distributions by mixtures
of Gaussians that we train from a continuous stream of particles that represent
an adjoint transport solution. We train the distributions in a pre-processing step
prior to rendering and we keep them cached over the scene surfaces. The key fea-
ture of our approach is an on-line learning procedure ensuring that our method
works also in difficult scenarios where we have only little information about the
illumination at the early stages of training.

In Chapter 4, we address the latter problem by introducing an adjoint-driven
method based on the so called weight window technique that we adopt from neu-
tron transport. The method combines Russian roulette with splitting (branching)
of paths to achieve optimal sampling rates in the space of paths. By leveraging
an approximation of the adjoint transport solution, we control termination and
splitting rates according to the expected contribution of the path to the estimated
pixel. As a consequence, we are able to save computational resources by termi-
nating paths with low expected contribution while reducing variance by keeping
or even splitting paths whose expected contribution is high.

Further in Chapter 4, we provide a theoretical analysis of adjoint-driven Rus-
sian roulette that explains its importance sampling properties by direct juxtapo-
sition to zero-variance sampling schemes. The same analysis also implies that the
direction sampling method that we describe in Chapter 3 and adjoint-driven Rus-
sian roulette and splitting (ADRRS) that we develop in Chapter 4 are orthogonal
and in fact work in synergy. As a direct consequence, we design an algorithm
that combines both ADRRS and path guiding (based on the on-line learning of
Gaussian mixtures) and in complex scenes, it achieves results that are superior
to the results of each of the individual methods.

Discussion. Our work is based on leveraging approximation of the adjoint so-
lution of the computed transport equation for importance sampling. Remarkably,
we are able to use a relatively coarse approximation to make path sampling more
efficient by orders of magnitude in scenes with complex and difficult visibility
even if we account for the pre-processing time.

It is indeed remarkable, because computing the precise adjoint solution is a
far more difficult problem than computing the image itself. The reason is that to
compute the image we only need to know a projection of the light field into the
image while for perfect importance sampling, we would need to know the adjoint
solution in the whole scene. If we knew the adjoint solution precisely, we could
compute a noiseless image with only one sample per pixel. This suggests that,
given a desired error (noise level) of the computed image, there is a sweet spot in
the precision of the pre-computed approximation for which the total computation
time (preprocessing and rendering) is optimal.

We limit our focus to light transport only between surfaces and suppose that
radiance is constant along lines between any two surface points. We believe that
our approach can be extended to participating media, however, this extension
is left for future work. At the moment, the efficient rendering of participating
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media is still a subject of active research and the extension of our approach might
significantly contribute to the solution of this problem.

1.3 List of Original Contributions

Our main contribution is a light transport simulation algorithm that, unlike pre-
vious works, can efficiently handle scenes with complex and difficult visibility
without compromising the image quality. Here, we list our partial contributions
in more detail.

Introduction of machine learning to image synthesis. To our best knowl-
edge, our on-line learning of parametric mixture models is the first attempt to
tackle importance sampling in the light transport simulation by a machine learn-
ing technique. Furthermore, we formulate the on-line learning procedure in such
a way that we can handle particles with highly varying weights.

Compact and flexible model of importance function. There are many prior
works on steering sampling of light paths (guiding) towards directions of strong
incident illumination. However, we show that parametric mixtures (namely mix-
tures of Gaussians) are a superior model in terms of the ability to represent
both high and low-frequency signals while using a reasonable amount of memory.
Our model is even capable of targeting refracted sun light and results in better
variance reduction than previous methods.

Demonstration of the potential of guided unidirectional methods. We
experimentally show that guided unidirectional algorithms (path tracing, light
tracing) have a potential to match their guided bidirectional counterparts (bidi-
rectional path tracing, vertex connection and merging/unified path space) which
are substantially more difficult to implement and maintain in a full-feature pro-
duction renderer.

Revisiting Russian roulette and splitting. Since Russian roulette and split-
ting have been used in a more or less unchanged form for the last 25 years or so,
we believe that revisiting these variance reduction techniques is our valuable con-
tribution. We propose adjoint-driven Russian roulette and splitting where paths
are terminated or split according to their expected contribution to the image.

Theoretical analysis of adjoint-driven Russian roulette and splitting. We
study relation of our ADRRS to zero-variance schemes and rigorously explain its
importance sampling properties.

Combined algorithm. Our analysis of ADRRS shows that this method is
orthogonal to path guiding. We verify this result by combining path guiding with
ADRRS to show that the combined unidirectional algorithm surpasses efficiency
of both methods alone.

1.4 Publications

The content of this dissertation is based on the following publications:

� Jǐŕı Vorba, Ondřej Karĺık, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek.
On-line learning of parametric mixture models for light transport simula-
tion. ACM Transactions on Graphics (SIGGRAPH 2014), 33(4), July 2014.
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� Jǐŕı Vorba and Jaroslav Křivánek. Adjoint-driven russian roulette and split-
ting in light transport simulation. ACM Transactions on Graphics (SIG-
GRAPH 2016), 35(4), July 2016.

The research presented in the first one is the subject of Chapter 3 while the
second one is the subject of Chapter 4.
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Chapter 2

Light Transport

In this chapter, we present a mathematical framework that allows us to formulate
our adjoint-driven importance sampling method. Namely, we review rendering
and visual importance transport equations and point out their adjoint relation-
ship. Further, we describe commonly used MC transport algorithms and discuss
the way they benefit from our path-guiding method developed in Chapter 3 and
adjoint-driven Russian roulette described in Chapter 4. We also present Russian
roulette and splitting that are common variance reduction techniques used along
MC transport algorithms. Finally, we review a zero-variance random walk, a
highly useful tool for studying properties of importance sampling methods that
we use in Chapter 4 to analyze a combined algorithm comprising our adjoint-
driven Russian roulette and splitting, and path guiding.

2.1 Particle Transport

The origins of simulating the transport of neutral particles (e.g. neutrons or pho-
tons) by Monte Carlo (MC) processes goes back to the 1940s. The idea of using
MC stems from the probabilistic nature of the particles’ behavior [Spanier and
Gelbard, 1969]. In the real world, a particle has a certain probability of being
emitted in a given time interval and its further fate is also governed by prob-
abilistic events: collisions, absorption and scattering. If a simulated particle
follows the events according to the precise physical probabilities, the MC process
is said to be analog. In such a simulation, all particles have equal, unit statistical
weight. In order to improve computation efficiency, non-analog simulations can
be designed by altering the probabilities of various events in the simulation. The
particle weights are then modified upon each event so that the simulation remains
unbiased [Lux and Koblinger, 1991].

The close relation between MC light transport simulation in computer graph-
ics and MC processes simulating the transport of neutral particles has been
pointed out by several authors [Křivánek and d’Eon, 2014, Christensen, 2003,
Veach, 1997, Arvo and Kirk, 1990]. While light transport is described by the ren-
dering equation [Kajiya, 1986], particle transport in physics is governed by the
linear Boltzmann equation. The similarities between the two were first pointed
out by Arvo and Kirk [1990], which allowed them to adopt useful techniques,
such as Russian roulette (RR) and splitting [Kahn, 1956, Kahn and Harris, 1951]
in computer graphics.
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2.2 Transport Equations

Light transport in a scene without participating media is described by the ren-
dering equation [Kajiya, 1986, Dutré et al., 2006]:

Lo(y, ωo) = Le
o(y, ωo) +

∫
Ω

Li(y, ωi)fs(y, ωi→ωo)|cos θi| dωi︸ ︷︷ ︸
Lr
o(y,ωo)

. (2.1)

Here Lo(y, ωo) and Le
o(y, ωo) are, respectively, the total and the self-emitted out-

going radiance from a surface point y in a direction ωo, fs denotes the bidirectional
scattering distribution function (BSDF), θi is the angle between the surface nor-
mal at y and an incident direction ωi, and Ω is the unit sphere. We use the arrow
notation in fs to mark the direction of light flow. The incident radiance Li(y, ωi)
at the point y visible from a point x in the direction ωi is equal to the outgoing
radiance Lo(x,−ωi). Lr

o denotes the part of the outgoing radiance that is only
due to surface reflection at y.

In a similar way, we can describe transport of visual importance W that is
governed by the following transport equation [Spanier and Gelbard, 1969, Veach,
1997, Sec. 3.7]:

Wo(y, ωo) = W e
o (y, ωo) +

∫
Ω

Wi(y, ωi)fs(y, ωo→ωi)|cos θi| dωi︸ ︷︷ ︸
W r

o(y,ωo)

. (2.2)

Here, W e
o is self-emitted visual importance, Wi is incident visual importance and

W r
o is reflected visual importance.

The visual importance is only a mathematical construct which is not based
on any physical concept. However, it is adjoint (see Sec. 2.4) to the rendering
equation and its solution indicates how important are various parts of the scene
with respect to the rendered image [Christensen, 2003].

Let us emphasize that, throughout this thesis, we use a convention, depicted
in Fig. 2.1, that ωo always points in the direction of the transported quantity.
This allows us to formulate our method in a unified framework that holds for both
path tracing and light tracing with only a minor modification that the arguments
of the BSDF need to be swaped (see fs terms in Eq. (2.1) and Eq. (2.2)).

. . . . . .

radiance transport
light tracing

vis. importance transport
path tracing

ωoωo ωiωi

Figure 2.1: By convention, the direction ωo is always aligned with the direction
of the transported quantity.
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2.3 Path Tracing and Light Tracing

Path tracing [Kajiya, 1986] is perhaps the most popular light transport simulation
method used in computer graphics nowadays. It can be thought of as following
particles of visual importance starting from the camera. It is especially good at
rendering view-dependent effects (reflections) and large scenes because important
surfaces are immediately visible through the camera.

The pixel value I is given by the visual importance measurement equation
[Veach, 1997]

I =

∫
M

∫
Ω

Wi(y, ω)Le
o(y, ω) |cos θ| dω dy, (2.3)

whereM is the scene surface. By tracing M visual importance particles from the
camera, we can estimate I using the following MC estimator [Veach, 1997]:

〈I〉 =
1

M

∑
k

νi(yk, ωk)L
e
o(yk, ωk), (2.4)

where νi is particle weight (see below).
Alternatively, one can use the light tracing algorithm [Dutré and Willems,

1994] which estimates the same pixel value I given by radiance measurement
equation

I =

∫
M

∫
Ω

Li(y, ω)W e
o (y, ω) |cos θ| dω dy. (2.5)

This equation is adjoint (see Sec. 2.4) to Eq. (2.3) and can be estimated using
the following MC estimator [Veach, 1997, 4.A]:

〈I〉 =
1

N

∑
k

νi(yk, ωk)W
e
o (yk, ωk). (2.6)

The crucial difference to path tracing is that evaluating this estimator involves
following random paths of N particles emitted from light sources. Therefore light
tracing is very good at computing caustics, however, it is not used in practice
because it fails at transport over reflective/refractive surfaces. The reason is
that probability of hitting such a material from a direction that would yield
a significant contribution decreases quickly with decreasing material roughness
(see Fig. 2.2). Light tracing efficiency also deteriorates drastically with increased
scene extent because light particles struggle to find the camera. Interestingly, our
importance sampling method developed throughout this thesis and described in
Section 4.5 addresses both of these issues.

Both sums (Eqs. (2.4) and (2.6)) are updated when a particle k with its
weight νi(yk, ωk), coming from a direction ωk, collides at a location yk. In fact,
the particle contributes to the sum only when the self emitted outgoing radiance
Le

o(yk, ωk) or importance W e
o (yk, ωk), respectively, is non-zero. Note that such

an estimator corresponds to unidirectional path tracing or light tracing without
explicit connections to light sources or a camera respectively, i.e. without next
event estimation [Dutré et al., 2006].

We deliberately use the formulation without next event estimation, because
our work aims at improved importance sampling within unidirectional path-
sampling techniques. In practice, however, it is efficient to sample light sources
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Light tracing on glossy material 

Path tracing on glossy material 

Light tracing on specular material 

Path tracing on specular material 

Figure 2.2: Light tracing is not favored in practice due to its slow convergence on
glossy and specular materials. Left column: glossy material (Beckmann distribu-
tion with roughness 0.3), right column: specular material (Beckmann distribution
with roughness 0.01), top row: light tracing, bottom row: path tracing. Scene
courtesy of Jonas Pilo and Bernhard Vogl.

or cameras explicitly and in our implementation, we use next event estimation
along our proposed importance sampling method. Actually in light tracing, this
is the only viable option because camera sensor is usually too small in comparison
to the scene extent and the probability of hitting the sensor by a particle is very
small.

Particle weight. In both path and light tracing, the particle weight is given by
the product of self-emitted outgoing visual importance W e

o or radiance Le
o [Veach,

1997, p. 91] respectively, and the bidirectional scattering distribution functions
(BSDFs) and geometric factors along the particle path, divided by the probability
density (pdf) of generating the path [Pharr and Humphreys, 2010]. To describe
the way in which the weight is updated during a collision at some surface point y,
we distinguish between the incident weight νi(y, ωi) just before the collision, the
weight after application of RR/splitting ν̂(y, ωi) (see Sec. 2.6), and the outgoing
weight νo(y, ωo), just after the scattering. In path tracing, the last two are related

11



by the weight update formula

νo(y, ωo) = ν̂(y, ωi)
fs(y, ωo→ωi)|cos θo|

p(ωo|y)
, (2.7)

where p(ωo|y) is a directional pdf for sampling the scattering direction ωo. In
light tracing, the same equation holds when directional arguments of BSDF fs

are swapped. The outgoing weight νo after one collision then enters the next col-
lision as its incoming weight νi. Extension for participating media would include
attenuation between y and the next collision, which is the topic of our ongoing
work.

2.4 Adjoints

We stated in the previous section that the pixel value I can be expressed by
both the visual importance measurement equation (Eq. (2.3)) and the radiance
measurement equation (Eq. (2.5)):

I =

∫
M

∫
Ω

Wi(y, ω)Le
o(y, ω) |cos θ| =

∫
M

∫
Ω

Li(y, ω)W e
o (y, ω) |cos θ|. (2.8)

We refer to this special relationship when we say that visual importance is adjoint
to radiance or vice versa. This terminology comes from mathematical theories
describing spaces with inner products and the fact that light transport can be
formulated in terms of linear operators on function spaces. We restrain from
formal definition of these operators and instead, we refer interested reader to
work of Veach [1997] or to standard textbooks [Dutré et al., 2006].

The adjoint relationship is very important and many transport algorithms
in both neutron transport and computer graphics are based on it [Christensen,
2003]. In computer graphics, adjoint nature of light transport allows formulation
of bidirectional algorithms (see Sec. 2.7) that are capable of handling difficult
lighting conditions under presence of glossy and specular materials. The adjoint
relationship also justifies approaches where visual importance has been used to
optimize transport simulation so that the computation effort is focused on visually
important places. For example, in photon mapping (see Sec. 2.7), one can use
visual importance to stochastically store photons in places near the camera [Keller
and Wald, 2000, Suykens and Willems, 2000]. This, in turn, results in high
particle density and thus high quality of reconstructed radiance in places that
contributes to the image the most.

Our methods introduced in this thesis are also based on adjoints. We pre-
compute approximation of adjoint quantities and we employ them in path guiding
and Russian roulette and splitting to increase efficiency of path sampling.

To keep our text uncluttered, in some parts of this thesis, we use Ψ to denote
the adjoint. Its meaning then depends on the actual context. For a path traced
from a light source, it stands for the visual importance W , while for a path traced
from the camera, it stands for radiance L.
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2.5 Importance Sampling of Scattering Direc-

tions

In the case of path tracing, we could reduce the Monte Carlo estimator’s (Eq.
(2.4)) variance, if we were able to employ an importance sampling strategy that,
at every collision, samples directions from a distribution closely proportional to
the integrand of the rendering (2.1) transport equation:

p(ωo) ∝ Li(y, ωo)fs(y, ωo→ωi)|cos θo|. (2.9)

The traditional BSDF importance sampling can be ineffective when the incom-
ing radiance term Li(x, ωi) is the primary source of the integrand’s variation.
Common examples include caustics, indirect highlights, and difficult visibility.
Analogously for light tracing, to minimize the variance of the estimator given by
Eq. (2.6), we would need to sample from a distribution closely proportional to an
integrand of visual importance (2.2) transport equation:

p(ωo) ∝ Wi(y, ωo)fs(y, ωi→ωo)|cos θo|. (2.10)

It is therefore beneficial to enhance the importance sampling with an esti-
mate of the directional distribution of incoming adjoint Ψ (i.e. radiance for path
tracing; visual importance for light tracing). One way to achieve this is to ob-
tain the distribution from a ‘photon map’ generated by particle tracing before
the rendering starts [Jensen, 1995]. In Chapter 3, we follow this general strategy
and note that the problem can be viewed as density estimation in the directional
domain. We advocate the use of a parametric mixture model to represent the
distributions, which enables on-line learning from a potentially infinite stream of
particles.

In a follow-up work, Herholz and colleagues [2016] exploit mathematical prop-
erties of Gaussians and compute product of incoming adjoint and BSDF to further
improve importance sampling.

2.6 Russian Roulette and Splitting

Arvo and Kirk [1990] suggest to use Russian roulette in non-analog (see Sec. 2.1)
simulations for unbiased termination of particles with low weights. At any colli-
sion, if the weight drops below a threshold, the particle path is terminated with
a certain probability 1 − q > 0. On the other hand, if the particle survives, its
weight is divided by the survival probability q to keep the estimator unbiased.

In general, Russian roulette increases variance per sampled particle path σ2

but at the same time it allows to sample more particles in the given time frame.
This property allows Russian roulette to reduce the total estimator’s error σ√

N
,

where N is the total number of sampled particles. However, it can also increase
the total variance if the sampling rate is not increased sufficiently.

In computer graphics, RR decisions have usually been based on local surface
reflectivity [Jensen, 2001, Dutré et al., 2006, Jakob, 2010] or on the accumulated
path weight (a.k.a. throughput) [Arvo and Kirk, 1990, Jensen, 1996, Veach, 1997].
We show in Chapter 4 that this approach is often sub-optimal and that our
adjoint-driven approach yields superior results.
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Splitting is a variance reduction technique that strives to reduce variance in
an exactly opposite manner to Russian roulette. Unlike Russian roulette, the
total number of sampled particles in a given time decreases, because the particle
path can be split into n independent paths at any collision, tracing of which costs
the additional time. However, since splitting reduces the one-sample variance σ2,
the total estimator error can be significantly reduced. Note, that the resulting
estimator stays unbiased because the particle weight is divided by n after every
collision.

A general example of splitting in computer graphics, as it has been noted by
Arvo and Kirk [1990], is distributed ray tracing [Cook et al., 1984]. The main
issue with splitting is the optimal choice of the splitting rate n. For instance, in
next event estimation, which is another example of splitting, this rate is usually
preset to higher values for early collisions when tracing particles from the camera.
The reasoning behind this heuristic is the fact that direct illumination usually
contributes the most to the resulting image and thus the chance to decrease σ2

is high. In general case, the number of splits has often relied on heuristics based
on local BSDF roughness [Szirmay-Kalos and Antal, 2005] or has been simply
exposed as a simulation parameter.

2.7 Bidirectional Algorithms

Both path tracing and light tracing can be inefficient for some kinds of light trans-
port. As we have already mentioned in previous sections, path tracing struggles
under caustic lighting while light tracing cannot handle well reflections and large
scenes.

Advantages of both approaches are combined in bidirectional path tracing
[Lafortune and Willems, 1993, Veach and Guibas, 1994, Veach, 1997]. It traces
particles from the camera and light sources and accounts for contributions from
both light tracing and path tracing (Eqs. (2.4) and (2.6)). Moreover, it connects
intermediate collision points between light and camera particles to form new paths
comprising camera and light sub-paths. This results into many path-sampling
strategies that are combined by multiple importance sampling (MIS) [Veach,
1997]. MIS simply assigns higher weight to strategies with higher sampling prob-
ability which often results in lower variance as opposed to having only one sam-
pling strategy.

However, bidirectional path tracing is not suitable for rendering notoriously
difficult transport through specular-diffuse-specular (SDS) interactions. For this
purpose, one can choose photon mapping [Jensen, 2001, 1996]. It is a two-pass
algorithm mostly recognized for its ability to simulate SDS transport and caustics
in general.

In the first pass, light particles (photons) are emitted and traced in the scene
just as they are in light tracing. Collisions of all photons are recorded and stored
in KD-tree (photon map). Finally, the image is computed in the second, so called
final gather pass, by tracing paths from the camera and radiance values are
reconstructed from nearby photons in the photon map. During final gather the
photons are used for radiance reconstruction only after a few bounces of camera
paths, length of which depends on roughness of encountered materials.
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Thus, unlike light tracing, photon mapping handles better glossy and specular
materials. However it remains inefficient in rendering of scenes with large extent
(see Sec. 2.3) and in the presence of glossy-to-glossy transport. Further advance-
ments in photon mapping include progressive photon mapping (PPM) [Hachisuka
et al., 2008] that overcomes memory limitations of the original algorithm.

Vertex connection and merging (VCM)/unified path space (UPS) [Georgiev
et al., 2012b, Hachisuka et al., 2012] is bidirectional algorithm that combines ad-
vantages of bidirectional photon mapping [Vorba and Křivánek, 2011] and bidi-
rectional path tracing (BDPT). Bidirectional photon mapping does not rely on
heuristics in final gather. Instead, it introduces multiple path sampling strategies
that differ by the number of collisions after which the radiance is reconstructed.

VCM/UPS then applies MIS to combine all the path sampling strategies com-
ing from BDPT and bidirectional photon mapping. Its practical advantage is
robustness in the scenes with SDS transport while it retains high asymptotic per-
formance of BDPT for most of the other light transport types [Georgiev et al.,
2012b].

However, even though BDPT and VCM/UPS are abundant in the number
of sampling strategies, they both struggle in scenes with complex and difficult
visibility. Also in large scenes, when light particles (photons) cannot find the
camera, all the strategies based on light sub-paths make almost no contribution
and bidirectional algorithms degrade to path tracing with significant overhead of
the extra sampling strategies.

We implemented our path guiding method developed in Chapter 3 in PPM,
BDPT and VCM to show that it can dramatically improve efficiency of these
methods. Interestingly, our results in Chapter 3 suggest that guiding in unidirec-
tional algorithms performs comparably to the guided bidirectional algorithms,
which makes complex combined sampling strategies almost redundant. This
might be useful especially for industry as it turns out that maintaining bidi-
rectional methods combining many estimators is challenging in the production
renderers that are ever changing under new requirements.

2.8 Zero-Variance Random Walk Rules

It has been known for a long time in neutron transport [Kalos, 1963], and recently
pointed out in computer graphics [Křivánek and d’Eon, 2014, Xu et al., 2001],
that particle paths can be constructed such that the estimator in Eq. (2.4) or
Eq. (2.6) has zero variance (ZV). In other words, the solution can be found
with only one particle path. While this cannot be achieved without knowing the
computed solution in advance, zero-variance schemes are an invaluable tool for
studying and designing variance reduction techniques.

To construct a zero-variance estimator of, for example, radiance measurement
equation (Eq. (2.5)), we must obey the following rules1:

� Emit light particles according to the pdf proportional to the product of
incident importance distribution at the light sources and cosine-weighted

1Note that it is not the only way to achieve zero variance [Booth, 2012a].
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outgoing self-emitted radiance:

pe
zv(x, ωx

o) =
Wi(x, ω

x
o)Le

o(x, ωx
o) | cos θo|

I
, (2.11)

where the division by the estimated solution I makes the pdf integrate to 1
(see Eq. (2.3), the visual importance measurement equation).

� At each scattering event, sample the new direction from the pdf proportional
to the product of the cosine-weighted BSDF fs and the incident visual
importance distribution:

pzv(ωo|y) =
Wi(y, ωo)fs(y, ωi→ωo)| cos θo|

W r
o(y, ωi)

. (2.12)

The division by reflected importance W r
o at y makes the pdf integrate to 1

as can be seen from Eq. (2.2) by replacing the role of ωi and ωo (we trace
from light sources here while Eq. (2.2) is defined with respect to tracing
from the camera).

� Use the following survival probability

qzv(y, ωi) = 1− W e
o (y, ωi)

Wo(y, ωi)
=
W r

o(y, ωi)

Wo(y, ωi)
, (2.13)

that allows the walk to terminate only on the camera sensor.

� Contribute to the estimator only upon termination (i.e. with the probability
1− qzv).

These rules imply that we need to know the solution I that we seek to compute.
Furthermore, it also requires knowledge of visual importance W everywhere in the
scene, which, in general, is a more difficult problem than computing I. While this
makes the zero-variance estimator unusable in practice, we use it in Chapter 4 to
conduct an analysis which provides insights into properties of our adjoint-driven
Russian roulette and splitting and path guiding.

Proof of Zero-Variance

Here, we show that the rules stated in this section indeed result in a zero-variance
walk. We will go through the life cycle of a particle that starts with its emis-
sion and follows a chain of collisions. At each collision it first faces stochastic
termination and then — if it survives — it scatters.

Emission. After emission, the particle weight becomes

νe
o(x, ωx

o) =
Le

o(x, ωx
o)|cos θo|

pe
zv(x, ωx

o)

=
Le

o(x, ωx
o)|cos θo|I

Wi(x, ωx
o)Le

o(x, ωx
o) | cos θo|

=
I

Wi(x, ωx
o)
.

(2.14)
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Figure 2.3: A light tracing collisions where the collision at x precedes the collision
at y. The figure depicts important identities between the two events.

When this particle enters the next scattering event y, due to the relationship of
incident and outgoing visual importance Wi and Wo respectively (see Fig. 2.3),
its incident weight (Eq. (2.14)) becomes

I

Wo(y, ωi)
. (2.15)

Termination. Now, before the particle scatters at y, it is stochastically ter-
minated with probability 1 − qzv. If it is terminated, its weight is multiplied by
the emitted visual importance W e

o (y, ωi), divided by the probability 1 − qzv and
the resulting weight I contributes to the estimator:

I

Wo(y, ωi)
W e

o (y, ωi)
1

1− qzv(y, ωi)

=
I

Wo(y, ωi)
W e

o (y, ωi)
Wo(y, ωi)

W e
o (y, ωi)

= I

(2.16)

We can see that upon termination, the particle weight is equal to the solution I
and thus it contributes with zero variance.

If the particle survives, its weight is divided by qzv:

ν̂(y, ωi) =
I

Wo(y, ωi)

1

qzv(y, ωi)

=
I

Wo(y, ωi)

Wo(y, ωi)

W r
o(y, ωi)

=
I

W r
o(y, ωi)

.

(2.17)

Scattering. Particle which has survived the termination step at the collision
y is scattered. Its weight (Eq. (2.17)) is updated according to Eq. (2.7) using the
zero-variance scattering pdf pzv (Eq. (2.12)):

νo(y, ωo) = ν̂(y, ωi)
fs(y, ωi→ωo)|cos θo|

pzv(ωo|y)

=
I

W r
o(y, ωi)

W r
o(y, ωi)fs(y, ωi→ωo)|cos θo|

Wi(y, ωo)fs(y, ωi→ωo)| cos θo|

=
I

Wi(y, ωo)
.

(2.18)

Note that, after scattering, the particle is at the same state as after emission
(compare Eq. (2.14) and Eq. (2.18)) and at a next collision it will take form of
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equation (2.15). The particle follows further termination/scattering events until
it is finally terminated while contributing by its weight equal to the solution I
(Eq. (2.16)).
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Chapter 3

Path Guiding through On-line
Learning of Parametric Mixture
Models

3.1 Introduction

In this chapter, to address the problem of rendering highly occluded scenes, we
augment sampling of local scattering directions and light emission with global in-
formation. When constructing transport sub-paths, we sample the scattering and
emission proportionally to an approximation of the equilibrium adjoint quantity
which is radiance for camera sub-paths or importance for light sub-paths. As a
result, the sub-paths are guided to each other – camera sub-paths toward light
sources and light sub-paths toward the camera – which increases the probability
of constructing full paths with non-zero contributions. This, in turn, significantly
reduces variance without introducing bias.

Our work adopts the idea of reconstructing the sampling distributions from
particles [Jensen, 1995]. While a number of works have taken this route, they
often use inflexible representations of the distributions [Jensen, 1995] and incur
significant overhead [Hey and Purgathofer, 2002]. Most importantly, these meth-
ods rely on a limited number of particles, which is usually insufficient to recover
useful sampling distributions in highly occluded scenes.

We propose to represent the sampling distributions with the Gaussian mixture
model (GMM), extensively used in machine learning [Bishop, 2006]. The GMM
is efficient to learn, easy to evaluate and sample, and compact to store. The core
of our method is an on-line (progressive) learning step: Instead of learning the
distributions only once from a limited set of particles, we continuously train them
using a potentially infinite stream of particles while keeping a bounded memory
footprint. We use importance sampling based on this model in a number of light
transport algorithms, including the state-of-the-art bidirectional ones [Georgiev
et al., 2012b, Hachisuka et al., 2012, Veach, 1997].

Our key contributions in this chapter, which is based on our previously pub-
lished work [Vorba et al., 2014], are:

� introduction of on-line learning of parametric mixture models to image syn-
thesis,
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BDPT Our - 2 TP Our - 5 TP Our - 30 TP

Bidirectional path tracing (BDPT)

Our guided BDPT

Figure 3.1: We render a scene featuring difficult visibility with bidirectional path
tracing (BDPT) guided by our parametric distributions learned on-line in a num-
ber of training passes (TP). The insets show equal-time (1h) comparisons of im-
ages obtained with different numbers of training passes. The results reveal that
the time spent on additional training passes is quickly amortized by the superior
performance of the subsequent guided rendering. Convergence plot corresponding
to these four methods is shown in Fig. 3.2.
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Figure 3.2: The plot related to Fig. 3.1 shows convergence of four simulations
running with different numbers of training passes over 1h. The results reveal
that the time spent on additional training passes is quickly amortized by the
superior performance of the subsequent guided rendering.

� a learning procedure that can handle particles with highly varying weights,

� employing parametric mixtures for importance-driven particle emission from
environment light sources,

� an efficiency improvement of path sampling-based light transport algo-
rithms in complex, highly occluded scenes.

In the rest of this chapter, we position our work on importance sampling of
scattering directions and emission with respect to existing methods, we review
learning of parametric mixtures, we expose our on-line learning algorithm and
present a caching scheme for learned distributions, and finally, we present achieved
results.

3.2 Related Work

Sampling distributions from particles. Jensen [1995] proposed the use of light-
carrying particles, or photons, to guide direction sampling in a path tracer. He
reconstructs the directional PDFs by counting the number of photons whose direc-
tions fall into constant-sized bins. This corresponds to simple histogram density
estimation, which is known to be a poor density estimation method prone to
under- or over-fitting [Bishop, 2006]. The method could be made progressive by
accumulating an infinite stream of particles to the bins. However, this progres-
sivity is rather deceiving because the regular histogram grid does not adapt to
details, thereby producing poor PDF reconstructions no matter how many par-
ticles are used. A similar approach was taken by Steinhurst and Lastra [2006]
and Budge et al. [2008]. Peter and Pietrek [1998] extended this idea to using
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importance particles for guiding photons towards the camera. Hey and Purgath-
ofer [2002] represent the directional PDFs with cones of adaptive width centered
on gathered photons’ directions. This method yields better results than previous
work, but incurs substantial overhead. Pharr and Humphreys [2010] implement a
simplified version of Hey and Purgathofer’s method with cones of constant width.
Its reduced overhead, however, comes at the expense of quality. Our paper follows
this general line of work, pointing out that ‘reconstructing sampling PDFs from
photons’ is a general density estimation problem. We adopt parametric mixture
model estimation to learn the sampling PDFs in an on-line (progressive) manner.

Adaptive sampling. A number of works propose adaptive construction of
sampling distributions during rendering. Lafortune and Willems [1995] store
radiance samples in a 5D tree and use this information for importance sampling
and as a control variate. Pegoraro et al. [2008a, 2008b] replace the 5D tree with
per-pixel directional distributions. Dutré and Willems [1994, 1995] use adaptive
sampling similar to the VEGAS algorithm [Lepage, 1978] to emit paths from light
sources. Cline et al. [2008] use fixed-size adaptive importance sampling tables in
a path tracer. A common problem shared by these works is a fixed-resolution
or hierarchical representation of the sampling function which makes it difficult
to capture high-frequency features. The Gaussian mixture model that we adopt
does not suffer from this issue.

Caching. Bashford-Rogers et al. [2012] employ a parametric model for im-
portance sampling where cosine lobes are used to model directional distributions,
cached and re-used across pixels. The idea of caching sampling distributions
was also used by Georgiev et al. [2012a], who precompute and cache discrete
distributions of the contributions of virtual point lights (VPLs) to scene points.
As opposed to these techniques, we store the learned directional distributions
in a spatial cache not only to amortize the overhead, but mainly to maintain
a persistent representation of the distributions, thereby enabling their progres-
sive refinement through on-line learning. Other solutions such as irradiance and
radiance caching [Ward et al., 1988, Křivánek et al., 2005] can be used when
systematic error is acceptable; however, we pursue unbiased results.

Sampling emission from environment maps. Tsai et al. [2008] employ
spherical Gaussians to sample from the product of environment illumination and
BSDFs. Bashford-Rogers et al. [2013] guide emission from environment maps
using importance. We address a more general problem of sampling both indirect
illumination and environment emission.

Progressive GMM learning in rendering. Jakob et al. [2011] use a Gaussian
mixture model to represent spatial distribution of scalar irradiance in participat-
ing media. The accelerated expectation maximization (EM) algorithm [Verbeek
et al., 2006] used for this purpose allows progressive model updates, but it fun-
damentally relies on the ability to produce a good fit from the initial batch of
particles. Thanks to the maximum a posteriori (MAP) formulation of the model
estimation, our on-line technique robustly handles situations where particles are
extremely scarce.
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3.3 Parametric Mixture Models and the EM Al-

gorithm

We review learning of parametric mixture models that forms basis of our ap-
proach. We start by presenting the classic batch EM (Expectation Maximization)
algorithm, which is well known to the graphics community. We then describe the
off-line stepwise EM algorithm, a generalization of batch EM with better conver-
gence properties [Liang and Klein, 2009]. The stepwise EM formulation allows
deriving the on-line stepwise EM algorithm for learning from a potentially in-
finite stream of particles. While batch EM is reviewed only for reference, both
stepwise EM variants are essential components of our method. Bishop [2006] and
Cappé [2011] provide more details on EM.

Parametric mixture models. A parametric finite mixture model is a convex
combination of simpler parametric distributions. We use the Gaussian mixture
model (GMM) with K components:

GMM(s|θ) =
K∑
j=1

πjN (s|µj,Σj), (3.1)

where N (s|µj,Σj) is a Gaussian distribution over s ∈ Rd with a mean µj and a

covariance matrix Σj. The mixing coefficients πj satisfy πj ≥ 0 and
∑K

j=1 πj = 1.
The mixture is defined by a parameter vector θ = {π1, µ1,Σ1, . . . , πK , µK ,ΣK}.

Maximum likelihood (ML) estimation. The density estimation problem for
a mixture model p(s|θ) (e.g. the GMM), consists in finding parameters θ so that
p(s|θ) is a good approximation of the unknown distribution that generated a
given finite set of N observed samples S = {s0, . . . , sN−1 ∈ Rd}. A common
approach is to use the parameter vector θML that maximizes the log-likelihood
L(S, θ) = ln p(S|θ) =

∑N−1
q=0 ln p(sq|θ).

Maximum a-posteriori (MAP) estimation. A fundamental problem with
ML estimation is over-fitting, i.e. introducing patterns not present in the original
distribution [Bishop, 2006]. This issue is particularly pressing in our approach,
where we may have only a few observed samples available to construct initial
estimates. To deal with this issue, we adopt the maximum a posteriori solu-
tion θMAP, which seeks the mode of the posterior distribution p(θ|S) over model
parameters θ, given by Bayes’ theorem: p(θ|S) ∝ p(S|θ)p(θ) (i.e. posterior ∝
likelihood × prior). With only a few samples, the solution is mostly determined
by our prior beliefs (e.g. that PDFs with extreme values are unlikely), modeled
by the prior distribution p(θ), which is overridden as more samples are observed.
Appendix 3.A and especially Gauvain and Lee [1994] provide more details.

Batch expectation maximization (Batch EM). Expectation maximization
(EM) [Dempster et al., 1977] is an iterative procedure to find the ML or MAP
estimates for mixture models. The classic, or batch EM algorithm [Liang and
Klein, 2009] for a finite set of observed samples starts with an initial guess of
parameters and proceeds in iterations over the sample set. In each iteration,
which consists of the expectation (E) and the maximization (M) steps, it obtains
a new estimate θnew based on the current estimate θold (Algorithm 1).

Since the log-likelihood L(S, θ) over the EM iterations is a non-decreasing
function of θ, the iterative solution θnew converges to a local maximum. The
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Algorithm 1 Pseudocode of batch expectation maximization (EM).

1: θold := initialize( )
2: repeat
3: ujN−1 := computeSufficientStats(S, θold) . E-step: Eq. (3.4)

4: θnew := θ(u1
N−1, . . . ,u

K
N−1) . M-step

5: until converged( ) . Eq. (3.2)

following condition is often used as a convergence criterion:∣∣L(S, θold)− L(S, θnew)
∣∣ < ε |L(S, θnew)| . (3.2)

In the E-step, the responsibilities γqj of every component j for each sample
sq are evaluated. Informally, they give the probability that the sample sq would
be drawn from the component j if we sampled from the mixture θold. For the
GMM, the responsibilities are computed as

γqj =
πjN (sq | θold

j )∑K
h=1 πhN (sq | θold

h )
. (3.3)

With these responsibilities, we can compute the sufficient statistics ujN−1 for
every mixture component j as the weighted average

ujN−1 =
1

N

N−1∑
q=0

γqju(sq), (3.4)

where u(sq) = (1, sq, sqs
T
q ) is a triplet consisting of the number 1, the vector sq,

and the matrix sqs
T
q . The subscript N−1 suggests that the sufficient statistics are

based on N observed samples s0, . . . , sN−1. The ML and MAP estimates depend
on the observed samples in S only through these sufficient statistics.

In the M-Step, the sufficient statistics are used to obtain a new GMM esti-
mate θnew using a closed form update formula θnew = θ(u1

N−1, . . . ,u
K
N−1). We do

not provide details of the update formula θ here as we do not use batch EM in
our solution.

Off-line stepwise EM. We now describe the stepwise EM formulation [Liang
and Klein, 2009], whose on-line variant forms the basis of our approach. In batch
EM, the sufficient statistics are recomputed from all N samples (E-step) and
only then, the distribution parameters can be updated (M-step). The stepwise
formulation, on the other hand, continuously updates the statistics with every
observed sample, which enables more frequent parameter updates, and therefore
faster convergence.

Off-line stepwise EM, a generalization of batch EM 1 , also iterates over the
sample set until convergence, as shown in Alg. 2. In the E-step, the sufficient
statistics for each mixture component j are updated using the formula:

uji = (1− ηi)uji−1 + ηi γqju(sq), (3.5)

1In stepwise EM, if we set the stepsize parameter α to be equal to 1 and the update rate m
to be equal to the dataset size N (i.e. m = N), we obtain the batch EM algorithm.
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where i ≥ 1 is an index that increments with each processed sample and q = (i−1)
mod N is the index of the sample sq in the sample set S. In other words, the
samples from S are processed over and over, while the index i keeps growing. The
updated statistics uji are given by a weighted average of the statistics γqju(sq)
for the currently observed sample sq and the statistics uji−1 for all the previously
observed samples. The weight in this average is given by the decreasing sequence
{ηi}i≥1 of stepsizes that must obey

∑
i ηi = ∞ and

∑
i η

2
i < ∞. A sequence

which satisfies these conditions is ηi = i−α with the effective values of the stepsize
parameter α ∈ [0.6, 0.9] [Cappé, 2011].

The distribution parameters θold are updated in the M-step after processing
every m-th sample (1 ≤ m ≤ N). The formula is the same as in batch EM, with
the current sufficient statistics ui as inputs:

θnew = θ(u1
i , . . . ,u

K
i ). (3.6)

We provide the update formula θ for MAP solution from stream of weighted
particles in Sec. 3.4.2.

Algorithm 2 Off-line stepwise EM

1: i := 0 . Index of sufficient statistics
2: repeat
3: for q := 0 to N − 1 do . Iterate over a batch of N samples
4: i := i+ 1
5: uji := updateSufficientStats(sq, θ

old) . E-step: Eq. (3.5)
6: if i mod m = 0 then . M-step: every m-th observed sample
7: θnew := θ(u1

i , . . . ,u
K
i ) . Eq. (3.6)

8: end if
9: end for

10: until converged( ) . Eq. (3.2)

On-line stepwise EM. The batch EM and the off-line stepwise EM algorithms
base inference on a finite set of N samples stored in memory. Our method,
however, targets scenarios where the number of samples (e.g. photons) necessary
for reliable inference would be impractical or even impossible to store. The off-
line stepwise EM formulation, unlike batch EM, can be easily modified for this
purpose [Sato and Ishii, 2000, Liang and Klein, 2009, Cappé, 2011]. The key
is Equation (3.5) that enables progressive embedding of the information from
any number of particles into a small set of statistics. If we consider the input set
S = {s0, s1, . . . ∈ Rd} to be an infinite stream of samples, then the on-line stepwise
EM algorithm is obtained from Alg. 2 by removing the outer cycle (lines 2 and
10) that iterates over the finite batch of samples. As such, the on-line algorithm
continues learning as long as the samples are streamed. Details with respect to
our application are given in Sec. 3.4.2.

3.4 Our Unbiased Guiding Method

We now present an overview of our unbiased guiding method (Sec. 3.4.1) followed
by details of our technical contribution: MAP density estimation from weighted
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particles (Sec. 3.4.2), caching of distributions (Sec. 3.4.3), and emission from
environment light sources (Sec. 3.4.4). In Sec. 3.4.5, we discuss the form of
Russian roulette that we used to obtain our results presented in this chapter.

3.4.1 Overview

Our method is split into two strictly separated phases: a) training of hemispheri-
cal distributions representing the incoming radiance or importance from particles
(training phase), and b) using the trained distributions for importance sampling
in rendering (rendering phase). During the training phase, the directional distri-
butions are placed and cached at scene surfaces and progressively updated. The
distributions stay fixed during the entire rendering phase.

Training phase. The training phase, depicted in Fig. 3.3, consists of several
training passes. Each training pass comprises tracing a batch of importons from
the camera followed by a batch of photons from the light sources. We start by
tracing a batch of importons without our guiding (Fig. 3.3a). Every succeeding
particle tracing step is then guided by our distributions, which are created and
progressively refined throughout the entire training phase. Radiance distributions
are trained by photons and used to guide paths from the camera. Conversely,
importance distributions are trained by importons and used to guide paths from
the light sources. Guiding refers to importance sampling of local scattering di-
rections and emission from environment light sources based on our distributions,
as described below.

New distributions are created on-the-fly during the guided particle tracing
steps (Fig. 3.3c, f). They are stored in a spatial cache so that they can be reused
at nearby locations and refined in the subsequent training passes. We keep two
separate caches, one for importance and the other for radiance distributions. If
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Figure 3.3: The training phase preceding the rendering phase. Processes related
to importons or importance distributions use green background while processes
related to photons or radiance distributions are in orange.
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the particle tracing process requests a distribution at a certain point and none is
available at any nearby location, a new distribution is created and cached. We
train the new distribution from the particle map constructed during the preced-
ing particle tracing step (e.g. the importon map if we currently trace a photon)
by collecting N nearest particles and using them as the input for off-line step-
wise EM. The new distribution is then cached together with meta-information
necessary for its refinement in the subsequent training passes (see Sec. 3.4.2).

After a batch of particles has been traced, we use it to update all distributions
in the respective cache (Fig. 3.3d, e). For each cached distribution, we find the N
nearest particles and use on-line stepwise EM to update it. At any given time,
only the last two particle maps (one for radiance and the other for importance)
are kept in memory. We delete the maps before constructing new ones (Fig. 3.3b,
g), and thus our method keeps a bounded memory footprint while allowing for
an arbitrary number of training passes. Unlike the particle maps, the two distri-
bution caches are persistent and are continuously updated throughout the whole
training phase.

The motivation behind our use of interleaved, mutually guided importon and
photon tracing steps is that with every training pass, the distributions become
more accurate and provide improved importance sampling for the subsequent
training passes. This approach significantly improves the efficiency of the training
phase.

Rendering phase. With the two caches of distributions obtained in the train-
ing phase, we can guide the construction of both camera and light sub-paths in
virtually any path sampling-based light transport algorithm (including bidirec-
tional ones). To guide a unidirectional algorithm, such as path tracing, we simply
discard the unnecessary distribution cache. As in the training phase, we use the
distributions for importance sampling of the local scattering directions and emis-
sion from environment light sources. If no guiding distribution is available at a
nearby position, a new one is trained from the latest batch of particles.

Distribution representation. After investigating a number of alternatives,
we decided to model the directional distribution p(ω|y) at a spatial location y
with a mixture of bi-variate Gaussians GMM(s) on a 2D plane, i.e. s ∈ R2. To do
this, we project the hemisphere H+ onto a unit square using the area preserving
mapping S of Shirley and Chiu [1997].

Sampling from the distribution model. To generate a new direction ω after
a particle has collided with a surface at a position y, we randomly choose between
BSDF sampling and sampling from our guiding distribution p(ω|y). Both strate-
gies are then combined using multiple importance sampling [Veach, 1997]. To
sample a direction ω′ from our guiding distribution, we first draw a 2D position
s′ from the GMM(s) and then we apply the inverse mapping so that ω′ = S−1(s′).
To compensate for the change of variables, we multiply the PDF value by the Ja-
cobian of S−1, which is a constant 1

2π
for Shirley and Chiu’s mapping. Should

the sample s′ lie outside of the unit square, the particle path is terminated.
Direct vs. indirect illumination. Reflected light (Lr

o in Eq. (2.1)) can be
split into integration of direct light that scatters only once and indirect light due
to multiple scattering. In our implementation, to achieve optimal importance
sampling of unidirectional path tracing, our radiance distributions contain both
direct and indirect illumination. However, we exclude direct visual importance
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from distributions used to guide photons because they cannot hit the camera
implicitly.2

Note that, in practice (and also in our implementation), it is common to use
multiple importance sampling to combine next event estimation (explicit sam-
pling of light sources) and unidirectional sampling. In this case, our decision to
train distributions to include both direct and indirect illumination might become
sub-optimal. For example, if next event estimation forms an almost perfect sam-
pling strategy then we would achieve better importance sampling if we excluded
direct illumination from our distributions. This has two reasons. First, we can
allocate all unidirectional samples for indirect illumination because direct illu-
mination is already sampled well by next event estimation. Second, all GMM
components would be used to capture finer details in indirect illumination which,
in turn, would yield a better importance sampling of indirect illumination.

Nevertheless, our decision to include both direct and indirect illumination
in the guiding distribution is also supported by the fact that, due to occlusion,
next event estimation is often not optimal sampling strategy. For example, if an
environment light source contains also sun light then most of next even estimation
samples will be allocated to sample the sun. However, this is not optimal for
shadows where the sun contribution is zero but other light source features are
important.

3.4.2 Learning Distributions from Weighted Particles

As described in Sec. 2.3, a particle tracing algorithm generates particles p =
(y, ωi, νi), defined by their position y, incoming direction ωi, and incident weight
νi (also referred to as ‘flux’ when tracing photons). The particle weight is a prod-
uct of the particle emission function, BSDFs, and geometry factors divided by
the probability density of generating the particle path (see Sec. 2.3). The den-
sity of the photons or importons together with their weights form an unbiased
representation of the equilibrium incoming radiance Li or importance Wi, respec-
tively [Veach, 1997]. Therefore, an approximation of a sampling PDF p(ω|y) ∝
Li(y, ω)|cos θi| can be reconstructed from the directions and weights of photons
p in the vicinity of y. Similarly, directions and weights of importons in the vicin-
ity of y can be used to reconstruct a sampling PDF p(ω|y) ∝ Wi(y, ω)|cos θi|.
Note that the cosine term is implicitly present in the particles density that hit a
(supposedly) flat surface.

Here, we present a new generalization of the stepwise EM algorithms (both
off-line and on-line) that supports density estimation from a set of weighted par-
ticles. Before delving into its description, let us clarify, on an example of a
single distribution, the use of off-line and on-line stepwise EM in our method (see
Fig. 3.4). A distribution is initialized by off-line stepwise EM from the set of par-
ticles available in the first training pass. We then store its sufficient statistics ui
and its counter i so that the learning can be resumed in the subsequent training
passes by on-line stepwise EM. Note that, in the rest of this section, we override

2Similarly, for point light sources, direct illumination should be excluded as such source
cannot be hit implicitly.
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Figure 3.4: An example of learning of a single distribution from a stream of parti-
cles processed first by the off-line and then by the on-line stepwise EM algorithms.
In the first training pass (TP), we use the off-line algorithm that iterates until
convergence (10 times in our example) over the N = 4 particles available in the
first TP. In the subsequent training passes, the on-line algorithm is used, which
processes each particle only once. The index i of the sufficient statistics associated
with the trained distribution is incremented with each processed particle.

meaning of index i to stand for a data counter instead of depicting something
‘incident’.3

Save for some subtle differences, our new weight-aware formulation affects
both off-line and on-line stepwise EM in the same manner. Thus, in the following
statements, we refer to both algorithms as stepwise EM unless the algorithm
variant is explicitly stated.

Weighted data log-likelihood. The log-likelihood L(S, θ), as given in Sec. 3.3,
does not allow density estimation from a weighted set of samples. Thus, we in-
troduce the following weighted data log-likelihood

L(S,w, θ) =
N−1∑
q=0

νq ln p(sq|θ), (3.7)

where S = {s0, . . . , sN−1} is a set of N observed samples with their corresponding
weights w = {ν0, . . . , νN−1}. This definition is in line with the intuition that a
weighted sample (sq, νq) corresponds to an unweighted sample sq observed νq
times.

Taking measures against over-fitting is extremely important when using weigh-
ted particles, because the particle weights might differ by orders of magnitude.
To this end, we employ a MAP solution (see Sec. 3.3) based on conjugate priors.
Conjugate priors have the same functional form as the resulting posterior distri-
bution and therefore lead to a greatly simplified Bayesian analysis [Bishop, 2006].
Our approach based on the weighted data log-likelihood requires a careful treat-
ment of the MAP approach. This is reflected in both the E-step and the M-step
of stepwise EM. In the following paragraphs, we extend the sufficient statistics
(E-step) and provide formulae for updating the model parameters. Please refer
to Appendix 3.A for their derivation.

Our weighted stepwise EM: E-step. To account for the weight νq of an
observed sample sq, we modify the sufficient statistics update formula (3.5) to

uji = (1− ηi)uji−1 + ηiνqγqju(sq), (3.8)

3In this section, we treat particles rather as a general dataset for learning and we do not
need their light transport semantic.
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where u(sq) = (1, sq, sqs
T
q ). The only difference from Equation (3.5) is the multi-

plication of the second summand by νq. This corresponds to the interpretation of
weight νq as a multiplicity of the new observed sample sq. Additionally, we keep
track of the averaged total particle weight required for normalization of mixture
weights in the M-step:

νi = (1− ηi)νi−1 + ηiνq, (3.9)

Our weighted stepwise EM: M-step. We have derived an update function
for model parameters, θnew = θ(u1

i , . . . ,u
K
i , νi), that takes the current modi-

fied sufficient statistics (3.8) and the averaged total particle weight νi. By let-

ting uji = ((uγ)
j
i , (s)ji , (ss

T )
j

i ), we decompose the sufficient statistics uji into a real
number, a vector and a matrix that are computed from Equation (3.8). Then the
specific formulae defining the vector function θ read as follows:

πnew
j =

(uγ)
j
i

νi
+
δ − 1

n

1 +
K(δ − 1)

n

, (3.10)

µnew
j =

(s)ji
(uγ)

j
i

, (3.11)

Σnew
j =

b

n
I +

(ssT )
j

i −A + (uγ)
j
iB

νi
a− 2

n
+

(uγ)
j
i

νi

(3.12)

where
A = (s)ji (µ

new
j )T + µnew

j (sT )
j

i , B = µnew
j (µnew

j )T ,

I is the identity matrix, K is the number of mixture components and n is the
total number of observed samples (see the details below). Scalars a, b and δ are
parameters of conjugate priors induced by the MAP solution (see Appendix 3.A
for more details).

We ran extensive experiments with both synthetic and real data from light
transport simulation and by comparing our algorithm results to the reference
solutions, we have concluded that the most suitable values for our application
are a = 2.01, b = 5 × 10−4, δ = 1.01. Likewise, we found that both the on-line
and the off-line stepwise EM algorithms achieve the best results when the M-step
is executed every m = 10 samples (see Alg. 2) and with the stepsize parameter
α = 0.7 (see Sec. 3.3). We decided to use K = 8 components in the mixture as it
proved sufficient in all tested scenes.

Differences between the off-line and the on-line versions. The number of
observed samples n in Equations (3.10) and (3.12) governs the effect of our prior
beliefs. The more samples we have observed the weaker the effect of priors. In on-
line stepwise EM, we simply set n to the current value of the index of sufficient
statistics i. However, to fully exploit the MAP approach and thus to prevent
over-fitting in our off-line stepwise EM, it is necessary to set n = min(i, N). This
is necessary because the algorithm iterates over the same batch of N samples
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multiple times (see Fig. 3.4) before it converges and the index i could be much
higher than the actual number of unique observed samples.

3.4.3 Caching of Distributions

Once the EM algorithm creates a hemispherical distribution p(ω|y) at y, we
cache it for reuse at nearby locations. The main reason for using a persistent
cache of distributions is to enable their on-line refinement. Our cache is inspired
by the traditional lazy evaluation scheme from (ir-)radiance caching [Křivánek
et al., 2005, Ward et al., 1988]. It maintains a set of distributions, and for each
query point it either returns an existing distribution or creates (i.e. trains) and
stores a new one. Our caching scheme, however, exhibits an important difference
from (ir-)radiance caching. While (ir-)radiance caching blurs the stored values
to obtain a biased, yet perceptually plausible result, we strive for an unbiased
result.

Spacing of cached distributions. To achieve a good performance, we space
the distributions so that they adapt to the angular frequency of the radiance (or
importance) function, as illustrated in Fig. 3.5 (e.g. for radiance, more distribu-
tions should be created in sharp caustics). To space the distributions, we assign
to each of them a validity radius that determines the maximum spatial distance
where the distribution can be reused. The validity radius for a distribution is
computed as a harmonic mean of the validity radii of its individual mixture lobes
(i.e. GMM components), weighted by the mixing coefficients πj. To determine
the validity radius of a lobe, we first predict how the lobe would change if we
observed the environment from a slightly different position (see Fig. 3.6). We
then set the validity radius such that the Kullback-Leiber divergence [Bishop,
2006] between the original and the changed lobe stays below a certain threshold
for any location within the validity radius. We additionally improve the spacing
of distributions by the neighbour clamping heuristic [Křivánek et al., 2006]. We
also clamp the validity radii to be between 0.5 and 1 times the distance between
the distribution position y and the furthest particle used for its training. We
provide details of validity radius computation in Appendix 3.B.

Distribution reuse. We have experimented with different interpolation strate-
gies and concluded that simply re-using the nearest suitable distribution is the
most robust solution. When we query the cache at the position y, we search
for M nearby distributions which include the query point y within their validity
radius. From among those we select one with a suitable position and normal
orientation. Specifically, we choose the distribution that minimizes

‖y − yi‖2

h
+ 2
√

1− n · ni, (3.13)

where yi and ni are the position and the normal of i-th candidate respectively, n
is the normal at y and h is the distance to the furthest of the M candidates. If
there is no suitable distribution that could be reused, we create a new one.

3.4.4 Environment Emission Sampling

We have observed that guiding only the scattering directions is insufficient in
complex scenes with environment lighting. This is because most particles emitted

31



Figure 3.5: An example of radiance and importance caches in a Cornell box
scene (left). The black dots represent positions of distributions used for guiding
camera (center) and light paths (right). The cache adapts to the scene by plac-
ing more records where the radiance/importance function contains high angular
frequencies.

from the environment fail to enter important parts of the scene through small
openings (see Fig. 3.1). Here, we present our approach for driving the particle
emission from an environment light source by visual importance (see Sec. 2.2).
Emission from other light source types is left for future work.

An environment light defines the emitted radiance Le(ω) over directions ω.
Emitting a particle from an environment light requires sampling a joint PDF
p(x, ω) = p(ω)p(x|ω) that we factor into the PDF p(ω) to sample the particle
direction ω, and p(x|ω) to sample the starting position x on a disk outside the
scene that is perpendicular to ω [Georgiev, 2012, Pharr and Humphreys, 2010].
These distributions are trained by the importons that have left the scene (see
Fig. 3.7a) during the importance distributions update step in Fig. 3.3.

Directional distribution. We compute p(ω) as a product of pL(ω) ∝ Le(ω)
given by the environment map and of pW(ω) that is the directional distribution
of importance reconstructed from the importons that left the scene. We repre-
sent pW(ω) with a fixed-resolution bitmap. In each pixel, the PDF is computed
from importon directions using a progressive kernel density estimate [Hachisuka
et al., 2008]. To avoid introducing bias due to zero probability of sampling direc-
tions that did not receive any importons, we combine sampling from the product
pL(ω)× pW(ω) and from pL(ω) via multiple importance sampling [Veach, 1997].

Position distributions. The distributions p(x|ω) defined on a disk perpen-
dicular to ω (see Fig. 3.7b) are stored in a unit sphere cache indexed by ω. This
allows to reuse the stored distributions for nearby directions and enables their
on-line training. To represent p(x|ω), we train our GMM (see Sec. 3.3) from im-
portons that left the scene in a direction less than 1◦ from ω. Prior to the training,
these importons are projected onto the perpendicular disk (see Fig. 3.7a).

3.4.5 Russian Roulette

Path termination via Russian Roulette (RR) [Arvo and Kirk, 1990] affects the dis-
tribution of particles together with their weights, without changing the expected
value of the quantity they represent (see Sec. 2.6). This is commonly called biasing
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Figure 3.6: Calculation of the lobe validity radius. Left: We assume that the green
lobe of a distribution at the position y corresponds to an importance/radiance
highlight at the position x seen from y along the lobe axis. If we move the
lobe to a new position y′, the direction of the lobe (red) pointing towards the
highlight changes. The validity radius is set such that the resulting change of the
lobe, measured by the KL-divergence, does not exceed a given threshold. Right:
The same situation in the unit square domain where the corresponding Gaussian
distribution is defined and where the KL-divergence is actually measured.

in the neutron transport literature [Booth, 1985a, 2012b]. Our guiding method is
also a biasing technique: we strive to reduce variance by guiding particles toward
important areas (e.g. in front of the camera). However, combining different bias-
ing techniques could be counterproductive. When we use our guiding method, we
must not base the random walk termination by RR on a local decision (derived
from e.g. the surface albedo) as is commonly done in light transport simulation
[Pharr and Humphreys, 2010]. This approach might result in a termination of
particles that could eventually yield an important contribution.

Ideally, we should adapt Russian roulette to the distribution of radiance (or
visual importance for photons) in the scene [Haghighat and Wagner, 2003]. We
devote to this problem Chapter 4 where we suggest to terminate (or split) particle
paths according to their expected contribution to the computed solution. We
also investigate the impact of such Russian roulette and splitting to path guiding
(Sec. 4.5).

Nonetheless, in this chapter, to demonstrate and isolate benefits of our guiding
method, we base our Russian roulette on particle weights. Note that due to
guiding, important areas will contain many particles with very small weights4

and we want to minimize the chance that these particles are killed. Thus we set
the RR survival probability to

min{ νi

νe
o

1

νthr

, 1}, (3.14)

where νi is the particle weight at the current scattering location, νe
o is the particle

weight just after emission before any scattering and νthr is a fixed, empirically
determined threshold that we set to 10−6 for all our renderings. In other words,

4Because particles form an unbiased representation of radiance/visual importance, an in-
crease in particle density must result in a decrease in their respective weights.
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(a) (b)

Figure 3.7: To learn the importance distribution p(x|ω) for sampling starting
positions of light paths from the environment, conditional on the direction ω,
we construct a disk perpendicular to ω outside the scene. A GMM model of the
distribution is trained from importons that leave the scene in a direction less than
1◦ from ω (a). The position x of the light paths emitted in a direction close to ω
is sampled using the learned distribution p(x|ω) (b).

we do not attempt to terminate a particle unless its weight drops at least νthr

times from its initial value νe
o. Note that in practice, for camera particles, νe

o

equals to 1 while for photons that are emitted according to light source power
profile it is equal to the total power of all sources in the scene.

Additionally, to avoid excessive particle weights that could accumulate over
multiple scattering events, we split the particle path whose original weight νe

o

was increased more than twice. This is relatively conservative splitting rate that
results into a very small number of splits. The reason is that, in our scheme,
at maximum, the particle weight can increase twice per scattering event (under
the assumption that we achieve perfect importance sampling of BSDF). We show
this claim in Appendix 3.C.

3.5 Applications and Results

We first demonstrate the flexibility of the Gaussian mixture model in rendering.
Then we show that guiding various path-sampling algorithms using our progres-
sively trained distributions provides superior rendering results in complex, highly
occluded scenes.

3.5.1 Flexibility of the Gaussian Mixture Model

We compare our GMM to Jensen’s histograms [1995] and Hey and Purgathofer’s
hemispherical footprints [2002] in terms of their ability to model distributions
encountered in rendering. Fig. 3.8 shows a simple Cornell box scene with two
glossy blocks. It is rendered with path tracing using the histogram model with two
different histogram resolutions, the hemispherical footprints model, and finally
our GMM. Note that the on-line learning, which is discussed in the following
section, is not applied so that the comparison is fair. Instead, during the training
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(a) Jensen 8×8 (b) Jensen 32×32

(c) Hey and Purgathofer (d) Our GMM

PDF value:  0    250

Figure 3.8: Demonstration of the superior flexibility of the parametric Gaussian
mixture model (GMM) over previously used models. Four renderings of a Cornell
box scene with diffuse walls and two glossy blocks lit by the sun are rendered by
guided path tracing using Jensen’s [1995] method with the histogram resolution of
8×8 (a) and 32×32 (b), Hey and Purgathofer’s [2002] hemispherical footprints (c),
and with our GMM (d). The distributions trained at two selected locations in the
scene are also visualized. One distribution contains low-frequency illumination
while the other contains a sharp peak caused by a reflection of the sun.

phase, we emit 5M photons in a single batch and all the models are trained from
250 nearest photons.

The figure shows that higher histogram resolution captures high frequencies in
the incoming radiance distribution inside caustics, while the ability to represent
low frequencies deteriorates at the same time due to over-fitting. Thus, while the
quality of caustics at the histogram resolution of 32× 32 pixels is superior to the
quality at the 8× 8 resolution, the noise is increased on the walls.

Hemispherical footprints are more flexible than the fixed histogram grid as
they take into account the directional density of particles. However, the method is
closely related to kernel density estimation and as such it suffers from the optimal
bandwidth selection problem [Silverman, 1986]. Visualization of a distribution
inside the sun’s reflection suggests insufficient generalization – the distribution is
discontinuous between individual observed samples in its peak.

Finally, the GMM with only 8 components in the mixture exhibits sufficient
flexibility to represent both low frequencies and sharp peaks in the distributions.
Note that when compared to the other methods, the GMM excels at generalizing
from the observed data (i.e. it avoids discontinuities between the individual sam-
ples). This is further supported by Fig. 3.9, which shows that the GMM provides
superior rendering results in a scene with difficult visibility.
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(a) Jensen 8×8 (b) Jensen 32×32

(c) Hey and Purgathofer (d) Our GMM

Figure 3.9: Equal-time (1h) comparison of different distribution models in a
scene with difficult visibility. Light enters the classroom from the sun and the
sky through small gaps between the window blinds. The scene was rendered by
path tracing guided by 8×8 (a) and 32×32 (b) histogram model, hemispherical
footprints model (c), and our Gaussian mixture model (d). Each method was
given a fixed number of emitted photons (500M) in one unguided tracing step.
Each distribution was then trained from a single batch of 500 nearest photons
without additional on-line learning.

3.5.2 On-line Learning Results

In Figs. 3.12–3.14, we compare classical implementations of (1) path tracing
(PT), (2) bidirectional path tracing (BDPT) and (3) vertex connection and merg-
ing (VCM) [Georgiev et al., 2012b] to the same implementations guided by our
method with the distributions trained in the on-line (progressive) manner. We
also show images rendered by (4) Veach’s Metropolis light transport with man-
ifold exploration (Veach MLT) [Jakob and Marschner, 2012]. We also present
corresponding L1 error plots in Fig. 3.10. The supplemental material contains
additional results for progressive photon mapping (PPM) and other flavours of
MLT (Kelemen MLT [2002] and energy redistribution path tracing [Cline et al.,
2005]) as well as RMSE plots.

Setup. Our method uses 30 training passes in all the presented scenes. We
set the maximum path length to 40 bounces. All images, save the references,
were rendered in 1 hour (including the training phase) on a single Intel Core
i7-2600K CPU using 8 logical cores. The reference images were rendered with
BDPT for 10–60 days. We used the Corona Renderer [Karĺık, 2009] to produce
all the results except the MLT images, which were rendered in Mitsuba [Jakob,
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Figure 3.10: Time dependence of L1 error for 60 minutes of rendering. The
learning phase of our method is included in the comparison, so the graphs for the
guided versions do not start at zero time.

2010] with default settings. We verified that our BDPT implementations in both
renderers converge to the same result.

Scenes. In Figs. 3.12–3.14, we show renderings of three scenes that feature dif-
ficult visibility and contain many locations that are poorly sampled with regular
path sampling-based methods. Two of the scenes (Living room and Classroom)
feature environment lighting and use our method for importance-driven emission
sampling. All the light in rendered images is due to indirect illumination.

The Living room scene allows only a small fraction of the light from the sun
and the sky to enter the room through a glass window and a small gap between the
curtains. The walls are diffuse and there are a few semi-glossy objects, including
the floor. Note that even BDPT and VCM struggle to resolve the image in the
dark closet on the left. The scene was rendered at a resolution of 1024 × 576
pixels. One million photons and importons were emitted in each training pass.
The training phase took 10.3 minutes.

The Classroom scene is lit by the sun and the sky through window blinds.
For regular MC algorithms, it is especially difficult to sample the dark half of
the classroom. Windows and highly glossy chairs and table legs together with
a semi-glossy floor create specular–glossy–glossy light transport paths that form
many caustics/indirect highlights. While our method improves sampling of the
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Reference Our guided BDPT Difference (EV+9)

Figure 3.11: Our method converges to the reference image computed by plain
BDPT (left). We rendered the scene for approximately two days with our guided
BDPT that used 30 TP (middle). The reference image was rendered by BDPT for
approximately 10 days. The uniform distribution of positive (green) and negative
(red) differences (right) suggests that any residual error is only due to variance.
Brightness of the difference image was multiplied by 29.

caustics and the dark parts of the scene, sampling of the glossy-glossy highlights
remains a challenge. The reason is that we do not sample from the product
of the BSDF and the incoming radiance/importance, but rather combine the
two via multiple importance sampling. The scene was rendered at a resolution of
960×480 pixels. 0.5 million photons and importons were emitted in each training
pass. The training phase took 7 minutes.

In the Door scene, light enters the room through a small slit. This is a
recreation of the well-known scene from Veach and Guibas’ paper [1997] provided
by Lehtinen et al. [2013]. To make the scene more realistic, we have made the area
light source much smaller and used more light bounces. The scene was rendered
at a resolution of 800× 600 pixels. 300k photons and importons were emitted in
each training pass. The training phase took 3.75 minutes.

Error and convergence. Fig. 3.10 shows the dependence of the L1 error on
time in all three scenes, comparing both the classical and our guided versions
of the algorithms. Fig. 3.11 demonstrates that our method converges to the
reference.

On-line learning. To demonstrate progressive improvement of distributions
during the training phase, we rendered the Living room scene several times with
guided BDPT. We used 2, 5 and 30 training passes, while all other settings were
kept the same. In Fig. 3.1, we present an equal-time comparison (1 hour) includ-
ing the time spent on the training phase. The results reveal that the time spent
on additional training passes is quickly amortized by the superior performance of
the subsequent guided rendering.

Discussion. Guided BDPT and PPM (see the supplemental material) yield
superior results compared to their classical versions. However, although VCM
is a combination of BDPT and PPM, the improvement of guided VCM is only
subtle over guided BDPT. We suspect that the guiding might render some path
sampling techniques – that would otherwise be an essential component of the
combined algorithm – less important.
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Figure 3.12: The living room scene with difficult visibility rendered with path
tracing (PT), bidirectional path tracing (BDPT), vertex connection and merging
(VCM), and their respective versions guided by our method. We also present
reference image and the result of Veach’s Metropolis light transport (MLT) with
manifold exploration. All images, except the reference, were calculated in one
hour, including the time spent on 30 training passes. The results show that the
overhead of our method is amortized by the improved sampling, as the noise levels
are reduced in all tested algorithms, especially in dark areas. (“EV+v” in the
insets refers to a multiplication of the image brightness by 2v.)
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Figure 3.13: The classroom scene with difficult visibility rendered with path
tracing (PT), bidirectional path tracing (BDPT), vertex connection and merging
(VCM), and their respective versions guided by our method. We also present
reference image and the result of Veach’s Metropolis light transport (MLT) with
manifold exploration. All images, except the reference, were calculated in one
hour, including the time spent on 30 training passes. The results show that the
overhead of our method is amortized by the improved sampling, as the noise levels
are reduced in all tested algorithms, especially in dark areas.
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Figure 3.14: The door scene with difficult visibility rendered with path tracing
(PT), bidirectional path tracing (BDPT), vertex connection and merging (VCM),
and their respective versions guided by our method. We also present reference
image and the result of Veach’s Metropolis light transport (MLT) with manifold
exploration. All images, except the reference, were calculated in one hour, in-
cluding the time spent on 30 training passes. The results show that the overhead
of our method is amortized by the improved sampling, as the noise levels are
reduced in all tested algorithms, especially in dark areas.
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3.6 Discussion, Limitations and Future Work

Alternative distribution models. We have experimented with a range of alter-
natives to Gaussian mixtures. The von Mises-Fisher (vMF) distribution [1953] is
defined directly on the unit sphere, but its isotropic shape is not suitable for fitting
highly anisotropic structures in the directional domain, often produced by caus-
tics. The Kent distribution [1982] is a directional distribution that does support
anisotropy, but becomes bi-modal for a range of parameters and is numerically
unstable. An anisotropic spherical function [Xu et al., 2013] derived from the
Bingham distribution [1974] was developed for interactive rendering. However,
at the moment, there is no known analytical sampling procedure. We further
experimented with an anisotropic distribution similar to the lobe of the Ward
BSDF [Ward, 1992], but its learning was too expensive.

Limitations and Future Work. The overhead of our method in the render-
ing phase, that may offset its advantages in simple scenes, comes mostly from
querying the cache. This takes 26% of the execution time for path tracing, and
up to 45% for bidirectional methods, since they need to access both radiance and
importance caches at each path vertex. Optimization should focus on this aspect,
since sampling and evaluation of the GMMs each takes only about 5% of the total
time.

Importance sampling based on our distributions can occasionally generate
excessive particle weights (training phase) or path contributions (rendering phase)
and produce spiky image noise. Splitting and Russian roulette based on our
importance/radiance distributions and particle weights [Haghighat and Wagner,
2003] could mitigate this issue and improve overall performance (see Chapter 4).

While the fixed number of components in the mixture may be insufficient to
capture some complex distributions, we have not encountered any problems due
to this limitation in our tests. Nonetheless, adaptive determination of the number
of components would be an interesting avenue for future work.

Because the distributions created in the later training passes have access to
fewer particles, they may be less refined than the distributions created earlier.
Adaptive refinement of the distributions during rendering could help resolve this
issue.

Since our distributions only model incoming radiance or importance, we can-
not provide good importance sampling of some complex glossy-to-glossy inter-
reflections. This could be alleviated by sampling from the product of the incoming
radiance or importance and the BSDF.

Our importance-driven emission is currently limited to environment light
sources. Using our distributions to sample emission from other light source types,
as well as for radiance-driven emission of importons from the camera, would im-
prove the efficiency of our method.

Finally, our method shares the same overall goal with Metropolis light trans-
port, that is globally optimized importance sampling of entire light transport
paths. It would be interesting to see if the two approaches can complement each
other to achieve further benefits.
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3.7 Conclusion

In this chapter, we have proposed the use of a parametric mixture model to
represent directional distributions for importance sampling in Monte Carlo light
transport simulation. The core of our approach is an on-line learning procedure
that allows one to train the distributions from a potentially infinite stream of
particles. With this approach, we can recover good importance sampling distri-
butions in difficult lighting configurations, where an excessively large number of
particles would otherwise be necessary. This, in turn, enables rendering scenes
with difficult visibility, where the existing state-of-the-art methods are inefficient.
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Appendix

3.A Derivation of MAP Update Formulae

In this appendix, we provide a derivation of the update formulae θ for the
model parameters in our stepwise expectation-maximization algorithm described
in Sec. 3.4.2 that supports weighted particles. The same formulae apply to both
the off-line and on-line versions of stepwise EM.

3.A.1 MAP and Conjugate Priors

To alleviate over-fitting that is associated with maximum likelihood estimation,
we pursue a maximum a posteriori (MAP) solution. In other words, observing
a set of samples S, we seek the mode of the posterior distribution p(θ|S) over
mixture model parameters θ, given by the Bayes’ theorem: p(θ|S) ∝ p(S|θ)p(θ)
(i.e. posterior ∝ likelihood × prior). To enable this Bayesian treatment, we have
to express our prior beliefs about the source of our observed samples via the
prior distribution p(θ). A good choice are conjugate priors that take the same
functional form as the resulting posterior distribution and therefore lead to a
greatly simplified Bayesian analysis [Bishop, 2006].

A particular choice of the conjugate prior p(θ) which expresses our prior beliefs
about the covariance matrix Σj and the mixing coefficients πj is:

Dir(π1, . . . , πK |δ1, . . . , δK)
K∏
j=1

Wish(Σj|aj, bjI). (3.15)

This is a product of a conjugate Dirichlet prior on mixing coefficients Dir(. . .) with
hyper-parameters δj > 0 and isotropic conjugate Wishart priors Wish(Σj|aj, bjI)
on the covariance matrix of every mixture component j. Here I is the identity
matrix, K is the number of components in the mixture, aj > d − 1, bj > 0 are
hyper-parameters, and d = 2 is the dimension. Bishop [2006] provides details on
the use of Dirichlet and Wishart distributions as conjugate priors.

We base our MAP solution on the prior distribution in the form of Equa-
tion (3.15), that is recommended by Gauvain and Lee [1994] in the context of
batch EM. Unlike Gauvain and Lee, we do not take any prior assumptions about
the Gaussian means µj, because there is no reason to a priori prefer one lobe di-
rection over another. In our final solution, we use the same hyper-parameters a, b
and δ (denoted as ν in Guavain’s text) for all components so that ∀j ∈ {1, . . . , K};
aj = a, bj = b and δj = δ. Nevertheless, for the sake of generality, we provide the
derivation with possibly different hyper-parameters for each mixture component.

3.A.2 Derivation Overview

We provide a derivation of the update formulae for the covariance matrix Σj of
each Gaussian j in the mixture (Eq. (3.12)) and for their respective mixing coef-
ficients πj (Eq. (3.10)). The formula for updating the mean µj of each Gaussian j
(Eq. (3.11)) is straightforward – we just normalize the weighted sum of observed
samples sq.
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The derivation of the update formulae for both Σj and πj follow the same
steps. We start from the formulae given by Gauvain and Lee [1994] that describe
a MAP update of Gaussian mixture model (GMM) parameters in the batch EM
algorithm (see Sec. 3.2 in the paper). Their formulae do not account for weights
of observed samples. We generalize these results to stepwise EM while taking
sample weights into account. Our generalization proceeds in three steps:

a) We express the parameters of each mixture component j in terms of the
batch EM sufficient statistics ujN−1.

b) We use the fact that stepwise EM is a generalization of batch EM and
replace the use of the batch EM statistics ujN−1 with the stepwise EM

statistics uji .

c) Finally, we interpret the weight νq associated with every observed sample
sq as its multiplicity.

3.A.3 Covariance Matrices

Step a. The Gauvain’s update formula for the matrix Σ
′
j of j-th Gaussian in the

mixture reads:

Σ
′
j =

bjI +
∑N−1

q=0 γqj(sq − µj)(sq − µj)T

(aj − 2) +
∑N−1

q=0 γqj
, (3.16)

where I is the identity matrix, aj and bj are hyper-parameters of the Wishart’s
distribution priors and γqj is the responsibility of a component j for an observed
sample sq (see Eq. (3.3)).

By using simple algebra, we get:

(sq − µj)(sq − µj)T = sqs
T
q − sq(µj)

T − µjsTq + µj(µj)
T . (3.17)

Substituting (3.17) into (3.16) and multiplying both the nominator and the de-
nominator by 1

N
, the formula for Σ

′
j becomes:

Σ
′
j = Σ

′
j

1
N
1
N

(3.18)

=

bjI

N
+ 1

N

∑N−1
q=0 γqjsqs

T
q −A + B

(aj−2)

N
+
∑N−1

q=0
γqj
N

, (3.19)

where

A =
1

N

N−1∑
q=0

γqjsqµ
T
j +

1

N

N−1∑
q=0

γqjµjs
T
q

and

B =
1

N

N−1∑
q=0

γqjµjµ
T
j .

The batch sufficient statistics for N samples (Eq. (3.4)) reads

ujN−1 =
1

N

N−1∑
q=0

γqju(sq), (3.20)
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where the statistic u(sq) = (1, sq, sqs
T
q ) is based on an observed sample sq. By in-

spection of Equation (3.19), it is apparent that we have expressed Equation (3.16)
in terms of the batch EM sufficient statistics ujN−1.

Step b. The sufficient statistics in the stepwise EM formulation (Eq. (3.5))
reads

uji = (1− ηi)uji−1 + ηi γqju(sq). (3.21)

The sufficient statistics are expressed as a weighted sum with weights ηi = i−α,
where α is the stepsize parameter.

For α = 1, the batch EM sufficient statistics, Eq. (3.20), for N samples and the
stepwise EM sufficient statistics, Eq. (3.21), for the N -th sample (i.e. i = N − 1)
would be equivalent:

ujN−1 ≡
[α=1] uji . (3.22)

We use this fact to obtain the MAP update formula of the covariance ma-
trix from Eq. (3.19). If we write the sufficient statistics uji as a triplet uji =

((uγ)
j
i , (s)ji , (ss

T )
j

i ) where the first component is the weighted average of all re-

sponsibilities γqj, similarly (s)ji is a vector, and (ssT )
j

i is a matrix, the stepwise
update formula reads:

Σ
′
j =

bjI

N
+ (ssT )

j

i −A + (uγ)
j
iB

aj−2

N
+ (uγ)

j
i

(3.23)

where
A = (s)jiµ

T
j + µj(s

T )
j

i , B = µjµ
T
j . (3.24)

Note that if α < 1, the equivalence in Equation (3.22) does not hold. Nonetheless,
we take the liberty to generalize the result in Equations (3.23) and (3.24) to values
of α other than 1. In our implementation we use α = 0.7.

Step c. Finally, we interpret the weight νq associated with every observed
sample sq as its multiplicity. The stepwise EM sufficient statistics in our weights-
aware algorithm are given by Eq. (3.8):

uji = (1− ηi)uji−1 + ηiνqγqju(sq). (3.25)

To obtain a correct result that takes the weights into account, we normalize these
weighted statistics by the total sample weight (Eq. (3.9)):

νi = (1− ηi)νi−1 + ηiνi. (3.26)

This results in the desired update formula for Σj (Eq. (3.12)), that respects the
observed sample weights and provides the MAP solution:

Σj =

bj
n

I +
(ssT )

j
i−A+(uγ)jiB

νi

aj−2

n
+

(uγ)ji
νi

.

Here A and B are given in Equation (3.24) and n is the total number of currently
processed samples. (Details on n are given in the last paragraph of Sec. 3.4.2.)
Note, that we let the effect of priors diminish with the number of observed samples
rather than with the total observed weight νi. This helps to avoid over-fitting in
the early stages of training, when there may be only a few observed samples with
potentially enormous weights.
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3.A.4 Mixing Coefficients

To derive the weights-aware update formula (Eq. (3.10)) for the mixing coefficients
πj, we follow the same procedure as in the above derivation of the covariance
matrices Σj. We start with the update formula given by Gauvain and Lee,

πj =
(δj − 1) +

∑N−1
q=0 γqj∑K

j=1(δj − 1) +
∑K

j=1

∑N−1
q=0 γqj

, (3.27)

and after multiplying both the nominator and the denominator by 1
N

(step a),
using the equivalence (3.22) (step b), and normalizing for sample weights (step
c) we finally arrive at Eq. (3.10):

πj =

(uγ)ji
νi

+
δj−1

n

1 +
∑K
j (δj−1)

n

.

3.B Spacing of Cached Distributions

In this appendix, we present details on our distribution caching, described in
Sec. 3.4.3. Specifically, we detail the computation of the validity radius that
determines spacing of cached directional distributions. The validity radius r,
assigned to each distribution, is a scalar that gives the maximum spatial distance
from the distribution where it can be reused. We compute the validity radius as
a weighted harmonic mean of validity radii rj of the individual mixture lobes (i.e.
individual GMM components):

r =
1∑K
j

πj
rj

. (3.28)

Here πj are the mixing coefficients that sum to one over all K components.
When computing the validity radius, we assume that each single lobe of a

distribution corresponds to a single highlight and that the lobes are isotropic.
These assumptions are made only when computing the validity radius while the
training and sampling from the distributions still uses the full anisotropic model.

3.B.1 Estimating and Limiting Distribution Change

To determine the validity radius rj of a single lobe lj, we first predict how the lobe
lj of a distribution at the position y would change if we observed the correspond-
ing highlight from a slightly different position y′ (see Fig. 3.15). Because of this
change, using a distribution constructed at y at the different point y′ decreases
the importance sampling quality and thus increases variance of the result.

This effect will be small if we ensure that a significant mass of each pair of an
original lobe lj and its predicted image l′j overlap. We measure this overlap by
Kullback-Leiber (KL) divergence [Bishop, 2006], a tool for measuring difference
between distributions. By imposing a limit on the KL divergence between lj and
l′j we compute the maximum acceptable angle

αmax = arccos(ωµ · ω′µ) (3.29)
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Figure 3.15: The assumed geometry used for the computation of the validity
radius associated with the lobe of a distribution placed at the position y. On
the left, the lobe lj with its mean direction ωµ is shifted to a position y′ and is
compared to its predicted image l′j with its mean direction ω′µ. On the right, the
same situation is depicted in the unit square domain. The normal anisotropic
distribution with the mean µ can be shifted at most about the distance dµ in
any direction v. The ellipse depicts the real distribution shape while the circle
centered in µ suggests its conservative isotropic approximation. The distance
dµ is determined by the imposed KL divergence limit between the two normal
distributions.

between the lobe mean directions ωµ and ω′µ. Details about the computation of
ω′µ from KL divergence are given below. Using trigonometry between the original
distribution position y, the new position y′ and the alleged highlight position x
(see Fig. 3.15), the validity radius rj is then computed as

rj = davg tan(αmax), (3.30)

where davg is the distance between y and the position x of the alleged highlight.
We estimate davg from all particles that were used to train all the lobes in the
distribution. Specifically, we take the average of the distance that the particles
traveled from their last bounce. We have decided to use the single common
estimate davg for all lobes in a given mixture because it is, according to our
experience, a more robust solution than having independent estimates for every
lobe.

3.B.2 KL Divergence Limit

As we said, we determine ω′µ by imposing a limit on the KL divergence between the
lobes lj and l′j. This is computed in the unit square domain (see Fig. 3.15 right)
where all the directions on the hemisphere H+ are projected through the area
preserving mapping S of Shirley and Chiu [1997]. To keep the notation unclut-
tered, we omit writing the component index j if there is no danger of confusion.
In the unit square domain, a lobe l corresponds to a Gaussian N (s|µ,Σ) and
its shifted image l′ to a Gaussian N (s|µ′,Σ), where µ = S(ωµ) and µ′ = S(ω′µ).
Note that these two normal distributions differ only in their means.
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The KL divergence formula KL(µ′,Σ′ ||µ,Σ) for two bivariate normal distri-
butions [Duchi, 2014] reads

1

2

(
tr(Σ−1Σ′) + (µ− µ′)TΣ−1(µ− µ′)− 2− ln

|Σ′|
|Σ−1|

)
,

where | · | is the determinant and tr(·) the trace of a matrix. Since in our case Σ
and Σ′ are identical, this reduces to one half of a square of Mahalanobis distance
∆ between the two means:

KL(µ′,Σ′ ||µ,Σ) =
1

2
∆2 =

1

2
(µ− µ′)TΣ−1(µ− µ′).

Recall that we assume both normal distributions to be isotropic. This allows us
to replace the covariance matrix inverse Σ−1 by its eigenvalue λ and thus to write
∆2 = λd2

µ, where dµ is the distance between the two vectors µ and µ′. It follows
that

dµ =

√
∆2

λ
. (3.31)

We impose a maximum threshold ∆2
thr = 5, which then yields a maximum allowed

value of dµ, denoted dµ,thr, for a given lobe.
Because our normal distributions are actually anisotropic, we set λ to be the

higher from the two eigenvalues of Σ−1. This choice is conservative because it
causes the resulting lobe validity radius rj to be smaller than if we chose the other
eigenvalue.

Finally, the direction ω′µ, that appears in Equation (3.29), is computed as

ω′µ = S−1(µ′), (3.32)

where µ′ = dµv and S−1 is the inverse mapping of Shirley and Chiu. The direction
v in the unit square domain can be chosen arbitrarily because we assume isotropic
normal distributions (see Fig. 3.15). So the computed validity radius does not
depend on the selected direction v.

3.B.3 Summary

To summarize, the steps in calculating the validity radius rj for a single lobe lj
are:

a) Compute the maximum distance dµ,thr, in which the lobe lj can be shifted
without exceeding the user specified threshold ∆2

thr:

dµ,thr =

√
∆2

thr

λ
. (3.33)

The parameter λ is the larger of the two eigenvalues of Σ−1
j , that is the

inverse of the lobe covariance matrix Σj.

b) Select an arbitrary direction v in the unit square domain and compute the
3D direction ω′µ using the inverse mapping of Shirley and Chiu:

ω′µ = S−1(dµ,thrv). (3.34)

c) Calculate the validity radius rj using Equations (3.29) and (3.30):

rj = davg tan
(
arccos

(
ωµ · ω′µ

))
. (3.35)
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3.C Maximum Particle Weight Increment

We claim, in Sec. 3.4.5, that when we sample a scattering direction by importance
sampling the BSDF fs and our directional distribution p(ωo), particle weight
cannot increase more than twice per scattering event. This is true under the
following assumptions:

1. we combine both strategies using the balance heuristic [Veach, 1997],
2. we take equal number of samples from both strategies, and
3. we can achieve perfect importance sampling of the BSDF.

By perfect importance sampling of BSDF we mean sampling a direction ωo from
a distribution that is exactly proportional to the projected BSDF f⊥s (ωo) =
fs(y, ωi→ωo)|cos θo|. To keep our notation uncluttered, we omit incident direction
ωi and the scattering event location y in the rest of this section. Formally, under
Veach’s one-sample model [Veach, 1997], our effective sampling PDF

p̂(ωo) =
1

2

f⊥s (ωo)∫
Ω
f⊥s (ω)dω

+
1

2
p(ωo) (3.36)

is a convex mixture of two distributions with equal weights (Assumptions 1 and 2).
According to Eq. (2.7), the current path weight ν̂ after RR (and possible split-

ting) was applied, is multiplied by BSDF and divided by our direction sampling
probability factor

νo(ωo) = ν̂
f⊥s (ωo)

p̂(ωo)
. (3.37)

Here, νo is the outgoing particle weight resulting from the current scattering event.
If our directional distribution for the direction ωo is equal to 0, i.e. p(ωo) = 0, by
plugging Eq. (3.36) into Eq. (3.37), we arrive at

νo(ωo) = 2ν̂κ, (3.38)

where κ =
∫

Ω
f⊥s (ω)dω is the material reflectance which can take values κ ∈

[0, 1] [Dutré et al., 2006].
With increasing values of p(ωo) the value of our sampling distribution p̂(ωo) for

the direction ωo also increases and thus value of νo(ωo) decreases (see Eq. (3.37)).
This means that Eq. (3.38) states that the path weight νo(ωo) can increase at
maximum by a factor of two.
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Chapter 4

Adjoint-Driven Russian Roulette
and Splitting

4.1 Introduction

In this chapter, we revisit two classic techniques to improve efficiency, Russian
roulette (RR) and splitting (see Sec. 2.6) and, following the idea introduced in
the previous chapter, we augment them with a global knowledge of adjoint solu-
tion approximation (see Sec. 2.2). This, in turn, results in much more efficient
transport simulation as opposed to traditional local approaches.

In general, RR aims to save computation time by terminating transport paths
with small contribution, while splitting (a.k.a. distributed ray tracing [Cook et al.,
1984]) branches paths into several independent trajectories. As we have already
noted in Sec. 2.6, RR decisions in light transport have usually been based on
local surface reflectivity [Jensen, 2001, Dutré et al., 2006, Jakob, 2010] or on
the accumulated path weight (a.k.a. throughput) [Arvo and Kirk, 1990, Jensen,
1996, Veach, 1997]. Splitting often relies on heuristics based on local BSDF
roughness [Szirmay-Kalos and Antal, 2005]. While simple to implement, these
local approaches do not work well in scenes with non-uniform light distribution,
as illustrated in Fig. 4.1.

The sub-optimal performance of traditional RR and splitting is due to the re-
spective decisions being oblivious to the actual distribution of light (when tracing
paths from the camera) or visual importance (when tracing paths from the light
sources). For example, when the surface reflectivity is used as the termination
probability in RR, effort is often spent on sampling long paths on bright surfaces,
while dark surfaces suffer from high variance due to early path termination. The
latter is particularly acute in scenes with difficult visibility or dense participat-
ing media, where most contributions are due to long paths that may absorb lots
of energy but originate at bright sources. Unfortunately, the problem cannot be
solved simply by making RR less aggressive across the entire scene, because doing
so would waste resources on sampling longer paths even where not necessary.

We present adjoint-driven Russian roulette and splitting (ADRRS), a new
approach for RR and splitting decisions. To address the shortcomings of the
current approaches, we terminate or split paths according to an estimate of their
total expected contribution to the image, relative to a reference solution. Paths
with an expected contribution much higher than the reference are split, while
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Our ADRRS in path tracing Our ADRRS with path guiding 
in path tracing 

Plain path tracing

Our ADRRS in light tracing Our ADRRS with path guiding 
in light tracing 

Plain light tracing

Figure 4.1: Russian roulette based on material reflectance, as traditionally applied
in computer graphics, leads to suboptimal results in scenes with non-uniform light
distribution or complex visibility (left). Our adjoint-driven Russian roulette and
splitting (ADRRS) significantly increases the efficiency in such cases (middle).
ADRRS complements the advantages of path guiding (PG) methods (Chapter 3)
and in conjunction they provide superior results than either method alone (right).
All images have been rendered in 1 hour by path tracing (top row) and light
tracing (bottom row). Note on the middle-bottom image that while our ADRRS
cannot improve direct-light sampling (the blue tint on the floor) in light tracing
as splitting occurs only from the first bounce on, it greatly reduces variance of
multi-bounce indirect illumination.
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paths with a low expected contribution have higher chance of being terminated.
The expected contribution is calculated as a product of the current path weight
and an estimate of the adjoint transport solution (i.e. equilibrium radiance for
camera sub-paths or equilibrium visual importance for light sub-paths), which we
pre-compute and cache in the scene. We show that this approach leads to good
importance sampling of the path space, and, in turn, it can significantly increase
the overall efficiency of the simulation.

Our method works in synergy with path guiding (see Chapter 3) and similar
methods [Bashford-Rogers et al., 2012, Hey and Purgathofer, 2002, Jensen, 1995],
and in conjunction they provide superior results. This is an important advantage
over the traditional local RR decisions, which counteract the guiding methods by
terminating potentially important paths before they can even make a contribu-
tion. We provide a theoretical justification of this beneficial behavior based on
the theory of zero-variance random walks [Křivánek and d’Eon, 2014, Xu et al.,
2001, Kalos, 1963], which, as we show, is common basis of both the proposed
method as well as the guiding schemes. We also demonstrate the advantages on
implementation of ADRRS with our guiding method [Vorba et al., 2014] that we
introduced in Chapter 3.

In summary, our contributions in this chapter, which is based on our previ-
ously published work [Vorba and Křivánek, 2016], are:

� We propose adjoint-driven Russian roulette and splitting (ADRRS) where
paths are terminated or split according to their expected contribution to
the image (Sec. 4.3).

� We provide a theoretical analysis of the close relation of ADRRS to the
zero-variance random walk schemes, which explains its variance reduction
properties (Sec. 4.6).

� We develop a solution for obtaining the paths’ expected contribution nec-
essary to use ADRRS in practice (Sec. 4.4).

� We show that ADRRS can improve the efficiency of path guiding methods
(Sec. 4.5).

4.2 Related Work

Russian roulette and splitting. Some works in computer graphics derive the ter-
mination and splitting rates by direct optimization of efficiency (i.e. reciprocal of
the product of variance and computation time). For example, Szirmay-Kalos and
Antal [2005], using a series of simplifying assumptions, arrive at a RR/splitting
heuristic based on local BSDF reflectivity and roughness, and user-specified global
constants. Bolin and Meyer [1997] derive optimal termination and splitting rates
through a variance analysis of nested estimators, but they do not describe a work-
ing method based on these results. In contrast, we provide a practical algorithm
that relies on a well-founded theory, albeit not on the optimization of efficiency.
While Veach [1997] proposes efficiency-optimized RR for light path connections
in bidirectional path tracing, our work describes RR in a more general context.
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Importance sampling. Unlike in graphics, in the neutron transport literature,
RR and splitting are understood as importance sampling techniques [Veach, 1997,
Hammersley and Handscomb, 1964, Spanier and Gelbard, 1969]. For example,
to reliably estimate the radiation escaping through a nuclear reactor shield, it
is impractical to use an analog (see Sec. 2.1) simulation since the probability of
penetrating the thick shield by a particle is extremely low (≤ 10−9). To solve
similar problems in the nuclear engineering practice, users of the MC simulators
define, usually semi-automatically, an importance function over the domain of
interest [Wagner and Haghighat, 1998]. The simulation then terminates particles
in the parts of the domain designated as unimportant, while splitting them in
high-importance regions. This strategy effectively adapts the number of surviving
particles to the user-specified importance.

As mentioned above, a common practice in computer graphics is to drive RR
decisions by the particle weight [Veach, 1997, Jensen, 1996, Arvo and Kirk, 1990].
However, doing so results in poor importance sampling, because no information
on the expected future behavior of the particle is taken into account. In our
work, we show that – rather than relying solely on the particle weight – it is
beneficial to drive RR and splitting also by the adjoint quantity (radiance when
tracing a particle from the camera, and visual importance when starting from
the light sources). This adjoint quantity value gives us an estimate of the path’s
expected future behavior, which – when multiplied by the path weight – provides
the expected total contribution of the path to the solution.

Two closely related works, that also use adjoints, are that of Keller and
Wald [2000] and Georgiev and Slusallek [2010]. They both use importance-driven
RR to randomly decide about depositing a photon and a virtual point light, re-
spectively, while they use classical RR based on local reflectance properties during
path construction. Consequently, they may need to sample a tremendous number
of paths to achieve low variance in visually important regions with low illumina-
tion. Our work, in contrast, address this issue by employing adjoint-driven RR
during path construction itself to directly influence length of sampled paths. The
works of Szécsi et al. [2003] and Szirmay-Kalos and Antal [2005] reduce variance
due to RR by returning an irradiance estimate upon path termination (instead
of the usual zero). In contrast, we exploit a similar estimate to compute optimal
termination and splitting rate itself.

Path guiding methods. As described in Chapter 3, a direct approach to dis-
tributing paths according to visual importance is importance sampling of emission
from light sources [Vorba et al., 2014, Bashford-Rogers et al., 2013, Dutré and
Willems, 1994], and of scattering directions during incremental path construc-
tion [Vorba et al., 2014, Bashford-Rogers et al., 2012, Hey and Purgathofer, 2002,
Jensen, 1995]. In this way, paths are directly guided towards regions with high
contribution to the computed image. Such guided path sampling is a non-analog
(see Sec. 2.1) simulation that typically leads to high local variation of particle
weights [Vorba et al., 2014, Keller and Wald, 2000, Suykens and Willems, 2000].
In contrast, our adaptive RR and splitting achieves more balanced weights locally
than the guiding methods.

Weight window. In neutron transport simulations, RR and splitting are
combined in one variance reduction tool called the weight window [Hoogenboom
and Légrády, 2005, X-5 Monte Carlo team, 2003, Booth and Hendricks, 1984].
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This technique is designed to keep the particle weight within a certain interval
that may vary over the simulation domain. This interval can be user-specified or
based on an automatic importance computation [Wagner and Haghighat, 1998,
Wagner, 1997, Booth and Hendricks, 1984]. If a particle weight is below or
above the interval bound, RR or splitting is applied, respectively, so that the
particle weight stays within the interval. Our path guiding described in the
previous Chapter [Vorba et al., 2014] actually employs the weight window facility
to avoid contradicting early path termination and thus, in turn, to demonstrate
advantages of path guiding. However, the bounds are set manually, do not adapt
to a given scene and are constant everywhere in the scene. We achieve a significant
performance gain by setting the weight window bounds according to a spatially
and directionally-varying radiance or visual importance solution in any given
scene.

Booth and Hendricks [1984] set the interval bounds so that the weight win-
dow center is inversely proportional to an importance function. This keeps more
particles in important regions and less in unimportant ones. The normaliza-
tion constant for computing the weight window bounds from the importance is
set heuristically so that particles are within the weight window immediately upon
their emission. Based on an analysis of zero-variance random walk schemes, Wag-
ner and Haghighat [1998, 1997] suggest a theoretically founded approach where an
estimate of the final solution serves as the said normalization constant. Adopting
this approach allows us to keep particle/path weights around the optimal levels.

While Booth and Hendricks [1984] compute the importance function solely by
forward particle tracing, we follow the same idea introduced in Chapter 3 and
use interleaved particle tracing from both the camera and light sources. This
yields more reliable radiance or visual importance estimates even in scenes with
difficult visibility.

Go-with-the-winners. Szirmay-Kalos and Antal [2005] base RR and splitting
rate on efficiency analysis and use a heuristic variance approximation based on
local material properties and scene-dependent parameters. They introduced the
term “go-with-the-winners” to computer graphics that is often used in a general
MC context to refer to RR and splitting. Note that Grassberger [2002] points
out there is no fundamental difference between RR and splitting as described by
Kahn [1951, 1956] and the “go-with-the-winners” strategy. The term was coined
by Aldous and Vazirani [1994] as a mean for population control in randomized
optimization algorithms.

4.3 Adjoint-Driven RR and Splitting

In this section, we describe our adjoint-driven Russian roulette and splitting
(ADRRS) approach to termination and splitting along incrementally sampled
paths. Practical rendering algorithms based on this approach are described in
Sec. 4.4 and 4.5. While in Sec. 4.4, we describe utilization of ADRRS, in Sec. 4.5,
we describe its combination with path guiding. In Sec. 4.6, we show variance re-
duction properties of our approach and also that it is motivated by zero-variance
sampling schemes (see Sec. 2.8).
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4.3.1 Unified Russian Roulette and Splitting

In our approach, we follow previous work [Szirmay-Kalos and Antal, 2005, Wagner
and Haghighat, 1998, Booth and Hendricks, 1984] and we base the respective RR
and splitting decisions on a single real value q > 0. We consider a particle that has
just left a collision (or emitting) event at x, as shown in Fig. 4.2. After sampling
its outgoing direction ωx

o and determining the position y of the next collision, we
contribute the source radiance/importance from y to the solution (Eq. (2.4) and
Eq. (2.6) for path tracing and light tracing, respectively). Then, we determine
q(y, ωi), as described in the next section, and if q < 1 we play RR to randomly
terminate the path with probability 1− q. Conversely, if q > 1, we split the path
into q new paths. (Details on dealing with non-integer q are given in Sec. 4.4.1.)

To compensate for termination or splitting at y, the incoming particle weight
νi (see Sec. 2.3) is divided by q to obtain the weight ν̂ of each survived or split
particle:

ν̂(y, ωi) =
νi(y, ωi)

q(y, ωi)
. (4.1)

Each particle resulting from the collision at y is then traced using the same
procedure independently.

Let us remind the convention illustrated in Fig. 2.1, that the direction ωo

always points in the direction of the transported quantity.

4.3.2 Determining the RR/Splitting Factor q

In our ADRRS, the RR/splitting factor q at y is directly proportional to the total
expected contribution E[c(y, ωi)] of the particle that collided at y to the computed
measurement I (e.g. a pixel value) [Wagner and Haghighat, 1998, Booth and
Hendricks, 1984]:

q(y, ωi) =
E[c(y, ωi)]

I
=
νi(y, ωi)Ψ

r
o(y, ωi)

I
. (4.2)

For a path traced from a light source, the adjoint Ψ stands for the visual impor-
tance W , while for a path traced from the camera, it stands for radiance L. Here,
we use only its reflected part Ψr = Ψ− Ψe without the source term Ψe, because
we are interested in the expected contribution of the particle scattered at y.

ADRRS
x

y

νi(y, ωi)

ν̂ (y, ωi)

νo(y, ωo)

≡

ωi

 ωo

νo(x, ωx
o )

ωx
o

Figure 4.2: After we have accounted for a particle’s contribution from a collision
at y (see Eq. (2.4) and Eq. (2.6)), we apply our ADRRS to decide about the par-
ticle’s termination/splitting. All potentially spawned particles at y have weight
ν̂(y, ωi) and are scattered and traced independently. The relation between weight
ν̂ of survived particles and outgoing weight νo of each scattered particle is given
by Eq. (2.7).
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c(y, ωi)

yωi

transport
direction

Figure 4.3: Realizations of the path contribution variable c(y, ωi) correspond to
the different possible particle paths beyond y.

The idea behind Eq. (4.2) is to compare E[c] to the true value of the mea-
surement I. We are likely to terminate particles that are not expected to make
a contribution larger than I. This, in turn, saves resources for sampling particles
with a more significant expected contribution. In contrast, when E[c] exceeds
the true measurement value I, we split the particle path. This results in a better
exploration of the relevant regions of the path space, albeit at the expense of
some additional computational resources.

Particle contribution and its expected value. The particle contribution
c(y, ωi) is a random variable associated with a particle that has reached the point
y from the direction ωi and has the weight νi(y, ωi). The variable is distributed
over all possible realizations of the particle path beyond y, as shown in Fig. 4.3.
For example in path tracing, the outcome of c for one such specific realization is
given by the particle’s contribution to the sum in the measurement estimator in
Eq. (2.4). Note that each particle sampled beyond y is an unbiased estimate of
Ψr

o(y, ωi). Thus the expected contribution E[c(y, ωi)] is given by the product of
the path weight νi and the outgoing reflected adjoint Ψr

o.

4.3.3 Weight Invariant in ADRRS

We design our ADRRS so that it maintains the following invariant:

ν̂(y, ωi) =
I

Ψr
o(y, ωi)

, (4.3)

which holds for particle weight in a zero-variance (ZV) scheme [Wagner and
Haghighat, 1998] (see Sec. 2.8). While this invariant arises naturally under the
ZV scheme (see Eq. (2.17)), our ADRRS keeps it through termination and split-
ting. Our termination/splitting rate q (Eq. (4.2)) follows directly from Eq. (4.3)
and the weight update formula after termination/splitting (Eq. (4.1)). Note that
ADRRS keeps this invariant with arbitrary emission and scattering probabilities.
This principle allows us to justify the importance sampling properties of ADRRS
in Sec. 4.6 through inspection of q.

4.4 Algorithm

In this section we develop a practical solution for incremental path sampling (ei-
ther from the camera or from the light sources) based on our adjoint-driven Rus-
sian roulette and splitting (ADRRS), described earlier. Evaluating the RR/splitting
factor q according to Eq. (4.2) requires knowing the final measurement I as well
as the value of the adjoint transport quantity Ψ everywhere in the scene, none
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of which are readily available up front. Our solution builds on an approximate
estimate of those quantities obtained in a preprocessing step, as described in
Sec. 4.4.2 and 4.4.3. To make the resulting algorithm robust to the inaccuracies
of these estimates, we apply the weight window facility as described next.

We conduct the following exposition in a general tenor that applies to tracing
paths in either direction. We recall that the adjoint Ψ stands for the radiance
L for a camera path (as in path tracing), and for the visual importance W in
the case of a path traced from the light sources (as in light or photon tracing).
Differences between the two cases are pointed out when necessary.

4.4.1 Weight Window

The weight window is a classic technique from neutron transport used to con-
trol particle weights through RR and splitting [Hoogenboom and Légrády, 2005,
Booth and Hendricks, 1984]. In our algorithm, it amends the ADRRS step shown
in Fig. 4.2.

The weight window defines an interval of acceptable particle weights 〈δ−, δ+〉
(see Fig. 4.4). A particle with a weight νi that enters a weight window may be
terminated, pass unchanged, or be split. In any case, the weight window ensures
that the weight ν̂ of each leaving particle stays within the window bounds, i.e.
ν̂ ∈ 〈δ−, δ+〉. If the weight of a particle entering the window is below the lower
bound, νi < δ−, we play Russian roulette with the survival probability q = νi/δ

−.
If the particle survives, its new weight ν̂ is set to νi/q = δ−. Particles entering the
window with a weight inside the bounds, νi ∈ 〈δ−, δ+〉, pass the window intact
(i.e. ν̂ = νi). Finally, if νi > δ+, the particle is split into q = νi/δ

+ new particles,
each with a weight of ν̂ = νi/q = δ+.

Non-integer splitting. If the particle is to be split into a non-integer number
of new particles, we use an expected-value split approach [Booth, 1985b]. We
split the particle into n = bqc new particles with the probability n + 1 − q, and
into n + 1 particles otherwise. Irrespective of that decision, each new particle is
assigned a weight of ν̂ = νi/q. Although this splitting strategy does not preserve
the original weight exactly, the total weight is still preserved in an expected-value
sense and thus the estimator stays unbiased.

For completeness, we state another two options. We could apply so called
sampled splitting [Booth, 1985b] which uses the same probabilities as an expected-
value splitting but sets the particle weight to ν̂ = νi/n in case of splitting into
n particles or ν̂ = νi/(n+ 1) otherwise. The disadvantage of this approach is
that, in an unfortunate chain of decisions to split to n particles, hight particle

δ+

δ−

ν̂split

pass through

roulette

Figure 4.4: The weight window ensures – through selective RR or splitting – that
the weight of all particles that pass the window is within the interval of acceptable
weights 〈δ−, δ+〉.
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s = 1 (i.e. disabled weight window) s = 5

Figure 4.5: Weight window increases robustness of our ADRRS. It relaxes termi-
nation and splitting when the path weight is close to the weight window center
not to introduce additional noise. It also compensates for imprecisions in the ad-
joint estimate (glossy teapot). Left: Without weight window. Right: Our weight
window size. Images are rendered by light tracing in 30 minutes.

weights can be accumulated [Booth, 1985b]. Both expected-value split and sam-
pled splitting introduce an extra variance. However, this seems to be marginal in
comparison to variance present in for example plain path tracing with standard
BSDF importance sampling and RR based on the local properties.

Finally, without introducing any variance, we could use an integer splitting
where particles are always split into either n particles or always to n+1 particles.
The variant choosing the smaller integer, in fact, has been used in the imple-
mentation of MCNP [X-5 Monte Carlo team, 2003] which is the MC particle
transport simulator from Los Alamos National Laboratory1. We have favoured
the expected-value splitting because it allows the particle weights to obey the
weight window bounds precisely.

Weight window bounds. To calculate the weight window bounds for a par-
ticle incident from the direction ωi at y, we start by setting the window center
Cww = (δ− + δ+)/2 to the desired particle weight given by Eq. (4.3),

Cww =
Ĩ

Ψ̃r
o(y, ωi)

. (4.4)

The measurement estimate Ĩ is invariant along the entire particle path while
the adjoint quantity estimate Ψ̃r

o(y, ωi) depends on the scattering location y and
the incoming direction ωi. Computation of these two estimates is explained in
Sec. 4.4.2 and 4.4.3.

Booth and Hendricks [1984] as well as Wagner and Haghighat [1997] all suggest
to set the window width as δ+ = sδ−, with the ratio parameter s = 5. The formula
for computing the weight window lower bound then reads

δ− =
2Cww

1 + s
. (4.5)

We have experimented with the parameter s and verified that performance is not
particularly sensitive to its value [Booth, 2006].

A practical consequence of using weight window are more relaxed RR and
splitting decisions than those given by Eq. (4.2). As a result, the algorithm is

1From e-mail communication with Thomas Booth, the author of the weight window tech-
nique.
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a) b)

Figure 4.6: Extremely small survival probabilities could result in high variance
(a). We force the survival probability to be above 0.1 (b).

more robust to the inaccuracies of our measurement and adjoint estimates. The
weight window achieves this by allowing some leeway on the particle weight before
any RR/splitting action is taken (Fig. 4.5).

Let us emphasize that weight window is different from clamping of the termi-
nation and splitting factor q to a finite interval, which we do apply on top of the
weight window output. When RR is to be played, we additionally force the sur-
vival probability q to be above 0.1 (Fig. 4.6b). Very small survival probabilities
could otherwise result in high variance in some cases due to the inaccuracies in
the measurement and adjoint estimates (Fig. 4.6a).

4.4.2 Adjoint Solution Estimate Ψ̃r
o(y, ωi)

To setup the weight window bounds at y, we need an estimate of the outgoing
reflected adjoint quantity Ψ̃r

o(y, ωi). One could use a photon/importon density
estimate but that would be neither accurate nor fast enough. Alternatively, a
solution similar to radiance caching [Křivánek et al., 2005, Gassenbauer et al.,
2009] could be used that stores the spatial-directional distribution of the adjoint.
However, we have found that a simpler approach outlined below and illustrated
in Fig. 4.7 (a) provides fairly robust estimates without having to store any direc-
tional information.

We obtain the outgoing adjoint at y from a pre-computed cache. Instead of
the full spatial-directional distribution of Ψi(y, ω), we pre-compute and cache an
estimate G̃(y) of the quantity

G(y) =

∫
Ψi(y, ω) cos θy dω, (4.6)

that corresponds to irradiance or diffuse visual importance. Here θy is the angle
between the direction ω and the surface normal at y. An estimate of the reflected
outgoing adjoint is then calculated as

Ψ̃r
o(y) =

κ(y)

π
G̃(y), (4.7)

where κ(y) is the total material reflectivity at y. We obtain G̃(y) by querying a
spatial cache at y.
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Figure 4.7: Adjoint solution estimate in our basic ADRRS implementation (a)
and when ADRRS is combined with path guiding (b).

Pre-processing and caching. We base our pre-processing stage on the itera-
tive scheme proposed in Chapter 3, where we interleave shooting particles from
the camera and from light sources for faster convergence. Our basic implementa-
tion differs from the algorithm in Sec. 3.4 in that the traced particles are used to
compute an approximation to irradiance and diffuse visual importance, respec-
tively (i.e. G̃), rather than for fitting directional distributions. (A more advanced
implementation that uses directional distributions (i.e. “path guiding”) will be
described in Sec. 4.5.)

We also adopt the same caching scheme introduced in Sec. 3.4. When an
estimate of G̃ is not available we use kernel density estimation to compute a new
estimate from nearby particles (e.g. from photons when we currently trace from
the camera). Each cached estimate has a validity radius where the record can be
reused. The radius is never allowed to be larger than the furthest particle used
for the estimation and the caching scheme makes the cache denser in places of
strong light field changes.

We refine G̃ in every iteration using progressive kernel density estimation and
at the same time, we estimate its relative error (i.e. stddev(G̃)/G̃). Our ADRRS
is applied at a collision only if the relative error of the associated cache record
is below a threshold value of 30%. Otherwise we use a large weight window with
the globally-fixed size as described by Vorba et al. [2014] and in Sec. 4.5. Note
that unlike bidirectional path tracing [Veach, 1997] or vertex connection and
merging [Georgiev et al., 2012b, Hachisuka et al., 2012] we do not construct a
combined estimator to compute G̃ and rather keep our implementation simple.
To achieve smoother estimates of G̃ we average it over nearby cached estimates.

4.4.3 Measurement Estimate Ĩ

When calculating the weight window center using Eq. (4.4), Booth [1984] recom-
mends, instead of Ĩ, using a normalization constant so that the particle weight
is exactly in the weight window center after the first collision. We adopt a more
principled approach due to Wagner and Haghighat [1997], where they use an ap-
proximation Ĩ of the measurement I that we eventually strive to calculate. In
this way, the particle weights ν̂(y, ωi) oscillate around the ideal value I/Ψr

o(y, ωi),
which is motivated by the zero-variance theory, as discussed in Sec. 4.6.
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Figure 4.8: Measurement estimates Ĩ for two example scenes.

In our implementation, the actual meaning of Ĩ depends on the direction of
path sampling. For paths from the camera (path tracing), we set Ĩ to be an
estimate of the pixel value that the respective path passes through. We compute
the pixel value from the pre-computed irradiance cache (Sec. 4.4.2) using four
jittered primary rays. We query the cache immediately on diffuse and glossy
surfaces while continuing the path on purely specular surfaces. If no non-specular
surface is hit within ten bounces, we treat the surface of the 10th bounce as diffuse
and query the irradiance cache. Fig. 4.8 shows the resulting estimates for two
example scenes.

For paths from light sources (light or photon tracing), we set Ĩ to the average
pixel value estimated as above, over the entire image. We use this approach
because we do not know up front which pixel the path would contribute to.
While this heuristic has worked well in our tests, a thorough analysis of ADRRS
when calculating several measurements (i.e. pixel values) simultaneously would
be an interesting avenue for future work.

4.4.4 Path Sampling Algorithm

Algorithm 3 shows simplified pseudocode for processing a collision in our path
sampling algorithm. The procedure receives the previous and the current collision
locations x and y respectively, the incident direction ωi at y, and the incident
particle weight νi (see Fig. 4.2). Its steps should be self-explanatory. Below we
discuss some additional details of the full path sampling algorithm.

First collision. When tracing a particle from the camera, we initialize the
RR/splitting factor q to 1 at the first collision so no RR or splitting is carried out
there. In Fig. 4.2, x is the camera vertex and y corresponds to the first collision.
Applying our ADRRS in this case would only serve to compensate the variations
of the light contribution within one pixel, which are usually small. On the other
hand, when tracing particles form light sources, we initialize q according to our
algorithm right at the first collision, so RR/splitting can take place there. (In
this case, in Fig. 4.2, x is a light source vertex.)
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Algorithm 3 Pseudocode showing the ADRRS-related steps in processing a
collision event along an incrementally constructed path.

1: procedure handleCollision(x,y, ωi, νi)
2: // x . . . previous collision location, y . . . current collision location
3: // ωi . . . incident direction at y, νi . . . particle weight
4: contribute(y, ωi, νi) . Eq. (2.4) or (2.6)
5: G̃ := lookUpCache(y) . Sec. 4.4.2
6: Ψ̃r

o := calcAdjoint(G̃, x, y, ωi) . Eq. (4.7) or (4.9)
7: 〈δ−, δ+〉 := calcWwBounds(Ψ̃r

o, Ĩ) . Eqns. (4.4) and (4.5)
8: [n, ν̂] := applyWw(νi, 〈δ−, δ+〉) . Sec. 4.4.1
9: for j = 1 . . . n do

10: ωo := sampleDir(y)
11: νo := updateWeight(ν̂, ωi, ωo) . Eq. (2.7)
12: z := intersect(y, ωo)
13: handleCollision(y, z, −ωo, νo) . Recurse to next event
14: end for
15: end procedure

Tree pruning. To avoid overly bushy ray trees due to splitting, we impose a
maximum splitting factor of 100 at each collision. In addition, we limit the size of
the entire ray tree by the following heuristic. We associate a number scount with
every event along a path which conservatively estimates the total number of rays
in the tree. We initialize scount to 1 and we multiply it at every collision by the
splitting factor determined at that event. We disable splitting once scount > 1000.

Next-event estimation. So far, we have only discussed unidirectional path or
light tracing algorithms, but our ADRRS naturally extends to using next-event
estimation (i.e. explicit connections to light sources or the camera). A theoretical
justification is based on the idea of replacing self-emission, Le

o or W e
o , by the

sources of first-scattering events (e.g. direct illumination on surfaces serves as
the new emission term). All the derivations can then be carried out with those
re-defined source terms as before [Hoogenboom, 2008]. In practice, we do the
following. Suppose we have reached a scattering event at y and determined the
integer splitting factor of n. At this point, we in fact draw n pairs of sample
rays, one ray in each pair by sampling a scattering direction ωo and another by
explicit light source or sensor sampling. The direct illumination contributions of
these rays are then combined using multiple importance sampling [Veach, 1997].

4.5 Combining ADRRS with Path Guiding

In this section we combine our ADRRS with path guiding methods based on
adjoint-driven importance sampling of scattering directions [Vorba et al., 2014,
Bashford-Rogers et al., 2012, Hey and Purgathofer, 2002, Jensen, 1995]. Specif-
ically, we show on our guiding method introduced in Chapter 3 that ADRRS
works in synergy with path guiding and the combination leads to superior results
than either method alone.

Motivation. In Chapter 3, we observed that the classic RR, based only on lo-
cal material properties, is adverse to path guiding in scenes with difficult visibility
(see Sec. 3.4.5). The reason is that a particle guided towards a high-contribution
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Figure 4.9: A glossy surface with (middle) and without (right) the conservative
adjoint estimate given by Eq. (4.9). Both insets were rendered at 64 samples per
pixel.

region may be terminated before it is able to reach it. In fact, aggressive RR may
offset the advantages of path guiding entirely, and just add overhead.

To mitigate this problem and, in turn, to show benefits of path guiding, in
Sec. 3.4.5, we employ RR with very low weight window threshold δ− = νe

o10−6

leading to vastly increased average path length. Such a conservative, globally
fixed threshold results in killing only particles which weight after emission νe

o

decreases more than 10−6×. Such an approach is not satisfactory because effort
is wasted on sampling long paths in unimportant regions (see Fig. 4.11), while
other paths may still be terminated prematurely. In addition to RR, in Sec. 3.4.5,
we already applied splitting if the particle weight exceeded two times its original
value νe

o. Effectively, this approach is equivalent to using a globally fixed weight
window with an extensive size of s = 2× 106.

Our approach. We address the above problem by using our ADRRS, which
allows us to sample close-to-optimal path lengths without any adverse effects on
path guiding. Moreover, ADRRS effectively improves the quality of path space
importance sampling over baseline path guiding, as discussed in Sec. 4.6.1 and
shown in Figs. 4.11, 4.13 and 4.14. We base our implementation on the on-line
learning algorithm that we introduced in Chapter 3. We pre-compute and cache
the diffuse quantity G̃ (Sec. 4.4.2) together with directional sampling distribu-
tions represented by GMM (see Sec. 3.3). ADRRS is applied both in the training
and the rendering stages. As opposed to the basic approach from Sec. 4.4, the
scattering directions ωo are sampled from the pre-computed directional distribu-
tions as in Sec. 3.4. Furthermore, we exploit the cached directional distributions
to obtain more accurate estimates of the adjoint, which substantially improves
the robustness of our method, especially in scenes with glossy materials (Fig. 4.9).

Adjoint from directional distribution. We use the cached directional distri-
bution p̃(ω|x) at x to estimate the incoming adjoint at x reflected from y, that
does not involve the source illumination from y, as

Ψ̃r
i (x, ω

x
o) =

p̃(ωx
o |x)G̃(x)

cos θx
−Ψe

o(y, ωi). (4.8)

This equation follows from the fact that the directional distribution is designed
such that p̃(ωx

o |x) ∝ Ψi(x, ω
x
o) cos θx with G̃(x) (Eq. (4.6)) being the normaliza-

tion factor (see Sec. 3.4.2).
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In practice, we obtain the final adjoint estimate as shown in Fig. 4.7 (b):

Ψ̃r
o(y, ωi) = max

{
Ψ̃r

o(y)︸ ︷︷ ︸
Eq. (4.7)

, Ψ̃r
i (x, ω

x
o)︸ ︷︷ ︸

Eq. (4.8)

}
. (4.9)

This conservative estimate produces a lower weight window center and thus lower
termination rates, which eliminates some high-frequency noise otherwise appear-
ing in certain scenarios especially in the presence of glossy materials (Fig. 4.9).

4.6 Adjoint-Driven Russian Roulette and Split-

ting and Zero-Variance Schemes

To understand the mechanism how ADRRS achieves importance sampling we
first revise the relationship between particle weights and their density in path
guiding methods. When particles are guided towards an important region where
they make a significant contribution their density in the region increases while
their weight decreases implicitly. Analogously, when the density of particles is
decreased, their weight must increase. In other words the density of particles
and their respective weights are inversely proportional. This is natural for MC
simulations because the density of the particles (samples) together with their
weights form an unbiased representation of radiance/importance in the scene in
any given time2 [Veach, 1997].

The holy grail of importance sampling that can be achieved by guiding meth-
ods is following the zero-variance (ZV) sampling scheme described in Sec. 2.8.
Because, under this scheme, we would obtain the expected value of our estimator
with only one sample, it is desirable to design any importance sampling technique,
including our ADRRS, to achieve similar particle density as we have under the
ZV scheme.3 However, while path guiding changes the particle density explicitly
by placing more samples into important directions, our ADRRS rather adjusts
the particle weights. To achieve the desirable particle density we have to look
how the particle weight behaves under the ZV scheme (Sec. 2.8).

Thus, as described in Sec. 4.3.3, we set the termination/splitting rate q in our
ADRRS so that the particle weights follow the same principle (Eq. (4.3)) as the
particle weights under the ZV scheme. In this section, we study the importance
sampling properties of ADRRS formally through the inspection of the rate q.

4.6.1 Zero Variance, Importance Sampling, and ADRRS

To study importance sampling properties of ADRRS and its relation to ZV
schemes, we derive, in Appendix 4.A, the following equation for the RR/splitting
rate q at a collision y:

q(y, ωi) =
pzv(ωx

o |x)

p(ωx
o |x)

. (4.10)

2This is not entirely true for the expected-value split (see Sec. 4.4.1), however, the statement
still holds in the limit.

3Even under the ZV scheme there is a density that the sample comes from. To approximate
this density visually, imagine taking more samples from the ZV scheme.
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x yωiωx
o

That is to say, the RR/splitting rate at y is given
by the ratio of the zero-variance pdf to the ac-
tually used pdf for sampling the scattering di-
rection ωx

o at the preceding vertex x. The pdf pzv(ω|x) that ensures ZV es-
timation (see Sec. 2.8) is proportional to the product of the cosine-weighted
BSDF lobe and the directional distribution of the adjoint quantity incident at
x: pzv(ω|x) ∝ Ψi(x, ω)f+

s (x, ωx
i →ω)|cos θx| (see Eq. (2.12)). Here, we use ωx

i to
denote the incident direction at x. Note that to describe both light tracing and
path tracing, we define f+

s so that f+
s (·, ωx

i →ω
x
o) = fs(·, ωx

i →ω
x
o) for light trac-

ing while for path tracing, we swap the directions: f+
s (·, ωx

i →ω
x
o) = fs(·, ωx

o→ω
x
i ).

To simplify the following discussion, we assume, with no bearing on our results,
that y is not on a source or sensor; general form of Eq. (4.10) is presented in
Appendix 4.A.

Interestingly, Eq. (4.10), which is derived for infinitesimal weight window
(i.e. s = 1 in Eq. (4.5)), shows that q takes the same form at any collision
irrespective of any previous collisions before x (i.e. there is no weight term νi of
a particle incident at x). We can thus limit ourselves to discussing the effect of
ADRRS on the variance of a local estimator of the (hemi)spherical integral at x.

RR and splitting as importance sampling. Suppose we have drawn the
scattering direction ωx

o from a general pdf p(ω|x). Eq. (4.10) states that the
factor q at y is determined by comparing the pdf value for the sampled direction to
the pdf value pzv(ωx

o |x) dictated by the ZV scheme. We keep samples untouched
in those parts of the (hemi)sphere where p(ωx

o |x) = pzv(ωx
o |x), we split where our

sampling rate is too low, i.e. p(ωx
o |x) < pzv(ωx

o |x), while we randomly terminate
where we place too many samples, i.e. p(ωx

o |x) > pzv(ωx
o |x). We illustrate these

situations in Fig. 4.10.
Residual variance. In the case of RR, the above procedure is equivalent to

rejection sampling, where p(ω|x) serves as the proposal density and pzv(ω|x)
is the target density. However, splitting cannot reduce any variance introduced
due to sampling from p(ω|x) — as opposed to the ideal pdf pzv(ω|x) — because
splitting only occurs at the next collision event y. Only variance from subsequent
bounces can be reduced. It is therefore not effective when most of the variance
is gained through the use of an inappropriate scattering pdf at x. An example
is shown and discussed in Sec. 4.7. Booth [2012a] provides further discussion of
this limitation.

Zero-variance sampling. By using ADRRS on top of a ZV scheme (i.e. when
p(ω|x) = pzv(ω|x) for all ω), we still obtain a ZV estimator because q becomes

x

split roulette

pzv(ω|x)
p(ω|x)

Figure 4.10: We split in those parts of the (hemi)sphere where our sampling rate
is too low, i.e. p(ωx

o |x) < pzv(ωx
o |x), while we randomly terminate where we place

too many samples, i.e. p(ωx
o |x) > pzv(ωx

o |x).
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qzv, the ZV termination rate (Eq. (2.13) for light tracing). In other words, it
follows from Eq. (4.10) that q = 1 when y is not on a light source or sensor and
thus no termination or splitting4 takes place which is inline with the ZV scheme.
However, there is a clear difference between direct sampling from pzv(ω|x) in the
ZV scheme and ADRRS, where we can sample from an arbitrary p(ω|x). While
the former has zero variance, i.e. it solves the integral with a single sample,
ADRRS only strives for variance reduction through RR-implied rejection and
splitting at y.

Path guiding methods. Path guiding methods strive to sample scattering
directions from a pdf p(ω) that closely approximates the ZV pdf pzv(ω) [Vorba
et al., 2014, Hey and Purgathofer, 2002, Jensen, 1995]. Path guiding and ADRRS
work in synergy to approximate the optimal ZV scheme even more closely. To
see why, recall the rejection sampling interpretation of ADRRS. On one hand,
the better the path guiding distribution (i.e. the closer the proposal pdf p(ω)
to the target ZV pdf pzv(ω)), the less work for RR and splitting. On the other
hand, should the path guiding distribution p(ω) fail to approximate the ZV pdf
pzv(ω) closely enough, our ADRRS still steps in to improve the effective particle
distribution.

We can explain the compatibility of ADRRS and path guiding from another
perspective. We show in Appendix 4.B that ADRRS applied in a zero-variance
scheme (emission and scattering follows Eq. (2.11) and Eq. 2.12 respectively)
yields again a ZV scheme.

4.7 Results

Here, we experimentally validate the theoretical outcomes of Sec. 4.6. Results
in Figs. 4.13 and 4.14 confirm the strong variance reduction capabilities of our
adjoint-driven Russian roulette and splitting (ADRRS) in path tracing (PT) and
light tracing (LT). Additionally, we show the results of the combination of ADRRS
with path guiding (PG) described in Chapter 3, which yields a practical and
efficient algorithm capable of rendering scenes with complex and difficult visi-
bility. Interestingly, this combination is beneficial even in simple scenes where
the overhead of path guiding, coming from excessive path lengths, would offset
its advantages if used without ADRRS (Fig. 4.11). We encourage the reader
to view the supplemental material (http://cgg.mff.cuni.cz/~jirka/papers/
2016/adrrs/index.htm) for all our results rendered with PT, LT and also pro-
gressive photon mapping (PPM) [Hachisuka et al., 2008].

Setup. All images in Figs. 4.13 and 4.14 were rendered for 1 hour on an Intel
Core i7-2600K CPU using 8 logical cores. Our implementation is based on the
Mitsuba renderer [Jakob, 2010]. We set the maximum path length to 40 bounces.
The ‘plain’ light and path tracing algorithms use classic albedo-based RR from
the fifth bounce on, and no splitting.

We include the pre-computation time in the reported total time of all our
results. The pre-computation times of PG and our ADRRS with path guiding

4In fact, interestingly, integer splitting (see Sec. 4.4.1) does not increase variance and thus
does not violate ZV scheme. However, any unnecessary splitting increases time per sample
(particle path).
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(ADRRS + PG) are listed in Table 4.1. Results rendered with our ADRRS-only
use the same pre-computation as ADRRS + PG to achieve the same quality of
cached irradiance/visual importance. This allows us to compare the effect of
adding PG on top of ADRRS. Unlike ADRRS + PG, the PG-only results do not
use our ADRRS in the training stage.

ADRRS + PG PG
Crytek sponza 150s 114s
Veach door 222s 192s
Living room 462s 426s
Classroom 588s 462s

Table 4.1: Training times of ADRRS + PG and PG-only.

Scenes. We use the same three scenes that we described in Sec. 3.5, namely
Living room, Veach door and Classroom, without any change. Our fourth scene
is the Crytek Sponza [2010]. Common to all the scenes is complex visibility with
many regions lit only by high-order indirect illumination.

In the Crytek Sponza scene with mainly diffuse materials, the sunlight
enters the atrium and indirectly illuminates most of the shot. Our ADRRS alone
achieves substantial variance reduction in comparison to standard path and light
tracing. Using path guiding on top of our ADRRS (ADRRS+PG) yields superior
result without any of the spike noise present in path guiding alone.

All the illumination in the Veach door scene enters through the door ajar
from the back room. Note, that our version of the scene differs from that of Lehti-
nen et al. [2013] in that the light source size is roughly 250× smaller. This makes
our scene more realistic – and substantially more challenging (see Fig. 4.12). In
PT, our ADRRS + PG combination significantly reduces the spike noise pro-
duced by path guiding alone. However, unlike in the Crytek Sponza scene, some
of this noise still remains. This is due to the combination of the small light source
and specular reflections on the floor, which effectively disqualifies any next event
estimation. When a path guiding distribution on a wall fails to accurately target
the caustic-like illumination due to specular light source reflection on the floor,

RMSE:  2.05x10-2 RMSE:  1.92x10-2RMSE:  3.37x10-2

Our ADRRS + Path guidingPlainPath guiding

Figure 4.11: Our path guiding (PG) (see Chapter 3) (left) applied in Progressive
Photon Mapping (PPM) does not match the efficiency of plain PPM (middle)
due to its overhead coming mainly from sampling long paths. PPM with our
ADRRS and PG (right) achieves superior results than plain PPM even in this
simple scene. All images took 5 minutes to render (including the training time).
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Figure 4.12: Two versions of the Veach Door scene. We rendered 40 light bounces
by plain path tracing (left) and path tracing with our ADRRS and path guiding
(right). The Vorba et al. version (top) is more challenging than the version of
Lehtinen et al. (bottom): its 250× smaller light source is responsible for the spiky
noise.

ADRRS cannot remedy the situation by splitting that is decided on the wall (ver-
tex x in Fig. 4.2). This is because physical splitting on the specular reflection on
the floor (vertex y) is ineffective (see “Residual Variance” in Sec. 4.6.1)

Illumination in both the Living room and Classroom scenes is similar. The
Sun is shining through window glass covered by curtains and jalousies respectively,
and large parts of the scenes are lit by light after many bounces. While in LT, our
ADDRS alone provides excellent results, the results in PT expose the ADRRS
limitations discussed in Sec. 4.6.1. Referring back to the rejection sampling in-
terpretation of ADRRS, the proposal distribution could be the floor BSDF, while
the target zero-variance distribution is close to a delta-distribution as it encom-
passes the sunlight passing through the window-panes. ADRRS cannot reduce
variance in this case because the physical split can only occur on the glass (vertex
y in Fig. 4.2), where it would be ineffective. Nevertheless, the combination of our
ADRRS with path guiding addresses the problem and yields superior results.

Effect of RR and splitting. We show separately the effect of our adjoint-
driven RR (ADRR) and adjoint-driven splitting in Fig. 4.15. We rendered the
Crytek Sponza scene for 20 minutes with a guided path tracer (a), guided path
tracer with our ADRR (no splitting) (b), and guided path tracer with full ADRRS
(c). The variance reduction in (b) stems from sampling nearly optimal path
lengths by our ADRR. The splitting in (c) significantly improves sampling of
regions where light is transported through several bounces.

4.8 Limitation, Discussion, and Future Work

Inaccurate adjoint and measurement estimates. Grossly inaccurate adjoint or
measurement estimates can produce increased variance, as in the top right image
in Fig. 4.12 under the table. This can happen for example due to light leaks well-
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Crytek Sponza Veach Door (Vorba et al.)
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Figure 4.13: We render four scenes dominated by indirect lighting for 1 hour.
Results in the figure come from path and light tracing, respectively, with albedo-
based RR applied from the fifth bounce on (Plain), our ADRRS, path guiding
alone (PG), and our ADRRS with PG. Our ADRRS achieves substantial variance
reduction over the albedo-based RR (Plain). Superior results are achieved by
complementing our ADRRS with path guiding. The training time is included in
the reported 1 hour. Complete images are shown in the supplemental material
(http://cgg.mff.cuni.cz/~jirka/papers/2016/adrrs/index.htm).
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Figure 4.14: We render four scenes dominated by indirect lighting for 1 hour.
Results in the figure come from path and light tracing, respectively, with albedo-
based RR applied from the fifth bounce on (Plain), our ADRRS, path guiding
alone (PG), and our ADRRS with PG. Our ADRRS achieves substantial variance
reduction over the albedo-based RR (Plain). Superior results are achieved by
complementing our ADRRS with path guiding. The training time is included in
the reported 1 hour. Note that the convergence curves for plain and our ADRRS
are above the displayed interval. Complete images are shown in the supplemental
material (http://cgg.mff.cuni.cz/~jirka/papers/2016/adrrs/index.htm).
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Our ADRRS + PG (20 minutes)
Path guiding

 Our ADRRS 
+ PG

Our ADRR + PG
(no splitting)

Figure 4.15: Our adjoint-driven RR without splitting (middle) in guided path
tracing reduces variance of guided path tracing (left). Application of splitting
(right) provides a substantial additional variance reduction in regions reached by
light after several events.

known from photon mapping, such as those visible in Fig. 4.8. This limitation is
common to all variance reduction techniques based on estimated quantities, and
in practice it can be alleviated by adaptive image sampling.

Efficiency-driven RR and splitting. While the close relation of our ADRRS
to zero-variance path sampling schemes provides a solid justification of its vari-
ance reduction properties, nothing in the theory suggests that ADRRS would be
optimal with respect to efficiency (inverse of a product of time and variance).
As such, an efficiency-driven RR and splitting is an important avenue for future
research.

Splitting and combined estimators. We have shown that splitting is an effec-
tive variance reduction tool in unidirectional path sampling algorithms. It would
be interesting to extend its use to bidirectional algorithms based on combining
various estimators [Křivánek et al., 2014, Georgiev et al., 2012b, Hachisuka et al.,
2012]. A challenge associated with this idea would be the development of proper
combination weights that would respect the correlation of split paths due to their
common shared prefix [Popov et al., 2015].

Participating media. When simulating transport in media, particles typically
undergo many more events than on surfaces before making an image contribution.
At the same time, whenever a light source or the camera is inside a medium, there
can be tremendous variation of the respective adjoint quantity. For those reasons,
it is likely that extending our method to participating media would result in a
substantially greater increase in efficiency than on surfaces.

4.9 Conclusion

We have introduced an approach for selective path termination and splitting that
we call adjoint-driven Russian roulette and splitting (ADRRS). The termina-
tion and splitting decisions are driven by a pre-computed estimate of the adjoint
transport quantity so that a significant variance reduction is achieved. We have
provided a theoretical justification of the variance reduction properties – and its
limits – by juxtaposing ADRRS to a zero-variance path sampling scheme. To
make the method practical and robust, we have introduced the idea of adaptive
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weight window from the neutron transport field. We have shown that our ADRRS
complements the directional importance sampling techniques (path guiding) and
together they result in robust and efficient simulations even in fairly simple unidi-
rectional methods such as path and light tracing. These are easier to implement
than combined path integral estimators such as bidirectional path tracing [Veach,
1997] or vertex connection and merging [Georgiev et al., 2012b, Hachisuka et al.,
2012] and are favored in practice for their easy combination with a broad scale
of production features.
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Appendix

4.A Derivation of Eq. (4.10)

In this appendix, we derive the form of splitting rate q(y, ωi) at a collision y
(Eq. (4.10))

q(y, ωi) =
pzv(ωx

o |x)

p(ωx
o |x)

,

that reveals an important relationship between the ideal ZV sampling pdf pzv(ωx
o |x)

and the actual sampling pdf p(ωx
o |x) at the previous collision x (see Fig. 2.3). In

fact, we derive a more general case

q(y, ωi) =
pr

zv(ωx
o |x)

p(ωx
o |x)

, (4.11)

that is valid also when y is on a light source or the camera. Here, in the case of
light tracing, the function pr

zv is defined as a product of reflected visual importance
W r

o at y into a direction −ω and BSDF fs at x, divided by reflected visual
importance W r

o(x, ωx
i ) at x:

pr
zv(ω|x) =

W r
o(y,−ω)fs(x, ω

x
i →ω)|cos θo|

W r
o(x, ωx

i )
.

The only difference between pr
zv(ω|x) and the zero-variance scattering distribution

pzv(ω|x) (Eq. (2.12)) is that the function pr
zv does not include direct importance

emitted from y. Thus pzv(ω|x) = pr
zv(ω|x) if y is not on the camera (or a light

source in case of path tracing). Without loss of generality, we show validity of
Eq. 4.11 only in light tracing.

As explained in Sec. 4.3.3, we design our ADRRS so that the particle weight
after termination/splitting at a collision y

ν̂(y, ωi) =
I

W r
o(y, ωi)

(4.12)

is a ratio of the computed solution I and reflected visual importance at y into
the direction ωi from which the particle comes.

From Eq. (4.1)

ν̂(y, ωi) =
νi(y, ωi)

q(y, ωi)
,

that describes the change of the incident particle weight νi after temination/splitting,
and from Eq. (4.12), we can express the termination/splitting rate q at y as

q(y, ωi) =
νo(x, ωx

o)W r
o(y, ωi)

I
. (4.13)

Note that we have also used the identity between νi at y and νo at x (see Fig. 2.3).
To get from Eq. (4.13) to the desired Eq. (4.11), we need to express the

outgoing particle weight νo(x, ωx
o) at x in terms of path weight ν̂ after application
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of ADRRS at x. When the particle scatters at x into a direction ωx
o , according

to Eq. (2.7), its outgoing weight νo is computed as follows:

νo(x, ωx
o) = ν̂(x, ωx

i )
fs(x, ω

x
i →ω

x
o)|cos θo|

p(ωx
o |x)

. (4.14)

Because we design our ADRRS so that the particle weight invariant (Eq. (4.12))
holds at every collision, it also holds at x:

ν̂(x, ωx
i ) =

I

W r
o(x, ωx

i )
.

Thus Eq. 4.14 becomes

νo(x, ωx
o) =

I

W r
o(x, ωx

i )

fs(x, ω
x
i →ω

x
o)|cos θo|

p(ωx
o |x)

. (4.15)

Finally, when we insert Eq. (4.15) into Eq. (4.13), we arrive at the splitting
rate q that had to been proven:

q(y, ωi) =
W r

o(y, ωi)fs(x, ω
x
i →ω

x
o)|cos θo|

W r
o(x, ωx

i )︸ ︷︷ ︸
przv(ωx

o |x)

1

p(ωx
o |x) (4.16)

4.B Zero-variance Sampling and ADRRS

In this Appendix, we show that using our ADRRS with infinitesimal weight win-
dow, i.e. s = 1 (see Sec. 4.4.1), on top of a ZV scheme, does not increase variance
and results again in a ZV scheme. Because the zero-variance rules for emission
(Eq. (2.11)) and scattering (Eq. (2.12)) are not affected by our ADRRS, we only
need to show that our termination/splitting rate q is equal to the zero-variance
termination rate qzv.

We start from the form of q given by Eq. (4.11) that we proved in the previous
section. We also use the fact that under the ZV scheme the scattering pdf p(ωx

o |x)
is equal to pzv(ωx

o |x) given by Eq. (2.12). Hence we get

q(y, ωi) =
pr

zv(ωx
o |x)

pzv(ωx
o |x)

=
W r

o(y, ωi)

Wo(y, ωi)
. (4.17)

Here, the last equality follows from the relationship between Wi and Wo (see
Fig. 2.3) which yields the zero-variance survival probability (Eq. (2.13)). This
shows that application of our ADRRS with infinitesimal weight window preserves
all zero-variance rules and does not increase variance5.

Discussion of our implementation. Note that unlike the zero-variance scheme,
in our implementation of ADRRS, we always count contribution from implicitly
hit light sources which theoretically increases variance if light sources scatter
light. The reason is that the ZV scheme does not allow contribution from parti-
cles that have reached a light source (or sensor), unless the particle is terminated.
This stochastic contribution with probability 1 − qzv is necessary to achieve the

5Provided that we use the exact adjoint and not its approximation.
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zero-variance with contribution equal to I. This suggests that in our ADRRS, we
should ideally apply RR/splitting before we count a possible contribution from
y and count the contribution only when the particle is terminated.

In practice, the introduced variance by deterministic contribution has a very
limited impact because usually the intensity of a light source is by orders of
magnitude higher than scattered light. Furthermore, the maximal contribution
at this case is equal to the computed solution I and thus cannot result in so called
“fireflies” (i.e. pixels by orders of magnitude brighter than their neighbours). To
see this we express the value of our deterministic contribution when a particle
reaches the sensor (it holds analogously for light sources). The weight of a particle
reaching a collision at y is equal to I

Wo(y,ωi)
(Eq. (2.15)). To get the deterministic

contribution when y is on a sensor we multiply the particle weight by emitted
visual importance W e

o :

I
W e

o (y, ωi)

Wo(y, ωi)
. (4.18)

Because Wo = W e
o + W r

o , the contribution is the highest when the sensor does
not scatter any energy and it is equal to the solution I.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we tackled a fundamental weakness of Monte Carlo light transport
simulation: slow convergence in the presence of indirect illumination. We pro-
posed an approach based on an approximation of the ideal zero-variance sampling
scheme that prescribes the exact sampling process of entire paths of transported
particles.

While sampling with zero variance cannot be achieved without prior knowl-
edge of the computed solution itself, it has been shown before that even an
approximate knowledge of the adjoint transport in the scene (e.g. radiance for
path tracing) can result in significant variance reduction. In our approach, we
pre-computed such an approximation to adjoint transport and we used it to drive
an approximate zero-variance sampling scheme. We split this thesis into two ma-
jor parts, each of them describing a different aspect of the zero-variance sampling
scheme.

In the first part, we proposed a new direction sampling for scattered particles
and position sampling for emitted particles, where we learned sampling distri-
butions represented by mixture of Gaussians from an on-line stream of adjoint
particles. Unlike previous approaches, we showed the ability to handle directional
distributions of both high and low angular frequency. Additionally, our method
can cope with scenarios where only a tiny fraction of all emitted adjoint particles
are available in important locations in the early stages of the learning process.

In the second part, we used the pre-computed adjoint transport to design the
optimal termination and splitting rate for every particle position and direction
in the scene. We adopted ideas from neutron transport where similar Russian
roulette and splitting schemes have been used as standard variance reduction
tools for many years. However, in our work, for the first time, we clearly showed
a theoretical connection between the zero-variance sampling and particle path
termination and splitting based on the expected contribution of the particle to
the final solution. Our theoretical analysis predicts that both methods, the direc-
tion sampling developed in the first part and the adjoint-driven Russian roulette
(termination) and splitting developed in the second part, can be combined to
form a sampling scheme superior to each method alone. We also designed a prac-
tical algorithm that combines both methods and we showed results supporting
the outcomes of our theoretical analysis.
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We believe that our algorithms will find their application, among other, in
architectural visualization and the movie industry, where light transport sim-
ulation in virtual scenes with ever increasing complexity is used for producing
photo-realistic imagery. We also believe that our work and achieved results will
encourage further research into sampling methods based on zero-variance sam-
pling schemes and also into use of machine learning methods in light transport
simulations. We hope that such a research could further reduce excessively long
simulation times reported across different industries.

5.2 Future Directions in Light Transport Re-

search

We presume that future research will aim at further improvements of unidirec-
tional algorithms so that they can match the capabilities of their more complex
(and complicated) bidirectional counterparts such as bidirectional path tracing,
or vertex connection and merging a.k.a. unified path space. While the bidi-
rectional estimators have recently been implemented and used in the movie in-
dustry [Seymour, 2014a,b], it turns out that they suffer from a few practical
disadvantages. First, their maintenance is quite difficult in the agile production
renderers. Second, it is very challenging or sometimes even impossible to support
some non-physical production features which violate the adjoint nature of light
transport.

Nevertheless, in this thesis, we were able to show that guided unidirectional
methods which use our direction importance sampling (Chapter 3) almost match
the qualities of guided bidirectional estimators. This result suggests that it might
be possible to develop an efficient, purely unidirectional algorithm that would
cope with challenging light transport. Note that our importance sampling algo-
rithms that we presented are also bidirectional in the sense that we compute the
transport approximation from the particles traced in the opposite direction (for
example in path tracing, we use photons) and thus still more or less suffer from
aforementioned disadvantages.

Developing an efficient purely unidirectional method without any use of parti-
cles from the opposite direction requires developing algorithms that would adap-
tively learn adjoint transport from the forward particles – that is from the same
particles (samples), that are subsequently used for rendering. Recently, Dahm
and Keller [2017] has taken a step in this direction when they formulated light
transport as a reinforcement learning problem. Another important ingredient
to achieve the outlined goal are further improvements to the adjoint approxi-
mation of light transport in both spatial and directional domain. Herholtz and
colleagues [2016] have recently taken a step in this direction by introducing a
product importance sampling of BSDFs and incident light. Similar improvements
will result in better importance sampling schemes closer to the ideal zero-variance
solution.

Another important direction of the future research is, undoubtedly, an exten-
sion of our work to participating media. While light transport in participating
media is an integral part of production renderers in the movie industry and also
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in architectural visualisation, it is still subject to active research as the simulation
times are currently extremely high.

79



Bibliography

James Arvo and David Kirk. Particle transport and image synthesis. In Proc.
SIGGRAPH ’90, pages 63–66. ACM, 1990. ISBN 0-89791-344-2. doi: 10.1145/
97879.97886. URL http://doi.acm.org/10.1145/97879.97886.

Thomas Bashford-Rogers, Kurt Debattista, and Alan Chalmers. A significance
cache for accelerating global illumination. Computer Graphics Forum, 31(6):
1837–51, 2012.

Thomas Bashford-Rogers, Kurt Debattista, and Alan Chalmers. Importance
driven environment map sampling. IEEE Trans. Vis. Comput. Graphics,
19, 2013. ISSN 1077-2626. doi: http://doi.ieeecomputersociety.org/10.1109/
TVCG.2013.258.

Christopher Bingham. An antipodally symmetric distribution on the sphere.
The Annals of Statistics, 2(6):pp. 1201–1225, 1974. ISSN 00905364. URL
http://www.jstor.org/stable/2958339.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006.

Mark R. Bolin and Gary W. Meyer. An error metric for Monte Carlo ray tracing.
In In Rendering Techniques ’97, 1997.

E. Booth, T. Genesis of the weight window and the weight window generator in
MCNP - a personal history. Technical Report LA-UR-06-5807, July 2006.

E. Booth, T. Common misconceptions in Monte Carlo particle transport. Applied
Radiation and Isotopes, 70, 2012a.

E. Booth, T. and S. Hendricks, J. Importance estimation in forward MC calcu-
lations. Nuc. Tech./Fusion, 5(1), 1984. ISSN 0272-3921.

T.E. Booth. A sample problem for variance reduction in MCNP. Technical report,
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, 1985a. URL
http://books.google.cz/books?id=4fpcHQAACAAJ.

Thomas E. Booth. Monte Carlo variance comparison for expected-value versus
sampled splitting. Nucl. Sci. Eng., 89(4), 1985b.

Thomas E. Booth. Common misconceptions in Monte Carlo particle transport.
Applied Radiation and Isotopes, 70(7), 2012b. ISSN 0969-8043. doi: http://dx.
doi.org/10.1016/j.apradiso.2011.11.037. URL http://www.sciencedirect.

com/science/article/pii/S0969804311005914.

80

http://doi.acm.org/10.1145/97879.97886
http://www.jstor.org/stable/2958339
http://books.google.cz/books?id=4fpcHQAACAAJ
http://www.sciencedirect.com/science/article/pii/S0969804311005914
http://www.sciencedirect.com/science/article/pii/S0969804311005914


B. C. Budge, J. C. Anderson, and K. I. Joy. Caustic forecasting: Unbiased esti-
mation of caustic lighting for global illumination. Computer Graphics Forum,
27(7):1963–70, 2008.
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Stefan Popov, Ravi Ramamoorthi, Frédo Durand, and George Drettakis. Proba-
bilistic connections for bidirectional path tracing. Computer Graphics Forum
(Proc. of EGSR), 34(4), 2015.

Masa-Aki Sato and Shin Ishii. On-line EM algorithm for the normalized
Gaussian network. Neural Comput., 12(2), February 2000. ISSN 0899-
7667. doi: 10.1162/089976600300015853. URL http://dx.doi.org/10.1162/

089976600300015853.

Mike Seymour. Manuka: Weta digital’s new renderer, 2014a.
http://www.fxguide.com/featured/manuka-weta-digitals-new-renderer/.

Mike Seymour. Renderman/RIS and the start of next 25 years,
2014b. http://www.fxguide.com/featured/rendermanris-and-the-start-of-next-
25-years/.

Peter Shirley and Kenneth Chiu. A low distortion map between disk and
square. J. Graph. Tools, 2(3):45–52, December 1997. ISSN 1086-7651.
doi: 10.1080/10867651.1997.10487479. URL http://dx.doi.org/10.1080/

10867651.1997.10487479.

B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman
& Hall, London, 1986.

J Spanier and M. Gelbard, Ely. Monte Carlo principles and neutron transport
problems. Addison-Wesley, 1969.

J. Steinhurst and A. Lastra. Global importance sampling of glossy surfaces using
the photon map. In IEEE Symposium on Interactive Ray Tracing, pages 133–
138, 2006.

Frank Suykens and Yves D. Willems. Density control for photon maps. In Pro-
ceedings of the Eurographics Workshop on Rendering Techniques 2000, London,
UK, 2000. Springer-Verlag. ISBN 3-211-83535-0. URL http://dl.acm.org/

citation.cfm?id=647652.732120.

85

http://dx.doi.org/10.1162/089976600300015853
http://dx.doi.org/10.1162/089976600300015853
http://dx.doi.org/10.1080/10867651.1997.10487479
http://dx.doi.org/10.1080/10867651.1997.10487479
http://dl.acm.org/citation.cfm?id=647652.732120
http://dl.acm.org/citation.cfm?id=647652.732120
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