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Abstract

This thesis introduces fundamental equations as well as discrete tools and numerical

methods for carrying out various geometrical tasks on three-dimensional surfaces via

operators. An example for an operator is the Laplacian which maps real-valued functions

to their sum of second derivatives. More generally, many mathematical objects feature

an operator interpretation, and in this work, we consider a few of them in the context

of geometry processing and numerical simulation problems. The operator point of view

is useful in applications since high-level algorithms can be devised for the problems

at hand with operators serving as the main building blocks. While this approach has

received some attention in the past, it has not reached its full potential, as the following

thesis tries to hint.

The contribution of this document is twofold. First, it describes the analysis

and discretization of derivations and related operators such as covariant derivative,

Lie bracket, pushforward and flow on triangulated surfaces. These operators play a

fundamental role in numerous computational science and engineering problems, and

thus enriching the readily available di↵erential tools with these novel components o↵ers

multiple new avenues to explore. Second, these objects are then used to solve certain

di↵erential equations on curved domains such as the advection equation, the Navier–

Stokes equations and the thin films equations. Unlike previous work, our numerical

methods are intrinsic to the surface—that is, independent of a particular geometry

flattening. In addition, the suggested machinery preserves structure—namely, a central

quantity to the problem, as the total mass, is exactly preserved. These two properties

typically provide a good balance between computation times and quality of results.

From a broader standpoint, recent years have brought an expected increase in

computation power along with extraordinary advances in the theory and methodology

of geometry acquisition and processing. Consequently, many approaches which were

infeasible before, became viable nowadays. In this view, the operator perspective and

its application to di↵erential equations, as depicted in this work, provides an interesting

alternative, among the other approaches, for working with complex problems on non-flat

geometries. In the following chapters, we study in which cases operators are applicable,

while providing a fair comparison to state-of-the-art methods.
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Chapter 1

Introduction

This thesis presents practical methods for dealing with a few challenging problems which

are considered on non-trivial curved domains. For instance, we would like to numerically

estimate how a thin sheet of wine runs down a wine glass. How would one begin to

solve this di�cult problem?

The following aspects should be taken into consideration. First, the motion and

its causes, i.e., the dynamics of the problem is analyzed into a concise mathematical

representation given by a di↵erential equation. In this work, we assume that the

governing equations were already derived by previous work, e.g., our motivating example

of wine could be modelled approximately with thin film equations [ODB97, CM09].

Second, the geometrical curved domain is represented in a way which allows to perform

simple computations while maintaining the ability to encode complex geometries. To this

end, the domain is approximated with a triangle mesh, namely, a set of vertices, edges

and faces that are given by planar triangles glued over their edges. The third aspect

and the main focus of this work, is the solution of the former equations on the discrete

surface in terms of a numerical method which can be coded in some programming

language.

Di↵erential equations describe the change in time or space (or both) of an essential

quantity to the problem. Thin films, for example, are characterized through the film’s

height, h, computed per point of the domain. The temporal and spatial evolution of

h is considered a solution of the associated equations. Numerically solving di↵erential

equations is a challenging task, involving the construction of temporal integration rules

along with a proper discretization of spatial di↵erential operators to produce a reliable
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estimate of the underlying dynamics. With this classification in mind, the first half

of the following work deals with the spatial aspects, whereas the second half mostly

handles the temporal mechanisms. Below, we show the result of a numerical solver

corresponding to the evolution of a thin film subject to surface tension forces in space

(horizontal axis) and time (vertical axis).

We proceed by taking a top-down approach. We will first describe the partial

di↵erential equations (PDEs) we are set-out to solve, and then, we will focus on the

spatial components that are required for composing e↵ective numerical solvers. The

temporal aspects will not be discussed in this introduction, but within the relevant

chapters. As the above example hints, we will be interested in transport-dominated

e↵ects, and thus, we begin with presenting a PDE which mathematically captures how

a certain quantity, u, moves due to a given velocity field, v. In fact, it is one of the most

ubiquitous PDE, used to describe numerous real-life phenomena and it is known as the

transport equation:

@tu+ hv, gradui = 0 , (1.1)

where @t is a derivative in time, grad is the gradient operator and h·, ·i is the standard

scalar product. Indeed, Eq. (1.1) measures transport as it couples the change in u over

time with its (minus) change in space, since the term hv, gradui is nothing else but a

directional derivative of u with respect to v.

In Chapter 5, we consider the transport equation along with boundary conditions at

the initial and final times, i.e., u(0) = u
0

and u(1) = u
1

, and the main goal is to compute

u(t) and v(t) for t 2 (0, 1). Naturally, it is an ill-posed problem and some regularization

is needed to increase the chances of finding a solution. This particular setup is adapted

to the task of improving an initial mapping ' between two surfaces M
1

and M

2

. As

we will show in Chapter 5, if the function space of M
1

is put in correspondence with

the function space of M
2

, the given mapping ' could be greatly improved. Fortunately,

the above boundary value problem is tailored to this task, taking u
0

= f �' and u
1

= g,

where f 2 L
2

(M
1

) and g 2 L
2

(M
2

), and using the resulting v(t) to generate the new

'. We refer the reader to the relevant chapter for further details.

The next PDE we consider is related to flow of fluids, and it guarantees the

preservation of momentum, being part of the famous Navier–Stokes equations [CMM90]:

@tv +rvv � µr2v + grad p = 0 , (1.2)
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where v is the velocity, p is the pressure, r is the covariant derivative and r2 is a

vector Laplacian with µ being the viscosity coe�cient. Unfortunately, solving Eq. (1.2)

on curved domains is challenging as we briefly mention below and discuss in length

in Chapter 3. Nevertheless, the above vector PDE could be greatly simplified to a

scalar PDE by defining the vorticity of the flow, ! = curl v, which always points in the

direction of the surface normal, in the two-dimensional case. Thus, instead of solving

Eq. (1.2) directly, we model almost inviscid flows in Chapter 6 by studying the vorticity

equation [MB01], resulting from taking the curl of the above equation:

@t! + hv, grad!i � µ�! = 0 . (1.3)

We are back again with a transport-type equation, Eq. (1.1), but now it is non-linear

due to the constraint which couples between ! and v and includes viscous e↵ects.

The next and final set of PDEs we investigate in this work are the thin films equations,

related to the problem we discussed at the beginning of this chapter. On curved domains,

having u represent the mass density of the film, these equations read:

@tu+ div (�M(u) · grad p(u)) = 0 , (1.4a)

M(u) =
1

3
u3 id+

✏

6
u4(H id�S) , (1.4b)

p = �H � ✏Tu� ✏�u , (1.4c)

where H, T and S are curvature-related quantities, ✏⌧ 1 is the fluid’s height to length

ratio, div is the divergence operator which measures the amount of flux associated with

v, and � is the Laplace–Beltrami operator. In this case, the advection-type equation is

non-linear and fourth order, making its discretization particularly challenging, as we

discuss in Chapter 7. However, since thin films exhibit a gradient flow structure [RV13],

we are able to discretize these equations e�ciently, simulating various intricate motions

of thin sheets of liquid on general domains, as shown, e.g., in the wine example above.

The equations presented in this introduction, except for Eq. (1.2), share a similar

structure where the change in time is modelled by the di↵erential change in space. In

addition, recall that

div(uv) = hv, gradui+ u · div(v) ,

and thus, we distinguish between di↵erential operators as grad, div curl and �, whose

discretization can be found in standard textbooks, such as [BKP+10] to the directional

derivative, D(v) = hv, grad ·i, which is the main focus of Chapter 2. Considering D(v) as

an operator which maps scalar functions to their derivatives has many advantages. For

example, given a finite basis, D(v) is simply a square matrix whose properties can be

investigated or prescribed, as was done in Chapter 2. We show below the two harmonic

vector fields—divergence- and curl-free vector fields—on the torus surface, along with

the corresponding D(v) operators, as computed in a reduced basis.
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More importantly to this thesis, when solving transport-dominated di↵erential

equations, the use of D(v) allows us to avoid the numerically sensitive process of

integrating the flow lines which was done, e.g., in [SY04, ETK+07]. Namely, instead

of first computing the flow lines of v and then transporting u along them, we could

directly facilitate D(v) in our implicit or explicit time integrator. Encouraged by the

usefulness of D(v), we extended this idea to the case of vector derivatives, rvv, in

Chapter 3 for the purpose of solving Eq. (1.2). Unfortunately, while rvv is intrinsic to

the surface, our discretization involves extrinsic di↵erentiation with projection, and thus

the obtained fluid simulator is inferior to the one we designed in Chapter 6. Nevertheless,

the covariant derivative is useful in many other scenarios—vector field design being one

of the main examples we focus on in that chapter.

Finally, another significant benefit of the operator point of view, is that it naturally

leads to a weak formulation of the underlying problem. To contrast with a strong

formulation where quantities are evaluated pointwise, weak formulations typically

involve an integrated version of the quantity, in a small domain. Having a weak version

of the problem helps when approximate or even noisy data is given. For instance, in

Chapter 4, we study the problem of jointly remeshing a pair of input triangulated

surfaces, M
1

and M

2

, to consistent quadrangulations. The meshes can have di↵erent

number of vertices and thus some mapping ' : M
1

!M

2

is assumed to be given. To

compute consistent quad meshes, we optimize for two rotationally symmetric vector

fields x
1

and x
2

on M

1

and M

2

, respectively, and to enforce consistency we need the

map di↵erential, d'. That is, our basic consistency condition is that d'(x
1

) = x
2

for

each point in M

2

. In practice, ' can be noisy, leading to a noisy d' and a non-robust

algorithm. Instead, we design an e�cient and robust algorithm in Chapter 4, by

facilitating the functional version of the consistency condition:

C['] ·D(x
1

) = D(x
2

) · C['] , (1.5)

where C['] is the operator which corresponds to the mapping '. We refer the reader to

the thorough discussion and further information in the relevant chapter.

To conclude, the operator approach is highly useful in several scenarios, as this

thesis shows, allowing for a principled way to design algorithms which will be e↵ective

and robust, while remaining e�cient to compute. It is the hope of the author, that

the operator perspective will keep growing in the future, adding more formulations and

applications to geometry processing literature and in other scientific domains.
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Chapter 2

An Operator Approach to

Tangent Vector Field Processing

In this chapter, we introduce a novel coordinate-free method for manipulating and

analyzing vector fields on discrete surfaces. Unlike the commonly used representations

of a vector field as an assignment of vectors to the faces of the mesh, or as real values on

edges, we argue that vector fields can also be naturally viewed as operators whose domain

and range are functions defined on the mesh. Although this point of view is common in

di↵erential geometry it has so far not been adopted in geometry processing applications.

We recall the theoretical properties of vector fields represented as operators, and show

that composition of vector fields with other functional operators is natural in this setup.

This leads to the characterization of vector field properties through commutativity with

other operators such as the Laplace-Beltrami and symmetry operators, as well as to a

straight-forward definition of di↵erential properties such as the Lie derivative. Finally,

we demonstrate a range of applications, such as Killing vector field design, symmetric

vector field estimation and joint design on multiple surfaces.

Figure 2.1: Using our framework various vector field design goals can be easily posed as linear
constraints. Here, given three symmetry maps: rotational (S1), bilateral (S2) and front/back
(S3), we can generate a symmetric vector field using only S1 (left), S1 + S2 (center) and S1 +
S2 + S3 (right). The top row shows the front of the 3D model, and the bottom row its back.
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2.1 Introduction

Manipulating and designing tangent vector fields on discrete domains is a fundamental

operation in areas as diverse as dynamical systems, finite elements and geometry

processing. The first question that needs to be addressed before designing a vector field

processing toolbox, is how will the vector fields be represented in the discrete setting?

The goal of this paper is to propose a representation, which is inspired by the point of

view of vector fields in di↵erential geometry as operators or derivations.

In the continuous setting, there are a few common ways of defining a tangent vector

field on a surface. The first, is to consider a smooth assignment of a vector in the

tangent space at each point on the surface. This is, perhaps, the most intuitive way to

extend the definition of vector fields from the Euclidean space to manifolds. However,

it comes with a price, since on a curved surface one must keep track of the relation

between the tangent spaces at di↵erent points. A natural discretization corresponding

to this point of view (used e.g. in [PP03]) is to assign a single Euclidean vector to each

simplex of a polygonal mesh (either a vertex or a face), and to extend them through

interpolation. While this representation is clearly useful in many applications, the

non-trivial relationships between the tangent spaces complicate tasks such as vector

field design and manipulation.

An alternative approach in the continuous case, is to work with di↵erential forms (see

e.g. [Mor01]), which are linear operators taking tangent vector fields to scalar functions.

In the discrete setting this point of view leads to the famous Discrete Exterior Calculus

[Hir03, FSDH07], where discrete 1-forms are represented as real-valued functions defined

over the edges of the mesh. While this approach is coordinate-free (as no basis for

the tangent space needs to be defined), and has many advantages over the previous

method, there are still some operations which are natural in the continuous setting, and

not easily representable in DEC. For example, the flow of a tangent vector field is a

one parameter set of self-maps and various vector field properties can be defined by

composition with its flow, an operation which is somewhat challenging to perform using

DEC.

Finally, another point of view of tangent vector fields in the continuous case is to

consider their action on scalar functions. Namely, for a given vector field, its covariant

derivative is an operator that associates to any smooth function f on the manifold

another function which equals the derivative of f in the direction given by the vector

field. It is well known that a vector field can be recovered from its covariant derivative

operator, and thus any vector field can be uniquely represented as a functional operator.

We will refer to these operators as functional vector fields (FVFs). Note, that while this

point of view is classical in di↵erential geometry, it has so far received limited attention

in geometry processing.

In this paper, we argue that the operator point of view yields a useful coordinate-free

representation of vector fields on discrete surfaces that is complementary to existing
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representations and that can facilitate a number of novel applications. For example, we

show that constructing a Killing vector field [Pet06] on a surface can be done by simply

finding a functional vector field that commutes with the Laplace-Beltrami operator.

Furthermore, we show that it is possible to transport vector fields across surfaces, find

symmetric vector fields and even compute the flow of a vector field easily by employing

the natural relationship between FVFs and functional maps [OBCS+12]. Finally, the

Lie derivative of two vector fields is given by the commutator of the two respective

operators, and as a result the covariant derivative of a tangent vector field with respect

to another can be computed through the Koszul formula [Pet06].

To employ this representation in practice, we show that for a suitable choice of

basis, a functional vector field can be represented as a (possibly infinite) matrix. As

not all such matrices represent vector fields, we show how to parameterize the space

of vector fields using a basis for the operators. With these tools in hand, we propose

a Finite Element-based discretization for functional vector fields, and demonstrate its

consistency and empirical convergence. Finally, we apply our framework to various

vector field processing tasks showing comparable results to existing methods, as well as

novel applications which were challenging so far.

2.1.1 Related Work

The body of literature devoted to vector fields in graphics, visualization and geometry

processing is vast and a full overview is beyond our scope. Thus, we will focus on

the representation and discretization of vector fields, as these aspects of vector field

processing are most related to our work.

One approach to discretization (e.g. [PP03, TLHD03]) is to use piecewise constant

vector fields, where vectors are defined per face and represented in the standard basis in

R3. This approach is simple and allows to define discrete versions of standard operators

such as div and curl, which are consistent with their continuous counterparts (e.g. one

can define a discrete Hodge decomposition [PP03]). However, since the representation is

based on coordinate frames, it makes vector field design challenging as the relationship

between tangent spaces is non-trivial, leading to di�cult optimization problems.

An alternative discretization of vector fields was suggested as part of the formalism

of Discrete Exterior Calculus (DEC) [Hir03], where vector fields are identified with

discrete 1-forms, represented as a single scalar per edge. This approach is inherently

coordinate-free, allowing to formulate vector field design as a linear system [FSDH07].

Unfortunately, computing the Lie derivative of vector fields remains a complex task

using DEC (as shown in [MMP+11]).

Vector field design and processing applications are also tightly connected to the

analysis of rotationally symmetric (RoSy) fields, see e.g. [PZ07, RVAL09, CDS10]. In

the latter work, for example, a vector field (or a symmetric direction field) is represented

using an angle per edge (an angle valued dual 1-form), which represents how the vector
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changes between neighboring triangles. While these approaches are also coordinate-free

and lead to linear optimization problems for direction field design, it is not clear how

vector-field valued operators can be represented in such a setup.

In this paper, we argue that in addition to the existing discretization methods, it

is often useful to represent vector fields through their covariant derivatives as linear

functional operators. This representation is coordinate-free and, in addition, elucidates

the intimate connection between vector fields and self maps of the surface, allowing us

to extend the basic vector field processing toolbox to computational tasks which are

challenging using existing discretization tools.

Note that the operator representation of vector fields has been used in the context

of fluid simulation by Pavlov et al. [PMT+11]. However, in that work, the authors were

primarily interested in representing divergence-free vector fields and did not use this

representation for tangent vector field analysis and design. In this paper, we consider

general vector fields, demonstrate how this representation can be used for vector field

processing, and show a deep connection with the functional map framework [OBCS+12].

2.1.2 Contributions

Our main observation is that tangent vector fields can be represented in a coordinate-free

way as functional operators. While this view is classical in di↵erential geometry [Mor01],

it has so far received limited attention in geometry processing. Using this perspective

we:

• Show how functional vector fields can be naturally composed with other operators,

and thus relate vector fields to other common operators such as maps between

shapes and the Laplace-Beltrami operator (Section 2.2).

• Provide a novel coordinate-free discretization of tangent vector fields (Section 2.4).

• Describe various applications for vector field processing including Killing vector

field design, design of symmetric vector fields and joint vector field design on

multiple shapes, which are all easily solvable as linear systems in our framework

(Section 2.5).

2.2 Vector Fields as Operators

In this section we define the coordinate-free view of vector fields as abstract derivations

of functions in the continuous setting. This point of view is well-known in di↵erential

geometry (see e.g. [Mor01] for an excellent reference). Thus, we only recall the standard

definition and its main properties.
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Figure 2.2: Given a vector field V (left) and a function f (center left), the inner product of
rf (center right) with V is the covariant derivative DV (f) (right). For the marked point, for
example, V is orthogonal to rf , yielding 0 for DV (f). Vector fields are visualized by color
coding their norm, and showing a few flow lines for a fixed time t.

2.2.1 The Covariant Derivative of Functions

We first assume that we are given a compact smooth Riemannian manifold M and a

tangent vector field V , which can be thought of as a smooth assignment of a tangent

vector V (p) to each point p 2 M . The vector field defines a one-parameter family of

maps, �t
V : M !M for t 2 R, called the flow of V . The flow is formally defined as the

unique solution to the di↵erential equation:

d

dt
�t
V (p) = V (�t

V (p)), �0

V (p) = p. (2.1)

Then, for a given function f 2 C1(M), the covariant derivative DV (f) of f with respect

to V is a function g, which intuitively measures the change in f with respect to the flow

under V . Formally,

g(p) = DV (f)(p) = lim
t!0

f(�t
V (p))� f(p)

t
.

A classical result in Riemannian geometry ( [Mor01], p. 148) is that the covariant

derivative can also be computed as :

DV (f)(p) = g(p) = h(rf)(p), V (p)ip , (2.2)

where h, ip denotes the inner product in the tangent space of p, and rf is the gradient

of f (see Figure 2.2).

2.2.2 The Covariant Derivative as a Functional Operator

We stress that DV is best viewed as an operator, which maps smooth functions on M

to smooth functions on M . Moreover, one can show that DV encodes V so that if V
1

and V
2

are vector fields such that DV1f = DV2f for any f 2 C1(M), then V
1

= V
2

(see [Mor01, pg. 38]). Said di↵erently, there is no loss of information when moving from

V to DV .

The covariant derivative (viewed as a functional operator, i.e. an FVF) satisfies the
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following two key properties:

Linearity:

D(↵f + �g) = ↵D(f) + �D(g), (2.3)

and Leibnitz (product) rule:

D(fg) = fD(g) + gD(f). (2.4)

Conversely, a functional operator D corresponds to a vector field, if and only if it

satisfies (2.3) and (2.4) (see [Spi99, pg. 79]).

Why are these the necessary properties for operators that represent vector fields?

Intuitively, this is because vector fields can be thought of as first order directional

derivatives, which have two essential properties. First, that constant functions are

mapped to the zero function. And second, that DV (f) depends on f only to first order.

One of the advantages of considering vector fields as abstract derivations is that this

point of view can be generalized to settings where di↵erential quantities are not well

defined. For example, on a discrete surface there is no well defined normal direction

at vertices and edges. By working with purely algebraic constructs, such as linear

operators, we can define di↵erentiation without requiring the concept of a limit, which

is useful when the underlying surface is not continuous and such a limit does not exist.

Moreover, as we will see, the operator point of view makes it easier to manipulate vector

fields and relate them to other functional operators.

2.2.3 Properties

While the operator point of view is equivalent to the standard notion of a vector field

as a smooth assignment of tangent vectors, certain operations are more natural in this

representation. Below we list such operations, which we will use in our applications in

Section 2.5. The proofs of all lemmas are provided in the supplemental material.

Operator composition. By using the operator point of view of vector fields, it

becomes easy to define their composition both with other vector fields and other more

general functional operators. Unfortunately, given two vector fields DV1 and DV2 , the

operator DV1 �DV2 does not necessarily correspond to a vector field. However, one can

modify this operator to obtain a fundamental notion:

Lie derivative of a vector field. Given two vector fields V
1

and V
2

, the Lie derivative

(or Lie bracket) of V
2

with respect to V
1

is a vector field V
3

defined as:

LV1(V2

) = [V
1

, V
2

] = DV3 = DV1 �DV2 �DV2 �DV1 . (2.5)

It is easy to see that DV3 thus defined is both linear and satisfies the product rule. Hence,

DV3 corresponds to a unique vector field V
3

. Intuitively, the Lie derivative captures the
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Figure 2.3: Two orthogonal vector fields on the torus V
1

, V
2

, whose Lie derivative is 0. Modifying
the norm of V

2

using a function s yields a lie derivative which is parallel to V
2

.

commutativity of the flows of V
1

and V
2

. In particular, the Lie derivative is zero if and

only if the flows defined by V
1

and V
2

commute (see [Spi99, pg. 157]):

��s
V2
� ��t

V1
� �s

V2
� �t

V1
= Id 8s, t 2 R (2.6)

Figure 2.3 illustrates the computation of the Lie derivative on a torus. We consider

two vector fields V
1

and V
2

whose flows commute. The average norm of [V
1

, V
2

] computed

using the discrete operators we describe in Section 2.4 is on the order of 1e-8, close to

0 as expected. In general, if [V
1

, V
2

] = 0, it can be shown that for any scalar function

s : M ! R, [V
1

, sV
2

] must be parallel to V
2

. In Figure 2.3, we show a scaling function s,

and the computed vector field V
3

= [V
1

, sV
2

], which is parallel to V
2

, as expected.

Composition with other operators. Of course, it is possible to consider the com-

position of the FVF operator DV with other functional operators. Interestingly, the

commutativity of DV with a di↵erential operator D is closely related to the commuta-

tivity of its flow with D.

Lemma 2.2.1. Let T t
F , t 2 R be the functional operator representations of the flow

di↵eomorphisms �t
V : M ! M of V , defined by T t

F (f) = f � �t
V for any function

f 2 C1(M). If D is a linear partial di↵erential operator then DV �D = D �DV if and

only if for any t 2 R, T t
F �D = D � T t

F .

For example, on a Riemannian manifold, we can consider composition with the

Laplace-Beltrami operator L. The commutativity of DV with L is then closely related

to the metric distortion imposed by the flow of V . In particular, recall that a vector

field is called a Killing vector field (KVF) if �t
V is an isometry for all t (see [Pet06],

Chapter 7). Then:

Lemma 2.2.2. A vector field V is a Killing vector field if and only if DV � L = L �DV .

From this lemma, it is easy to see that KVFs form a group under the Lie derivative.

Indeed, the following lemma, which follows directly from the definition of the Lie

derivative, is useful in general:
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Figure 2.4: Using commutativity with L, we compute the KVFs on the sphere (V
1

, V
2

, V
3

).
Alternatively, we compute V

4

= [V
1

, V
2

], note the similarity of V
3

and V
4

.

Lemma 2.2.3. Given two vector fields DV1 and DV2 that both commute with some

operator D, the Lie derivative LV1(V2

) will also commute with D.

Figure 2.4 demonstrates these properties on the sphere. On the left, we show

V
1

, V
2

, V
3

, the three KVFs of the sphere, computed using Lemma 2.2.2 by constructing

a linear system (as explained in Section 2.5). On the right, we show V
4

= [V
1

, V
2

], which

was computed as the Lie bracket of the first two KVFs. Note the similarity between V
3

and V
4

. We will use these results for designing approximate KVFs in Section 2.5.

Composition with mappings. In many settings we are also interested in the relation

between vector fields on multiple surfaces related by mappings. In particular, given

a vector field V
1

on surface M and a di↵eomorphism T : M ! N , one can define the

vector field V
2

on surface N via the push forward: V
2

(q) = dT (V
1

(T�1(q))). Note that

in the discrete case, it is often di�cult to compute the di↵erential dT of a map T

between shapes with di↵erent discretizations. At the same time, one can equivalently

define the vector field V
2

using the operator approach, without relying on dT , by using

the functional representation of the map T .

As mentioned in [OBCS+12], the functional representation TF of a map T is a linear

operator on the space of functions, taking functions on N to functions on M defined by

TF (g) = g � T for any function g 2 C1(N). This means that the functional vector field

DV2 , and thus V
2

itself can be obtained by simple composition of three linear functional

operators without the need to estimate the di↵erential dT , using:

Lemma 2.2.4. DV2 = (TF )�1

�DV1 � TF .

Figure 2.5 illustrates vector field transportation using this approach (vector fields

are visualized using [PZ11]). Given V
1

on M , and a map T : M ! N , we generate V
2

on N using Lemma 2.2.4. V
3

is computed using the di↵erential of the map, given by

the a�ne map between corresponding triangles. Note that V
3

tends to be noisy, due to

the locality of the transport procedure, as opposed to the smoother V
2

. Furthermore,

this approach is applicable to shapes with di↵erent connectivity, where computing dT is

challenging. In Section 2.5 we use a similar approach to design vector fields which are

consistent with the map T : M ! N .
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Figure 2.5: Given a vector field V
1

on M and a map T : M ! N , we generate a vector field V
2

on N using Lemma 2.2.4. Compare with directly transporting V
1

using the di↵erential of the
map, yielding V

3

. Note the ringing artifacts in V
3

.

Vector field flow. The FVF DV representing a vector field is also closely related to

the functional representation of the flow �t
V . In particular:

Lemma 2.2.5. Let T t = �t
V be the self-map associated with the flow of V at time

t. Then if T t
F is the functional representation of T t, for any real analytic function f

(see [DFN92], p. 210):

T t
F f = exp (t DV )f =

1
X

k=0

(tDV )kf

k!
.

This lemma is particularly useful since it allows to avoid the potentially costly solution

of the system of equations (2.1) and directly estimate the functional representation of the

map �t
V through operator exponentiation. Note that DV is a moderately sized matrix

when represented in a basis, and therefore its exponent can be computed e�ciently.

Figure 2.6 shows an example of function flow using this method.

Covariant derivative of a tangent vector field. Some PDEs can be described

using the covariant derivative [Mor01] of a vector field V
1

with respect to another vector

field V
2

, denoted rV2V1

. For planar vector fields, for example, rV2V1

= J(V
1

)V
2

, where

J(V
1

) is the Jacobian matrix of V
1

.

On a surface, however, this representation requires a basis for the tangent space

at every point, and a suitable connection that allows to transport a vector V (p) to a

neighboring point q, which makes rV2V1

elusive to compute in a coordinate-free way.

Fortunately, there is an intimate connection between the Lie and covariant derivatives

of vector fields, through the Koszul formula, ([Pet06], p. 25):

2g(rV1V2

, Z) = DV1(g(V2

, Z))� g(V
1

, [V
2

, Z])

+DV2(g(V1

, Z))� g(V
2

, [V
1

, Z])

�DZ(g(V1

, V
2

)) + g(Z, [V
1

, V
2

]).

(2.7)

Here, Z is an arbitrary vector field, g(·, ·) = h·, ·ip is the inner product in the tangent

space of p, and [·, ·] is the Lie bracket (Eq. (2.5)). Hence, given an operator representation
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Figure 2.6: Applying the flow of a vector field (left) to a function (center left) using Lemma 2.2.5.
(center right, right) The function after the flow, for two sample t values.

of DV1 and DV2 , we can use Equation (2.7) to compute rV1V2

. We leave further

investigation of this direction, and possible applications for future work.

2.3 Representation in a Basis

The properties mentioned above suggest that representing and analyzing tangent vector

fields through their functional representation can enable a number of applications which

are challenging using standard methods. Our goal, therefore, will be to represent this

operator such that it can be easily analyzed and manipulated in practice.

2.3.1 Basis for the Function Space

As mentioned in Section 2.2.2, an FVF is a linear operator acting on smooth functions

defined on the manifold. In practice, we will assume that the functional space of interest

can be endowed with a (possibly infinite) basis, so that any function can be represented

as a linear combination of some basis functions {�i}. Then, for any given function

f =
P

i ai�i, we have that g = DV (f) = DV (
P

i ai�i) =
P

i aiDV (�i). Since DV (�i) is

also a function, it can be represented in the basis as DV (�i) =
P

j Dij�j . Therefore,

g =
P

j(
P

iDijai)�j =
P

j bj�j . In other words, if one thinks of the coe�cients ai, bi

as vectors a,b and D = (Dij) as a matrix, then the transformation between the basis

representations of f and g = DV (f) is given by: b = Da.

When the basis functions �i are orthonormal with respect to the standard functional

inner product on M , i.e.
R

M �i�jdµ = 1 if i = j and 0 otherwise, then the (i, j)th

element Dij of the FVF corresponding to V is given by:

Dij =

Z

M
�iDV (�j)dµ(p) =

Z

M
�i(p) hV (p),r�jip dµ(p), (2.8)

where h, ip denotes the inner product in the tangent space of the point p, and dµ(p)

represents the volume measure at p.
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The Laplace-Beltrami basis. A useful basis for the space of smooth functions on

a compact manifold, which we will often use in practice, is the basis given by the

eigenfunctions of the Laplace-Beltrami operator (note that on a compact manifold

the space L2(M) is strictly larger than the space of smooth functions). Since each

eigenfunction of the Laplace-Beltrami operator is smooth, Equation (2.8) is well defined.

One advantage of this basis is that the basis functions are ordered and can be attributed

a notion of scale, given by the corresponding eigenvalue. This has been exploited in a

number of scenarios including the work on functional maps [OBCS+12] where a mapping

between two shapes is compactly encoded using a sub-matrix of a possibly infinite

functional map matrix. This choice of basis yields a compact representation of the FVF

operator as an Nf ⇥Nf matrix, where Nf is the number of basis functions we use.

2.3.2 Parameterization with Basis Operators

As mentioned in Section 2.2.2, the space of linear functional operators is strictly larger

than the space of vector fields. Therefore, in order to work with this representation in

practice, it is useful to have a parametrization of the space of FVFs, which is easy to

manipulate.

One possible such parameterization, is to consider a basis for the space of tangent

vector fields  i, and to represent an operatorDV as a linear combination of the functional

vector field operators D 
i

. In our work, we consider the eigenfunctions of the 1-form

Laplace-de Rham operator to generate a basis for the 1-forms on a surface, and use

these as a basis for the tangent vectors, by duality [Mor01].

Given such basis operators D 
i

, the FVF operator DV that represents a vector field

V =
P

i ai i is given by: DV =
P

i aiD 
i

. Note, that this basis is also ordered, so that

smoother vector fields can be represented using fewer basis operators. In practice, we

truncate the basis, and limit the number of basis operators to a fixed value ND.

With this parameterization, it is straightforward to use the properties we mentioned

in Section 2.2 to design a vector field that has various desirable characteristics, simply

by solving a linear system for the coe�cients ai. Figure 2.7 shows a vector field designed

Figure 2.7: Prescribing directional constraints (left) or singularities (right).
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Figure 2.8: Given a vector field (left), we reconstruct it with growing accuracy by increasing
the number of basis operators ND (right). Note that the index 2 singularity is accurately
reconstructed given enough basis operators.

by posing a small number of directional constraints (one direction for the teddy (left)

and 4 zero valued vectors for the kitten (right)), and solving for the coe�cients as

explained in Section 2.5.

Figure 2.8 demonstrates the e↵ect of using a varying number of basis operators.

Given a direction field (left), we project it on a growing number of basis operators and

show the reconstruction error as a function of ND (right). We additionally show the

reconstructed vector field, for a few choices of ND. Note, that although the direction

field is smooth, due to the jump from unit length norm to zero norm at the singular

point, it is di�cult to reconstruct this vector field exactly. However, using a growing

number of basis operators we can approximate better this discontinuity in scale.

2.4 Discretization

So far we have described the properties of tangent vector fields as functional operators in

the continuous case. In this section we will focus on the discretization of these concepts

to surfaces which are represented as triangle meshes. We propose a finite-element based

discretization, and discuss its consistency and experimental convergence properties.

2.4.1 Representation

We will first address the following problem: given a triangle mesh M = (X,F,N), where

X are the vertices, F the faces and N the normals to the faces, and a piecewise constant

tangent vector field V = {vr 2 R3

|r 2 F, vr ? Nr}, how do we represent the functional

vector field DV ?

The answer is in fact straightforward, when we consider the representation of DV in

the functional basis given by the standard hat functions. On a triangle mesh we can

represent functions in a piecewise linear basis, namely f(p) =
P|X|

j=1

bj�j(p), where �j

are the standard hat functions (valued 1 at vertex i and 0 at all other vertices), and

bj 2 R are the coe�cients. Now, given the function f(p) =
P

j bj�j(p), and a piecewise
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constant vector field V , we wish to compute g = DV (f). We set g(p) =
P

j aj�j(p), and

solve (2.2) in the weak sense, as is standard in Finite Element Analysis (see [AFW06]

for a complete discussion of this approach):

Z

M
�igdµ =

Z

M
�iDV (f)dµ, 8i.

Plugging in the expressions for f , g and DV we get 8i:

X

j

aj

Z

M
�i�jdµ =

X

j

bj

Z

M
�i hr�j , V i dµ. (2.9)

The integrands in (2.9) vanish everywhere, except on the set of triangles Rij ⇢ F ,

for which both �i and �j are non-zero. For i = j, these are the triangles neighboring

the vertex i. For i 6= j, we have that (i, j) must be an edge, and Rij contains only the

two triangles which share that edge.

This leads to
P

j ajBij =
P

j bjSij , where:

Bij =
X

t
r

2R
ij

Z

t
r

�i�jdµ, Sij =
X

t
r

2R
ij

Z

t
r

�i hr�j , V i dµ.

Computing the elements Bij yields the standard mass matrix used in the solution of

Laplacian systems, whereas Sij is given by (see the inset figure for the notations):

Sij =
1

6

⇣D

V
1

, e?
1

E

+
D

V
2

, e?
2

E⌘

Sii = �
X

j2N(i)

Sij .

i j

e1 „

e2 „

V1
V2

Here, r
1

and r
2

are the two faces that share the edge (i, j), V
1

is the value of V on

the face r
1

, e?
1

is the rotation by ⇡/2 of the edge opposite to the vertex j in the face

r
1

(similarly for V
2

and e?
2

), and N(i) are the neighboring vertices of vertex i. The

derivation is given in the supplemental material.

We further replace B with a diagonal lumped mass matrix W of the Voronoi areas

wi of the vertices [BKP+10], and get:

a = D̂V b, D̂V = W�1S. (2.10)

Note, that the size of D̂V is |X| ⇥ |X|, but it is sparse, as only the diagonal and

entries of adjacent vertices are non-zero.

It is sometimes useful to decompose D̂V as a product of two operators: D̂V =

P|X|⇥|F |(D̂
F
V )|F |⇥|X|, where P is independent of V and depends only on the mesh. We
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take:

(P )ir =
1

3wi
Ar, (D̂F

V )ri = hr�i, V ir , (2.11)

where Ar is the area of the triangle tr. In fact, the operator D̂F
V is simply the smooth

operator DV per triangle, where V is fixed. Therefore, it preserves most of the properties

of its smooth counterpart. However, to get an operator which commutes with other

operators, we need to apply P , averaging values from faces to vertices. This introduces

a discretization error into our formulation, due to the discontinuity of the vector field

near the vertices.

Alternatively, we can use the first Nf eigenvectors �̂i of the discrete Laplace-Beltrami

operator as the basis for the function space, and then DV will be represented using an

Nf ⇥Nf matrix, which we will denote by D̂LB
V . We compute D̂LB

V by using a change of

basis:

D̂LB
V = B+D̂V B, (2.12)

where B is a matrix whose columns are �̂i and B+ is its pseudo-inverse. This represen-

tation introduces some additional error, due to the truncation of the basis, and there

exists a trade-o↵ between the complexity of the representation (in terms of Nf ) and the

amount of detail the functions we work with can represent.

2.4.2 Properties

It is interesting to investigate which properties of DV are preserved from the smooth

case, and which are not but converge under refinement of the mesh.

Constant functions. We have that DV (c) = 0, for any constant function c. It is

easy to see this property is preserved in the discrete case, since the rows of D̂V sum to

zero, hence the constant functions are in its kernel.

Product rule. The continuous DV fulfills two defining properties: linearity (Equa-

tion (2.3)) and the Leibnitz product rule (Equation (2.4)). Since D̂V is a matrix,

linearity is clearly satisfied. However, as we work in a limited subspace of functions, the

product rule is no longer valid: given two PL functions f, g, their pointwise product

fg is no longer PL, and therefore we cannot apply D̂V to it. However, we can show

empirically that when applying increasingly finer discretizations of DV to increasingly

finer discretizations of continuous functions f, g, the product rule error decreases.

Let fh, gh, be the two random smooth piecewise linear functions defined on a mesh

with h vertices, and take V to be a smooth tangential vector field. Now, for every h,

compute the error eh = DV (fhgh)� (ghDV (fh) + fhDV (gh)), where the multiplication

is done vertex-wise. The inset figure shows the graph of kehk2/h as a function of h,

in loglog scale, for a few choices of models. Note that the graph is linear, implying
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exponential convergence under refinement.

Uniqueness. The correspondence between a vector field V and its FVF operator DV

is one-to-one and onto in the continuous case, implying that given an operator DV we

can uniquely reconstruct the vector field V . This property, unfortunately, may not hold

in the discrete case. We do, however have the following weaker result:

Lemma 2.4.1. Let M = (X,F,N) and let V
1

, V
2

be two piecewise constant vector fields

on M . Then: D̂F
V1

= D̂F
V2

if and only if V
1

= V
2

.

In practice, given an operator D̂V we reconstruct the corresponding vector field V

by projecting on the operator basis, as described in Section 2.3.2.

Metric invariance. The continuous functional vector field operator DV commutes

with the pushforward under a map. Specifically, given a bijective di↵eomorphism

T : M ! N , a vector field V
1

on M and a function f : M ! R, we have that

DV1(f)(p) = DV2(f � T
�1)(T (p)), where V

2

= dT (V
1

(p)), and dT is the di↵erential of T .

As a consequence, DV does not depend on the embedding of the shape M .

As we do not have the uniqueness property, the discrete metric invariance property

is also limited to the D̂F
V operator:

Lemma 2.4.2. Let M
1

= (X
1

, F,N
1

) and M
2

= (X
2

, F,N
2

) be two triangle meshes with

the same connectivity but di↵erent metric (i.e. di↵erent embedding). Additionally, let

V
1

be a piecewise constant vector field on M
1

, then D̂F
V1

= D̂F
V2
.

Here (V
2

)r = A(V
1

)r, where A is the linear transformation that takes the triangle

r in M
1

to the corresponding triangle in M
2

. Note that D̂V
i

is computed using the

embedding Xi.

Integration by parts. For a closed surface, we have that
R

M f(r·V ) =
R

M hrf, V i =
R

M DV (f), for all f : M ! R. This holds exactly in the discrete case, when using the

standard vertex-based discrete divergence, defined as in [PP03]:
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Figure 2.9: Geodesic distances between pairs of starting points are measured before and after
the flow. Comparing the normalized average error for the models shown yields (left to right):
0.2,0.96, 2.47 for our method, and 0.23,1.15, 4.5 for [BCBSG10] (units are average edge length).

Lemma 2.4.3. LetM = (X,F,N), V a piecewise constant vector field onM , f =
P

i fi�i

a PL function on M , and wi the Voronoi area weights, then:

|X|
X

i=1

wi(D̂V f)i =

|X|
X

i=1

wifi(r · V )i.

2.5 Applications

In this section, we describe how our representation can be used to compute vector

fields which have various desirable properties. While some of the suggested applications

have been attempted before (e.g. designing vector fields using direction and singularity

constraints [FSDH07, CDS10], computing Killing vector fields [BCBSG10] and symmet-

ric vector fields [PLPZ12], among others), our framework is unique in that it allows

to combine any such constraints into a single optimization problem. In addition, we

provide a proof-of-concept for more advanced tools, such as jointly designing vector

fields on two or more surfaces.

2.5.1 Implementation Details

Given a mesh M , scalars Nf , ND and a set of desired properties for a vector field, we

propose the following algorithm:

1. Compute the first Nf eigenfunctions of the LB operator �̂i, using the area nor-

malized cotangent scheme [BKP+10].

2. Compute the first ND 1-form eigenfunctions of the Laplace-de Rham operator,

and convert those to piecewise constant vector fields  ̂i. We used the definitions

from [FSDH07] for both operations.

3. Convert  ̂i to D̂LB
ˆ 
i

using Equation (2.12).
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4. Optimize simultaneously for the vector field V =
P

i ai ̂i and its functional

representation DV =
P

i aiD̂
LB
ˆ 
i

, by solving a linear system for ai. The joint

formulation allows us to stack constraints which are best represented using the

operator (e.g. commutativity constraints) together with constraints which require

the vector field (e.g. prescribed directions at specified locations). This yields a

linear system Wa = c, which we solve in the least squares sense.

5. Output the computed vector field V =
P

i ai ̂i.

Throughout our experiments we used meshes in the range of 5k-200k vertices, with

Nf and ND between 50 and 300, depending on the experiment. The computational

time was dominated by the eigen-decompositions and took a few minutes on a standard

laptop.

Figures 2.3, 2.4, 2.5 and 2.7 from the previous sections were generated using this

framework. In addition, we describe a few examples of potential applications of our

framework, related to the properties discussed in Section 2.2.

2.5.2 Approximate Killing Vector Fields

Lemma 2.2.2 provides a linear constraint on the FVF operator, which guarantees that a

given vector field is a KVF. We can use this result, and optimize for the best KVF on a

given surface, by optimizing for a set of coe�cients a such that the resulting operator

DV will commute with the Laplace-Beltrami operator, i.e. ||DV � L� L �DV | | = 0.

Here we get a homogeneous system Wa = 0, hence the AKVF is the singular vector

corresponding to the lowest singular value.

Figure 2.9 shows a comparison of the resulting vector fields with the results of the

state-of-the-art algorithm [BCBSG10]. The comparison is done using the same meshes,

where on each mesh we pick a few vertices and show the flow lines for a fixed time t

starting from these vertices. Note, that we achieve similar results, but in our framework

we can easily combine the KVF constraint with other constraints such as commutativity

with a symmetry operator.

Figure 2.10: An AKVF V (left), an indicator function f (center), and its symmetrization
computed by projecting f on the kernel of DV (right).
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Figure 2.11: On the human model (left and center) we show design results with and without
symmetry constraints - note the di↵erence on the right hand. On the spot model (right) we
show symmetric and anti-symmetric vector fields.

Interestingly, the spectral decomposition of the functional vector field operator is

meaningful and potentially useful in applications. Specifically, functions are in the kernel

of DV if and only if they are fixed points of the flow �t
V for all t (since DV f = 0 if and

only if exp(tDV )f = f, 8t ). Therefore, the kernel of an AKVF operator spans the linear

subspace of symmetric functions under the corresponding symmetry. This implies, that

given an arbitrary function f , we can symmetrize it by projecting it onto the kernel of

such an operator. Figure 2.10 shows an example of an AKVF V , an indicator function

f and its symmetrization sym(f).

2.5.3 Composition with Mappings

Given a self-map S, we design a symmetric vector field by posing a constraint of

the form ||DV � S � S �DV | | = 0. Figure 2.11 (left and center) shows an example

of a vector field designed with directional constraints and one designed with both

directional and symmetry commutativity constraints. Note the di↵erence on the hand

of the model, as the symmetric constraints enforce similar behavior on both hands.

Additionally, we can define an anti-symmetric vector field, by requiring V (S(p)) =

�V (p), where S is the symmetry map. To enforce this requirement, we use the

constraint ||DV � S + S �DV | | = 0. Figure 2.11 (right) shows an example of symmetric

and anti-symmetric vector fields.

Given a collection of shapes, a desirable goal when designing vector fields is to

have di↵erent constraints on each shape, yet generate compatible vector fields across

the collection. In Figure 2.12 (right) we achieve this goal using the map composition

property. We are given two shapes M
1

and M
2

and a functional map TF between

the corresponding function spaces. In addition, on each shape we are given a set of

directional constraints c
1

, c
2

. We wish to generate vector fields Vi on the shapes Mi,

such that Vi commute with TF , and fulfill the constraints. A natural approach would

be to transfer the constraints and solve separately for each mesh. However, as shown

in Figure 2.12 (left), there is a large di↵erence between the resulting fields - e.g in the

locations of the singularities. Figure 2.12 (right), shows the result when solving jointly
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for both shapes. Note that the singularities on the back of the shape are consistent

between the models. For evaluation, we transport V
1

to M
2

and measure the angle

di↵erence between the resulting vector field and V
2

. Figure 2.12 (center) shows the

resulting histogram, emphasizing that our joint design method preserves the directions

better.

Figure 2.12: (left) Independent design on two shapes which are in correspondence does not
yield a consistent vector field, even if compatible constraints are used. (right) Solving jointly
using our framework yields consistent vector fields (note the corresponding locations of the
singularities on the back of the shape). See the text for details.

2.6 Discussion

Tangent vector fields on surfaces are used in a myriad of applications in computer graphics

and geometry processing. We propose to represent them as functional operators, thus

enabling applications which were not easily attainable using standard representations.

We have provided a discretization of the operator, and demonstrated it is consistent

and experimentally convergent under refinement. Finally, we described some high level

vector field design applications, such as Killing, symmetric and joint vector field design.

We believe the proposed representation opens the door for many additional ap-

plications. Specifically, the covariant derivative of one vector field with respect to

another could potentially be useful for computing the Gaussian curvature, and for

posing smoothness constraints for vector field design. Further applications include

finding pairs of vector fields with zero Lie derivative for surface parameterization.
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In general, we feel that we only uncovered the tip of the iceberg of possible applica-

tions and extensions of this framework. In an even broader context, considering both

the operator representation of maps between surfaces, and the operator representation

of vector fields, seems to imply that a lot is to gain by abstracting common notions in

geometry processing, and viewing them more generally as operators. It remains to be

seen whether this approach is applicable to additional concepts as well.
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Chapter 3

Discrete Derivatives of Vector

Fields on Surfaces – An Operator

Approach

Vector fields on surfaces are fundamental in various applications in computer graphics

and geometry processing. In many cases, in addition to representing vector fields, the

need arises to compute their derivatives, for example for solving partial di↵erential

equations on surfaces, or for designing vector fields with prescribed smoothness properties.

In this work, we consider the problem of computing the Levi-Civita covariant derivative,

i.e., the tangential component of the standard directional derivative, on triangle meshes.

This problem is challenging since formally, tangent vector fields on polygonal meshes

are often viewed as being discontinuous, and hence it is not obvious what a good

derivative formulation would be. We leverage the relationship between the Levi-Civita

covariant derivative of a vector field and the directional derivative of its component

functions to provide a simple, easy-to-implement discretization for which we demonstrate

experimental convergence. In addition, we introduce two linear operators, which provide

access to additional constructs in Riemannian geometry that are not easy to discretize

otherwise, including the parallel transport operator, which can be seen simply as a

certain matrix exponential. Finally, we show the applicability of our operator to various

tasks, such as fluid simulation on curved surfaces, and vector field design by posing

algebraic constraints on the covariant derivative operator.

3.1 Introduction

Tangent vector fields are ubiquitous in computer graphics. From fluid simulation to

texture synthesis, the need to represent vectorial data arises in many applications.

Often, it is necessary to compute the covariant derivative of a tangent vector field in

an arbitrary tangent direction. For example, when simulating fluid flow using Euler

equations, the covariant derivative of the fluid’s velocity is the main ingredient in the
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computation of the time evolution of the flow [Tay96]. Furthermore, some vector fields

are characterized by the properties of their derivatives: smooth vector fields [KCPS13]

minimize the Dirichlet energy, while Geodesic vector fields [PHD+10] are constant

length and have symmetric covariant derivative operators. Although specific solutions

have been tailored to various applications, there currently exists little work on discrete

representations of derivatives of tangent vector fields on polygonal meshes, which are

applicable to general scenarios.

There are two main challenges in deriving such a discretization. First, even on

smooth surfaces, defining derivatives of tangent vector fields is more involved than

defining derivatives of functions. Specifically, comparing the values of a function at two

points on the surface is trivial, but it is not obvious how given two tangent vectors

at di↵erent points one can determine if they are “the same”, since tangent vectors at

di↵erent points are expressed with respect to di↵erent reference frames. Hence, one

needs a way to transport vectors across tangent planes, a construct encoded by a notion

of parallel transport. Unfortunately most theoretical treatments of these topics make

heavy use of local coordinates, which makes defining discrete analogues for polygonal

meshes di�cult.

The second challenge is due to the nature of discrete surfaces, namely polygonal

meshes, and the way tangent vector fields are represented. The simplest representation,

which is the one we opt for, is piecewise constant vectors on the faces of the mesh.

However, in such a representation vector fields are discontinuous across edges, which a

priori can lead to di�culties in computing their derivatives. In this paper, we formalize

this intuition by showing that for this choice of vector field representation, there exists

no definition of a discrete vector field derivative which satisfies all the properties of

the continuous Levi-Civita covariant derivative exactly. Faced with these challenges,

we propose a novel approach to discretize the Levi-Civita covariant derivative. We

compute the directional derivatives of the vector field’s component functions and take

the tangential part of the resulting vector field. In the continuous case, it is well-

known that such a definition yields the unique Levi-Civita covariant derivative [Mor01,

pg. 181]. While being intuitive and easy to implement, our approach o↵ers several

conceptual benefits. First, by working with functions instead of vector fields, we

overcome the di�culty of comparing vectors in di↵erent tangent planes. Second, by

projecting the component functions on a multi-scale basis, we impose some smoothness

on the underlying vector field, which allows us to obtain a stable discretization of the

Levi-Civita covariant derivative for which we demonstrate experimental convergence.

Finally, we derive a representation of the covariant derivative as an operator acting on

vector fields. This allows us to design vector fields with various properties, and to define

parallel transport without resorting to the computation of discrete flow lines, simply as

a matrix exponential.
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3.1.1 Related Work

Unlike the discretization of the directional derivatives of functions, which can be reduced

to computing gradients and is thus well-established (e.g., [BKP+10, ABCCO13]), there

exists, to the best of our knowledge, no unified treatment of covariant derivatives of

vector fields on meshes. Some derived quantities such as the divergence and the curl

have received wide attention [PP03, War07, Hir03, MDS+02], whereas the general case

we are interested in—the Levi-Civita covariant derivative of a tangent vector field, has

not been discretized directly. As a full review of the use of derivatives of vector fields in

applications is beyond our scope, we mention a few representative examples.

Discrete calculus frameworks There exist several frameworks for geometry pro-

cessing and graphics applications that provide discretizations of di↵erential quantities.

Discrete exterior calculus (DEC) [Hir03] is one of the most extensive and widely used,

and provides discrete equivalents for vector field operators such as curl, divergence, gra-

dient and Hodge Laplacian. In addition, DEC provides a strong theoretical foundation

in the discrete setting with theorems which mimic the corresponding statements for

smooth surfaces. However, not all operators are supported in DEC, and specifically

there is currently no consistent discretization of the covariant derivative of vector fields.

Other frameworks, such as surface Finite Element Methods (FEM) [DE13], and Finite

Element Exterior Calculus [AFW06] have also been proposed, but their focus has tradi-

tionally been on solving boundary value problems for di↵erential equations. While these

approaches have been successfully used to discretize di↵erential operators including the

Laplace–Beltrami operator [War07, DE13], discretizing arbitrary di↵erential quantities

on unstructured meshes remains challenging.

Another approach is to use a global conformal parameterization to the plane [LWC05]

together with standard FEM to solve a modified problem which takes into account the

distortion introduced by the parameterization. Such methods, however, can be sensitive

to the large area distortion induced by conformal maps, which may cause many triangles

in the planar mesh to collapse, leading to unstable numerical systems.

Vector field design Vector derivatives are often required for vector field design

applications. One of the most prominent requirements is that the resulting vector field

is su�ciently smooth, and this calls for a way to relate vectors in nearby tangent spaces.

On a triangle mesh, two classes of methods have been proposed to quantify smoothness

of vector fields. The first is to use discrete 1-forms instead of vector fields, and rephrase

the required operators in terms of DEC [FSDH07, BCBSG10], making use in particular

of the Hodge Laplacian operator which provides a measure of smoothness for vector

fields in a similar way as the Laplace–Beltrami operator does for functions. However,

this limits the scope of applications, since, for example, it is not clear how to compute

the directional derivatives of vector fields, and if various operators (e.g., the symmetric
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part of the covariant derivative operator) can be represented in DEC.

Another common method to measure smoothness of vector fields is by prescribing

a rule on every edge of the mesh, which allows one to compare vectors on the faces

across this edge. Perhaps the most natural instance of this approach is to relate vectors

on a pair of neighboring triangles by “unfolding” them into a single plane. Indeed,

it is customary to refer to this process as the discrete Levi-Civita connection, e.g.,

[CDS10], and various comparison rules have been proposed for di↵erent applications

([PS06, CDS10, PHD+10, LJX+10] among others).

However, this general approach has several significant drawbacks. First, these

comparison rules only define directional derivatives in the direction of the dual edges of

the mesh, and it is not obvious what the derivative should be in a general direction. If

we extend this approach to a general direction by following the discrete geodesic in that

direction, it is not clear what happens at a vertex. Furthermore, the resulting definition

is not stable: a small change in the direction can change the following face on the

geodesic path, yielding a di↵erent vector and potentially a large change in the derivative.

Finally, in many cases the “unfolding” approach is used to define discrete parallel

transport, namely a way to transfer a vector between faces on the mesh. Our method

provides a more general definition of parallel transport, by allowing to transport a vector

field on the flow lines of another vector field. Implementing this using the unfolding

approach would require numerically integrating the direction vector field to generate

the flow lines, and then unfolding the triangles along the flow lines, which are both

algorithmically complicated and numerically sensitive operations. Using our method we

can compute discrete parallel transport simply using a matrix-vector multiplication.

Fluid simulation The directional derivative of a vector field with respect to itself

appears in various PDEs, one of them is given by the Euler equations for inviscid

incompressible flow. Understanding the solutions to these equations is a research field

in itself (see e.g., [Bat00]), thus we only mention some of the more relevant work in

computer graphics, and specifically fluid simulation on surfaces. Existing solutions

include parameterization-based techniques [LWC05], and methods which assume a

particular structure on the mesh, e.g., by working with subdivision surfaces [Sta99].

These methods have the drawbacks of introducing unwanted errors due to the distortion

of the parameterization, and the added complexity of converting a general triangle mesh

to a subdivision surface. Note that on a two-dimensional surface, the Euler equations

can be reformulated in terms of the vorticity of the flow [NVW12, ETK+07], yielding

a simpler representation of the velocity through the stream function. However, vortex

methods have several limitations, e.g., it can be more di�cult to set boundary conditions,

and therefore in some cases it is preferable to use a velocity based method. Finally, a

method which is tailored for inviscid and incompressible flows on triangle meshes is

provided in [SY04]. This method is based on semi-Lagrangian velocity advection on a

triangle mesh, which requires tracing velocity flow lines and triangle unfolding, that
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su↵er from the drawbacks mentioned previously.

3.1.2 Contributions

Our main contribution is a simple yet e�cient method for discretizing the Levi-Civita

covariant derivative on triangle meshes. We focus on three aspects in our exposition:

properties of the discretization, the novel perspective o↵ered by the operator approach,

and sample applications. Note, that since we provide a tool and not a specialized appli-

cation, we focus on proof-of-concept scenarios to illustrate the possibilities associated

with our discretization.

In the following sections we discuss our main contributions:

• The discrete formulation of the Levi-Civita covariant derivative, including experi-

mental convergence results (Section 3.3).

• A representation of the derivative as a linear operator that takes vector fields to vec-

tor fields, whose algebraic properties have geometric meaning, e.g., exponentiation

leads to an algebraic definition of parallel transport (Section 3.4).

• Several examples demonstrating the applicability of our discrete derivative: vector

field design and fluid simulation on surfaces (Section 3.5).

3.2 Directional derivatives of vector fields

Our main goal is to discretize the directional derivative of a vector field on a surface,

also known as the Levi-Civita covariant derivative. We will first discuss the definition of

such a derivative and its properties in the continuous case. We provide a brief intuitive

introduction to the required concepts in this section. Readers well versed in di↵erential

geometry can skim these and proceed to the discrete treatment in Section 3.3. As we

focus mostly on the geometric intuition behind the definitions, we refer the interested

readers to [Mor01, Chaps. 5.2, 5.3] and [Car94, Chap. 2] for the detailed treatment.

3.2.1 Notation

In the following we denote a surface by M ⇢ R3, upper case letters (e.g., U, V,W ) denote

tangent vector fields, and lower case letters (e.g., f, g) denote real-valued functions. We

denote by k · k an operator which takes a tangent vector field and outputs a function of

its pointwise norms.

3.2.2 The Levi-Civita covariant derivative

To gain some intuition, first consider the motion of a particle in the plane, R2. Its

trajectory forms a path �(t) 2 R2, t 2 R, and its velocity �0(t) = U(t) 2 R2 is a vector
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Figure 3.1: (left) The velocity U(t) and acceleration U 0(t) of a particle traveling along a curve
�(t) on a surface, and the tangential component of the acceleration rUU . (right) The parallel
transport of V

0

along � is the vector field V (t) defined as the unique solution of the di↵erential
equation r�0

(t)V (t) = 0 with V (0) = V
0

.

tangent to the path. Its acceleration is the vector:

U 0(t) = lim
�t!0

U(t+�t)� U(t)

�t
. (3.1)

For example, if the trajectory is a straight line and the velocity is not constant,

then U 0(t) will point in the direction of travel. If the particle travels at constant

speed, then the acceleration U 0(t) is in a direction orthogonal to the path, since

hU(t), U(t)i0 = 2hU 0(t), U(t)i = 0. Like the velocity, the acceleration vector lies in R2.

Now, consider the same particle traveling on a curved surface M ⇢ R3. Again, its

trajectory forms a path �(t) 2 M, t 2 R, and its velocity vector U(t) is tangent to it.

However, the acceleration vector U 0(t) is no longer tangent to M and it decomposes into

a component normal to M , the normal acceleration, and a component tangent to M , the

tangential acceleration (see Figure 3.1, left). Intuitively, since the particle is constrained

to live on the surface M , we can take an intrinsic point of view by considering only the

tangential part of the acceleration.

We can similarly compute the tangential component of the derivative of any vector

field V defined along a curve, and not necessarily tangent to it, by considering the

tangential component of lim
�t!0

V (�(t+�t))�V (�(t))
�t along the curve �. Finally, using

the standard x, y, z coordinates in R3, this definition can be further extended to define

the covariant derivative of a tangent vector field V = (vx, vy, vz) on M in a specific

direction given by a vector field U on M :

rUV (p) = Pp((DUvx, DUvy, DUvz)(p)), p 2M, (3.2)

where Pp is the orthogonal projection on the tangent plane to M at p and, for any

function f , DUf = hrf, Ui denotes the derivative of f in the direction of U . Notice

that (DUvx, DUvy, DUvz)(p) is a vector in R3, while rUV (p) is a tangent vector. The

vector field rUV is known as the Levi-Civita covariant derivative of V with respect to

U [Mor01, pg. 181].
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Figure 3.2: Constant norm vector fields Ui on a surface of revolution, and their norm krUiUik

and flow lines. Note that the norm is zero on the geodesics (marked red), and that the flow
lines are orthogonal to Ui, since they are constant norm.

3.2.3 Parallel transport

The definition of the covariant derivative is closely related to the notion of parallel

transport. Intuitively, parallel transport allows us to “carry” a vector along a curve,

such that it remains “parallel” to itself. For example, the norm of a parallel-transported

vector remains fixed, and if the curve is a geodesic then the angle the vector forms

with the tangent to the curve also remains fixed. This is formalized using the idea that

parallel transport should be the integral of the covariant derivative. Formally, given a

curve �(t) in M and a tangent vector V
0

at �(0), the parallel transport of V
0

along � is

defined as the unique solution of the di↵erential equation r�0(t)V (t) = 0 with initial

condition V (0) = V
0

[Car94, pg. 52], see Figure 3.1 (right).

Before we dive into the properties and the proposed discretization of rUV we would

like to give some intuition as to the quantity we are computing. Consider a surface

of revolution, like the ones shown in Figure 3.2, and a constant norm vector field

U which is orthogonal to the rotation axis (i.e., it “goes around” the surface). Now

consider a particle traveling on the flow lines of U at constant speed. If the flow line is

a geodesic, e.g., as the curves marked in red, then traveling at constant speed would

yield 0 tangential acceleration. This is seen in the center figures, which show the color

coding of krUUk. If the particle is not traveling on a geodesic, it has to accelerate to

keep “turning”. However, since the speed is constant, the acceleration U 0(t) would be

orthogonal to the direction of travel, as is seen in the figures showing the flow lines of

rUU .

3.2.4 Properties

As we aim for a generic discretization of rUV , which works well in various applications,

we would like to assess the properties that are required from such an object. For

example, it has been shown in [War07] that for the Laplace–Beltrami operator and

under mild conditions, there is no discretization which fulfills all the defining properties

of the continuous operator. In our case, the Fundamental Theorem of Riemannian
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Geometry guarantees that if an operator fulfills the following five properties, then it is

the unique Levi-Civita covariant derivative [Car94, pgs. 50–55]. Hence, it is of interest

to understand these properties, and see whether they are achievable in the discrete case.

To make the discussion more concrete, we also denote for each property the application

in which it will be required.

Linearity. As any derivative it is a linear operator:

rU (V +W ) = rUV +rUW. (3.3)

Linearity allows us to represent the operator rV in a basis, and construct various

energies for vector field design.

Product rule.

rU (fV ) = frUV + V DUf. (3.4)

Although we do not use this property directly in our applications, the product rule is a

fundamental characteristic of any derivative.

Locality. The derivative operator is “local” in the direction argument, namely

it depends on the value of U at a point, and not on its neighborhood. In other

words, if U
1

and U
2

are vector fields such that U
1

(p) = U
2

(p) for some point p, then

(rU1V )(p) = (rU2V )(p) for any smooth vector field V . This means that there are no

derivatives of U involved, and therefore this requirement can be rephrased as linearity

with respect to functions in the direction argument:

rfU+gW (V ) = frUV + grWV. (3.5)

This allows us to represent the operator rU in a basis, which we use for computing

parallel transport.

Metric compatibility. This property relates the derivative of a vector field to

the derivative of its norm. Similar to the case of a particle in R2, where we had

hV (t), V (t)i0 = 2hV 0(t), V (t)i, in general, DU hV, V i = 2hrUV, V i. Note that together

with linearity, this implies for any pair of vector fields, V and W :

DU hV,W i = hrUV,W i+ hV,rUW i. (3.6)

Symmetric Hessian. Finally, the last property relates to the second derivatives

of functions. In the Euclidean case, the Hessian matrix is symmetric since partial

derivatives commute. The generalization of the Hessian to the surface is the bilinear

operator: H(f)(U, V ) = hrUrf, V i [Car94, pg. 142]. The last property requires that

this operator is symmetric:

hrUrf, V i = hrVrf, Ui. (3.7)
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A consequence of this property is that [U, V ] = rUV �rV U for any vector fields U and

V , where [·] represents the Lie bracket operator [Car94, p. 27]. We use this operator to

design local parameterizations.

In the following section we investigate the discretization of the covariant derivative.

We first address the question of how vector fields are represented on a mesh, and discuss

our choices. Then we consider the challenges for our choice of representation in the

discrete setting. We show that for piecewise constant vector fields, under some mild

conditions, it is not possible to define a discrete version of the covariant derivative

operator which is both linear and fulfills the metric compatibility property. Finally,

we propose a simple approach that is based on the recently introduced multi-scale

discretization of the directional derivative of functions [ABCCO13], and we demonstrate

experimental convergence of the previously mentioned properties under mesh refinement,

when both the vector fields and the functions are smooth.

3.3 Discretization

3.3.1 Vector field representation

The definition of a derivative of a vector field is closely linked with the way vector fields

are represented in the discrete setting. One option is to use discrete 1-forms [Hir03],

which would require using the flat and sharp operators for converting from vector fields

to 1-forms and back. Another option is to define a smooth atlas on the mesh through a

parameterization of the 1-ring of each vertex (e.g., as in [ZMT06, KCPS13]), e↵ectively

turning the mesh into a smooth manifold. If a vector field is continuous and piecewise

smooth in the atlas, it is possible to define first weak derivatives. Further, recent work

by [RS14, MPZ14] showed how a combinatorial data structure can be used to represent

vector fields while ensuring that field flow lines do not merge.

While these options can be a potential starting point for discretizing the covariant

derivative, they require a somewhat complicated definition of a discrete vector field.

We, on the other hand, choose the most simple discretization of a tangent vector field,

namely piecewise constant on faces. Such vector fields occur often in applications. For

example, scalar functions are often discretized as piecewise linear on the vertices of the

mesh, and their gradients are piecewise constant vector fields. Furthermore, in mesh

parameterization and mesh quadrangulation applications [KNP07, BZK09, CBK12,

BCE+13, MPZ14, MPZ14, PPTSH14] piecewise constant vector fields are often given

as constraints for controlling the alignment of the result. Hence, as we work directly

with piecewise constant vector fields, without requiring additional conversions to 1-forms

or atlas-based representations, our approach is simpler, more intuitive and easier to

implement.
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3.3.2 Notation

We represent surfaces with triangle meshes, given by M = (V, E ,F), which denote the

vertices, edges and faces, respectively. Functions are represented as piecewise constant

on the faces, namely f : F ! R, f = {f i, i 2 F}. Tangent vector fields are given as

piecewise constant on triangles, namely U : F ! R3, U = {U i = (uix, u
i
y, u

i
z), i 2 F},

such that U i is parallel to the plane containing the i-th face. Discrete operators are

represented with a “tilde”, e.g., D̃U : (F ! R)! (F ! R) is the discrete directional

derivative for functions and r̃U : (F ! R3) ! (F ! R3) is the discrete covariant

derivative for vector fields. In what follows, we assume to be given a function f and

tangent vector fields U, V .

3.3.3 Challenges in the discrete setting

As mentioned, we choose to represent vector fields as piecewise constant on the faces.

Such a representation, while simple and intuitive, leads to an inherent di�culty in

defining a meaningful notion of covariant derivatives, since intuitively the derivatives of

piecewise constant vector fields should be zero at the faces.

Indeed, inside a triangle, taking derivatives of piecewise constant vector fields is

futile. Thus, a bigger patch must be taken into account. This, however, would require

constructing a mechanism for transporting vectors across triangles. Moreover, it is easy

to see that given the above discretization of vector fields and functions, the product

rule (Eq. (3.4)) cannot hold exactly for every pair of functions and vector fields. This,

however, is true for many notions of discrete derivatives.

Unfortunately, there exists a more fundamental di�culty in discretizing the Levi-

Civita covariant derivative, which holds not only for our discretization, but even if

functions do not “live on the same domain” as the vector fields, e.g., functions that are

piecewise linear. In particular, even in this case, two of the defining properties of the

covariant derivative, namely linearity and metric compatibility, cannot be both satisfied

exactly in the discrete setting, under some mild conditions. To state this precisely, since

the inner product hU, V i produces a function on the faces of the triangle mesh, to allow

discrete functions to live on a di↵erent domain we can use an averaging operator A

that takes functions on faces and produces functions on vertices, edges or faces. We

will assume that A is linear, non-negative and maps constant functions to constant

functions. This leads to the following formulation of the metric compatibility condition:

D̃XA(hU, V i) = A(hr̃XU, V i+ hr̃XV, Ui). (3.8)

Here D̃X is a directional derivative for functions with respect to the vector field X.

I.e., D̃X takes a function defined on some domain (e.g., vertices, edges or faces) and

produces a function defined on the same domain. r̃XU is the covariant derivative for

vector fields, and the inner product is the standard inner product of vector fields in
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R3. Under these conditions, we have the following result (proved in the supplemental

material):

Lemma 3.3.1. If D̃X is a linear operator such that D̃Xf = 0 if f is a constant function,

and the covariant derivative for vector fields is linear: r̃X(U
1

+ U
2

) = r̃XU
1

+ r̃XU
2

,

then the metric compatibility condition (Eq. (3.8)) implies that D̃Xf = 0 for all f in

the range of A. I.e., D̃XA(h) = 0 for any h.

We note that although this lemma is stated for vector fields that are constant on the

faces, the proof is actually quite general and can be adapted to other settings as well.

Hence, as we cannot hope to achieve the exact properties of the smooth covariant

derivative, we opt for a simple discretization which is based on the directional derivative

of the component functions, as given by equation (3.2). Using this definition, it is

possible to show that all the properties of the Levi-Civita covariant derivative (except

the symmetry of the Hessian) are all consequences of the product rule for functions

[Mor01, pg. 181]. Therefore, if the operator D̃Uf provides a better approximation to

the product rule as the mesh resolution increases, so we can expect that the operator

r̃UV will give a better approximation to properties (3.3)–(3.6) under mesh refinement,

although the metric compatibility condition will never be satisfied exactly.

It has recently been shown in [ABCCO13] that it is possible to discretize the

directional derivative of functions D̃Uf using a multi-scale basis, such that the error

in the product rule property experimentally decreases with the increase in the mesh

resolution. We choose a similar discretization for the directional derivative of functions

defined on the faces of the mesh, and thus get experimental convergence of the product

rule for the component functions of the vector field. This in turn, in the convergence

experiments we performed, leads to experimental convergence of the covariant derivative

properties.

3.3.4 Directional derivative of functions

In the discrete di↵erential geometry literature, functions are commonly discretized

either as scalars on the vertices or as scalars on edge midpoints, which are then linearly

interpolated to the faces. These are known as conforming and non-conforming linear

elements, respectively. In both cases, the gradient operator is well-defined as piecewise

constant on the faces (see [War07, Chap. 2] for a full discussion).

Contrary to the common setting, our functions are defined on faces, thus we need to

extend the notion of a discrete gradient. Given a function f , we define an averaging

operator A, and define r̃f = rAf , where A averages the values of f to the edges, and

r is the discrete gradient for non-conforming elements. Potentially, it is possible to

define A such that it averages values to the vertices instead of edges. However, then

A will be of size |V| ⇥ |F|, and therefore, its range will be smaller than its domain.

Thus, there will necessarily be two functions on the faces which are mapped to the same
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Figure 3.3: Comparison of our discretization r̃UV with the analytic solution for specific U, V on
the sphere. We show the convergence graph for the RMSE error for decreasing mean edge length,
as well as a visualization of the flow lines and norm of the computed r̃UV for the densest mesh.

function on the vertices. This will lead to di�culties, as it can introduce non-zero vector

fields, whose interpolation to the vertices leads to a zero vector field. If, on the other

hand, A averages to the edges, its size is |E|⇥ |F|, and therefore the range is larger than

the domain, and this problem is potentially avoided. It is easy to see that a positive

local averaging operator A will have an empty kernel in general, and in particular for

any mesh that has at least one odd degree vertex (see the proof in the supplemental

material).

Formally, we define the directional derivative for functions as:

D̃Uf = hrAf, Ui, (3.9)

where Aij = wj/
P

wk if i is an edge in face j, and Aij = 0, otherwise. wj is the area of

face j and the sum runs over the faces which share the edge i. Now, as Af is a function

on edges, its gradient is piecewise constant per face, and has a standard definition

(see [Pol05, Sec. 2.3]).

As mentioned previously, we represent the operator D̃U in a reduced multi-scale basis

(the eigenfunctions of the Laplace–Beltrami operator), as this enforces some smoothness

on our vector fields.

3.3.5 Covariant derivative of vector fields

Our covariant derivative operator is based on the extrinsic definition presented in

Eq. (3.2). Given the discretization for the directional derivative of functions on the

faces, the covariant derivative for vector fields follows easily:

r̃UV (p) = Pp

⇣

(D̃Uvx, D̃Uvy, D̃Uvz)(p)
⌘

, p 2M (3.10)

where V = (vx, vy, vz) and Pp is the projection operator onto the tangent plane of M

at p. As the directional derivatives of the components of V are given on the faces, Pp is

well defined.
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Figure 3.4: The behavior of our discretization of the covariant derivative on the properties (3.4)–
(3.7) under mesh refinement, for the ellipsoid model. We show the RMSE error of the left hand
side vs. the right hand side of the equation for decreasing mean edge length h. Note that the
plot suggests a polynomial convergence rate in h, where we denote by m the respective slope
estimate. We additionally show the functions and vector fields that were used for the highest
mesh resolution. See the text for further details.

To summarise, given two piecewise constant vector fields, U and V , we first take

the component coordinate functions of V , average them onto the edges, and compute

the corresponding gradients. These are piecewise constant on the faces, therefore their

inner products with U give us three real-valued functions on the faces. We use those

functions to construct a vector field in R3, and project this vector field onto the faces.

To validate our discretization, we experiment with known vector fields U, V on the

unit sphere and compare our result with the expected result in the continuous setting.

Figure 3.3 shows the result of this comparison, for meshes with decreasing average edge

length h. We show U, V , the analytic result rUV , and the result of our computation

r̃UV . Note that the convergence is polynomial in h, and that for the most dense mesh

the figures of the flow lines and norm are almost indistinguishable from the ground truth.

We further demonstrate the convergence results in Figure 3.4, which shows the log log

plot of the RMSE error of properties (3.4)–(3.7), for ellipsoid meshes with decreasing

average edge length h. We additionally show the vector fields U, V,W and the functions

f, g which were used for the mesh with smallest edge length. The functions f, g are

the eighth and tenth eigenfunctions of the area weighted cotangent Laplace–Beltrami

operator and the vector fields U, V,W correspond to eigen 1-forms 4, 3 and 1 of the

Hodge Laplacian. Note that the plot suggests a polynomial convergence rate in h, where

we denote by m the respective slope estimate. Furthermore, given eq. (3.10), it is easy

to verify that property (3.3) holds exactly.

3.4 Geometry from linear operators

In addition to computing the quantity r̃UV , it is often advantageous to fix one of

the vector fields, and consider the corresponding operator on all possible inputs. For

example, we can omit the direction U and consider the operator r̃V , which will provide

some information on the derivatives of V in all possible directions. This point of view is
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useful, because it can uncover some hidden structure of V , in a global way. As a simple

example, the singular vector of r̃V which corresponds to the smallest singular value,

will provide the directions in which V changes as little as possible.

This interplay between the algebraic properties of the operators and the geometry

of the vector fields they represent is quite useful in practice, because it allows us to

do global operations which are traditionally local. For example, manipulating r̃V

is instrumental for vector field design, and r̃U allows us to easily compute parallel

transport.

3.4.1 Preliminaries

Matrix representation While it is possible to analyze these operators directly as

abstract linear operators, it is more intuitive to consider their matrix representation.

Specifically, we assume that we have a finite orthonormal basis of vector fields { i, i 2

1, .., k}, i.e.,
R

M h i, ji = 1 if i = j and 0 otherwise, and such that the vector fields

we are interested in can be represented as V =
Pk

i=1

ai i (in Section 3.5.1 we will

elaborate more on our choice of basis). Now, any linear operator R from tangent vector

fields to tangent vector fields can be represented using a k ⇥ k matrix R, whose (i, j)

entry is: Ri,j =
R

M hR( i), ji. In the following we will discuss the properties of

the operators using their matrix representations. For example, when we mention the

operator transpose, we refer to the corresponding matrix transpose.

Flow of a vector field We will need the following definition. The flow of a vector

field U is a one-parameter family of maps �t
U : M ! M for t 2 R, such that the

following holds:
d

dt
�t
U (p) = U(�t

U (p)), �0

U (p) = p.

Intuitively, the flow of a vector field encodes what happens to a particle which starts at

a point p 2 M , and its velocity is dictated by the vector field at every point. Hence,

it provides a way to recover the trajectory of a particle from its velocity, and thus

computing the flow is also known as integrating the vector field.

3.4.2 The operator rV

Operator action: (rV )(U) = rUV .

Here V is fixed, and we compute its derivative in some direction given as input.

This operator is the extension to surfaces of the Jacobian operator of vector fields

in Euclidean space, which is simply the matrix of partial derivatives. Its algebraic

structure provides us with information about the nature of the derivatives of V in

various directions. For example, as any linear operator, it can be decomposed into

40



Figure 3.5: Approximate Killing vector fields computed by minimizing the symmetric part of
rV .

symmetric and anti-symmetric parts:

rV =
1

2

�

rV + (rV )T
�

+
1

2

�

rV � (rV )T
�

= KV +GV ,

where as discussed previously, we consider the operator as a k⇥ k matrix representation

and thus can compute its transpose. The symmetric and anti-symmetric parts are

also linear operators which take tangent vector fields to tangent vector fields and have

geometric meaning.

Symmetric Part. The operator KV = 1

2

�

rV + (rV )T
�

is related to how much

the flow �t
V distorts the metric. Specifically, if KV = 0, then V is called a Killing

vector field (KVF), and its flow �t
V is an isometry for all t ([Pet06, Chap. 7.1]). One

such example in the plane is V = (�y, x), whose flow is simply a global rotation. Such

vector fields are quite rare, and exist only on very specific surfaces, however we can

try to minimize kKV k
2 for any surface, yielding vector fields whose flow is close to an

isometry. Such vector fields are useful in geometry processing applications, as they allow

to generate texture and geometric patterns [BCBSG10].

We use this property to design vector fields which are approximate KVFs, by

solving a linear system of equations. Note, that as opposed to previous work, we can

pose the constraints directly on the derivative operator, without requiring an indirect

approach through commutativity with the Laplace–Beltrami operator [ABCCO13], or

reformulation using DEC [BCBSG10]. Figure 3.5 shows a few approximate Killing vector

fields computed this way. Interestingly, KVFs are also related to fluid flow on surfaces, as

they provide a steady state solution to the Euler equations (see Section 3.5). Furthermore,

the Killing operator KV plays a role in the behavior of viscous fluids [NVW12], which

we would like to investigate in future work.

Anti-symmetric part. The operator GV = 1

2

�

rV � (rV )T
�

encodes the failure

of rV to be symmetric. We know from property (3.7) that if V = rf for some function

f then rV is symmetric, hence it is possible to consider GV as the failure of V to be the
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Figure 3.6: Parallel transport of a vector field U (left) along its own flow lines, comparison to
the ground truth on the sphere (middle). Note the 3 marked singularity curves: the red curve
is a geodesic, so vectors transported on it preserve their orientation. The blue curves are two
symmetric singularity curves. The vectors transported on them rotate by ⇡, so they reverse their
orientation. The transition between these singularity curves is smooth. (right) Convergence
graph of the error in the computed angle, and the final result of our computation for the largest
number of basis functions.

gradient of a function. Specifically, minimizing kGV k
2 with some additional conditions

would provide vector fields which are “as gradient as possible”. For example, if we

require that kV k = const it is possible to show that the flow lines of V are geodesics

and V is a geodesic vector field (GVF) if and only if GV = 0 [PHD+10], which can

be useful in architectural geometry. In the applications section we demonstrate how

by constraining rV to be symmetric, in addition to the smoothness induced by our

framework, we can, using a much simpler setup, achieve similar results, even without

adding the constraint on the norm of V . Furthermore, our approach allows us to combine

various constraints, e.g., that the resulting vector field is symmetric with respect to

some symmetry map of the surface.

Uniqueness. As we discussed, we can design vector fields V which have certain

properties, by posing constraints (e.g., symmetry or anti-symmetry) on rV . This raises

the question whether a given rV completely encodes V , or there can be multiple vector

fields with the same rV . We have the following:

Lemma 3.4.1. For a closed oriented surface M , rUV = 0 for every smooth U if and

only if V = 0 or M is a flat torus.

Hence, if rV
1

= rV
2

, then rU (V1

� V
2

) = 0 8 U , which by the lemma implies that

V
1

= V
2

, yielding the uniqueness we required.

3.4.3 The operator rU

Operator action: (rU )(V ) = rUV .

Here the direction of the derivative is given by a fixed U , and we compute the

derivative of some vector field V given as input. This operator is closely related to the
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Γ       (U )U, 2π~

U

Figure 3.7: Parallel translation of U (top row) along the flow lines of U . Our discrete parallel
transport is robust to merging flow lines as is shown in the result, �̃U,2⇡, (bottom row).

directional derivative of functions, which we denoted as DU . The scalar directional

derivative operator was recently used by Azencot and colleagues [ABCCO13] to represent,

analyze and design discrete vector fields. While this approach is useful in certain

applications, it is also limited, since the scalar directional derivative operator DU does

not depend on the metric of the surface, making the computation of metric-dependent

operations such as the parallel transport of vector fields impossible without additional

structure. As we show below, the Levi-Civita covariant derivative, acting on vector

fields shares many useful properties with the functional operator, such as uniqueness

and decomposition, but also enables more applications including parallel transport in a

very compact and convenient manner.

Uniqueness. The operator rU encodes the vector field U uniquely. Hence we can

design a vector field U by defining constraints on rU . We have:

Lemma 3.4.2. Two smooth vector fields U and V are equal if and only if rUW =

rV W for all smooth vector fields W .

Symmetric part. The operator rU allows us to easily distinguish divergence-free

vector fields, as those whose symmetric part of rU is zero:

Lemma 3.4.3. Let M be a closed surface. A smooth vector field U is divergence-free

if and only if rU is anti-symmetric with respect to the inner product on the surface.

I.e., if and only if
R

M hrUV,W idx = �
R

M hrUW,V idx for all smooth vector fields V

and W .

Parallel transport. The Levi-Civita covariant derivative, represented as an opera-

tor rU is intimately related to parallel translation along the flow lines of U . Suppose we

have a vector field V and let �t
U (p) be the flow of U . Now, consider the operator �U,t,

which takes a vector field on M and returns a vector field on M , which is defined as

follows: �U,t(V )(p) is the vector obtained by parallel transporting the vector V (�t
U (p))
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along the flow line from �t
U (p) to p. It is well-known (e.g., [Car94, pg. 57]) that the

following relation between the operators rU and �U,t holds:

rU (V )(p) =
d

dt

⇣

�U,t(V )(p)
⌘

�

�

�

t=0

. (3.11)

Hence, the rU operator is the derivative of the backward parallel transport operator at

the point p. Now, if we consider the discrete version of (3.11), i.e., replace rU and �U,t

with their discrete matrix-based representations, r̃U and �̃U,t, respectively, it is easy to

check (see supplemental material) that �̃ given by:

�̃U,t = exp(tr̃U ), (3.12)

where exp is the matrix exponentiation, is a solution. By defining �̃U,t as in (3.12)

we maintain the relation between the discrete parallel transport and covariant derivative

operators which exists in the continuous case, and gain an easy to implement matrix-

based operator.

This observation allows us to compute the parallel transport of vector fields along

the flow lines of other vector fields simply by using the matrix exponential of r̃U .

This is somewhat remarkable since computing discrete parallel transport on discrete

flow lines directly would require us to numerically integrate the field U to generate

the flow lines, and then compute the discrete geodesic curvature of these flow lines

for the transport, e.g., as was done in [PS06]. This procedure can be cumbersome,

computationally heavy and potentially numerically unstable. For example, the result

may not even be a well-defined vector field with multiple vectors in a single face, and

some faces not containing any vectors.

On the other hand, when considering the Levi-Civita covariant derivative as an

operator acting on vector fields, and representing it as a matrix in a basis, computing

parallel transport becomes a standard linear algebra operation involving only matrix

exponent and matrix vector multiplication. Note, that parallel transporting a vector

field U along its own flow lines is closely related to the numerical scheme known as

“semi-Lagrangian advection” in fluid simulation [SY04]. It is therefore possible that our

parallel transport matrix operator could be used in such a setup. We leave further

investigation of this direction as future work.

In Figure 3.6 we compare the result of parallel transport done using our approach

to the ground truth on the sphere. We take a vector field U = (0, z,�y), which rotates

around the sphere, and compute �̃U,2⇡(U), the parallel transport of U over itself for

time t = 2⇡, by taking exp(2⇡r̃U )U . In this case, the flow lines are constant latitude

lines, and the result of the parallel transport has an analytic expression [dCV92, pg.

243].

Figure 3.6 shows the vector field U (left) and the ground truth result (center).

Our parallel transport operator uses a fixed number of basis vectors, and the parallel
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Figure 3.8: Given a vector field U (left), we construct local parameterization by optimizing for
V (middle) which minimizes the energy

R

M k[U, V ]k2 + �
R

M k hU, V i k
2. The local coordinates

are computed by flowing on U and V , resulting in a texture mapped grid marked in blue (right).

transported vector field is non-smooth, therefore we expect the result to improve with

an increasing number of basis vectors. This is indeed demonstrated in the graph on

the right. The graph shows the error in our computation of the angle of the parallel

transported vector field �̃U,2⇡(U) with U , with respect to using a growing number of

basis vectors ND. The two figures in the graph show the flow lines and the norm

of �̃U,2⇡(U) for the largest number of basis functions. Interestingly, the norm of the

parallel transported vector field can be flown separately using the flow of the operator

for functions D̃U , which leads to more accurate results. Note that the resulting norm

and angles are almost indistinguishable from the ground truth.

We provide further evaluation of our discrete parallel transport. It is known that

discrete flow lines of vector fields can in some cases merge or split (e.g., [SZ12, Fig. 4]).

In Figure 3.7 we demonstrate the result of parallel translation of U (top row) along U .

Notice that although the flow lines of U might split (see the zoomed area, top, right),

our result, �̃U,2⇡(U), preserves its smooth behavior.

While matrix exponentiation is itself a di�cult problem, and the result can be

inaccurate for large matrices [MVL03], note that in our case the matrices are relatively

small (on the order of 300), as the vector field is represented in a multi-scale basis. In

our implementation we used Matlab’s expm function, and did not encounter any issues.

Furthermore, to compute the parallel transport there is no need to compute the full

matrix exponent, but only the matrix vector product exp(2⇡r̃U )U , for which more

stable and e�cient methods exist [AMH11]. It is possible that more basis vector fields

would be required to represent complex vector fields with a large number of singularities,

which are common in parameterization and quadrangular remeshing applications. In

such cases, it might be instrumental to investigate our operator in the hat basis, which

will lead to a sparse representation, for which methods such as [AMH11] are still

applicable. We leave further study in this direction for future work.

3.4.4 The operator [U, ·]

Operator action: [U, ·](V ) = rUV �rV U . Given two vector fields U, V , consider the
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Figure 3.9: Approximate geodesic vector field design. We seek a vector field V which minimizes
the energy krV � (rV )T k2, which yields V that is close to a geodesic vector field (top left).
The Oloid model has zero Gaussian curvature everywhere except on the creases, hence when
it is flattened the flow lines should yield straight lines (bottom left). Compare with the result
of [PHD+10](right). Our results are comparable, while our setup is considerably simpler, and
allows for combination of constraints.

problem of constructing local texture coordinates (u, v) such that the iso-v and iso-u

lines align with U and V , respectively. Given p 2M , one näıve approach would be to

flow along U from p and sample the flow line at fixed constant intervals. Then, starting

from the resulting sampled points, flow along V and sample again. The union of the

sampled points forms a grid. Of course, we could reverse the order and flow first on V

and then on U , however, we expect to obtain the same set of sampled points. Formally,

this requirement means that the flows of U and V should commute.

The operator [U, V ], which is known as the Lie bracket or Lie derivative of U and

V , computes exactly this property—the lack of commutativity of the flows of U and V .

Specifically, it is possible to construct a local parameterization as described previously

around a point p 2M if and only if U(p), V (p) form a basis for the tangent plane and

[U, V ] = 0 (see e.g., [Kol93, thm. 3.17]).

Using the operators rU and rU we can represent [U, ·], and use it for vector field

design. For example, given a vector field U , we can construct a matrix representation

of [U, ·], and compute its singular vectors. Since [U,U ] = 0, U is always the singular

vector corresponding to the 0 singular value. However, the next singular vector V

minimizes
R

M k[U, V ]k2, and would give us the best vector to couple with U to get a

parameterization. Note, that we can easily add additional terms to the energy, e.g.,
R

M k hU, V i k
2, if we want U and V to be orthogonal.

Figure 3.8 demonstrates this for the computation of a local parameterization. We are

46



Figure 3.10: Trade-o↵ between as-gradient-as-possible vector field constraints and symmetric
vector field constraints, with the symmetry constraints weighted higher in the image on the
right.

given U (left), and we minimize the energy E
[U,·](V ) =

R

M k[U, V ]k2 + �
R

M k hU, V i k
2.

The resulting vector field V (middle) together with U is used to build the local coordinates

using the flow method described previously. This yields a textured mapped grid (right,

shown in blue). Note, that the vector fields U, V are orthogonal but do not have the

same norm. Hence, simply rotating U by ⇡/2 would not have given the same texture

coordinates, as the flows would not necessarily commute.

3.5 Applications

Until now we have concentrated on the properties of the various operators we can

derive from the Levi-Civita covariant derivative, and provided some proof-of-concept

applications for the geometric quantities it allows us to compute. In this section, we

first discuss some implementation details and limitations, and then discuss two concrete

applications of this machinery: designing tangent vector fields and simulating fluid flow

on surfaces.

3.5.1 Implementation details

Choice of basis For our basis for D̃U , we chose the first Nf eigenvectors of the

DEC based 2-form Hodge Laplacian [Hir03]. For r̃U , r̃V and all operators acting on

vector fields, the basis is given by the first ND eigenvectors of the DEC based 1-form

Hodge Laplacian [FSDH07]. To represent our operators as matrices in the basis, we first

convert the 1-forms to piecewise constant vector fields (as in [FSDH07, eq. 4], where we

sample at the barycenter of the triangle), then apply the operator to the basis elements,

and project the result back onto the basis.

Limitations We define the covariant derivative using the embedding in R3, however,

a classical and fundamental property of the covariant derivative in the continuous case
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is that it is intrinsic, i.e., it does not depend on this embedding ([Mor01, pg. 181]). In

the discrete case, we no longer maintain this property. For rigid deformations, there

exists a trade-o↵ between invariance and discretization error. If we use a small number

of basis functions, the component functions are smooth, but we lose invariance to rigid

transformations. However, the error introduced by the rigid transformation decreases

polynomially in the number of basis functions. If, on the other hand we use the full

basis in equation (3.9), the operator will be invariant to rigid transformations (see

supplemental material for the proof). For isometric deformations the averaging operator

A introduces some error even when using the full basis (as it causes averaging of vectors

on faces which undergo di↵erent rotations), and for a truncated basis we again have

an error which decreases polynomially. Despite this limitation, we believe that the

additional simplicity we gained by using the embedding is worthwhile, especially in

applications which use a single non-eforming mesh.

3.5.2 Vector field design

As discussed in the previous sections, by using the covariant derivative operators, we can

pose various constraints to design tangent vector fields with some prescribed di↵erential

properties. Since the operators r̃U and r̃V are linear, each of the optimization problems

that we formulate can be solved e�ciently by solving a linear system, or by computing

a singular value decomposition.

As-Gradient-As-Possible vector fields We first consider minimizing the energy

kr̃V � (r̃V )T k2, which quantifies the anti-symmetric part of r̃V . As mentioned in

Section 3.4.2, this energy will be zero if V is a gradient field. Furthermore, [PHD+10]

showed that if additionally the norm of V is constant, then the energy will be zero only

if V is a vector field whose flow lines are geodesics, also known as a geodesic vector field

(GVFs).

While we do not impose the additional constraint, our results on the Oloid model,

as shown in Figure 3.9, are comparable to the results of [PHD+10], when weighing the

edges according to their mean curvature is not taken into account.

Finally, as we work in the generic framework of functional operators, it is straightfor-

ward to combine this energy with additional constraints in a similar manner to [ABCCO13].

For example, we can require the vector field to be symmetric with respect to some

symmetry map provided for the surface. By weighing di↵erently the constraints we can

allow the user to explore multiple solutions (see Figure 3.10) which may be di�cult to

achieve using other frameworks.

As-Killing-As-Possible vector fields As mentioned previously, vector fields V for

which r̃V is anti-symmetric are vector fields whose flow preserves the metric, also

known as Killing vector fields (KVFs). These are useful for pattern generation, as shown
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e.g., in [BCBSG10]. By minimizing the energy kr̃V + (r̃V )T k2, we can construct

vector fields that are as close as possible to KVFs, as we demonstrate in Figure 3.5.

Smooth vector fields As our last design goal we consider the task of computing as

smooth as possible vector fields, similarly to what was done in [KCPS13]. One way to

characterize such vector fields, is by minimizing the Dirichlet energy kr̃V k2. Figure 3.11

shows an example of two vector fields computed this way, and Figure 3.12 compares the

vector field computed using our method (left), with the one computed by the approach

of [KCPS13] (right). Note that the resulting vector fields are comparable in terms of

smoothness. Compared to the ground truth on the unit sphere, the Dirichlet energy

obtained by [KCPS13] is more accurate than ours (1.0017 vs. 0.9515, where the analytic

solution is 1), potentially due to energy loss incurred by our projection on the basis of

vector fields. Furthermore, the method by [KCPS13] is more general than ours, as it

can handle N-RoSy fields in addition to vector fields.

To conclude, while there exist other specialized methods for posing many of the

design constraints mentioned here, e.g., [ABCCO13, PHD+10, KCPS13, BCBSG10] our

setup is unique in that it is simple, it allows us to pose all of these constraints, and

generate a large variety of vector fields, since we have direct access to the rV and rU

operators.

Figure 3.11: Designing smooth vector fields by finding vector fields which minimize the energy
kr̃V k2.

49



Ours [Knöppel et al. ‘13]

Figure 3.12: Our smooth vector field (left), compared to the one obtained by the method
of [KCPS13] (right).

3.5.3 Fluid simulation on surfaces

As our last application, we consider the problem of simulating the behavior of an

incompressible flow on a curved surface. A fluid can be described as a time varying

velocity field U(t), whose behavior is governed by the Navier–Stokes equations [Tay96].

We discuss here only incompressible (divergence-free) inviscid (viscosity-free) flows, for

which the defining equations are known as the Euler equations [Tay96, Eq. 1.10]:

@U

@t
= �Pcurl(rUU), (3.13)

where Pcurl is the orthogonal projection onto the space of divergence free vector fields.

Using our discrete definition of the covariant derivative, it is straightforward to

compute the time-varying velocity U(t) of a flow, given some initial conditions. We

implemented a very simple pipeline, using a black box time integrator (Matlab’s

ode45 [DP80]). One iteration consists of computing r̃UU using our operator, followed

by projection onto the space divergence free vector fields by solving the Poisson equation

�s = �!, where ! is the vorticity function given by the curl of U , projected onto the

space of functions spanned by our basis. The change in U is now given by the gradient

of s rotated by ⇡/2 in each face. We use the operator from [PP03] for computing the
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Figure 3.13: (top) A few frames from a periodic solution of the Euler equations on the sphere.
Note that the vorticity (color coded) is globally rotated, as expected. See the text for details.
(bottom, left) The relative kinetic energy

R

M kU(t)k/
R

M kU(0)k during the simulation. Note
that it is periodic, and remains within 98% of the original energy. (bottom, right) A histogram
of the vorticity, for the first (blue) and last (red) frames. Note, that the histogram is preserved
as expected.

curl of a vector field.

Despite the simplicity of this approach, we found that in most cases it was enough to

simulate interesting flows, for which we know the analytic solution or expected behavior.

We demonstrate some example in the accompanying video for the simulation of the

flows. We stress that this is a proof-of-concept of the applicability of our operator to

fluid simulation on surfaces. We leave further tuning, as well as incorporating a more

sophisticated time integrator as future work.

Steady state solutions If U is a Killing vector field, or U = Jr�i, where �i is

an eigenfunction of the Laplace–Beltrami operator, then U(t) = U is a steady state

solution to equation (3.13) (see [MB01, pg. 46, eq. 2.13], and also the supplemental

material for a simple proof). Hence, as a sanity check, we compute the average of

kPcurl(r̃UU)k/kUk for such a vector field U . The result can be considered an indicator

to the stability of our method, and was on the order of 10�4 for the unit sphere.

Periodic solution on the sphere On the sphere there exists a periodic time varying

solution, given by: U(t) = U
0

+
P

i ai(t)Jr�i, where U
0

is a Killing vector field, and �i

are eigenfunctions of the Laplace-Beltrami operator corresponding to the same eigenvalue.

Furthermore, the curl of the velocity field (its vorticity) !(t) is advected by this flow

isometrically, namely a pure rotation. We are not aware of a reference for this solution

in the literature, and thus provide the proof in the supplemental material. Figure 3.13

(top) shows a few frames from such a simulation on the unit sphere, where we took �i to

be an eigenfunction in the third group of spherical harmonics. We show the color coding
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Figure 3.14: A few frames from a solution of the Euler equations on the torus for a co-rotating
vortex pair.

of the vorticity function, which is indeed advected as an isometry. Figure 3.13 (bottom

right) shows the relative kinetic energy
R

M kU(t)k/
R

M kU(0)k during the simulation.

Note, that the energy itself exhibits periodic behavior, and remains within 98% of the

original energy. This indicates the stability of our method, especially since we used

a straightforward black box time integrator for all simulations. Finally, Figure 3.13

(bottom left) shows a histogram of the vorticity values, for the first and last frames of

the simulation. Note that the histogram remains fixed, as expected.

Co-rotating vortex pair On a plane, a pair of point vortices (namely singular points

where all the vorticity is concentrated) spinning in the same direction should rotate

around each other ([Saf92, pg. 117]). We generate a similar configuration on a torus,

where we take the initial vorticity !
0

to be constant at all vertices except two vertices

vi, vj , where we take !
0

to be 1. The constant is set such that
R

!
0

= 0, and then ! is

projected onto the span of our basis functions. Figure 3.14 shows a few frames from

this simulation (see also the accompanying video). Note that the vortices rotate as

expected. One limitation of our method is that it is not circulation preserving, as is for

example the method in [ETK+07]. This is visible in the torus simulation, as some of

the vorticity is lost due to numerical dissipation. We leave the exploration of e�cient

methods to overcome this limitation as future work.

Figure 3.15: Three frames from a fluid flow simulation showing a positive/negative vortex pair
on a surface.
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Figure 3.16: A few frames from a solution of the Euler equations on the teddy for two colliding
pairs of counter-rotating vortices.

Counter-rotating vortex pair Similarly to the previous experiment we take two

point vortices rotating in opposite directions. In the plane such a configuration translates

in a straight line ([Saf92, pg. 117]), and a similar behavior is demonstrated on the back

of the frog model, in Figure 3.15 and in the accompanying video. The stability of our

method is exhibited by the fact that the vortex pair travels intact the whole length of

the frog model.

N-vortex structures Here we take a more complicated configuration of vortices. The

first includes two pairs of counter-rotating vortices which collide, where the expected

behavior is that they continue in a direction orthogonal to the original direction after

collision. This is shown in Figure 3.16 and in the accompanying video on the teddy bear

model. The second configuration includes 3 co-rotating vortices forming an equilateral

triangle, where the flow should rotate the three vortices as a single unit ([New01, pg.

78]). We reproduce this behavior as can be seen in the video. Note that while two of the

vortices merge during the process, they separate again at the end of the flow, returning

to a configuration similar to the original one.

3.6 Conclusions and Future Work

In this paper, we proposed a novel discretization for the Levi-Civita covariant derivative

of vector fields on discrete surfaces, which has various appealing properties. First, it

exhibits experimental convergence of the five defining properties of the derivative in the

continuous case. Second, it can be represented as a linear operator acting on tangent

vector fields, thus allowing us to harness tools from linear algebra, such as matrix

exponential, to perform geometric operations which were otherwise harder to achieve,

e.g., parallel transport of a vector field along the flow lines of another vector field.

Finally, we demonstrated the applicability of our discretization to various geometry

processing tasks, such as local parameterization, vector field design and fluid simulation.

We believe there is much more left to explore, as we only gave a taste of the possible

applications of our formulation. First, the covariant derivative appears in many PDEs

on surfaces, and it is interesting to apply our discretization to additional problems. For
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example, it is possible to compute the covariant derivative of the normal vector field,

thus yielding a novel discretization of the shape operator. Second, our parallel transport

approach can potentially be applied to fluid flow simulation, to yield a more stable

exponential integrator, and the Killing operator can be used for simulating viscous

flow. Furthermore, we would like to investigate additional operators derived from the

covariant derivative, such as the connection Laplacian, which can potentially be used for

vector field smoothing. To conclude, we believe that our discrete covariant derivative

will inspire future work that tackles additional challenges in vector field processing, thus

providing a stepping stone towards a complete framework for vector calculus on discrete

surfaces.
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Chapter 4

Consistent Functional Cross

Field Design for Mesh

Quadrangulation

We propose a novel technique for computing consistent cross fields on a pair of triangle

meshes given an input correspondence, which we use as guiding fields for approximately

consistent quadrangulations. Unlike the majority of existing methods our approach does

not assume that the meshes share the same connectivity or even have the same number

of vertices, and furthermore does not place any restrictions on the topology (genus) of

the shapes. Importantly, our method is robust with respect to small perturbations of

the given correspondence, as it only relies on the transportation of real-valued functions

and thus avoids the costly and error-prone estimation of the map di↵erential. Key to

this robustness is a novel formulation, which relies on the previously-proposed notion of

power vectors, and we show how consistency can be enforced without pre-alignment of

local basis frames, in which these power vectors are computed. We demonstrate that

using the same formulation we can both compute a quadrangulation that would respect

a given symmetry on the same shape or a map across a pair of shapes. We provide

quantitative and qualitative comparison of our method with several baselines and show

that it both provides more accurate results and allows to handle more general cases

than existing techniques.

4.1 Introduction

Remeshing of triangle meshes to quad meshes is a fundamental task in geometry

processing and related domains with applications in shape modeling, texture synthesis

and numerical simulation, to name a few. In many cases, quad remeshing is jointly

applied to several shapes and when their correspondences are given, the results are

frequently required to be consistent with respect to those mappings. For instance, the

quad mesh which models an animated character should be aligned to the underlying
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Figure 4.1: Our method computes guiding fields on triangle meshes which respect either the
underlying symmetry of a single surface (left) or the related correspondence between a pair of
shapes (right), while being able to handle arbitrary topology such as the genus one surface on
the left. We use these fields to compute approximately consistent quad meshes with o↵-the-shelf
quadrangulation methods.

deformation modes [MPP+13]. Similarly, on a single shape which exhibits symmetry, a

symmetric quadrangular mesh is often preferred [PLPZ12]. The goal of this paper is

to propose a robust, unified framework for approximately consistent quad remeshing

which is applicable to a single shape or a pair of shapes, without assumptions on the

mesh connectivity or shape topology.

To date, there exist several automatic methods for generating quadrangular surfaces

from triangle meshes. A common approach, which we will also follow in our paper,

uses a guiding field within a parametrization-based method. Namely, remeshing is

achieved by designing a smooth cross field that accounts for local features, followed

by an optimization part which seeks a parametrization whose gradients are aligned

with the computed field. Quadrangulation is then performed in the parameter domain,

where correct stitching of isolines is maintained along cut graphs [BLP+13]. In this

context, our algorithm produces a set of consistent cross fields, which are used as

input to previous remeshing machinery [BZK09, EBCK13]. Namely, quadrangulation is

computed on each mesh separately, and thus we obtain only approximate consistency of

quads.

One option for designing smooth cross fields is to encode the angle with respect to a

local basis per triangle. The goal is then to minimize the squared di↵erence of these

angles along edges, while allowing for integer period jumps [RVLL08]. Unfortunately,

the resulting mixed-integer problem is non-convex and achieving a global optimum is

challenging in practice. To rectify this, using trigonometric periodic functions on the

angles multiplied by 4 allows to avoid integer variables altogether, see e.g., [RVAL09], at

the cost of introducing pointwise unit-length constraints. Equivalently, in the complex-

valued representation [KCPS13] each cross is encoded using the unique power vector

obtained by representing the cross directions as complex numbers and taking the 4-th

power. Further, dropping the pointwise unit-length constraints yields a convex quadratic

problem whose global minimum is attained with a single linear solve.

All of the above commonly-used cross field design approaches depend on a choice of

local basis (frame) per triangle. In many cases, this basis dependency does not pose any
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practical challenges. However, when consistency is needed, computing transformations

which align these basis vectors across shapes is essential in order to faithfully compare

the measured angles. For instance, for meshes with di↵erent connectivities, a triangle

is not necessarily mapped to a single triangle, and thus several basis vectors must be

taken into account. One of the main advantages of our approach is that we formulate

the consistency constraints in terms which are invariant to the local basis. This novel

change greatly simplifies the problem since the basis vectors can be chosen arbitrarily

on each shape.

To enforce consistency of cross fields between two shapes, scalars or vectors need

to be mapped and compared using the input map. Therefore, the quality of the map

and map di↵erential are of crucial importance to achieve good quadrangulation results.

However, computing acceptable approximations of these objects is a hard problem in

itself, making the entire remeshing pipeline highly dependent and potentially sensitive

to high frequency noise in the given correspondences. In our framework, we relax this

constraint by assuming that only functional correspondences are given. Functional

maps [OBCS+12] provide robust means to encode mappings between surfaces by putting

in correspondence their function spaces. We pose the consistency requirements solely

in the functional language, which allows us to apply our machinery to any shapes for

which functional mappings are available. This includes both functional correspondences

obtained via a pull-back with respect to a given pointwise map (thus represented in

the full basis), and functional maps computed automatically and represented in a

reduced spectral basis. An advantage of our formulation is that it allows a separation

of the involved components. Namely, the smoothness and alignment constraints are

high-dimensional but sparse, whereas the consistency terms are either high-dimensional

and sparse or low-dimensional and dense. In both cases, this separation leads to a

structured Hessian of the minimized energy, allowing us to employ e�cient optimization

techniques.

In this paper, we suggest an e↵ective methodology to design consistent cross fields for

the purpose of compatible mesh quadrangulation. Thanks to our functional approach,

the obtained machinery is similar regardless of whether a single symmetric shape or

two shapes are used. Moreover, unlike most previous techniques, such as [MPP+13], we

place no restriction on the connectivity of the triangle meshes, and further can handle

shapes with arbitrary topology. To summarize, our main contributions include: the

invariance of the proposed method with respect to a local basis, the ability to design fine

details separately on each mesh while requiring consistency only in a low-dimensional

space, and the ability to handle arbitrary meshes. We also demonstrate that our method

is simple and robust, in large part due to its ability to avoid the potentially di�cult and

error-prone step of computing a map di↵erential, and at the same time scalable, as it

can accommodate functional correspondences represented in a reduced basis. To achieve

these goals, we formulate consistent cross field design via a simple, global quadratic

energy minimization problem which we e�ciently solve by evaluating the action of the
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Hessian on a general vector.

4.1.1 Related Work

Quadrangular remeshing is a challenging problem, and in the last few years there has been

a surge of research in this direction. We refer the reader to recent reviews for a general

overview of quadrangulation methods [BLP+13] and direction field design [VCD+16]

on a single shape, and focus our literature review on joint design of cross fields and

quadrangular meshes.

Perhaps closest to our approach is the Functional Vector Field work [ABCCO13]

where joint design of smooth vector fields is formulated in the functional framework.

The optimization there is convex, yet the vector fields need to be represented in a low

dimensional basis, which is computed using the eigenfunctions of the Hodge Laplacian.

We generalize this approach to cross fields, by representing vector fields in a local frame

per face, thus avoiding the need for a low dimensional basis, and formulating a functional

consistency constraint which is invariant to this choice of frame.

One of the first approaches to joint quad mesh design was presented by Yao et

al. [YCJL09]. There, the user sketched compatible skeletons which were used to generate

compatible base meshes, from which compatible quadrangulations were extracted.

Unfortunately, this approach requires extensive manual input, and a↵ords little control on

the quality and smoothness of the resulting quads. Later approaches to interactive design

of quadrangular meshes were based on learning quad templates from examples [TIN+11,

MTP+15], with the goal of computing quad meshes which are approximately consistent

with quadrangular meshes designed by artists. These methods are local, as they rely on

segmenting the input into disk-like patches, which may yield sub-optimal results.

The more general problem of computing consistent or approximately consistent

quad meshes jointly on a pair or a collection of shapes with respect to an input

correspondence has only been addressed by a few methods so far. Given a collection

of shapes in correspondence, Meng et al. [MH16] co-extract compatible feature lines,

and then design cross fields independently for each shape, using the feature lines as

alignment constraints. In the following step, they co-design a compatible cut graph,

and then align all the shapes in a common parameter domain. However, since the cross

fields are designed independently, the correspondence of feature-less regions is not taken

into account. Alternatively, Marcias et al. [MPP+13] take as input a set of shapes with

compatible triangulations, use the principal directions of the deformation gradient as

alignment constraints for designing a single cross field on one of the shapes, extract

from it a quad mesh and then propagate it to the rest of the sequence. The case where

the connectivities of the triangle meshes are di↵erent, is not handled in that work.

These two approaches highlight the main challenge of cross field-guided compatible

quad remeshing: transporting the cross fields across meshes. The first approach avoids

this issue by designing each cross field separately, whereas the second approach uses a
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high quality triangle-to-triangle map to transport vectorial information. In an attempt

to address this challenge in the context of symmetry-aware cross field design, Panozzo

et al. [PLPZ12] use a fuzzy symmetry map, which averages the contribution of the

transported cross field from the neighborhood of a few triangles. While achieving

excellent results in some cases, this approach has some important limitations. First, it

requires the computation of a high-quality symmetry map, especially tailored to their

approach. As is shown in [PLPZ12], when using other symmetry maps, the results can

be suboptimal. This is a practical limitation, as their proposed symmetry computation

method does not handle, for example, high genus intrinsic symmetries. Second, their

algorithm uses hard constraints to align the cross field with the symmetry line. This

constraint prevents singularities from appearing on the symmetry line, unnecessarily

limiting the space of feasible cross fields. Furthermore, a high quality symmetry line,

which might be challenging to compute, is required for this constraint. Finally, the

formulation provided there is not in the form of a global optimization problem, and the

optimality of the solution under their proposed error metric is not guaranteed.

Our method overcomes the limitations exhibited by previous approaches, as it is

robust to the input map, can be applied to meshes with di↵erent triangulations and

to symmetric meshes without requiring the computation of the symmetry line, and

is formulated as a convex quadratic optimization problem whose global optimum is

e�cient to compute.

4.2 Overview and Background

Given a shape along with a self-map (e.g., associated with a symmetry) or a pair of

shapes with maps between them our goal is to produce quadrangulations that would be

consistent with respect to the input map. To this end, we first design consistent cross

fields, and then use existing methods to extract quadrangulations from them. Thus, the

main focus of our work is to devise a robust method for consistent cross-field design,

and we present quad-remeshing as the main target application, among many possible

others.

Our main contribution is a novel cross field consistency energy (Section 4.3.3) which

we combine with existing smoothness and curvature directions alignment energies into a

global convex quadratic optimization problem. For the method to be widely applicable,

the consistency energy should be robust to imperfections in the input map. Thus,

instead of transporting cross fields with estimated map di↵erentials, which are often

noisy for imperfect input maps, we formulate consistency in terms of scalar functions

and use composition with the input map for transport.

Cross fields can be represented discretely in a few ways (see e.g., [VCD+16, Sec. 5]),

which a↵ects the way the di↵erence between two crosses is measured. Since each cross

is composed of a set of 4 indistinguishable vectors, any comparison between two crosses

should be invariant to reordering of the sets. A common way to handle this is to define
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a local basis, represent the cross as a complex number in this basis, and then compute

its power vector, namely the 4-th complex power of this vector [KCPS13, Fig. 5]. As

the power vector is unique for each cross, power vectors can be compared directly in

order to compare crosses.

This link between cross fields and their corresponding power vector fields hints at

the possibility to leverage techniques used for robust vector field transport [ABCCO13]

for cross field transport. However, one caveat is that smoothness of power vector fields

is measured di↵erently than smoothness of vector fields, therefore a low dimensional

basis of smooth vector fields can no longer be used for the representation. Furthermore,

the power vector fields are dependent on the local basis in which they were computed.

We show how this dependence can be eliminated, and use this insight to formulate the

consistency energy.

We e�ciently solve the resulting optimization problem, then normalize the out-

put power fields and convert them to their associated cross fields. To extract the

quadrangulations, we feed the resulting cross fields to a Mixed Integer Quadrangula-

tion (MIQ) [BZK09] implementation that computes parametrization functions whose

gradients align with the directions of the cross fields. Finally, the meshes and the

parametrizations are given as input to a Quad Extraction (QEx) [EBCK13] implementa-

tion which robustly extracts the quad meshes associated with the parametrizations. We

use the implementations of MIQ and QEx directly and thus we omit further discussion

on these methods, and refer the interested reader to the respective papers for additional

information. Technical details such as the actual code packages and the parameters we

used are described in Section 4.5.

We emphasize that we optimize for a consistent cross field and thus the quadrangu-

lation is only approximately compatible in practice. Indeed, we concentrate specifically

on the design of consistent cross-fields and our method is not intended to provide

guarantees about the quality of the quad final meshes. Nevertheless, in practice, we

achieve highly-consistent quad meshes, as can be seen in Fig. 4.2. The bunny model

exhibits an intrinsic symmetry (the head is rotated), which makes the stationary line

non-trivial, and yet, our method produces a visually appealing symmetric quad mesh.

Figure 4.2: A quad mesh generated with our method using k = 100 eigenfunctions on the
intrinsically symmetric bunny model.

60



In the following two sections, we describe the design of consistent cross-fields first

with respect to a symmetry on a single mesh (Section 4.3) and then with respect to a

pair of meshes with a (functional) map between them (Section 4.4). We then present

results obtained using our approach, by focusing on joint quadrangulation as a principal

potential application.

4.3 Self-consistent Cross Field Design

We assume to be given an orientable manifold triangle mesh M with vertex set V , edge

set E and face set F . Vector fields as well as cross fields are piecewise-constant on faces

in our setup. Namely, per triangle, a vector is encoded using 2 numbers with respect

to a local basis (b, b?) and thus both the cross field x and its power field y can be

expressed as vectors in R2|F|, where |F| is the number of faces. To compute the power

vector corresponding to a cross in a given face, we take an arbitrary vector of the given

4, compute the angle ✓ it makes with b, and the resulting power vector in this face is

the unit length vector in the 4✓ direction. Next, we describe the energy terms we use to

design the power field y.

4.3.1 Smoothness

Following previous work, we use Dirichlet’s energy which is defined via the covariant

derivative of power fields, to quantify how much y changes across the edges of the mesh.

Integrating the squared norm of this measure over the surface leads to the following

smoothness energy term:

Es =
1

2
k gradp yk

2

M =
1

2
yT gradTp GE gradp y , (4.1)

where GE 2 R2|E|⇥2|E| is a diagonal matrix which encodes the barycentric mass of edges,

and gradp 2 R2|E|⇥2|F| is the covariant derivative, also referred to as the discrete Levi-

Civita connection, modified to account for taking the 4-th power, whose construction is

given in e.g., [DVPSH14, Eq. (3)].

4.3.2 Alignment to input directions

In many situations, the designed field will be required to align with certain directions,

where the principal curvature directions are a natural choice for quad remeshing. Given

an input cross field, we compute its associated power vector field w 2 R2|F|, and arrive

at the straightforward alignment term:

El =
1

2
kS(y � w)k2M =

1

2
(y � w)TSTGF S(y � w) , (4.2)
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α =0l α =0.1l

Figure 4.3: Optimizing for smooth cross fields which are not aligned (left) or aligned (right) to
curvature directions produces equally smooth cross fields, where the right field better respects
the underlying geometry.

where GF 2 R2|F|⇥2|F| is the diagonal mass matrix for the faces, and S 2 R2|F|⇥2|F|

is a diagonal matrix of weights given by the user, indicating the relative importance

of the alignment constraints. For instance, when the principal curvature directions

are used for alignment, S is usually a measure of the anisotropy of the curvature. In

Fig. 4.3, we show that without alignment constraints (left), the smoothest cross field

may not necessarily follow the curvature directions, whereas even a modest alignment

requirement yields a smooth field which is parallel to the cube’s edges (right).

4.3.3 Consistency

Vector fields. A vector field is consistent with respect to a self-map � : M !M , if

for any point q 2M , the following equation holds:

d�(v(q)) = v(�(q)) . (4.3)

Namely, points which match under the mapping should be equipped with identical

vectors, via the transformation of the tangent spaces given by the map di↵erential d�.

Two major challenges are related to enforcing the above equation in practice. Firstly,

when � is approximate, enforcing Eq. (4.3) to too many outliers may erroneously a↵ect

the result. Secondly, computing the map di↵erential d� is a non-trivial and potentially

unstable task, especially in the presence of noisy maps. See Section 4.6 for further

details and comparisons.

Instead of working directly with Eq. (4.3), vector fields can also be seen as derivations

[Mor01, pg. 37]. That is, we can apply Eq. (4.3) to a real-valued function f : M ! R
and obtain the following consistency constraint:

v(f) � � = v(f � �) , (4.4)

where v(f) = hv, grad fi is the pointwise directional derivative, and � denotes com-

position with a map. It is a well-known direct consequence of the chain rule [Mor01,

Eq. (1.14)] that for a fixed tangent vector field v, Eq. (4.4) is satisfied for all smooth
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functions f , if and only Eq. (4.3) holds. Note that for a fixed f and �, Eq. (4.4) is linear

in v, meaning that it can be optimized, for example by solving a linear least squares

system.

Power vector fields. Cross fields are only smooth up to rotation by integer multiples

of ⇡/2, and thus Eq. (4.4) cannot be applied directly without incorporating integer

constraints. With a local basis (b, b?) per face, the four vectors of the cross can be

mapped to a single vector per face, by taking the 4-th complex power of the vector with

respect to the basis b. This power vector field is smooth, if the change of basis between

neighboring faces is taken into account. However, power vector fields are not canonical,

as they depend on the choice of local basis (b, b?) per face. Thus, comparing two power

vectors at a given point is only meaningful if they were defined with respect to the same

local basis. In other words, it is not enough for the power vector field to satisfy Eq. (4.3)

or, equivalently Eq. (4.4) for all f , to guarantee a consistent cross field. Instead, the

transformation between the basis vectors (at every pair of points q and �(q)) should

also be accounted for.

To overcome this di�culty, one can try to treat the basis b as a smooth vector field,

and design it simultaneously with the power vector field y, such that b also fulfills the

consistency condition in Eq. (4.3). However, this yields an optimization problem which

is twice as large in the number of variables and constraints, and which is non-linear

because of the dependency between the basis vector field and the power field y. Instead,

we show how to remove the basis dependency altogether using the following observation:

Lemma 4.3.1. Given a cross field x and an arbitrary point q 2 M , we compute the

associated power vectors y
1

and y
2

at q using two di↵erent basis vectors b
1

and b
2

,

respectively. Then, for any real-valued function f , the following relation holds

hy
1

, (grad f)
1,pi = hy2, (grad f)2,pi ,

where (grad f)i,p is the power vector of (grad f) at q in the basis bi.

In other words, the inner product of two power vectors defined with respect to the

same local basis is invariant to the choice of basis. Intuitively, the inner product between

two power vectors encodes the angle between the underlying crosses and is thus basis

independent. See Appendix C.1 for the straightforward proof. Thus, in the case of

power fields, we modify Eq. (4.4) and consider instead:

hy, (grad f)pi � � = hy, (grad(f � �))pi . (4.5)

Note that the two sides of the equation are computed at di↵erent tangent spaces, of the

symmetric points q and �(q), with respect to arbitrary basis vectors. The comparison

between these values is meaningful due to the proposition above.
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Intuitively, for the constraint to hold, the function hy, (grad f)pi should be symmetric

under the map �. Fig. 4.4 visualizes this function on the surface during our iterative

optimization process, described below. As the optimization proceeds the function

becomes more symmetric, and thus the consistency error is reduced. We note that

unlike Eq. (4.4), Eq. (4.5) is non-linear in the function f . However, both of these

equations are linear in y, which allows us to use this equation directly to enforce

consistency of a cross field with respect to a given map �, with an arbitrary local basis.

0 20 40 60

Figure 4.4: We iteratively optimize for a consistent cross field whose action on a fixed function
produces a symmetric result. In this example, y’s action at iteration 0 is not highly symmetric,
but it quickly improves during the iterations 20, 40 and 60.

Discretization. In practice we work with functions represented in a chosen functional

basis B, with the two most commonly used bases in our setting being either the indicator

(hat) basis at the vertices, or a multiscale low-dimensional basis B 2 R|V|⇥k such as the

Laplace–Beltrami eigenfunctions. In that case, functions are represented as vectors of

size k, where k < 300 in all our experiments. We are given as input a functional map,

which maps real-valued functions represented in the basis B to other such functions,

and we represent it as a matrix C of size k ⇥ k.

The operator grad is the standard gradient operator for functions in the piecewise

linear hat basis, and thus we use the transformations f̃ = Bf and f = B+f̃ between

functions f 2 Rk in the basis B and functions f̃ 2 R|V| in the hat basis, where B+ is the

pseudo-inverse of B. We further use the matrix IFV 2 R|V|⇥|F| to interpolate face-wise

values to vertex-wise values.

The function hy, (grad f̃)pi 2 R|F| is linear in y, and thus its computation can be

encoded as a matrix-vector product. We interpolate the face-wise values of the inner

product to the vertices and define D̃(f̃) 2 R|V|⇥2|F| such that D̃(f̃) ·y = IFV hy, (grad f̃)pi.

To use functions f given in a reduced basis B we define the reduced operator D(f) 2

Rk⇥2|F| as: D(f) = B+ D̃(Bf).

Finally, using these operators we enforce our consistency rule (4.5) on a subset of m
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functions fi given in the basis B, and arrive at the following novel constraint:

Ec =
1

2

m
X

i=1

kC D(fi) · y �D(C · fi) · yk
2 . (4.6)

Discussion. While in the above formulation we describe the use of functional maps

encoded in a reduced basis of size k, we stress that our framework can be easily applied

in the particular case when a dense (vertex to vertex) or precise (vertex to point on face)

map is known. In this setting, B is the identity matrix of size |V | and C 2 R|V |⇥|V | is a

sparse matrix encoding the dense correspondence or using three values per row for the

precise (inside the face) map. Similarly, D(f) = D̃(f). For all the figures we provide in

this paper, we show the results obtained using the reduced functional map, unless noted

otherwise (see e.g., Figs. 4.10a, 4.10b and 4.14).

4.3.4 Energy minimization

We combine the above design constraints into a single minimization problem. Linear

blending of energy terms is controlled via two parameters ↵c and ↵l, both in the range

[0, 1]. Overall, the power field that we use to generate the quad mesh with is the

minimizer of the problem:

argmin
y

(1� ↵l)[(1� ↵c)Es + ↵cEc] + ↵l El . (4.7)

Notice that the above problem is quadratic in y since we omit the unit length constraint

on y as was done in [KCPS13]. Consequently, we have a linear gradient and a constant

Hessian. In Appendix C.2, we discuss how to e�ciently solve the above problem using a

standard optimization toolbox. In particular, we show that although the Hessian of our

energy is large and dense, its product with a given vector can be computed e�ciently

by decomposing it into a large and sparse and small and dense parts. In Fig. 4.5, we

present a few examples of models with intrinsic symmetries and the quadrangulation

Figure 4.5: Typical quadrangulation results for models which are equipped with intrinsic
symmetries.
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result we obtained using only k = 100 eigenfunctions in all three cases.

4.3.5 Relation to other functional approaches.

Functional maps [OBCS+12]. Given a map �, the linear operator that maps any

real-valued function f to the pull-back f �� was denoted by Ovsjanikov et al. [OBCS+12]

as the functional map representation of �. That work, and follow up works [OCB+16],

have observed that it is often easier to frame problems using the functional map rather

than the pointwise map. Our work follows this theme, as in order to enforce Eq. (4.5),

it is only necessary to have access to the functional map f � �. As we show below, this

greatly simplifies the computations and at the same time extends the applicability of the

resulting algorithm. This is because our formulation avoids not only the estimation of

the map di↵erential, but does not require even the knowledge of a precise point-to-point

map, the estimation of which from a functional map can be challenging [RMC15], and

is required by some state-of-the-art mapping methods [LRB+16, OCB+16].

Functional vector fields [ABCCO13]. Joint design of smooth vector fields has

been done in [ABCCO13] by leveraging Eq. (4.4). There, to avoid working with a

local basis per face, vector fields have been represented as functional operators, namely

matrices, and Eq. (4.4) was implemented as a commutativity constraint. However, to

reconstruct the face-wise vector field from its functional representation, and to enforce

smoothness on the resulting vector field, Azencot et al. worked in a low dimensional

basis of tangent vector fields computed as the eigenfunctions of the Hodge Laplacian.

To generalize their approach to cross fields, one would need to modify the basis to

be able to represent smooth cross fields, and in addition modify the consistency term

to take into account the local basis in which the cross-field was computed. We avoid

the first issue by working directly with the face-based vector fields as the variables,

and the second issue by working with a basis-invariant formulation. Note, that simply

designing a power vector field using the functional vector field machinery would not

yield the smoothest cross-field, as the singularities that arise are di↵erent (see Fig. 4.6,

and also [RLL+06, Fig. 8]).

4.4 Consistent Field Design on Two Shapes

To extend the model we proposed in Section 4.3, we consider the following scenario.

Given a pair of triangle meshes M
1

and M
2

, possibly with di↵erent vertex and face sets,

our pipeline requires as input the functional maps C
12

and C
21

, which map functions

on M
1

to functions on M
2

and vice versa. One of the advantages of our approach to

consistent cross field design, is that it naturally generalizes from the case of a single

shape to a pair of shapes. Indeed, the new smoothness and alignment components are

extremely similar to the former case, whereas the main change is in the consistency term
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Figure 4.6: Using the method of Azencot et al. [ABCCO13] for designing power fields would not
yield the smoothest cross fields, but would produce fields with di↵erent singularity structures.
For comparison, we show the quad mesh computed from the smoothest cross field (left and
middle left), and from the smoothest vector field treated as a power field with a smooth local
basis (middle right and right).

where we now optimize for two power fields instead of one. Our objective is to optimize

for fields y
1

on M
1

and y
2

on M
2

such that the following energy terms are minimized.

For example, we show in Fig. 4.7 the di↵erent results we obtain with (bottom) and

without (top) our consistency condition.

In this setting, given two shapes, we simply add together the smoothness and

alignment constraints for each yi. Formally,

Es =
1

2
k gradp y1k

2

M1
+

1

2
k gradp y2k

2

M2
, (4.8)

El =
1

2
kS

1

(y
1

� w
1

)k2M1
+

1

2
kS

2

(y
2

� w
2

)k2M2
, (4.9)

where wi and Si are typically the curvature directions and their weights on Mi. To

avoid clutter of notation, we uniformly use gradp for the covariant derivatives on both

of the meshes, in cases where no confusion might arise. Notice that while being stacked

jointly, Eqs. (4.8) and (4.9) are independent of the relations between M
1

and M
2

, i.e.,

the associated Hessians are block-diagonal.

To develop the consistency rule for a pair of shapes, we recall the geometric meaning

of our constraint on a single mesh. Namely, in the former case we required that for a

given function, taking the appropriate inner product with y and the functional map

(pull-back) should commute (Eq. (4.5)). For two shapes, we have a similar scenario,

being di↵erent in that the mapped versions are on the other mesh, where before we

had only one surface. In addition, to avoid favoring a particular mapping direction,

we symmetrize our constraint by adding an analogous term in the other direction, and

thus we need both C
12

2 Rk2⇥k1 and C
21

2 Rk1⇥k2 . We obtain the following consistency

condition:

Ec =
1

2

m
X

i=1

kC
21

D(fi,2) · y2 �D(C
21

· fi,2) · y1k
2

+
1

2

m
X

i=1

kC
12

D(fi,1) · y1 �D(C
12

· fi,1) · y2k
2 ,

(4.10)
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Figure 4.7: Curvature information can sometimes lead to quasi-consistent results even without
consistency ↵c = 0 (top row). However, we show that facilitating our compatibility condition
↵c = .01 with the precise mapping from BIM represented using a functional map of size k = 50,
produces more consistent quad meshes (bottom row).

where {fi,1} and {fi,2} are sets of m functions chosen arbitrarily on M
1

and M
2

,

respectively. Again, we remind that our operators are given in some pre-calculated

functional basis. For instance, C
12

maps a function f
1

represented in the basis B
1

2

R|V1|⇥k1 to a function f
2

= C
12

· f
1

given in the basis B
2

2 R|V2|⇥k2 .

Finally, we gather the above energy terms into a single problem, where we optimize

for power fields y
1

and y
2

. Notice that, as in the case of a single shape, while yi are

encoded in a specific local basis in every tangent plane of every point on shape i 2 {1, 2},

our formulation is invariant to the choice of these bases. We employ the same weighting

parameters as before, and arrive at our final optimization energy:

argmin
y1,y2

(1� ↵l)[(1� ↵c)Es + ↵cEc] + ↵l El . (4.11)

Discussion. We point out that our approach can be extended to the case of shape

collections in a straightforward way. That is, smoothness and alignment constraints are

simply stacked as in Eqs. (4.8) and (4.9), and consistency could be achieved by either

enforcing Eq. (4.10) between each of the shapes and a template mesh or by exhaustively

enforcing it between all possible pairs. One challenge involved in taking this approach

is that it might be not practical to solve the obtained problem when the collection is

large. As we were focused on developing the cases of a single shape and a pair of shapes

in this paper, we leave further investigation of consistent quadrangulation of shape sets

for future work.
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4.5 Implementation Details

We implemented our method using MATLAB and tested it on a Intel Xeon 3.20GHz

processor with 32GB RAM. The optimization problems we consider in Eqs. (4.7) and

(4.11) could be re-arranged as standard quadratic programming problems, composed of

sparse components, Es and El, and a dense element, Ec (see Appendix C.2). Thus, we

were able to use MATLAB’s quadprog optimization tool with a user-handle to compute

Hv, where H is the Hessian and v is a vector, in order to avoid storing the full dense

Hessian. The initial solution was the smoothest power field (↵c = 0 and ↵l = 0) in all

our tests. For problems with 5k/11k/20k/27k/50k vertices, the power field design part

converges in 5/7/13/34/90 seconds with a point to point mapping or in 10/18/68/90/169

seconds using a reduced basis of size k = 100, respectively.

For the functional basis B, we took the first k eigenfunctions ordered by their eigen-

values, starting with the smallest one. Similarly, we use the first m = min(k
1

� 1, k
2

� 1)

eigenfunctions excluding the constant one for the test functions {fi} which appear in

Eqs. (4.6) and (4.10). In practice, we test against the power of the gradient (grad fi)p

weighted by ��1

i , where �i is the associated eigenvalue. To generate point to point

mappings, we used implementations of Blended Intrinsic Maps (BIM) [KLF11] without

landmark correspondences, seamless surface mappings [APL15] and the descriptor based

pipeline from [OBCS+12] with landmark constraints. For the computation of functional

maps in a reduced basis we used a pipeline that combined descriptor and sparse landmark

correspondences by adapting the approaches of [OBCS+12] and [PBB+13].

In all of our experiments, the power version of the principal curvature directions is

used for the alignment constraints (Eq. (4.2)). To this end, we implemented the method

proposed in [Rus04], where the weights are computed per triangle j by S(j) = |
1

�
2

|

2

with i the extremal curvature values, and we clamp values below .1 to zero. Once the

cross fields are computed, we use it as input for the implementation of MIQ provided in

libigl [JPS+13], and we then feed the resulting parametrization to the implementation

of QEx provided by the authors [EBCK13] to obtain a quadrangular mesh. Both, MIQ

and QEx, were used with default parameters in our tests.

4.6 Evaluation and Results

4.6.1 Comparison with FSS

We compare our symmetric quadrangulation results with the state-of-the-art method of

Fields on Symmetric Surfaces (FSS) by Panozzo et al. [PLPZ12]. In all of the following

experiments, for computing the FSS results we used the cross field output data provided

by the authors. For generating our cross field, we used as input the symmetry-map

generated by their intrinsic symmetry computation method (using code provided by the

authors), which results in a vertex-to-point in face mapping, and used the full hat basis

unless otherwise noted. For both methods, we generated a quad mesh from the cross

69



field using MIQ and QEx, using the same parameters for both approaches.

Behavior near the symmetry line. As discussed in Proposition 6 in [PLPZ12], at

the symmetry line the cross field should either have a singularity, be aligned with the

symmetry line, or form ⇡/4 angle with the symmetry line. In their approach, the field

is forced to align with the symmetry line using hard constraints. However, allowing

singularities on the symmetry line, and therefore allowing the cross field to switch

between the two configurations (aligned and rotated by ⇡/4), may increase the overall

consistency and smoothness. Instead, we omit this constraint, and solve for the global

minimizer of Eq. (4.7), allowing us to compute quadrangular meshes which are more

consistent with respect to singularity point locations and error metrics. In Fig. 4.8

we show the quad mesh generated by FSS (yellow) and by our approach (blue) using

the full map. Note how forcing the quad directions to align with the symmetry line

generates noisy quads in the FSS approach, e.g., along the chest and nose of the gargoyle

as shown in the zoomed-in figures, whereas our method generates a smoother edge-flow.

FSS Ours

Figure 4.8: The approach of Panozzo et al. [PLPZ12] constrains the field to be aligned with the
stationary line (yellow). Thus, the space of possible minimizers is significantly smaller, yielding
sub-optimal results on the chest and nose of the shape (zoomed-in areas). In contrast, our
method allows for general cross fields which exhibit intricate behavior along the symmetry line
(blue). Consequently, our output better respects the involved geometry, while achieving lower
error values (see rightmost column in Figs. 4.10a and 4.10b).
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Figure 4.9: Robustness to triangulation. (left) We extensively decimated %85 of the vertices in
the left part of Max Planck’s model, leading to non-symmetric curvature alignment constraints
(middle) due to the di↵erence in triangle areas. Nevertheless, our method produces a symmetric
cross field whose associated quad mesh is highly consistent (right). Notice that this example is
particularly challenging for methods which employ the map di↵erential.

Applicability. As mentioned in their paper (see Figure 8 there), FSS requires a high-

quality symmetry map, and a corresponding symmetry line. In addition, for computing

the map di↵erential, they use the gradients of two functions (one symmetric and one

anti-symmetric), which should also be extracted from the map and be of high quality.

Our approach, on the other hand, requires only a functional correspondence, which

can be given in a reduced or full basis, and can potentially be noisy. Therefore, our

approach is applicable to more general shapes and less robust correspondences and as

di↵erent mapping methods work better in di↵erent scenarios, ours general applicability

is a clear advantage. For instance, in Fig. 4.9, we employ the mapping obtained using

BIM on a mesh which is particularly challenging as there is a significantly di↵erent

density of triangles along the stationary line (left). Nevertheless, our method produces

a reasonable quad mesh (right) using only k = 100 eigenfunctions.

Quantitative comparison. We ran our method on all the models shown in [PLPZ12],

for which the FSS intrinsic map computation could be used. We measured the consistency

error of the resulting cross fields using two metrics: e
ours

which is closely related to

our consistency condition (Fig. 4.10a) and e
FSS

which is guiding the FSS approach

(Fig. 4.10b). The first metric, e
ours

, is given by

e
ours

= Ec(m, fi) + Ec(n, gi) ,

where both of the terms are computed using the functional map constructed from the

known precise mapping, i.e., C 2 R|V|⇥|V|. In the left term Ec(m, fi), we use m and fi

as defined in Section 4.5, and we randomly generated n = 1000 vertex indices for which

we created hat functions gi that are used to compute Ec(n, gi). The second metric is
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defined as follows.

e
FSS

= kxp � (sym(x))pk
2

M ,

where x is the cross field generated by FSS, and sym(x) is the symmetrized version

of x, computed by applying the “symmetrization by field transport” step of the FSS

algorithm to x. We compare x with its symmetrized version by comparing their power

fields, and weigh the errors by the face area, namely kyk2M = yTGFy. If e
FSS

= 0, it

would imply that symmetrizing the cross field x has no e↵ect, and thus x is already

exactly symmetric. For both metrics, we show the results for FSS (yellow squares) and

for our approach when using the FSS map in the full basis (blue circles) and in the

reduced basis (red diamonds). To evaluate the error results together, we consider the

relative error as it is measured with respect to the value we obtained with our method

when using the full basis.
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(a) We compared our method using functional
maps given in a full basis (blue circles) or a
reduced basis (red diamonds) to FSS [PLPZ12].
Using the full basis, our approach achieves
superior results on all the models, and in some
cases by a large margin, as can be seen in the
relative error above. See the text for additional
details.
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(b) In addition to the comparison we show in
Fig. 4.10a that uses a modified version of our
consistency condition, e

ours

, we also compute
the relative error metric e

FSS

, which is opti-
mized in FSS. For all the models, we obtain
improved error metrics when using the full
basis and comparable results for the reduced
case. For more details, see the text.

As can be seen in Figs. 4.10a and 4.10b, our method with the full basis achieves

better error results on all of the meshes except for bimba, where the results of the

two methods are similar. Note that in these experiments we used the same input

including the symmetry map computed by the method in [PLPZ12], and only the

computation of the cross field is di↵erent. Thus, these quantitative results highlight the

robustness and accuracy of our functional formulation. In particular, on models where

our cross fields switched their behavior along the symmetry line, we gained significant

improvement: e.g., of factors 3.3, 4.65, and 9.53 on the models busto, Max Planck and

gargoyle, respectively, in our metric e
ours

. The improvement in e
FSS

for these models

was 1.87, 3.75 and 4.35, respectively. Moreover, we note that our method with a reduced

functional basis of size k < 300 produced comparable or better results when compared to

72



AAQ Ours

Figure 4.11: We compare our consistent quadrangulation of a pair of meshes with AAQ [MPP+13]
using code supplied by the authors. We computed a quad mesh on each mesh using it as the base
mesh (yellow), which should then be transported to the second mesh to yield exactly consistent
quadrangulations. For our approach (blue), we used the point-to-point correspondence also given
to AAQ. Note that our results are both smooth and consistent, where as while the AAQ results
are exactly consistent, they are dependent on the base mesh, and considerably less smooth. See
the text for more details.

FSS with our metric e
ours

. However, when measured in e
FSS

, these cross fields typically

generated inferior error results, while being visually plausible as can be seen in Fig. 4.5

(left and right).

4.6.2 Comparison with AAQ

We compare our consistent quadrangulation of a pair of meshes with the state-of-the-art

method of Animation Aware Quadrangulation (AAQ) by Marcias et al. [MPP+13]. For

computing the AAQ results we used the code provided by the authors, and applied it to

the two human meshes shown in Fig. 4.11, using the default parameters. We generated

two cross fields, by choosing first the kneeling human as the base mesh (yellow left) and

then the standing human as the base mesh (yellow right). Each of these quad meshes

should be transported to the second frame to generate exactly consistent quad meshes

(we do not show the transported quads). Note, that AAQ can only be applied to meshes

with the same triangulation, thus we also used this point-to-point map (in the full basis)

as our input and applied our pipeline to generate consistent cross fields (blue). We

then generated a quad mesh from the cross fields using MIQ and QEx, using the same

parameters for both approaches.

Note, that while the output of AAQ is exactly consistent (as they transport the

quads directly), the resulting quad mesh pairs would be very di↵erent depending on

which mesh is used as the base mesh. Furthermore, our result is qualitatively better

for both meshes (as it is both smooth and consistent), even though we only jointly

design the cross-fields and quadrangulate separately. In general, the deformation of the

triangles between these two meshes is quite large, which, as noted in the AAQ paper, is

a challenge for the their method. Further, since AAQ only considers the deformation

between the meshes, and not the curvature directions explicitly, the results for a pair of

meshes are less aligned with the geometry than our results. We do note that AAQ is
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Figure 4.12: Alignment vs. symmetry on a 3D bar shape. (xw) The directional constraints
are placed on the bottom face and and on one of the sides as marked by the arrows. (1) Due
to the misaligned constraints, requiring solid-to-dashed line consistency as well as directional
alignment yields a rather complex quad structure. (2) Relaxing the alignment constraint leads
to a highly symmetric quadrangulation. Notice that the resulting cross field in this case is in
fact the minimizer of the Dirichlet’s energy. (3) Conversely, low values for consistency with high
values for alignment produces mildly symmetric field which is better aligned in a least squares
sense.

geared towards the more complex scenario of a collection of meshes, which we do not

currently support, however their approach is specifically designed for triangle meshes

with the same connectivity, thus is less general than ours in this respect.

4.6.3 Parameters exploration

E↵ect of consistency and alignment constraints. To motivate the use of our

compatibility constraints, we demonstrate in Fig. 4.7 the quad meshes we obtain with

and without this constraint on a pair of surfaces. Specifically, in the top row, we show

that when requiring zero consistency, i.e., ↵c = 0, the resulting quads are somewhat

related, mainly due to curvature information, but the singularities are in di↵erent

locations (green points). Increasing this parameter to ↵c = .01 yields a compelling

result, where the isolines and singularity locations are very consistent (bottom row). In

addition, we show in Fig. 4.12 a more thorough evaluation of consistency vs. alignment

weights on a 3D bar model. Our results show that requiring high alignment (xw) in this

case produces relatively complex quad meshes (1 and 3), while low alignment with high

solid-to-dashed consistency yields smooth and symmetric result (2). The colored edges

encode the parametrization cuts.

Size of the functional basis. In theory, our consistency rules in Eqs. (4.6) and

(4.10) should hold for any function. However, these constraints are based on mapping

functions between surfaces using a functional map, which is potentially given in a low-

dimensional basis. Thus, transferring functions with high-frequencies in this case may

result in significant errors due to projection onto the basis. Nevertheless, as our basis is

given in terms of a multiscale eigen-decomposition of the Laplace–Beltrami operator,

we hope to use as few as possible basis elements in our application. In practice, the

basis size k determines which functions are well-represented, and in Fig. 4.13 we try to
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quantify which k’s allow to produce high-quality quad meshes. (left) Using only k = 10

eigenfunctions is clearly insu�cient as the resulting mesh is only quasi-symmetric,

mainly due to curvature information, whereas increasing the basis to size k = 100

(middle) produces a highly-consistent mesh. With k = 5161, we obtain optimal results.

4.6.4 Robustness

Noisy point-to-point mappings. A key advantage to working in the functional

setup is that it allows to gracefully handle scenarios where approximate or noisy

correspondences are given. To evaluate the robustness of our method to inexact

mappings in the context of approximately symmetric quad remeshing, we propose the

following experiment. The model we use in Fig. 4.14 is equipped with a compatible

triangulation, and thus we have the ground-truth mapping �. Using this map, we

generate two additional noisy correspondences, �
2

and �
4

, where each point is randomly

mapped with gaussian weights to the 2-ring and 4-ring neighborhood of its matching

point, respectively,

Equipped with this data, we generate symmetric quadrangulations with our method

using �,�
2

and �
4

shown in the left, middle and right columns, respectively, where the

top row is computed with the full basis and the bottom row uses a reduced basis of size

k = 100. As can be seen in Fig 4.14, with perfect information �, the results we obtain

are outstanding, exhibiting complex quad structures (top left). However, our outputs

are of lesser quality when noisy maps are used, with bent isolines on the head for �
2

(top middle) and non-symmetric stationary line around the chest for �
4

(top right). In

contrast, when we use the associated functional maps in a reduced basis, the results we

obtain and show at the bottom row reveal comparable consistency quality, regardless

of the underlying noise in the mappings. While this result might seem non-intuitive

in light of the error values we achieved in graphs 4.10a and 4.10b, we stress that the

intrinsic mappings produced with FSS [PLPZ12] are of extremely high quality. However,

k=10 k=100 k=5161

Figure 4.13: E↵ect of changing the functional basis’ size. (left) When using only 10 eigenfunctions
in B, we show that the resulting quadrangulation is hardly consistent with respect to the existing
bilateral symmetry. (middle) Increasing the basis to include 100 elements significantly improves
the result. (right) Finally, using the whole spectrum yields nearly perfect results.

75



M
A
P

FM
A
P

Figure 4.14: In this example, we demonstrate the robustness of our method in the presence of
imperfect correspondences. We compared the quad meshes we obtain when using maps with
deteriorating quality (left to right) in the full basis (top row) and reduced basis (bottom row).
While we achieve very good results with the exact mapping (top left), the quad meshes produced
with the noisy maps display only quasi-symmetry (top middle and top right). For comparison,
employing a small functional map of size k = 100, yields consistent quadrangulations in all cases
(bottom row). See the text for additional details.

computing good mappings is a hard problem in the general case, and thus we advocate

the use of a reduced basis in cases where inexact data is given.

Pushforward error evaluation. When given a pair of shapes with the same connec-

tivity, we can provide a more accurate measurement of the consistency error related to

our computed cross fields. To this end, we facilitate a decimated version (752 vertices) of

the SCAPE dataset [ASK+05]. We compute cross fields y
1

and y
2

on the template pose

paired with each of the first 50 poses. Then, using the ground-truth map di↵erential,

we push the associated x
1

to M
2

and calculate the error GF
2

(q)kx
2

(q)� (d�(x
1

))(q)k2,

for each face q 2 F

2

. In Fig. 4.15 we show the resulting sorted error distribution as

computed for all of the pairs. The obtained results are consistently within the 10�5

range for all pairs, which is reasonable for such coarse triangulations.
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Figure 4.15: We design consistent cross fields x
1

and x
2

, on pairs of shapes from the SCAPE
dataset (↵c = .1,↵l = 0), and we measure the pointwise L2 error of the computed x

2

compared
to d�(x

1

) which is the pushforward of x
1

using the ground-truth map di↵erential. In the above
plot, we show the distribution of the error for all of the pairs. Notice that in most of the cases,
80% of the points have an error of at most 10�5.
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MAP FMAP

Figure 4.16: We generated a precise mapping using sparse landmark correspondences given as
input to the seamless method [APL15]. With the resulting map, we compute consistent cross
fields on both meshes with the full (left) and reduced (right) basis.

Applicability to various mapping methods. In our tests, we use di↵erent mapping

methods and functional maps. For example, the results in Figs. 4.2, 4.5 (left and right),

4.8, 4.10a and 4.10b, are based on the intrinsic correspondences generated with FSS.

Moreover, we utilized BIM in Figs. 4.5 (middle), 4.9, 4.7 and 4.13. Example 4.16

is particularly challenging as it involves non-isometric meshes for which the current

state-of-the-art methods produce only approximate maps. Specifically, we used the

seamless mapping method [APL15], and we generated approximately consistent quad

meshes using the full basis (left) and the reduced basis (right). Notice that the resulting

quadrangulations are qualitatively similar being slightly more consistent for the full

map case.

Genus 1 examples. In Fig. 4.1 (left), we show an example on a genus 1 model with

intrinsic symmetry. Notice that since the tail is attached to the head of the kitten, it is

unclear in this model where exactly the symmetry line goes through, which makes it

a stress test for many mapping techniques. Nevertheless, we were able to compute a

high quality functional map, which allows us to generate an approximately consistent

quad mesh which mostly respects the underlying symmetry. In addition, we tried a

similar experiment on a pair of meshes from the FAUST dataset, where we “glued”

the hands of one of the persons. Using a reduced functional map of size k = 50, we

obtain compatible quad meshes, as can be seen in Fig. 4.17. Notice that the right leg

is somewhat less consistent and it is due to the map which is only approximate. We

show in the zoomed-in figures that the same singularity structure is maintained on both

meshes, but it is twisted on the left person. We validated that the mapping is wrong

in this area by mapping a function from the left person to the right, and, indeed, the

colors in the zoomed-in area are inconsistent between the meshes.
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Figure 4.17: Unfortunately, methods for mapping surfaces with di↵erent genus are scarce.
Nevertheless, the robustness of our machinery to di↵erent mapping methods allows us to
compute consistent quadrangulations even in the di�cult case of genus 0 and genus 1 surfaces.

4.7 Limitations

One limitation of our method is that in some cases, we achieve poor consistency results

on certain areas of the mesh, even though the general quadrangulation is relatively

consistent. We believe it is due to the fact we omitted pointwise unit length constraint,

allowing the optimization to reduce energy by scaling vectors in problematic regions.

Related to this issue, is that we generate uniform quadrangulations, regardless of the

underlying geometry. In this context, additionally optimizing for a consistent sizing

field might be beneficial. Finally, as we mentioned in Sec. 4.2, our method produces

only approximate consistent quad meshes, since we optimize for a guiding field and not

directly for the quads. As a result, our method does not provide guarantees about the

exact quality of the resulting quad meshes. All of these shortcoming o↵er interesting

directions for further consideration and future work.

4.8 Conclusion and Future Work

In this paper, we presented a novel unified technique for computing consistent quad-

rangulations of individual and pairs of shapes, with respect to a given symmetry and

correspondence respectively. Our method does not require the input shapes to have the

same triangulation and can handle shapes with arbitrary topology, while at the same

time placing special emphasis on robustness and e�ciency. Key to the success of our

technique is a novel formulation that only requires a functional (rather than pointwise)

correspondence across shapes and allows us to avoid the di�cult estimation of the map

di↵erential, while being able to accommodate functional maps given in a reduced basis.

Our formulation results in a simple and easy to implement method that produces more

accurate results compared existing baselines and allows to handle more general di�cult

cases.

In the future we plan to extend our method to handle entire collections of shapes,
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and also to use our functional formulation to enable cross field design with other

(possibly user-guided) novel constraints, which are di�cult to enforce locally. In

addition, our formulation is applicable to any N-RoSy fields, and not necessarily cross

fields, and we wish to further investigate its applicability to joint design of PolyVector

Fields [DVPSH14].
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Chapter 5

Advection-Based Function

Matching on Surfaces

A tangent vector field on a surface is the generator of a smooth family of maps from

the surface to itself, known as the flow. Given a scalar function on the surface, it can

be transported, or advected, by composing it with a vector field’s flow. Such transport

is exhibited by many physical phenomena, e.g., in fluid dynamics. In this paper, we are

interested in the inverse problem: given source and target functions, compute a vector

field whose flow advects the source to the target. We propose a method for addressing

this problem, by minimizing an energy given by the advection constraint together with

a regularizing term for the vector field. Our approach is inspired by a similar method

in computational anatomy, known as LDDMM, yet leverages the recent framework of

functional vector fields for discretizing the advection and the flow as operators on scalar

functions. The latter allows us to e�ciently generalize LDDMM to curved surfaces,

without explicitly computing the flow lines of the vector field we are optimizing for. We

show two approaches for the solution: using linear advection with multiple vector fields,

and using non-linear advection with a single vector field. We additionally derive an

approximated gradient of the corresponding energy, which is based on a novel vector field

transport operator. Finally, we demonstrate applications of our machinery to intrinsic

symmetry analysis, function interpolation and map improvement.

Figure 5.1: Our method takes a source function (blue frame) and a target function (red frame)
and finds a single vector field (gray frame) whose associated flow map advects the source function
to a function which matches the target function at the end time (black frame). In addition, our
method yields a smooth interpolation of functions by advecting the source function for di↵erent
times (5 frames from the right).
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5.1 Introduction

Finding correspondences between geometric objects is a fundamental problem in ge-

ometry processing. In many cases, the map between the objects can be represented

through correspondences between scalar functions. A Gaussian distribution centered

at the location of the object [SNB+12], an intensity function representing medical

data [BMTY05] or a geometric descriptor [OBCS+12], are all examples utilizing this

approach. In fact, matching functions is a more general problem, as functions are not

restricted to encode shapes, but can represent alternative information, such as distortion

information [OBCCG13], appearance properties [BVDPPH11] or texture coordinates.

A natural extension to the function correspondence problem is to additionally

compute an interpolation between the given functions, namely a time varying function

which starts from the source and smoothly interpolates to the target. One possible

approach then, is to recast the problem as finding a set of vector fields, whose associated

flow maps are composed to yield an interpolation between the functions. The flow map

of a vector field is computed in any point of the domain by “traveling” from that point

and following the trajectory of the vector field (known as the flow line), for a specified

time. Advection of a function is then achieved by composing it with the inverse of the

flow map (see Figure 5.2), where interpolation is computed by advecting the source

function for various times, and the target function is attained at the final time.

This approach to function interpolation has long been considered in medical imaging

where anatomical images are deformed from one to another. Several methods designed

for solving this problem are currently available [SDP13] of which the Large Deformation

Di↵eomorphic Metric Mapping (LDDMM) algorithm [BMTY05] is widely adopted.

LDDMM tackles the problem by minimizing an objective function, which combines the

advection constraint with a regularizing term on the vector fields. In practice, energy

minimization is computed by explicitly constructing the flow map and its Jacobian, or

deformation gradient. Therefore, carrying over this framework to curved domains is

challenging, as these quantities are di�cult to represent and compute on such domains.

We suggest to overcome these di�culties by reformulating the energy using the framework

of functional vector fields [ABCCO13], leading to a novel advection-based method for

spatial interpolation between real-valued functions on curved triangle meshes.

Figure 5.2: The flow map of a vector field (left, shown with the Line Integral Convolution
method [PZ11]) is used to advect a function (middle left) for various di↵erent times (middle
right and right).
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The main component required for our method is an advection operator acting on

curved domains. Previously, advection has been employed to simulate fluids [SY04],

and more recently to compute stable shock filters [PK15]. However, these methods

rely on the explicit computation of flow lines which is algorithmically complicated,

unstable and error-prone on curved triangle meshes. Alternatively, tangent vector fields

can be encoded as directional derivatives of functions, and thus as linear operators

acting on the space of functions. Adopting this approach, [ABCCO13] showed that

on triangle meshes, discrete tangent vector fields can be encoded as sparse matrices,

whose exponential represents their associated flow map. Further, the composition of

a map with a function is given in this setup as a matrix-vector multiplication, and

hence advection can be e�ciently approximated by computing the action of the matrix

exponential on a vector [AMH11]. Notice that since functions are directly mapped to

functions, the explicit computation of flow lines and its inherent di�culties is completely

avoided in this setup.

In this paper, we facilitate the functional advection technique for solving the function

matching problem. Initially, we propose to optimize for a set of vector fields and use

linear transport, i.e., taking only the first two terms of the matrix exponential. This

approach works well in scenarios as fluid simulation [AWO+14, AVW+15] where the

Courant–Friedrichs–Lewy (CFL) condition limits propagation speeds and thus restricts

the dynamic time step to be small. However, it is sometimes necessary to find a single

vector field; a constraint that is rarely attainable with the linearized formulation as the

required time step for matching might be too big. For instance, assume that the target

function is in fact the advected version of the source function, as is the case in optical

flow problems [SRB14]. In this context, one hopes to reconstruct the underlying vector

field that governs the motion. Thus, we generalize our energy functional to include the

full matrix exponential, for cases where it is crucial to interpolate using a single velocity

field.

Unfortunately, the associated directional derivative of the matrix exponential is

computationally intractable in most of our problems. Recently, Corman et al. [COC15]

noticed that this derivative is in fact a block in the matrix exponential of a bigger

operator, and thus used a sum of matrix exponentials of bigger matrices. However,

they worked in a reduced spectral basis, allowing them to facilitate this observation

which requires the computation of a large number of matrix exponentials (as many as

the number of basis vectors). We, on the other hand, work with the full basis, thus

their approach is less applicable in our case. Instead, we observe that an approximation

of the matrix exponential derivative can also be formulated in terms of a Lie bracket

operator acting on vector fields. Thus, we propose a novel discrete bracket and exploit

the relation between vector fields and matrices to arrive at a tractable derivative for the

matrix exponential. Overall, we emphasize that through the entire computation of the

functional’s gradient, we never store or explicitly compute the matrix exponential, but

only its action on vectors.

83



We demonstrate our machinery in several applications as spatial interpolation

between various functions and reconstruction of the governing velocity in an optical

flow type scenario. Moreover, we construct a continuous symmetric map based on two

descriptors. Finally, we show that our method can be used to extract the point-to-point

map that is related to a given functional map.

5.1.1 Related Work

We discuss here various approaches which either solve the same problem on Euclidean

domains, solve a related problem on triangle meshes, or target similar applications as

ours.

Computational anatomy. The problem of matching consecutive medical images is

a classical problem in computational anatomy, and one of the common solutions uses the

flow of one or more vector fields, see [SDP13], for a recent review. Among the plethora

of such methods, LDDMM [BMTY05] is extremely popular, and has been extended to

many settings, though not to curved triangle meshes. On flat domains, discretizations of

LDDMM use semi-Lagrangian techniques for vector field integration, and for computing

discrete mappings and their di↵erentials, using simple interpolation rules. However,

on curved meshes these computations are more challenging, as trajectories should be

constrained to remain on the curved surface. Our discretization, on the other hand,

is based on the functional approach, thus functions can be advected without explicit

computations of mappings and their di↵erentials.

Optical flow. vector field based registration is also popular in computer vision, where

it is known as optical flow, see [SRB14] for a recent review. In the classical formulation,

when two images are given, the goal is to find a smooth displacement vector field which

matches the first image to the second. This is in fact the linearized version of advection

on Euclidean domains, highly appropriate in optical flow since the change between

consecutive images is small. Optical flow has been generalized in many ways, and

was recently adapted to advection-based matching of a series of functions on triangle

meshes [LB08]. There, however, multiple samplings of the interpolated function are

given as input, i.e., not only the initial and final functions as in our setup, inherently

assuming that the deformation between two consecutive functions is small. Furthermore,

they compute multiple vector fields which realize the flow, and their advection approach

exhibits far more di↵usion than ours.

Optimal transport. Matching between distributions is a prevalent objective in opti-

mal transportation (OT) methods [Vil03, Vil08]. In fact, the Benamou–Brenier [BB00]

formulation shares some similarities with our matching approach, with the important

di↵erence that their associated vector field is time-dependent in general. In the special

case when distances are raised to the power of 1 [SRGB14], instead of a general power
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p, OT is formulated using a single vector field. However, advecting the function on the

resulting vector field leads to a trivial pointwise linear interpolation between the source

and target functions, whereas our method yields spatial displacements. Alternatively,

using squared distances [SDGP+15] (i.e., p = 2) yields interpolation results that are

closer to ours, yet requires regularization for computational e�ciency which leads to

blurring, and does not output a single vector field.

Related Applications in Computer Graphics. Our method can be classified as

on-surface interpolation of functions, and there exist a small number of works addressing

similar problems in Computer Graphics. Perhaps the closest to our approach is the

method for continuous matching [COC15]. There, the authors improve a given point-to-

point map, by optimizing for a vector field such that the composition of its flow map

with a given input map approximates another known map. However, optimization in

their setup requires working in a reduced spectral basis in order to be computationally

feasible due to their usage of explicit matrix exponentials. In addition, their obtained

field is smooth and thus does not account for high frequency deformations whereas

our method does. Deformation of functions on surfaces is also addressed in [RTD+10],

by computing a map fulfilling some point constraints and composing its inverse with

the function to be deformed. This problem is in some sense simpler than the one we

address, since the constraints imply that the correspondence between the source and

target functions is known, and only interpolation is needed.

5.1.2 Contributions

Our main contribution is a method for solving the inverse problem of computing a vector

field whose flow advects one function to another on curved triangle meshes, where the

functions are not required to be similar or have overlapping support. To this end we:

• Reformulate the LDDMM energy using functional operators. We explore linear and

non-linear advection formulations and provide the associated gradients (Sections

5.3–5.5).

• Present a novel Lie bracket operator on vector fields (Section 5.6) which is

instrumental for e�ciently computing the derivative of the advection operator

(Appendix D.3).

• Present applications of this machinery to optical flow on curved domains, in-

terpolation of scalar functions, extraction of a point-to-point map from a given

functional map, and realization of intrinsic symmetry maps. (Section 5.8).

85



5.2 Vector Fields and Flows

To formally specify our objective we briefly describe the following definitions for vector

fields and their flows. In di↵erential geometry, it is well-known [Fra11] that tangent

vector fields are fully encoded through their action on smooth scalar functions. Given a

surface M with its associated metric h·, ·i and a smooth function f : M ! R, the action

of a vector field v on f is given by the directional derivative of the function:

v(f) = Dv(f) = hv,rfi , (5.1)

where the inner product is computed per point p 2M . Vector fields and mappings are

tightly linked as any tangent vector field v defines a one-parameter family of self-maps

�tv, known as the flow of v, which satisfies:

d

dt
�tv = v � �tv, �0v = id .

Advection of scalar functions is then achieved by composing f with the inverse of the

flow map, i.e., f(t) = f � ��t
v . Thus, f(t) is the unique solution of the following partial

di↵erential equation,

d

dt
f(t) = �Dv(f(t)), f(0) = f . (5.2)

The operator of advection plays a key role in our method since it allows to match

between functions. We proceed by describing our approach for function matching on

surfaces.

5.3 Advection-based Function Matching (ABFM)

A straightforward (and computationally trivial) approach to interpolating functions is

to linearly blend them. However, pointwise interpolation is independent of the global

structure of the functions and the underlying geometry. Moreover, if the functions are

spatial deformations of one another, i.e., an associated field generates the functions (as

in optical flow), linear interpolation would not produce satisfying results. These issues

motivate a di↵erent approach.

Given a surface M and two scalar functions f, g : M ! R, we seek for a time-

varying tangent vector field v(t) whose associated flow advects f onto g. In general,

this problem is ill-defined, as there can be many such fields, therefore some additional

regularization on the vector field is required. To this end, we design an energy functional

which includes two terms: a data term that promotes the advection constraint, and

a regularization term which enforces smoothness on the vector field. Our approach

is inspired by the popular LDDMM framework [BMTY05], which enforces a similar

functional. In Figure 5.3, we show matching and interpolation results computed using
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Figure 5.3: Given source and target functions (blue and red frames), our method matches the
advected source to the target (black frame). The resulting interpolation is obtained by advecting
for di↵erent times leading to spatial displacement of values.

our method.

We propose to solve the following optimization problem:

argmin
v

1

2

Z ⌧

0

kv(t)k2↵dt+
1

2�2
kf � ��⌧v � gk2� . (5.3)

Namely, our data term seeks to minimize the norm of f(⌧) � g, where f(⌧) satisfies

Eq. (5.2) when advecting f using the optimized velocity. The scaling parameter �

weighs the matching against the penalty due to the regularization of the velocity, i.e.,

we treat the matching as a weak constraint.

We choose a function norm that is more suitable for measuring distances between

disjoint functions, i.e., functions whose supports (where f, g 6= 0) are disjoint. Specifically,

increasing the parameter � allows for interpolating functions that are farther apart.

The term which regularizes vector fields also uses a modified norm, see e.g., [BMTY05],

which promotes a smoother velocity as ↵ grows. Thus, we define the following norms:

kfk2� =

Z

M
f(x)C� f(x)dx , kvk2↵ =

Z

M
hv(x), D↵ v(x)idx ,

where C� is defined as C� = id���LB with �LB the negative-definite Laplace–Beltrami

operator. Similarly, the operator D↵ is given by D↵ = id+↵�H , where �H is the

Hodge Laplacian.

5.4 Discretization

The main challenge in the discretization of our objective function on triangle meshes is

computing the flow map �tv. This requires computing the flow lines of v, which is known

to be a non-trivial and error prone problem on curved meshes, requiring combinatoric

decisions (e.g., to which triangle should the flow line continue). Furthermore, it is

not clear how one could compute the gradient of our objective functional if using
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such a direct approach for computing the flow lines. In the following, we propose an

alternative method, which involves only the advected functions and does not require

the computation of the flow lines, based on the functional representation of vector

fields [ABCCO13].

Notation. We are given a triangle mesh with face set F and vertex set V . We define

our discretizations in matrix notation, and thus represent functions as vectors of length

|V|, and vector fields as vectors of length 3|F|. Vertex and face areas are respectively

denoted by AV 2 R|V| and AF 2 R|F|, where the area of vertex i is computed by

one third of the total area of its adjacent triangles. We use diagonal mass matrices

given by GV = [AV ] 2 R|V|⇥|V| for vertices and GF = [AF ] 2 R3|F|⇥3|F| for faces. The

bracket [·] operator converts vectors in R|V| and R|F| to diagonal matrices in R|V|⇥|V|

and R3|F|⇥3|F| respectively (replicating each entry 3 times for the latter). In addition,

we define the interpolation matrix IFV 2 R|V|⇥|F| to average quantities from faces to

the vertices, i.e., IFV (i, j) = AF (j)
3AV (i)

, i↵ vertex i belongs to face j and 0 otherwise. Our

di↵erential operators, grad 2 R3|F|⇥|V| and div 2 R|V|⇥3|F|, are the standard ones as

defined in [BKP+10, Chapter 3].

Functional Vector Fields. Following the construction introduced in [ABCCO13]

and using our notation, we have that Dv and its dual version Df , required for derivative

computations, can be computed as follows

Dv = IFV [v]T• grad , Df = IFV [grad f ]T• ,

where Df is a matrix of size |V|⇥ |F| defined as the operator which satisfies Df (v) =

Dv(f). Here, [·]• 2 R3|F|⇥|F| is a block diagonal matrix which encodes a pointwise

multiplication of a vector field by a face-based function, and its transpose evaluates a

pointwise inner product.

Functional Advection. A particularly useful property of Dv is that discrete advec-

tion of a function f can be computed using the action of the matrix exponential on f ,

namely,

ft = exp(�tDv) f =
1
X

k=0

(�t)k

k!
Dk

v f , (5.4)

where the action is computed in an e�cient manner with methods as [AMH11]. When

viewed as an operator that maps functions to their directional derivatives, the discreteDv

with the relation (5.4) is closely related to the functional maps framework [OBCS+12].

In this context, the operator exp(�tDv) is in fact the functional map associated with

the flow map of v. Finally, there are cases (e.g., in fluid simulation) where it is su�cient
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Figure 5.4: Linear advection of an input function (top left) works well for short times (top
middle), but discretization errors in the form of oscillations appear for longer times (top right).
For comparison, the non-linear transport (bottom) better approximates the flow and it yields a
smooth result, even for long times (bottom right).

to use the linearized version of advection, i.e.,

ft = (id�tDv) f . (5.5)

In Figure 5.4, we show a comparison between the linear and non-linear versions of

advection. Starting from the same initial function (top and bottom, left), the linear

computation (top) exhibits discretization noise, i.e., oscillationst (top right), while the

non-linear discretization (bottom) provides a smooth result (bottom right).

Discrete Energy. To fully discretize problem (5.3), we break the time parameter

into N segments of equal size �⌧ = ⌧/N . Thus, we optimize for a finite set of vector

fields {vj}
N
j=1

that are constant per time segment. Using the above definitions and

matrix notations, we arrive at the following discrete optimization problem

argmin
{v

j

}

0

@

� ⌧

2

N
X

j=1

vTj GF D↵ vj +
1

2�2
�gTGV C� �g

1

A , (5.6)

where �g = f � ��⌧v � g. The map ��⌧v is obtained by composing the flow maps of the

di↵erent velocities, i.e.,

f � ��⌧v = f � ���⌧v1 � .. � �
��⌧
v
N

,

where composition is achieved through matrix multiplication.

The transported function can be computed using the linearized flow (5.5) or the

non-linear flow (5.4). In general, the linearized method is preferred in cases where the

overall smoothness of advection is of less importance (see applications in Section 5.8

that are related to Figures. 5.11, 5.12), since the composition of discrete mappings

may induce some error. Also, the linearized method yields reasonable results when the
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underlying deformation is small or the flow time is su�ciently short. On the other hand,

non-linear advection is crucial when one requires a single vector field that generates

a smooth deformation (see e.g., Figures 5.9, 5.10). In the following, we consider two

scenarios: linear flows with multiple vector fields and non-linear flows with a single

vector field. Hence, we have

f � ��⌧v =

0

@

N
Y

j=1

�

id��⌧ Dv
j

�

1

A f , or f � '�⌧
v = exp(�⌧ Dv)f ,

where we used the notation '�⌧
v in the non-linear case to distinguish it from the linear

case. Finally, we use the notation ft to denote the advected version of f to time t, i.e.,

ft = f � ��t
v or ft = f � '�t

v , depending on the associated flow, and f
0

= f .

Discrete Gradient. To solve the discrete problem (5.6), the gradient of the energy

functional is required. Given that D↵ and C� are self-adjoint operators, i.e., in our

case these are symmetric matrices with respect to the corresponding inner product, the

derivative of the energy functional is given by

@

@vj
E = �⌧ GF D↵ vj +

1

�2

✓

@

@vj
ft

◆T

GV C� �g . (5.7)

The full derivation of the gradient appears in Appendix D.1. Note, that the gradient

depends on @v
j

ft, and thus on the choice of advection operator. We provide in Appen-

dices D.2 and D.3 the derivative of the advection for the linearized and non-linear flows,

respectively.

5.5 Linear and Non-linear Advection-based Function Match-

ing

The first scenario we consider takes N > 1 and employs linearized flows, i.e., uses the

advection f � ��⌧v as described in Section 5.4. To compute the directional derivative of

the energy functional (5.7), we derive the component @
@v

j

ft and obtain

@

@vj
ft = ��⌧

0

@

N
Y

i=j+1

(id��⌧ Dv
i

)

1

ADf(j�1)�⌧
, (5.8)

where f
(j�1)�⌧ is the (partial) advection of f

0

to time (j� 1)�⌧ . We refer to this method

as Linearized Advection-based Function Matching (LABFM) and Figures 5.11, and 5.12

were generated using this method.

While the LABFM method is fast and simple to implement, there are certain

applications in which N = 1 is a design requirement. Thus, we extend the former

method to include non-linear flows, i.e., f � '�⌧
v , and to optimize for a single vector
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field. The modified energy becomes

E(v) =
⌧

2
vTGF D↵ v +

1

2�2
�gTGV C� �g ,

where, as before, we need to re-derive the suitable gradient of the component @v ft. We

emphasize that computing the derivative of this expression is more involved compared

to the former case. In particular, exp(�⌧ Dv) 2 R|V|⇥|V| is a dense matrix, thus

using finite di↵erencing methods or extracting a block in the exponential of a bigger

operator [COC15] is possible only for small problems. Instead, we derive in Appendix D.3

an approximation of the gradient by exploiting the relation between matrices and vector

fields. We arrive at the following expression,

@

@v
ft = �

⌧

k + 1
exp(�⌧ Dv)Df0

k
X

s=0

exp
⇣s ⌧

k
adv
⌘

, (5.9)

where k is a scalar used to approximate a continuous integral, and adv is the Lie

bracket [Fra11], an operator that acts on vector fields, i.e., adv u = [v, u], where u is a

vector field. Intuitively, the bracket measures the amount of change u exhibits with

respect to the flow lines of v. We defer the discussion on the operator adv and its

exponentiated version to the next section.

5.6 Lie bracket of Vector Fields

The Lie derivative evaluates the change of a vector field over the flow of another vector

field. Given two tangent fields v and u, we say that their flows �tv and �tu commute

when their bracket is zero. Geometrically, it means that one can apply �tv and then �tu
or the other way around and arrive at the same point. Formally, the bracket is given in

operator form by:

D
[v,u] = DvDu �DuDv , (5.10)

where [v, u] denotes the associated vector field. Notice that under the bracket operation,

vector fields form a group (since second derivatives cancel), i.e., D
[v,u] is a directional

derivative operator. We show in Figure 5.5 an example of the smoothest vector field u

(right) that commutes with v (left).

Representing and computing the Lie derivative on surfaces is an on-going challenge

and several methods try to solve this problem. For instance, [AOCBC15] exploit the

functional approach and o↵er an e�cient representation of the bracket in a reduced

spectral basis. We choose to follow [ABCCO13] as their bracket discretization is

closely related to the directional derivative operators we use. Specifically, the discrete

version of Eq. (5.10) is computed in [ABCCO13] by taking the commutator of the

respective matrices. However, the resulting matrix acts on scalar functions, whereas

adv 2 R3|F|⇥3|F| is an operator that takes a vector field and returns a vector field.
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Figure 5.5: Given a vector field v (left), the kernel of its operator adv consists many vector fields
that commute with v, where we show the smoothest one (right).

Nevertheless, we observe that a vector field [v, u] can be extracted from its directional

derivative D
[v,u] by applying the operator on the coordinate functions x, y and z. For

instance, to reconstruct the x-coordinate we compute D
[v,u](x) = [v, u]x. Repeating this

procedure for y and z (the derivation appears in Appendix D.4) yields:

adv =

0

B

@

Dv 0 0

0 Dv 0

0 0 Dv

1

C

A

�

0

B

@

Dv
x

Dv
y

Dv
z

1

C

A

2 R3|F|⇥3|F| , (5.11)

where Dv = [v]T• grad IFV and Df = [grad IFV f ]T• .

A novel property of adv is its relation to the di↵erential of the flow map �tv. The

di↵erential of a self-map �tv generates a self-map Ad�t
v

on the tangent bundle, i.e., Ad�t
v

,

also known as the pushforward, transports vector fields to fields. For finite matrices, our

representation is extremely useful since we can discretize Ad�t
v

by taking the exponential

of adv [Hal15]:

Ad�t
v

u = exp (t adv)u , (5.12)

where the term exp(t adv) appears in our gradient computations (5.9), and we evaluate

it using Eq. (5.11) and the matrix exponential. In Figure 5.6, we demonstrate the action

of Ad�t
v

associated with v (left) on the field u (middle left) for several times (middle

right and right).

v u t=0.125 t=0.25

Figure 5.6: Transport (pushforward) of a vector field u (middle left) over the flow lines of v
(left) is shown for various times t = 0.125 and t = 0.25 (middle right and right).
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Algorithm 5.1 Energy and gradient calculation for the Quasi-Newton iteration of the
non-linear ABFM algorithm. The routines exp and exp tspan are described in [AMH11].

function NLABFM(f ,g,v)

// Energy computation
f⌧  exp(�⌧, Dv, f)
�g  f⌧ � g
E  ⌧

2

vT GF D↵ v + 1

2�2 �g
TGV C� �g // Eq. (5.6)

// Gradient computation

d  D
T
f exp(�⌧, DT

v , GV C� �g)
ds  exp tspan(adTv , d, 0, ⌧, k)
D  ⌧ GF D↵ v �

⌧
(k+1)�2

P

s ds // Eq. (5.9)

return E,D

5.7 Implementation Details and Limitations

We implemented our method in MATLAB using the minFunc routine [Sch12] which

employs a quasi-Newton algorithm with L-BFGS (limited memory) updating. In

Algorithm 5.1, we provide the function handle that computes the energy and derivative

of NLABFM. This pseudo-code includes calls to exp and exp tspan which compute the

action of a matrix exponential on a vector for a specific time and for a range, respectively

(see [AMH11] for further details). Notice that the gradient computation includes the

transpose of the matrices Dv, Df and adv. This is due to the use of (@vft)T in the

gradient (5.7) and since exp(A)T = exp(AT ) for any matrix A.

Our advection method depends on the end time parameter ⌧ . Unfortunately, the

computation of the action of the matrix exponential is not stable for long times.

Consequently, the optimization does not find a descent direction and stops immediately.

We handle this limitation with a simple modification to the definition of the non-linear

flow, i.e.,

f � '�⌧
v = exp(�⌧ Dv)f =

0

@

n
Y

j=1

exp(��⌧Dv)

1

A f ,

where �⌧ = ⌧/n. Notice that we use the same vector field v in the product and the

above relation holds up to machine precision. However, the gradient also changes in a

way that is not equivalent in the discrete setting, i.e.,

@

@v
ft = �

�⌧

k + 1

n
X

r=1

exp (�(n� r)�⌧ Dv)Df(r�1)�⌧

k
X

s=0

exp

✓

s �⌧

k
adv

◆

.

The main di↵erence in the above expression compared to Eq. (5.9) is that we advect for

a range of times instead of advecting only for the end time, and, in particular, advection

for shorter times contributes to the computation.
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Figure 5.7: Interpolation results between the eigenfunctions 7 and 8 of the Laplace–Beltrami
operator (blue and red frames). Notice that our result (black frame) highly matches the target
function and that the interpolation path is smooth.

Table 5.1 shows the parameters we used in all of our experiments. For small defor-

mations, taking ⌧ = 1 is su�cient to achieve good results, whereas large deformations

require larger ⌧ . Increasing the parameters ↵ and � corresponds to smoother fields and

functions, respectively. Finally, decreasing � weighs the matching constraint higher

with respect to the vector field constraint. In practice, we employ a “cooling” procedure

for � (denoted with asterisk in the table) to achieve better matching, i.e., � is divided

by 10 per a fixed amount of iterations.

5.8 Results

Spatial interpolation of functions. Fig. 5.3 shows an intuitive spatial interpolation

between a large smooth Gaussian (blue frame) and two small smooth Gaussians (red

frame). Our method yields a result (black frame) which matches the target function,

where the rest of the frames are obtained by advecting the source over the resulting

velocity field for di↵erent times. While our result is similar in nature to those obtained

with optimal transportation techniques [SDGP+15], we stress that our method is not

Figure ⌧ ↵ � � N n
Fig. 5.1 1 1 0 1e� 2⇤ � 10
Fig. 5.3 2 1e+ 3 1e� 5 1e� 4 � 40
Fig. 5.7 1 1e+ 3 0 1e� 1⇤ 20 �

Fig. 5.8 10 1e+ 3 0 1e� 2⇤ � 200
Fig. 5.9 1 1 1e� 4 5e� 3 � 20
Fig. 5.10 1 1e+ 3 0 1e� 2⇤ � 20
Fig. 5.11 1 1 0 1e� 2⇤ 10 �

Fig. 5.12 1 1 0 1e� 2⇤ 10 �

Table 5.1: The parameters used in our experiments. See the text for details about the e↵ect of
each parameter on the obtained results.
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Figure 5.8: Our method takes as input a function (blue frame) and its advected version (red
frame) computed using a vector field (top left). The output of our method is the matched
function (black frame, right) and the corresponding vector field (black frame, left and middle).
Notice that the resulting field highly matches the original field and the error between the function
(bottom right) is very small. See the text for additional details.

designed for probability distributions. In particular, our di↵erential operators and their

integrated versions do not exhibit a maximum principle, i.e., the advected functions are

not guaranteed to be probability distributions, even if they originated from a probability

distribution. Nevertheless, the drift can be minimized by taking a small � parameter.

Similarly, we show in Fig. 5.7 a smooth interpolation between the eigenfunctions 7 and

8 of the Laplace–Beltrami operator. Matching between eigenfunctions is important for

improving maps between surfaces, as was shown in [COC15]. In addition, several map-

ping techniques rely on associating scalar geometric descriptors [OBCS+12]. Therefore,

our method can serve as a building block in such scenarios.

Optical flow on surfaces. In cases when the target function is the advected version

of the source function, one common objective is to reconstruct the underlying vector field

which generated the motion. For instance, in the context of optical flow, registration

between consecutive frames of a movie allows to up-sample the given signal. In Fig. 5.8,

we show optical flow on curved surfaces where the source function (blue frame) is

advected to time ⌧ = 10 (red frame) over the velocity field (top left, showing its LIC

visualization and top middle left, showing its norm). Our method matches the target

function (black frame, right) with a vector field (black frame, left and middle) that

is very close to the original field. In addition, we show the absolute error between

the target function g and the matched function f � '�10

v , i.e., we compute pointwise

|g � f � '�10

v | (bottom right). Notice that both f and g are on the scale of 1, thus our

matching exhibits significantly small error.

Continuous matching of symmetric surfaces. Given a surface and its symmetry

map, our goal is to infer a one-parameter family of maps which continuously matches

the surface to its symmetries. In Fig. 5.9, we take a source function (blue frame), map
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Figure 5.9: Our method handles large deformations between the source function (blue frame)
and the target function (red frame), and succeeds in finding a single velocity field whose flow
represents the continuous symmetry map (black frame). We show an RGB color coding of the
surface mapped under the resulting flow for times 0, ⌧/2, ⌧ and 2 ⌧ (bottom, left to right).

it with the symmetry map (red frame), and we optimize for a single vector field which

matches between those functions (black frame, shown with LIC and norm of the field).

The bottom row shows an RGB color coding of the coordinate functions mapped with

the flow map of the velocity. The initial geometry with two points marked on top of it

(left) is advected to time ⌧/2 (middle left) and then to time ⌧ (middle right). Notice

that the points and the coordinate functions are smoothly mapped to the correct values.

We additionally show an extrapolation of the advection to time 2 ⌧ (right), where some

drift is noticeable, yet it is relatively small. Fig. 5.10 shows a similar experiment on a

much more complex data since the geometry contains creases, thus it is not clear that

the required vector field even exists. Yet, our method yields a reasonable continuous

symmetric mapping which maintains the general behavior.

Function Matching for Mapping. The functional map framework [OBCS+12]

provides the basis for many mapping algorithms. In this framework, one can infer pose

Figure 5.10: An experiment similar to one shown in Fig. 5.9 on a more complex geometry
that contains creases. Nevertheless, our method finds a smooth field whose flow generates a
continuous symmetric mapping.
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Figure 5.11: Matching between two non-smooth functions (blue frame) to two smooth functions
(red frame) shown as texture coordinates. See the text for additional details.

constraints requiring functions to correspond, and compute a map taking functions

to functions, which best fulfills these constraints. The e↵ectivity of this framework is

somewhat hindered by the fact that it is sometimes di�cult to extract a corresponding

point-to-point map if it is required. Using our framework, when working with self-maps,

it is possible to leverage the functional map idea (mapping between corresponding

functions), while simultaneously maintaining a point-to-point correspondence, defined

using the flow map of the computed vector field. This approach was suggested in [COC15],

yet as we work in the hat basis both for functions and vector fields, we are not limited

to a small subspace of functions and vector fields.

We extend the setting using linearized advection of multiple vector fields to match

multiple functions by summing over the errors. Figure 5.11 demonstrates that we can

indeed match successfully between two non-smooth functions (blue frame, visualized

as transported texture coordinates using a given map from the model on the left)

to a smooth version of these functions (red frame, obtained by transportation with

the corresponding functional map), and achieve the required functions (black frame).

Moreover, we compute the pointwise sum of absolute errors between the target functions

{gi}
2

i=1

and the matched functions {fi � �
⌧
v}

2

i=1

, i.e., we plot the pointwise di↵erence
P

i |gi � fi � �
⌧
v | (right). In Figure 5.12 we repeat this experiment on two models

from the SCAPE dataset, using the functional map obtained from the ground truth

correspondence to transport the functions we use as targets (which are the coordinate

functions of the source mesh, two of them visualized as texture coordinates). Computing

the flow using one function constraint (gray frame) and 3 function constraints (black

frame) - we again match the target functions. Furthermore, we compute the point-to-

point map corresponding to our flow and compare the error with respect to the ground

truth, with the output of [COC15] on the same inputs. The resulting errors are shown

in Figure 5.13, demonstrating that we improve the output point-to-point map.
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[COC15]

Figure 5.12: A similar experiment to Fig. 5.11 where given a set of non-smooth source functions
(blue frame) and smooth target functions (red frame), we optimize for a single match (gray
frame) and three matches (black frame). We compare our result to matching obtained with the
method of [COC15] (bottom left).

5.9 Conclusion and Future Work

We have presented a novel method for matching scalar functions on curved triangle

meshes that is based on the vector field’s flow. We designed an energy minimization

framework which is inspired by the well-known LDDMM algorithm and facilitates the

machinery of functional vector fields. Our unique approach avoids the problematic

explicit computation of flow lines and allows to advect in a linear and non-linear fashion.

We showed that our matching method is applicable in scenarios of small and large

deformations. We also demonstrated its e↵ectiveness in optical flow problems, continuous

matching of symmetric surfaces and in the context of the functional maps framework.

Numerous problems which are related to geometry processing can be posed as

function matching problems. Thus, we believe that the generality of our framework

will make it a valuable tool in many practical scenarios. In particular, we would like

to extend our machinery to match and interpolate between tangent vector fields, a

problem whose solutions are useful in fluid simulation techniques. Moreover, we would

like to generalize our method for computing barycenters or weighted averages of scalar

functions. Finally, we believe that our method can be also considered in the context of

geometry-aware texture synthesis interpolation.
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Figure 5.13: Our method matches only three functions on the data of Fig. 5.12, yet it provides
a better reconstruction of the reference functional map when compared to the method [COC15].
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Chapter 6

Functional Fluids on Surfaces

Fluid simulation plays a key role in various domains of science including computer

graphics. While most existing work addresses fluids on bounded Euclidean domains,

we consider the problem of simulating the behavior of an incompressible fluid on a

curved surface represented as an unstructured triangle mesh. Unlike the commonly

used Eulerian description of the fluid using its time-varying velocity field, we propose to

model fluids using their vorticity, i.e., by a (time varying) scalar function on the surface.

During each time step, we advance scalar vorticity along two consecutive, stationary

velocity fields. This approach leads to a variational integrator in the space continuous

setting. In addition, using this approach, the update rule amounts to manipulating

functions on the surface using linear operators, which can be discretized e�ciently using

the recently introduced functional approach to vector fields. Combining these time

and space discretizations leads to a conceptually and algorithmically simple approach,

which is e�cient, time-reversible and conserves vorticity by construction. We further

demonstrate that our method exhibits no numerical dissipation and is able to reproduce

intricate phenomena such as vortex shedding from boundaries.

6.1 Introduction

Fluids are fascinatingly complex and challenging to simulate, with applications ranging

from aerodynamics and meteorology to special e↵ects in computer animation, to name

just a few. While fluids in Euclidean domains have been extensively studied in both

Figure 6.1: Jet flow (left) and shear layer flow (right) on curved surfaces.
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computational fluid dynamics and computer graphics [Bri15], fluid simulation on curved

surfaces has mostly been limited to special cases (e.g., spheres) or particular surface

representations, such as subdivision surfaces [Sta03], and practical numerical simulation

methods are scarce. This is unfortunate, as simulation of fluids on surfaces has practical

value in a variety of domains, including, e.g., atmospheric research [MWC92], the

investigation of liquid crystal films [CM05, Bae12], and the entertainment industry.

The main obstacle to adopting successful numerical algorithms from Euclidean

domains to surfaces stems from the fact that a fluid is most often represented by its

velocity field, and the equations governing the behavior of the physical system require

computing derivatives of vector fields, which is challenging on a discrete surface.

Many fluids are naturally incompressible, i.e., the flow preserves the volume of the

fluid. In this case the flow can be represented by its vorticity, given by the curl of the

velocity field. In general, vorticity is a vector field that describes the local spinning

motion of the fluid. On two dimensional domains, such as surfaces in 3D, vorticity

can be represented as a (time-varying) scalar function. This change of perspective

significantly simplifies the analysis and simulation of a fluid, since its behavior can be

succinctly described using linear operators that act on real-valued functions on the

surface.

Although this fact is well known [Saf92], it has, somewhat surprisingly, received little

attention in the context of designing numerical methods for simulating fluids on surfaces.

We make use of this formulation in order to construct a time integrator for vorticity on

smooth surfaces, which is solely based on first principles of vortex dynamics. Our time

symmetric advection scheme is intuitive and easy to implement; yet, it turns out to

be variational, i.e., belonging to the class of structure preserving Lie group integrators

for so-called Lie–Poisson systems [MV91, BS99, MPS99], which can be described in

analogy to rigid body dynamics. Thus our method preserves momentum (i.e., vorticity)

exactly, despite being of low numerical order. This in turn leads to a method that is

qualitatively correct, numerically stable, and largely independent of the chosen time

step.

Our resulting integration scheme is based on updating the scalar vorticity function

in time. It involves the push-forward or advection of vorticity along the flow lines of a

given vector field. Unlike existing methods which require the explicit computation of

the flow lines of a vector field on a surface, we show that this advection can be simply

computed as a product of a matrix exponential with a vector in the discrete setting, by

leveraging the recently proposed functional framework for vector fields [ABCCO13] and

mappings [OBCS+12]. As we show in this paper, this change of viewpoint considerably

simplifies the implementation and improves the accuracy of our method.

We demonstrate that our results on Euclidean domains are comparable with existing

fluid integrators, while being conceptually simple and straightforward to implement.

Furthermore, we describe various experiments where our simulation reproduces the

results of analytically derived configurations (for example, spherical solutions), validating
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its numerical fidelity. Finally, we use our method for simulating flow near the inviscid

limit, including e↵ects from vortex shedding at boundaries.

6.1.1 Related Work

The research dedicated to computational fluid dynamics fills numerous books, and a

complete survey is beyond the scope of the paper. We thus restrict the discussion of

related work to Eulerian methods on compact two dimensional manifolds.

Velocity-based approaches. A fluid on a Euclidean domain can be modeled by a

time varying vector field by representing the components of the vector field as functions

on the domain (see, e.g., [Sta99]). This approach does not immediately generalize to

curved surfaces, however, where the representation of vector fields using coordinates is

problematic. One option is to use global or local surface parameterizations [LWC05,

HAW+09], which may introduce undesired distortion, or to restrict to special cases, such

as subdivision surfaces [Sta03]. A pioneering approach for fluid simulation on general

triangle meshes was suggested by Shi et al. [SY04], and later extended to deforming

surfaces in [NMZ07]; however, these methods require explicit computation of flow lines,

which is a challenging task. A related method [FZKH05] used an unstructured Lattice

Boltzmann Model to simulate fluid behavior on triangulated surfaces by considering

interactions between mesh vertices. This approach, however, also requires an explicit

representation for the fluid velocity, unlike our method which relies on manipulating

real-valued functions. Auer and colleagues [AMT+12] proposed a di↵erent technique

based on simulating the flow on a surrounding Euclidean grid and projecting it onto

the surface using the Closest Point Method. While simple and e�cient, this approach

requires a careful construction of the grid, whereas our method works directly on the

triangle mesh itself.

Vorticity-based approaches. Discrete Exterior Calculus (DEC) approaches have

been developed for simplicial manifolds. In principle, by avoiding parameterization,

these approaches provide a natural framework for simulating fluid flow. One of the first

methods to adopt this perspective was proposed by Elcott and colleagues [ETK+07],

using the vorticity formulation of incompressible fluid flow. Their method preserves

circulation, while ours preserves vorticity. We improve on their work by avoiding the

computation of flow lines of the velocity vector field, which tends to be both challenging

to implement and numerically unstable for triangle meshes. Additionally, our variational

approach does not su↵er from significant energy dissipation.

Another vorticity based method is proposed by De Witt and coleagues [DWLF12],

who use the eigenfunctions of the Laplacian for accelerating the computation, and in

order to avoid the somewhat costly Poisson step when computing the velocity from the

vorticity. While this method could potentially be extended to curved surfaces by using
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the eigenfunctions of the Laplace-Beltrami operator, such an approach would require

a large number of eigenvectors to correctly represent a detailed flow, which would be

prohibitively costly for large models.

Several existing methods exploit the principles of DEC in combination with structure

preserving variational time integrators [PMT+11, MCP+09]. We improve on these works

by exploiting additional structure that is only available in two dimensions: the real-

valued vorticity function. As a consequence, our approach requires only about a fifth

of the number of unknowns (vorticity vs. flux and pressure). Further, our formulation

avoids the computation of the Lie–Poisson bracket of vector fields, which is used to

express the time continuous fluid motion on smooth surfaces, but is di�cult to discretize.

Indeed, di↵erent from [PMT+11, MCP+09], by first discretizing time and then space, we

circumvent this di�culty and the attendant need of projecting back onto the subspace

of divergence-free vector fields. Then, using the framework of functional vector fields on

discrete surfaces [OBCS+12, ABCCO13], the spatial discretization is straightforward in

our setup, in particular by avoiding the costly computation of the flow lines of a vector

field on a surface for advecting the vorticity function.

Thus while being intrinsic, intuitive and easy to implement, our method is variational,

and thus preserves many structural properties of the flow even for large time steps.

Our method is time reversible and exhibits no numerical di↵usion. Additionally, it

conserves vorticity by construction. As a consequence, we automatically obtain correct

vortex shedding. This contrasts our method with (i) Lagrangian frameworks, where

vortex shedding is modeled by adding fractions of the boundary layer vorticity to the

flow [PK05, WP10] and (ii) Eulerian approaches where vortex shedding is hampered by

numerical di↵usion, requiring additional constructions, for instance using precomputed

boundary layers [PTSG09] or hybrid approaches [ZLCW13].

6.2 Fluid Flow on Surfaces

The motion of an incompressible and inviscid fluid on a two dimensional Riemannian

manifold (M, h., .i) is described by a time-dependent, divergence-free velocity vector

field ⌫t, whose time evolution is governed by Euler’s equation. Here we discus Euler’s

equation in its vorticity formulation, since this is the formulation that we work with.

Before introducing our temporal and spatial discretizations below, we first present the

time and space continuous setting. For further details on the vorticity formulation of

Euler’s equation, we refer to e.g., [Saf92, CMM90].

Fluid velocity. If we restrict our attention to a two dimensional manifold M, then

the divergence free velocity vector field ⌫t that characterizes the fluid motion has a

simple representation in terms of a time varying scalar function �t, known as the stream
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function. This relationship is given by

⌫t = �Jr�t + ⌘
0

, (6.1)

where r is the usual gradient operator acting on functions, J denotes a (pointwise)

rotation of a vector field by ⇡/2 in each tangent plane, and ⌘
0

is a time constant harmonic

vector field (i.e., both divergence and curl-free). If the manifold has a boundary, then

we further require that �t vanishes identically on it. Notice that (6.1) corresponds to

the Hodge–Helmholtz decomposition of ⌫t, using zero boundary conditions for �t.

The curl of the velocity vector field,

!t = curl ⌫t , (6.2)

is known as vorticity. While in 3D domains vorticity is itself a vector field, for two

dimensional manifolds it can be represented by a scalar vorticity function. In this case,

the stream function and vorticity are related through

!t = ���t , (6.3)

where � is the Laplace–Beltrami operator. Note that ⌫t is defined by !t up to the

harmonic component ⌘
0

and, for closed surfaces, �t is defined by !t up to an additive

constant.

Vortex dynamics. The fluid motion is governed by Euler’s equation, most compactly

expressed in vorticity form,

!̇t = �hr!t, ⌫ti , (6.4)

where !̇t =
d
dt!t is the time derivative of the vorticity function. A direct consequence

of this equation is that !t is frozen-in, i.e., it is transported in the same way as fluid

particles (see e.g. [Dav15, pg. 49]). The velocity field can be recovered from vorticity by

first computing the stream function �t using the linear equation (6.3) and then plugging

the result into (6.1). Hence, Eq. (6.4) can be viewed as an evolution equation for both

!t alone and for the whole fluid motion.

Viscosity. So far we have assumed the fluid to be inviscid, i.e., that there is no

energy loss due to viscous friction. Nonetheless, the limit of zero viscosity yields the

dynamical and visual complexity of fluids, such as smoke. The assumption of zero

viscosity di↵ers, however, from the limit of zero viscosity: in the absence of viscosity

there exists no mechanism for the creation of vorticity, while in the limit vorticity is

created through vortex shedding from boundary layers.1 While the above exposition

only treats the inviscid case, viscosity is readily incorporated into the equations of

1This insight explained d’Alembert’s paradox, which predicts vanishing drag on bodies moving with
constant velocity [AJ05].
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motion using Arnold’s observation [AK99] that viscosity can be regarded as an external

force acting on the fluid,

!̇t = �hr!t, ⌫ti � ⇢�!t . (6.5)

Note that this equation represents the vorticity form of the general Navier–Stokes

equation of fluid motion (in the absence of additional external forces), where ⇢ is scalar

representing the kinematic viscosity. We return to viscosity later in our exposition and

for now confine the discussion to the inviscid setting.

Flows of divergence-free vector fields. A key aspect of our method is the evolution

of the vorticity function along the flow-lines of the fluid’s velocity field. For this, we

recall the notion of the flow of a time-varying vector field.

Given a time-dependent velocity field ⌫t, its flow 't(p) describes the position after

time t of a particle that starts at a point p at time 0. Formally, the flow is defined via

'̇t(p) = ⌫t('t(p)), '
0

(p) = p, (6.6)

for all p 2M. Thus 't(p) defines a curve on M, and '̇t(p) is its tangent vector at the

point 't(p).

The flow 't is an invertible self-map on M, i.e., 't : M!M, and as such it can

also be used to transport real-valued functions on M. In particular, the flow 't acts

linearly on smooth functions f : M! R through the pushforward:

�t(f) = f � '�1

t . (6.7)

Note that �t is a linear operator acting on real-valued functions defined on M. In terms

of the flow of the velocity field, vorticity satisfies

!t = �t(!0

) , (6.8)

where !
0

= curl ⌫
0

and �t is the pushforward of the flow 't associated with ⌫t. Physically,

this resembles the well known fact that vorticity is advected along the fluid flow.

We introduce the flow as a conceptual tool here. However, our implementation does

not require an explicit calculation of the flow. Indeed, one of our key observations is that

discretizing Eq. (6.8) directly is much simpler than computing the flow 't, and can be

done e�ciently through a simple matrix exponential, by utilizing the recently proposed

functional representation for vector fields [ABCCO13], and mappings [OBCS+12]. In

this framework, �t is referred to as the functional map that corresponds to the flow 't.
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6.3 Time Discretization

When discretzing time (but not yet space), we seek to determine from an initial

vorticity !
0

, a sequence !i that exactly respects the defining properties of ideal fluid

flow (Eqs. (6.1), (6.3), and (6.8)), independently of the time step. We achieve this by

introducing a sequence of time-discrete flow updates, resembling the time-continuous

setting. Indeed, notice that Eq. (6.8) in the time-continuous case implies that !t+s =

�t+s(!0

) = �t(!s), suggesting that the time-discrete flow update can be performed

incrementally. Notice further that the identity �t+s(!0

) = �t(!s) implies ��t(!t) = !
0

,

which is known as conservation of vorticity.

Accordingly, we define in the time-discrete case:

Vorticity conservation: Each !i+1

is obtained by pushing forward !i, i.e., for two

consecutive !i, !i+1

there is a functional update map �i!i+1

such that

!i+1

= �i!i+1

(!i) . (6.9)

It remains to specify the exact structure of the linear operators �i!i+1

, which we

do as follows:

Self advection: The update �i!i+1

is obtained by the flows of the (time-constant)

divergence free velocity fields ⌫i and ⌫i+1

, which are (linearly) coupled with

vorticity via !i+1

= curl ⌫i+1

and !i = curl ⌫i. Namely, we first flow on ⌫i for a

fraction 1� s of the time step, and then on ⌫i+1

for a fraction s of the time step.

Hence, for s 2 [0, 1] we require

�i!i+1

= �i+1

s � �i
1�s , (6.10)

where �i
s is the functional representation of the flow of ⌫i for time t = s h for a

given time step h (see Fig. 6.2).

Combining Eqs. (6.9) and (6.10) we obtain a one-parameter family of time integrators,

�i+1

�s (!i+1

) = �i
1�s(!i) . (6.11)

Note that Eq. (6.11) is a non-linear implicit equation for !i+1

since �i+1 depends

non-linearly on !i+1

. We describe a way to solve this equation in practice in Sec. 6.4,

in particular using Eq. (6.16), which considers the explicit dependence of �i+1 on ⌫i+1

(and thus !i+1) in the discrete setting.

Two particular choices of s stand out: For s = 0 we obtain the explicit update

equation

!i+1

= �i
1

(!i) ,

which gives rise to a particularly e�cient (but less accurate and stable) implementation.

Instead, in order to maintain structure preservation, we work with s = 1/2 to obtain an
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!i+(1�s)
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�i
1�s

�i+1

s

�i+1

�s

�i!i+1

= �i+1

s � �i
1�s

Figure 6.2: The new vorticity !i+1

is obtained by first advecting !i along ⌫i for a fraction 1� s
of the time step, and then along ⌫i+1

for the remainder of the time step. This is equivalent to
matching the forward advected !i (along ⌫i) with the backward advected !i+1

(along ⌫i+1

).

implicit, time-reversible trapezoidal scheme,

�i+1

�1/2(!i+1

) = �i
1/2(!i) . (6.12)

In summary, the above update method computes !i+1

from !i through the flows �i+1

�1/2

and �i+1

1/2 of the two stationary vector fields ⌫i+1

and ⌫i. We stress again that in our

implementation we avoid explicit computation of flows, as explained further below.

Note that the reversible nature of the time-integrator immediately implies that there

is no loss of information in between time steps, i.e., our algorithm has no numerical

di↵usion. As we further conserve vorticity by construction, we achieve plausible and

stable fluid simulations even for large time steps over long simulation periods.

Discussion. Our method is a trapezoidal rule and thus second order in time. Apart

from the invariants enforced by construction, our time discretization also preserves

the Hamiltonian structure of ideal fluid flow in continuous space. In fact, our method

can be derived along the lines of [BS99] using a suitable discrete Lagrangian and

thus belongs to the class of structure preserving Lie group integrators for Lie–Poisson

systems [MV91, BS99, MPS99]. Note, however, that this depends crucially on the fact

that the space of smooth functions on M carries a so-called Poisson structure. In the

spatial discretization we are unaware of such a structure, leading to a method which is

no longer Poisson but still variational, similar to existing variational fluid integrators on

spatial discretizations [PMT+11].
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t=0 t=4 t=11 t=15

Figure 6.3: Taylor vortices in the plane with periodic boundary conditions. Compare
with [MCP+09, Fig. 4].

6.4 Spatial Discretization

In the discrete case, we are given a triangle mesh M = (V ,E ,F ), and need to represent

scalar functions, vector fields, and the corresponding operators that map between them.

In addition, we require a spatial discretization for the advection operators �i
s.

We represent real-valued functions as scalars on the vertices of the mesh, i.e.,

f : V ! R, and extend them to the whole surface using the standard piecewise linear

hat basis functions. We also consider vector fields as being piecewise constant on the

faces of the mesh, i.e, ⌫ : F ! R3, s.t. each ⌫ is parallel to the plane spanned by face i.

Di↵erential operators. We use two sets of functions as the representatives of our

vector fields: the stream functions �t, and the vorticities !t. To mimic the continuous

case, we require operators r, curl, div, and � to be such that the following relationships

hold:
⌫t = �Jr�t + ⌘

0

, !t = curl ⌫t

+

div ⌫t = 0, !t = ���t .

(6.13)

Remarkably, the standard operators used in the literature fulfill these properties (as is

shown in [PP03]), making spatial discretization straightforward in our setting.

Functional operators. In the time-continuous setting, vorticity is pushed forward

from the initial vorticity !
0

using the (functional representation) �t of the flow of ⌫t.

In the time-discrete setting, where the vector fields ⌫i are stationary in between time

steps, we can in principle directly compute the flow of ⌫i and advect !i along this

flow. This computation, however, is both costly, di�cult to implement and is prone to

instabilities. Instead, by considering the recently proposed functional representation of

vector fields [ABCCO13] we show that the advection of vorticity can be done directly

without computing the flow.

In particular, we follow [ABCCO13] to represent vector fields by their action on

scalar functions. Namely, given a vector field ⌫, the authors propose to consider the
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Figure 6.4: When the vector field on the left is used as initial condition, the corresponding
vorticity simply rotates on the sphere (middle left). The graph (middle right) shows the relative
kinetic energy of the vector field at time t compared to the initial energy, for di↵erent time
steps h. The maximum change is on the order of 10�5. Compared to the Runge-Kutta time
integrator our method is more stable for a longer time with a larger time step (right).

associated derivation operator, given by:

V(f) = hrf, ⌫, i . (6.14)

Following [ABCCO13], we discretize Eq. 6.14 so that given a scalar function f on the

vertices of the mesh, g = V(f) is another such function, whose value at vertex i is given

by:

gi =
1

P

j2N(i)Aj

X

j2N(i)

hrfj , ⌫j , Aij , (6.15)

where the sums run over all faces adjacent to vertex i, rfj denotes the value of rf in

face j, and Aj is the area of the jth face. The resulting linear operator is given by a

sparse matrix of size |V |⇥ |V |, which is obtained by applying V to the piecewise linear

hat basis functions. In the following we identify V with this matrix.

The main advantage of representing vector fields as linear operators acting on

functions in our setup is that (the functional representation of) the flow of a stationary

vector field ⌫ is simply given by the matrix exponential of V (see [ABCCO13, Lemma

2.5]). Thus, the functional map corresponding to the flow of ⌫ can be computed directly

from V via

�s = exp (s hV) . (6.16)

Furthermore, advecting a function f with the flow �s of ⌫, can be done simply by the

matrix vector multiplication exp (s hV) f . Crucially, in the discrete setting, this product

can be computed e�ciently without evaluating the full matrix exponential, which can

be both dense and di�cult to approximate [AMH11]. We leverage this insight in the

context of fluid simulation by using Equation (6.16) to derive an accurate and stable

advection procedure, which circumvents the need to compute the full flow of the velocity

field.

This leads to the following space-discrete version of Eq. (6.12):

exp

✓

�

h

2
Vi+1

◆

!i+1

= exp

✓

h

2
Vi

◆

!i . (6.17)
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Figure 6.5: Taylor vortices on curved surfaces exhibit the same qualitative behavior as in the
plane.

Notice that the above equation is an exact integration of ! advected along piecewise

constant flows. This is in contrast to approaches advecting velocity [MCP+09, PMT+11],

where by construction only low order approximations can be used. We practically observe

that for our method a first order approximation of the exponential map is su�cient

and does not decrease simulation quality. This amounts to time integration using the

trapezoidal rule in the spatial discretization, preserving second order accuracy from the

space continuous setting. Since, to our knowledge, a proper spatially discrete Poisson

structure is missing, our time integrator may no longer be Lie–Poisson in this case.

Nonetheless, it is still variational, time reversible, and vorticity conserving.

6.5 Implementation

Our temporal and spatial discretizations lead to a simple algorithm, which evolves the

vorticity in time, by computing !i+1

from a given !i, so that the whole fluid motion is

obtained from an initial vorticity !
0

. Below we discuss implementation details required

for making our method practical and e�cient.

Solution of the non-linear equation. The update rule we suggest in Eq. (6.17) is a

non-linear equation for !i+1

, since Vi and Vi+1

depend (linearly) on !i and !i+1

through

!i = curl ⌫i and !i+1

= curl ⌫i+1

, respectively. For an e�cient solve, we (i) express

!i+1

in terms of the stream function �i+1

and (ii) use the first order approximation
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Figure 6.6: A pair of vortices with equal but opposite strength on a hyperbolic surface. The
vortices move to the boundary where they separate, travel independently along the boundary,
and join again at the opposite side. The bottom row shows the same experiment on a poor
triangulation, emphasizing the robustness of our method to the underlying mesh. This experiment
is with zero viscosity. Compare with Fig. 6.11 for similar initial conditions, with non zero
viscosity, which yields vortex shedding from the boundary.

exp("A) ⇡ I + "A of the matrix exponential. That is, we solve

�

✓

I +
h

2
Vi

◆

!i =

✓

I �
h

2
Vi+1

◆

��i+1

, (6.18)

which is quadratic in �i+1

, and then recover !i+1

and ⌫i+1

using Equations (6.13):

!i+1

= ���i+1

, ⌫i+1

= �Jr�i+1

+⌘
0

, where ⌘
0

is computed from ⌫
0

. This formulation

allows for deriving an analytic expression of the attendant Jacobian as a sparse matrix—

an essential feature for e�ciency. This, in turn, allows for using a standard Gauss–

Newton solver, which typically converges in two to five iterations. As an initial guess

for the solver, we use the one-point quadrature ���i+1

⇡ exp (hVi)!i, which can be

computed e�ciently [AMH11].

Viscosity. So far we have only discussed inviscid fluids. However, as explained above,

the treatment of viscosity can be readily integrated into our method. Adding the viscous

force to both sides of the update equation (6.18) leads to
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. (6.19)

Adding viscosity not only allows for simulating complex physical phenomena, such as

vortex shedding, as we explain in the next section, but also has numerical advantages.

Indeed, various Eulerian methods su↵er inherently from numerical dissipation, to the

extent that makes it necessary to re-inject lost vorticity [FSJ01]. Other Eulerian methods

with no numerical dissipation (such as [MCP+09, PMT+11] and ours) require explicit

addition of viscosity in order to prevent discretization artefacts. Indeed, while in the
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t=0 t=8.5 t=17 t=25

t=33 t=42 t=47 t=57

Figure 6.7: The above initial configuration on a sphere is known to collapse for singular point
vortices [VL13]. Our method successfully reproduces this result.

spatially continuous case energy cascades to smaller and smaller scales [Cho94], the

number of available frequencies in the spatially discrete setting is limited. Without

viscosity, this results in accumulation in the highest available frequencies, leading to

discretization artefacts.

Boundaries. The treatment of domains with boundary is straightforward in our

approach. We solve Eq. (6.19) under the constraint that the stream function � is zero

along every boundary component. In practice we use a sparse matrix that maps functions

from all mesh vertices to interior vertices (by simply ignoring boundary vertices). This

matrix is applied to Eq. (6.19) as well as to its Jacobian, and we solve for inner vertices

only using Gauss–Newton’s method.

6.6 Evaluation

We have extensively evaluated our algorithm, with focus on numerical stability, energy

behavior, and physical correctness. We have simulated known solutions on planar

domains in order to compare our results with existing methods, and used flows with

known analytic solutions on curved surfaces. Further, we have simulated a number of

interesting flows on curved surfaces, including e↵ects from vortex shedding at boundaries

near the inviscid limit, which are inspired by previous work. All the results are also

shown in the accompanying video. All figures, unless mentioned otherwise, show vorticity

of the flow, color coded on the surface. In figures 6.4 and 6.5 the flow is additionally

visualized using the method of [PZ11]. Finally, we investigated how the time varying

operator Vt can be used to uncover global behavior of the flow.

Performance. We used a non-optimized MATLAB implementation, with a standard

Gauss–Newton solver for Eq. (6.19), using the analytic, sparse Jacobian. In all our
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t=57t=0 t=67 t=83

Figure 6.8: A ring of 6 vortices exhibits di↵erent behavior when placed on di↵erent parts of
an oblate spheroid (left). The top row shows vortices placed closer to the tip of the spheroid
(red dots in the illustration), and the bottom row shows the behavior for similar vortices placed
closer to the x� z plane (blue dots in the illustration).

experiments, the method was very stable and converged in 2�5 Newton iterations (using

a tolerance of 10�7), depending on time step size and flow complexity. The experiments

were performed on an Intel i7 processor, with 16 GB RAM. In our experiments the

method scaled linearly with mesh size, and a single Newton iteration typically took

around 1 second per 10K vertices.

6.6.1 Analytic solutions

Planar Taylor vortices. We first tested our method on the well-known Taylor

vortices configuration on a planar Euclidean domain with periodic boundary conditions

(see e.g., [MCP+09]). In this experiment, two Taylor vortices either merge or separate

depending on their initial distance. Taking this distance to be just above the critical

bifurcation threshold (i.e., the vortices should separate) provides an excellent test case

for fluid simulation methods (see [McK07, Eq. (1.16)] for initial conditions). Our method

reproduces this complex dynamical behavior and produces correct results as shown in

Fig. 6.3 (compare with [MCP+09, Fig. 4]).

Rotating sphere flow. On the sphere an analytic solution exists for fluid flow, whose

initial condition consist of the combination of a Killing vector field with a rotated

gradient of an eigenfunction of the Laplace-Beltrami operator. In particular, it can be

shown that the energy of inviscid flow with these initial conditions remains in the low

frequencies, giving a periodic motion. This makes the configuration a good test case

for energy conservation, and for validating qualitative behavior of our solver. Energy

plots for di↵erent time steps are shown in Fig. 6.4. The relative change in energy is

on the order of 10�5. Note that while our method remains stable for a time step of

h = 2 · 10�3, replacing our time integrator with a Runge-Kutta time integrator leads to

significant energy loss for a much smaller time step.
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t=0 t=15.5 t=23

Figure 6.9: A double shear flow on a hyperboloid. Note the thinning of the shear layers, and
the creation of vortices. See [SS13] for the reference behavior in the plane.

6.6.2 Vortex configuration on surfaces

Taylor vortices on a curved surface. We generated initial conditions similar to the

Taylor vortices in the plane on a curved surface representing a hand. We used the same

parameters as in [McK07, Eq. (1.16)], measured as geodesic distances (using [CWW13])

on the mesh. Fig. 6.5 shows frames from the animation, yielding the same qualitative

behavior as in the plane.

Vortex pair. In the plane, two point vortices of equal and opposite strength translate

along the orthogonal bisector of their connecting line. This can be viewed as a zero

dimensional vortex ring, i.e., the 2D equivalent to a circular vortex filament in 3D.

In Fig. 6.6 we demonstrate the same qualitative behavior on a hyperbolic surface. In

the absence of viscosity the vortices travel towards the boundary, where they separate

and move independently along the boundary, until they meet again at the opposite

side. This configuration is extremely stable over very long simulation times (performing

the periodic motion several times), demonstrating the absence of numerical di↵usion,

vorticity conservation, and excellent energy behavior of our method.

The qualitative behavior of other point vortex configurations is also reliably repro-

duced by our method. For instance, Fig. 6.7 shows a configuration on the sphere which

is known to collapse [VL13].

Oblate sphere. It is known that N point vortices (with N < 7) on a round sphere

stay in a stable relative equilibrium, when equally spaced along a latitude circle below a

critical colatitude [VL13]. We demonstrate a similar configuration on a stretched (along

one axis) sphere, where point vortices are replaced by Gaussian vortices. As shown in

Fig. 6.8 in the top row, when placing the vortices around a “flat” pole below the critical

angle (for point vortices on a round sphere), the flow preserves the six fold symmetry,

as in on the round sphere. In the bottom row, the vortices are positioned above the

critical angle (i.e. further from the tip), and symmetry breaks. Still, the vortices show

periodic behavior, indicating that the corresponding point vortex configuration might

be integrable. To our knowledge such configurations have not been studied analytically.
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t=4 t=7.1 t=11.9

Figure 6.10: Two jet simulations on a sphere with a symmetric triangulation. On the top row
the initial vorticity function shares the symmetry of the mesh. Our method preserves this
symmetry, yielding a symmetric flow. On the bottom row the initial vorticity is no longer
symmetric, yielding a more realistic turbulent flow. For such unstable flows the simulation is
sensitive to the discretization of the initial vorticity.

Double shear flow. Two vortex layers of equal but opposite strength with small

perturbations generate a vortical flow with a symmetric structure [SS13, Section 4.2].

We use similar initial conditions on the hyperboloid. The resulting flow exhibits the

same qualitative behavior, including the intricate symmetries. Fig. 6.9 shows frames

from the resulting simulation. Note how vortices curl up, creating thinner and thinner

vortex lines, similarly to the reference behavior in the plane.

6.6.3 Turbulent flow and vortex shedding

Jet on a sphere. A jet is modeled by steadily injecting vorticity of equal but opposite

strength at both sides of the jet’s orifice. Fig. 6.10 shows two jet simulations on a

symmetric triangulation of the sphere. In the top row, the initial vorticity function

shares the symmetry of the mesh, and due to the stability of our method, this symmetry

is exactly preserved by the flow. In the bottom row, the initial vorticity is not exactly

symmetric with respect to the triangulation, which introduces instabilities in the flow,

leading to a more realistic simulation. In general, unstable flows such as this are sensitive

to the discretization of the initial conditions.

Vortex shedding. As explained before, our method naturally handles vortex shedding

from boundaries. We used a pair of point vortices on the Enneper’s surface, as in Fig. 6.6,

but with non-zero viscosity. In contrast to the inviscid case, where the two vortices

separate and travel along the whole boundary, with viscosity vortex shedding from the
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t=23 t=32.5 t=46 t=54.5

Figure 6.11: Two vortices collide with the boundary on the Enneper’s surface. Note the details
in shed vorticity generated by the boundary due to viscosity. Compare with Fig. 6.6 for similar
initial conditions but zero viscosity.

boundary generates two additional small vortices which “trap” the original vortices and

prevent them from circulating, see Fig. 6.11.

In the accompanying video we also show the wake behind a two dimensional cylinder

on a round sphere, generated through vortex shedding.

6.6.4 Flow properties

Globally invariant functions. In addition to being instrumental in the computation

of vorticity advection, the functional representation of vector fields of Azencot et

al. [ABCCO13] also allows us to gain information about di↵erent properties of the flow,

that would be di�cult to obtain otherwise. Here, we briefly outline one such application

and leave further exploration as future work.

Given the solution to a flow, we may be interested in finding regions of the surface

that are invariant under the flow, i.e., regions from which the fluid does not leave or

regions into which the fluid does not enter during the simulation. We relax this problem

to consider all functions f such that �t(f) = f for all t. In order to find such a function,

note that if f is mapped to itself under the flow of a constant vector field ⌫, then

exp(tV)f = f for all t, which means that Vf = 0, or equivalently that f is in the kernel

of V . Therefore, we are looking for a function f that is simultaneously in the kernels of

all Vt. Notice that this is the case if and only if f is in the kernel of
P

t V
T
t Vt, where we

are using that in the time-discrete case there exist only finitely many temporal sample

points. Using this observation, we compute the kernel of
P

t V
T
t Vt for the rotating flow

from Fig. 6.4 and the stable vortex ring from Fig. 6.8. The resulting functions in the

respective kernels are shown in Fig. 6.12.

6.7 Conclusion

Building on the vorticity formulation of fluids, we presented a method for temporally

and spatially discretizing the equations of fluid flow. The attendant time integrator

for the inviscid case is variational, preserves vorticity exactly, is time reversible, and
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λ ≈1e-3i

λ ≈1e-10i

Figure 6.12: A function which is invariant to the whole flow, computed from the flow’s kernel.
Top row, for the flow from Fig. 6.4, and bottom row for the flow from Fig. 6.8.

does not exhibit numerical di↵usion. Additionally, our approach allows for adding a

principled treatment of viscosity, enabling the simulation of complex phenomena, such

as vortex shedding, without any special or unphysical treatment of boundary layers.

The resulting algorithm is e�cient, simple to implement, and leads to unprecedented

simulation results of fluid flow on curved surfaces, which were previously only possible

for flat Euclidean domains.

In our derivation, we have first discretized time and then space, thereby suggesting a

variational integrator in the spatially continuous setting. At the core of our integration

lies the observation that each time step can be performed along two consecutive stationary

velocity segments. The flow corresponding to these stationary segments can e�ciently

be computed using the functional point of view in the spatially discrete case, where it

simply corresponds to a matrix exponential. We have demonstrated how to achieve

e�ciency by approximating this exponential up to first order terms, without sacrificing

stability.

116



Chapter 7

Functional Thin Films on

Surfaces

The motion of a thin viscous film of fluid on a curved surface exhibits many intricate

visual phenomena, which are challenging to simulate using existing techniques. A

possible alternative is to use a reduced model, involving only the temporal evolution

of the mass density of the film on the surface. However, in this model, the motion is

governed by a fourth-order nonlinear PDE, which involves geometric quantities such as

the curvature of the underlying surface, and is therefore di�cult to discretize. Inspired

by a recent variational formulation for this problem on smooth surfaces, we present a

corresponding model for triangle meshes. We provide a discretization for the curvature

and advection operators which leads to an e�cient and stable numerical scheme, requires

a single sparse linear solve per time step, and exactly preserves the total volume of the

fluid. We validate our method by qualitatively comparing to known results from the

literature, and demonstrate various intricate e↵ects achievable by our method, such

as droplet formation, evaporation, droplets interaction and viscous fingering. Finally,

we extend our method to incorporate non-linear van der Waals forcing terms which

stabilize the motion of the film and allow additional e↵ects such as pearling.

7.1 Introduction

The intricate motion of a viscous thin film subject to external forces, such as gravity,

inspires research in physics, mathematics and computer science, among other scientific

disciplines. In many scenarios the domain on which the fluid resides is curved rather

than flat. The tear film on the cornea of the eye [BUM+12], the dynamics of lava

flows [Gri00] and the formation of ice on the aerofoil of an aircraft [MC04], are all

examples related to the evolution of thin films on curved geometries. The goal of this

paper is to suggest a method for simulating thin films on surfaces, which is based on

gradient flow evolution and the operator view of the flow induced by tangent vector

fields.
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Generally, the Navier–Stokes equations coupled with appropriate boundary condi-

tions are assumed to give a good approximation of the film’s dynamics. However, for the

flows we are interested in, these equations are considered di�cult to solve numerically,

especially on curved domains. Moreover, in the case of thin films we can assume

an extremely small height-to-length ratio which leads to a substantial simplification

through the lubrication approximation [Rey86]. Namely, under the assumptions of the

lubrication model, the evolution of the film’s mass density is governed by a fourth-order

nonlinear partial di↵erential equation (PDE).

A natural approach to simulate thin films within this reduced model would then be

to discretize the resulting PDE (e.g., [RRS02]). Choosing such a strategy, however, one

will be faced with two main challenges. First, one will need to derive a suitable set of

discrete di↵erential operators acting on discrete curved domains (e.g., triangle meshes).

Then, the second task will be to construct a proper numerical time integration scheme.

While any attempt to discretize general PDEs will encounter these obstacles, in the

particular case of thin films, the restriction on the time step size (see e.g., [GBS06])

makes the usage of explicit schemes impractical. Although it is possible to use implicit

schemes instead, such schemes do not guarantee in general the preservation of the

underlying structure. For example, conserved quantities in the continuous setting (such

as the total volume of the thin film) may become non-conserved in a discrete framework.

Due to the above obstacles, direct discretization of the PDE is usually considered less

attractive.

An alternative point of view is to leverage the gradient flow structure which is known

to exist for thin film equations (see e.g., [GO03, RV13]). In this model, the motion of

the film is determined by the minimizer of a certain cost function, which is defined over

the manifold of all possible densities of the film with prescribed volume. Intuitively, the

cost function is minimized when the resistance of the fluid to flow due to dissipation

induced by friction balances the additional forces (e.g., surface tension and gravity) that

act on the film. One of the advantages of this approach is that every gradient flow has

a natural time discretization which leads to a variational problem. In practice, it allows

for significantly larger time steps compared to explicit numerical schemes. Furthermore,

by construction, the associated energy is guaranteed to decrease at each step.

However, we still need to address the issues of modeling the underlying mass transport

and the conservation of fluid volume. A reasonable choice within the gradient flow

model is to minimize the cost function under an additional constraint given by the

transport equation. Intuitively, the transport equation describes how the mass density

is a↵ected by the motion of the fluid through the corresponding velocity field. Recently,

[ABCCO13] suggested a coordinate-free approach for solving the transport equation on

triangulated surfaces by representing tangent vector fields as linear operators on scalar

functions. Their method is advantageous since it avoids the complicated integration of

the fluid’s motion, while ensuring the preservation of the integral of the transported

quantity.
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Figure 7.1: Vanilla sauce on a chocolate bunny. The physical parameters are b = 20, ✏ = 0.1,� =
0.

In this work, we argue that the gradient flow model combined with the operator view

of tangent vector fields leads to a robust and highly e�cient simulation tool. Specifically,

we consider the thin film model of [RV13] in the presence of a precursor layer (i.e.,

the film resides on top of a very thin layer defined over the whole domain) and in the

geometric setting of triangulated surfaces. Under the assumption that we are given

an approximate normal field, we present formulations of discrete curvature operators

which are tailored for our model. In addition, we employ insights from [ABCCO13] to

advect the mass function of the thin film in a manner which causes very little numerical

dissipation, and is guaranteed to conserve exactly the total volume of the fluid. The

resulting method boils down to a linear solve of a sparse system per time step. We

demonstrate the e↵ects of curvature, gravity (see e.g., Fig. 7.1) and material parameters

on the flow, and qualitatively compare our results to previous numerical simulations.

Finally, we present various e↵ects (e.g., droplet formation and interaction) which are

achievable within our framework.

7.1.1 Related Work

As the behaviour of viscous thin films on surfaces has not, to the best of our knowledge,

been previously simulated in the graphics community, we focus our attention on Eulerian

methods from the computational fluid dynamics community, and to work on similar

phenomena which appeared in the computer graphics literature.

The evolution of thin films over arbitrary domains has been an active area of

research in CFD for many decades. We refer the interested reader to the seminal

review by [ODB97] and to the more recent review by [CM09]. These reviews present a

continuous model for thin films, based on lubrication theory, which defines a reduced

model for the 3D Navier–Stokes equations given the assumption of a small thickness of

the film.

One approach to thin film simulation is to directly discretize the governing PDE as

was shown for planar (see e.g., [ZB99, GR00]) and curved (see e.g., [RRS02]) domains.

In general, this point of view leads to several challenges, of which the restriction on

the time step size for explicit schemes is perhaps the most problematic. Namely, the

application of a CFL-type condition leads to the requirement that the time step ⌧ is on

119



the order of (�x)4, where �x is the minimal edge length. To overcome this constraint,

[GBS06] employed convexity splitting for their time integration scheme (within a level-

set framework). Nevertheless, their scheme does not guarantee conservation of the

fluid’s volume, and has additional restrictions due to the level-set formulation.

An alternative discretization for thin films can be derived from the gradient flow

model, for which a natural variational time integrator exists. In general, variational

integrators are known to conserve the underlying structure, e.g., the variational scheme

in [MCP+09] preserves a notion of discrete momentum. For the case of thin films

over curved domains (see e.g., [Van14, RV13]), the gradient flow approach leads to an

attractive numerical scheme. In the latter work, which is closest to our approach, the

authors used Discrete Exterior Calculus (DEC) [Hir03] for the spatial discretization,

representing the flux field with discrete 1-forms. Our approach di↵ers from their work as

we use a velocity based formulation, leverage [ABCCO13] for the advection, and suggest

discrete curvature operators. These changes allow us to generate stable simulations on

meshes with obtuse triangles which are common in graphics. A detailed comparison

with [RV13] is given in Sections 7.2 and 7.4.

We conclude with some representative related work from the graphics community

literature. Free surface flows for highly viscous fluids were suggested in [CMVHIT02],

where e↵ects such as melting wax are demonstrated. While one could consider adding

a surface as a solid boundary and using a similar approach for simulating viscous

films, it would be quite di�cult to achieve the intricate e↵ects we show without

using a very dense grid resolution. More recently, various methods were proposed

for modeling thin features in free surface flows by explicitly tracking the free surface

mesh [WMFB11, ZWW+12], by using thickened triangle meshes [BUAG12], tetrahedral

elements [CWSO13], or simplicial complexes [ZQC+14], to mention just a few. Such

approaches, however, require careful manipulation of the connectivity and topology of

the free surface geometry, which are avoidable when simulating films on surfaces, as the

free surface can be represented as a scalar function.

Finally, some approaches simulate water related phenomena. [WMT05] model the

contact angle with the surface, representing the free surface with a level-set based

distance field. While various e↵ects are achievable with this approach, the method

requires a high-resolution grid which leads to a time-consuming system requiring a few

days of computation per simulation. On the other hand, using a height field based

method as in [WMT07] considerably reduces computational complexity, however, the

instabilities and e↵ects we demonstrate below were not shown there.

7.1.2 Contributions

Our main contributions can be described as follows:

• A discrete model for thin film evolution on general triangle meshes.

• An e�cient and robust scheme, which exactly preserves the total fluid’s volume.
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• Simulation of various intricate e↵ects, such as fingering, evaporation and droplet

formation, interaction between droplets and pearling.

7.2 Dynamics of thin films

We investigate the evolution of a layer of an incompressible viscous fluid flowing with

velocity v on top of a curved surface �, under the influence of surface tension and,

potentially, gravity. The liquid layer is attached to the surface at the liquid-solid

interface, i.e., no-slip boundary condition (we extend this later), whereas the liquid-air

surface is evolving freely. A typical scenario is illustrated in Figure 7.2 showing the

notation for various related quantities.

Navier–Stokes equations. A common approach for modeling the evolution of thin

liquid films is to consider the Navier–Stokes equations. These equations describe the

fluid’s velocity in the liquid phase (the bulk), the surface tension on the liquid-air

interface (i.e., the free surface), and a suitable boundary condition for the velocity in

the liquid-solid interface (i.e., on the solid surface). Formally, the fluid velocity v and

the pressure p satisfy the equations:

@tv + (v ·r)v � µ�v +rp = 0 in the bulk

div v = 0 in the bulk

v = 0 on the surface

�n � �Hn = 0 at the free surface

(7.1)

where � = �p id+µ(rv +rvT ) is the stress tensor, µ and � are the viscosity and the

capillary constants (see Fig. 7.2). Furthermore, the free surface x itself evolves according

to the kinematic condition @tx = v .

Unfortunately, a straightforward discretization of these equations is challenging. In

particular, to achieve the type of e↵ects we show below, the main obstacle is due to

the prohibitively small time steps which are imposed by such a method. Moreover,

the spatial discretization is also challenging since Eulerian methods will require dense

sampling of the domain, whereas Lagrangian techniques will involve complex tracking

of the free surface. Therefore, direct discretization of equations (7.1) is not practical for

graphics applications for this type of problems.

Lubrication approximation. Since we are interested in thin films, a reduction in

dimensionality can be achieved by using the lubrication approximation model (see

e.g., [ODB97]). In this model, the dynamics of the film are governed by the evolution

of a function (i.e., a scalar quantity) defined on the surface �.

Given a characteristic scaling of height and length, the key assumption to consider

is a small height to length ratio, i.e., ✏ = height

length

⌧ 1. Then, one takes into account
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Figure 7.2: A typical scenario is illustrated for the full 3D Navier–Stokes (left) compared to the
reduced lubrication model (right). Notice that under the lubrication assumptions the involved
quantities are computed directly on �, e.g., u is a scalar function.

an asymptotic expansion of the Navier–Stokes equations with respect to ✏, where the

resulting thin film equations are composed of the leading order terms. Taking this path,

a derivation of a lubrication model without gravity for the mass density u on curved

domains yields equations of the form (see [RRS02] and [RV13]):

@tu = div
�

(M(u)r
�

p) (7.2a)

M(u) =
1

3
u3 id+

✏

6
u4(H id�S) (7.2b)

p = �H � ✏Tu� ✏�
�

u (7.2c)

where M(u) is the mobility tensor (to be discussed later) and p can be considered as a

pressure-like quantity on the surface, i.e., the fluid moves away from areas of high p.

H and K are the mean and Gaussian curvatures, T = H2

� 2K, and S is the shape

operator.

Notice that inertia e↵ects are neglected in this model, i.e., the Reynolds number

is assumed to be small, Re⌧ 1, as expected (by simple scaling arguments) for a thin

enough film. Moreover, we assume that the mass density u is a proper function. As

u is closely related to the fluid’s height h, that is u = h � ✏
2

Hh2, the consequence of

the former constraint is that the free surface is assumed to be representable as a height

function over �, and hence, e.g., contact angles higher than ⇡/2 and wave-like structures

cannot be modeled with equations (7.2).

In addition to providing a reduced model for the Navier–Stokes equations, the

thin films equations are also instrumental for analyzing the behavior of the flow. As

mentioned above, the fluid flows towards low pressure areas thus visualizing p allows

to evaluate the underlying dynamics of the film. Moreover, a qualitative study of the

expected flow can be done by estimating the di↵erent scales of the various components

in p. For instance, the dominating term in Eq. (7.2c) is the mean curvature and hence

the dynamics on curved domains are expected to be completely di↵erent when compared
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Figure 7.3: By visualizing the pressure we can identify regions where the fluid is likely to
accumulate. For example, for an initially uniform layer of fluid, the initial pressure p

0

indicates
that fluid is expected to concentrate at the respective centers, where the pressure is lowest. See
Fig. 7.4 for the temporal evolution of the flow.

to the flat case (where H = 0). Indeed, we demonstrate this and other e↵ects in the

following example.

In Figure 7.3 we show the color coding of the pressure computed for an initial

uniform deposition of liquid on a bumpy plane (left) and on the Scherk surface (right).

These figures suggest that the fluid is most likely to accumulate at the center of the

respective surfaces, where the pressure is low. Indeed, we show in Figure 7.4 (top) the

color coding of the evolution of the mass density u on the bumpy plane, starting from a

uniform layer of fluid. In this case, since the dominating term is H (top, left), the film

flows towards the maximal mean curvature, at the center of the basin. Similarly, for

a minimal surface, namely when H = 0, the terms that govern the dynamics are the

Gaussian curvature and the Laplacian of u. In Figure 7.4 (bottom), we show frames

of the flow on the Scherk minimal surface, starting again from a uniform layer of fluid.

Here, the initial Laplacian of u is 0 thus the minimal Gaussian curvature (bottom, left)

drives the fluid towards the center of the surface.

Unfortunately, the simulation of thin film flow based on a PDE of the form (7.2)

su↵ers from serious drawbacks. First, explicit discretization of equation (7.2) requires

very strong time step restrictions, and stable (semi-)implicit discretizations allowing

for large time steps, are unknown. Second, qualitative properties, such as volume

preservation and energy decay, are di�cult to ensure. Finally, on general triangulated

surfaces it is unclear how to discretize the geometric quantities in a physically consistent

way.

These issues motivate a di↵erent approach—instead of directly discretizing the PDE,

it is possible to model the evolution from the variational perspective of gradient flows,

as was first suggested in [RV13]. To introduce the concepts to the graphics community,

and to keep the paper self contained, we first briefly describe the gradient flow model of

thin films, and then discuss our modifications in the next section.

Gradient flow model. The key insight behind the variational approach is that the

quantity p can be viewed as the negative (Fréchet) derivative of the free energy functional
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t=0H t=0.27 t=2.34

t=0 t=3534t=281K

Figure 7.4: (top) The motion of the film primarily depends on the mean curvature thus the
fluid concentrates in the center basin, u

0

= 0.1, ✏ = 0.1. (bottom) For minimal surfaces (i.e.,
when H = 0) the film is mostly influenced by the Gaussian curvature as shown for the Scherk’s
surface, u

0

= 0.1, ✏ = 1.
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dx so that the PDE (7.2) is of the gradient flow

form @tu = �G( �E
✏

(u)
�u ). The evolution of u then can be understood as a “steepest”

descent for the free energy E

✏, at a rate regulated by the mobility M(u) via the function

G(�) = div
�

(M(u)r
�

�). The previous statement can be made precise by introducing

the flux f = �M(u)r
�

p, so that the PDE can be written in the form of a flow equation

as

@tu = � div
�

f. (7.3)

Then the gradient flow is equivalent to the statement that the free energy decays as
d
dtE

✏(u) = �D✏
u(f, f)  0, where the bilinear form D

✏
u(f, f) =

Z

�

f ·M(u)�1f dx is known

as the (viscous) dissipation. This in turn is equivalent to the variational requirement

that the density variation @tu and the flux f minimize (at each time t) the so-called

Rayleigh functional 1

2

D

✏
u(f, f) +

�E✏

(u)
�u (@tu) under the transport constraint (7.3).

Intuitively, the energy is an approximation of the area of the free surface, which

should be minimized due to surface tension, and the dissipation is the “price to pay” for

the total shear stress due to the flow inside the film. Hence, among all the possible flows

which preserve the mass of the fluid, we look for the one which optimally minimizes the

area of the free surface and the stress inside the film.

Finally, following the idea of natural time discretization of gradient flows [Ott01]

and minimizing movements [GA06], we integrate in time to arrive at a variational

approximation of uk+1 = u(tk + ⌧) given uk = u(tk):

uk+1 = argmin
u=F

⌧

(uk,f)

⇢

1

2⌧
D

✏
u(f, f) + E

✏(u)

�

(7.4)

where F⌧ (uk, f) denotes a suitable (approximate) solution at tk + ⌧ of the initial value
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transport problem (7.3) with u(tk) = uk. The constrained minimization problem (7.4)

is equivalent to discretizing the original PDE (7.2) in time; instead of the PDE then,

one can describe (and discretize) the thin film flow through the three components of

the gradient flow: the free energy E

✏, the dissipation D and the flow equation (7.3) (or

in the time-discrete setting the flow operator F⌧ ).

In [RV13], suitable energy and dissipation functionals are derived for gravity- and

surface tension-driven thin film flow on a smooth curved surface. The variational time

discretization (7.4) is coupled then with a spatial discretization based on Discrete Exterior

Calculus, resulting in a fully discrete scheme on triangulated surfaces that addresses

some of the shortcomings of PDE-based solvers pointed out previously. Specifically,

discrete qualitative properties are straightforward to preserve: the energy decay is built

into the time discretization (7.4), as will be shown later, and it is also easier to set

up discrete mass conservation for the flow equation than for the full PDE (7.2). In

addition, because of the explicit control on the energy decay, the variational scheme is

very stable, allowing for large time steps.

Unfortunately, directly applying that scheme for graphics purposes on general

triangle meshes is challenging since curvature quantities and mass preserving transport

are more di�cult to discretize in this setting. In [RV13] mass preservation was achieved

by working with a flux-based formulation, that lends itself naturally to a finite-volume

approach such as Discrete Exterior Calculus. However, in the presence of obtuse

triangles, i.e., triangles with angles larger than ⇡/2, negative entries can arise in the

diagonal matrices that the scheme uses to define inner products between discrete k-forms.

This can lead to non-convexity and eventually to instability and/or non-convergence

of the variational scheme. Notice that for general meshes, eliminating these obtuse

triangles is highly non-trivial.

In the next section we present our approach for discretizing the thin film gradient

flow model on general triangulated surfaces. We first develop the discrete energy and

dissipation terms by modeling the fluid as a prismatic layer formed by an o↵set surface to

the triangle mesh, which naturally introduces discrete curvature quantities. In addition,

we switch to a velocity-based formulation of the transport equation @tu+ div
�

(uv) = 0,

which allows us to use the new discretization suggested in [ABCCO13], that does not

su↵er from the aforementioned problem.

7.3 Thin films on triangulated surfaces

As we have previously seen in Figure 7.4, the film dynamics are heavily dependent on

the curvature operators, H, K and S. In their work [RV13] presented one dimensional

applications and simulations on two dimensional surfaces where the curvatures are

easy to compute analytically (such as surfaces of revolution and graphs). One could,

of course, extend their method to triangulated surfaces by choosing a set of discrete

curvature operators from the many available in the literature (see e.g., [GG06]). We
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chose instead to go back to fluid mechanics and look for a definition of the energy and

dissipation functionals that could be applied on continuous but non-smooth surfaces,

such as a triangulated mesh. We present the resulting model in this section, but have

reserved a more technical derivation for the supplemental material.

Our main observation is that if � is equipped with a continuous vector field n that

is approximately normal, one can follow similar derivations as in [RV13], and arrive at

energy and dissipation functionals given by (up to an O(✏2) error):

E

✏(u) =

Z

�

(bz �H)u+
✏

2
(b cos ✓ � T )u2 +

✏

2
|r

�

u|2 da (7.5)

and

D

✏
u(v, v) =

Z

�

v ·M(u)�1v da (7.6)

M(u) =
⇣

� +
u

3

⌘

id+✏
u2

12

�

7H id�3S � 5S̄
�

(7.7)

respectively, where (unlike in [RV13]) the curvature quantities in these equations are

now given in terms of the approximate normal field n. In (7.5) we included the gravity

terms that involve the Bond number b, which measures the relative strength of gravity

vs. surface tension, the altitude z, and the angle ✓ of the surface normal with the vertical

direction. The discrete total curvature T and shape operator S are given in section 7.3.1

and the rotated shape operator S̄ is given in section 7.3.3. Moreover, we incorporated

in (7.7) a constant � which allows for various slip conditions.

7.3.1 Geometry of thin films on triangulated surfaces

For a smooth surface, the geometry of a liquid layer is modeled by a scalar height

function h, which describes the extension of the liquid along a surface normal direction

at each surface point. In the limit of thin films, this height field is scaled by a global

scaling parameter ✏. Then, the liquid layer is bounded by the surface on one side and

by an o↵set along the surface normal by ✏h on the other. The laws of physical motion

of the liquid are expressed by expanding the 3D motion up to second powers in ✏.

Adopting this perspective for the case of a triangulated surface �, we take the

approach of associating surface normals n as well as the o↵set function h with vertices

and extending the resulting o↵set field linearly across triangles, leading to a prismatic

liquid layer per triangle, see Figure 7.5 (left). This approach ensures continuity of the

o↵set field across edges, which we harness to ensure mass conservation when the liquid

evolves.

There is, however, a caveat with this approach: it is widely accepted that there exist

no “best” vertex normals in the discrete case. Consequently, we only require consistent

normals in the following sense. If the average edge length of the mesh is �x, it su�ces

that we are provided with a set of (unit length) vertex normals n such that the di↵erence
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Figure 7.5: (left) Prismatic layer of viscous fluid, depicted as a piecewise linear field over a triangle.
(right) Prismatic volume with tangential vector field v (red) and attached Hagen-Poiseuille type
velocity profile ⇧s(v).

|⌫ � n|, between the normal ⌫ of any (flat) triangle of the mesh and the vertex normal

n of its vertices, is of order �x2. 1

As in the smooth case, the lubrication approximation requires an additional scaling

variable ✏ in which the relevant physical terms are developed up to second order. With

the lateral extension of the film being measured in direction of the discrete normal n,

we obtain the free surface

�✏h = {x+ ✏h(x)n(x) |x 2 �}

of the thin film at the liquid-gas interface and the fluid volume V✏h = {x+s✏h(x)n(x) |x 2

�, s 2 (0, 1]} .

In order to derive the variational time discretization of the evolution of the thin film

we make use of three di↵erent expansion formulas, namely the expansion of volume,

area, and length with respect to the thickness parameter ✏. Returning to the smooth

case for a moment, such an expansion leads to expressions in terms of curvatures of

the underlying surface, containing the shape operator S, its trace, and its determinant,

known as mean and Gauss curvature, respectively [Car94].

We exactly recover this geometric description in our discrete model. Indeed, first

recall that in the smooth setting the shape operator is defined as the tangential gradient

of the (smooth) unit normal field. Accordingly, we define in the discrete case a generalized

shape operator (in the sense of considering arbitrary “normals” n) by

S := �
1

2
P (r

�

n+ (r
�

n)T )P , (7.8)

where r
�

= PrR3 is the (triangle-based) tangential gradient on � and P = id�⌫ ⌦ ⌫

is the projection onto the (triangle-based) tangent space. From this shape operator

we deduce a discrete mean curvature H = Tr(S) and a discrete Gaussian curvature

1Notice that this condition implies that r�n is both tangential and symmetric up to order �x.
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K = 1

2

�

Tr(S)2 � Tr(S2)
�

. Notice that in this setup S, and therefore also H and K, are

constant per face.

Second recall that in the smooth case, mean and Gaussian curvatures alternatively

arise by considering first and second variations of o↵set volume and surface area. The

same holds true in the discrete case, i.e., for our prismatic layer. For example, for the

expansion of o↵set volume we obtain (up to an O(✏3 + �x) error)

Z

V
✏h

dx =

Z

�

✓

✏h�
✏2

2
Hh2

◆

da .

Here H equals the trace of our generalized shape operator S defined above. Hence, the

two alternative discrete definitions of mean curvature (as the trace of the tangential

gradient of the normal, and through the second order expansion of the of the o↵set

volume) are consistent. Intuitively, the correction term ✏2

2

Hh2, and in particular the

appearance of mean curvature, accounts for change of surface area in the lateral direction.

Notice that the integrand can be written as ✏u, with u = h� ✏
2

Hh2. Thus u describes

(up to a factor of ✏) the fluid volume per surface area and can be considered as the local

mass density. This quantity is an alternative and, from the viewpoint of the underlying

conservation law, preferable variable.

Likewise, for the expansion of the surface area we obtain (up to an O(✏3 + �x) error)

that

Z

�

✏h

da =

Z

�

✓

1� ✏hH +
✏2

2

�

2h2K + |r

�

h|2
�

◆

da .

Notice that when h = 1, i.e., when one considers constant o↵sets, then this expression

is equal to the famous Steiner formula, known from di↵erential geometry [Fed69]. As

before, H and K that arise from the expansion of the surface area are exactly the mean

and Gaussian curvatures, respectively, defined using our generalized shape operator S.

7.3.2 Energy

The first ingredient of our variational time discretization is the energy of the thin film,

given by the sum of surface energy (the total area of the free surface �✏h, which tends to

be minimized due to surface tension) and gravitational energy (weighted by the Bond

number b):

E(h) =

Z

�

✏h

da+ b

Z

V
✏h

z dx .

Here the Cartesian coordinate z denotes the altitude, i.e., we assume that gravity is

acting along the z-direction.

The surface energy was spelled out above. Analogously to the expansion of the o↵set

volume, we obtain for the expansion of gravitational energy (up to an O(✏3 + �x) error)
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that

Z

V
✏h

z dV =

Z

�

✓

✏zh+
✏2

2

�

�h2Hz + h2 cos ✓
�

◆

da .

Here, per triangle, ✓ is the angle of the direction of gravity with the triangle normal.

Exchanging the height h against the mass density u and restricting to the (non constant)

leading order terms we finally end up with the energy functional

E

✏(u)=

Z

�

(bz �H)u+
✏

2
(b cos ✓�T )u2 +

✏

2
|r

�

u|2da (7.9)

with T = H2

� 2K.

7.3.3 Conservation law for the flow

Mass conservation during the temporal evolution of the fluid is one of the central physical

principles of viscous flow [CMM90]. Violations of this principle in numerical simulations

lead to undesirable artefacts. For our approach, we outline how mass conservation can

be exactly maintained by working with a conservation law in divergence form. Mass

conservation is a balance principle: the change of volume must equal the flux of material

across the volume boundary. On an arbitrary (triangular) patch T this translates into

the balance equation

d

dt

Z

V
✏h

(T )

dx =

Z

F
✏h

(T )

v · µ da ,

where v is the fluid’s velocity vector and µ is the (inward pointing) normal of the faces

F✏h(T ) of the prism V✏h(T ) above T (cf. Fig. 7.5 (right)). Using the divergence theorem

of Gauss and Taylor expansions in the height, which corresponds to an expansion of the

length functional on the edges of the patch, we obtain the conservation law

@tu = � div
�

✓

u

Z ✏

0

Qsv�,s ds

◆

,

where v
�,s(x) is the tangential component of the velocity in the liquid layer and the

tensor Qs = id�su
�

S̄ �H id
�

accounts for the geometry of the prism V✏h(T ). The

rotated shape operator S̄ = �[⌫]⇥S[⌫]⇥ is defined via the skew-symmetric matrix [⌫]⇥,

which in turn is given by requiring that [⌫]⇥ · x = ⌫ ⇥ x for any vector x. We define the

(weighted) average velocity v =
R ✏
0

Qsv�,s ds, independent of s, so that the conservation

law is restricted to the triangulated surface � and takes the simple form

@tu+ div
�

(u v) = 0 . (7.10)
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The weighting reflects the inclination and torsion of the faces of the prisms. The

advantage of working with an averaged velocity is that it resides directly on the surface

�. In the discrete case, this velocity field can be modeled using piecewise constant (per

triangle) vector fields, and mass balance can be expressed using commonly used discrete

di↵erential operators.

7.3.4 Dissipation and mobility

In the previous section, we used averaging in order to reduce the velocity field in the

bulk to a velocity field on the surface. For treating dissipation, we require the opposite

direction, i.e., to reconstruct a velocity field in the bulk from the velocity filed on the

surface. Since the inverse of averaging allows for many solutions, this reconstruction

step is not unique a priori. In order to single out a unique velocity field in the bulk, we

invoke a physical principle by considering the field that causes least energy dissipation.

Concretely, we require a (tensor) profile function ⇧s such that v
�,s = ⇧sv and

R ✏
0

Qs⇧s ds = id (see Fig. 7.5 (right)). Note that there are many possible velocity

profiles ⇧ : s 7! ⇧s that satisfy this integral constraint. From the theory of viscous flows

[Poz11] we know that the physically observed profile minimizes the viscous dissipation

rate
R

V
✏h

|rv + rvT |2 dx. This is dominated by the vertical shear stress, i.e., the

normal derivative of the tangential velocity, which can be expressed as a quadratic

form in v. Approximating this quadratic form to leading order in ✏, substituting v by

⇧(v), and optimizing the transportation cost for given boundary conditions ⇧
0

= 0

(no-slip at substrate) and zero shear stress at free surface under the integral constraint
R ✏
0

Qs⇧s ds = id, yields an optimal profile ⇧⇤, which to leading order matches the

well-known Hagen-Poiseuille profile. We thus obtain the dissipation as a function of the

averaged velocity v as

D

✏
u(v, v) =

Z

�

v ·M(u)�1v da , (7.11)

where the mobility tensor is defined as

M(u) =
u

3
+ ✏

u2

12

�

7H id�3S � 5S̄
�

.

For a more detailed derivation of the optimal profile see the supplemental material.

7.3.5 Minimizing movement approach

Combining the three building blocks we have derived, and using the minimizing move-

ment approach, we arrive at an e↵ective variational time discretization for the evolution

of a thin film on a triangulated surface. The energy E

✏ (7.9) depends on the mass

density u, whereas the dissipation D

✏
u (7.11) is a quadratic form on motion fields v. For

given uk at time step k any mass density u at time step k+1 results from the transport
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of uk via an underlying motion field. Hence, the time discrete conservation law (7.10)

has to be handled as a constraint representing the coupling of u and v. Altogether,

we iteratively define uk+1 as the minimizer u of the following constrained optimization

problem:

min
u,v

⇢

1

2⌧
D

✏
uk

(v, v) + E

✏(u)

�

subject to u = T⌧ (v)(u
k),

where T⌧ (v) denotes the operation of transporting uk with constant velocity v for a

time interval of length ⌧ . The factor 1

2⌧ reflects the proper rescaling in time to obtain

the dissipation to be spent to transform uk into u.

We consider a number of extensions to this model, which are known for the flat case

[ODB97]. The first one replaces on � the no-slip v = 0 by the Navier slip condition

v = �@nv with � denoting the slip length (in case of large variation of the velocity in

the normal direction, the fluid undergoes slipping on the surface �). To reflect this one

has to add � to the mobility M . This slip boundary conditions accelerates the motion

of the fluid. Furthermore, we consider evaporation. It takes the form of a sink term in

the right hand side of the conservation law and is modeled in the time discrete setup

by the constraint u � T⌧ (v)(uk) = �
u

(uk

+c
e

)

2 , for a small constant ce. Intuitively, the

evaporation rate is faster for thinner films, which reflects a faster heating of thinner

films.

7.4 Spatial discretization

The main challenge here is to define a stable discretization of the transport equation (7.10)

such that various properties (e.g., energy decay and mass preservation) will hold on

general triangle meshes. While many of the operators we use are standard in geometry

processing, we highlight the properties these operators should possess such that the

resulting optimization scheme would indeed be stable.

Notation. We consider a triangle mesh and denote by V its vertex set and by F

its face set. We use bold faced symbols to denote the spatial discrete analogues of

continuous quantities (e.g., u is the discrete mass density). When required, we use

the subscripts V and F to denote quantities on the vertices and the faces, respectively.

The bracket [·] operator is used to convert vectors in R|V| and R|F| to block diagonal

matrices in R|V|⇥|V| and R3|F|⇥3|F| respectively (replicating each entry 3 times for the

latter).

Functions, vector fields and inner products. We use a typical setup, i.e., piecewise-

linear functions and piecewise-constant vector fields, with corresponding inner products.

Specifically, we represent real-valued functions as scalars on the vertices of the mesh, i.e.,
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u 2 R|V|, and extend them to the whole mesh using piecewise linear hat basis functions.

Similarly, vector fields are treated as piecewise-constant on the faces of the mesh, i.e.,

v 2 R3|F|.

For defining discrete inner products we require vertex and face areas, denoted by

AV 2 R|V| and AF 2 R|F|, respectively. For the vertex area we use 1/3 of the total

area of its adjacent triangles, and we define an interpolating matrix IFV 2 R|V|⇥|F| which

interpolates quantities from faces to the vertices, i.e., IFV (i, j) = AF (j)
3AV (i)

, i↵ vertex i

belongs to face j and 0 otherwise. This choice implies that AF = (IFV )
TAV , which will

be important for consistency later. Now, discrete inner products are defined by:

Z

�

u1u2da = u1
TGVu2,

Z

�

hv1,v2ida = v1
TGFv2,

where GV = [AV ] 2 R|V|⇥|V| and GF = [AF ] 2 R3|F|⇥3|F| denote the diagonal mass

matrix of the vertices and the faces.

Di↵erential Operators. Equations (7.5) and (7.10) require discrete gradient and

divergence operators. In the smooth case, these operators fulfill integration by parts,

namely on a surface without boundary we have:
R

�

hv,r
�

ui da+
R

�

u · div
�

v da = 0.

In order to maintain discrete preservation of mass (see appendix E.1), we need the

operators grad 2 R3|F|⇥|V| and div 2 R|V|⇥3|F| to fulfill this discretely, namely:

vTGF (gradu) + (divv)TGVu = 0,

for arbitrary v and u. Interestingly, the standard operators (e.g., as defined in [BKP+10,

Chapter 3]) fulfill this property.
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Figure 7.6: Comparison with [RV13]. (left) Plot of the observed energy reduction �(E) =
E(t+ ⌧)� E(t) as a function of the time step ⌧ , on a mesh with obtuse triangles. The present
scheme consistently decreases the energy (�(E)  0), whereas the other method has trouble
with small time steps. (right) Regarding the positivity of the solution, again on a mesh with
obtuse triangles, the present method preserves the initial minimum u, whereas the other method
exhibits negative values of u.
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t=0 t=0.25 t=0.5

Figure 7.7: Starting from the same initial conditions and physical parameters, our transport
scheme (top) achieves a better resolved finger compared to the result (bottom) generated with
the more di↵usive scheme suggested in [RV13].

Approximate normal field, curvature and gravity. As described in the previous

section, all of the required curvature quantities can be computed once a suitable

approximate normal field is given. In practice, we use the area-weighted averages of

triangle normals [BKP+10, pg. 42] as vertex normals. By applying the discrete gradient

operator defined previously, the tangential gradient of the discrete normal field per face

j is:

(r
�

n)j =
1

2AF (j)

 

3

X

i=1

nj
i

(J ej
i

)T
!

where the sum runs over the three vertex normals nj
i

of the face and J ej
i

is the

rotated (by ⇡/2) edge opposite to vertex i in the triangle j (see Figure 7.5). The gravity

quantities can be computed as follows: z is the vertical coordinate function and cos ✓ is

the vertical component function of n.

Mobility. The discrete mobility M(u) is a 3|F| ⇥ 3|F| diagonal matrix, where for

each face the associated quantities can be computed using Eq. (7.7), the curvature

operators, and the interpolated mass density uF on the faces (u is defined on vertices).

Transport operator. In the continuous case, equation (7.10) guarantees that the

integral of @tu vanishes on a closed surface (since the divergence of any vector field

integrates to 0). However, once we discretize u and v then div(uv) is no longer well

defined using our discrete operators, since uv is not a piecewise constant vector field. To

avoid this issue, we first apply the product rule to (7.10) and reformulate the constraint

as @tu = �(v ·r

�

u + u div
�

v). We then follow [ABCCO13] and define a directional

derivative D(v) such that 1TVGV (D(v) + [divv])u = 0 for any u and v (see appendix

E.1 for the proof). Specifically, the directional derivative is given as D(v) 2 R|V|⇥|V|
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by D(v) = IFV [v]
T
• grad, where [·]• 2 R3|F|⇥|F| converts vector fields to block diagonal

matrices.

The main advantage of this point of view is that in the discrete case the transport

equation turns into a system of ODEs of the form @tu+Au = 0, for a constant matrix

A, which can be solved using a matrix exponential [HO10]. Thus, for a velocity v

constant in time, the discrete transport equation can be solved in the time interval

[tk, tk + ⌧ ] to yield the solution

u = exp (�⌧D(v)� ⌧ [divv])uk (7.12)

at t = tk + ⌧ , where ⌧ is the time step. In the case of evaporation, we have an additional

term �⌧ [uk + ce]�2 in the exponential.

We compared our transport scheme to the method of [RV13] on the bunny model

which has obtuse triangles. Specifically, we computed the di↵erence in energy and the

minimal u in the first iteration for di↵erent time step sizes. In Figure 7.6 (left) we show

that our method is consistently decreasing the energy, whereas the method of [RV13]

actually increases the energy for small time steps. In addition, we show in Figure 7.6

(right) that their method yields negative values for u even for very small time steps,

whereas ours preserves the initial value of the precursor layer.

Furthermore, the suggested transport mechanism is more appropriate to the flows

we are interested in than the one suggested by [RV13]. In particular, droplet formation

and fingering instabilities are transport-dominated e↵ects. Thus, a natural requirement

from a transport mechanism is to exhibit minimum di↵usion, allowing to capture better

resolved fingers on relatively coarse meshes as we demonstrate. We show in Figure 7.7

that starting from the same initial conditions, our scheme is qualitatively less di↵usive

compared to the method of [RV13].

7.5 Fully discrete model

Given the above discrete operators and quantities, we can write the fully-discrete

optimization problem for computing u,v given uk:

min
u,v

⇢

1

2⌧
D

✏
uk

(v,v) + E

✏(u)

�

,

subject to u = exp (�⌧D(v)� ⌧ [divv])uk.

(7.13)

Then, the fully-discrete energy and dissipation are given by:

E

✏(u) = aTGVu+
✏

2
uT (GVB+ L)u,

D

✏
uk

(v,v) = vTGFM(uk)�1v,

where a = bz�H, B = bcos ✓ �H2 + 2K, and the sti↵ness matrix L = �GVdiv grad.
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7.5.1 Properties

Discrete energy. The discrete energy E

✏(uk) is non increasing.

Proof: Noticing that u = uk and v = 0 is an admissible pair for the minimization

problem (7.13) since they satisfy the constraint, we have immediately that:

1

2⌧
D

✏
uk

(vk+1,vk+1) + E

✏(uk+1) 
1

2⌧
D

✏
uk

(0, 0) + E

✏(uk)! E

✏(uk+1)  E

✏(uk)

since D

✏
uk

(vk+1,vk+1) � 0 and D

✏
uk

(0, 0) = 0.

Intuitively, since D is non-negative, if the fluid moved and “paid” with dissipation,

then it found a smaller energy solution (otherwise it will have remained at the previous

state, with the same energy).

Discrete mass. The total discrete mass m(u) =
R

�

u da = 1TVGVu is exactly pre-

served.

Proof: The transport equation (7.12) can be written as u = exp(�⌧A)uk, where

A = D(v)+ [divv]. In appendix E.1 we show 1TVGVA = 0 for any velocity v. Hence, we

have m(uk)�m(u) = 1TVGV {id� exp(�⌧A)}uk = 1TVGV

n

⌧A� ⌧2

2

A2 + . . .
o

uk = 0.

7.5.2 Optimization

To solve the discrete variational model (7.13) we use the first order approximation

exp(�⌧A) ⇡ id�⌧A of the matrix exponential, so that the linear equation:

u = uk
� ⌧(D(v) + [divv])uk (7.14)

replaces the non-linear constraint (7.12). Hence, at every time step we solve a quadratic

problem with a linear constraint, which is convex for a small enough ⌧ (see §5.3 “Dynamic

Time-stepping”). As we will show next, this can be done very e�ciently, by solving a

single linear system for u. Note that it is straightforward to check that the results of

§5.1 hold for the linearized constraint as well, hence we gain e�ciency yet do not lose

stability.

The linear system. Using the method of Lagrange multipliers we obtain the first

order necessary conditions:

GFM(uk)�1v �
⇣

D(uk) + [uk]div
⌘T

GVp = 0

GV (a+ ✏Bu) + ✏Lu�GVp = 0

GV

⇣

u� uk + ⌧(D(v) + [divv])uk
⌘

= 0,

(7.15)

where p is the dual variable.
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Figure |V| Avg. per step #steps Total time

Fig. 7.1, Bunny* 38306 0.484 1999 967.8

Fig. 7.4, Bumpy plane 40401 0.683 4996 3410.4

Fig. 7.4, Scherk surface 40401 0.627 1997 1252.4

Fig. 7.9, Rounded cube* 19728 0.142 4991 709.5

Fig. 7.10, Sphere 40962 1.645 300 493.5

Fig. 7.12, Moomoo* 16710 0.080 1981 158.4

Fig. 7.13, Torus 40000 1.079 456 491.8

Fig. 7.14, Moai 89126 3.106 314 975.3

Fig. 7.15, Rain 10242 0.198 18001 3570.1

Fig. 7.17, Pensatore 27732 0.818 991 810.3

Fig. 7.16, Wine glass* 38976 0.708 496 351.1

Table 7.1: Timing statistics (in seconds). Asterisk denotes simulations where an iterative solver
was used, whereas for the rest, we used a direct non-iterative solver.

A key ingredient to deriving (7.15) is the dual operator D(u), defined such that

D(v)u = D(u)v, as it allows us to take derivatives with respect to v. This operator is:

D(u) = IFV [gradu]
T
• . Similarly, it holds that ([u]div)v = [divv]u.

Finally, eliminating v and p, we arrive at the following reduced linear system for u:

⇣

id+⌧✏R(uk,uk
e)(GVB+L)

⌘

u = uk
e�⌧R(uk,uk

e)GVa (7.16)

where R(uk,uk
e) = F(uk

e)M(uk)G�1

F F(uk
e)

T and F(uk
e) = D(uk

e) + [uk
e ]div and uk

e =

exp(�⌧ [uk + ce]�2)uk if evaporation is included and uk
e = uk otherwise.

Thus, we obtain a fully discrete scheme where given an initial mass density u
0

, we

evolve it in time using the above update rule.

We implemented our method in MATLAB using standard linear solvers for Eq. ((7.16)).

In all our experiments, the method was very stable allowing for large time steps (on the

scale of O(✏+ �x), which is excellent for 4th order problems) depending on the initial

conditions and the underlying mesh. The experiments were performed on an Intel(R)

Xeon(R) processor with 32 GB RAM, and we show in Table 7.1 the statistics for the

di↵erent simulations.

7.5.3 Limitations

Dynamic Time-Stepping. Given that the sti↵ness matrix L is positive semi-definite,

the system (7.16) is invertible as long as ⌧
1

✏kR(uk)k
2

kGFk2B  1, where B is the

absolute taken on the minimum value of B and it is a measure of how strongly negative

the quantity b cos ✓ � T is on the surface. Moreover, we employ a CFL-type condition

depending on the maximum velocity of the film v, and grid size, i.e., we require that

⌧
2

v  �x. Finally, we take the time step to be ⌧ = min{⌧
1

, ⌧
2

}.

Positivity Preservation. Unfortunately, even if we start from a strictly positive u
0

,

the evolution of the film uk is not guaranteed to stay positive [RV13]. Aside from being

non-physical, in the case of negative values, droplets might rupture. In practice, all of

our simulations remain positive, excluding the evaporation example. Nevertheless, the

evaporation term has a stabilizing e↵ect, indeed, negative mass concentrations are also
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Figure 7.8: Capillarity ridge with high velocity and undershooting.

evaporated. Intuitively, positivity is di�cult to maintain due to the jump in pressure

along the triple line (the interface where air, solid and liquid meet). Moreover, the

so-called capillary ridge is formed, due to the competition between surface tension and

other forcing e↵ects, e.g., gravity, see Figure 7.8 and 7.9. Thus, right where the film is

at its thinnest, the resulting velocity is high, implying instability along the direction of

motion. We leave further investigation of the issue of positivity preservation for future

work.

Meshes with creases. In general, the model we developed in Section 7.2 has a strong

dependency on the consistency of the vertex normals. In practice, general meshes might

have creases, or small dihedral angles, which will cause H to be arbitrarily negatively

large and non-smooth. This can have a detrimental e↵ect on the simulation, as the fluid

will be drawn towards these singular locations. There are two possible remedies for this

situation: we can either refine the mesh (possibly non-uniformly), however that would

require additional pre-processing before one can apply our scheme to an arbitrary model.

Alternatively, we can add a regularizer to the energy so that it is easier to control the

simulation. We opted for the second option, as it makes our method easier to use,

and can allow the artist some freedom to control the simulation in a non-physical way.

Hence, for meshes with creases (see e.g., Fig. 7.17), we multiply the sti↵ness matrix L

defined in Section 7.5 by a constant 1  r  100. This e↵ectively adds some numerical

di↵usion, allowing for more smooth solutions. Note that discrete conservation of mass

is not a↵ected by this modification.

Figure 7.9: In the absence of gravity, the fluid departs areas where the mean curvature is strongly
negative and capillary ridges form. Later, surface tension balances the fluid on top of every face,
cf. [RRS02] (u

0

= 0.1, b = 0, ✏ = 0.1,� = 0).
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Figure 7.10: Fingering behavior for varying parameters, at t = 10. In every column, one
parameter is modified from the reference configuration (f). See the text for details.

Detachment of fluid. As the fluid is “tied” to the surface, droplets cannot detach

when they become too large. In these cases, the droplets grow narrower and taller

until equilibrium is reached and the approximate lubrication solution is stable, although

the full 3D flow is not. Note, that in this case one could potentially switch to a full

3D simulation, which will allow the droplet to separate from the surface. This is an

interesting direction for future research.

7.6 Experimental results

Parameter exploration. We begin by exploring the e↵ect of various parameter

choices on the simulation of the thin film. For this example, we choose a sphere as a

simple geometric model with limited curvature e↵ects on the flow. The basic experiment

includes placing a concentration of fluid at the top of the sphere, with slightly perturbed

initial conditions to avoid perfect symmetry. Due to gravity the fluid flows downward,

and the initial perturbations give rise to fingering instabilities, (see [TH10] for an

experimental demonstration of fingering on a sphere). The result for the parameters

✏ = 0.05, b = 50,� = 0 is shown in Figure 7.10 (f), demonstrating the emergence of a

secondary finger in the center (see also Fig. 7.16, showing multiple fingers in a wine

glass).

We refer to this setup as the reference configuration, and now modify in every column

of the figure a single parameter to isolate its e↵ect on the simulation, for which we

show a snapshot at time t = 10. Left: varying b changes the speed with which the film

flows downward, without strongly a↵ecting the shape of the fingers. Specifically, for

a lower b value (a), the secondary finger does not emerge yet, whereas for a higher b

value (b) it is more pronounced than in the reference configuration. Middle: changing ✏
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Figure 7.11: The energy E(u) for the simulations in Figure 7.10.

a↵ects the surface tension component, and therefore the shape of the fingers. Reducing

✏ yields thinner fingers (c), whereas increasing it (d) makes more viscous thick fingers,

and eliminates the secondary finger. Right: increasing � considerably speeds up the

fluid (e), allowing it to flow more freely in all directions (as opposed to increasing b

which causes faster flow in the direction of gravity).

Energy reduction. The numerical scheme we use is guaranteed by construction to

reduce the energy E(u) at every time step. Figure 7.11 shows the energy decay in time,

for the di↵erent simulations in Figure 7.10. We observe that the slip parameter � a↵ects

the speed with which the energy is reduced, the gravity parameter b also a↵ects the

initial value of the energy, and the parameter ✏ has a minor impact on the energy, as it

is dominated by the leading order term.

Thin films interaction. Figure 7.12 demonstrates the flow and interaction of thin

films on the moomoo model. The higher bulk of fluid accumulates beneath the horns of

the model, followed by a faster motion when it comes in contact with the lower bulk of

fluid (see also Figure 7.14). Then, the motion is mostly determined by the two main

fingers flowing on the sides of the model. In Fig. 7.15 we show the interaction of many

droplets viewed from four sides of the unit sphere. We repeatedly pour new droplets at

the top of the sphere at a fixed rate and drain the liquid from the bottom.

Droplet formation. A thin film concentrating beneath a flat surface develops an

instability called droplet formation (cf. [SK98]). In Figure 7.13, we start with a uniform

layer of fluid on the torus with small perturbations, and allow it to drop beneath the

torus due to gravity. As the fluid accumulates around the circular set of lowest points,

droplets form.

Evaporation. Figure 7.14 shows how evaporation (ce = 0.01) and the precursor layer

a↵ect the motion of the film. We deposit precursor layers of di↵erent heights on the

two halves of the Moai model and place a similar bulk of fluid near the eyes. Due to

the initially thicker precursor layer, even though it evaporates quickly, the film on the
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Figure 7.12: Flow on the moomoo model (b = 20, ✏ = 0.1,� = 0). Note how the upper and lower
films interact: the larger mass density of the upper film causes it to catch up with the lower
front leading to the formation of quickly propagating fingers.

left part of the model flows to a greater distance compared to the film on the right.

Eventually, all the film evaporates.

7.7 Van der Waals potential term.

As mentioned in the limitations section, a major drawback of our method is that the

positivity of the mass density u is not guaranteed. One approach towards solving this

issue is to add the integrated non-linear potential term
R

�

W (u)da ⇡ 1TVGVW(u) to

the discrete energy E

✏(u). The purpose of this term is to penalize values of u that

are under a certain threshold up. A computationally simple choice, commonly used to

model intermolecular forces, is the well-known Lennard-Jones (LJ) potential [Jon24]

given by

W(u) =
1

2

⇣up

u

⌘

4

�

⇣up

u

⌘

2

.

In the context of thin films, the LJ potential was used in [GR01], and in addition to

maintaining the height of the precursor layer, it also leads to the spontaneous formation

of droplets (pearling) due to the potential well (see inset figure).

Namely, the modified energy favors large densities of fluid (where the potential

is zero) or densities of the precursor layer size (where the potential has a minimum).

Overall, using the LJ potential stabilizes the simulation by promoting the continued

positivity of the solution. Although it is not entirely accurate physically, it is similar
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Figure 7.13: Starting from a perturbed uniform layer of fluid, the fluid flows downwards,
accumulates and finally forms droplets.

enough to the real intermolecular interactions, that occur between substrate, liquid film

and the air and determine the hydrophobic/hydrophilic properties of the surface, to

achieve visually appealing results.

0
up

W(u)

The modifications needed to incorporate the LJ potential can be summarized as

follows. The new energy is given by E

✏
W(u) = E

✏(u) + 1TVGVW(u). Thus, the new

Euler–Lagrange equations (7.15) can be reduced to the following primal-dual system

p = a+ ✏
�

B+G�1

V L
�

u+W0(u) ,

u = uk
� ⌧R(uk)GVp .

(7.17)

Therefore, the resulting Newton system can be written as

 

id �✏(B+G�1

V L)� [W00(u)]

⌧R(uk)GV id

! 

�p

�u

!

=

 

rp

ru

!

, (7.18)

where

�rp = p� a� ✏(B+G�1

V L)u�W0(u) ,

�ru = u� uk + ⌧R(uk)GVp .

The correction for �p can be eliminated, resulting in a single equation for the update of
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Figure 7.14: Evaporation e↵ect on the evolution of the film.

u. The modified update rule (7.16) for the correction is given by

⇣

id+⌧ R(uk)GV
�

✏(B+G�1

V L) + [W00(u)]
�

⌘

�u =

u� uk+⌧R(uk)GV
�

a+ ✏
�

B+G�1

V L
�

u+W0(u)
�

.
(7.19)

A single Newton step takes the form of u u� ��u, with 0 < �  1 such that the

energy is reduced. In practice we took � = 1 in all of the examples that we show. As for

the initial guess for the Newton iterations, we took u = uk. Unfortunately, the concavity

of W(u) poses a too strict requirement on ⌧ for the system (7.19) to be invertible. In

practice, we split the potential to its convex W
+

(u) and concave �W�(u) parts, so

that the usual bound discussed in subsection 7.5.3 can be used. Specifically, we define

W̃(uk,u) = W
+

(u)�
⇣

W�(u
k) +W0

�(u
k)(u� uk)

⌘

,

π/2 π/2 π/2

Figure 7.15: Rain of droplets lead to their interesting interaction over the sphere (see the video
for the full simulation). The sphere is shown from its four sides, where the axis of rotation is
shown above.

where for the LJ potential we have W
+

(u) = 1

2

�up

u

�

4

and W�(u) =
�up

u

�

2

. Finally,

we modify the system (7.19) such that W00(u) ! W00
+

(u) and W0(u) ! W0
+

(u) �

W0
�(u

k). Note that a small value for the threshold up can approximate an e↵ectively

de-wetted surface (i.e. a very thin precursor layer) with droplets of apparently compact

support. As small values of up exacerbate the non-convexity of the LJ potential, this

necessitates smaller time steps.

In Figure 7.18 we show the e↵ect of pearling that occurs whenever a trail of thin
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layer of liquid appears during the motion. In Figure 7.19 we show that due to the high

attractive and repulsive forces, droplets emerge spontaneously. Both of these e↵ects are

achievable due to the Van der Waals non-linear potential term.

Figure 7.16: Multiple fingers on the inside of a glass of wine (b = 500, ✏ = 0.0001,� = 0).

7.8 Conclusion

We presented a novel method for simulating viscous thin film flow on triangulated

meshes. Our approach is based on a variational time discretization and is therefore

stable and allows for large time steps. Furthermore, we guarantee by construction that

the discrete total mass is preserved and that the discrete energy is non-increasing. The

algorithm is based on a single sparse linear solve per iteration, and is therefore very

e�cient. We demonstrated various intricate film motions, such as viscous fingering and

droplet interaction.

There are many potential extensions to our model. For instance, it might be

possible to extend the model to handle e↵ects due to surface tension gradient. Also, our

discretization of the mass transport constraint might be potentially useful in additional

applications. Finally, we mentioned various extensions throughout the paper such as

positivity preservation and fluid detachment which might be interesting to achieve.

Figure 7.17: Thin film flow on a geometrically complicated model. Note how starting from a few
blobs of fluid, the film naturally follows the creases of the object, merges and splits accordingly.
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Figure 7.18: The two big droplets (top, left) travel fast enough to leave a trail of fluid behind
(top, middle and right), which later separates into several smaller droplets (bottom). This
phenomenon is known as pearling.

Figure 7.19: Starting from a slightly perturbed uniform layer of fluid (top, left), droplets quickly
form due to the attractive/repulsive forces resulting from the van der Waals non-linear potential
(top, middle and right). Later, the droplets travel downwards due to gravity and several merges
between droplets occur (bottom).
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Appendix A

Appendix of Chapter 2

A.1 Proof of lemma 2.2.1

Lemma 2.2.1. Let T t
F , t 2 R be the functional operator representations of the flow

di↵eomorphisms �t
V : M ! M of V , defined by T t

F (f) = f � �t
V for any function

f 2 C1(M). If D is a linear partial di↵erential operator then DV �D = D �DV if and

only if for any t 2 R, T t
F �D = D � T t

F .

Proof. Let p 2M and f 2 C1(M) be a smooth function. If V (p) = 0, then �t
V (p) = p

and DV (f)(p) = 0. It immediately follows that DV �D(f)(p) = D �DV (f)(p) if and

only if T t
F �D(f)(p) = D � T t

F (f)(p) because the right hand side of both equation is

equal to 0.

Now assume that V (p) 6= 0. There exists (see, e.g. [Spi99] Theorem 7, p.148) a

local coordinate system in an open neighborhood of p such that V = @
@x and D can be

written as

D =
X

0<|↵|n

a↵(x, y)@
↵

where ↵ = (i, j) is a multi-index , |↵| = i+ j and @↵ = @|↵|

@xi@xj

.

First assume that T t
F � D = D � T t

F . Since the derivative (with respect to t) of

f � �t
V (p) at t = 0 is equal to DV (f)(p), the di↵erentiation with respect to t of the

equality D(f)(�t
V (p)) = D(f � �t

V (p)) gives at t = 0: DV (D(f))(p) = D(DV (f))(p).

As this holds for any f and p, we deduce that DV �D = D �DV .

Assume now that DV � D = D � DV . As in the proof of Lemma 2.2.4, since the

flow of V is a one parameter group we just need to prove that T t
F �D = D � T t

F for t

contained in an arbitrarily small interval containing 0 but not reduced to 0. Using the

product rule we have

0 = DV �D(f)�D(DV (f)) =
X

0<|↵=(i,j)|n

@a↵
@x

@↵f

@xi@xj
.

Since this equality holds for any f we deduce that for any ↵, @a↵@x = 0. As a consequence,
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the coe�cients a↵ of D are constant along the trajectories of V in the local coordinate

system and thus for |t| small enough we obtain T t
F �D(f)(p) = D � T t

F (f)(p).

A.2 Proof of lemma 2.2.2

Lemma 2.2.2. A vector field V is a Killing vector field if and only if DV � L = L �DV .

Proof. As L is a di↵erential operator, it follows from Lemma 2.2.1 that DV �L = L�DV

if and only if T t
F �L = L �T t

F . Recalling that the Laplace-Beltrami operator is invariant

under the action of isometries of M , we immediately deduce that if V is a Killing vector

field then DV �L = L�DV . Now, if T t
F �L = L�T t

F , then the Laplace-Beltrami operator

L is preserved by the action of the di↵eomorphisms �t
V . Since L determines the metric

on M , �t
V have to be isometries.

Lemma A.2.1. Given two vector fields DV1 and DV2 that both commute with some

operator D, the Lie derivative LV1(V2

) will also commute with D.

Proof. Using that DDV1 = DV1D and DDV2 = DV2D we immediately obtain

D(DV1DV2 �DV2DV1) = DDV1DV2 �DDV2DV1

= DV1DV2D �DV2DV1D

= (DV1DV2 �DV2DV1)D.

A.3 Proof of lemma 2.2.4

Lemma 2.2.4. DV2 = (TF )�1

�DV1 � TF .

Proof. Given p 2M , by definition of the push forward we have V
2

(T (p)) = dT (V
1

(p))

where dT denotes the di↵erential of the di↵eomorphism T . Now if f 2 C1(N) is a

smooth function, then using the chain rule we get

DV1 � TF (f)(p) = DV1(f � T )(p) = d(f � T )(V
1

(p))

= df(dT (V
1

(p)))

= df(V
2

(T (p)))

= DV2(f)(T (p))

= TF �DV2(f)(p)

As T is a di↵eomorphism, TF is an isomorphism and we obtainDV2 = (TF )�1

�DV1�TF .
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A.4 Proof of lemma 2.2.5

Lemma 2.2.5. Let T t = �t
V be the self-map associated with the flow of V at time

t. Then if T t
F is the functional representation of T t, for any real analytic function f

(see [DFN92], p. 210):

T t
F f = exp (t DV )f =

1
X

k=0

(tDV )kf

k!
.

Proof. The set of di↵eomorphisms associated to the flow of V is a one parameter group:

for t, s 2 R, �t+s
V = �t

V � �
s
V (see [Spi99, pg. 147, thm, 6]). The right hand side of

the equality of the Lemma also having the same property, it su�cies to show it for t

contained in any arbitrarily small interval containing 0 but not reduced to 0. Given

p 2M , if V (p) = 0, then for any k, (DV )k(f)(p) = 0 and both hand sides of the equality

are equal to f(p). Now assume that V (p) 6= 0. There exists (see, e.g. [Spi99] Theorem

7, p.148) an analytic local coordinate system in an open neighborhod of p in which V is

equal to @
@x . As a consequence without loss of generality we can assume that V = @

@x

and p = 0, and prove the equality in this coordinate system. As the flow of @
@x is just a

translation, the left hand side of the equality becomes TF f(0) = f(t). As D
@

@x

(f) = @f
@x ,

the right hand side is just the Taylor expansion of f at 0 in the direction of x:

1
X

k=0

tk

k!

@kf

@xk
(0).

Since f is an analytic function, for |t| small enough, this Taylor expansion is equal to

f(t).

A.5 Proof of lemma A.5.1

To compute the entries in the matrix S, we need to compute integrals of the form

drij =
R

t
r

�i hr�j , Vri dµ, where tr is a triangle, �i is the hat basis function of the vertex

i, and Vr is a constant vector in tr. These integrals are non zero only if both i and j

are vertices of tr, and their value is given by the following Lemma.

Lemma A.5.1. Let M = (X,F,N) and let V be a piecewise constant vector field on M .

In addition, let tr = (i, j, k) 2 F be a triangle and Vr be the value of V on tr. Then:

drij =

Z

t
r

�i hr�j , Vri dµ =
1

6

D

e?jr, Vr

E

,
 ݁

ୄ 	 

݆	 ݅ 

݇	 

ܸ 

where e?jr is the edge of tr opposite to vertex j rotated by ⇡/2, such that it points

outside the triangle (see the inset figure for the notations).
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Proof. The gradient of a basis hat function is given by (see e.g. [BKP+10]): r�j =

e?jr/(2Ar), where Ar is the area of the triangle tr. This value is constant in tr, as is Vr,

and therefore we have:

drij =

Z

t
r

�i hr�j , Vri dµ =
1

2Ar

D

e?jr, Vr

E

Z

t
r

�idµ.

The integral of a basis hat function on the whole triangle is exactly the volume of a

pyramid with basis tr and height 1. Hence,
R

t
r

�idµ = Ar/3. Plugging this in drij we

get:

drij =
1

6

D

e?jr, Vr

E

.

Note, that this expression holds also when j = i.

Now, computing the values of Sij and Sii is simply a matter of identifying on which set

of triangles drij is not zero.

For Sij , these are only the two triangles t
1

, t
2

neighboring the edge (i, j). Hence we

have:

Sij =
1

6

⇣D

e?j1, V1

E

+
D

e?j2, V2

E⌘

,

 ݁ଵ
ୄ 	 

݆	 ݅ 

ଵܸ 

݁ଶ
ୄ 	 ଶܸ 

where the notations are given in the inset figure.

For Sii, the relevant triangles are the faces tr which are near the vertex i (denoted

by NF (i)), hence we have:

Sii =
1

6

X

t
r

2N
F

(i)

D

e?ir, Vr

E

.

Finally, we would like to show that Sii = �
P

j Sij . From the definition of Sij we

have that:
X

j

Sij =
1

6

X

j2N(i)

⇣D

e?j1, V1

E

+
D

e?j2, V2

E⌘

.

By re-arranging the sum as a sum on the neighboring faces, we get:

X

j

Sij =
1

6

X

r=(i,j,k)2N
F

(i)

⇣D

e?jr, Vr

E

+
D

e?kr, Vr

E⌘

.

It is easy to check that for a triangle r = (i, j, k) we have:

ejr + ekr = (pi � pk) + (pj � pi) = pj � pk = �eir,
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and hence:
X

j

Sij =
1

6

X

r=(i,j,k)2N
F

(i)

⇣D

�e?ir, Vr

E⌘

= �Sii.

A.6 Proof of lemma 2.4.1

Lemma 2.4.1. Let M = (X,F,N) and let V
1

, V
2

be two piecewise constant vector fields

on M . Then: D̂F
V1

= D̂F
V2

if and only if V
1

= V
2

.

Proof. We will show that given a tangent vector field V , and a corresponding operator

D̂F
V , we can reconstruct V uniquely from D̂F

V . Since D̂F
V is defined locally per face,

where V is smooth, the uniqueness is in fact implied by the uniqueness property in the

smooth case. However, for completeness we will validate this explicitly, by providing a

reconstruction method that extracts V given D̂F
V .

Given a face r = (i, j, k) we compute ci = (D̂F
V (�i))r and similarly for cj , ck, where

�i is the hat basis function of vertex i. Now, we consider the set of constraints we have

on Vr. First, by definition we have that (D̂F
V (�i))r = hr�i, Vri = ci. In addition, Vr

should be tangent to the triangle, hence hVr, Nri = 0, where Nr is the normal. This

yields the following linear system for Vr:

0

B

B

B

B

@

(r�i)Tr
(r�j)Tr
(r�k)Tr
NT

r

1

C

C

C

C

A

Vr =

0

B

B

B

B

@

ci

cj

ck

0

1

C

C

C

C

A

However, since s = �i + �j + �k = 1, we have that D̂F
V (s) = ci + cj + ck = 0,

and similarly r�i + r�j + r�k = 0. Therefore, one of the equations is redundant.

Furthermore, r�i is in the direction of the edge (j, k) rotated by ⇡/2, and similarly for

r�j and they are both orthogonal to Nr. Therefore, if the triangle is not degenerate,

r�i,r�j , Nr are linearly independent, and the system is full rank. Since we know that

D̂F
V was constructed from V , the system has a unique solution given by Vr.

A.7 Proof of lemma 2.4.2

Lemma 2.4.2. Let M
1

= (X
1

, F,N
1

) and M
2

= (X
2

, F,N
2

) be two triangle meshes with

the same connectivity but di↵erent metric (i.e. di↵erent embedding). Additionally, let

V
1

be a piecewise constant vector field on M
1

, then D̂F
V1

= D̂F
V2
.

Here (V
2

)r = A(V
1

)r, where A is the linear transformation that takes the triangle

r in M
1

to the corresponding triangle in M
2

. Note that D̂V
i

is computed using the

embedding Xi.
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Proof. By definition we have that

(D̂F
V1
)ri = h(r�i)1, (V1

)ri =

*

R90(p1k � p1j )

2A
1

, (V
1

)r

+

,

where the face r = (i, j, k), p1i are the coordinates in X
1

of vertex i and R90 is counter-

clockwise rotation by ⇡/2 in the plane of the triangle r. On the other hand we have

(D̂F
V2
)ri = h(r�i)2, (V2

)ri =

*

R90(p2k � p2j )

2A
2

, (V
2

)r

+

=

*

R90A(p1k � p1j )

2|A|A

1

, A(V
1

)r

+

,

where |A| is the determinant of A. It is easy to check directly, that for any A we have

that: AT (R90)TA = |A|(R90)T , which implies D̂F
V1

= D̂F
V2
, as required.

A.8 Proof of lemma 2.4.3

Lemma 2.4.3. LetM = (X,F,N), V a piecewise constant vector field onM , f =
P

i fi�i

a PL function on M , and wi the Voronoi area weights, then:

|X|
X

i=1

wi(D̂V f)i =

|X|
X

i=1

wifi(r · V )i.

Proof. From the definition of D̂V , we have that

|X|
X

i=1

wi(D̂V f)i =

|X|
X

i=1

(WD̂V f)i =

|X|
X

i=1

(Sf)i =

|X|
X

i=1

|X|
X

j=1

Sijfj .

Switching the roles of the indices i, j, we get:

|X|
X

i=1

|X|
X

j=1

Sjifi =

|X|
X

i=1

gifi, gi =

|X|
X

j=1

Sji.

The only non-zero entries in the i-th column of S are on the diagonal and entries Sji

such that j is a neighbor of i. Thus we have:

gi = Sii +
X

j2N(i)

Sji.

Plugging in the definition of Sji and Sii we get:

gi =
1

6

X

t
r

2N
F

(i)

D

e?ir, Vr

E

+
1

6

X

j2N(i)

⇣D

e?i1, V1

E

+
D

e?i2, V2

E⌘

.
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Again, we can re-arrange the second sum as a sum on neighboring faces and get:

gi =
1

6

X

t
r

2N
F

(i)

D

e?ir, Vr

E

+
1

6

X

t
r

2N
F

(i)

⇣D

e?ir, Vr

E

+
D

e?ir, Vr

E⌘

=
1

2

X

t
r

2N
F

(i)

D

e?ir, Vr

E

= wi(÷V )i.

Finally, we get:
|X|
X

i=1

wi(D̂V f)i =

|X|
X

i=1

gifi =

|X|
X

i=1

wi(÷V )ifi,

as required.
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Appendix B

Appendix of Chapter 3

B.1 Challenges in the discrete setting

We would like to show that the metric compatibility is impossible to achieve in the

discrete setting even when functions and vector fields do not live on the same domain.

Below we will assume that vector fields are discretized on the faces of a triangle mesh and

functions are discretized on some other domain (vertices, edges, faces, etc.). However,

the proof is quite general, and can potentially be extended to the case where even the

vector fields are also discretized on some other domain (e.g. on edges), depending on

the choice of inner product.

We will use the following formulation of the metric compatibility:

D̃XA(hU, V i) = A(
D

r̃XU, V
E

+
D

r̃XV, U
E

). (B.1)

Here D̃X is a covariant derivative for functions with respect to the vector field X.

I.e., D̃X takes a function defined on some domain (e.g., vertices or edges) and produces

a function defined on the same domain. r̃XU is the covariant derivative for vector

fields, and the inner product is the standard inner product of vector fields in R3. Since

the inner product hU, V i produces a function on the faces of the triangle mesh, we need

an operator A that takes functions on faces and produces functions on vertices or edges.

We will assume that A has the following properties:

1. It is linear: A(f + g) = A(f) +A(g).

2. It maps constant functions to constant functions. I.e., if we are given a function f ,

such that the value of f on face i is equal to its value on face j for every j, then

A(f) is also a constant function on the target domain (e.g, vertices or edges).

3. It is non-negative.

Under these conditions, we have the following result:
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Lemma B.1.1. If D̃X is a linear operator such that D̃Xf = 0 if f is a constant function,

and the covariant derivative for vector fields is linear: r̃X(U
1

+ U
2

) = r̃XU
1

+ r̃XU
2

,

then the metric compatibility condition (Eq. B.1) implies that D̃Xf = 0 for all f in the

range of A. I.e., D̃XAh = 0 for any h.

Proof. We will use Vi to denote a vector field which is non-zero on face i and has unit

norm, and use ei = hVi, Vii, as the indicator function of face i.

1. The metric compatibility condition implies that:

D̃XA(ei) = D̃XA(hVi, Vii) = 2A(hrXVi, Vii)

Since Vi = 0 on any face other than i, we have rXViVi = aiei for some scalar ai.

Thus,

D̃XA(ei) = 2A(aiei) = 2aiA(ei).

In other words, A(ei) is an eigenvector of D̃X with eigenvalue 2ai. Our goal will

be to show that ai = 0 for all i, since in that case D̃XA(h) = 0 for any h.

2. For any i 6= j, we have ViVj = 0. Thus:

0 = D̃XA(hVi, Vji) = A(hrXVi, Vji) +A(hrXVj , Vii).

3. Let V =
P

i Vi. Note that hV, V i =
P

ei = c a constant function on the faces.

Thus D̃XA(hV, V i) = 0. But

D̃XA(hV, V i) = 2A(hrXV, V i) = 2A(

*

rX

X

i

Vi,
X

i

Vi

+

)

= 2A(

*

X

i

rXVi,
X

i

Vi

+

) = 2A(
X

i,j

hrXVi, Vji)

= 2
X

i,j

A(hrXVi, Vji) = 0

Using parts 1. and 2. above (which states that that the cross terms cancel out),

this further simplifies to:

D̃XA(hV, V i) = 2
X

i

A(hrXVi, Vii) = 2
X

i

aiA(ei) = 0.

4. Since A(ei) is an eigenvector of D̃X with eigenvalue 2ai, the previous part can be

rewritten as (by summing eigenvectors with the same eigenvalue):
P

j �j�j = 0,

where �j are all distinct and non-zero, and �j =
P

iA(ei) such that 2ai = �j .
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We claim that �j are all linearly independent. To see this suppose that �k =
P

j 6=k bj�j , for some k, such that {�j} are linearly independent and bj 6= 0. Then

since D̃X�i = �i�i we have:

X

j 6=k

bj�j�j =
X

j 6=k

bj�k�j ,

which implies (since bj is non-zero) that �k = �j for all j, which is a contradiction.

5. Since �j are all linearly independent,
P

j �j�j = 0, implies that �j�j = 0 for all

j. Thus, either �j = 0 or �j = 0. But �j =
P

iA(ei) for some index i, and A

is assumed to be non-negative,
P

iA(ei) = 0 only if A(ei) = 0 for every i. But

this means that �j = ai = 0. Therefore, ai = 0 for all i, which implies that

D̃XA(h) = 0 for all h.

B.2 Properties of the continuous operators associated with

the Levi-Civita covariant derivative

The following lemmas all deal with smooth manifolds. We will assume that each manifold

is compact and without boundary. Moreover we will assume that all vector fields are

not only smooth but analytic. Note that this requirement is necessary for Lemma B.3.1,

and not e.g. for Lemma B.2.3 but we will assume it throughout for simplicity.

Lemma B.2.1. For a closed oriented surface M without boundary, rUV = 0 8 U if

and only if V = 0 or M is a flat torus.

Proof. The proof of this lemma relies on the result of Lemma B.3.1 below. First, note

that if M is not a genus 1 surface, then according to Hopf index theorem [Mor01,

pg. 256], there must be some point p s.t. V (p) = 0. But then pick another point

p0 and construct a vector field Z such that the flow-lines of Z connect p and p0. I.e.

�Z(p, t) = p0 for some t. Since rZV = 0 this implies, using Lemma B.3.1 below, that

V (p0) = V (p) = 0, and thus V = 0 everywhere, since p0 was arbitrary. Let assume

now that M is a torus. Since rUV = 0 8 U , parallel transport around any paths must

commute, so there is no curvature and thus M must be a flat torus.

Lemma B.2.2. Two vector fields U and V are equal if and only if rUW = rV W for

all vector fields W .

Proof. Recall from the definition of parallel transport that if rXV = 0, then V is

preserved by parallel transport along the trajectories of X. Suppose X 6= 0, so that

there is some point p, s.t. �t(p) 6= p for some t. Then for any vector field V , V (�t(p)) is

the parallel transport of V (p) along the trajectory of X from p to �t(p). As the parallel

transported image of V (p) is uniquely defined, it is easy to build two vector fields V
1

and V
2

such that V
1

(p) = V
2

(p) but V
1

(�t(p)) 6= V
2

(�t(p)), a contradiction.
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Lemma B.2.3. A vector field U is divergence-free if and only if rU is anti-symmetric

with respect to the inner product on the surface. I.e., if and only if
R

M hrUX,Y i dx =

�

R

M hrUY,Xi dx for all vector fields X and Y .

Proof. Suppose U is divergence-free. Then, using the metric compatibility of the

covariant derivative:

Z

M
(hrUX,Y i+ hrUY,Xi) dx

=

Z

M
rU hX,Y i dx =

Z

M
div(U) hX,Y i dx = 0

where the second to last equality uses Stokes’ theorem and integration by parts.

Now, suppose that rU is anti-symmetric. Then by the same argument we get:
R

M div(U) hX,Y i dx = 0 for any X and Y . Suppose f = div(U) is not zero. Then there

exists a point p such that f(p) = ✏ > 0. Let ⌦ be a small neighborhood of p such that

f(p) does not change sign and is strictly greater than 0. By constructing a vector field

X that vanishes outside of ⌦, and considering
R

M div(U) hX,Xi dx it is easy to see that

this integral must be positive. But this contradicts the assumption of anti-symmetry.

B.3 Properties of the discrete operators associated with

the Levi-Civita covariant derivative

Lemma B.3.1. Let �̃U,t = exp(tr̃U ), where r̃U is the matrix representation of the

discrete covariant derivative operator defined in the main paper, and exp is matrix

exponentiation. Then:

r̃U (V )(p) =
d

dt

⇣

�̃U,t(V )(p)
⌘

�

�

�

t=0

. (B.2)

Proof. We have: d
dt �̃U,t = d

dt exp(tr̃U ) = r̃U exp(tr̃U ), where we can use standard

matrix derivative rules, as r̃U does not depend on t. Hence, for t = 0 we get: d
dt �̃U,t

�

�

t=0

=

r̃U , as required.

Lemma B.3.2. If D̃U uses a full basis, then the operator r̃ is invariant to rigid

transformations. Namely, let M = (V, E ,F) be a mesh embedded with coordinates

X 2 R3, and let U, V be two tangent vector fields on M . In addition, let T be a global

rigid transformation T : R3

! R3. Then:

(r̃T (X))T (U)

T (V ) = T ((r̃X)UV ), (B.3)

where r̃X is the discrete covariant derivative operator on a mesh embedded with coordi-

nates X.
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Proof. Since we only deal with vector quantities (e.g. the input vectors, and the edge

vectors of the mesh), and intrinsic scalar quantities (e.g. triangle areas) it is clear that

the definition is invariant to global translation.

Let T be given by a global rotation matrix RT . Consider the gradient of the three

components of V in the face i 2 F , namely the 3⇥ 3 matrix GX
V,i whose columns are

⇥

(rX
Avx)(i), (rX

Avy)(i), (rX
Avz)(i)

⇤

, where A is an intrinsic averaging operator, and

r

X is the gradient of non-conforming elements on a mesh embedded with coordinates

X.

From the definition of the gradient, it is easy to check that

GX
V,i = �(E

X
i )TCiAV/4i, (B.4)

where EX
i is a 3⇥ 3 matrix whose rows are the rotated vector edges of the face i, Ci is

a 3⇥ |E| matrix which chooses the edges in the face i, V is a |F|⇥ 3 matrix where the

i-th row represents the vector in face i, and 4i is the area of face i. Similarly, for the

rotated mesh we have:

GXR
V R,i = �(E

XR
i )TCiAV R/4i, (B.5)

since Ci is combinatorial, A and 4i are intrinsic, and rotating the vector field can be

expressed as post multiplying by R. Similarly, rotating the coordinates (and thus the

edge vectors) of X can also be expressed as post multiplying by R, hence we have:

EXR
i = EX

i R. Combined with (B.4) and (B.5) we get:

GXR
V R,i = RTGX

V,iR. (B.6)

By definition, we have that (D̃X
U V )(i) =

�

D̃X
U vx, D̃

X
U vy, D̃

X
U vz

�

(i) = U(i)GX
V,i, where

U(i) is the vector U in the face i. Hence, plugging in (B.6) we get:

�

D̃XR
UR (V R)

�

(i) = (UR)(i)GXR
V R,i = U(i)RRTGX

V,iR = U(i)GX
V,iR, (B.7)

hence:
�

D̃XR
UR (V R)

�

(i) =
�

D̃X
U V
�

(i)R.

It is straightforward to check that by projecting out the normal component we get
�

r̃

XR
UR (V R)

�

(i) =
�

r̃

X
U (V )

�

(i)R as required.

B.4 Periodic solution to Euler’s Equation

In this section we consider the evolution of an incompressible inviscous fluid on a

2-dimensional sphere. Our goal is to show that if the velocity field at time 0 equals:

V (0) = U
0

+ Jr�j where U
0

is a Killing vector field, J is an operator that rotates

a given vector field by ⇡/2 in each tangent plane and �j is an eigenfunction of the

Laplace-Beltrami operator corresponding to the jth eigenvalue, then the solution to
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Euler equation at time t will have the form

V (t) = U
0

+
X

i

ai(t)Jr�i.

Here, ai(t) are scalar-valued functions and �i are eigenfunctions of the Laplace-Beltrami

operator corresponding to the same jth eigenvalue. Thus, V (t) is a linear combination

of a KVF and a rotated gradient of an eigenfunction corresponding to the jth eigenvalue

for all times t. Moreover, we would also like to show that the vorticity !(t) = curl(V (t))

is advected isometrically by the flow.

To show that V (t) = U
0

+
P

i ai(t)Jr�i, for all t, recall the vorticity formulation of

Euler equation:

1. V (t) = Jr (t)

2. !(t) = �L (t)

3. d
dt!(t) = �DV (t)!(t)

where V (t) is the velocity field, ! is the vorticity,  is called the stream function, L is

the Laplace-Beltrami operator and DV (t) the covariant derivative (of functions) in the

direction of V (t) (see e.g. [Tay96, pg. 536, Eq. (1.27)]).

Suppose  (0) = �
1

+ �j where �
1

corresponds to the first non-zero eigenfunction

of the Laplace-Beltrami (note that Jr�
1

is a Killing vector field). Thus, we have:

w(0) = �L (0) = �(�
1

�
1

+ �j�j) and V (0) = �Jr�
1

� Jr�j . Now:

L
d

dt
 (0) = DV (0)

L (0) = hV (0),rL (0)i

= hJr�
1

+ Jr�j ,�1r�1 + �jr�ji

= hJr�
1

,�jr�ji+ hJr�j ,�1r�1i

= (�j � �1) hJr�1,r�ji

Now since U
0

= Jr�
1

is a Killing vector field, L hU
0

,rfi = hU
0

,rLfi for any f , which

implies in particular that L hU
0

,r�ji = �j hU0

,r�ji, and therefore hU
0

,r�ji is an

eigenfunction of L corresponding to the jth eigenvalue. Note that this implies that
d
dt (0) is contained in the span of the eigenfunctions corresponding to the jth eigenvalue.

Moreover, using the same argument as above, the same is true for any t. Thus we have:

 (t) = �
1

+
P

i ai(t)�i and V (t) = U
0

+
P

i ai(t)Jr�i, for all t, where ai(t) are scalar

valued functions of time and �i are eigenfunctions corresponding to the jth eigenvalue

of L.

Note that V (t) is not a Killing Vector field for any time t. However, as we will show

the vorticity function ! is advected isometrically by V (t).
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For this note that w(t) = �L (t) = �(�
1

�
1

+ �j
P

i ai(t)�i) for all t, and

d

dt
!(t) = �DV (t)!(t) = (�j � �1)

*

Jr�
1

,
X

i

ai(t)r�i

+

.

Now consider another PDE for the evolution of ! (which would a-priori give a di↵erent

flow).

d

dt
!(t) = �DJr�1!(t) = �j

*

Jr�
1

,
X

i

ai(t)r�i

+

.

Note that when !(t) has the form as above, these two equations only di↵er by a scalar,

i.e. the speed of evolution. Moreover note that when w(0) = �(�
1

�
1

+ �j�j) then w(t)

will have this form for all t for both PDEs. Thus, whether w is advected by V (t) or by

a constant U
0

= Jr�
1

the trajectory will be the same. Since we know that Jr�
1

is a

Killing Vector field, this means that !(t) is advected isometrically by V (t).
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Appendix C

Appendix of Chapter 4

C.1 Proof of lemma 4.3.1

Lemma 4.3.1. Given a cross field x and an arbitrary point q 2 M , we compute the

associated power vectors y
1

and y
2

at q using two di↵erent basis vectors b
1

and b
2

,

respectively. Then, for any real-valued function f , the following relation holds

hy
1

, (grad f)
1,pi = hy2, (grad f)2,pi ,

where (grad f)i,p is the power vector of (grad f) at q in the basis bi.

Proof. Let x be one of the 4 vectors of the cross field at q. We represent it using bi as

x = sxR
✓
ibi, where sx = kxk, ✓i 2 [0, 2⇡) and R✓ is counter-clockwise rotation by angle ✓

in the tangent plane of q. Similarly, let (grad f)(q) = sfR
↵
ibi, where sf = k(grad f)(q)k,

and we assumed that both sx and sf are not zero. Now, the power vector of x w.r.t the

basis bi is given by yi = R4✓
ibi, and similarly (grad f)(q)i,p = R4↵

ibi. The inner product

is therefore:

hyi, (grad f)(q)i,pi = bTi R
�4✓

iR4↵
ibi = cos(4(↵i � ✓i)),

since the bases bi are unit-length. Now simply note that the di↵erence of angles is

independent of the basis which gives us the result.

C.2 A Practical Optimization Approach

In what follows, we re-formulate our minimization problem (4.7) as a standard quadratic

programming optimization problem. Our analysis shows that the involved Hessian

is composed of a sparse term and a dense component, which is the product of a

matrix and its transpose. Thus, we can facilitate MATLAB’s quadprog with the

trust-region-reflective method, allowing to solve a large and dense problem as

long as its Hessian is structured. As the derivation for the case of a pair of shapes closely

follows the single shape scenario, we omit the discussion of re-formulating the problem

given in Eq. (4.11).
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Recalling the smoothness and alignment terms, Eqs. (4.1) and (4.2), respectively,

we observe that their associated Hessian matrices, Hs and Hl are extremely sparse. We

denote

Hs = gradTp GE gradp ,

Hl = ST GF S ,

where Hs has a sparsity structure of a Laplacian matrix (one-ring of faces) and Hl is a

diagonal matrix. In addition, the alignment component includes a linear term which we

denote by f = �Hl ·w and a quadratic part in w which does not a↵ect the optimization.

For the consistency component given in Eq. (4.6), we distinguish between two cases.

In the first case, we use a reduced functional basis, i.e., k < 300, and we denote

Gc,i = C D(fi) �D (C · fi), with Gc,i being a constant matrix of size k ⇥ 2|F|, since

C and fi are fixed throughout the optimization. The consistency condition has the

following Hessian:

Hc =
m
X

i=1

GT
c,iGc,i .

Unfortunately, direct computation of Hc results in a large and dense matrix and thus,

in practice, we only perform manipulations of the form GT
c,i · (Gc,i · y). The second case,

when k = |V|, is much simpler as Hc is sparse and problem (4.7) can be solved directly

in this scenario. Overall, we achieve the following Hessian,

H = (1� ↵l)[(1� ↵c)Hs + ↵cHc] + ↵l Hl .

Finally, using the above notation, our problem (4.7) can be written as

argmin
y

1

2
yTHy + fT y . (C.1)
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Appendix D

Appendix of Chapter 5

D.1 Directional derivatives of the discrete energy (5.6).

We take variations of E with respect to the velocities vj , and idenitfy the coe�cient of

vj with the partial derivative @
@v

j

E:

@

@t
E(vj + t�vj)

�

�

�

t=0

=
�⌧

2
�vTj GF D↵ vj +

�⌧

2
vTj GF D↵ �vj

+
1

2�2

✓

@ft
@vj

�vj

◆T

GV C� �g

+
1

2�2
�gGV C�

✓

@ft
@vj

�vj

◆

= �⌧ �vTj GF D↵ vj +
1

�2
�vTj

✓

@

@vj
ft

◆T

GV C� �g

⌘ �vTj

✓

@

@vj
E

◆

.

Notice that the above holds in our setup since D↵ and C� are self-adjoint operators

with respect to the inner products defined by GF and GV respectively.

D.2 Directional derivatives of f � ��⌧v (linear advection).

The key insight for deriving the gradient for f � ��⌧v is to employ the dual operator Df

in order to extract the particular vj . As in Appendix D.1, we have:

163



@

@t
f � ��⌧v+t�v

�

�

�

t=0

=
@

@t

N
Y

j=1

�

id��⌧ Dv
j

+t�v
j

�

f
�

�

�

t=0

=
@

@t

N
Y

j=1

�

id��⌧ Dv
j

� t �⌧ D�v
j

�

f
�

�

�

t=0

=
N
X

j=1

0

@

N
Y

i=j+1

(id��⌧ Dv
i

)

1

A (��⌧ D�v
j

)

 

j�1

Y

i=1

(id��⌧ Dv
i

)

!

f

= ��⌧
N
X

j=1

0

@

N
Y

i=j+1

(id��⌧ Dv
i

)

1

AD�v
j

f
(j�1)�⌧

= ��⌧
N
X

j=1

0

@

N
Y

i=j+1

(id��⌧ Dv
i

)

1

ADf(j�1)�⌧
�vj

⌘

N
X

j=1

@f � ��⌧v

@vj
�vj

D.3 Directional derivative of f � '�⌧v (non-linear advec-

tion).

In what follows, we describe our approximation to the derivative of f �'�⌧
v . Notice that

for finite matrix groups, a direct di↵erentiation is available (see e.g., [Hal15]). However,

the resulting expression is not computationally tractable as it contains an exponential of

a 9|F|

2

⇥ 9|F|

2 matrix. We, on the other hand, facilitate the discrete relation between

vector fields and matrices and thus obtain an e�cient yet approximate expression for
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the derivative.

@

@t

✓

1

2�2
kexp(�⌧ Dv+t �v)f � gk2�

◆

�

�

�

t=0

=

1

�2

⌧

exp(�⌧ Dv+t �v)f � g,



@

@t
(exp(�⌧ Dv+t �v)f � g)

�

�

�

�

t=0

�

�

=

1

�2

⌧

exp(�⌧ Dv)f � g,



@

@t
exp(�⌧ Dv+t �v)

�

�

�

�

t=0

f

�

�

=(1)

1

�2

⌧

�g, exp(�⌧ Dv)



Z

1

0

exp(� ad�s ⌧ D
v

)D�⌧ �vds

�

f

�

�

=(2)

�⌧

�2

⌧

�g, exp(�⌧ Dv)



Z

1

0

D
exp(s ⌧ ad

v

)�vds

�

f

�

�

=

�⌧

�2
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�g, exp(�⌧ Dv)

Z

1

0

Df exp(s ⌧ adv)�vds

�

�

=

�⌧

�2

⌧

�g, exp(�⌧ Dv)Df

Z

1

0

exp(s ⌧ adv)ds�v

�
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=(3)
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(k + 1)�2

*

�g, exp(�⌧ Dv)Df

k
X

s=0

exp
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k
adv
⌘

�v

+

�

.

The proof for (1) is given in [Hal15] and (3) is a simple averaging rule for approximating

the continuous integral with a finite sum. The pass in (2) states exp(adD
v

)Du =

D
exp(ad

v

)u, i.e., applying this operation to the matrices Dv and Du is the same as acting

the on vector fields v and u. In the discrete setting this relation does not hold, thus

pass (2) can be considered as an approximation of the required computation.

D.4 Construction of the operator adv.

To derive Eq. (5.11), we employ the following observations. As the current Dv operates

on vertex-based functions, yet adv is expected to act on vector fields, we define Dv =

[v]T• grad IFV , an operator on face-based functions. Moreover, a vector field v = (vx, vy, vz)

can be reconstructed by applying its directional derivative operator on the coordinate

functions of the surface. Namely,

Dv(x) = vx , Dv(y) = vy , Dv(z) = vz ,

where any point p 2M is given by (xp, yp, zp) 2 R3. Thus, using the above observations

we obtain,

D

[v,u](x) = DvDu(x)�DuDv(x)

= Dv(ux)�Du(vx)

= Dv(ux)�Dv
x

(u) ,
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where Df = [grad IFV f ]T• . Finally, applying the above argument to the coordinate

functions y and z yields,

adv(u) = [v, u]

=
�

D

[v,u](x),D[v,u](y),D[v,u](z)
�

=
�

Dv(ux)�Dv
x

(u),Dv(uy)�Dv
y

(u),Dv(uz)�Dv
z

(u)
�

,

where Eq. (5.11) is the matrix form of the above computation.
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Appendix E

Appendix of Chapter 7

E.1 Mass preservation

To prove that mass is strictly preserved we recall the first order necessary conditions in

the context of the Lagrangian.

⌧GFM(uk)�1v � ⌧
⇣

D(uk) + [uk] div
⌘T

GVp = 0

GV (a+ ✏Bu) + ✏Lu�GVp = 0

GV

⇣

u� uk + ⌧(D(v) + [divv])uk
⌘

= 0

It is interesting to note that, using the definition of L and a discrete integration by parts,

the second equation is equivalent to p = a+ ✏Bu� ✏ div gradu in correspondence to

the corresponding continuous equation p = a+ ✏bu� ✏�
�

u.

At first, we rewrite the first equation and get

v=M(uk)G�1

F

⇣

D(uk) + [uk] div
⌘T

GVp

=M(uk)G�1

F

⇣

[graduk]•(I
F
V )

TGVp+ divT [uk]GVp
⌘

=M(uk)G�1

F

⇣

[(IFV )
TGVp] gradu

k+divT GV [u
k]p
⌘

=M(uk)G�1

F

⇣

[GFI
V
Fp] gradu

k
�GF grad[uk]p

⌘

=M(uk)
⇣

[pF ] gradu
k
� grad[uk]p

⌘

using the facts that GV and [uk] commute as diagonal matrices, that [v]•uF = [uF ]v

for any uF (discrete scalar on faces) and v (discrete vector), and that the interpolation

matrices are defined so that IVF = G�1

F (IFV )
TGV . Again, it is interesting to note that

the equation above is an approximation of the corresponding continuous one:

v = M(uk)
⇣

pr
�

uk �r
�

(ukp)
⌘

= �ukM(uk)r
�

p
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Now, we consider the discrete m(u) = 1TVGVu with 1V a vector of ones of length

|V|. Indeed, multiplying the third equation with 1TV , using the duality of D and D, and

taking into account that the interpolation matrix IVF is defined so that IVF1V = 1F we

obtain

m(uk+1)�m(uk) = �⌧ 1TVGV (D(v) + [divv])uk

= �⌧ 1TVGV

⇣

D(uk) + [uk] div
⌘

v

= �⌧ vT
⇣

D(uk) + [uk] div
⌘T

GV1V

= �⌧ vTGF

⇣

[IVF1V ] gradu
k
� grad[uk]1V

⌘

= �⌧ vTGF

⇣

graduk
� graduk

⌘

= 0 .

The key step is applying the previous calculation with p = 1V and so the discrete

conservation of mass is equivalent to the fact that a constant discrete pressure gives zero

discrete velocity.
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[BLP+13] David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Claudio

Silva, Marco Tarini, and Denis Zorin. Quad-mesh generation and

processing: A survey. In Computer Graphics Forum, volume 32,

pages 51–76. Wiley Online Library, 2013.

[BMTY05] M Faisal Beg, Michael I Miller, Alain Trouvé, and Laurent Younes.
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 IV 

עיצוב שדות וקטורים הוא ---וריאנטית חשובה בהרבה מקרים אחרים-פי כן, הנגזרת הקו

 .3אחת מהדוגמאות העיקריות שנדון בהן בפרק 

לבסוף, יתרון משמעותי נוסף לעבודה עם אופרטורים, הוא שבאמצעותם אנו מובלים 

באופן טבעי לייצוג חלש של הבעיה. לעומת הייצוג החזק שבו ערכים מחושבים בכל 

באיזור קטן. הייצוג החלש עוזר  נקודה, הייצוג החלש בד"כ מכיל גרסא סכומה של הערך,

, אנו נעסוק בבעיה 4כאשר נתון לנו מידע שהוא מקורב או אפילו רועש. למשל, בפרק 

, למשטחים עם מרובעים תואמים. ℳ2 -ו ℳ1של הפיכת זוג משטחים משולשיים נתונים, 

המשטחים יכולים להיות בעלי מספר שונה של קודקודים ולכן אנו מניחים שנתון בידינו 

:𝜑מיפוי  ℳ1 → ℳ2. משטחים עם מרובעים תואמים, אנו נחשב שני  על מנת לייצר

, בהתאמה, וכדי להחיל ℳ2 -ו ℳ1, על 𝑥2 -ו 𝑥1שדות וקטורים שהם סימטריים סיבובית, 

. כלומר, תנאי התאימות הבסיסי שלנו הוא d𝜑מות אנו זקוקים לדיפרנציאל המיפוי, תאי

d𝜑(𝑥1)מהצורה  = 𝑥2 נקודה בכל  עבור- ℳ2.  בפועל, המיפוי𝜑  יכול להיות רועש, מה

במקום להשתמש בתנאי לעיל,  רועש ולאלגוריתם שאינו יציב. d𝜑שיוביל לדיפרנציאל 

, ע"י שימוש בגרסא הפונקציונלית של תנאי 4בפרק אנו נתכנן אלגוריתם יעיל ויציב 

 התאימות הקודם:

𝐶[𝜑] ⋅ 𝐷(𝑥1) = 𝐷(𝑥2) ⋅ 𝐶[𝜑] , 

. אנו מפנים את הקורא לדיון המקיף 𝜑הוא האופרטור המשויך למיפוי  𝐶[𝜑]כאשר 

 ולמידע נוסף המופיע הפרק הרלבנטי.

בתזה הזו, לסיכום, גישה מבוססת אופרטורים היא שימושית במספר מקרים, כפי המוצג 

ובאמצעות גישה זו ניתן לתכנן אלגוריתמים שהינם אפקטיביים ויציבים, בעודם יעילים 

לחישוב. תקוות המחבר היא שמתודולוגית האופרטורים תמשיך לצמוח בעתיד ויתווספו 

ביטויים ושימושים חדשים לספרות העיבוד ספרתי של גיאומטריה ובתחומים מדעיים 

 אחרים.



 III 

הקבוצה הבאה והאחרונה של מד"ח אותן נחקור בעבודה זו הינן משוואות של נוזלים 

מייצג  𝑢דקים, הקשורות לבעיה שהצגנו בתחילת הפרק. על משטחים עקומים, כאשר 

 המשוואות הללו נתונות ע"י: את צפיפות המסה,

𝜕𝑡𝑢 + div(−𝑀(𝑢) ⋅ grad 𝑝(𝑢)) = 0 , 

𝑀(𝑢) =
1
3 𝑢3id +

𝜖
6 𝑢4(𝐻 id − 𝑆) , 

𝑝 = −𝐻 − 𝜖𝑇𝑢 − 𝜖𝛥𝑢 , 

𝜖הם גדלים הקשורים לעקמומיות,  S -ו H ,Tכאשר  ≪ הוא היחס בין גובה לאורך של  1

הוא  𝛥 -, ו𝑣 -הוא אופרטור הדיברגנץ שמודד את כמות השטף הקשורה ל divהנוזל, 

היא אינה לינארית ומסדר  במקרה זה, משוואת ההסעה בלטרמי.—אופרטור הלפלס

. למרות זאת, מאחר 7מקרה זה מאתגר במיוחד לפיתרון, כפי שנתאר בפרק רביעי, ולכן 

, אנו מסוגלים לפתור משוואות gradient flowונוזלים דקים הם בעלי מבנה מתמטי של 

ות מורכבות של נוזלים דקים על משטחים עקומים אלו באופן יעיל ולסמלץ מספר תופע

 כלליים.

המשוואות שהוצגו בפרק זה, מלבד משוואת שימור התנע, חולקות מבנה משותף בו 

 השינוי בזמן נתון ע"י השינוי הדיפרנציאלי במרחב. בנוסף, נזכיר שמתקיים

div(𝑢𝑣) = 〈𝑣, grad 𝑢〉 + 𝑢 ⋅ div(𝑣) , 

, אותם ניתן 𝛥 -ו grad, div ,curlולכן, אנו מבחינים בין אופרטורים דיפרנציאליים כגון 

𝐷(𝑣)לבנות ע"פ הכתוב בספרות לבין הנגזרת הכיוונית,  = 〈𝑣, grad , שהיא עיקר 〈⋅

, הוא אופרטור המעביר פונקציות סקלריות 𝐷(𝑣)נקודת המבט בה  .2העיסוק בפרק 

היא  𝐷(𝑣)לנגזרות שלהן, טומנת בחובה הרבה יתרונות. לדוגמא, בהינתן בסיס סופי, 

 .2למעשה מטריצה ריבועית שתכונותיה ניתנות לחקירה או אילוץ, כפי שמוצג בפרק 

 𝐷(𝑣) -בנוסף, כאשר פותרים משוואות דיפרנציאליות נשלטות הסעה, השימוש ב

מאפשר לנו להימנע מהחישוב הרגיש נומרית של מסלולי הזרימה. כלומר, במקום לחשב 

 -על גביהם, נוכל להשתמש ישירות ב 𝐷(𝑣)ראשית את מסלולי הזרימה ולהסיע את 

𝐷(𝑣)  בפותר זמן מפורש או סתום. לאור השימושיות של𝐷(𝑣) הרחבנו רעיון זה למקרה ,

למרבה הצער,  לצורך פיתרון משוואות שימור התנע. 3רק , בפ𝛻𝑣𝑣של נגזרות וקטוריות, 

הוא חישוב שהינו פנימי למשטח, הדיסקרטיזציה שלנו כוללת נגזרת חיצונית  𝐷(𝑣)בעוד 

. אף על 6עם הטלה, ולכן הפותר נוזלים שקיבלנו פחות מוצלח מהפותר שתוכנן בפרק 



 II 

𝜕𝑡𝑢 + 〈𝑣, grad 𝑢〉 = 0 , 

זוהי המכפלה  〈∙,∙〉 -זהו אופרטור הגרדיאנט ו gradהיא הנגזרת בזמן,  t∂כאשר 

במהלך הזמן  u -מקשרת בין השינוי ב סעהאכן, משוואת הה  הסקלרית הסטנדרטית.

,𝑣〉יחד עם )מינוס( השינוי במרחב, מכיוון שהביטוי  grad 𝑢〉  הוא הנגזרת הכיוונית של

u ביחס ל- v. 

במקרה בו נתונים תנאי שפה לזמן ההתחלה והסוף,  סעה, נעסוק במשוואת הה5בפרק 

𝑢(0)כלומר  = 𝑢0 ו- 𝑢(1) = 𝑢1 והמטרה העיקרית היא לחשב את ,𝑢(𝑡) ו- 𝑣(𝑡)  עבור

𝑡 ∈ רגולריזציה על  . למעשה, זו בעיה שאינה מוגדרת היטב, ולכן ניאלץ להוסיף(0,1)

מנת להגביר את הסיכויים למציאת פיתרון. המבנה הנ"ל יותאם למשימת שיפור מיפוי 

, אם מרחב הפונקציות 5. כפי שנראה בפרק ℳ2 -ו ℳ1בין שני משטחים  𝜑התחלתי 

יתן לשפר באופן משמעותי את נ ℳ2מושם בהתאמה למרחב הפונקציות של  ℳ1של 

. למרבה המזל, בעיית השפה לעיל מתאימה למשימה זו, כאשר ניתן 𝜑המיפוי הנתון 

𝑢0לקחת  = 𝑓 ∘ 𝜑 ו- 𝑢1 = 𝑔 עם ,𝑓 ∈ 𝐿2(ℳ1) ו- 𝑔 ∈ 𝐿2(ℳ2)ולהשתמש ב ,- 𝑣(𝑡) 

אנו מפנים את הקורא לפרק הרלבנטי לקבלת  .𝜑המחושב כדי לייצר את המיפוי החדש 

 פרטים נוספים בנושא.

המד"ח הבאה שנבחן קשורה לזרימה של נוזלים, היא מבטיחה את שימורו של התנע, 

 סטוקס הידועות:--והיא חלק ממשוואות נאוויה

𝜕𝑡𝑣 + 𝛻𝑣𝑣 − 𝜇𝛻2𝑣 + grad 𝑝 = 0 , 

זהו לפלסיאן  𝛻2 -ווריאנטית, ו-היא נגזרת  קו 𝛻זהו הלחץ,  𝑝היא המהירות,  𝑣כאשר 

למרבה הצער, פתירת המשוואה הזו על משטחים עקומים  מקדם הצמיגות. 𝜇וקטורי עם 

אף על פי כן, המד"ח . 3זו משימה מאתגרת כפי שנתאר בקצרה בהמשך ובפירוט בפרק 

 הוקטורית הנ"ל ניתנת לפישוט באופן משמעותי למד"ח סקלרית ע"י הגדרת ערבוליות

𝜔הזרימה,  = curl 𝑣ממדי. לכן, -, המצביעה תמיד בכיוון הנורמל למשטח, במקרה הדו

ע"י  6במקום לפתור את משוואת שימור התנע, אנו נמדל זרימה שאינה צמיגה בפרק 

 הרוטור של המשוואה לעיל:בחינת משוואות הערבוליות, המתקבלת מלקיחת 

𝜕𝑡𝜔 + 〈𝑣, grad 𝜔〉 − 𝜇𝛥𝜔 = 0 . 

 𝜔מסוג הזזה, אך הפעם היא לא לינארית בגלל האילוץ המקשר בין  אנו שוב עם מד"ח

 ובנוסף היא מכילה רכיב צמיגות. 𝑣 -ל



 I 

 תקציר המחקר
התזה הבאה מציגה שיטות פרקטיות להתמודד עם כמה בעיות מאתגרות המוגדרות על 

משטחים עקומים שאינם טרביאליים. לדוגמא, אנו נרצה להעריך באופן נומרי כיצד 

 ?שכבה דקה של יין זורמת על גבי כוס יין. כיצד ניגשים כדי לפתור בעיה קשה שכזו

השיקולים הבאים צריכים להילקח בחשבון. ראשית, התנועה וסיבותיה, כלומר הדינמיקה 

של הבעיה מנותחת ומיוצגת באופן מתמטי ע"י משוואה דיפרנציאלית. בעבודה זו, אנו 

מניחים שהמשוואות השולטות בבעיה, כבר פותחו בעבודות קודמות, למשל, בדוגמא 

ל בקירוב ע"י משוואות נוזלים דקים. שנית, המשטח המנחה שלנו, היין יכול להיות ממוד

הגיאומטרי העקום מיוצג בצורה כזו שתאפשר לבצע חישובים פשוטים, תוך כדי שמירת 

היכולת לתאר גיאומטריות סבוכות. לצורך כך, התחום מקורב באמצעות משטח משולשי, 

מישוריים כלומר, קבוצה של קודקודים, צלעות ופיאות אשר נתונות ע"י משולשים 

המחוברים בינהם בצלעות. השיקול השלישי ומוקד העניין העיקרי בעבודה זו, הוא 

פתירת המשוואות על גבי המשטח הבדיד במונחי שיטה נומרית שניתנת לקידוד בשפת 

 מחשב כלשהי.

משוואות דיפרנציאליות מתארות את השינוי בזמן או מרחב )או שניהם( של משתנה 

, המחושב בכל hדקים, למשל, מאופיינים באמצעות גובה הנוזל, הכרחי לבעיה. נוזלים 

 נחשבת כפיתרון של המשוואות הנתונות. hנקודה בתחום. האבולוציה בזמן ובמרחב של 

יא בעיה קשה, המצריכה תכנון של כללי פיתרון נומרי של משוואות דיפרנציאליות ה

במרחב על מנת לייצר  אינטגרציה בזמן יחד עם בניה של אופרטורים דיפרנציאליים

שערוך אמין של דינמיקת הבעיה. בהינתן הסיווג הנ"ל, החצי הראשון של העבודה הבאה 

 דן בשיקולים המרחביים, והחצי השני בעיקר עוסק בכללי האינטגרציה בזמן.

מטה של העבודה. כלומר, ראשית נתאר את המשוואות -אנו ממשיכים בתיאור מעלה

מד"ח( אותן נרצה לפתור, ולאחר מכן, נתמקד ברכיבים הדיפרנציאליות החלקיות )

המרחביים הדרושים להרכבת פותרים נומריים אפקטיביים. כפי שהדוגמא לעיל מרמזת, 

, ולכן, אנו מתחילים ממד"ח שמתאר באופן מתמטי בעיקרן סעהאנו נתעניין בבעיות ה

ת מהמד"ח . למעשה, זוהי אחv, נע בהשפעת שדה מהירות, uכיצד משתנה מסוים, 

הנפוצות ביותר והיא משמשת לתיאור של מגוון תופעות טבעיות והיא נקראת משוואת 

 :סעההה
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 התמיכה הנדיבה בהשתלמותי. 
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