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Abstract

Spectral methods have proven themselves as an important and versatile tool in

a wide range of problems in the fields of computer graphics, machine learning,

pattern recognition, and computer vision, where many important problems boil

down to constructing a Laplacian operator and finding a few of its eigenvalues

and eigenfunctions. Classical examples include the computation of diffusion dis-

tances on manifolds in computer graphics, Laplacian eigenmaps, and spectral

clustering in machine learning.

In many cases, one has to deal with multiple data spaces simultaneously. For

example, clustering multimedia data in machine learning applications involves

various modalities or “views” (e.g., text and images), and finding correspondence

between shapes in computer graphics problems is an operation performed be-

tween two or more modalities.

In this thesis, we develop a generalization of spectral methods to deal with

multiple data spaces and apply them to problems from the domains of computer

graphics, machine learning, and image processing. Our main construction is

based on simultaneous diagonalization of Laplacian operators. We present an

efficient numerical technique for computing joint approximate eigenvectors of

two or more Laplacians in challenging noisy scenarios, which also appears to

be the first general non-smooth manifold optimization method. Finally, we use

the relation between joint approximate diagonalizability and approximate com-

mutativity of operators to define a structural similarity measure for images. We

use this measure to perform structure-preserving color manipulations of a given

image.
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To the best of our knowledge, the original contributions of this work are the

following:

1 Introduction of joint diagonalization methods to the fields of machine learn-

ing, computer vision, pattern recognition, image processing, and graphics;

2 Formulation of the coupled approximate diagonalization problem that ex-

tends the joint diagonalization to cases with no bijective correspondence

between the domains, and its application in a wide range of problems in

the above fields;

3 Introduction of a new structural similarity measure of images based on the

approximate commutativity of their respective Laplacians, and its applica-

tion in image processing problems such as color-to-gray conversion, colors

adaptation for color-blind viewers, gamut mapping, and multispectral im-

age fusion;

4 Development of Manifold Alternating Direction Method of Multipliers (MADMM),

the first general method for non-smooth optimization with manifold con-

straints, and its applications to several problems.
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1.4 Spectral clustering example from [Ng et al., 2001] (left). We in-

troduce a topological noise in proximity relations between points

by moving the circles (center and right). Two sets of eccentric

rings represent different modalities; in each modality, the rings

touch at different points. Spectral clustering applied to each of the

modalities separately produces poor results. In particular, parts of

touching rings are clustered together. The idea is to analyse simul-

taneously two modalities to cluster the points correctly. . . . . . . 5
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Chapter 1

Introduction

1.1 Motivation and Problem Formulation

Spectral methods proved to be a powerful and versatile tool, widely used in

many applications in manifold learning, pattern recognition, computer vision,

computer graphics, and image processing. In many applications in these fields,

one can model the data as a non-Euclidean domain (e.g., manifold or graph) and

analyse its intrinsic properties captured by the Laplacian operator. The first few

eigenvectors1 and eigenvalues of the Laplace operator allow to express many of

such intrinsic properties in a simple way.

In machine learning, one of the most known examples is spectral cluster-

ing [Ng et al., 2001] (over 4,700 citations as of the date of writing this thesis), in

which the data is modelled as a graph capturing local proximity information of

data points. Using the first few Laplacian eigenfunctions of this graph, one ob-

tains a neighbourhood preserving embedding of the data: connected points are

mapped close to each other, while those weakly connected are mapped far apart.

This construction is closely related to Laplacian eigenmaps [Belkin and Niyogi,

2002] and diffusion maps [Coifman et al., 2005], used for non-linear dimen-

sionality reduction and data visualization. In computer graphics, the influential

paper of Lévy [2006] and numerous follow-up works have established spectral

1In the following, we will use the terms eigenfunctions and eigenvectors interchangeably, typi-
cally referring to the discrete setting by the latter.

1
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methods as a standard tool, used in applications such as shape segmentation [Shi

and Malik, 2000; Reuter, 2010], filtering [Vallet and Lévy, 2008], and computing

intrinsic metrics [Coifman et al., 2005]. The notable advantage of such methods

is that they can be applied to data in a variety of different representations (see

Figure 1.1), provided a suitable discretization of the Laplacian operator is given

[Meyer et al., 2003; von Luxburg, 2007; Belkin et al., 2008; Botsch et al., 2010].
In their seminal work Ovsjanikov et al. [2012] proposed a novel representation

of correspondences between shapes as linear maps between functional spaces.

These linear maps can be compactly represented in Laplacian eigenbases that

act as a generalization of Fourier bases to non-Euclidean domains. Finally, in

image processing, a spectral-based image segmentation of Shi and Malik [2000]
is one of the most influential papers in the domain (over 10,000 citations as of

the date of writing).

Graph Image

Mesh Point cloud

Voxels Level-Sets

3D Data

Figure 1.1. Examples of different data to which spectral methods can be ap-
plied. Shown left-to-right: a social network graph, an image, and several differ-
ent representations of a 3D shape (mesh, point-clouds, volumetric, and implicit
surface).

One of the main limitations of classical spectral constructions is that they typ-

ically work with a single domain (manifold, graph, etc.) at hand. Yet, in many

applications we are interested in simultaneously analysing data from multiple do-

mains. For example, in various applications, different manifolds can model ob-

servations and data measurements coming from different ‘modalities’ or ‘views’.

Typical examples include multimedia documents such as annotated images [We-

ston et al., 2010; Rasiwasia et al., 2010; McFee and Lanckriet, 2011], audio and
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video [Kidron et al., 2005; Alameda-Pineda et al., 2011], PET and CT modalities

in medical imaging [Bronstein et al., 2010b]. In computer graphics, problems of

shape correspondence, pose transfer, etc. involve multiple manifolds. In image

processing, one often has to deal with images taken at different spectral bands

or different illumination.

Extending spectral methods to multiple data spaces is difficult because Lapla-

cian eigenbases do not behave consistently on different domains and thus trans-

ferring information from one domain to another is problematic. Even for iso-

metric domains with simple spectrum (i.e., multiplicity of eigenvalues equal to

one), eigenfunctions are only defined up to sign flips. In the more general case,

the eigenfunctions corresponding to an eigenvalue with non-trivial multiplicity

span an eigen-subspace in which one can obtain an arbitrary orthonormal basis.

Furthermore, due to numerical inaccuracies, the ordering of the eigenfunctions,

especially those representing higher frequencies, can change (see Figure 1.2).

ψ2 ψ3 ψ4 ψ5 ψ6

φ2 φ3 φ4 φ5 φ6

Figure 1.2. First Laplacian eigenfunctions of the cat (top) and lion (bottom)
shapes. While the first two eigenfunctions differ only up to sign (φ2 «´ψ2,φ3 «

´ψ3), at higher frequencies, the order of the eigenfunctions changes (e.g.,
φ5 «´ψ6, φ6 «´ψ4).

To illustrate the problems these inconsistencies may cause, we refer to the

pose transfer application from [Lévy, 2006]. In this example, the embedding

coordinates of two shapes (horse and camel, see Figure 1.3) are represented in

the respective Laplacian eigenbases. Then, the first coefficients (“low frequency”

capturing the pose) of the camel are replaced with those of the horse, while the

rest of the coefficients (“high frequency” capturing the geometric details) are

kept from the camel. This method relies on the assumption that the two bases

behave consistently (at least for “low frequency”), or in Lévy’s words, that the
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corresponding Fourier coefficients “speak the same language”. Unfortunately,

since usually this is not the case, as mentioned previously, such a pose transfer

would typically fail.

Source Target Pose transfer result

Figure 1.3. Example of spectral pose transfer failure due to incompatibility of
Laplacian eigenbases on different domains.

To visualise the same problem in the domain of machine learning, let us con-

sider the classical example of concentric rings from [Ng et al., 2001] in Figure 1.4.

Ng et al. use this example to illustrate the power of spectral clustering: stan-

dard clustering techniques (e.g., k-means [Hochbaum and Shmoys, 1985]) fail

to group points belonging to different circles into separate clusters. However, by

constructing the Laplacian that captures the proximity relations of the points and

embedding them with the first few Laplacian eigenfunctions, one can separate

and cluster easily points belonging to each circle. We modify this example to

mimic applications of spectral methods to real-world data that is often noisy. By

moving the circles, we introduce topological noise to the proximity relations be-

tween points and, as a result, the performance of spectral clustering deteriorates

dramatically (parts of two touching rings are clustered together). By taking two

such sets of concentric circles, each with a different topological noise, we can

build a toy model for multi-modal spectral clustering where each set represents

a different modality (for a more realistic example see Figure 1.5).
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Figure 1.4. Spectral clustering example from [Ng et al., 2001] (left). We intro-
duce a topological noise in proximity relations between points by moving the
circles (center and right). Two sets of eccentric rings represent different modal-
ities; in each modality, the rings touch at different points. Spectral clustering
applied to each of the modalities separately produces poor results. In particular,
parts of touching rings are clustered together. The idea is to analyse simultane-
ously two modalities to cluster the points correctly.

1.2 Related Work

The Laplace operator and its spectrum play a pivotal role in many applications of

various disciplines. Orthogonal eigenfunctions of the Laplacian, often referred

to as manifold harmonics, play the role of Fourier bases, whereas eigenvalues are

analogous to frequencies [Taubin, 1995]. By this analogy, standard operations

in signal processing such as analysis and synthesis of signals can be carried out

on manifolds [Taubin, 1995]. In computer graphics community, this analogy has

been exploited in [Kim and Rossignac, 2005; Lévy, 2006; Vallet and Lévy, 2008;

Lévy and Zhang, 2009; Kovnatsky et al., 2012] for shape filtering and editing in

the frequency domain.

In image processing, modelling the image as a graph is considered somewhat

exotic. One of the most notable example of such a model is the spectral relax-

ation of the normalized cut criterion, which is widely used for image segmenta-

tion [Shi and Malik, 2000]. More recently, Bansal and Daniilidis [2013] used the

eigenvectors of image Laplacians to perform matching of images taken in differ-

ent illumination conditions, arguing that the Laplacian acts as a self-similarity

descriptor [Shechtman and Irani, 2007] of the image.

In manifold learning, important applications of spectral methods include spec-
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Cayenne, Porsche, car,
automobile, SUV,...

Chili, pepper, red, hot,
food, plant, spice,...

San Francisco, city,
USA, California, hill,...

Landrover, SUV, car,
Jeep, x , terrain,...

Cayenne, city, Guiana,
America, ocean,...

Cayenne, pepper, hot,
plant, spice, red,...

Figure 1.5. Example of ambiguities present in multimodal (image and text)
data. Visually, the images (shown in the top and bottom rows) of Cayenne and
San Francisco cities, Cayenne and chili pepper, and Porsche Cayenne and Lan-
dRover cars are similar. At the same time, the text annotations of the Porsche
Cayenne, Cayenne city, and Cayenne pepper are similar (they all contain the
word ‘Cayenne’).

tral clustering [Ng et al., 2001] where clusters are determined by the first eigen-

vectors of the Laplacian; eigenmaps [Belkin and Niyogi, 2002] and more gener-

ally diffusion maps [Nadler et al., 2005], where one tries to find a low-dimensional

manifold structure using the first smallest eigenvectors of the Laplacian; and dif-

fusion metrics [Coifman et al., 2005] measuring the “connectivity” of points on a

manifold and expressed through the eigenvalues and eigenvectors of the Lapla-

cian. Other applications heavily relying on the properties of the Laplacian in-

clude spectral graph partitioning [Ding et al., 2001], spectral hashing [Weiss et al.,

2008], spectral graph correspondence [Clements and Zhang, 2006]. Because of

the intimate relation between the Laplacian operator, Riemannian geometry, and

diffusion processes [Nadler et al., 2005], it is common to encounter the umbrella

term spectral or diffusion geometry in relation to the problems involving Laplace
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eigendecomposition.

In computer graphics and geometry processing, spectral methods have been

applied to a wide range of problems such as remeshing [Kobbelt, 1997; Nealen

et al., 2006], parametrization [Floater and Hormann, 2005; Jones et al., 2008],
compression [Karni and Gotsman, 2000], recognition [Reuter et al., 2006; Rus-

tamov, 2007], segmentation [Reuter, 2010; Litman et al., 2011], symmetry de-

tection [Ovsjanikov et al., 2008], editing [Lévy, 2006], shape similarity [Hu and

Hua, 2009; Reuter et al., 2006; Rustamov, 2007], pose transfer and deforma-

tion [Rong et al., 2008], and functional correspondence [Ovsjanikov et al., 2012].

Applications dealing with multiple shapes often either assume compatible

behaviour of manifold harmonics across the shapes [Vallet and Lévy, 2008], use

manual processing, or employ heuristics to remove the inconsistencies due to

sign flips, numerical instabilities, etc. [Reuter, 2010; Shtern and Kimmel, 2014;

Ovsjanikov et al., 2008]. Such heuristics are designed with a particular applica-

tion in mind and lack a rigorous theoretical foundation.

In the machine learning, computer vision, and pattern recognition commu-

nity, there has been a recently increasing interest in dealing with multimodal

data, such as multimedia documents [Weston et al., 2010; Rasiwasia et al., 2010;

McFee and Lanckriet, 2011], audio and video [Kidron et al., 2005; Alameda-

Pineda et al., 2011], or medical imaging modalities like PET and CT [Bronstein

et al., 2010b]. Unfortunately, there have been only few attempts of a systematic

extension of spectral methods to multimodal settings, most of them in the field

of machine learning in application to multi-view clustering [Cai et al., 2011; Ku-

mar et al., 2011; Dong et al., 2014]. A major drawback of these approaches is

the assumption of bijective correspondence between the manifolds representing

different modalities, which is too restrictive in many cases.

1.3 Main Contributions

The main contribution of our work is a principled framework allowing to extend

classical spectral techniques (such as diffusion maps and spectral clustering) to

multiple modalities. Our approach is based on simultaneous diagonalization of
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Laplacians, which allows constructing orthogonal approximate eigenbases be-

having consistently across multiple domains. While simultaneous diagonaliza-

tion methods are known in numerical algebra [Bunse-Gerstner et al., 1993] and

have been used before in some applications of signal processing such as blind

source separation [Cardoso and Souloumiac, 1993, 1996; Yeredor, 2002; Ziehe,

2005], to the best of our knowledge, we were the first to introduce such methods

in spectral data analysis.

First, we start from the joint diagonalization problem, in which one tries to

construct a common eigenbases for several Laplacian matrices (Chapter 3). Such

a formulation assumes that matrices have equal dimensionality and a bijective

known correspondence between the underlying multi-modal data (i.e., a known

correspondence between rows and columns). A generalization referred to as a

coupled diagonalization is presented in Chapter 4. This formulation resolves the

main drawbacks of the joint diagonalization formulation.

We show that the coupled diagonalization problem boils down to optimiza-

tion where variables are constrained to be orthogonal matrices, i.e. instances of

the Stiefel matrix manifold. This type of problems are referred to as manifold-

constrained optimization. There are several efficient numerical techniques de-

signed to perform the optimization directly on the manifold. To deal with noisy

data, we propose a robust formulation of the coupled diagonalization (using

matrix norms such as } ¨}1 or } ¨}2,1), which results in a non-smooth manifold op-

timization. Chapter 5 is dedicated to developing a simple yet powerful technique

referred to as Manifold Alternating Direction Method of Multipliers (MADMM)

allowing to address such problems. To the best of our knowledge, this technique

is the first general method for the optimization of non-smooth functions with

manifold constraints, and has applications extending way beyond the specific

problems considered in this thesis (we show a few such applications).

In Chapter 6, we study the use of simultaneous diagonalization techniques

in pattern recognition and computer vision problems. In particular, we show

that multi-modal spectral clustering can be performed using the joint approxi-

mate eigenvectors of the Laplacians built on different modalities. We also show

that several previous approaches for multi-modal clustering can be considered

as particular settings of our framework.
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In Chapter 7, we apply simultaneous diagonalization methods to problems

in computer graphics and geometric processing. Using the relation between our

method and the functional correspondence (Section 4.4), we propose an efficient

method for finding correspondence between non-rigid shapes. We also show

examples of applications such as pose transfer and shape editing.

In Chapter 8, we study the connection between joint diagonalizability and

commutativity of matrices, and use it to formulate a new structural similarity

measure for images. This measure is employed to perform structure preserving

color image manipulations, such as decolorization, gamut mapping, and color

optimization for color-blind viewers. Our study in this chapter is supported by

an extensive visual perception experiment.

Finally, in Chapter 9 rather than simply concluding the work and outlining a

few promising directions, as one would usually expect in a PhD thesis, we refer to

several follow-up works that emerged from our research and describe the works

of other authors who used our code and the techniques we have developed.

1.4 Published works

This thesis is mainly based on the publications listed below:

• A. Kovnatsky, M. M. Bronstein, A. M. Bronstein, K. Glashoff, R. Kimmel,

“Coupled quasi-harmonic bases”, Computer Graphics Forum 32:439–448,

2013.

• D. Eynard, A. Kovnatsky, M. M. Bronstein, K. Glashoff, A. M. Bronstein,

“Multimodal manifold analysis using simultaneous diagonalization of Lapla-

cians”, Trans. Pattern Analysis and Machine Intelligence 37(12):2505–2517,

2015.

• A. Kovnatsky, M. M. Bronstein, K. Glashoff, “MADMM: a generic algorithm

for non-smooth optimization on manifolds”, In Proc. ECCV, 2016.

• D. Eynard˚, A. Kovnatsky˚2, M. M. Bronstein, “Laplacian colormaps: struc-

2˚Equal contribution
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ture preserving color transformation”, Computer Graphics Forum 33(2):215–

224, 2014.

For the sake of the presentation coherence, several additional papers pub-

lished by the author during his PhD studies are not included in this dissertation:

• A. Kovnatsky, M. M. Bronstein, X. Bresson, and P. Vandergheynst, “Func-

tional correspondence by matrix completion”, In Proc. CVPR, 2015.

• A. Kovnatsky, D. Eynard, M. M. Bronstein, “Gamut mapping with image

Laplacian commutators”, In Proc. ICIP, 2014.

• A. Kovnatsky, A. M. Bronstein, M. M. Bronstein, “Stable spectral mesh

filtering”, In Proc. NORDIA, 2012.



Chapter 2

Background

In this chapter, we cover the mathematical background focusing only on the def-

initions used afterwards. For a comprehensive treatment of the related topics,

we refer the reader to [do Carmo, 1976, 1992; Burago et al., 2001].

2.1 Differential Geometry

A key concept in our work in the notion of manifolds. In computer graphics

applications, two-dimensional manifolds representing boundary surfaces of 3D

objects are a common way of modeling 3D shapes. In machine learning appli-

cations, high-dimensional data are usually assumed to have a low-dimensional

intrinsic structure, also modeled as a manifold. Finally, some of the optimiza-

tion problems we will encounter in the next chapters use functions of matrix

arguments, where the variables are restricted to a sub-manifold of the space of

matrices. In this section, we briefly overview basic notions from differential ge-

ometry, a branch of mathematics dealing with manifolds.

2.1.1 Manifolds

A p-dimensional manifold1M is a topological (Hausdorff) space locally homeo-

morphic to a p-dimensional Euclidean space. Such a homeomorphism α : Um Ñ

1In the following, we will tacitly assume thatM is compact.

11
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Rp from a neighborhood Um of a point m PM to Rp is called a chart. If transition

between charts from overlapping neighborhoods is smooth (r-times continuously

differentiable, where r is assumed to be some sufficiently high integer),M is said

to be a smooth manifold.

Assume two smooth curves γ1,γ2 : p´1, 1q ÑM are given such that γ1p0q “

γ2p0q “ m. The curves are called equivalent if the derivatives pα ˝ γ1q
1p0q and

pα ˝ γ2q
1p0q coincide. The equivalence classes of all curves with γp0q “ m are

called tangent vectors. The tangent space TmM of M at point m is the set of

all tangent vectors and does not depend on the choice of the chart α. In the

following, we will simply write γ1 to refer to a tangent vector to the curve.

A particular case of interest are embedded manifoldsM Ă Rd . Such manifolds

can be realized by a smooth mapping ξ : U Ď Rp Ñ Rd . ξpUq is called the

embedding ofM in Rd; the latter is called the ambient space and d ´ p ą 0 the

codimension. For example, what is colloquially referred to as a ‘3D sphere’ is a

two-dimensional surface embedded in a three-dimensional Euclidean space. The

derivatives B

Bui
ξpuq are tangent vectors toM at point m “ ξpuq; ξ is said to be

regular if B

Bu1
ξpuq, . . . , B

Bup
ξpuq are linearly independent, in which case they span

the tangent space TξpuqM . At each point m of the manifold, the vector npmq

orthogonal to TmM is called the normal.

2.1.2 Riemannian metric

A Riemannian metric or the first fundamental form is an inner product x¨, ¨yTmM :

TmM ˆ TmM Ñ R defined on the tangent space TmM and depending smoothly

on m. On a parametric manifold, the embedding ξ pulls back a Riemannian met-

ric from the ambient space, which can be expressed in the basis B

Bu1
ξpuq, . . . , B

Bup
ξpuq

as a pˆ p symmetric positive-definite matrix with elements

gi jpuq “ x
B

Bui
ξpuq, B

Bu j
ξpuqy,

such that for tangent vectors v,w P TξpuqM expressed in this basis,

xv,wyTξpuqM “ vJGw.
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Riemannian metrics allows to define notions such as angles, lengths, and volumes

on the manifold. The length of a curve γ : r0,1s ÑM is given by

`pγq “

ż 1

0

b

xγ1ptq,γ1ptqyTγptqM d t.

A p-dimensional volume element is given by

da “ |G|1{2du1 . . . dup.

Two different embeddings of the manifold resulting in the same Riemannian

metric are called isometric. Properties and structures that can be expressed solely

in terms of the Riemannian metric are called intrinsic. Intrinsic structures would

play a crucial role in what follows; in particular, in computer graphics applica-

tions they would allow to define invariants to isometric deformations of shapes.

2.1.3 Geodesics

Let x be a smooth tangent vector field onM . Consider a point m PM , a tangent

vector v P TmM and let γ : p´1, 1q ÑM be a smooth curve such that γp0q “ m

and γ1p0q “ v. The directional derivative of the field x in the direction v at point

m is defined as

Dvxpmq “ lim
tÑ0

1
t pxpγptqq ´ xpγp0qqq.

Note that the directional derivative Dvx is not necessarily a tangent vector. Its

projection on the tangent space,

∇vxpmq “ Dvxpmq ´ xDvxpmq,npmqynpmq

is called the covariant derivative, and the normal component

I Impv,wq “ xDvwpmq,npmqy

the second fundamental form. The covariant derivative is intrinsic and can be

expressed entirely in terms of the Riemannian metric. x is said to be parallel

along a curve γ if ∇γ1ptqx“ 0.
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A curve γ whose tangent vector is parallel to the curve (i.e., ∇γ1γ1 “ 0 along

the curve) is called geodesic. In physical term, this implies that the acceleration

vector γ2 of the curve is always normal to M . For any m P M and tangent

vector v P TmM , there exists a unique geodesic γm,v : p´ε,εq Ñ M such that

γm,vp0q “ m and γ1m,vp0q “ v. It is tacitly assumed to be given in arclength

parametrization, such that }γ1} “ 1.

The exponential map expm : TmM Ñ M assigns to every tangent vector

v P TmM the point expmpvq “ γm,vp1q. Intuitively, the tangent space can be

thought of as a “linearization” of the manifold allowing to locally work with it

as with a vectors space, e.g., add or subtract two tangent vectors. The results of

such operations can be then mapped to a point on the manifold by means of the

exponential map.

2.2 Calculus on Manifolds

We are now interesting in studying functions defined on manifolds. Let f , h :

M Ñ R be smooth functions (also referred to as scalar fields) on M . We use

F pM q to denote the space of smooth scalar functions on M . We define an

inner product between f and h as

⟪ f , h⟫M “
ż

M
f pmqhpmqdapmq, (2.1)

and denote by } f }M “ |⟪ f , f ⟫M |1{2 the norm induced by the inner product 2.1,

and by L2pM q the space of square-integrable scalar functions (i.e., functions with

} f }M ă8).

2.2.1 Intrinsic gradient

Given f PF pM q, consider the composition f ˝ expm : TmM Ñ R. The intrinsic

or Riemannian gradient of f at m is a tangent vector given by

∇M f pmq “∇p f ˝ expmqp0q,
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where ∇ denotes the standard Euclidean Laplacian operator acting in the tan-

gent space, which is evaluated at the zero tangent vector (origin of TmM , or in

other words, the point m). The intrinsic gradient can intuitively be interpreted

as the direction at point m (tangent vector in the tangent space TmM ) in which

f changes the most. We can approximate f by first-order Taylor expansion as

∇p f ˝ expmqpvq « f pxq ` x∇M f pmq,vyTmM ,

where the last term is the directional derivative of the scalar field f along v at

point m.

For an embedded manifold M Ă Rd , we can consider f as a function f :

Rd Ñ R restricted toM and compute the standard (extrinsic or Euclidean) gra-

dient ∇ f pmq, which is a d-dimensional vector. The orthogonal projection of the

extrinsic gradient on the tangent space TmM coincides with the intrinsic gradi-

ent,

∇M f pmq “∇ f pmq ´ x∇ f pmq,npmqynpmq.

2.2.2 Laplacian operator

Similarly to the definition of the intrinsic gradient, we can define the Laplacian

or Laplace-Beltrami operator as

∆M f pmq “∆p f ˝ expmqp0q,

where, as previously, ∆ denotes the usual Euclidean Laplacian applied on TmM .

The Laplacian is related to the intrinsic gradient through the identity

ż

M
f pmq∆Mhpmqdapmq “

ż

M
x∇M f pmq,∇MhpmqyTmM dapmq, (2.2)



16 2.2 Calculus on Manifolds

known as the Stokes formula. It follows immediately that the quadratic form

⟪ f ,∆Mh⟫M is symmetric

⟪ f ,∆Mh⟫M “
ż

M
f pmq∆Mhpmqdapmq “

ż

M
x∇M f pmq,∇MhpmqyTmM da “

ż

M
x∇Mhpmq,∇M f pmqyTmM dapmq “

ż

M
hpmq∆M f pmqdapmq “ ⟪∆M f , h⟫M ,

and positive semi-definite,

⟪ f ,∆M f ⟫M “
ż

M
f pmq∆M f pmqdapmq “

ż

M
x∇M f pmq,∇M f pmqyTmM dapmq ě 0.

The Laplacian is a fundamental construction that will appear prominently in

this thesis, so it is worth to devote a few words to its intuitive explanation. Geo-

metrically, the Laplacian measures how a function value at point m differs from

its average in an infinitesimal neighborhood of m. In physics, this intuition is

intimately related to Newton’s law of cooling, stating that an object cools at a rate

proportional to the difference between its own temperature and the temperature

of its surrounding. This is encoded in the heat equation, written in the simplest

setting as

ftpm, tq “ c∆M f pm, tq,

where f pm, tq denotes the temperature at point m and time t; the lhs is the

rate of change (temporal derivative) and the rhs is the local difference between

the temperature at a point and and its surrounding (Laplacian). The proportion

constant c is called the thermal diffusivity coefficient.

2.2.3 Fourier Analysis on Manifolds

On a compact manifoldM , the Laplacian operator has a countable set of eigen-

functions and eigenvalues,

∆Mφi “ λiφi, (2.3)
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where 0 “ λ1 ď λ2 ď ¨ ¨ ¨ are eigenvalues and tφiuiě1 Ď L2pM q are the corre-

sponding eigenfunctions. These eigenfunctions are orthogonal

⟪φi,φ j⟫M “ δi j, (2.4)

and form a basis that spans L2pM q. Hence, any function f P L2pM q can be

expressed as their linear combination referred to as the Fourier series,

f pmq “
ÿ

iě1

⟪ f ,φi⟫Mφipmq, (2.5)

where ⟪ f ,φi⟫M are the Fourier coefficients of f in the basis tφiuiě1.

In computer graphics literature, Laplacian eigenfunctions are often referred

to as manifold harmonics and are a generalization of Fourier bases to manifolds

[Taubin, 1995; Lévy and Zhang, 2009]. The usual Fourier basis einx , is in fact

formed by the eigenfunctions of the 1D Euclidean Laplacian operator: ´ d2

d x2 einx “

´n2einx .

2.3 Discretization

2.3.1 Discrete manifolds

In practical application, we work with discrete manifolds. The manifold M is

sampled at n points, tm1, . . . , mnu, upon which an additional structure is build.

In this thesis, we will consider mostly two discrete structures, to which we will

refer by a somewhat loose term discrete manifolds.

The first one is an undirected weighted graph G “ pV “ t1, . . . , nu, E,`q with

vertices V and edges (unordered pairs of vertices) E “ tpi, jq : i, j P Vu. Note

that the graph is a purely topological structure, in which the edges represent

the local connectivity of the discrete manifold. Its intrinsic geometry is specified

by the weighing function ` assigning to each edge some non-negative weight

`i j ě 0, which can be interpreted as the discrete equivalent of the metric. Note

that for constructing the intrinsic structures such as the Laplacian we consider in

this thesis, this information is sufficient.
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Graph-based discretization of manifolds is often encountered in machine learn-

ing applications. Typically, what is given is a set of points x1, . . . ,xn in the Eu-

clidean space Rd , which are assumed to be sampled from an embedded manifold

M Ă Rd . The graph is constructed on these points by defining edges between

K-nearest neighbors for each point. The discrete metric is simply `i j “ }xi´x j}2.

A discretization typically used in computer graphics is a triangular mesh T “

pV “ t1, . . . , nu, E, Fq, where we have an additional set of triangular faces F “

tpi, j, kq : i, j, k P V, pi, jq, p j, kq, pi, kq P Eu. We tacitly assume manifold meshes,

in which each edge is shared by exactly two triangles (one triangle in case of

boundary edges). T is again a topological structure; the discrete metric is pro-

vided in the form of edge weights `i j, which must additionally satisfy the triangle

inequality in each of the mesh faces.

Finally, a scalar function f :M Ñ R is discretized and represented by the n-

dimensional vector f “ r f pm1q, . . . , f pmnqs
J. The space of functions L2pM q can

be thus identified with Rn. An inner product on L2pM q is discretized as fJAg,

where A“ diag ra1, . . . , ans
J and a1, . . . , an are discrete area elements associated

with each vertex (typically, assumed ai “ 1 on graphs and ai “
1
3

ř

i,k:pi jkqPF Ai jk

on meshes, where Ai jk is the area of the triangular face i jk).

2.3.2 Discrete Laplacians

In the discrete setting, the Laplacian is represented as an nˆ n matrix, acting on

n-dimensional vectors discretizing function as

pLfqi “
1
ai

ÿ

j:pi jqPE

ŵi jp fi ´ f jq, (2.6)

or in matrix notation,

L“ A´1pD´ Ŵq “ A´1W, (2.7)

where D“ diagp
ř

i‰ j ŵi jq
2. The particular discretization of the Laplacian amounts

to different selection of the weights ŵi j. Remarkably, there exists no discretiza-

tion satisfying all the continuous properties of the Laplacian [Wardetzky et al.,

2From now on with wi j we will refer to elements of matrix W, the stiffness matrix.
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2008]; therefore, different discretizations that suit a particular application at

hand are used. In our case, we are interested in having symmetric weight (W “

WJ).

In machine learning applications, the weight is usually defined with a Gaus-

sian kernel wi j “ exp´`
2
i j{2σ

2
(Figure 2.1, left). In case A “ I, the discretiza-

tion 2.6 of the Laplacian on a graph with Gaussian edge weights is referred to

as unnormalized graph Laplacian. The normalized graph Laplacian is defined as

Ln “ D´1{2LD´1{2 [von Luxburg, 2007]. Both the normalized and unnormalized

Laplacians are symmetric and positive-semidefinite, hence diagonalized by an or-

thonormal matrix of eigenvectors, L “ ΦΛΦJ, where Φ “ rφ1,φ1, . . . ,φns is the

orthonormal matrix of eigenvectors (ΦJΦ“ I), and Λ“ diagprλ1,λ1, . . . ,λnsq is

the diagonal matrix of corresponding non-negative eigenvalues.

In computer graphics applications, a popular discretization uses the weight

wi j “
´`2

i j ` `
2
jk ` `

2
ki

8Ai jk
`
´`2

i j ` `
2
jh` `

2
hi

8Ai jh
, (2.8)

where the triangle areas are expressed in terms of the discrete metric through

Heron’s formula

Ai jk “

b

sps´ `ikqps´ `k jqps´ `i jq,

and s “ p`ik ` `k j ` `i jq{2 is the triangle semi-perimeter [Jacobson and Sorkine,

2012]. Though not intuitive at a first glance, this expression is intrinsic (ex-

pressed entirely in terms of the metric), as the Laplacian operator is supposed to

be. In the case when the metric is induced by the embedding, `i j “ }xi ´ x j}2, it

boils down to the familiar cotangent formula [Pinkall and Polthier, 1993; Meyer

et al., 2003]:

wi j “ pcotpαi jq ` cotpβi jqq{2, (2.9)

with αi j, βi j being two angles opposite the edge pi jq in the two triangles sharing

the edge (see Figure 2.1, middle).
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2.3.3 Discrete Laplacian eigenvectors

With Laplacian discretizations of form L “ A´1W, finding eigenvectors boils

down to a generalized eigenvalue problem

WΦ “ AΦΛ. (2.10)

Since W is symmetric and A is positive definite, there exist non-negative eigen-

values Λ and A-orthonormal eigenvectors (ΦJAΦ“ I) such that [Parlett, 1998]

ΦJWΦ “ Λ. (2.11)

m j

mi

e´
}xi´x j}

2

2σ2

m j

miai

αi j

βi j

wi j

m j

mi

mk

mh

li j

lk j

l jh

lih

lki Ai jh

Ai jk

Figure 2.1. Discretization of the Laplace operator. Left: Laplacian on graphs.
Middle: cotangent scheme on meshes. Right: Laplacian expressed solely
through discrete metric, e.g., edge lengths.

φ1 φ2 φ3 φ4 φ5
min

max

Figure 2.2. Example of Laplace eigenvectors calculated on a two-dimensional
manifold (surface). Note, that the first eigenvector is constant.
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2.4 Laplacian embeddings

2.4.1 Eigenmaps

Laplacian eigenfunctions are frequently used in machine learning applications as

a tool for dimensionality reduction. A common model for complex datasets is that

they have low intrinsic dimensionality; in other words, given a set of data points

x1, . . . ,xn P Rd they are assumed to be sampled from a p-dimensional (p ! d)

manifoldM Ă Rd; the local structure of the manifold is represented by a graph as

described above. The problem of non-linear dimensionality reduction is obtaining

a p-dimensional parametrization of the dataset representing the structure of the

underlying manifold.

Belkin and Niyogi [2002] showed that such a parametrization can be recov-

ered by solving the optimization problem

min
Φ

trpΦJLΦq s.t. ΦJΦ“ I, (2.12)

which provides a neighborhood-preserving k-dimensional embedding of the dis-

crete manifold. Typically, k is chosen to be as large as the intrinsic dimension-

ality of M . The cost function is the discrete version of the Dirichlet energy

}∇MΦ}M measuring the smoothness of a function, and the set of k orthonor-

mal most smooth functions are in fact the first (‘low frequency’) eigenfunctions

of the Laplacian, Φ̄“ rφ1, . . . ,φks. Therefore, we can embed efficiently the data

using the first k-eigenvectors of the Laplace matrix L. Such an embedding is re-

ferred to as Laplacian eigenmap [Belkin and Niyogi, 2002]. Note that the constant

eigenvectors are usually discarded.

More generally, a diffusion map [Coifman et al., 2005; Nadler et al., 2005] is

a mapping

m PM ÞÑ tKspλiqφipmquiě1, (2.13)

where Kspλq is some transfer function acting as a “low-pass filter” on eigenvalues

λ. Different choices of Kspλq considered in the literature are summarized in

Table 2.1.
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Kspλq Name of the map
1 Laplacian eigenmap [Belkin and Niyogi, 2002]

e´sλ Diffusion map [Coifman et al., 2005; Bèrard et al., 1994]
1?
λ

Global point signature [Rustamov, 2007]

Table 2.1. Different choice of Kspλq leads to different dimensionality reduction
maps.

Original shape 3D Eigenmap 2D Eigenmap

Figure 2.3. Examples of eigenmaps. Left: original shape, middle: 3D eigenmap.
right: 2D eigenmap. Note, the first constant eigenvector was neglected.

2.4.2 Diffusion distances

Coifman et al. [2005] and Nadler et al. [2005] defined a family of diffusion metric,

d s
dpm, m1

q “

˜

ÿ

iě1

K2
s pλiqpφipmq ´φipm

1qq2

¸1{2

. (2.14)

For Kspλq “ e´sλ the metric is called the heat diffusion distance and is related

to the connectivity of points m and m1 on the manifold by means of diffusion

process of length s. Such distances are intrinsic, since they are expressed in

terms of the Laplacian eigenvectors and eigenvalues, and robust to topological

noise. Note that the heat diffusion distance can be well approximated with few

first eigenvectors, since the transfer function Kspλq Ñ 0 for λÑ8.
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2.4.3 Spectral clustering

Ng et al. [2001] proposed an efficient and robust clustering algorithm relying

on the fact that the number of disconnected components of a graph equals to

the multiplicity of the null eigenvalue of its Laplacian. The corresponding eigen-

vectors act as indicator functions of these components. Basing on this, Ng et al.

[2001] proposed to embed the data with these null eigenvectors and apply some

standard clustering algorithm such as k-means. Clustering the data in this em-

bedding space produces much better results than clustering the high-dimensional

data directly.

2.5 Functional Correspondence

Finding correspondence between two or more shapes is one of the fundamental

problems in computer graphics. Traditional approaches consider point-wise cor-

respondence, relating a set of points on one manifold (or a discretization thereof)

to a set of poinst on another one. Ovsjanikov et al. [2012] proposed considering

instead correspondences between the spaces of functions defined on the mani-

folds.

LetX and Y be two manifolds, and t :X Ñ Y be a bijective point-wise cor-

respondence between them. The functional map T : L2pX q Ñ L2pY q is defined

as

Tp f q ∆“ f ˝ t´1, (2.15)

where f P L2pX q and f ˝ t´1 P L2pY q. Note that a particular functional map T

mapping a delta function at x to a delta function at tpxq gives rise to the standard

point-wise correspondence.

One can easily verify that the functional map T is linear:

Tpα1 f1`α2 f2q “ pα1 f1`α2 f2q ˝ t´1 “

α1 f1 ˝ t´1`α2 f2 ˝ t´1 “ α1Tp f1q `α2Tp f2q,

for some scalars α1,α2 and functions f1, f2 P L2pX q. Thus, given two orthonor-
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t :X Ñ Y

x tpxq

T : L2pX q Ñ L2pY q

f Tp f q

Figure 2.4. Illustration of different correspondence paradigms. Left: the point-
wise correspondences t between two surfaces X and Y ; right: the functional
correspondence T between two functional spaces L2pX q and L2pY q.

mal bases tφiuiě1, tψ ju jě1 on L2pX q and L2pY q, respectively, we can express T

using the Fourier expansion of functions as

Tp f q “ T

˜

ÿ

iě1

⟪ f ,φi⟫Xφi

¸

“
ÿ

iě1

⟪ f ,φi⟫XTpφiq “

“
ÿ

iě1

⟪ f ,φi⟫X
ÿ

jě1

⟪Tpφiq,ψ j⟫Y
loooooomoooooon

ci j

ψ j “

“
ÿ

i, jě1

⟪ f ,φi⟫X ci jψ j «

k
ÿ

i, j“1

⟪ f ,φi⟫X ci jψ j; (2.16)

truncating the series at k first elements allows to represent the correspondence

as a kˆ k matrix C“ pci jq.

In the discrete setting, the manifoldsX ,Y are discretized by sampling them at

nX and nY points, respectively. The orthonormal bases are represented as nXˆnX

and nY ˆ nY matrices Φ “
“

φ1, . . . ,φnX

‰

and Ψ “
“

ψ1, . . . ,ψnY

‰

, and functions

onX and Y are discretized as nX - and nY -dimensional vectors, respectively. We

assume inner products are weighted by the diagonal matrices AX and AY . For-

mula 2.16 is thus expressed in matrix-vector form as

Tf“ ΨCJΦAX f« Ψ̄CJk Φ̄AX f“ Tkf,
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where we denote by Φ̄“ rφ1, . . . ,φks and Ψ̄ “ rψ1, . . . ,ψks the truncated bases.

Tk can be considered as a rank-k approximation of the matrix T.

Now assume that one is able, given two shapesX andY , to provide a set of q

corresponding functions, represented as nXˆq and nYˆq matrices F“ rf1, . . . , fqs

and G“ rg1, . . . ,gqs satisfying TF« G (the question of how to find such functions

automatically is a difficult problem on its own and is beyond the scope of this

thesis; in the following chapters, we refer to several standard ways of finding

such correspondences). Then, one has a linear system w.r.t. C of kq equations in

k2 variables,

Ψ̄CJk Φ̄AX F“ G, (2.17)

or alternatively,

GJAY Ψ̄ “ FJAX Φ̄C. (2.18)

Assuming q ě k, this system is (over)determined and can be solved in the least-

squares sense.

Note that C depends on the choice of the bases. In particular, when Laplacian

eigenfunctions are used, C has a diagonal structure only if the eigenfunctions

behave consistently acrossX andY (ideally, Tpφiq “ ˘ψi, implying ci j “˘δi j).

Moreover, if we were able to find some bases Φ̄, Ψ̄ in which the matrix C has a

diagonal structure, the system of equations 2.18 would have only k variables

instead of k2. Hence, in theory it is sufficient to have only one corresponding

pair of functions (q “ 1) to overdetermine 2.18. Therefore, it is important to

develop methods of finding consistent bases across shapes, this allows to find a

correspondence with less data. This will be one of the main motivations for our

constructions in the next chapters.

2.5.1 From Functional to Point-wise Correspondence

There are several ways of deriving a point-wise map from its functional represen-

tation. We have already mentioned assigning corresponding points by mapping

delta functions with the functional map. In the discrete setting, the mapping of
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a delta function δx i
by T corresponds to taking the ith column ti of the matrix

T “ rt1, . . . , tnX s. The most straightforward way of recovering point-wise corre-

spondence is by assigning point x i to y j, where

jpiq “ argmax
j1“1,...,nY

t j1 i.

Such a method can be computationally intensive when nX , nY are large, and Ovs-

janikov et al. [2012] proposed an efficient alternative. The idea is to map trans-

formed delta functions to the Fourier domain and, employing the Parseval iden-

tity (stating the L2 distance in the frequency domain equals to that in the spatial

domain) search for the nearest Fourier coefficients of delta functions on the target

shape. This may be done efficiently using advanced proximity search structures,

such as kd-trees. With the calculated point-wise map they update the functional

map representation C, and repeat the correspondence refinement several times

or until convergence, i.e. there is no changes in C (Algorithm 1).

Input a kˆ k functional map matrix C0 from X to Y obtained by

solving, e.g., Eq. 2.18.

Output point-wise mapping t :X Ñ Y , and a refined functional map

matrix C.

Initialize kÐ 1, Cp1qÐ C0,

tpiqp1q “ argmin j }AX pi, :qΦ̄Cp1q´AY p j, :qΨ̄}2F .

repeat
Cpk`1q “ argmin C

ř

i }AX pi, :qΦ̄Cpkq´AY ptpiq
pkq, :qΨ̄}2F

tpiqpk`1q “ argmin j }AX pi, :qΦ̄Cpk`1q´AY p j, :qΨ̄}2F
until convergence;

Algorithm 1: ICP-like iterative refinement procedure for calculating a

point-wise map [Ovsjanikov et al., 2012]. Note that if a point-wise map

betweenX and Y is area-preserving, then CJC“ I, and therefore Cpk`1q

is obtained by solving orthogonal Procrustes problem. Mpi, :q denotes

the ith row of matrix M.



27 2.5 Functional Correspondence

X T1000 T100 T25

C1000 C100 C25Y

δi T1000 ¨δi T100 ¨δi T25 ¨δi

Figure 2.5. Example of rank-k functional map approximations for different k with
Laplacian eigenbases between two near-isometric shapes X and Y . Note that
theoretically matrix C should be diagonal, since Laplacian spectrum is invari-
ant to isometric transformations, however off-diagonal elements become more
prominent with increasing rank k. The last row shows the mappings of a delta
function at point i on X by means of different rank-k functional map approxi-
mations; note that mappings result in a “blob” function on Y centered approx-
imately around the ground-truth corresponding point on Y . The blob becomes
more localized for larger values of k.
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Laplacian eigenbases, T pφiq “
ř

jě1 ci jψi

Figure 2.6. Matrix C of coefficients expressing a given correspondence between
two poses of an elephant (left) and elephant and horse (right) in the Laplacian
eigenbases (second row). First row: correspondence between shapes shown
with similar colors.



Chapter 3

Joint Diagonalization

In this chapter, we consider the baseline setting of constructing common approx-

imate Laplacian eigenbasis for several domains with known bijective correspon-

dence between them. A typical application example is multi-view clustering,

where each data point is observed in two or more modalities. In each modality,

the data is modelled as a manifold (often discretized as a graph); our approach

relies on the simultaneous diagonalization of the Laplacians built upon the data

points in different modalities. This chapter is mainly based on our papers [Ey-

nard et al., 2015; Kovnatsky et al., 2013].

3.1 Joint Approximate Diagonalization

Let us be given p different manifoldsM1, . . . ,Mp. In machine learning applica-

tions, one can think of these manifolds as different ‘views’ of data in different

modalities (e.g., images could be characterised by their visual features or by the

tags associated to them). The manifolds may have different intrinsic dimension-

ality and may be embedded into spaces of different dimension. We assume that

the manifolds are sampled at n corresponding points, and assume that the nˆ n

symmetric Laplacian matrices tLiu
p
i“1 are given.1 Under the assumption of known

correspondence, the rows/columns of the Laplacians are ordered consistently.

1In typical applications, data points in each modality are given as feature-vectors, and one
constructs the affinity matrix and the Laplacian considering the similarity between these vectors,
as described in Section 2.3.

29
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Spectral constructions use the eigenvectors Φi “ rφ i1, . . . ,φ ins and eigenval-

ues Λi “ diagprλi1, . . . ,λinsq of the Laplacian matrices Li “ ΦiΛiΦ
J

i . As men-

tioned earlier in Section 2.5, even for near-isometric manifolds the Laplacian

eigenbases behave inconsistently, and these inconsistencies tend to increase with

frequency. Even if the manifolds are exactly isometric (have the same intrinsic

structure) and have simple spectrum (the Laplacian eigenvalues have no mul-

tiplicity), the corresponding eigenvectors may differ up to a sign. For the case

where an eigenvalue has multiplicity greater than one, the ambiguity is a uni-

tary transformation of the eigenvectors corresponding to that eigenvalue. More

generally, for non-isometric manifolds (which is usually the case in real appli-

cations), the Laplacian eigenvectors can differ dramatically. We illustrate this

phenomenon in Figure 3.1 (top), depicting two versions of the Swiss roll sur-

face, discretized as graphs with slightly different connectivity. The Laplacian

eigenfunctions are dramatically different.

The key idea of our approach in addressing this problem is to try to find a

joint eigenbasis by diagonalizing the Laplacians simultaneously. If the Laplacians

tLiu
p
i“1 are symmetric and commute (i.e.,

“

Li,L j

‰

“ LiL j ´ L jLi “ 0 for all i, j “

1, . . . , p), they are jointly diagonalizable, in the sense that there exist a single

set of orthonormal vectors Φ̃ “
“

φ̃1, . . . , φ̃n

‰

(referred to as joint eigenvectors)

diagonalizing all the Laplacians [Horn and Johnson, 1990], i.e.,

Φ̃
J

LiΦ̃“ Λ̃i “ diagp
“

λ̃i1, . . . , λ̃in

‰

q, i, j “ 1, . . . , p.

Note that the corresponding eigenvalues λ̃i1, . . . , λ̃in may be different.

Joint diagonalization allows to remove the incompatibilities between differ-

ent modalities. Returning to the previous Swiss rolls example, we show in Fig-

ure 3.1 (bottom) the joint eigenvectors of the two Laplacians. Joint diagonal-

ization also allows to naturally extend the spectral geometric methods discussed

in Chapter 2.2 (eigenmaps, diffusion distances, spectral clustering, etc.) to the

multimodal setting by simply replacing the eigenvectors of individual Laplacians

Φi by the joint ones Φ̃ obtained from multiple Laplacians.
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φ2 φ3 φ4 φ5

ψ2 ψ3 ψ4 ψ5

φ̃2 φ̃3 φ̃4 φ̃5

φ̃2 φ̃3 φ̃4 φ̃5

Figure 3.1. Top: the first few Laplacian eigenvectors (denoted by φ i and ψ j) of
two Swiss rolls (first and second rows) with slightly different connectivity (shown
with lines). The difference in the connectivity results in different behaviour
of the eigenvectors (e.g., the third and the second eigenvectors are swapped).
Bottom: joint approximate eigenvectors φ̃ i computed on the same datasets using
JADE (3.3) behave in the same way. (Hot colors represent positive values; cold
colors represent negative ones).

3.1.1 Jacobi method

Recall that the eigendecomposition of a symmetric nˆ n matrix L can be alter-

natively formulated as the minimization of the off-diagonal elements of ΦJLΦ,
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where Φ is an orthonormal matrix,

JpLq “ min
ΦJΦ“I

offpΦJLΦq. (3.1)

Here, offpMq is some off-diagonality criterion, e.g., the sum of squared off-diagonal

elements, offpMq “ }M´DiagpMq}2F. For a symmetric matrix L, optimization (3.1)

achieves the minimum value J “ 0, with a minimizer Φ being a set of eigenvec-

tors of L.

This type of optimization lies in the heart of a class of eigensolvers based on

the Jacobi iteration [Jacobi, 1846]. One can observe that if Ωθ ,

Ωθ “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
...

cosθ . . . ´sinθ
...

...

sinθ . . . cosθ
. . .

1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (3.2)

is a rotation matrix by angle θ in the plane i j, then L1 “ ΩJ
θ

LΩθ is similar to

L (i.e., both matrices have the same eigenvalues) and }L1}F “ }L}F. However,

we can choose θ “ tan´1p
2li j

l j j´lii
q which results in L1i j “ 0. This way, we find the

angle θ minimizing offpΩJ
θ

LΩθ q which means that by applying such rotation Ωθ
we reduce the off-diagonal elements of L. Also note that since L1 has only the ith

and jth rows and columns different from L, the rotation can be applied “in-place”

and does not require matrix multiplication.

The idea of the Jacobi method for eigendecomposition is to construct Φ as

a sequence of plane rotations Φ “ ¨ ¨ ¨Ω2Ω1 in order to sequentially minimize

the off-diagonal elements in (3.1). Being a product of rotations, the matrix Φ is

orthonormal by construction.
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3.1.2 Generalized Jacobi method

The same idea can be extended to finding the approximate joint eigenvectors of

several matrices [Bunse-Gerstner et al., 1993; Cardoso and Souloumiac, 1993,

1996]. We try to find a common orthonormal matrix Φ̃ by solving the optimiza-

tion problem

JpL1, . . . ,Lpq “ min
Φ̃
J
Φ̃“I

p
ÿ

i“1

offpΦ̃
J

LiΦ̃q. (3.3)

In this case, J “ 0 is achieved only if the matrices L1, . . . ,Lp commute. In general,

we will have J ą 0, i.e. Φ̃ are only approximate eigenvectors of L1, . . . ,Lp.

Cardoso and Souloumiac [1996] proposed the generalized Jacobi method (re-

ferred to as JADE), which follows the standard Jacobi method described above,

with the difference that now in each step the rotations are applied to reduce

the off-diagonality criterion
řp

i“1 offpΩJ
θ

LiΩθ q for multiple matrices rather than

offpΩJ
θ

LΩθ q.

Cardoso and Souloumiac [1996] show that for a rotation matrix Ωθ the ro-

tation angle θ minimizing
řp

i“1 offpΩJ
θ

LiΩθ q can be expressed in closed form,

as follows: Let M “
řp

i“1 hpLiqhpLiq
J, where hpLq “ plii ´ l j j, li j ` l jiq

J, and let

α “ m11´m22 and β “ m12`m22. Then, θ “ 1
2 tan´1pβ{pα`

a

α2` β2qq. The

complexity of this approach is akin to that of the standard Jacobi iteration.

We should note that there exist alternative algorithms for the approximate

joint diagonalization problem, based on the idea of minimizing a suitable cost

function on the Stiefel manifold of orthonormal matrices [Rahbar and Reilly,

2000; Ma and Lee, 2008; Cai et al., 2011; Dong et al., 2014] or by penalizing the

deviation of the joint eigenvectors from the eigenvectors of the operators on each

modality [Kumar et al., 2011; Yeredor, 2002]. The analysis of these methods is

beyond the scope of this thesis.

3.2 Drawbacks

We should point to several drawbacks of the joint approximate diagonalization

model, making it impractical to perform multimodal spectral analysis in many

applications. These issues will be addressed in Chapter 4, where we propose a
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Figure 3.2. Illustration of generalized Jacobi iterations for approximate joint
diagonalization of two matrices. The numbers on top show the sum of squared
off-diagonal elements.

new approach for coupled diagonalization generalizing the joint diagonalization

problem.

First, the problem assumes that we are given Laplacian matrices with ordered

rows/columns, arising, in turn, from manifolds sampled at an equal number of

points n with known point-wise bijective correspondence. While a reasonable

assumption in many machine learning problems such as multimodal clustering

discussed in Chapter 6 (wherein corresponding points on different manifolds

represent the same object seen in different modalities, such as an image and its

text annotation), the knowledge of bijective correspondence is way too restrictive

in computer graphics applications treated in Chapter 7, where in fact we will use

simultaneous diagonalization to find correspondence between shapes.

Second, the generalized Jacobi method calculates the whole approximate

joint eigenbasis of the Laplacians. Since in most spectral analysis applications

we are interested only in the first k ! n eigenvectors, such a computation can be

wasteful.

Finally, the assumption of orthogonality of Φ̃ tacitly implies that the Lapla-

cian matrices are symmetric, which may rule out several non-symmetric Lapla-
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cian constructions. In particular, the cotangent formula mentioned in Section 2.3

and similar Laplacian discretization used in computer graphics applications are

of the form L“ A´1W, where A is the mass matrix and W is the stiffness matrix.

Typically, A is diagonal and its elements are local area elements of the discretized

manifold, which can be interpreted as an inner product, w.r.t. which the eigen-

vectors are orthonormal,

ΦJWΦ“ Λ, s.t. ΦJAiΦ“ I. (3.4)

The problem can be renormalized by defining Ψ “ A
1
2Φ,

ΨJW̄Φ“ Λ, s.t. ΨJΨ “ I; (3.5)

note than now W̄ “ A´
1
2 WA´

1
2 is symmetric, and Ψ are orthonormal.

3.3 Theoretical results on approximate joint diago-

nalization

We conclude this chapter by stating two theoretical results that will be used

next. First, the joint approximate eigenvectors obtained as the solution of prob-

lem (3.3) are related to the eigenvectors of the Laplacian matrices by the follow-

ing

Theorem 1 Let L1 “ ΦΛΦ
J have a simple τ-separated spectrum (|λi ´ λ j| ě τ

for all i ‰ j), and let L2 “ ΦΛΦ
J ` εδM be a perturbation of L1. Then (ignoring

permutation of eigenfunctions and sign flips), the joint approximate eigenbasis can

be written as the first-order perturbation

φ̃ i “ φ i ` ε
ÿ

j‰i

αi jφ j `O pε
2
q, (3.6)

where αi j “ φ
J

i δMφ j{2pλ j ´λiq.

For a proof, we refer the reader to [Cardoso, 1995]. In particular, this theorem

implies that if two Laplacians are approximately jointly diagonalizable, the sub-
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spaces spanned by the first few eigenvectors of one Laplacian and their first few

joint approximate eigenvectors are close. This result will be used in Chapter 4 for

the subspace formulation of the coupled diagonalization problem, allowing an

efficient computation of a few joint approximate eigenvectors with complexity

independent of the sampling size n.

Second, we notice that joint diagonalizability of matrices is intimately related

to their commutativity. As mentioned previously, two symmetric matrices M1 and

M2 are jointly diagonalizable iff they commute, i.e., rM1,M2s “M1M2´M2M1 “

0 [Horn and Johnson, 1990]. It appears that this relation also holds for almost

commuting matrices with } rM1,M2s }F ď ε, in the sense that almost commuting

matrices are almost jointly diagonalizable and vice versa [Glashoff and Bronstein,

2013]. This statement can be formalized at the following

Theorem 2 There exist functions ε1psq,ε2psq satisfying limsÑ0 εipsq “ 0, i “ 1,2 ,

such that for any two nˆ n symmetric matrices M1, M2 with }M1}F “ }M2}F “ 1,

ε1p} rM1,M2s }Fq ď JpM1,M2q ď nε2p} rM1,M2s }Fq.

The term JpM1,M2q measures the smallest possible sum of squared off-diagonal

elements, i.e., how jointly diagonalizable the matrices M1 and M2 are. For proof,

we refer the reader to [Glashoff and Bronstein, 2013].
By virtue of this result, the commutator norm } rM1,M2s }F can be used as a

measure of joint diagonalizability of matrices without the need to find explicitly

the joint bases. Since joint diagonalizability is a similarity measure between man-

ifolds (two manifolds/shapes are intrinsically similar if their Laplacians L1,L2 are

jointly diagonalizable), this in turn implies that the commutator can be used as

a measure of intrinsic similarity. We will exploit this fact in image processing

applications discussed in Chapter 8.



Chapter 4

Coupled Diagonalization

A notable drawback of the joint diagonalization problem discussed in Chapter 3 is

the full coupling assumption, requiring an equal number of data points in all the

modalities and bijective correspondence between them. In many settings, this as-

sumption could be too restrictive: for example, establishing the correspondence

between images and text annotations requires some human intelligence (tagging

the images), and establishing correspondence between shapes is one of the cor-

nerstone problems in computer graphics. In this chapter, we introduce approxi-

mate coupled diagonalization, which is a generalization of approximate joint di-

agonalization. This chapter is mainly based on our EUROGRAPHICS [Kovnatsky

et al., 2013] and PAMI [Eynard et al., 2015] papers. The robust formulation is

presented according to our technical report [Kovnatsky et al., 2016].

4.1 Coupled approximate diagonalization

As in the previously discussed joint diagonalization case, we model the data-

modalities as a set of p manifolds,M1, . . . ,Mp, which may have different struc-

ture and dimensionality. Unlike the previous setting, we assume that the mani-

folds are sampled at a possibly different number of points, denoted by n1, . . . , np

(in joint diagonalization, we assumed n1 “ . . . “ np “ n). We denote the

Laplacian matrices constructed on these discretized manifolds by tLi “ A´1
i Wi P

Rniˆniu
p
i“1. We are looking for a set of coupled bases tΦ̂i P Rniˆku

p
i“1, where by

37
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coupling we intend that Fourier coefficients of corresponding functions in these

bases are approximately equal (or figuratively, “speak the same language”), as

formalized in the following.

Note that in this setting, we can allow for different dimensions (ni ‰ n j)

and also find only the first k eigenvectors (k ď ni). Furthermore, we replace

the assumption of bijective point-wise correspondence by a weaker assumption

of knowing a set of corresponding functions onM1, . . . ,Mp. Denoting by Fi j “
”

fi j,1 . . . , fi j,qi j

ı

and Gi j “

”

gi j,1 . . . ,gi j,qi j

ı

the ni ˆ qi j and n j ˆ qi j matrices of

corresponding discretized functions onMi andM j, respectively, coupling is un-

derstood in the sense that

Φ̂
J

i AiFi j « Φ̂
J

j A jGi j.

Corresponding vectors can be delta functions (representing sparse point-wise

correspondence between the manifolds), blobs or stable regions, distance func-

tions, dense descriptors, etc. (see Figure 4.1). We will discuss specific choices in

the next chapters. Note that this formulation allows both the number qi j, qil of

corresponding vectors betweenMi,M j andMi,Ml and the vectors themselves

to be different.

Similarly to coupling the Fourier coefficients of some known corresponding

functions, we can decouple the Fourier coefficients of some known non-corresponding

functions, represented by matrices Ei j “

”

ei j,1 . . . ,ei j,q1i j

ı

and Hi j “

”

hi j,1 . . . ,hi j,q1i j

ı

of size ni ˆ q1i j and n j ˆ q1i j, respectively. Decoupling is understood in the sense

Φ̂
J

i AiEi j ‰ Φ̂
J

j A jHi j.

Our coupled diagonalization problem is formulated as follows,

min
Φ̂
J

i AiΦ̂i“I

p
ÿ

i“1

offpΦ̂
J

i WiΦ̂iq ` µc

p
ÿ

i, j“1

}FJi jAiΦ̂i ´GJi jA jΦ̂ j}
2
F (4.1)

´ µd

p
ÿ

i, j“1

}EJi jAiΦ̂i ´HJi jA jΦ̂ j}
2
F.

The parameters µc, µd determine the coupling and decoupling strengths, respec-



39 4.1 Coupled approximate diagonalization

tively. For µc “ µd “ 0, the problem becomes uncoupled and boils down to

individual diagonalization of the respective Laplacians. We define the coupled

eigenvalues as the diagonal of Λ̂i “ diag
”

λ̂i,1, . . . , λ̂i,k

ı

“ DiagpΦ̂
J

i WiΦ̂iq.

Note that in the case ni “ k “ n “ q, Fi j “ Gi j “ I, µc Ñ 8 and µd “ 0,

the coupled diagonalization problem 4.1 boils down to the joint diagonalization

problem 3.1. Therefore, our problem is a generalization of the joint diagonaliza-

tion approach discussed before. As opposed to the joint diagonalization problem

where we need to find a single common basis (giving rise to n2 optimization

variables problem 3.1), in coupled diagonalization we are looking for p different

ni ˆ k matrices. The number of variables in problem 4.1 is
řp

i“1 nik.

4.1.1 Subspace parametrization

In order to reduce the number of variables in our problem, we parametrize the

k vectors in the ith coupled basis as a linear combination of k1 ě k eigenvectors

Φ̄i “
“

φ i,1, . . . ,φ i,k1
‰

of the Laplacian Li. Denoting by Ri the k1ˆk matrix of linear

combination coefficients, we thus have

Φ̂i “ Φ̄iRi.

We refer to this approximation as subspace parametrization of the coupled bases.

When k1 “ n, it is exact and amounts just to a change of coordinates. From the

Ai-orthogonality of Φ̄i, it follows that RJi Φ̄
J

i AiΦ̄iRi “ RJi Ri “ I. Theorem 1 states

that for approximately jointly diagonalizable Laplacians, spantφ̂ i,1, . . . , φ̂ i,ku «

spantφ i,1, . . . ,φ i,ku. Therefore, this approximation is good when the Laplacians

are approximately jointly diagonalizable.

Plugging this subspace parameterization into 4.1 and observing that Φ̂
J

i WiΦ̂i “

RJi Φ̄
J

i WiΦ̄iRi “ RJi Λ̄iRi, where Λ̄i “ diagp
“

λi,1, . . . ,λi,k1
‰

q is the diagonal matrix

containing the first k1 eigenvalues of Li, we get a problem with pkk1 variables,

min
RJi Ri“I

p
ÿ

i“1

offpRJi Λ̄iRiq ` µc

p
ÿ

i, j“1

}FJi jAiΦ̄iRi ´GJi jA jΦ̄ jRj}
2
F (4.2)

´ µd

p
ÿ

i, j“1

}EJi jAiΦ̄iRi ´HJi jA jΦ̄ jRj}
2
F.
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Detected MSER regions [Litman et al., 2011] MSER-based generated regions

Delta functions (points) Distance functions

HKS descriptors [Sun et al., 2009] MSER-localized WKS [Aubry et al., 2011] descriptors

Figure 4.1. Illustration of possible corresponding functions used for coupled
diagonalization in computer graphics applications.
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The geometric interpretation of 4.2 is an alignment of the Laplacian eigenbases

Φ̄i by means of orthonormal matrices Ri, where the quality of the alignment is

determined by the coupling and decoupling terms.

The use of the subspace parameterization offers several advantages. Since

the Laplacians do not appear explicitly in problem 4.2 but rather their discretized

eigenfunctions and eigenvalues, we can employ any method for Laplacian dis-

cretization. Also, unlike problems 3.1 and 4.1, the complexity of 4.2 depends

only on k, k1 and not on n, thus making our method independent of the Laplacian

size (assuming Φ̄i are precomputed). Since typical values are n„ 103´105, while

k1, k „ 10´100, the reduction of the number of variables can be of several orders

of magnitude. Finally, as we represent our coupled basis vectors as linear combi-

nations of the first k1 low-frequency eigenvectors, the coupled basis vectors have

guaranteed smooth behavior which ensures neighborhood-preservation property

typical of Laplacian embeddings.

In applications requiring the computation of many approximate joint eigen-

vectors (k " 1), the complexity of optimizing over p large orthonormal matrices

might become prohibitively high. In this case, we can split the eigenvectors into

non-overlapping bands of size k2 ą 1 and solve k{k2 problems (4.3) or k2 ˆ k2

matrices Ri (here we assume that k is a multiple of k2).

4.1.2 Choice of the off-diagonal penalty

An essential component of our problem is the regularization term of the form

offpRJi Λ̄iRiq or offpΦ̂
J

i WiΦ̂iq, ensuring that the coupled bases behave as approxi-

mate Laplacian eigenbases. In the joint diagonalization problem, following Car-

doso and Souloumiac [1996], we used the term off1pMq “ }M´DiagpMq}2F pe-

nalizing for off-diagonal elements, with the assumption that an eigenbasis di-

agonalizes the Laplacian matrix. Note that such a penalty do not impose any

ordering of the eigenvectors, or in other words, it is invariant to the permutation

of the columns of the basis matrix.

In the coupled diagonalization, we are interested in the first k eigenvectors,

therefore, their order is important. Two possible alternative penalties in this

setting are off2pMq “ trpMq and off3pX,Mq “ }XJMX´ΛM}
2
F where M is an input
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matrix that we want to diagonalize with the columns of matrix X, and ΛM is the

diagonal matrix of ordered original eigenvalues of M. Using the latter penalty,

we can rewrite our subspace version of the coupled diagonalization problem as

min
RJi Ri“I

p
ÿ

i“1

}RJi Λ̄iRi ´ Λ̄i}
2
F ` µc

p
ÿ

i, j“1

}FJi jAiΦ̄iRi ´GJi jA jΦ̄ jRj}
2
F (4.3)

´ µd

p
ÿ

i, j“1

}EJi jAiΦ̄iRi ´HJi jA jΦ̄ jRj}
2
F.

4.2 Numerical implementation

Our coupled diagonalization problem and its subspace version are instances of

manifold- or manifold-constrained optimization, where the variables (matrices

R1, . . . ,Rp) are restricted to the Stiefel manifold of orthonormal matrices. While

the solution of such problems can be carried out using standard constrained opti-

mization techniques such as fmincon in MATLAB, there are more efficient mani-

fold optimization techniques specifically developed for such problems, which we

discuss in Chapter 5.

Derivatives. The gradients of the off-diagonal penalties are given by

∇X off1pX,Mq “∇X}X
JMX´DiagpXJMXq}2F “ 4pMXXJMX´MX DiagpXJMXqq,

∇X off2pX,Mq “∇X trpXJMXq “ 2MX,

∇X off3pX,M,ΛMq “ }X
JMX´ΛM}

2
F “ 4pMXXJMX´MXΛMq.

The gradient of the coupling/decoupling term is

∇X}M1X´M2}
2
F “ 2pMJ

1 M1X´MJ

1 M2q.

Robustness to initialization. In Figure 4.4, we show examples of runs with

different initializations, coupling weight and off-diagonal costs. In our experi-

ments, we used the MATLAB package Manopt [Boumal et al., 2014]. When the

coupling weight µc increases, the convergence with all the off-diagonal costs is

independent on the initialization. Furthermore, the non-isometric case is more
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Laplacian eigenbases

φ2 φ3 φ4 φ5 φ6

ψ2 ψ3 ψ4 ψ5 ψ6

Coupled quasi-harmonic bases

φ̂2 φ̂3 φ̂4 φ̂5 φ̂6

ψ̂2 ψ̂3 ψ̂4 ψ̂5 ψ̂6

Figure 4.2. First Laplacian eigenfunctions (top) and coupled basis vectors (bot-
tom) computed on a full man mesh and 10-times subsampled point cloud. Hot
and cold colors represent positive and negative values, respectively.

robust to initializations, than the isometric case. Intuitively, we can interpret this

as follows: for the near-isometric case there are many possible rotations to align

the original bases, whereas for non-isometric shapes there are few rotations to
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align them.

M1 M2 M3

Figure 4.3. Examples of the shapes used for the numerical experiments. Black
spheres denote 25 ground-truth point-wise correspondences across the shapes.

Number of corresponding functions. In Figure 4.5, we observe that off2

is relatively robust to initialization for both isometric and non-isometric cases

for varying number of corresponding data. In the non-isometric case, however,

also off3 performs robustly for different number of corresponding functions. The

penalty off1 shows average performance. In the following, we will use off3 and

off2.

Sensitivity to noise. Figure 4.6 exemplifies the performance of the opti-

mization when the corresponding data is noisy. We observe the general trend

that when the amount of noise increases, it becomes more difficult to couple the

bases, which is manifested in higher values of the cost function at the minimum.
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Figure 4.4. Robustness of the parameterized coupled diagonalization problem
for different initializations for two near-isometric shapes (the first three rows) and
for two non-isometric shapes (the last three rows). For the experiment we con-
sidered shapesM1 andM2 for the near-isometric case, and shapesM1 andM3

for the non-isometric experiment (Figure 4.3). The first and the fourth rows cor-
respond to the off1 diagonality cost (sum of squared off-diagonal elements), the
second and fifth to off2 (trace) and the third and sixth to off3 (Frobenius norm
distance to the original eigenvalues). Each column corresponds to a different
coupling weight µc. Lines of different colors denote optimizations with different
initializations; the initializations are consistent across different plots, i.e., lines
of the same color correspond to the same initialization for each experiment sce-
nario, namely near-isometric and non-isometric. As correspondence data we
considered 25 corresponding delta functions illustrated as spheres in Figure 4.3.
Number of bases k1 “ k “ 25. Logarithm is applied to both axes.
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Figure 4.5. Performance of the parameterized coupled diagonalization prob-
lem for different initializations and different number of corresponding functions.
Numbers for each column denote the number of corresponding functions used
for coupling. In all the experiments µc “ 0.132 and other settings and notations
are as in Figure 4.4.
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Figure 4.6. Performance of the subspace coupled diagonalization problem for
different initializations and different noise magnitude in corresponding data.
Numbers for each column denote the index of the test: for each column the
initialization is the same across different methods. Colors encode the noise
magnitude (deviation from groundtruth in % of geodesic diameter). In all the
experiments µc “ 0.132 and other settings and notations are as in Figure 4.4.
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4.3 Robust formulation

Often, the corresponding data (e.g., descriptors, detected compatible regions,

etc.) are noisy or have outliers, i.e., irrelevant information, which should be

ignored. Replacing the Frobenius norm for the coupling terms with robust norms

such as } ¨ }1 or } ¨ }2,1 allows to better cope with outliers in the correspondence

data [Huang et al., 2014; Wang and Singer, 2013]. We define the robust coupled

diagonalization problem as

min
RJi Ri“I

p
ÿ

i“1

}RJi Λ̄iRi ´ Λ̄i}
2
F ` µc

p
ÿ

i, j“1

}FJi jAiΦ̄iRi ´GJi jA jΦ̄ jRj}2,1 (4.4)

´ µd

p
ÿ

i, j“1

}EJi jAiΦ̄iRi ´HJi jA jΦ̄ jRj}2,1.

Note that this robust formulation has a non-differentiable cost function due to

} ¨ }2,1, and is also constrained to a product of Stiefel manifolds. To the best of

our knowledge, there are no optimization methods capable of optimizing gen-

eral non-smooth functions over matrix-manifolds, making the optimization of 4.4

challenging. In Chapter 5, we introduce an efficient algorithm capable of opti-

mizing general non-smooth manifold-constrained problems and, in particular,

our problem 4.4.

4.4 Relation to Functional Correspondence

Our final remark is on the relation between our coupled diagonalization prob-

lem 4.3 and the functional correspondence problem 2.18 discussed in Chapter 2.

In the basic setting of correspondence between two manifolds X and Y , the

functional correspondence problem is stated as a least-squares solution of a lin-

ear system,

min
CPRkˆk

}GJAY Ψ̄ ´ FJAX Φ̄C}2F (4.5)
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where F,G are nXˆq and nYˆq matrices of discretized corresponding functions,

and Φ̄, Ψ̄ are the nX ˆk and nY ˆk matrices of the respective Laplacian eigenvec-

tors. Ovsjanikov et al. [2012] show that if the functional map originates from an

area-preserving map (in particular, an isometry), the kˆ k matrix C is orthonor-

mal and problem (4.5) boils down to the orthogonal Procrustes problem, which

has a closed-form solution C “ UVJ where pFJAX Φ̄q
JGJAY Ψ̄ “ UΣVJ denotes

singular value decomposition with orthonormal U and V.

Rewriting problem 4.5 with C“ UVJ, we get

min
UJU“I,VJV“I

}GJAY Ψ̄V´ FJAX Φ̄U}2F, (4.6)

which coincides with our subspace coupled diagonalization problem 4.2 for the

setting k1 “ k and µd “ 0 and µc Ñ 8 (no off-diagonal regularization). The

geometric interpretation is the same: we try to rigidly align the two eigenbases

by applying rotation/reflection matrices U,V to them.

The setting k1 ą k of our problem implies that the matrices U,V are non-

square (k1ˆ k); in this case, the geometric interpretation is of a non-rigid align-

ment of the eigenbases, where the off-diagonality penalty ensures that the de-

formation is smooth.

In the more general setting of correspondence between p manifoldsM1, . . . ,Mp,

the functional map betweenMi andM j is an n j ˆ ni matrix Ti j that is approx-

imated by Ti j « Φ̄ jC
J

i jΦ̄iAi, where Ci j is the k ˆ k matrix translating Fourier

coefficients from basis Φ̄i to Φ̄ j. In this setting, the functional correspondence

problem can be written as

min
CJi j Ci j“I

ÿ

i‰ j

}FJi jΦ̄iAiCi j ´GJi jΦ̄ jA j}
2
F , (4.7)

where we assume to be given ni ˆ qi j matrix Fi j and n j ˆ qi j matrix Gi j of dis-

cretized corresponding functions as before.

Imposing a further assumption that Ti j is volume-preserving, Ci j must be an

orthonormal matrix, which can be represented as a product of two orthonormal

matrices, Ci j « RiR
J

j . Plugging in the factorization Ci j “ RiR
J

j and using the

unitary invariance of Frobenius norm, we obtain an instance of our subspace
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coupled diagonalization problem 4.2,

min
RJi Ri“I

ÿ

i‰ j

}FJi jΦ̄iAiRi ´GJi jΦ̄ jA jRj}
2
F , (4.8)

in the case k1 “ k and µd “ 0 and µc Ñ8.



Chapter 5

MADMM: a Generic Algorithm For
Non-smooth Optimization on
Manifolds

The subspace formulation of the coupled diagonalization and the joint approxi-

mate diagonalization problems require optimization of some cost function over

the set of orthonormal matrices that is known as the Stiefel manifold. Such class

of optimization problems is known as manifold optimization and can be addressed

by a special type of algorithms. The Manopt Matlab toolbox [Boumal et al., 2014]
is the most comprehensive toolbox we are aware of, implementing several solvers

and supporting several types of manifolds in a very convenient manner.

Yet, the methods in the Manopt toolbox, and more generally, most of the

methods known in this community, have been developed for smooth functions.

In our applications, when dealing with noisy data, one is interested in robust

formulations involving, e.g., a non-smooth norm such as }¨}2,1 in the coupling

term of 4.4.

In this chapter, we develop a general framework for non-smooth manifold op-

timization, which was presented at ECCV [Kovnatsky et al., 2016]. Our method

is very simple and straightforward to implement. While focusing our discussion

mostly on problems of simultaneous diagonalization involving optimization on

the Stiefel manifold, we stress that the method is generic and can be applied to

51



52 5.1 Manifold Optimization

other manifolds as well. An interested reader is referred to additional examples

in [Kovnatsky et al., 2016].

5.1 Manifold Optimization

The term manifold- or manifold-constrained optimization refers to a class of prob-

lems of the form

min
MPM

f pMq, (5.1)

where f is a smooth real-valued function, M is an n1 ˆ n real matrix, andM is

some Riemannian submanifold of Rn1ˆn. The main idea of manifold optimization

is to treat the objective as a function f :M Ñ R defined on the manifold, and

perform descent on the manifold itself rather than in the ambient Euclidean space

representing manifold structure as appropriate constraints on M.

repeat
Compute the extrinsic gradient

∇ f pMpkqq

Projection:

∇M f pMpkqq “ PMpkqp∇ f pMpkqqq

Compute the step size αpkq

along the descent direction

Retraction: Mpk`1q “

RMpkqp´α
pkq∇M f pMpkqqq

until convergence;

Algorithm 2: Conceptual algorithm

for smooth optimization on mani-

foldM .

Mpkq

∇ f pMpkqq

PMpkq

αpkq∇M f pMpkqq

RMpkq

Mpk`1q

M

A conceptual gradient descent-like manifold optimization is presented in Al-

gorithm 2 (we refer the reader to [Absil et al., 2009] for a comprehensive in-

troduction to manifold optimization). On a manifold, the intrinsic (Riemannian)

gradient∇M f pMq is a tangent vector and can be obtained by projecting the stan-

dard (Euclidean) gradient∇ f pMq onto tangent plane TMM at point M by means
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of a projection operator PM (see an illustration in Figure 2). During an iteration of

a manifold optimization algorithm, a step along the intrinsic gradient direction

is performed in the tangent plane. In order to obtain the next iterate, the point

in the tangent plane is mapped back to the manifold by means of a retraction

operator RM, which is typically an approximation of the exponential map (see

Section 2.1). For many manifolds, the projection P and retraction R operators

have a closed form expression.

5.1.1 Applications of manifold optimization

A wide range of problems in machine learning, pattern recognition, computer

vision, and signal processing is formulated as manifold optimization problems.

For example, optimization on the Grassman manifold comes up in multi-view

clustering [Dong et al., 2014] and matrix completion [Keshavan and Oh, 2009].
Optimization on the sphere is used in principle geodesic analysis [Zhang and

Fletcher, 2013], a generalization of the classical PCA to non-Euclidean domains.

Optimization on the Stiefel manifold arises in a plethora of applications rang-

ing from classical ones such as eigenvalue problems, assignment problems, and

Procrustes problems [Berge, 1977], to more recent ones such as 1-bit compressed

sensing [Boufounos and Baraniuk, 2008]. Problems involving products of Stiefel

manifolds are our main focus here. Their various applications include shape cor-

respondence [Kovnatsky et al., 2013], manifold learning [Eynard et al., 2015],
sensor localization [Cucuringu et al., 2012a], structural biology [Cucuringu et al.,

2012b], and structure from motion recovery [Arie-Nachimson et al., 2012].

Optimization over the manifold of fixed-rank matrices arises in maxcut prob-

lems [Journée et al., 2010], sparse principal component analysis [Journée et al.,

2010], regression [Meyer et al., 2011], matrix completion [Boumal and Absil,

2011; Tan et al., 2014], and image classification [Shalit et al., 2010]. Oblique

manifolds are encountered in problems such as independent component analy-

sis and joint diagonalization [Absil and Gallivan, 2006], blind source separation

[Kleinsteuber and Shen, 2012], and prediction of stock returns [Higham, 2002].

Though some instances of manifold optimization such as eigenvalues prob-

lems have been treated extensively in the distant past, the first general purpose
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algorithms appeared only in the 1990s [Smith, 1994; Wen and Yin, 2013]. With

the emergence of numerous applications during the last decade, especially in the

machine learning community, there has been an increased interest in general-

purpose optimization on different manifolds [Absil et al., 2009], leading to sev-

eral manifold optimization algorithms such as conjugate gradients [Edelman

et al., 1998], trust regions [Absil et al., 2007], and Newton [Smith, 1994; Al-

varez et al., 2008].

5.2 Non-smooth manifold optimization

More recently, there has been an interest in optimizing non-smooth functions on

manifolds. Typical applications, again, arise mostly from problems in machine

learning and pattern recognition communities, where the need to deal with noise

requires the use of non-smooth robust cost functions.

Broadly speaking, there are three classes of optimization methods for non-

smooth functions. First, smoothing methods replace the non-differentiable func-

tion with its smooth approximation [Chen, 2012] (e.g., |x | «
?

x2` ε). Such

methods typically suffer from a tradeoff between accuracy (how close the approx-

imation function to the original objective) and convergence speed (less smooth

functions are usually harder to optimize). The second class of methods use sub-

gradients as a generalization of derivatives of non-differentiable functions. In

the context of manifold optimization, several subgradient approaches have been

proposed [Ferreira and Oliveira, 1998; Ledyaev and Zhu, 2007; Kleinsteuber and

Shen, 2012].

The third class of methods are splitting approaches, studied mostly for prob-

lems involving the minimization of matrix functions with orthogonality con-

straints, which limits their application solely to Stiefel manifolds. Lai and Os-

her [2014] proposed the method of splitting orthogonal constraints (SOC) based

on the Bregman iteration . A similar approach was independently developed in

[Rosman et al., 2011, 2014]. Neumann et al. [Neumann et al., 2014] used a

different splitting scheme for the same class of problems.

Splitting methods offer a bunch of nice properties, making them very popular
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in machine learning and signal processing applications. First, they split compli-

cated large problems into simple sub-problems, where each subproblem has a

simple solution (in some cases, even closed-form). In some settings, the splitting

lends itself to parallelization on distributed computational architectures. Sec-

ond, they make very few assumptions about the properties of the objective func-

tion. Third, they are very easy to implement. Finally, splitting methods typically

demonstrate fast convergence, often superior to other methods.

5.3 Manifold ADMM

Here, we consider general non-smooth manifold optimization problems of the

form

min
MPM

f pMq ` hpSMq, (5.2)

where f and h are smooth and non-smooth real-valued functions, respectively.

S is a p ˆ n1 matrix, and the rest of the notation is as in problem 5.1. Typical

examples of h often used in machine learning application are nuclear-, } ¨ }1, or

}¨}2,1 norms. Because of non-smoothness of the objective functions, Algorithm 2

cannot be used directly to minimize (5.2).

We propose treating this class of problems using the alternating directions

method of multipliers (ADMM). The key idea is that problem (5.2) can be equiv-

alently formulated as

min
MPM ,ZPRpˆn

f pMq ` hpZq s.t. Z“ SM (5.3)

by introducing an artificial variable Z and a linear constraint. The method of

multipliers [Hestenes, 1969; Powell, 1969], applied to only the linear constraints

in (5.3), leads to the minimization problem

min
MPM ,ZPRpˆn

f pMq ` hpZq ` ρ

2 }SM´ Z`U}2F (5.4)

where ρ ą 0 and U P Rpˆn have to be chosen and updated appropriately (see
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below).

This formulation now allows splitting the problem into two optimization sub-

problems w.r.t. to M and Z, which are solved in an alternating manner, followed

by an updating of U and, if necessary, of ρ. Observe that in the first sub-problem

w.r.t. M we minimize a smooth function with manifold constraints, and in the sec-

ond sub-problem w.r.t. Z we minimize a non-smooth function without manifold

constraints. Thus, the problem breaks down into two well-known sub-problems.

This method, which we call Manifold alternating direction method of multipliers

(MADMM), is summarized in Algorithm 3.

Initialize kÐ 1, Zp1q “ SMp1q, Mp1q “ 0, Up1q “ 0.

repeat
M-step: Mpk`1q “ argmin MPM f pMq ` ρ

2 }SM´ Zpkq`Upkq}2F
Z-step: Zpk`1q “ argmin ZPRpˆn hpZq ` ρ

2 }SMpk`1q´ Z`Upkq}2F
Update Upk`1q “ Upkq` SMpk`1q´ Zpk`1q and kÐ k` 1

until convergence;

Algorithm 3: Generic MADMM method for non-smooth optimization

on manifoldM .

Note that MADMM is extremely simple and easy to implement. The M-step

is the setting of Algorithm 2 and can be carried out using any standard smooth

manifold optimization method. Similarly to common implementation of ADMM

algorithms, there is no need to solve the M-step problem exactly; instead, only a

few iterations of manifold optimization are done. Furthermore, for some mani-

folds and some functions f , the M-step has a closed-form solution.

The Z-step is the proximity operator of 1
ρh at SMpk`1q`Upkq [Parikh and Boyd,

2014]. In many cases it has a closed-form solution: for example, when h is the

L1-norm, the Z-step boils down to simple shrinkage, and when h is nuclear norm,

the Z-step is performed by singular value shrinkage. ρ is the only parameter of

the algorithm and its choice is not critical for convergence. In our following

experiments, we used a rather arbitrary fixed value of ρ, though in the ADMM

literature it is common to adapt ρ at each iteration, e.g., using the strategy de-

scribed in [Boyd et al., 2010].
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5.3.1 MADMM for Coupled Diagonalization

We show the application of MADMM to robust formulations of the coupled diag-

onalization problem discussed in Chapter 4. For additional examples and com-

parisons of MADMM to state-of-the-art methods applied to other problems, we

refer the reader to our report [Kovnatsky et al., 2016]. Our notation follows that

of Chapter 4. We assume to be given a collection of p shapesM1, . . . ,Mp, each

discretized at ni points and equipped with a Laplacian Li “ A´1
i Wi represented

as an ni ˆ ni matrix; Ai and Wi are the mass and stiffness matrices as in (2.7),

respectively. The first k eigenvectors of these Laplacians arranged as ni ˆ k ma-

trices Φ̄i; the corresponding eigenvalues are represented as kˆ k diagonal ma-

trices Λ̄i. The functional map between manifoldsMi andM j is approximated

by Ti j « Φ̄ jC
J

i jΦ̄iAi; imposing a further assumption that Ti j is volume-preserving,

we get an orthonormal matrix Ci j « RiR
J

j , where R1, . . . ,Rp are orthonormal. For

each pair of manifoldsMi,M j, we assume to be given a set of qi j corresponding

vectors arranged as columns of an ni ˆ qi j matrix Fi j and n j ˆ qi j matrix Gi j.

Assuming for simplicity no decoupling term (µd “ 0), the robust version of

our subspace coupled diagonalization problem takes the form

min
RJi Ri“I

ÿ

i

offpRJi Λ̄iRiq `µc

ÿ

i‰ j

}FJi jΦ̄iAiRi ´GJi jΦ̄ jA jRj}2,1. (5.5)

Problem 5.5 is an instance of non-smooth manifolds optimization, since the

cost function has a non-smooth component h “
ř

} ¨ }2,1, and the variables

R1, . . . ,Rp are restricted to the Stiefel manifold. We can apply our MADMM ap-

proach, as summarized in Algorithm 4. The M -step of MADMM is performed

using a few iterations of some standard manifold optimization on a product of

Stiefel manifolds. The Z-step in this case boils down to the standard sparse cod-

ing or Lasso problem, which is carried out by a single shrinkage iteration, given

in closed form by applying the shrinkage operator

ShrinkpM,τq “ signpMq dmax t|M| ´τ,0u
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in an element-wise manner.

Input n j ˆ qi j corresponding matrices Fi j,Gi j, ni ˆ k eigenbases

matrices Φ̄i, kˆ k diagonal matrices Λ̄i of corresponding

eigenvalues, and parameter µc ą 0

Output orthonormal matrices R1, . . . ,Rp aligning the bases

Φ̄1, . . . , Φ̄p and allowing to express the functional

correspondences as Ti j « Φ̄ jRjR
J

i Φ̄
J

i Ai.

Initialize kÐ 1, Rp1qi Ð I, Z p1qi j Ð Fi jAiΦ̄iR
p1q
i ´Gi jA jΦ̄ jR

p1q
j ,

Up1qi j Ð I.

repeat

pRpk`1q
1 , . . . ,Rpk`1q

p q “argmin
RJi Ri“I

ÿ

i

offpRJi Λ̄iRiq `

ρ

2

ÿ

i‰ j

}Fi jAiΦ̄iRi ´Gi jA jΦ̄ jRj ´ Zpkqi j `Upkqi j }
2
F

Zpk`1q
i j p:, lq “

Shrinkµc
ρ
pFi jΦ̄iAiR

pk`1q
i p:, lq ´Gi jΦ̄ jA jR

pk`1q
j p:, lq `Upkqi j p:, lqq

Upk`1q
i j “ Upkqi j ` Fi jΦ̄iAiR

pk`1q
i ´Gi jΦ̄ jA jR

pk`1q
j ´ Zpk`1q

i j

kÐ k` 1

until convergence;

Algorithm 4: MADMM method for robust coupled diagonalization

on multiple manifolds. Mp:, iq denotes the ith column of matrix M.

5.3.2 Convergence

Our final note is on the convergence of the proposed method. MADMM belongs

to the class of multiplier algorithms that can be considered as ‘methods with par-

tial elimination of constraints’ [Bertsekas, 1982] and as ‘augmented Lagrangian

methods with general lower-level constraints’ [Andreani et al., 2007]. We note

that the convergence results of [Bertsekas, 1982; Andreani et al., 2007] do not

apply in our case due to non-differentiability of the function h in (5.2). Further-

more, MADMM is an alternating method and thus is not covered by theoretical

results on ‘pure’ multiplier methods. An avenue for obtaining convergence re-

sults for (a regularized version of) MADMM is the recently developed theory by
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Attouch et al. [2010], which is applicable to non convex and non-differentiable

functions f and h. Attouch et al. [2010] show convergence results for the class of

semi algebraic objects, which includes Stiefel and other matrix manifolds. Wang

et al. [2015] prove global convergence of ADMM in convex and non-smooth sce-

narios, however the non-smooth and non-convex parts should belong to a specific

class of functions (piecewise linear functions, `q quasi-norms (0 ď q ď 1), etc.),

which limits the use of their convergence results. We defer a deeper study of

convergence properties to future work.



60 5.3 Manifold ADMM



Chapter 6

Applications in Manifold Learning &
Computer Vision

In Chapters 3 and 4, we prosed an extension of spectral methods to multiple

domains through simultaneous diagonalization of the respective Laplacian ma-

trices. This naturally extends classical data analysis tools such as diffusion maps

and spectral clustering. In this chapter, we provide an experimental evaluation

on synthetic and real data in problems of manifold learning, object classification,

and clustering. We show that joint spectral geometry better captures inherent

structure of multi-modal data leading to a superior performance. Finally, we

show the relation of many existing approaches for multimodal manifold analysis

to our framework. The results in this chapter are from our PAMI paper [Eynard

et al., 2015].

6.1 Multimodal spectral methods

We start with an overview of other spectral methods dealing with multimodal

data and try to establish their relation to our approach. In our analysis, we

distinguish between two broad groups of approaches: those assuming the full

coupling setting (i.e., equal number of samples/vertices ni “ n and known bijec-

tive correspondence between them) and sparse coupling setting (each modality

might have a different number of samples/vertices, and the correspondence is

61



62 6.1 Multimodal spectral methods

known only between a few of them). The notation follows sections 3, 4.

6.1.1 Full coupling setting

Laplacian averaging. Assuming the full coupling setting between p modali-

ties and that the first k eigenvalues of the Laplacians are zero, we want to find

Φ̆ P Rnˆk such that LiΦ̆ “ 0 for all i “ 1, . . . , p and Φ̆
J
Φ̆ “ I by reformulat-

ing (Equation 3.3) as

min
Φ̆
J
Φ̆“I

p
ÿ

i“1

}LiΦ̆}
2
F (6.1)

Since
řp

i“1 }LiΦ̆}
2
F “ trpΦ̆

J
p
řp

i“1 LJi LiqΦ̆q, the problem can be equivalently recast

as finding the null eigenvectors of the “average” Laplacian matrix L̄“
řp

i“1 LJi Li.

One can also consider other averaging operators, such as arithmetic mean L̄ “
1
p

řp
i“1 Li or harmonic mean L̄ “ p

řp
i“1 L´1

i q
´1. In what follows, we will show

that many approaches for multimodal manifold alignment boil down to simple

Laplacian averaging in their limit cases. Laplacian averaging methods seem to

be the most ‘naïve’ way of producing multi-modal spectral geometry and have

been used in several applications such as clustering [Ma and Lee, 2008]. 1

Matrix factorization. Tang et al. [2009] proposed graph clustering through

low-rank factorization of the weight matrix (section 2.3), trying to find a common

factor Φ̆ such that Wi « Φ̆Λ̆iΦ̆
J

by solving

min
Φ̆PRnˆk ,Λ̆iPRkˆk

p
ÿ

i“1

}Wi ´ Φ̆Λ̆iΦ̆
J
}

2
F, (6.2)

using the quasi-Newton method. Besides the fact that the factorization is ap-

plied to the weight matrix (it can be equivalently applied to the Laplacian), we

see here a (non-orthogonal) joint diagonalization problem with an off-diagonality

criterion considered by Yeredor [2002].

MVSC. Cai et al. [2011] proposed a method for multi-view spectral clustering

1We refer the reader to [Bronstein and Glashoff, 2013] for a recent attempt to generalize
Laplacian averaging methods to a more general setting of sparse coupling, through heat kernel
coupling.



63 6.1 Multimodal spectral methods

(MVSC) by solving2

min
Φ̆i ,Φ̆

J
Φ̆“I

p
ÿ

i“1

trpΦ̆
J

i LiΦ̆iq `µ}Φ̆i ´ Φ̆}
2
F (6.3)

and show that this problem can be equivalently posed as

max
Φ̆
J
Φ̆“I

tr
´

Φ̆
Jřp

i“1 pLi `µIq´1
Φ̆
¯

(6.4)

We observe that problem (6.3) consists of p minimum-eigenvalue problems w.r.t.

bases Φ̆i, with the addition of a coupling term, encouraging Φ̆i to be as close as

possible to some common basis Φ̆ (note that the authors do not impose orthogo-

nality constraints Φ̆
J

i Φ̆“ I, but for µÑ8, the proximity to orthogonal Φ̆ makes

Φ̆i approximately orthogonal). Thus, it is possible to interpret (6.3) as a kind

of joint diagonalization criterion similar to manifold alignment discussed in Sec-

tion 6.1.2.

Problem (6.4) can be rewritten as a minimum eigenvalue problem

min
Φ̆
J
Φ̆“I

tr

ˆ

Φ̆
J
´

řp
i“1 pLi `µIq´1

¯´1
Φ̆

˙

, (6.5)

whose solution is given by the first k eigenvectors of the matrix
´

řp
i“1 pLi `µIq´1

¯´1
.

For µ“ 0, this is simply the harmonic mean of the Laplacians. In order to obtain

the limit case µÑ8, observe that

p
ÿ

i“1

pL`µIq´1 “
1
µ

p
ÿ

i“1

p
1
µL` Iq´1 «

1
µ

p
ÿ

i“1

I´ 1
µL

“
p
µI´ 1

µ

p
ÿ

i“1

L. (6.6)

2Cai et al. [2011] also impose a non-negativity constraint on the matrix Φ̆ in order to obtain
cluster indicators directly and bypass the K-means clustering stage [Hochbaum and Shmoys,
1985]. We ignore this additional constraint for the simplicity of discussion; such a constraint can
be added to all the problems discussed in the following.
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Plugged into (6.4) and normalized, in the limit µÑ8 expression (6.6) becomes

min
Φ̆
J
Φ̆“I

tr

˜

Φ̆
J

p
ÿ

i“1

LiΦ̆

¸

(6.7)

thus essentially boiling down to arithmetic mean of the Laplacians. The same

result can be obtained by analyzing (6.3) and noticing that for µÑ8 we have

Φ̆i “ Φ̆ and the problem becomes

min
Φ̆
J
Φ̆“I

tr

˜

Φ̆
J

p
ÿ

i“1

LΦ̆

¸

.

Co-regularization. Kumar et al. [2011] proposed the centroid co-regularization

approach for multimodal clustering based on the minimization:

min
Φ̆
J

i Φ̆i“I, Φ̆JΦ̆“I

p
ÿ

i“1

trpΦ̆
J

i LΦ̆iq ´µ trpΦ̆iΦ̆
J

i Φ̆Φ̆
J
q. (6.8)

This function is alternatingly minimized, first with respect to the nˆ k matrices

Φ̆i, then with respect to Φ̆. The term trpΦ̆iΦ̆
J

i Φ̆Φ̆
J
q measures the Grassmanian

distance between the column subspaces spantφ̆ i1, . . . , φ̆ iku and spantφ̆1, . . . , φ̆ku

[Dong et al., 2014] and has an effect similar to our coupling term.

SC-ML. Dong et al. [2014] proposed an approach for spectral clustering on

multi-layer graphs (SC-ML), trying to find an nˆ k matrix Φ̆ which minimizes

that Laplacian quadratic form and is closest to the subspaces spanned by the first

k eigenvectors Φi of the Laplacians L,

min
Φ̆
J
Φ̆“I

p
ÿ

i“1

trpΦ̆
J

LΦ̆q ´µ trpΦiΦ
J

i Φ̆Φ̆
J
q. (6.9)

Rewriting (6.9) as

min
Φ̆
J
Φ̆“I

tr

˜

Φ̆
J

˜

p
ÿ

i“1

L´µΦiΦ
J

i

¸

Φ̆

¸

, (6.10)

one obtains a closed-form solution to Φ̆ by finding the first k eigenvectors of the
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matrix
řp

i“1 L´µΦiΦ
J

i .

We must stress that these methods were developed for clustering problems

where one has to find the null eigenvectors, and do not adapt easily to other

applications of diffusion geometry where one has to find many or all joint eigen-

vectors of the Laplacians (e.g., computation of diffusion distances). In particular,

iterative solvers used in [Tang et al., 2009; Kumar et al., 2011; Cai et al., 2011]
do not scale up to such cases.

CCO. Using the relation between joint diagonalizability and commutativity

[Lin, 1997; Glashoff and Bronstein, 2013], Bronstein et al. [2013] considered

a class of problems referred to as closest commuting operators (CCO). Bronstein

et al. [2013] find the closest commuting matrices L̃X , L̃Y to the given LX and LY ,

CpLX ,LY q “ min
L̃X ,L̃Y PM

}L̃X ´ LX }
2
F ` }L̃Y ´ LY }

2
F s.t.

“

L̃X , L̃Y

‰

“ 0, (6.11)

where M is some space of matrices. The matrices L̃X , L̃Y minimizing 6.11 are

called the closest commuting operators (CCO). In the case M “ Rnˆn, if LX ,LY

approximately commute, then CpLX ,LY q is guaranteed to be small [Lin, 1997].
Moreover, in this case the JADE and CCO problems are equivalent [Bronstein

et al., 2013], in the following sense: since the minimizers of (6.11) are com-

muting matrices, they are jointly diagonalizable, and their joint eigenbasis is the

minimizer of the JADE optimization problem (3.3) [Bronstein et al., 2013].

The main advantage of problem 6.11 is that we are able to find matrices from

the desired space M (e.g., space of all admissible Laplacians) that are close to

the input matrices and which are jointly diagonalizable. The solution of (6.11) is

carried out by parametrizing L̃i through the non-zero elements of the adjacency

matrix Wi (section 2.3). The complexity of the problem depends both on the size

and the structure of Wi: assuming that each row of the adjacency matrix has at

most s non-zero elements, computing the cost function and the constraints and

their gradients requires O psn2q operations.

6.1.2 Sparse coupling setting

Manifold alignment. Ham et al. [2005] introduced manifold alignment as
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a way to construct embeddings that are consistent in two different modalities.

Let us be given two weighted adjacency graphs with n vertices sampled from

manifolds M1 and M2, and let us assume w.l.o.g. that the points are ordered

such that the first l points in the two modalities correspond. The main idea of

manifold alignment is to construct a big graph with 2n vertices where the edges

connecting corresponding points in different modalities have some weightµ. The

joint Laplacian of such a graph is a 2nˆ 2n matrix of the form

L̂“

˜

L1`µQ ´µQ

´µQ L2`µQ

¸

(6.12)

where Q is an nˆ n diagonal matrix with first l diagonal elements equal to one

and the rest to zero. Ham et al. [2005] then compute the eigenmap of the joint

Laplacian

min
Φ̆PR2nˆk

trpΦ̆
J

L̂Φ̆q s.t. Φ̆
J
Φ̆“ I, (6.13)

and use the rows 1, . . . , n and n ` 1, . . . , 2n of Φ̆ as the k-dimensional embed-

dings of manifoldsM1 andM2, respectively. Larger values of µ ensure that the

embedding coordinates of the corresponding points coincide.

Denoting Φ̆“
“

Φ̆1; Φ̆2

‰

3 we can rewrite (6.13) as

min
Φ̆iPRnˆk

trpΦ̆
J

1 L1Φ̆1q ` trpΦ̆
J

2 L2Φ̆2q `µ}QΦ̆1´QΦ̆2}
2
F

s.t. Φ̆
J

1 Φ̆1` Φ̆
J

2 Φ̆2 “ I, (6.14)

We recognize in the first terms the cost used in the classical eigenmap (Equa-

tion 2.12). In the case µ “ 0, L̂ becomes a block-diagonal matrix and Φ̆i “ Φi

the eigenvectors of the Laplacians Li. For µą 0, the problem 6.14 becomes sim-

ilar to our coupled diagonalization problem (Equation 4.1) with off2 “ trp¨q as

the off-diagonality penalty. An important difference, however, is that Φ̆i in this

formulation are not orthonormal (the orthogonality constraint is on their sum).

Finally, observe that in the limit case µ Ñ 8 and Q “ I, problem (6.13)

3We follow the Matlab notation here.
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becomes (up to scaling) the minimum eigenvalue problem

min
Φ̆
J
Φ̆“I

trpΦ̆
J
pL1` L2qΦ̆q (6.15)

for the matrix L1 ` L2. Thus, in this case manifold alignment boils down to

arithmetic mean of the Laplacians.

Procrustes analysis. Wang and Mahadevan [2008] proposed to align the

low-dimensional embeddings of two modalities by solving the orthogonal Pro-

crustes problem. Note that this problem is a particular setting of our coupled

joint diagonalization problem (4.2) for p “ 2, k1 “ k and µc Ñ 8: in this case,

we can ignore the off-diagonality penalty and obtain

min
RJi Ri“I

}FJ1 A1Φ̄1R1´ FJ2 A2Φ̄2R2}
2
F. (6.16)

Using the invariance of the Frobenius norm under orthogonal transformation,

we can rewrite problem 6.16 as the orthogonal Procrustes problem

min
ΩJΩ“I

}FJ1 A1Φ̄1´ FJ2 A2Φ̄2Ω}
2
F, (6.17)

where Ω“ R2RJ1 .

The problem 6.17 has an analytical solution (Section 4.4), where R1 “ ΩR,

R2 “ ΩL are right and left singular vectors of matrix M “ FJ2 A2Φ̄2Φ̄
J

1 A1FJ1 [Schöne-

mann, 1966], respectively.

Matrices R1, R2 have a geometric interpretation of rotations of respective

Laplacian bases to coincide in the best way at the corresponding points (F1, F2

are delta functions of corresponding points). Note that the solution is not unique

but ambiguous up to a rotation P, i.e., R1P,R2P is also a solution.

Note the resulting coupled bases are not guaranteed to be quasi-harmonic

(e.g., they possess a low-pass filter property) since the off-diagonality penalty on

diagonalization of Laplacian matrices is not used.
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6.2 Experiments and Results

In this section, we show several examples of the application of our simultaneous

diagonalization approach in machine learning and computer vision. The main

context of the experiments is, given several graphs (‘modalities’) representing

same or related data in slightly different ways, to take advantage of this multi-

modal information.

The experiments are structured as follows: Firstly, we show examples of di-

mensionality reduction by embedding the multimodal data into low-dimensional

spaces using joint Laplacian eigenvectors. We show that the eigenmaps of differ-

ent modalities are well aligned in this way. These results are mostly qualitative.

Then, we compare different state-of-the-art multimodal clustering algorithms on

standard datasets. Afterwards, we compute diffusion distances in the joint Lapla-

cian eigenspaces and use them to classify objects. Later, we show the example

of applying diffusion distances for meaningful subsampling of the datasets using

the farthest point sampling (FPS) technique [Hochbaum and Shmoys, 1985].
Finally, we analyze the complexity of our approach.

6.2.1 Dimensionality reduction

Swiss rolls. In this experiment, we used two Swiss roll surfaces with slightly dif-

ferent embedding as two different data modalities. The rolls were constructed in

such a way that in each modality there is topological noise (connectivity “across”

the roll loops) at different points. The rolls contained n“ 451 points. Laplacians

were constructed as in [Belkin and Niyogi, 2002], using 8-neighbor connectiv-

ity and Gaussian weights with scale parameter σ “
b

5
2 (Figure 2.1, leftmost).

Using individual modalities, the difference in the connectivity produces different

eigenvectors (e.g., Figure 3.1, top), with respect to both their order and their be-

havior (values across two different faces are closer where there are links). When

using joint eigenvectors (e.g., Figure 3.1, bottom), instead, we are able to cor-

rectly capture the intrinsic structure of the data (i.e., links across faces are not

influent anymore), and the eigenvectors behave the same way. This effect is

evident in Figure 6.1, where the second and third uncoupled (a) and joint (e)
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eigenvectors of the same rolls are plotted.

Sparsely-coupled Swiss rolls. Next, we repeat the same experiment us-

ing correspondence between a small subset of vertices (sparse coupling) rather

than all the points. The corresponding sparse points were sampled using FPS

[Hochbaum and Shmoys, 1985]. Since the rolls are (up to topological noise)

isometric to a plane, their ideal embeddings should be rectangular patches. Fig-

ure 6.1 (f-h) shows the result of joint embedding using our CD with sparse point-

wise correspondence. With as little as 1% correspondences, we obtain results

similar to JADE (which uses full coupling). Figure 6.1 (b-d) shows the result

of manifold alignment (MA) [Ham et al., 2005] with the same sparse correspon-

dences. It is evident that MA requires many more points to achieve results similar

to CD.

a. Uncoupled b. MA 1% c. MA 5% d. MA 10%

e. JADE f. CD 1% g. CD 5% h. CD 10%

Figure 6.1. Simultaneous two-dimensional embedding of two Swiss rolls with
slightly different connectivity using joint diagonalization with generalized Jacobi
method (JADE), coupled diagonalization (CD) and manifold alignment (MA).
Ideally, the embedding should ‘unroll’ the rolls into rectangular regions, and
the embeddings of the two modalities should coincide. Using the same sparse
coupling (from 10% to 1% of the points, shown in gray lines), CD produces a
significantly better alignment than MA.

Alignment of visual manifolds. As an additional comparison of CD and MA,

we reproduce the problem of alignment of two visual manifolds using the data

of [Ham et al., 2005]: 831 120ˆ100 images of a face and 698 64ˆ64 images of

a statue. The datasets were coupled sampling 25 points from the statue dataset

with FPS [Hochbaum and Shmoys, 1985] and then manually matching them
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with corresponding images in the faces dataset. Figure 6.2 shows the result of

the alignment of face (green) and statue (blue) manifolds. As an example, we

took 6 face pictures in different poses (green circles) and showed them, for both

methods, next to their closest counterparts on the statue manifold (blue circles).

We observe that, with the same number of correspondences, the alignment of the

two manifolds is significantly better using CD compared to MA: as a consequence,

pictures in the statue dataset tend to be closer to pictures of faces in the same

pose.

MA CD

Figure 6.2. Alignment of face (green) and statue (blue) manifolds. Each point
represents an image in the respective dataset; circles represent corresponding
poses of the statue and face images shown. Crosses denote the data points used
for coupling. Note some significant misalignment between the manifolds in the
MA results (marked in red).

6.2.2 Multimodal clustering

We performed multimodal spectral clustering on six different multimodal datasets.

Circles and Text are two synthetic datasets purposely built to be noisy in each

modality (overlapping clusters) and to have modalities that disambiguate each

other (clusters which are close in one modality are far apart in the other one, see
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Figure 6.3).

NUS is a subset of the NUS-WIDE dataset [Chua et al., 2009] containing im-

ages (represented by 64-dimensional color histograms) and their text annota-

tions (represented by 1000-dimensional bags of words). Images were purposely

selected to have ambiguous content and annotations (e.g., swimming tigers are

also tagged as “water” making them confuse, e.g., with whales). Caltech is a

subset of the Caltech-101 dataset with the same 7 image classes as in Cai et al.

[2011]. For each image, kernels arising from different visual descriptors were

given [Pinto, 2009]: we chose the bio-inspired features and 4x4 pyramid his-

togram of visual words (PHOW) as different modalities. Digits is the UCI Hand-

written Digits dataset [Alpaydin and Kaynak, 1998; Liu et al., 2013], represented

using 76 Fourier coefficients and the 240 pixel averages in 2ˆ3 windows. Reuters

is a subset of the Reuters multilingual text collection [Amini et al., 2009; Liu et al.,

2013] using the English and French languages as two different modalities.

Laplacians were constructed using the Gaussian weight selected with a self-

tuning scale [Perona and Zelnik-Manor, 2004]. Spectral clustering was per-

formed independently on each modality (Uncoupled), on the joint eigenspace

calculated with JADE (Section 3.1, [Cardoso and Souloumiac, 1996]), and on

the coupled bases calculated using CD with coupling only (pos, µd “ 0; Sec-

tion 4.1, Equation 4.3) as well as decoupling (pos+neg) terms. Sparse sets of

corresponding points for coupling were generated using FPS [Hochbaum and

Shmoys, 1985] on each cluster with random initial point. The results were aver-

aged over ten runs with different sampling. Negatives were generated by choos-

ing blobs of points belonging to ambiguous sets (e.g., clusters 5, 6, and 7 for

NUS, and clusters 4 and 5 for Caltech).

For reference, we show the performance of the following state-of-the-art mul-

tiview clustering methods: Comraf [Bekkerman and Jeon, 2007], MVSC [Cai

et al., 2011], MultiNMF [Liu et al., 2013], and SC-ML [Dong et al., 2014].4

We further compare with the two Laplacian averaging methods (harmonic mean

and arithmetic mean). Clustering quality was measured using two standard cri-

4 Since Comraf and Multi-NMF methods require explicit coordinates of the data points, while
Caltech data is represented implicitly as kernels, we could not measure performance on this
dataset.
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teria used in the evaluation of clustering algorithms: the micro-averaged accu-

racy [Bekkerman and Jeon, 2007] and the normalized mutual information (NMI)

[Manning et al., 2008].

Figure 6.3 visualizes the behavior of different multimodal clustering algo-

rithms (all assuming the full coupling setting) on the synthetic datasets Circles

and Text: due to the non-globular shapes of the clusters and their overlap, both

the unimodal approach and the non-spectral multimodal ones perform poorly

on these datasets. Clusters found by multimodal spectral clustering methods,

instead, are all quite accurate, and JADE performs the best among them.

Figures 6.4 and 6.5 visualize the results of unimodal spectral clustering with

its multimodal extension (calculated using JADE) on the NUS and Caltech dataset.

One can easily see the advantage of using simultaneously information from both

modalities: images which are ambiguous in either modality (e.g., due to their

colors, tags, or other visual features) are made unambiguous in the multimodal

case.

Finally, Table 6.1 summarizes the quantitative evaluation of different clus-

tering methods. In the full coupling setting, we observe that multimodal spec-

tral methods perform consistently better on non-globular clusters and very noisy

datasets. In particular, methods that might look naive such as harmonic and

arithmetic mean provide surprisingly good results, competing with other much

more elaborate approaches. In the sparse coupling setting (using correspondence

between 10%-100% points), CD is able to obtain performances favourably com-

parable to the ones of full coupling methods.

6.2.3 Object classification

In this experiment, we used the diffusion distances computed using Laplacian

eigenvectors (individual and joint). The distances were computed with the first

100 eigenvectors according to (Equation 2.14) using heat diffusion kernel Kpλq “

e´5λ (Equation 2.13). Figure 6.6 shows the distance matrices between the ob-

jects in the Caltech (top) and NUS (bottom) datasets. Ideally, the distance matrix

should contain zero blocks on the diagonal (objects of the same class) and non-

zero elsewhere (objects from different classes). Thresholding these distances at
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Uncoupled Comraf MultiNMF MVSC SC-ML JADE

Figure 6.3. Clustering of synthetic multimodal datasets Circles (two modalities
shown in first and second rows) and Text (third and fourth rows). Marker shape
represents ground truth clusters; marker color represents the clustering results
produced by different methods (ideally, all markers of one type should have only
one color).

a set of levels and measuring the false positives/true positive rates (FPR/TPR),

we produce the ROC curves that clearly indicate the advantage of using multiple

modalities (see Figure 6.7).

6.2.4 Manifold subsampling

Next, we used the same diffusion distances to progressively sample the Caltech

(top) and NUS (bottom) datasets using the farthest point sampling (FPS) strat-

egy [Hochbaum and Shmoys, 1985]: starting with some point, pick up the second

one as most distant from the first; then the third as the most distant from the first

and second, and so on. Such sampling is almost-optimal and is known to pro-

duce a progressively refined r-covering of the dataset [Hochbaum and Shmoys,

1985]. Figure 6.8 shows that the first seven samples produced in this way cover

all the classes present in the dataset, providing thus a meaningful subsampling.
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Accuracy/NMI (%)

Method Circles Text Caltech NUS Digits Reuters

#points 800 800 105 145 2000 600

Uncoupled˚ 53.0/39.5 60.4/50.9 78.1/77.0 80.7/81.9 78.9/82.2 52.3/41.1

Harmonic Mean 95.6/90.1 97.2/91.0 87.6/82.5 89.0/83.8 87.0/86.3 52.3/40.9

Arithmetic Mean 96.5/91.2 96.9/89.6 87.6/82.4 95.2/92.1 82.8/84.8 52.2/41.4

Comraf 40.8/16.9 60.8/41.7 –4 86.9/84.3 81.6/77.0 53.2/30.7

MVSC 95.6/90.1 97.2/91.0 81.0/79.4 89.0/83.4 83.1/84.9 52.3/40.9

MultiNMF 41.1/14.2 50.5/23.2 –4 77.4/79.3 87.2/79.3 53.1/40.9

SC-ML 98.2/94.6 97.6/92.1 88.6/82.6 94.5/90.7 87.8/85.3 52.8/38.4

JADE 100/100 98.4/94.1 86.7/80.6 93.1/87.5 82.5/85.1 52.3/40.9

CD˚

pos

10% 52.5/26.0 54.5/26.2 78.7/75.3 78.6/77.9 94.2/87.8 53.7/34.4

20% 61.3/40.2 60.0/41.9 80.8/76.0 82.9/78.2 94.1/87.4 54.2/33.7

60% 93.7/85.4 86.5/69.7 87.0/80.0 87.2/78.9 93.9/87.1 54.7/36.5

100% 98.9/95.5 96.8/89.4 89.5/83.3 94.5/90.6 93.9/87.1 54.8/36.9

pos+neg

10% 67.3/46.5 63.6/42.1 86.5/80.9 92.7/86.2 94.9/88.9 59.0/37.7

20% 69.6/50.2 67.8/50.0 87.9/81.2 93.3/87.0 94.8/88.7 57.6/37.1

60% 95.2/87.9 87.0/68.5 89.2/84.0 94.5/88.5 94.8/88.7 57.0/38.8

Table 6.1. Performance of different multimodal clustering methods of different
datasets (accuracy / normalized mutual information in %, the higher the better).
˚Best performing modality is shown.

This is an indication of the presence of data clusters in the coupled eigenspace

which are cohesive (points in the same class are close to each other) and at the

same time well separated (points in different classes are far from each other).
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Figure 6.4. Spectral clustering of the NUS dataset. Shown are a few images
(randomly sampled) attributed to a single cluster by spectral clustering using the
Tags modality only (top), the Color modality only (middle) and the Tags+Color
multimodal clustering using JADE (bottom). Groundtruth clusters are shown in
different colors. Note the ambiguities in the Tag-based clustering (e.g., swim-
ming tigers and underwater scenes) and Color-base clustering (e.g., yellowish
tigers and autumn scenes).



76 6.2 Experiments and Results

Bio-inspired features modality

PHOW features modality

Multimodal (JADE)

Figure 6.5. Spectral clustering of the Caltech-7 dataset. Shown are a few images
(randomly sampled) attributed to a single cluster by spectral clustering using the
Bio-inspired modality only (top), the PHOW modality only (middle) and the
multimodal clustering using JADE (bottom). Groundtruth clusters are shown in
different colors. Ideally, a cluster should contain images from a single class only.
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Figure 6.6. Diffusion distances between objects from the Caltech (top) and NUS
(bottom) datasets using separate modalities (first and second columns), JADE
(third column) and CD with coupling (fourth column) and coupling+decoupling
(fifth column) terms. Note the ambiguities between different classes of objects
(marked in cyan) when using a single modality.

0.001 0.01 0.1 1

0.2

0.4

0.6

0.8

1

T
P

R

 

 

0.2

0.4

0.6

0.8

1

FPR

 

 

0.001 0.01 0.1 1

Uncoupled 1
Uncoupled 2
JAD
CCO

FPR

CD (pos)
CD (pos+neg)

Figure 6.7. Object classification performance on Caltech (left) and NUS (right)
datasets using diffusion distances computed in each modality separately (Un-
coupled), a joint eigenspace (JADE), coupled eigenspaces produced by CD
with coupling (pos) and coupling+decoupling (pos+neg) terms, and the joint
eigenspace of the closest commuting Laplacians (CCO). Note that CD (pos+neg)
performs better than each modality on its own and outperforms the other meth-
ods.
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0.037303 0.028773 0.028185 0.026317 0.019344 0.019092 0.018469 0.017507 0.0171 0.015677

Figure 6.8. Farthest point sampling of NUS (top) and Caltech-7 (bottom) datasets
using the diffusion distance in the joint eigenspace computed by JADE. First
point is on the left. Numbers indicate the sampling radius. Note that in both
cases, the first seven samples cover all the image classes, providing a meaningful
subsampling of the respective datasets.



Chapter 7

Applications in Shape Analysis

In this chapter, we apply the coupled diagonalization method developed in Chap-

ter 4 to several challenging problems from the domain of computer graphics. In

particular, we consider the problems of shape correspondence, similarity and

pose transfer. The chapter is based on our EUROGRAPHICS paper [Kovnatsky

et al., 2013]. Some additional results showing multiple shape correspondence

with a non-smooth version of the coupled diagonalization problem are from [Kov-

natsky et al., 2016].

7.1 Spectral methods in shape analysis

The Laplace-Beltrami operator is perhaps one of the most widely used differential

operators in the computer graphics field. Constructions based on the Laplace-

Beltrami operator have been used in a wide range of applications, including

remeshing [Kobbelt, 1997; Nealen et al., 2006], parametrization [Floater and

Hormann, 2005], compression [Karni and Gotsman, 2000; Váša et al., 2014],
shape recognition [Reuter et al., 2006; Rustamov, 2007], deformation trans-

fer [Zhou et al., 2005], mesh editing [Sorkine et al., 2004], watermarking for

copyright protection [Ohbuchi et al., 2001, 2002], triangle mesh optimization [Nealen

et al., 2006], filtering [Vallet and Lévy, 2008; Kovnatsky et al., 2012], shape cor-

respondence and similarity [Reuter et al., 2006; Bronstein et al., 2010a; Ovs-

janikov et al., 2012; Kovnatsky et al., 2013], shape segmentation [Reuter, 2010;

79
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Sharma et al., 2009], isometric embeddings of shapes [Belkin and Niyogi, 2002;

Rustamov, 2007], diffusion metrics [Coifman et al., 2005], and shape descriptors

[Sun et al., 2009; Bronstein and Kokkinos, 2010; Aubry et al., 2011]. For a com-

prehensive review of the applications of the Laplace-Beltrami operator in com-

puter graphics, we refer the reader to [Lévy and Zhang, 2009; Sorkine, 2006].
Many of the above methods draw inspiration from physics; notable examples in-

clude heat diffusion [Coifman et al., 2005] or wave propagation [Aubry et al.,

2011] phenomena on manifolds.

In a seminal paper, Taubin [1995] uses the Laplace-Beltrami eigenfunctions

as an orthonormal basis (often referred to in this field as manifold harmonics)

to perform Fourier analysis on manifolds, analogously to classical signal pro-

cessing. The orthonormal Laplacian eigenfunctions replace the standard Fourier

basis e´iωx , and their corresponding eigenvalues play the role of frequencies. In

fact, the standard Fourier basis functions are the eigenfunctions of the Euclidean

1D Laplacian operator, and spherical harmonics of that of the sphere. The anal-

ogy between manifold harmonics and classical signal processing was exploited

in [Kim and Rossignac, 2005; Lévy, 2006; Vallet and Lévy, 2008; Lévy and Zhang,

2009] to perform shape filtering and editing in the spectral domain.

Of particular interest in this thesis are settings dealing with multiple shapes.

In Chapter 1, we already mentioned the work of Lévy [2006] proposing a pose

transfer approach based on the Fourier decomposition of the manifold embed-

ding coordinates. Given two shapes represented as manifolds X and Y embed-

ded in R3. We denote by X and Y the Euclidean embeddings of manifoldsX and

Y (which we consider here as 3-dimensional vector fields on the manifolds), and

by tφ iuiě1 and tψiuiě1 their Laplacian eigenbases, respectively. Decomposing X

and Y in the respective eigenbases, one obtains

X “
ÿ

iě1

aiφ i, (7.1)

Y “
ÿ

iě1

biψi, (7.2)

where ai, bi denote the three-dimensional vectors of the Fourier coefficients cor-

responding to each embedding coordinate. Next, a new shape is composed ac-
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Source pose Target shape Eigenvectors Coupled bases

Figure 7.1. Pose transfer from horse (leftmost) to camel shape (second from left)
by substituting the first 6 Fourier coefficients in the decomposition of extrinsic
coordinates of the shape in the Laplacian eigenbasis as done in [Lévy, 2006]
(second from right) and coupled basis (rightmost).

cording to

Z“
k
ÿ

i“1

aiφ i `
ÿ

iąk

biψi, (7.3)

with the first k low frequency coefficients taken from X , and higher frequen-

cies taken from Y . This transfers the “layout” (pose) of the shape X to the

shape Y while preserving the geometric details of Y . Lévy [2006] notes that

this method works only when the corresponding Laplacian eigenfunctions be-

have consistently, i.e., when the coefficients ai and bi are expressed in the same

“language”. Since the two sets of eigenvectors are computed independently, this

cannot be guaranteed: it is sufficient to have sign flips to produce a meaningless

result (Figure 7.1, third from left).

This is exactly the problem that our coupled diagonalization procedure at-

tempts to cure: using coupled bases instead of the standard Laplacian eigen-

bases, the new shape becomes meaningful (pose of the horse and details of the

camel, see Figure 7.1, rightmost).
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7.2 Experiments and Results

In this section, we show several examples of coupled bases construction, and

applications of the proposed approach. We used shapes from publicly available

datasets [Bronstein et al., 2008; Sumner and Popović, 2004; Shilane et al., 2004].
From these shapes we created a dataset with assigned manually ground-truth

point-wise correspondences. This dataset is available at JAD-data. Mesh sizes

vary widely between 600´ 25K vertices. In the following, unless we state oth-

erwise, when we write that q corresponding points were used for coupling, we

refer to the q points sampled with FPS algorithm [Hochbaum and Shmoys, 1985]
and the ground-truth correspondence.

Discretization of the Laplace-Beltrami operator was done using the cotangent

formula (Equation (2.9)) [Meyer et al., 2003]. In all our examples, we con-

structed coupled bases solving the coupled diagonalization problem (4.3) with

off-diagonality penalty off3, as described in Section 4.1; the values of µc “ 0.132

and µd “ 0 were used in all experiments unless stated otherwise. We use the off3

off-diagonality cost because it outputs ordered coupled bases (in our case, we are

interested in a few eigenvectors corresponding to the low part of the spectrum,

rather than arbitrary few eigenvectors).

In our experiments, we used several solvers for the orthogonally-constrained

coupled diagonalization problem: MATLAB fminconwith default settings (active-set)

and Manopt optimization package [Boumal et al., 2014] (conjugate gradient) on

Stiefel manifold. Typical time to compute 15 joint eigenvectors was about 45-60

sec for fmincon and 1-5 sec for Manopt. The codes for reproducing the experi-

ments may be downloaded here: MATLAB JAD-code, Manopt JAD-code.

7.2.1 Coupled diagonalization

Isometric vs non-isometric. Figure 7.3 (top) shows examples of coupled

diagonalization of Laplacians of different shapes: near isometric (two poses

of an elephant) and non-isometric (elephant and horse), as well as multiple

non-isometric shapes (four humanoids, where the coupling done using only 15

points). We computed the first k “ 20 joint approximate eigenvectors. The

https://dl.dropboxusercontent.com/u/27229670/JAD_datashare.zip
https://dl.dropboxusercontent.com/u/27229670/JAD_sharecode.zip
https://dl.dropboxusercontent.com/u/27229670/JAD_sharecode.zip
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Laplacians are almost perfectly diagonalized by the obtained coupled bases in

the case of near-isometric shapes. For non-isometric shapes, off-diagonal ele-

ments are more prominent; nevertheless, a clear diagonally-dominant structure

is present.

Sensitivity to correspondence error. In this experiment, we computed the

coupled bases for two near-isometric human shapes using point-wise coupling at

q “ 10 points with noisy correspondence that deviated from groundtruth corre-

spondence by up to 15% of the geodesic diameter of the shape. Table 7.1 shows

the obtained diagonalization quality (measured as the ratio of the norm of the

off-diagonal and diagonal values averaged on two shapes), and Figure 7.4 de-

picts the approximately diagonalized Laplacians. This experiment illustrates that

very few roughly corresponding points are required for the coupling term in our

problem, and that the proposed procedure is robust to correspondence noise.

0% 3% 6% 15%
0.0417 0.0534 0.0892 0.1439

Table 7.1. Sensitivity of joint diagonalization quality (measured as the ratio of
the norms of the off-diagonal and diagonal elements, }off}{}diag}) to correspon-
dence error (measured as % of geodesic diameter).

Sensitivity to representation and sampling. Taking the shapes from the

previous experiment, we downsampled and re-meshed one of them from 8K ver-

tices to 800 vertices. In addition, we removed the triangulation and computed

a Laplacian on the point cloud, using 7 nearest neighbors and Gaussian weight

wi j “ e´}xi´x j}
2{3 (Equation (2.6)). Table 7.2 shows the quality of the joint diag-

onalization of the Laplacians on the original mesh (first row), subsampled mesh

(second row) and the point cloud (third row). Figure 7.6 shows the obtained

coupled bases. We see that the coupled bases still behave consistently even for a

challenging scenario: different discretization and 10-times less sampling density.

7.2.2 Shape correspondence

Shape correspondence. One of the key applications of our approach is for the

computation of functional correspondence [Ovsjanikov et al., 2012]. According
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full 90% 75% 50% 10%
mesh-mesh 0.0417 0.0414 0.0384 0.0429 0.0625
mesh-cloud 0.0934 0.1399 0.1265 0.1303 0.1424

Table 7.2. Sensitivity of the joint diagonalization quality (measured as the ratio
of the norms of the off-diagonal and diagonal elements, }off}{}diag}) to sampling
density for two meshes and mesh/point cloud.

to this approach, which we overviewed in Chapter 2, one has to solve the linear

system of kq equations in k2 variables,

GJAY Ψ̄ “ FJAX Φ̄Ck, (7.4)

where Φ̄JAX F and Ψ̄JAY G are k ˆ q matrices of Fourier coefficients of q corre-

sponding vectors F“ rf1, . . . , fqs and G“ rg1, . . . ,gqs on shapesX andY , respec-

tively (we assume TF« G). The kˆ k matrix Ck is the spectral representation of

the functional map (Equation 2.16; see details in Section 2.5). Ovsjanikov et al.

[2012] also imposed some additional constraints on Ck, e.g., commutativity with

the Laplacian in case of nearly-isometric shapes.

The main tradeoff in problem (7.4) is between k and q. The number of eigen-

vectors k used to represent the functional map has a direct impact on its quality:

ideally, one wants to have k “ n or at least as large as possible. On the other

hand q is the number of corresponding vectors, which in practical applications

have to be found automatically (the could be, for example, dimensions of differ-

ent descriptors or some sparse point-wise correspondences). Only small q corre-

spondences can usually be reliably found. Finally, in order for the system (7.4)

to be determined, we must have k ě q, which in practice imposes limitations

on how large k can be. Due to noise, one typically tries to make the system

overdetermined (k ă q) and solve it in the least-squares sense.

In [Kovnatsky et al., 2013], we proposed expressing Ck using coupled bases

Φ̂, Ψ̂ instead of the standard Laplacian eigenbases Φ̄, Ψ̄. In the coupled bases,

Ck is approximately diagonal, which can be used as regularization. The simplest

way of imposing this structure is by ignoring the off-diagonal elements of Ck

altogether and rewriting problem (7.4) for diagonal elements only, yielding a
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linear system with qk equations with k variables (instead of k2 as in the original

formulation),

»

—

—

–

diagpfJ1 AX Φ̂q
...

diagpfJq AX Φ̂q

fi

ffi

ffi

fl

»

—

—

–

c11
...

ckk

fi

ffi

ffi

fl

“

»

—

—

–

diagpΨ̂AY g1q

...

diagpΨ̂AY gqq

fi

ffi

ffi

fl

. (7.5)

Note that system (7.5) is always determined: theoretically, we need only q “ 1

corresponding vector to find c11, . . . , ckk. In practice, since this is an approxima-

tion (e.g., in Figure 7.3 one may observe non-zero off-diagonal elements) and

due to noise, one would still need to have multiple corresponding vectors. Yet,

compared to the original formulation (7.4), problem (7.5) allows to use signifi-

cantly less data and is also more computationally efficient.

For obtaining a point-wise correspondence from a functional map, we used

the ICP-like refinement approach [Ovsjanikov et al., 2012] discussed in Sec-

tion 2.5.1. Our results show that with the same corresponding data, we obtain

better correspondence with our approach compared to the original formulation

of Ovsjanikov et al. [2012]. The difference in performance is especially pro-

nounced in case of finding correspondence between non-isometric shapes.

Figure 7.9 shows an example of finding functional correspondence between

non-isometric shapes of human and gorilla. As corresponding vectors, we used

binary indicator functions of q “ 7 regions automatically detected using the

method of [Rodolà et al., 2014]. The ordering of the regions was assumed to

be given (corresponding regions are denoted by similar color in Figure 7.7). We

compared the method described in [Ovsjanikov et al., 2012] for computing Ck by

solving the system (7.4) in the standard Laplacian eigenbases (Figure 7.9, left)

and the diagonal-only approximation (2.18) in the coupled bases (Figure 7.9,

center). The coupled bases were computed using the same data for the coupling

term (see Figure 7.8). In all the cases, we used k “ 25 first basis vectors.

Figure 7.10 measures the correspondence quality using the Princeton pro-

tocol [Kim et al., 2011b]: y-axis is the percentage of correspondences falling

within a geodesic ball of increasing radius (x-axis) w.r.t. the groundtruth corre-

spondence (higher curves represent better correspondence). Our method shows
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significantly better performance compared to [Ovsjanikov et al., 2012].

We also performed an experiment with generating correspondence data by

random union and intersection of the subsets of the detected seven regions (thus

increasing q). The performance of classical functional maps based on Laplacian

eigenbases increases in this case (Figure 7.10, right), but the proposed approach

is still better. We can conclude that our method is especially advantageous when

the correspondence data are scarce.

Robust correspondence between multiple shapes. In this experiment,

we test the robust functional correspondence between multiple manifolds (prob-

lem 5.5) introduced in Section 4.4, using the MADMM solver discussed in Sec-

tion 5.3.1. The M -step of MADMM in our experiments was performed using 4

iterations of the manifold conjugate gradients solver. We used ρ “ 1 and initial-

ized all Ri “ I. We computed functional correspondences between p “ 6 human

3D shapes from the TOSCA dataset [Bronstein et al., 2008] using k “ 25 basis

functions and q “ 25 seeds as correspondence data, contaminated for some pairs

of shapes by 16% of outliers. Figure 7.12 (left) analyzes the resulting correspon-

dence quality using the Princeton protocol [Kim et al., 2011b]. For comparison,

we show the results of the least-squares solution [Ovsjanikov et al., 2012] (see

Figure 7.11).

Figure 7.12 (right) shows the convergence of MADMM in a correspondence

problem with p “ 2 shapes. For comparison, in Figure 7.12 (left) we show the

convergence of a smoothed version of the }¨}2,1 norm, }M}2,1 «
ř

j

´

ř

i m2
i j ` ε

¯1{2
,

for various values of the smoothing parameter ε.

7.2.3 Pose transfer

Rong et al. [2008] proposed an approach for mesh editing based on elastic en-

ergy minimization. Given a shape with embedding coordinates X, the method

attempts to find a deformation field d producing a new shape X1 “ X`d, provid-

ing a set of user-defined n1 anchor points for which the displacement is known

(w.l.o.g. assuming to be the first n1 points, di “ d1i for i “ 1, . . . , n1), as a solution
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of the system of equations

«

κbL
2
X ´µLX Q

QJ 0

ff«

d

ζ

ff

“

«

0

d1

ff

, (7.6)

where Q “ pI, 0qJ is an nˆ n1 identity matrix, ζ are unknown Lagrange multi-

pliers corresponding to the constraints on anchor points, and κb,µ are parame-

ters trading off between resistance to bending and stretching, respectively [Rong

et al., 2008] . The system of equations can be expressed in the frequency domain

using k ! n first harmonic basis functions,

«

Φ̄
J
pκbL

2
X ´µLX qΦ̄ Φ̄

JQ

QJΦ̄ 0

ff«

b

ζ

ff

“

«

0

d1

ff

(7.7)

where b “ Φ̄JAX d are the k Fourier coefficients. The desired deformation field

is obtained by solving the system of equations for b and transforming it to the

spatial domain d“ Φ̄b (for details, the reader is referred to [Rong et al., 2008]).

Using coupled bases, it is possible to extend this approach to simultaneous

editing of multiple shapes, solving the system (7.7) with the coupled basis Φ̂

in place of Φ̄, and applying the deformation to the second mesh using d “ Φ̄b.

Figure 7.13 exemplifies this idea, showing how a deformation of the cat shape

is automatically transferred to the lion shape, which accurately and naturally

repeats the cat pose.

7.2.4 Shape similarity

As the last application for coupled bases, we consider the problem of discovering

similarities in shape collections. The joint diagonalizability of Laplacians can

be used as a criterion for shape similarity, with isometric shapes having jointly

diagonalizable Laplacians. With this approach, it is possible to compare two

shapes from a small number of inaccurate correspondences, which are used in

the coupling term of our simultaneous diagonalization problem.

Figure 7.14 shows the similarity matrix between 25 shapes belonging to 8

different classes. Each shape is present with 3-4 near-isometric deformations.



88 7.2 Experiments and Results

We used 25 point correspondences for point-wise coupling; dissimilarity of a pair

of shapes was computed by jointly diagonalizing the respective Laplacians and

then computing the average ratio of the norms of the off-diagonal and diagonal

elements of both matrices. We use k “ 10 first coupled eigenvectors.

We observe that besides the ability to discover correctly near-isometric shapes

(dark blocks on the diagonal of the similarity matrix), we were able to discover

two higher classes of two-legged (green rectangle) and four-legged shapes (blue

rectangle). Also note that the size of the coupled basis k used to measure the

joint diagonalizability determines the smallest “feature size” of our similarity cri-

terion (using more vectors allows to capture finer “high frequency” behaviors).

In our example, this is noticeable in the inability to distinguish between male and

females shapes; the feature size allowing to make this finer distinction requires

more than k “ 10 eigenvectors.
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Laplacian eigenbases

Coupled bases

Figure 7.2. Matrix C of coefficients expressing a given correspondence between
two poses of an elephant (left) and elephant and horse (right) in the Laplacian
eigenbases (second row) and coupled bases (third row). First row: correspon-
dence between shapes shown with similar colors.
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0.02 0.018 0.44 0.37

0.49 0.19 0.28 0.12

Figure 7.3. Examples of joint diagonalization of Laplacians of near-isometric
shapes (two poses of an elephant, top right) and non-isometric shapes (elephant
and horse, top right; four humanoids, bottom). Second and fourth rows show the
approximate diagonalization of the respective Laplacians. Coupling was done
using 40 points for the elephant and horse shapes and 25 for the humanoid
shapes. Numbers show the ratio of the norm of the diagonal and off-diagonal
values, }off}{}diag}.
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0% error

0.065 0.065

3% error

0.073 0.072

6% error

0.092 0.094

15% error

0.152 0.153

Figure 7.4. Sensitivity of joint diagonalization to errors in correspondence (in
% of geodesic diameter of the shape) used in the coupling term. Shapes are
shown with similar colors representing corresponding points. Correspondences
between 10 points used for coupling are shown with lines. Numbers show the
ratio of the norm of the diagonal and off-diagonal values, }off}{}diag}.
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φ̂2 φ̂3 φ̂4 φ̂5

ψ̂2 ψ̂3 ψ̂4 ψ̂5

Figure 7.5. Coupled bases elements of the human shapes from Figure 7.4 ob-
tained using 10 points with inaccurate correspondence (error of 15% geodesic
diameter) for coupling.
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Figure 7.6. Coupled bases computed with 15 corresponding points on 3 meshes:
the full mesh (8K vertices; the first row), a 10-times subsampled mesh (the sec-
ond row), and a 10-times subsampled mesh represented as a point cloud (the
last row).

Figure 7.7. Regions in the human and gorilla shapes using the method of [Rodolà
et al., 2014].
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Figure 7.8. Coupled bases elements of the human and gorilla shapes obtained
with Fourier coupling using the regions from Figure 7.7.
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Eigenbases Coupled bases

Figure 7.9. Functional correspondence computed by solving system (7.4) with
the Laplacian commutativity constraint (left) [Ovsjanikov et al., 2012] and sys-
tem (7.5) with coupled bases (right); the results are shown after the ICP-like
refinement method. Corresponding points are shown in similar color. The re-
sulting matrix C is shown in the second row (note that the ICP refinement alters
the diagonal-only structure).
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Figure 7.10. Evaluation of the functional correspondence obtained with the ap-
proaches illustrated in Figure 7.9. Shown is the percentage of correspondences
falling within a geodesic ball of increasing radius w.r.t. the groundtruth corre-
spondence. Left: correspondence obtained from 7 regions; right: correspon-
dence obtained from 251 generated regions (random intersection and union of
the subsets of 7 regions). We observe the dramatic improvement of the Lapla-
cian eigenbases approach [Ovsjanikov et al., 2012] and similar performance of
diagonal-only approach with coupled bases (Equation 7.5). This suggests that
the off-diagonality terms act as the regularization, which is crucial in the case of
the scarce data given.
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Figure 7.11. Examples of correspondences obtained with MADMM (top two
rows) and least-squares solution (bottom two rows). Rows 1 and 3: similar colors
encode corresponding points; rows 2 and 4: color encodes the correspondence
error (distance in centimeters to the ground-truth). Leftmost column, 1st row:
the reference shape; 2nd row: examples of correspondence between a pair of
shapes (outliers are shown in red).
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Figure 7.12. Functional correspondence problem. Left: evaluation of the func-
tional correspondence obtained using MADMM and least squares. Right: con-
vergence of MADMM and smoothing method for various values of the smooth-
ing parameter. LS stands for the Least-Squares optimization [Ovsjanikov et al.,
2012]..

Figure 7.13. Simultaneous shape editing in the frequency domain using the
approach of [Rong et al., 2008]. Top: editing the cat shape (anchor vertices in
problem (7.6) shown in green). Bottom: the same pose is transferred to the lion
shape using coupled basis.
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Figure 7.14. Shape similarity using joint diagonalization. Darker colors represent
more similar shapes. One can clearly distinguish blocks of isometric shapes.
Also, two classes of two- and four-legged shapes (marked with green and blue)
are visible. Small figures show representative shapes from each class.
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Chapter 8

Applications in Image Processing

In this chapter, we present Laplacian colormaps, a generic framework for com-

puting structure-preserving color transformations using joint diagonalizability of

image Laplacians as a criterion for structural similarity of the underlying images.

Our framework is based on the relation between joint approximate diagonaliza-

tion and approximate commutativity described in Section 3.3). This chapter is

mainly based on our EUROGRAPHICS paper [Eynard et al., 2014]; gamut map-

ping results were further extended in [Kovnatsky et al., 2014]. The MATLAB code

used to produce the presented experiments is available at CommuteJAD-Code.

8.1 Color manipulations in image processing

A wide class of image processing problems relies on transformations between

color spaces. Some notable examples include gamut mapping, image optimiza-

tion for color-deficient viewers, and multispectral image fusion. Often these

transformations imply a reduction in the dimensionality of the original color

space, resulting in information loss and ambiguities.

Decolorization or color-to-gray conversion is a classical example one frequently

encounters when printing a color image on a black-and-white printer. The ambi-

guity of such a conversion (called metamerism, when many different RGB colors

are mapped to the same gray level) may result in a loss of important structure

in the image (see Figure 8.5). Preserving salient characteristics of the original

101

https://dl.dropboxusercontent.com/u/27229670/EG2014share_code.zip
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RGB LumaLuma LaplacianOurs

Figure 8.1. RGB to gray conversion performed by keeping the luma channel may
result in loss of image structure due to metamerism (the green island disappears,
middle). The proposed Laplacian colormap preserves all structures (right).

image is thus crucial for a quality color transformation process. These charac-

teristics can be represented in different ways, e.g., as contrasts between color

pixels in terms of their luminance and chrominance [Gooch et al., 2005], color

distances [Grundland and Dodgson, 2007], image gradients [Zhou and Feng,

2012] and Laplacians [Bansal and Daniilidis, 2013].

Color-to-gray maps can be classified into global (using the same map for each

pixel) and local (or spatial, allowing different pixels with the same color to be

mapped to different gray values, at the advantage of a better perception of color

contrasts). Members of the first group include the pixel-based approaches by

Gooch et al. [2005] and Grundland and Dodgson [2007], and the color-based

ones by Rasche et al. [2005a], Kuhn et al. [2008a], Kim et al. [2009], Lu et al.

[2012]. Among local methods [Neumann et al., 2007; Kuk et al., 2010; Zhou and

Feng, 2012], several try to preserve information in the gradient domain. Smith

et al. [2008] presented a hybrid (local+global) approach that relies on both an

image-independent global mapping and a multiscale local contrast enhancement.

Lau et al. [2011] proposed an approach defined as ‘semi-local’, as it clusters

pixels based on both their spatial and chromatic similarities. The color mapping

problem is solved with an optimization aimed at finding optimal cluster colors

such that the contrast between clusters is preserved.

Gamut mapping is the process of adjusting the colors of an input image into
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the set of colors a given device (monitor, printer, etc.) can reproduce. Gamut

mapping algorithms can be mainly divided into clipping and compression ap-

proaches [Morovič, 2008]. The former ones change the source colors that fall

outside of the destination gamut (e.g., HPMINDE [CIE, 2004; Bonnier et al.,

2006]); the latter also modify the in-gamut colors [Kimmel et al., 2005; Bal-

asubramanian et al., 2000; Nakauchi et al., 1999]. Similarly to color-to-gray

conversion, gamut mapping methods can also be categorized as global and local.

To address metamerism in gamut mapping, local approaches [Balasubramanian

et al., 2000; Nakauchi et al., 1999; Kimmel et al., 2005] allow two spatially-

distant pixels of equal color to be mapped to different in-gamut colors. Global

approaches, conversely, will always apply the same map to two pixels of the

same color, regardless of their location. Many gamut mapping algorithms opti-

mize some image difference criterion [Nakauchi et al., 1999; Kimmel et al., 2005;

Alsam and Farup, 2009; Lau et al., 2011].

Color-blind viewers cannot perceive differences between some given col-

ors, due to the lack of one or more types of cone cells in their eyes [dal; Meyer

and Greenberg, 1988]. Image perception by a color-deficient observer is typi-

cally simulated by first applying a linear transformation from a standard color

space such as RGB [Kim et al., 2012; Brettel et al., 1997; Viénot et al., 1999],
XYZ [Meyer and Greenberg, 1988; Rasche et al., 2005b], or CIE Lab* [Kuhn

et al., 2008b; Huang et al., 2007] to a special LMS space, which specifies col-

ors in terms of the relative excitations of the cones. Then, the color domain is

reduced in accordance with the color deficiency (typically, by means of a linear

transformation in the LMS space [Viénot et al., 1999; Kim et al., 2012; Huang

et al., 2007]). Finally, the reduced LMS space is mapped back to RGB.

When trying to adapt an image for a color-blind viewer, one has to ensure that

the structure of the original image is not lost due to color ambiguities. Kuhn et al.

[2008b] focus on obtaining natural images by preserving, as much as possible,

the original image colors.

Rasche et al. [2005b], instead, try to maintain distance ratios during the re-

duction process. Lau et al. [2011] is aimed at preserving both the contrast be-

tween color clusters and the reduced image colors.

Multispectral image fusion aims to combine a collection of images captured
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at different wavelengths into a single one, containing details from several spec-

tra. Zhang et al. [2008] and Lau et al. [2011] present a method that adaptively

adjusts the contrast of photographs by using the contrast and texture information

from near-infrared (NIR) image. Kim et al. [2011a] show how to use different

bands of the invisible spectrum to improve the visual quality of old documents.

Süsstrunk and Fredembach [2010] provide a good introduction to the topic and

present, as examples of image enhancements, haze removal and realistic skin

smoothing.

General approaches. We should stress that despite a significant corpus of

research on color transformations, most of the methods are targeted to specific

applications and lack the generality of a framework that could be applied to

different classes of problems. At the same time, there is an obvious common de-

nominator between the aforementioned problems: for example, both color-blind

transformations [Rasche et al., 2005a] and color-to-gray conversions [Cui et al.,

2010; Zhao and Tamimi, 2010; Zhou and Feng, 2012] can be regarded as map-

pings to a gamuts of lower dimension [Gooch et al., 2005]. To the best of our

knowledge, only the recent work of Lau et al. [2011] introduces a comprehen-

sive approach that works with generic color transformations and easily adapts to

different applications.

8.2 Laplacian colormaps

3 4 5 6

Figure 8.2. Image structure similarity is conveyed by the eigenstructure of their
Laplacians. Top: the original image; bottom: its darken version. Left-to-right:
original image, first four eigenvectors with non-zero eigenvalues of the corre-
sponding Laplacian.
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Our main motivation comes from recent work of Bansal and Daniilidis [2013],
who used the eigenvectors of image Laplacians to perform matching of images

taken in different illumination conditions, arguing that the Laplacian acts as a

self-similarity descriptor [Shechtman and Irani, 2007] of the image. Using Lapla-

cians as image structure descriptors, we observe that an ideal color transforma-

tion should preserve the Laplacian eigenstructure, implying that the Laplacians

of the original and color-converted image should be jointly diagonalizable (Fig-

ures 8.2, 8.3). Employing the relation between joint diagonalizability and com-

mutativity of matrices [Glashoff and Bronstein, 2013; Bronstein et al., 2013],
discussed in Section 3.3, we use Laplacians commutativity as a criterion of image

structure preservation. We try to find such a colormap η that would produce a

converted image whose Laplacian commutes as much as possible with the Lapla-

cian of the original image. Since Laplacians can be defined in any colorspace, our

approach is generic and applicable to any kind of color conversions (in particular,

color-to-gray, gamut mapping, color-blind optimization, etc.). Furthermore, we

can work with both global and local colormaps.

As we will show in our experiments, even approximately jointly diagonal-

izable Laplacians serve the purpose of structure preserving color transforma-

tion, giving us the freedom to apply different transformations with different con-

straints on their parameters. Let us summarize the main assumptions so far,

which will motivate our approach described in the following. First, Laplacians

can be used as structural descriptors of images. Second, two images having sim-

ilar structures translates into having the corresponding Laplacians jointly diag-

onalizable. Third, joint diagonalizability is equivalent to commutativity, as dis-

cussed in Chapter 3.

Let us be given an NˆM image with d color channels, column-stacked into an

N Mˆd matrix X “ rx1, . . . ,xN M s
J. The problem of color conversion is creating a

new image Y “ ηpXqwith d 1 color channels, by means of a colormapη : RN Mˆd Ñ

RN Mˆd1 . In particular, we are interested in parametric colormaps ηθ . In the

simplest case, ηθ is a global color transformation applied pixel-wise, i.e., each

pixel xi P Rd of the original image is mapped by means of the same ηθ : Rd Ñ Rd1

such that ηθ pXq
∆
“ rηθ px1q, . . . ,ηθ pxN Mqs

J (a simple example is linear RGB to

gray mapping, where d “ 3, d 1 “ 1, n “ 3 and ηθ pxiq “
řd

j“1 θ ixi j, where in
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1 2 3 4 SC

Figure 8.3. Image structure similarity is conveyed by the eigenstructure of their
Laplacians. Top: original RGB image; middle: grayscale conversion by our
method; bottom: luma only conversion. Left-to-right: original image, first four
eigenvectors of the corresponding Laplacian, result of spectral clustering.

addition we require ηθ ě 0 and
řd

i“1 θ i “ 1).

Let tk1, . . . , kLu Ď t1, . . . , N Mu denote a subset of the image pixel indices (this

subset can be the whole set of N M pixels, a regularly subsampled M{sˆN{s im-

age, ‘representative’ pixels obtained by clustering the image, etc.). Considering

these pixels as vertices of a graph, we define edge weights (adjacencies) in the

most general case as a combination of spatial and ‘radiometric’ distances (as in

Figure 2.1, left, where the embedding consists of both spatial and ‘radiometric’

parts),

wi j “ e
´
δ2

i j

2σ2
s e
´
}xki

´xk j
}22

2σ2
r , (8.1)

where δi j is the spatial distance between pixels ki and k j, and σs,σr ě 0 are

parameters (more generally, the ‘radiometric’ part of the adjacency wi j does not

have to work on pixel-wise colors, and one can consider some local features,

the simplest of which are patches [Wetzler and Kimmel, 2012]). For practical

computations, it is usually assumed that wi j « 0 between spatially-distant pixels,

so they are disconnected.

Given the adjacency matrix W, we define the (unnormalized) Laplacian L

as in Section 2.6. One of the strengths of our method is that it can cope with

any operator capturing the image structure and not only the (unnormalized)

Laplacian. Here, we consider the unnormalized Laplacian merely for the sake of

simplicity.
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8.2.1 Colormap optimization problem

Our goal is to find a set of parameters θ such that the structures of the input

image X and the modified image Y “ ηθ pXq are as similar as possible, where the

similarity is judged by the commutativity of the corresponding Laplacians. This

leads us to a class of optimization problems of the form

min
θPRn

µ0}rLX,Lηθ pXqs}
2
F `µ1}LX ´ Lηθ pXq}

2
F

`µ2}θ ´ θ 0}
2
2`µ3}ηθ pXcq ´ Yc}

2
F (8.2)

s.t. constraints on θ .

One can easily recognize in problem (8.2) a parametric version of the closest

commuting operators (CCO) problem (6.1.1) with one of the Laplacians fixed.

Note that the Laplacian Lηθ pXq is parametrized by a small number of degrees of

freedom l ! MN (number of non-zero elements), and thus it would be usually

impossible to make it exactly commute with the given LX - hence, unlike the CCO

problem, the commutator norm appears as a penalty rather than a constraint.

Additional regularization (third and fourth terms in (8.2)) is used if we have

some ‘nominal’ parameters θ 0 representing a standard color transformation, or

if some colors Xc “ px1, . . . ,xpq
J should be mapped into some Yc “ py1, . . . ,ypq

J

known in advance (for example, in some cases it is important to preserve black

and white colors). Finally, depending on the type of the colormap ηθ , one may

impose some constraints on the parameters θ (e.g., in linear RGB-to-gray con-

version, θ ě 0 and θJ1“ 1).

Local maps. Our approach imposes no limitations on the complexity of the

colormap ηθ ; in particular, this map does not have to be global. Let us assume

that the source image is partitioned into q (soft) regions, represented by weight

vectors ω1, . . . ,ωq of size N M ˆ d 1, such that
řq

i“1ωi “ 1 and ωi ě 0(ωi can be

interpreted as an indication function of ηθ i
for the ith region). In each region

i, we allow for a different colormap ηθ i
. Then, the overall colormap is given as

ηθ pXq “
řq

i“1ωiηθ i
pXq, parametrized by θ “ pθ 1, . . . ,θ qq. Optimization w.r.t.

to the parameters of the local colormap is performed in exactly the same manner

as described above.
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Multiple Laplacians. In some applications like multispectral image fusion,

one may wish to impose structural similarity between the output image and

multiple images, X1, . . . ,XK with colorspaces of dimensionality d1, . . . , dK . The

input image X may be one of the K images or a merged image with
řK

k“1 dk-

dimensional colorspace. In this case, our optimization problem (8.2) assumes

the form

min
θPRn

K
ÿ

k“1

µ0k}rLXk
,Lηθ pXqs}

2
F `µ1k}LXk

´ Lηθ pXq}
2
F

`µ2}θ ´ θ 0}
2
2`µ3}ηθ pXcq ´ Yc}

2
F (8.3)

s.t. constraints on θ ,

where µ01, . . . ,µ0K ,µ11, . . . ,µ1K ,µ2,µ3 ě 0 are constants determining the trade-

off between different penalties.

RGB Image ηθ pXq

Laplacian
LX

Laplacian
Lηθ pXq

minθ

Mapped
Image

Figure 8.4. The pipeline of Laplacian colormap method.

8.3 Experiments and Results

In this section, we show several applications of Laplacian colormaps for decol-

orization, image optimization for color-blind people, gamut mapping, and mul-

tispectral image fusion, providing extensive comparison to previous works. As

a quantitative criterion of the colormap quality, we use the root weighted mean

square (RWMS) error proposed by Kuhn et al. [2008a], measuring the distortion
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of relative color distances in two images,

erri “

˜

1
N M

N M
ÿ

j“1

pRY}xi ´ x j} ´ RX}yi ´ y j}q
2

R2
Y}xi ´ x j}

2

¸1{2

, (8.4)

where N ˆ M is the image size, xi P Rd and yi P Rd1 denote the ith pixel of the

input and output images, respectively, and RX “maxi j }xi´x j} is the color range

of image X.

Given the size of the problem, we calculate relative color distances on ran-

domly chosen sets of points with size<N M , repeat the process 10 times and

average the results. Plotting the pixel-wise RWMS error erri as an image allows

to see which pixels are most affected by the color transformation. The average

errpηq “ 1
N M

řN M
i“1 erri is used as a single number representing the quality of the

colormap η.

All experiments share a common setup: first of all, RGB values are scaled by

255. Then we calculate a weighted adjacency matrix according to Section 2.3

using all pixels (L “ MN) if the images are small enough, and resizing the image

to have long side of 300 pixels otherwise. Adjacency matrices were calculated

with fixed 4-neighbors connectivity and parameters σr “ 1, σs “ 0 (as all the

neighbors have the same distance in this case). Unless differently specified in the

following, default weights for the cost function are µ0 “ µ1 “ µ2 “ 1,µ3 “ 0, and

regularization term θ 0 “ 0. Parameters are initialized randomly and normalized

to satisfy the condition θJ1 “ 1. As a last step, since mapping might produce

color values out of the r0, 1s range, output channels are normalized.

8.3.1 Decolorization

For RGB-to-gray mapping, we used a global colormap, applying in each pixel

xi the following transformation: yi “ α`
ř3

j“1βi x
γi
i j , where x i j is the jth RGB

channel of the ith pixel, yi is the grayscale output, and θ “ pα,β1,γ1, . . . ,β3,γ3q

are the colormap parameters w.r.t. which the optimization is performed.

Images used for this experiment were taken from Čadík [2008]. Figure 8.6

shows the results of our transformations, compared to previous works evaluated
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by Čadik Gooch et al. [2005]; Rasche et al. [2005a]; Grundland and Dodgson

[2007]; Neumann et al. [2007]; Smith et al. [2008] and more recent ones [Lu

et al., 2012]. Results were evaluated using two different metrics: quantitative

(RWMS) and qualitative perceptual evaluation following Čadík [2008]. In the

perceptual evaluation conducted through a Web survey, 124 volunteers were

shown the original RGB image together with a pair of its gray conversions, and

were asked which of the two results better preserved the original image. Then,

we used Thurstone’s law of comparative judgments to convert the 2884 pairwise

evaluations into interval z-score scales [Thurstone, 1927; Tsukida and Gupta,

2011]. Table 8.1 provides average RWMS values and z-scores calculated on an

8-images subset of Čadik’s. Our approach performs the best w.r.t. both criteria.

RGB LumaLuma [Lau et al., 2011]Lau11 LaplacianOurs

4x10
-3

0.5

0.0012

1.25

0.0008

0.87

0.0006

0.60

Figure 8.5. Decolorization experiment results. Left: original RGB image, right
(first row): grayscale conversion results using the method of Lau et al. [2011]
and our Laplacian colormap. The second row: RWMS error images and mean
RWMS / perceptual score values.
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CIE Y r1s r2s r3s r4s r5s r6s Laplacian
RWMS 2.84 2.31 2.46 2.20 4.85 2.94 1.90 1.33
z-score -0.17 -0.31 -0.63 0.55 -0.53 -0.09 0.34 0.84

Table 8.1. Comparison of color-to-gray conversions in terms of mean RWMS
value and z-score, averaged on all images. r1s[Gooch et al., 2005], r2s[Rasche
et al., 2005a], r3s[Grundland and Dodgson, 2007], r4s[Neumann et al., 2007],
r5s[Smith et al., 2008], r6s[Lu et al., 2012]

8.3.2 Computational complexity

Computationally, pixel-wise relationships appear to be the main bottleneck of our

approach: a benchmark we ran on all the 25 pictures from [Čadík, 2008] using

a MacBook Pro with 8GB RAM showed that the average computation time for

color-to-grayscale conversion was 117 seconds. However, one of the strengths

of our approach is that the construction of the Laplacian used to find the pa-

rameters of the colormap is completely flexible. The Laplacian does not have

to be built on full-resolution image, and not even on uniform sampling (image

superpixels [Ren and Malik, 2003] can be used as graph vertices), allowing for

a trade-off between efficiency and accuracy. Then, once parameters are found,

the colormap is applied to the original image in full resolution. Note this approx-

imation is the reason why we have few pixels out of gamut in gamut mapping

experiments (Figure 8.11).

Figure 8.8 shows the results of a 616x596 image decolorization, using a lin-

ear mapping function with different settings. In practice, we can achieve <1sec

performance without sacrificing accuracy.

8.3.3 Image optimization for color-blind viewers

We model the color distortion of an RGB image X as perceived by a color-blind

person by means of a mapΠ : RN Mˆd Ñ RN Mˆd . SinceΠ is given and beyond our

control, we try to ‘pre-transform’ the original image by means of ηθ : RN Mˆd Ñ

RN Mˆd in such a way that the image pΠ ˝ηθ qpXq that appears to the color-blind

person has the structure of the original image X. In our experiment ηθ applies

the same non-linear transformation used for grayscale to generate three output
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channels (θ thus holds 9 parameters). Π is a 3x3 linear transformation akin to

the ones in [Kim et al., 2012], used to replicate the results of [Lau et al., 2011].
We extend our problem formulation so that the transformed image maintains

its structure both when seen by a color-blind observer and when seen by a regular

observer. In our optimization problem, this translates into requiring the two pairs

of Laplacians LX,LpΠ˝ηθ qpXq and LX,Lηθ pXq to commute. The cost function is similar

to the multiple Laplacians setting (8.3):

min
θPRn

µ01}rLX,LpΠ˝ηθ qpXqs}
2
F `µ02}rLX,Lηθ pXqs}

2
F

`µ11}LX ´ LpΠ˝ηθ qpXq}
2
F `µ12}LX ´ Lηθ pXq}

2
F

`µ2}θ ´ θ 0}
2
2 (8.5)

Figures 8.9, 8.10 show Laplacian colormaps results for two different types

of color blindness (protanopia and tritanopia, respectively). Qualitatively, our

result appears to be much closer to the original image compared to [Lau et al.,

2011] (this is especially apparent in the tritanopia case) such that a ‘normal’

viewer sees less distorted colors, while a color-deficient viewer can clearly see

the structure in the image (digit 6 and different candies) which otherwise would

disappear. Quantitatively, we obtain smaller RWMS error, suggesting that our

mapping better preserves the original structure of the image, even in those areas

that are critical for other approaches.

8.3.4 Gamut mapping

Gamut mapping is a problem similar to the previous one. The function ηθ is

exactly the same, then a transformationΠwhich maps colors from RGB to the XY

chromaticity space and a color gamut Γ (a convex polytope, and in this particular

experiment a triangle) are given. Our goal is to find θ minimizing the cost (8.2)

subject to pΠ ˝ ηθ qpXq Ď Γ , which is imposed as a set of linear constraints. We

used the parameters µ01 “ 1,µ11 “ 0.25,µ2 “ 0.1, and µ02 “ µ12 “ 0. Figure

8.11 compares our results with the outputs of HPMINDE [CIE, 2004] and of the

method of Lau et al. [2011]. Qualitatively, the output of Laplacian colormaps

preserves more details of the original picture (see, e.g., the plumage on the red



113 8.3 Experiments and Results

parrot’s head). Quantitatively, our algorithm outperforms the other methods in

terms of percentage of out-of-gamut pixels.

8.3.5 Multispectral image fusion

Multispectral image fusion can be seen as a color-to-color transformation with

d ą 3 input channels and d 1 “ 3 output channels. The mapping function is

thus just an extension of ηθ dealing with more channels. We use the cost func-

tion (8.3), with µ01 “ µ02 “ µ11 “ µ12 “ µ2 “ 1.

Figure 8.12 shows multispectral to RGB transformations where the input

space is the concatenation of RGB and NIR (d “ 4). In this specific example, the

NIR channel is used to enhance the RGB image with an additional source of infor-

mation. Constraints on output colors are provided (with parameter µ3 “ 1.7e3)

so that the conversion preserves colors for five given image features (dark and

light trees, water, mountains, sky). This does not only act as regularization, but

also provides us a way to automatically order the three output channels. Com-

paring our result with the method of Lau et al. [2011], we can see that Laplacian

colormap provides an enhanced version of RGB while preserving the correct col-

ors (e.g., trees on the mountains have more detail than in RGB, but at the same

time they do not present the blue-green halo that appears in [Lau et al., 2011]).

Finally, in Figure 8.13 we show a fusion of four photos of a city in different light-

ing conditions into a single image, which looks visually plausible. Here µ3=0.25

with penalization colors taken from the third image.
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Figure 8.6. Decolorization experiment results. Left: original RGB image, right:
grayscale conversion results. Rows 2, 5, : RWMS error images and mean RWMS
(the smaller the better) / z-score (the larger the better) values. Our Laplacian
colormap method performs the best in most cases. r1s[Gooch et al., 2005],
r2s[Rasche et al., 2005a], r3s[Grundland and Dodgson, 2007], r4s[Neumann et al.,
2007], r5s[Smith et al., 2008], r6s[Lu et al., 2012]
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Original image Luma [Lau et al., 2011]

Laplacian (global) Laplacian (local) Clusters

Figure 8.7. Global vs Local maps results. Top row, left-to-right: original image,
Luma, result of Lau et al. [2011]. Bottom row: Laplacian colormaps using a
global (left) and local (middle) map; the spatial weights used in the latter.
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Figure 8.8. Computational complexity of Laplacian colormaps as function of the
graph size.
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Original image

Color-blind

[Lau et al., 2011]

Laplacian

0.98

1.23

0.50

Figure 8.9. Color mapping for protanope color-blind observer. The first column,
from top to bottom: original image, simulated color-blind, result from [Lau et al.,
2011], and our result; the second column are their respective RWMS error im-
ages and mean RWMS values.
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Original image

Color-blind

[Lau et al., 2011]

Laplacian

1.27
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0.53

Figure 8.10. Color mapping for tritanope color-blind observer. The first column,
from top to bottom: original image, simulated color-blind, result from [Lau et al.,
2011], and our result; the second column are their respective RWMS error im-
ages and mean RWMS values.
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Original image

HPMINDE

[Lau et al., 2011]

Laplacian

Figure 8.11. Gamut mapping results. Right (top to bottom): original image,
HPMINDE [CIE, 2004], the method of Lau et al. [2011], our approach. Left:
gamut alerts for the images above (green shows the out-of-gamut pixels).
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NIR RGB

[Lau et al., 2011] Laplacian

Figure 8.12. Multispectral (RGB+NIR) fusion results.
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Morning Day

Evening Night

Fusion

Figure 8.13. Fusion of images of four different illuminations of Philadelphia
skyline into a single RGB image.
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Chapter 9

Conclusions and Discussions

The successful application of spectral methods to problems in many fields made

them a classical machinery for data analysis. Unfortunately, this success has so

far not been replicated in more challenging problems of multimodal data anal-

ysis involving multiple non-Euclidean geometric domains. The growing number

of such multimodal applications (such as multi-view clustering, shape correspon-

dence, and multichannel image processing) calls for a generalization of spectral

methods to the multimodal setting.

In Chapter 3, we introduced a general mathematically principled framework

for such an extension. Our baseline approach is based on approximate joint di-

agonalization of Laplacian matrices, allowing a straightforward extension of var-

ious spectral data analysis tools such as spectral clustering and Laplacian eigen-

maps.

The next step discussed in Chapter 4 is a more general coupled problem, ex-

tending the joint diagonalization approach by relaxing two main assumptions:

equal dimensionality and a known bijective correspondence. Additionally, this

approach allows to calculate a subset of joint Laplacian eigenvectors, rather than

the whole orthonormal Laplacian basis as the standard joint diagonalization ap-

proaches. We also proposed an efficient numerical scheme for calculating these

bases based on parameterized optimization in the subspace of the eigenvectors

of the Laplacians using manifold optimization.

In machine learning applications considered in Chapter 6, the proposed ap-

123
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proach achieved state-of-the-art performance on some standard multi-view clus-

tering benchmarks. Moreover, we established that many existing works on multi-

view clustering and manifold alignment can be considered as particular instances

of our framework. In shape analysis applications presented in Chapter 7, we used

the proposed method to establish similarity and dense intrinsic correspondence

between deformable shapes in different representation.

Exploring noise- and outliers- robust formulation of the coupled diagonal-

ization problem, in Chapter 5 we came up with a generic method (Manifold

ADMM) for optimizing non-smooth matrix functions with manifold constraints.

To the best of our knowledge, this is the first general optimization framework of

this kind.

Finally, using the relation between joint diagonalizability and commutativity

of matrices we introduced a new structural similarity measure of images, and

applied it to structure-preserving color image manipulations (Chapter 8).

We believe that the important paradigm of simultaneous diagonalization of

Laplacians that was introduced in this thesis and applied to a selection of prob-

lems from the domains of machine learning, computer vision, computer graphics

and image processing, would allow addressing novel challenging problems on

the one hand, and give a new look on classical problems on the other.

9.1 Follow-up Work

To much of our satisfaction, the proposed framework has been adopted by the

community and already exploited in several important problems in different do-

mains. We would like to mention a few interesting follow-up works we are aware

of at the moment of writing this thesis, which exemplify the use of our methods

in various applications.

One of the applications is in functional magnetic resonance imaging (fMRI)

group studies, where the ability to establish correspondence across individuals is

of key importance, as it enables location specific comparison of functional brain

characteristics. Traditional registration approaches are based on brain morphol-

ogy and do not take variability of functional localization into account. Nenning
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et al. [2015] used our coupled diagonalization for multi-subject functional reg-

istration (Figure 9.1). In another follow-up from the medical domain, Cai et al.

[2015] applied the joint diagonalization for multi-modal, multi-chamber, and

multi-subject heart segmentation in cardiac imaging, a very challenging medical

application (Figure 9.2).

In the domain of computer graphics, Zhu et al. [2015] used coupled Lapla-

cian eigenbases for flexible and efficient example-based elastic deformation (Fig-

ure 9.3). Similarly to our pose transfer example, the main idea of this paper is

that complex deformations from given examples are represented in the spectral

domain and transferred to a previously unseen shape.

DG [Nenning et al., 2015] MA ortho (Procrustes)

DGrand [Nenning et al., 2015]MNI coordinates [Evans et al., 1992]

True Positive

False Negative

False Positive

Figure 9.1. Nenning et al. [2015] use our method for multi-subject alignment of
functional networks representing brain activations in fMRI. Shown here is the
mapped activation on the left hemisphere. Our application of coupled diag-
onalization (DG) maps core regions related to language function successfully,
with false positive and false negative mappings on the border areas. Figure re-
produced from [Nenning et al., 2015].
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Figure 9.2. Cai et al. [2015] use our coupled diagonalization method for group-
wise segmentation for coronal MRI scans. Our method successfully segments
and identifies the hearts (shown in blue). Figure reproduced from [Cai et al.,
2015].

In a follow-up paper [Kovnatsky et al., 2014] that is not included as part of

this thesis, we ourselves extended the gamut mapping approach to devices with

any number of primaries (rather than three primaries considered here).

9.2 Future Work

There are several promising avenues for a future extension of our work. On the

theoretical front, it would be important to show bounds on the relation between

the coupled eigenvectors and the original ones, similarly for the result of Theo-

rem 1 for joint eigenvectors. Additional open problem we left in this thesis is the

convergence proof of the MADMM algorithm, which would theoretically justify

its use in many additional applications.

The need to know some kind of correspondence between the domains for

eigenbasis coupling could be a limitation of our approach in some settings. Though

automatic detection of correspondence between manifolds and graphs is a prob-

lem of its own extending way beyond the scope of this thesis, a rather straight-

forward extension of coupled diagonalization would be to combine it with the

permutation recovery approach of [Pokrass et al., 2013]. In such a formulation,

the corresponding functions are given up to an unknown order (with possibly
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missing correspondences) and optimization is done both on the linear combina-

tion coefficients and the permutation matrix. This would allow to employ our

approach in correspondence problems where only a set of automatically detected

stable regions is given [Litman et al., 2011; Rodolà et al., 2012, 2014]. Another

approach is to use information from a collection of manifolds for finding corre-

spondence between them rather than relying only on a pair of manifolds, e.g., of

the recent promising work [Cosmo et al., 2016]. Though we considered only

Laplacians in this thesis, our approach would naturally apply to other differential

operators defined on manifolds, such as [Hildebrandt et al., 2012].
Finally, the structural image similarity measure based on Laplacian commu-

tativity we used for color manipulations could also be employed for image align-

ment. We are aware of a current effort of performing multi-modal medical image

alignment using this approach, where it successfully competes with traditional

alignment criteria such as mutual information.
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Figure 9.3. Zhu et al. [2015] use our method for example-based shape deforma-
tion. A round stool bends its legs while compressed by a steel sphere (bottom).
The deformation is transferred from square stool deformations provided as defor-
mation examples (top) using coupled Laplacian eigenbases. Figure reproduced
from [Zhu et al., 2015].



Appendix A

Notation

A.1 General

Rd d-dimensional vector space of real numbers

a scalar

a“ paiq vector

A“ pai jq matrix

M manifold

id identity map

A.2 Analysis

∇ (extrinsic) gradient

∆ Laplacian operator

A.3 Algebra

I identity matrix
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1 column vector of ones

A“ UΛUJ eigendecomposition of symmetric square matrix A with

eigenvectors U and eigenvalues Λ

A“ UΣVJ singular value decomposition of matrix A with singular

vectors U,V and singular values Σ

}a}2 “ aJa Euclidean norm of vector a

}a}M “ bJMa M-norm of vector a, for some M ą 0

}a}1 “
ř

i |ai| L1 norm of vector a

}A}F “
´

ř

i j a2
i j

¯1{2
Frobenius norm of matrix A

}A}2,1 “
ř

i }ai}2 L2,1 norm of matrix A

}A}˚ “
ř

σipAq Nuclear norm of matrix A (σipAq denotes the ith singular

value)

ˆ cross product

diagpAq Column vector comprising diagonal elements of A

DiagpAq Matrix with diagonal of matrix A and other elements 0

diagpra1, a2, . . . , aksq Diagonal matrix with vector ra1, a2, . . . , aks at its diagonal

vecpAq Column vector obtained by column-wise stacking elements

of matrix A

trpAq “
ř

i aii Trace of matrix A

AdB“ pai j bi jq Element-wise product of matrices

rA, Bs “ AB´BA Matrix commutator

A.4 Differential geometry

TmM tangent space to the manifoldM at point m

Bu1
, . . . ,Bup

basis tangent vectors of TmM

x¨, ¨ym or gmp¨, ¨q Riemannian metric tensor onM
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expm exponential map at point m

γ smooth curve on the manifold

lpγq length of the curve

⟪ f , h⟫M inner product on Riemannian manifoldM

F pM q space of scalar functions onM

L2pM q space of square-integrable scalar functions on Riemannian

manifoldM

∇M intrinsic (Riemannian) gradient

∆M Laplace-Beltrami operator on Riemannian manifoldM

A.5 Simultaneous diagonalization

JpA,Bq measure of joint diagonalizability of two matrices

offpAq “
ř

i‰ j a2
i j off-diagonality penalty

Φ̃ joint approximate eigenvectors

Φ̂ coupled eigenvectors
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Appendix B

Numerical Implementation of
Laplacian Colormaps

The algorithm starts by calculating a Laplacian LX from the RGB image X, as

described in Section 2.3 and illustrated in Figure 8.4 (left). Then, both LX and

the image are passed as inputs to the optimization function, together with an

initialization for θ . At each step, the optimization function calculates ηθ pXq and

its Laplacian Lηθ pXq, then it tries to minimize the cost of 8.2 w.r.t. the parameters

θ . The optimization was implemented in MATLAB, using interior-point method

from the Optimization Toolbox.

Derivation of the gradients. The notations and discretizations are as in

Section 2.3. Let Lηθ pXq “ DηθpXq ´WΦθpXq
be the image Laplacian with weights as

defined in (8.1). We denote by |W | the number of non-zero elements in the ad-

jacency matrix WηθpXq
, and by n the number of parameters θ of the colormap, re-

spectively. The non-zero elements wi j ą 0 are indexed as wθ “
“

w1, . . . , w|W |
‰

“
”

wi1, j1 , . . . , wi|W |, j|W |

ı

. ηi
θ : Rd Ñ R denotes the ith channel of the colormap, such

that ηθ pxq “
“

η1
θ pxq, ¨ ¨ ¨ ,ηd1

θ pxq
‰J

, and ∇θφ i
θ is its gradient w.r.t. θ .

We now derive the gradients of the cost function (8.2). The gradient of the

µ2-term is trivial,

∇θ }θ ´ θ 0}
2
2 “ 2pθ ´ θ 0q.

Denote by Mi
ηθ pXq

the matrix of size N M ˆ n, whose jth row is the gradient

of the ith channel at the jth pixel, ∇θηi
θ px jq

J, and define N Md 1 ˆ n matrix
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Mηθ pXq “

”

pM1
ηθ pXq

qJ, ¨ ¨ ¨ , pMd1

ηθ pXq
qJ
ıJ

. Differentiating the µ3-term w.r.t. θ gives

∇θ }ηθ pXcq ´ Yc}
2
F “ 2MJ

ηθ pXq
pvecpηθ pXcqq ´ vecpYcqq .

The gradients of the first two terms of (8.2) are obtained by applying the chain

rule. First, we differentiate the terms w.r.t. wθ , obtaining a gradient of size |W |ˆ

1. Next, we differentiate w.r.t. θ . The gradient of the adjacency matrix elements

wi j w.r.t. θ is

∇θwi j “´
wi j

σ2
r

d1
ÿ

k“1

pηk
θ pxiq ´η

k
θ px jqqp∇θηk

θ pxiq ´∇θηk
θ px jqq.

The gradient of the commutator (µ0-term) is

B

Bwi j
}rLX,Lηθ pXqs}

2
F “´ 2

´

O1´ LJ
ηθ pXq

rLηθ pXq,LXs ´O2` rLηθ pXq,LXsL
J

ηθ pXq

¯

i j
.

The gradient of the µ1-term is

B

Bwi j
}LX ´ Lηθ pXq}

2
F “ 2

`

O` LX ´ Lηθ pXq
˘

i j
,

where O,Ok are matrices with equal columns given by

O “ pdiagpLXq, ¨ ¨ ¨ , diagpLXqq,

O1 “ pdiagpLJ
ηθ pXq

rLηθ pXq,LXsq, ¨ ¨ ¨ , diagpLJ
ηθ pXq

rLηθ pXq,LXsqq

O2 “ pdiagprLηθ pXq,LXsL
J

ηθ pXq
q, ¨ ¨ ¨ , diagprLηθ pXq,LXsL

J

ηθ pXq
qq.

Finally, the gradient of the colormap appearing in the expressions above de-

pends on the choice of the colormap. For all the experiments using the colormap

ηθ pxq “
“

η1
θ pxq, ¨ ¨ ¨ ,ηd1

θ pxq
‰J

defined previously in Section 8.2, the differentia-

tion is straightforward.

In experiments simulating color blindness, the colormap is assumed to be pΠ˝

ηθ qpxq, where the transformation Π simulates the deficient observer is assumed
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to be linear Πpxq “ Ax. The Jacobian of the colormap is given as

Jθ pΠ ˝ηθ qpxq “ JΠpηθ pxqqJηθ pxq “ A
”

∇θη1
θ pxq, . . . ,∇θηd1

θ pxq
ıJ

.
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