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“Something was creeping and creeping and waiting to be seen and felt and heard.”

H.P. Lovecraft, The Colour Out of Space, 1927.



Abstract

Interactive Deformation of Virtual Paper

Although paper is a very common material in our every-day life, it can hardly be found

in 3D virtual environments. Indeed, due to its fibrous structure, paper material exhibits

complex deformations and sound behavior which are hard to reproduce efficiently using

standard methods. Most notably, the deforming surface of a sheet of paper is constantly

isometric to its 2D pattern, and may be crumpled or torn leading to sharp and fine

geometrical features. During deformation, paper material also has very characteristic

sound, which highly depends on its complex shape.

In this thesis, we propose to combine usual physics-based simulation with new procedu-

ral, geometric methods in order to take advantage of prior knowledge to efficiently model

the geometry and the sound of a deforming sheet of paper. Our goals are to reproduce

a plausible behavior of paper rather than an entirely physically accurate one in order to

enable a user to interactively deform and create animation of virtual paper.

We first focus on the case of paper being crumpled. We use the developability property

of the paper to interleave the physics-based simulation with a geometric remeshing step

that adapts the mesh with the folds and the sharp creases of crumpling paper. We

obtain an interactive model able to reproduce the main features of crumpling paper.

We then take advantage of this model to develop a method for tearing paper in real-time.

We use the geometric information provided by the remeshing step of the model to detect

potential starting points of tears, and propose a new hybrid, geometric and physical,

method to find their general direction of propagation while creating procedurally the

details of the tearing path using a fibers’ texture.

Finally, we propose to generate a plausible shape-dependant sound of the paper at run-

time. We analyse the geometric and dynamic information provided by the model to

detect sound-producing events and compute the regions in which the sound resonates.

The resulting sound is synthesized from both pre-recorded sounds and procedural gen-

eration taking into account the geometry of the surface and its dynamics.





Résumé

Déformation interactive de papier virtuel

Le papier est un matériau très commun que l’on manipule quotidiennement. Pourtant

on ne le trouve que rarement dans les environnements 3D. En effet, à cause de sa

structure fibreuse, le papier, de même que le son qu’il produit, présente un comportement

complexe qui se révèle difficile à reproduire avec les méthodes habituelles. En particulier,

la surface du papier reste constamment isométrique à son patron 2D et peut se froisser

ou se déchirer, créant ainsi de fins détails géométriques. Lorsqu’il se déforme, le papier

produit également un son très caractéristique qui dépend fortement de la géométrie

adoptée par la surface.

Dans cette thèse, nous proposons de combiner une simulation physique usuelle avec de

nouvelles méthodes, procédurales ou géométriques, de façon à tirer parti de connais-

sances préalables afin de modéliser la surface et le son d’une feuille de papier manipulée

virtuellement. Plutôt que d’obtenir des résultats précis au sens physique, nous cherchons

à reproduire un comportement plausible du papier, permettant ainsi à un utilisateur de

créer interactivement des animations de papier virtuel.

Nous nous concentrons dans un premier temps sur le cas du papier froissé. Pour

cela, nous entrelaçons une étape de simulation physique avec une étape de remaillage

géométrique qui adapte le maillage aux plis du papier froissé, exploitant pour cela la

dévelopabilité du papier.

Nous tirons ensuite profit de ce modèle pour développer une méthode permettant de

déchirer du papier virtuel en temps réel. Nous utilisons les informations sur la géométrie

fournies par l’étape de remaillage pour trouver les points pouvant potentiellement être les

points de départ d’une déchirure. Nous proposons aussi une nouvelle approche hybride,

à la fois physique et géométrique, pour déterminer la direction générale de propagation

tout en créant de façon procédurale les détails du tracé d’une déchirure en utilisant une

texture représentant la répartition des fibres.

Enfin, nous proposons une génération de sons de papier, à la fois plausible, dépendant

de la forme de la surface et qui s’opère en temps réel. Nous analysons les informa-

tions, géométriques et dynamiques, données par le modèle d’animation pour détecter les

événements produisant du son et calculer les régions dans lesquelles le son résonne.

Le son résultant est synthétisé à l’aide de sons pré-enregistrés et d’une génération

procédurale, de façon à tenir compte de géométrie de la surface et sa dynamique.
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comme dans les moins bons, aussi bien pour discuter de tout et de rien que pour finir
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chaque fois que l’on se retrouve, c’est comme si l’on venait de quitter le lycée.
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Introduction

“There are neither beginnings or endings to the turning of the Wheel of Time.

But it was a beginning.”

Robert Jordan, The Wheel of Time, 1990.

Over the last few years, virtual computer-generated environments, and especially ani-

mated ones, have been taking an expanding place in our society. As 3D animated models

are increasingly used for entertainment applications such as movies, video games, or ad-

vertising, the need for 3D virtual content has been growing likewise. Yet creating a

3D animated virtual model, is still cumbersome and time-consuming, even for expert

digital artists. A long training process is also needed as mastering current 3D anima-

tion softwares requires both expert artistic and computer skills, but also some some

understanding of advanced mathematical concepts to manipulate the degrees of free-

dom –usually limited to some low level of abstraction– proposed by these softwares.

New 3D modeling and animation techniques are therefore required to make the work

of professional 3D artists more efficient, but also to allow the general public to access

3D modeling and animation. Developing these new techniques is a challenging task as

it should satisfy the following three constraints. Firstly, the resulting 3D model should

be visually plausible in order to satisfy the public. Secondly, the method itself needs

to be intuitive to use in the sense of being easy to understand and to learn by the

artist. Thirdly, the method should be interactive, providing the artist with an immedi-

ate feedback while manipulating the 3D model and an accurate control of the 3D result.

In addition, multimodal interactions –mainly audio, but also haptic or even olfactory

cues– are of growing importance. Those feedbacks have been until now only scarcely

researched and applied in 3D graphics, yet it should become an inherent part of a 3D

model. In particular, an audio feedback is usually added to animation, as sound is often

1



Introduction 2

necessary for realism. But, since existing softwares do not propose automatic ways to

add it, sound is generally created “by-hand” by Foley artist.

Numerous researches focus on automatic, or semi-automatic animation, as, for example,

animation for the clothes of a virtual character, the motion of fluids or the movement of

a crowd. For the case of natural physical phenomena, the current automatic animation

methods can be divided into two categories: the physically-based methods and pro-

cedural methods. First the physically-based methods aim at reproducing the physical

phenomenon involved. Those methods usually give realistic animations, with natural

movement but this also comes with a high computation time making it hardly usable for

interactive applications. Moreover, the control of the animation mostly relies on, some-

times esoteric, physical parameters making it difficult to control the animation with

accuracy. Second, the procedural methods use a set of rules to build the animation, for

example geometric rules or stochastic rules that aim at reproducing some mathemati-

cal properties or phenomenological observations. They are often fast enough to obtain

real or interactive times and offer more intuitive control to the users. But realism is

harder to achieve particularly for deformations caused by natural physical phenomena.

These methods also may be limited to specific cases or are not fully automatic and need

more user-inputs. We may consider the hybrid methods as a third category; they are

a mix between physically-based and procedural techniques. Hybrid methods aim ide-

ally at obtaining the advantages of both procedural and physical methods without their

drawbacks.

In the present thesis, we focus on virtual paper animation, for which the application of a

hybrid method proves to be efficient. Paper is a very common material, yet it can hardly

be found in virtual environments. The main reason for this absence is the lack of satis-

fying methods to model it automatically. Virtual paper is then rarely used and, when

still modeled, often created by 3D Graphics artists. Paper indeed exhibits a complex be-

havior that usual techniques struggle to reproduce. The structure of microscopic fibers

composing this material influences its macroscopic behavior. In constant experimental

condition (humidity, temperature etc..), we can consider those fibers as inextensible.

This leads to an extremely high in-plane stiffness (resistance to in-plane deformations,

i.e., compression and extension), which, combined with the low bending stiffness, makes

paper bend rather than undergo in-plane deformations. It can then support high cur-

vature without damage but the bonds linking fibers between each other easily break

under too much strain –making the paper crumple– or stress –creating tears. Due to its

stiffness, paper also generates a sound that is strongly dependent on the shape, making

it hard to reproduce. To our knowledge there is no prior research that focuses on this

problem for paper-like material.
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Neither procedural, nor physically-based methods are well-adapted to reproduce those

characteristics. Indeed, procedural methods are ill-suited for modeling natural motion

well enough to obtain satisfying results for a material as common as paper. On the other

hand, physical simulations can lead to convincing results. But the dense mesh needed

to represent sharp features and highly bent regions as well as the high stiffness required

make the computational cost prohibitive for many applications, notably the interactive

ones.

Our insight in the different works presented in this thesis is to use prior knowledge of

the specific behavior of paper to make the physical simulation more efficient. More

specifically, the methods proposed here aim at satisfy the following criteria:

Realism. By basing the procedural steps on phenomenological observations as well as

geometrical properties of paper, we reproduce plausible behavior of paper rather

than physically accurate one. We compare our results to real paper for simple,

familiar cases in addition to more complex cases in which defects are less noticeable.

Rapidity. Real-time, or at least interactive-time is required in order to use the algo-

rithms in interactive applications.

Intuitive user interaction. The user can control the deformation of the paper simply

by manipulating virtual fingers on the paper.

Our contributions are divided into three methods:

Crumpling paper. We present in Chapter 2 the first method, to our knowledge, that

automatically animates crumpling paper at interactive rates. We propose to inter-

leave a conventional thin shell simulation step with a geometric step that adapts

the mesh to meet the developablility constraints of real paper. To this end, we ap-

proximate folds by a set of generalized cones and sharp features where the fibrous

structure is damaged by singular points. We therefore align the triangles of the

mesh with the rulings of the cones and creases are explicitly represented as vertices

of the mesh, such that both smooth folds and sharp features are obtained while

maintaining a very coarse mesh. Moreover plastic behavior is taken into account

as the positions of the creases are explicitly computed and recorded as singular

points of the geometry.

Tearing paper. The method for crumpling paper summarized above handles the case

of the fibrous structure undergoing strain. We focus instead in Chapter 3 on paper

tearing, which happens when the structure breaks under stress. We first present

an entirely procedural method that models paper being torn in real-time but only
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handling a simple case. We then extend the basic idea to more complex situations

by clustering the forces around the tip of the tear into two opposite forces. This

reduces the problem to a situation for which a geometric criterion for the relevant

direction of tear can be derived. We then couple it with our crumpling model

taking advantage of its geometric features notably to find the potential starting

points of a tear.

Figure 1: Crumpled and torn paper.

Generating the sound of paper. Since the geometry of paper influences its sound,

we propose in Chapter 4 to take advantage of the geometric features computed by

our animation model to generate plausible sounds for our virtual paper. We first

propose a method to synthesize the sound of crumpling paper that introduces the

notion of geometrically parameterized resonators. This enables us to generate a

shape-dependent sound, based on a small database of sound units. As the paper

is highly deformable, a new set of resonators needs to be computed at each frame;

this is done by a procedural algorithm that is fast enough to achieve real-time rates.

We then complete the sound model with a procedural method for generating the

sound of paper being torn, parametrized only by the speed of the tearing.

Figure 2: Animation of a sheet of virtual paper and the corresponding synthesized
sound represented as a spectrogram.

Notations

In this document, we use the following notations:



Introduction 5

Vectors are denoted by bold lower case roman letters: v = (vx, vy). The same notation

is used for spatial position. The scalar product between two vectors is denoted by . and

the cross product is denoted by ∧.

Matrices are named with bold upper case roman letters such as:

M =

(
m0,0 m0,1

m1,0 m1,1

)
.

The inverse of M is denoted M−1, and its transpose is MT . The trace is denoted Tr(M).

Coordinates in 2D and 3D. The vertices used to described the surface of the paper

are represented by a position in space x. A sheet of paper is always associated to its

unfolded 2D pattern. The corresponding 2D vertices of this pattern are denoted x̄. By

extension any element e (edge, triangle, vector...) of the 3D space is represented in the

2D pattern by ē.

Complex exponential. The complex exponential is represented as:

eiα = cos(α) + i sin(α).



Related work

“Books! The best weapons in the world!”

The Doctor, Tooth and Claw, 2006.

Paper is a material with a very specific and complex behavior that has been studied by

Physics and Material Science researchers but is not yet fully understood. This material

has also gained more and more interest in the Computer Graphics domain as techniques

to model and deform surfaces have become more efficient.

Paper has been the subject of numerous works. They give us many insights on paper

behavior that are described in the first section. We will then mainly present the methods

that have been used in Computer Graphics to model paper. They can be divided into

two categories: methods derived from physical simulations of thin fabrics on one hand,

procedural methods based on geometry or data on the other hand.

1.1 Physical and material studies of paper behavior

Paper presents interesting and complex physics. They are summarized, along with some

associated studies, by Alava and Niskansen in [AN06].

Paper is composed of fibers, usually made of wood, bound together to form a random

network (see Figure 1.3). As the length of a fiber (around 2mm) is large enough compared

to the thickness of paper (around 0.1mm), paper may be accurately enough considered

as a 2D surface (so the thickness is considered as negligible). The process of making

paper leads to an inhomogeneous distibution of the fibers’ density along the surface –

as it can be observed by transparency while looking at a sheet of paper held in front of

a light source. The position of the fibers is stochastic, yet in the industrial process, two

6
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main directions (“machine direction” and “cross direction”) appear in the orientation

of the fibers. As a result, paper exhibits an anisotropic material behavior – for example

the bending stiffness may be different according to the direction. In the works presented

in this thesis, we neglect the phenomenon and consider paper as isotropic. However it

could be an interesting aspect to take it into account in the future.

Figure 1.3: X-ray tomography of paper showing the fibers’ structure, from [AN06].

The fibers are only slightly elastic – they can barely be compressed or stretched–, and the

bonds in-between prevent them from sliding against one another. That is why paper is

usually considered in our domain as rigid enough to preserve lengths upon deformation

as long as the structure does not fail. Indeed when subject to too many constraints

the bonds, occasionally the fibers, break which leads to irreversible damage. The latter

appear at a macroscopic level either as sharp creases or tears in the paper.

Crumpling of paper. Numerous articles in Physics study the phenomenon of crum-

pling for thin sheets: the geometry and energy distribution around a single crease – either

as a single point [AP97, MC98, CM98], or as a linear ridge [LW97, LW05, DDMS12],

or as a more general crease [SKD11]– or for an entire sheet crumpled into a ball

[TÅT09, CM11]. Some studies also focus on the ridge network formed by crumpling

and unfolding a sheet [AHS07, BK05]. The review article og Witten et al. [Wit07] dis-

cusses many of these previous works.As explained in Chapter 2, our model of crumpling

paper is based on insights from these Physics works.

Tearing of paper. Fracture Mechanics is a challenging research area. One of the

main problems addressed is the prediction of the propagation of a crack in 2D or 3D

material. For understanding the case of tearing of paper, we focus on the studies of

quasi-static fracture in brittle thin sheet material. The early work of Griffith [Gri21]

sets many bases for this problem and notably formulates what is referred to as the

Griffith’s criterion. It states that the crack propagates if the energy released by the

propagation is equal to the fracture energy of the material (i.e. the energy required to

create a new free surface in the material). The direction of the propagation is still a

debated question, the two main theories being (1) the crack propagates in the direction
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which maximizes the energy released (in the case of isotropic material) [BFM08], (2) the

principle of local symmetry (PLS) [GS74, HS93], i.e. the crack propagates such that the

in-plane shear stress vanishes around the crack tip. Roman [Rom13] reviews many of

those works along with some studies of the geometry of the crack path in some specific

conditions as [OKe94, ARR05]. Some works also focus on experimentally measuring the

physical parameters of such a phenomenon. For example, Seth and Page look at the

fracture toughness and the quasi-static fracture energy in [SP74].

Acoustics of paper. Power-law models of the acoustic emissions from crumpling

elastic sheets [KL96] and paper [HS96] have been studied by the Physics community, as

well as the sound of paper fracture [STA02]. Indeed acoustic emission is typically used

to physically study irreversible damage in the internal structure of a material.

1.2 Simulating virtual paper using a physics-based model

Physics-based approaches are widely used in Computer Graphics to obtain physically

realistic complex behavior. The principle is to derive physical laws to obtain partial

differential equations describing the physical process on the virtual object. Numerical

discretization and integration can then be applied to integrate the differential equation,

and then retrieve the motion.

The methods used to model paper or other thin materials, such as fabric, represent the

object as a 2D surface in a 3D environment. The most usual way to represent a surface is

to use a mesh (see Figure 1.4): the surface is subdivided into small polygons –most often

triangles as they are easy to manipulate– called faces, delimited by edges and vertices.

Figure 1.4: A triangle mesh (top-right) representing the surface of a virtual sheet of
paper, and the same mesh after texturing and rendering (bottom-left)
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1.2.1 Thin shell theory

The physics-based methods used to represent paper are inspired by thin shell models

based on finite element methods (FEM). This approach proposed initially by Terzopou-

los in [TF88] is widely used for cloth and fabric simulation [VCMT95, BW98, CK02].

The idea is to reproduce linear elastic behavior by computing the forces caused by the

deformation of the mesh applied on each vertex modeled by a small mass –the Mass-

Sping system, for example, computes the forces applied by each edge by considering

them as springs linking the vertices. In-plane stress can be computed using edges or

faces deformation; this gives good results for material with negligible bending rigidity

as fabric. The thin plate theory extends it to paper-like material; Grinspun et al., later

Burgoon et al. [GHD∗03, BGW06], propose to add bending forces based on dihedral

angles between triangles. In our work we use the code provided by Narain et al. [NSO12]

based on Green’s strain to compute the in-plane stretching forces and bending forces as

described by Grinspun as follows.

Figure 1.5: A triangle t defined by the vectors u1 and u2 in its initial shape (left) and
after some transformation (right)

A triangle t can be represented by a matrix U = {u1,u2} where u1 et u2 are the vectors

along the edges of the triangles as represented in Figure 1.5. The deformation between

the current state S of the mesh and the initial state S̄ –in our case, S̄ is the 2D pattern

of the sheet– can be represented by the deformation gradient F defined by :

F = UŪ−1.

The Green’s strain is then obtained by:

G =
1

2
(FTF− I),

where I is the identity matrix.
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The stress energy caused by this strain is dependent on the in-plane stiffness ks of the

material and can be modeled by:

Wstress = ks((1− V) Tr(G2) + V Tr(G)2,

where V is the Poisson’s ratio of the material.

The discrete bending energy of a triangle is based on the dihedral angle at each of its

edges.

Wbending = kb
∑
i=1...3

(σei − σ̄ei)2
||ēi||
h̄ei

where kb is the bending stiffness. The elastic energy of a triangle is then:

W = Wstress +Wbending

The differential equation of motion is then obtain by:

ẍ = M−1∇W (x)

It is also possible to add some external forces (like gravity for example) and/or damping

to the equation of motion.

This approach may work well for slightly elastic material, but difficulties arise for in-

extensible or nearly inextensible materials. High stiffness causes instabilities in the

simulation, and smaller time steps are thus required to get a stable animation implying

the computation of a greater number of simulation steps for each frame. The direct ap-

plication of the thin shell model alone is therefore ill-suited to obtain length-preserving

simulation with interactive rates.

To get closer to inextensible material, a possible approach is to limit the strain at each

simulation step as done by Provot [Pro96] or Wang et al. [WOR10]. English and Bridson

[EB08] propose to apply physical simulation to nonconforming elements instead of the

usual geometrically continuous mesh, allowing to compute exact isometric deformation.

But the nonconforming elements also need to be coupled with a conforming mesh for

collision detection and rendering.

Smooth deformations can efficiently be modeled by these approaches. Even sharp creases

can be handled when manually defined by the user (see Figure 1.6). Burgoon et al.

[BGW06] extend the approach for origami simulation where all the sharp folds are

predefined by the user. In this work, the triangulation is adapted such that the mesh’s
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Figure 1.6: Realist curved piece of virtual paper from [GHD∗03]. By altering dihedral
angles of the reference configuration, a sharper edge as been created.

edges align with the sharp folds (see Figure 1.7). We note that origami has attracted

specific attention from the research community (see Figure 1.8). For instance, Tachi

[Tac11, Tac09] considers each face as a rigid planar object and uses the rigid object

kinematics rather than thin shell theory. However, this approach is not able to reproduce

the specific plastic behavior of paper material. Indeed as a piece of paper crumples, sharp

creases spontaneously appear and change irreversibly the paper mechanical behavior.

Sharp features can possibly appear in thin shell simulation if the mesh is dense enough,

however the plastic behavior cannot be directly reproduced using this kind of method.

In addition, the high number of triangles needed to have a mesh that fine makes the

computational cost prohibitive.

Figure 1.7: A comparison from [BGW06] showing an origami obtained with their
appoach (left) and a real one (right)
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Figure 1.8: Folding pattern and the corresponding origami from [Tac09]

1.2.2 Dynamic meshes for crumpling and tearing

In order to avoid the prohibitive increase in mesh resolution when modeling crumpling

paper, using automatic adaptive meshes instead of fixed ones has been proposed to

handle the crumpling behavior. The principle is to remesh the surface to better adapt

to the folds and constraints.

Figure 1.9: The remeshing scheme from [KZC09] based on breakable spring

Kang et al. in [KZC09] add plastic damage to classic mass-spring simulation by breaking

springs which are highly compressed. More precisely, at time t, a spring between vertices

i an j has a probability P (i, j) to break where

P (i, j) = (1−
lti,j
l0i,j

)φ,

with lti,j being the current length of the spring, l0i,j its initial length and φ controlling the

fragility of the paper. If the spring breaks, it is subdivided into two springs. As shown

in Figure 1.9 two more springs are added, to keep the faces of the mesh triangular, and

a damage preserving spring to keep the paper wrinkled even when the constraints are

released. This is coupled with a fractal surface texture to create smaller details. The

method has the advantages to be rather simple to implement and fast, and may produce

natural looking wrinkles (see Figure 1.10). Yet the wrinkles appear along the already

existing edges leading to some visual artifacts. Also the method does not handle well

smooth shapes: the simulated paper will tend to crumple where it should bend smoothly.
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This may hamper the realism as the smooth bending occurring at the beginning of the

crumpling process influences notably the final crumpled shape.

Figure 1.10: A crumpled paper and the corresponding mesh (the damage preserving
springs are represented in red) from [KZC09]

A more recent work using adaptive meshes has been proposed by Narain et al. in

[NSO12], using the FEM described above. The mesh is refined or coarsened according

to a tensor field M that represents the maximum permitted length of edges at each

location and orientation. M is defined by the curvature, compression, and velocities of

the material. The mesh becomes denser in curved region, with anisotropic elements in

the direction of the folds, and coarser in the flat regions. They obtain realistic cloth

simulations with fine details much faster than with fixed mesh connectivity. Narain

[NPO13] later expands this work to crumpling phenomena, notably by adding a damage

parameter δ inherent to each face to obtain plastic behavior. δ increases when the

bending strain S exceeds the material’s yield curvature κ in the following way:

δ ← δ +
1

κ
(||S|| − κ).

The damage δ is used to attenuate the bending stiffness. The bending stiffness ke

associated to an edge e is:

ke =
1

1− σδe
kmat,

where kmat is the initial bending stiffness of the material, δe is the average of the damage

of each face adjacent to e, and σ is a user-defined parameter to control how much the

damage weaken the bending stiffness of the paper. Note that they also propose a rib-

stiffening method to account for the paper being less likely to buckle in the direction

orthogonal of the already existing folds. Another interesting feature of this work is

a projection applied after the remeshing to prevent the instability caused by dynamic

changes. The results are quite compelling (see Figure 1.11); creased features appear

naturally where the constraints are higher, making it physically plausible. As the mesh

is locally densified only where needed, the method is much faster than classic FEM.

Yet an large number of triangles is still needed to represent the creases, therefore the
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computation time is still too high for any interactive application (see Section 2.6.2 for

time and quality comparisons between FEM with fixed mesh, this method and our

method described in Chapter 2). Another problem that may occur is the diffusion of

the damage of a crease as the mesh gets flatter and so coarser. The exact position of

the creases, where the fibers should have broken, is not retained.

Figure 1.11: Two crumpled virtual piece of paper from [NSO12]. The right column
represents the 2D pattern of the triangulation. The mesh is very dense in the highly

curved regions and coarser in the near-flat regions

Many physics-based methods which deal with fracture phenomenon are also based on

FEM. Although most of them treat the case of the fracture of volumetric solid objects

(as for example [BHTF07, GMD12, OBH02, OH99]), some of them focus on thin shell

tearing (note that they are not specific to paper). The basic idea, already used by

Terzopoulos [TF88] is to create or propagate tears when the strain or stress becomes

too high (see Figure 1.12). A simple approach, used for example by Souza [SvWC14]

consists in splitting one vertex of the overstretched edges to create a tear that follows

the existing edges as shown in Figure 1.13. The excess energy is then dissipated with a

local physical relaxation around the tip of the tear.
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Figure 1.12: One of the first result of virtually torn paper from [TF88]

Figure 1.13: Virtual fabric being torn. Picture from [SvWC14].

Gingold et al. [GSH∗04] based its fracture handling on the stain tensor E of each

triangular face of the mesh: a face is split into two if the principal strain –the largest

Eigen value of E– exceeds a material-specific threshold. The fracture splits the strained

face along the direction orthogonal the principal strain direction –the associated eigen

vector. As a vertex needs to be inserted on one edge of the face, the adjacent face will

split too as shown in Figure 1.14. The excess energy is absorbed by the plastic behavior

that they also proposed for their model.

Pfaff et al. [PNdJO14], based on the prior work on adaptive meshes by Narain [NSO12],

propose to refine the mesh where a crack is likely to propagate or be created and coarsen

it elsewhere. The direction of a potential crack is computed by finding the potential

splitting plane for which the most stress energy would be released. Local physical

simulation around the tip is done to release the excess stress.

A work of Metaaphanon [MBCN09] aims at modeling frayed edges of woven fabrics

being torn. A simple spring-mass system, the base cloth model, represents undamaged

regions, and a yarn-level model where each mass particles are split in two loosely coupled
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Figure 1.14: A fracture in a thin plate from [GSH∗04] and the corresponding trian-
gulation. Edges that underwent plastic damage without breaking are represented in

red.

particles linked to different threads of springs models the two layers of interwoven yarn

of the cloth. As shown in Figure 1.15 (a), springs from the base cloth model can be

cut under stress. The vertices around the cut are split leading to the yarn-level model

(b). Under more stress, coupled particles may be disconnected (c) causing the splitting

of the neighboring particles of the base model (d). As the cloth is torn, the fraying

propagates. They obtain detailed frayed edges as expected for woven fabric as shown

in Figure 1.16. Still, although paper may be seen as a structure of interwoven fibers,

the small size and stochastic position and orientation of the fibers make this kind of

approach hardly efficient for tearing paper.

Figure 1.15: Tearing process from [MBCN09], the model switches from base cloth
model to yarn-level model around the tear.

Some research to generate crack pattern, as the one proposed by Iben [IO06], also use

physics-based methods, but they do not allow actual changes of geometry of the object

as it is expected for paper.

1.2.3 Computing sounds with a thin shell model

The thin shell model can also be used to compute the small vibrations involved in sound

generation. The pressure of the air above the surface can be inferred and be translated
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Figure 1.16: A torn piece of cloth from [MBCN09] with frayed edges.

into the sound produced by the object. This is done by O’Brien et al. in [OCE01]. The

thin shell is then used to synthesize both the animation and the sound. A wide range of

complex scenes (including sheet-like objects) can be simulated. But as the sound usually

requires a sample rate of about 40kHz (20kHz for low quality sound), the computation

time becomes quickly prohibitive.

To be more efficient, modal vibration models [PW89, JP02], introduced to digital sound

generation by Adrien [Adr91], may reduce the computational cost. The main modes

of vibration of the object are pre-computed so the vibrations are modeled only for a

limited number of modes. The linear modal synthesis methods have become widely

used for rigid-body sound [DP98, vdDKP01, Coo02, OSG02, JBP06, ZJ10]. Moreover

it is possible to model a large number of sounding objects at interactive rates using

acceleration techniques [RL06, BDT∗08], and also memory compression [LAJJ14]. Ren

et al. [RYL13] present a method to estimate modal parameters from recorded audio clips.

The linear modal synthesis has also been considered for non-linear thin-shell sounds by

Chadwick et al. [CAJ09]. However these approaches only support small deformations

as modes depend on the shape. For highly deformable materials such as fabric or paper,

the modes should be recomputed for each step, losing therefore most of the speed-up of

the modal approach.

Finally, the physics-based methods presented in this section give realistic, even some-

times compelling, results for crumpling and tearing paper and also for generating sound.

However they are not well suited for interactivity which is one of our purposes. Indeed

the high rigidity imposes small time steps, and the sharp fine features, which influence

the motion and the sound of paper, require a very dense mesh. The combination of both

makes the computational cost far too high for interactive applications. To make the
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physics-based simulations more efficient, we propose in this thesis to inspire from geo-

metric methods summarized in the next Section 1.3 in order to represent sharp features

and folds with coarser mesh and reduce the need of high rigidity.

1.3 Simulating virtual paper using procedural and geomet-

ric approaches

Contrary to the physics-based methods, geometric and procedural approaches are usually

fast and provide more intuitive parameters for the user, giving them more control over

the final result. Geometric methods for paper modeling use the well-known property of

developability of paper. To our knowledge, no method so far is dedicated to the tearing of

paper or the generation of its sound. But more general works on procedural fracturing

or data-based sound generation are inspirational for creating methods specialized for

paper.

1.3.1 Developable surfaces

Paper is a developable surface: it can be unfolded onto a plane without any in-plane

deformation. Developable surfaces exhibit a number of interesting geometric properties

[DCDC76]. Notably C2-developable surfaces are a particular case of ruled surfaces.

Ruled surfaces can be represented by a one-parameter family of lines, called rulings.

Each point can then be defined by:

x(u, v) = c(u) + v r(u)

with c being a curve of R3 and r a vector field. A ruled surface is developable if its

tangent plane is constant along any ruling, meaning that c′(u), r(u) and r′(u) are co-

planar.

C2-developable surfaces are composed of four types of surfaces:

• tangent developables, which are defined by:

x(u, v) = c(u) + v c′(u)

The rulings of a tangent developable cross each other on a singular curve of the

surface called the curve of regression.
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• generalized cones for which the curve of regression is reduced to one point s called

the apex.

x(u, v) = s + v r(u)

• generalized cylinders for which the curve of regression is reduced to one point at

the infinity. All the rulings are the parallel to a direction r.

x(u, v) = c(u) + v r

• planes.

A C2-developable surface can also be defined as a surface whose Gaussian curvature

(product of the main curvatures) is zero at any point. A fact that derives from the

isometric nature of admissible deformations and is known as Gauss’ theorema egregium.

As paper can be considered inextensible, in addition to be developable, it also stays

isometric to its 2D initial flat shape, called 2D pattern: unless damaged, the geodesic

distance between any two points of the paper surface equals the Cartesian distance

between the two corresponding points on the 2D pattern.

Figure 1.17: Developable surfaces can be used to design elegant shapes for architec-
ture as this glass structure from [LPW∗06]

Developable surfaces have been studied in geometric research. Solutions for generation

[Aum03, PF95], approximation and interpolation of developable surfaces [PW01, Pet04]

have been proposed.

Developable objects can be modeled from sketching as proposed by Rose et al. [RSW∗07]

who generate developable surfaces from 3D boundary curves, or from simple shapes –Chu

and Séquin [CS02] propose a method to create quadratic and cubic Bezier developable

patches. Liu et al [LPW∗06] use developable surfaces to optimize a quadratic mesh
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in order to help the design of free-form architecture (see Figure 1.17). Decaudin et

al. [DJW∗06] and later Jung et al. [JHR∗15] create 3D models for clothes from users’

sketches such that the models are optimized to be developable. They also compute

the corresponding 2D pattern of the cloth so it is possible to build the model with

real materials. Note that finding a 2D pattern from a 3D shape is another interesting

challenge related to developable surfaces (see for example the work of Tachi [Tac10]

on finding a folding diagram to create an origami of a given 3D shape). Notably, the

problem of unfolding a polyhedron has been investigated since Albrecht Dürer in the

early 16th century. The Shephard’s Conjecture –every convex polyhedron can be cut

along some of its edges and unfolded onto the plane without overlap– has still not be

proved or disproved. These approaches only study smooth developable surfaces and none

of them considers how to form and retain sharp features during the modeling process.

Some methods are dedicated to optimize an input surface in order to increase the de-

velopability. For example Wang et al. [WT04, Wan08] minimize an objective in terms

of discrete Gaussian curvature. These approaches are computationally intensive. More-

over, although they create developable surfaces, they cannot explicitly formulate length

preservation with respect to an original 2D pattern.

Figure 1.18: Construction of a smooth developable surface from [BW07]. The 3D
boundary is computed by reporting the distance in the flat state (b) between each
point p̄(s) of the geodesic and the intersections of the corresponding ruling r̄(s) and

the boundary along the ruling r(s) on the 3D space (a).
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Figure 1.19: A smoothly developable surface from [BW07] modeling paper-like ma-
terial.

1.3.2 Folding and crumpling paper using isometric deformations

Bo and Wang [BW07] model and animate paper-like material through a developable

surface obtained by the isometric deformation of a given 2D pattern. The input is a

3D curve p with non-vanishing curvature representing a geodesic of the surface and its

position (a line) on the 2D pattern. The normalized direction r(s) of a ruling going

through the point p(s) is then given by:

r(s) =
p′′(s) ∧ p′′′(s)

|p′′(s) ∧ p′′′(s)|
.

The intersection c(s) of a ruling and the paper surface boundary can be computed on

the 2D pattern and its 3D coordinates are:

c(s) = p(s) + l(s) r(s),

where l(s) is the distance between the boundary and the curve p (see Figure 1.18). More

complex smooth developable surfaces can be composed by joining several curved regions,

computed as explained above, linked together by planar regions (the joining edges with

a planar region need to be rulings of the curved regions) as shown in Figure 1.19. A

paper-like surface can thus be modeled and manipulated by a user through the manipu-

lation of the geodesic curve p. The resulting surfaces are however smooth surfaces. The

crumpling of paper with its typical sharp features is not proposed here.

Solomon et al. [SVWG12] and later Zhu et al. [ZIM13] create a developable surface by

bending and folding an initially flat surface according to a folding pattern given by the

user. Peraza Hernandez et al. [HHAL16] improve rigid origami simulation by joining

two adjacent faces by a smooth flexible ruled surface instead of using an articulated

edge. These methods enable to model smooth developable surface with eventually sharp

linear folds explicitly prescribed by the user.
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When crumpling paper, one can observe some creases that look like singular point.

Huffman studies in [Huf76] how the surface of paper behaves near such singularities, in

particular its convexity and trace on the Gaussian sphere. Kergosien [KGK94] proposes

one of the first models to animate a developable surface defined by its boundary and

a function associating each point on the boundary to another, each couple defining a

ruling. He defines the need for creases, which he models either as a singular point or

a singular curve, where some rulings cross each other. Frey [Fre04] proposes a buckled

developable surface construction for 2D height fields using triangulation. Those curved

creases can also be used to create elegant shapes for industrial design or origami as

done by Killian et al. [KFC∗08], who locally optimize to find the position of the faces

adjacent to the crease, or Mitani et al. [MI11], who reflect the surface onto a plane to

create a crease. For both of them the creases are defined on some initial simple smooth

developable shape. For all these methods, the position of the creases are specified

explicitly by the user. Another approach from Rohmer et al. automatically generates a

developable creased surface from its 3D boundary curve [RCHbT11]. But this approach

is not temporally consistent: a slight change in the boundary usually leads to a radical

change in the shape. So it is not adapted for animation.

Figure 1.20: Pictures from [MCK13]. (left) Overview of the fracture algorithm,
(right) fracture pattern applied to a 3D object.

1.3.3 Procedural methods for fracture

Currently there is no procedural or geometric method for tearing paper or thin shell

known to us, but some previous works use procedural methods for fracturing volumetric

objects.

For example, fracture patterns can be computed using fast procedural method, although

the kinematics is still usually computed using a physical model. A popular method,

particularly for explosion modeling, for cheap fracture computing is to use pre-fractured

objects that will break along a pre-defined pattern. A more advanced idea proposed by

Müller et al. [MCK13] is to align a fracture pattern with the impact location in order

to subdivide at run-time an object composed of convex parts as shown in Figure 1.20.

The fracture may also be spread from an initial location using a procedural algorithm as

proposed by Neff et al. [NF99]. This kind of approaches enables fast fracture simulation
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but cannot be applied to paper as the path of the tear explicitly depends on the motion

applied to the paper.

Figure 1.21: Image from [CYFW14]. From left to right: the strength field of the
material, the stress field centered on the fracture, the modified strength field.

Figure 1.22: Example of results obtained by [CYFW14]. (left) The result of the
coarse simulation; (right) the result after adding procedural details.

A mixed approach, proposed by Chen et al. [CYFW14], is to refine a 3D fracture ani-

mation, computed for example with a coarse physical simulation, by adding procedural

details based on a 3D texture representing the strength field of the material (i.e. its

ability to resist to fracture). The strength field is modified by subtracting the stress

field (see Figure 1.21), centered on the fracture surface. The high resolution fracture

surface is computed by minimizing the energy represented by the modified strength field.

Highly detailed fracture of inhomogeneous material can thus be computed at low cost

(see Figure 1.22). Still physical accuracy is limited by the coarse initial simulation, and

the collision handling of the refined parts may prove to be problematic. Yet this concept

seems to be well-adapted to represent small details of the torn fibrous structure.

Example-based fracture pattern can also be created by learning the statistics of patterns

obtained from real data, as proposed by [GMD12].

1.3.4 Data-based methods for generating sounds

Real data are also used for sound generation in order to avoid the complex and costly

process to simulate the physical phenomenon involved in sound generation. In the
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traditional approach, still widely used in movies and video games, real sound effects are

recorded and edited by Foley artists to match the visual appearance. The approach

produces high quality results but is time consuming and cannot be used in interactive

environments. The process can be automated for interactive applications by triggering

the sounds by computer-generated events and rendering pre-recorded sound samples

[TH92] (see Figure 1.23). Unfortunately, this approach lacks fine-grained variability and

synchronization needed to interactively render the complex interactions occurring with

paper manipulation.

Figure 1.23: Image from [TH92]. The sounds are triggered by events like collisions.

Other data-driven methods are inspired by granular synthesis techniques [Roa04]. Dub-

nov et al. [DBJEY∗02] and Bar-Joseph et al. [BJLW∗99] propose to use wavelet trees

to model sound texture and synthesize audio backgrounds. The “Sound-by-Numbers”

method [CBBJR03] uses a granular synthesis model driven by a low-dimensional mo-

tion signal. Concatenative sound synthesis (CSS) [S∗00] methods consist in selecting in a

large database of sound units, the units that match the best the sound to be synthesized.

An et al. [AJM12] build on these methods to automatically synthesize the sound of a

physically based cloth animation (see Figure 1.24). First they analyze the deformation

to find crumpling and friction events that drive the synthesis of a low-quality target

signal. A CSS process is then used to select the best units from a database of recorded

cloth sounds. In Chapter 4 we take inspiration from the first part of this approach,

and adapt it to paper material. In the case of paper, the sound is also produced by

crumpling and frictional sliding mechanisms, but additionally the sound highly depends

on the shape of the paper.

The sound of brittle elastic objects being fractured has been investigated by Zheng and

James [ZJ10] (see Figure 1.25). They associate to each fragment an ellipsoidal proxy

whose sound has been pre-computed. But this method assumes the fracture happens

suddenly to divide a fragment into several pieces during a single simulation time step.

There is therefore no transitional state where the fragment is only partially fractured,



Related Word 25

Figure 1.24: Cloth animation and the spectrogram of the corresponding sound from
[AJM12].

while in the case of paper, the tear should slowly propagate at the same time scale than

the motion of the hands.

Figure 1.25: A glass smashed into over 300 pieces and the spectrogram of the corre-
sponding sound from [ZJ10]

1.4 Conclusion

Finally, while physics-based simulations are usually too computationally expensive to

allow interactivity, and geometric or procedural approaches still do not fully allow to

represent the complex behavior of the paper, only few researches explore hybrid meth-

ods. By combining a usual physics-based simulation with new procedural and geometric

methods taking advantage of prior knowledge, we aim at reproducing a plausible behav-

ior of paper rather than an entirely physically accurate one in order to enable a user to

interactively deform and create animation of virtual paper.



Chapter 2

Modeling crumpling paper

“The lunatic is in the hall.

The lunatics are in my hall.

The paper holds their folded faces to the floor

And every day the paper boy brings more. ”

Pink Floyd, Brain Damage, 1973.

2.1 Introduction

We manipulate sheets of paper in our everyday life, when reading, writing or drawing, as

well as for wrapping things up, and they often end up in a more or less advanced crumpled

form. So far, most of the 3D virtual paper models are restricted to smooth sheets of

paper, or sometimes even modeled as a rigid material. On the contrary, a more plausible

model for paper animation should handle non-smooth developable geometry undergoing

irreversible changes upon deformation in order to model its crumpling. While state

of the art physically-based models are able to generate visually compelling animations

of paper crumpling behaviors [NPO13], this is done at a high computational cost: no

method is yet able to compute such deformations at interactive rates.

The goal of the work presented in this chapter is to achieve the animation of paper

crumpling phenomenon at interactive rates. Our insight is to enforce the characteris-

tic features of the paper –imposed by the microscopical fibrous structure– through a

dedicated geometric model, enabling to relieve most of the time usually spent in stiff,

26
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physically-based simulations. Let us list more accurately the main macroscopic charac-

teristics which need to be captured in order to crumple a sheet of paper in a visually

plausible way:

Length preservation. Paper has a very strong in-plane stiffness, i.e. it does not

stretch nor compress under standard conditions of use. The surface model used for a

sheet of paper should therefore be able to preserve lengths during deformation. In par-

ticular, although acceptable for animating cloth, the small elastic deformations between

neighboring vertices typically allowed by deformable models should be prevented when

modeling paper material. Therefore, a sheet of paper can always be isometrically devel-

oped onto the flat pattern representing its original state. This leads to the well known

developablility property of paper.

Sharp features. Crumpled sheets of paper exhibit some sharp creases. While stan-

dard geometric representations assume that the surface to be captured is smooth, the

representation we are looking for should be able to handle such discontinuities of the

tangential plane.

Plastic behavior and shape memory. In real life, when the microscopic fibers

of paper –or more accurately the bonds between them– break upon deformation, this

causes irreversible damage to the structure. Therefore, all singularities and creases

are persistent over time, even after trying to flatten the sheet. A dynamic model of

paper must incorporate this persistence property, resulting in an increasing number of

singularities throughout the animation.

In this work, we introduce a new surface model for virtual paper which allows for plausi-

ble, time-coherent deformations at interactive rates while incorporating the three char-

acteristics we just listed. The model is a piecewise developable surface made of general-

ized cones, it is designed to capture the sudden appearance of singular points during the

deformation process. Its deformation is governed by both physical constraints and geo-

metrical laws. The fact that only a small set of conical patches are used for representing

geometry reduces computational cost, since it enables simulation to be performed on a

sparse mesh.

Our contributions include:

A hybrid physically-based and geometric model. The specific combination of geo-

metric and physically-based layers we are using is the key feature of our approach: made

of generalized conical patches that fit an adaptive set of singular points, our geometric

layer ensures length preservation while handling the generation of tangent discontinu-

ities. Its animation is guided by an underlying coarse simulation, where stiffness only
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needs to be of medium range. This is the key towards efficiency, since no ill-conditioned

system needs to be solved.

Realistic modeling of singular points. We propose a new approach to detect when

and where singularities should appear, on top of a standard coarse simulation. The

sharp features are explicitly tracked throughout the animation process and are used to

model physical plastic behavior such as non-planar rest pose.

Optimal, adaptive isometric meshing. The surface geometry is defined by an adap-

tive mesh that aligns its edges along the rulings of the generalized conical patches and

along the sharp edges of the folds. Meanwhile, these edges efficiently maintain their

initial length. This enables an accurate representation of isometric surfaces with sharp

features using only a small number of triangles instead of using some dense mesh sub-

division.

Validation methodology through comparison to real paper. We use experiments

with real paper to validate our method: we quantitatively compare the location and

time of appearance of surface singularities in some simple crumpling configurations. In

addition to these statistical results, we provide visual comparisons with videos of real

paper, enabling us to show that our method generates the same first few folds when a

sheet of paper is crumpled.

The work presented in this chapter has been published in ACM Transaction on Graphics

(TOG) [SRH∗15] and presented at SIGGRAPH 2016. It has also been presented at the

“Journées du Groupe de Travail de Modélisation Géométrique” (Days of the work groups

of geometric modeling) in April 2015 and at the conference WomEncourage in September

2015.

2.2 A new hybrid model for paper material

In this section, we introduce our new model, especially designed to allow the interactive

deformation and crumpling of sheets of paper. We then give an overview of the associated

animation algorithm.

2.2.1 Geometry and physics of paper sheets

The surface model used to represent the shape of a sheet of paper must be highly

deformable, as sharp features may appear anywhere during deformation. This typically

leads to the use of dense meshes, which provide a large number of degrees of freedom
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and reduce the visual artifacts due to badly oriented edges. However, only a limited

number of triangles can be handled at interactive rates.

A key feature of our surface model is to represent sharp features and smooth surface

parts separately. While sharp features are explicitly modeled using positional parameters

– enabling the creation of an arbitrary number of singular points, located anywhere –

smooth parts are modeled using constrained parametric surfaces. This enables us to

reduce the number of triangles of the adaptive mesh used for animation and display,

while providing all the necessary degrees of freedom. A coarse physical simulation,

interwoven with this geometrical model, guides the shape deformations. The choice of

this hybrid approach for paper crumpling is motivated not only by efficiency, but also

by specific geometrical and physical properties of paper material discussed next.

As already mentioned, sheets of paper maintain an exact isometry to their 2D pattern,

i.e. their configuration before deformation. Therefore, they are also exactly devel-

opable, which implies a zero Gaussian curvature. Gauss’ Theorem Egregium states that

the Gaussian curvature is an intrinsic invariant of a surface. A consequence is that de-

velopable surfaces that are curved in two directions must be strained. In addition, when

a sheet of paper is bent leading to a non-zero principal curvature, the second curvature

in the direction of the fold is necessarily zero. The surface thus becomes rigid in the

direction orthogonal to the fold, forcing it to break rather than bend if an orthogonal

force is applied. The surface then necessarily loses smoothness. Indeed, C2-developable

surfaces can be defined as ruled surfaces whose tangent plane is constant along a ruling.

They were shown to be pieces of planes, cylinders, cones or tangential surfaces that join

with tangent plane continuity along some common rulings [SVWG12]. These rulings

being straight lines, a sheet of paper cannot be bent smoothly simultaneously in several

directions. In consequence, forcing some general bending on a sheet of paper, as in

Figure 2.1, leads to the appearance of at least one singularity in the surface geometry.

The appearance of singularities has also been studied in the mechanical literature. Due

to the fact that the bending rigidity of thin plates is much smaller than their stretch-

ing rigidity, the paper mechanical transformations are favorable to bending [CM11].

[Wit07] further explains that thin sheets have the specific behavior of concentrating

elastic energy when being constrained. When the thickness of the thin sheet tends to

0, this energy concentrates into singular points, which are called d-cones. A quanti-

tative investigation confirms that large deformations of thin elastic plates lead to the

formation of singular structures which are either linear (ridges) [LW97] or point-like

(d-cones) [AP97, MC98, CM98]. These generic structures are reflected in the branched

network of vertices and sharp folds in a crumpled paper. Outside of the influence of the

d-cones, the surface is smooth, exhibiting a low distribution of elastic energy [SKD11]:
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Figure 2.1: Geometric structure. Singular points appear when a sheet of paper
is bent in several directions (photograph). Our surface representation (pattern on the
bottom left, and 3D surface on the bottom right) includes flat areas (green triangles)
and curved generalized cones (magenta triangles and quadrangles), whose apex is a
singular vertex (red dots). Flat areas are either defined between singular vertices, or
between singular vertices and junction vertices (yellow dots) separating flat and curved
regions on the boundary. The user directly manipulates the model through handles

(black dots) on the boundary.

it deforms accordingly to classical linear models of continuum mechanics laws. These

d-cones denote developable generalized cones defined by an apex and a one-parameter

family of straight lines (rulings) through a fixed point called the apex. Figure 2.1 shows

a photograph of a crumpled sheet of paper (left) enhanced by sketches of the singular

points and the rulings of the corresponding d-cones (right).

Based on these geometrical properties and physical observations, we propose the follow-

ing paper geometry:
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• The surface is defined as a parametric piecewise continuous developable surface com-

posed of generalized cones (see the magenta rulings in Figure 2.1) and planar pieces (in

green in Figure 2.1). Note that this structure is similar to the one use by Frey [Fre04].

• The apices of the d-cones are modeled as specific vertices that we call singular vertices

(red dots in Figure 2.1). We track the position of these vertices on the 2D-pattern and

on the 3D shape of the deformed sheet.

• The deformation of the surface is guided by continuous mechanics in between plasticity

events, i.e. the creation of new singularities due to the breaking of fibers.

Animating the resulting structure raises specific challenges such as simultaneously bend-

ing smooth surface parts and maintaining singular points, while preserving isometry with

the 2D pattern and therefore preserving developability. In addition, new singularities

have to be integrated incrementally. Our model is especially well adapted to handle

these constraints, since the singular vertices are tracked explicitly and govern the gen-

eration of the smooth surface parts in-between. The animation algorithm is described

next.

2.2.2 Overview of the animation algorithm

Geometric representation for paper:

During the whole animation process, we maintain an isometric mapping between the

paper surface S and its pattern S defined in the 2D parameter domain. ∂S denotes the

sheet’s boundary.

In this work, we use two representations of the surface S: a geometric representation SG

which explicitly approximates S by a set of generalized cones and planar parts, enabling

developability enforcement and the explicit handling of singular points, and a physical

representation SP which is a triangular mesh used for the physical simulation steps.

The geometric model SG = {C ,F} is a coarse mesh defined as a set of curved re-

gions C = {Ci} (in purple in Figure 2.1) and a set of flat regions F = {Fi} (in green in

Figure 2.1).

Each curved region Ci, that we simply call C for the sake of simplicity when there is

no ambiguity, is segmented into a set of generalized cones defined by a one-parameter

family of rulings RC . Each ruling of RC , r = {p1, p2}, is defined and delimited by two

vertices p1 and p2. We distinguish two cases. First, the two points are two vertices lying

on the sheet’s boundary ∂S, in which case their corresponding cone’s apex is either

outside S or ∈ ∂S (magenta quadrangles in Figure 2.1). Second, one vertex lies on ∂S
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and the other is an interior singular vertex (magenta triangles in Figure 2.1), in which

case their corresponding cone’s apex is the singular vertex. The generalized cones are

coarsely sampled on the boundary ∂S. The sampling density of the boundary ρbound is

a fixed parameter defined by the user.

Each flat region Fi, that we similarly call F , is defined by a set of connected trian-

gles TF = {Tj} that triangulate a planar region of the surface. Each of those triangles

is delimited only by singular vertices or vertices from ∂S. The dihedral angle between

any pair of adjacent triangles of a same flat region is lower than a threshold, θ0. All

thresholds and user-defined parameters are summarized in Table 2.6.

The interior vertices of SG (red in Figure 2.1) are singular points of the surface S.

They are the apices of developable cones. The yellow vertices of SG in Figure 2.1 are

another kind of singular vertices. They lie on ∂S and belong to at least two different

regions (curved or flat). Note that all the coarse triangles of the pattern S whose ver-

tices are singular (shown as green triangles in Figure 2.1) are necessarily mapped onto

triangles in the 3D space and not to a more general curved surface: indeed, as all green

edges from S are by definition rulings of the surface S, they are necessarily straight

line-segments, yielding a flat surface in-between (since developable surfaces with planar

boundaries are planar), i.e. a triangle.

The triangle mesh SP is created by adding vertices to SG to ensure a regular and

symmetrical sampling. SP is thus ready to be used by a simulator. The process for

constructing SP from SG will be detailed in Section 2.3. The set of vertices of SG is a

subset of the vertices of SP , so the displacement of the surface computed through the

simulation can be easily mapped to the vertices of SG.

All the notations are summarized in Table 2.1.

Symbol

S paper’s surface

S 2D pattern corresponding to S
∂S boundary of the paper’s surface
SG geometric structure of S composed of C and F
SP physical triangle mesh of S
C set of curved regions of SG
F set of flat regions of SG
RC one-parameter family of rulings of the curved region C
TF set of triangles of the flat region F

Table 2.1: Summary of symbols used.



Chapter 2. Modeling crumpling paper 33

Figure 2.2: Overview of the algorithm. Each animation step combines a standard
FEM simulation (step 1) with a remeshing step (step 2) that approximate the surfaces
using generalized cones and mesh it accordingly, notably by finding the position of
singular points and enforcing them as apex of cones. Developability is improved in

step 3.

Our algorithm develops as follows:

Initialization: The input is a developable surface S defined as a mesh made of triangles

and/or quadrangles, and its isometric mapping to a 2D pattern S, meshed with

the same mesh connectivity. Typically, S is initially a flat mesh, although other

input shapes could be dealt with. Additionally, some handles, i.e. a set of points

that the user can manipulate, are defined. They act as hard constraints and are

used to govern the deformation.

Deformation loop: As the handles move, the paper deforms and may crumple. At

each time step, the algorithm interweaves a physically-based simulation step to

guide the primary smooth deformation of the surface S with two geometry-based

steps, namely a geometrical analysis implying the eventual creation of singularities

and the update of the piecewise developable paper geometry (see Figure 2.2).

These interweaving steps consist of:

Step 1. Elastic deformation. (Section 2.3)

A state-of-the-art physically-based simulation is applied for efficiently deform-

ing the surface mesh SP in a plausible way, but without taking care of paper
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plasticity at this stage. Isometry to S, and therefore developability may get

lost. This step outputs new positions of the vertices of SG.

Step 2: Modeling bending and crumpling (Section 2.4)

• Remeshing of the compressed planar parts. Some of the flat regions are

remeshed according to locally measured compressions in order to ease

subsequent bending.

• Singularity generation. A geometric analysis of SG indicates if and where

new singular vertices have to be generated. SG is remeshed accordingly,

see Figure 2.2-middle.

Step 3: Developable and isometric tracking (Section 2.5)

Firstly, SG is segmented into quasi developable regions by locally computing

the best approximation by generalized cones and developability is geomet-

rically enforced by aligning the mesh edges along these rulings. Secondly,

isometry preservation is optimized by constraining edge lengths. The struc-

ture of SG is finally used to update the mesh SP before displaying it and

performing the next iteration of the animation loop, see Figure 2.2-right.

Throughout the description of our method, we will refer to Figure 2.3, which shows

another general example case spanning two successive steps of the algorithm loop.

2.3 Physically-based deformation

2.3.1 Physical simulation

The first step in the animation loop consists in computing the deformation of the sheet

of paper using a standard physical-based simulation method, based on elastic energy.

More precisely, our implementation makes use of the simulation code provided by Narain

et al. [NSO12]. It relies on Green strain computation for stretching forces, while bending

forces are computed using discrete flexural energy [BMF03, GHD∗03]. The time integra-

tion is performed using implicit integration and we usually obtain convergence after 10

to 100 iterations. The simulation also integrates collision detection based on a hierarchy

of bounding volumes [TMT10].

Handle positions, interactively controlled by the user, are enforced as hard constraints

on the corresponding vertices of SP while the physical simulation relaxes the deformed

mesh to a smooth rest state. We also provide control on the tangent plane at the han-

dles through the control of neighboring vertices – between two and four fixed vertices
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(a) : displacement of the handles according to the user input.
(b) : physic relaxation of the triangle-mesh (Section 2.3.1).
(c) : updating of the position 3D of the point of the structure.
(d) : flipping the compressed edges (if possible) for each flat area (Section 2.4.1).
(e) : creation of curved area from compressed flat areas (Section 2.4.2) and generation
of fracture points if needed (Section 2.4.3).
(f) : displacement of the junction points (Section 2.5.1).
(g) : update the rules of each curved area (Section 2.5.2).
(h) : generation of a triangle mesh from the structure (Section 2.3.2).
(i) : displaying the triangle mesh on screen.

Figure 2.3: An example of two successive animation loops.

around the handle defined the tangent plane according to whether the handle is in a

corner, a border of the paper or inside the surface. This enables us to achieve more

realistic movements, mimicking the tangent plane control due to the pressure of fingers.

Arrows (a) and (b) in Figure 2.3 illustrate the user-defined deformation followed by a

physics-based simulation.

Yet, contrary to standard elastic simulation, our triangular mesh is made of a very few

triangles, which are moreover dynamically adapted during the deformation. This leads

to specific constraints when setting up the simulation, described next.
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2.3.2 Enriching the coarse mesh before simulation

Let us first note that the coarse mesh SG composed of triangles from F , and triangles

and quadrangles from C (see Figure 2.4-left) enables us to obtain most of the necessary

degrees of freedom for surface deformation, while allowing very efficient computation.

The edges from C are oriented along the rulings of the surface which enables us to

maintain the rigidity of the bent region, and the vertex positions of ∂S adequately

sample the degrees of freedom needed for manipulating the boundary of the surface.

Still, SG represents the planar regions from F without using any interior vertex. This

coarse representation does not provide the necessary degrees of freedom for the simula-

tion to locally deform these parts of the surface. To enable a more flexible configuration,

we insert extra vertices in SP , interior to the surface and on the boundary ∂S, such that

flat domains are uniformly and isotropically sampled. The number of additional vertices

is controlled through user-defined density values, ρbound for the boundary and ρint for

the interior. The new vertices inside a same flat region are connected using Delaunay

triangulation.

Note that an edge of SG between two flat regions has a higher dihedral angle and can

then be considered as the one ruling of a degenerate cone. Thus such an edge is not

sampled and is then also an edge of SP (see for example Figure 2.5). In this way, edges

between two flat regions will be sharper than edges inside a flat region.

Similarly, the quadrangles of the curved regions C from SG need to be triangulated

in SP . To preserve the original symmetry of the quad, an extra vertex is inserted at

its barycenter and connected to the four vertices, see Figure 2.4. Note that these long

triangles aligned with folds increase the stiffness in this direction as a natural side effect,

which correlates well with real paper behavior.

In practice, SP is computed just before display, at the end of the animation loop, enabling

us to use it as well as the visual representation of the paper surface. See the step (g)

in Figure 2.3. SP is then used for simulation at the next animation step (steps (a) and

(b)). Finally, the new position of its vertices are used to update the position of the SG

vertices (step (c)).

2.3.3 Modeling fiber damage.

In a smooth bent configuration, i.e. without interior singular points, bending forces tend

to make the sheet flat when no constraint is applied, since the bending force equals

zero when the dihedral angle between triangles is also zero. But when the sheet is
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Figure 2.4: Creation of the physical triangle mesh structure SP (middle) from
the geometrical mesh structure SG (left). The added vertices and edges in SP are shown

in gray.

crumpled and contains singular vertices, the surface should not come back to such a flat

configuration by itself, as the paper fibrous structure has been damaged. We model this

plastic behavior using a non-zero rest angle for the bending force and by weakening the

resistance to bending around the interior singular vertices. We call θrest the rest dihedral

angle, meaning that the bending force tends to generate triangles with dihedral angle

θ = θrest.

Let us call N sing
i the number of edges around the vertex i. For each vertex i we define:

θi =

{
θrest/(N

sing
i ) if the vertex i is a singular vertex

0 otherwise
(2.1)

We set the dihedral rest angle of edge (i, j) to

θrest = θi + θj .

This way, the rest angle is distributed around the singular point and the singularity will

remain visible even when no constraint is applied. An edge between two singular points

will be marked more than others.

In the same way, we weaken the bending stiffness around a singular point by associating

a damage parameter d to each edge. For each vertex i we define:

di =

{
D/(N sing

i ) if the vertex i is a singular vertex

0 otherwise
(2.2)

and set the damage parameter of edge (i, j) to

d = di + dj .

The bending stiffness for each edge is then the general bending stiffness set for the

simulation multiplied by the corresponding factor 1
1+d (which is conveniently 1 when

the damage is null).
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We experimentally set the parameters Θrest = π/8 and D = 10 while trying to match

the behavior of standard sheets of paper (70 g/m2). Those values could be tuned to

model thinner or thicker paper material. Note that those formula aim at procedurally

modeling the effect of the damage of the structure of the paper with sharp singular

vertices (and sharp edges between two singular vertices) that stay marked even after

releasing all the constraints. Still, note that such formula may not accurately reflect the

involved physics.

2.4 Modeling bending and crumpling

Algorithm 1: Geometric step

Data:
list of curved regions : curved list ; // list of current curved regions

list of flat region: flat list ; // list of current flat regions

for cr ∈ curved list do
update junction points (cr) . See Section 2.5.1
if is null ( cr) then

rm cr from curved list
end
update ruling (cr) . See Section 2.5.2

end
for fr ∈ flat list do

flip edges (fr) . See Section 2.4.1
treat compression (fr, out list of new curv r, out list of new flat r)

. See Section 2.4.2 and Section 2.4.3
push list of new curv r into curved list
push list of new flat r into flat list
if is null ( fr) then

rm fr from flat list
end

end

We restrict our surface SG to deform with bending and crumpling instead of stretching.

This is achieved by adapting the connectivity of SG while still keeping a very coarse

triangulation, thanks to our hybrid model taking into account the specific developability

properties of paper.

In the following, we consider two adjacent triangles to be coplanar if the dihedral angle

between them is smaller than a user-defined threshold θ0. Using this approximation,

we define a flat region F as a maximal connected set of pair-wise coplanar triangles

TF = {Tj} (the dihedral angle between any pair of adjacent triangles should be ≤ θ0).
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2.4.1 Flipping edges in the flat regions

As explained before, a flat region F has two different representations: 1) it is repre-

sented by a set of triangles TF whose vertices are either finger points, i.e. fixed points

representing the positions of fingers, or (interior or boundary) singular points (in black

on Figure 2.5) for SG, 2) a denser triangulation (in grey) is done by adding isotropi-

cally sampled vertices for the physical representation SP . The denser triangulation of

Sp is used for the simulation step so the sparse triangulation of a flat region in SG does

not matter for the simulation step. This is why we rather choose this triangulation in

order to ease the detection of the separation between two flat regions. Indeed if the

dihedral angle between two triangles of TF becomes ≥ θ0, F must be divided into two

new regions.

Figure 2.5: Swapping of an edge. In order to divide a flat region on the right edge
to handle a fold, the edges representing a flat region in SG may need to be flipped.

This is explained by the example shown in Figure 2.5. A sheet of paper is held hori-

zontally flat by four fingers on the four corners. The surface is only composed of one

flat region F (see Figure 2.5 (a)). The left bottom corner is then lifted upward. We

detect that the green edge e1 has a dihedral angle θ > θ0 so F is divided into two new

flat regions separate by e1 (Figure 2.5 (b)). Going back to the flat configuration of the

sheet, if we rather lift the bottom right corner, F needs again to be divided in two, but

e1 does represent this separation well, it will be compressed but its dihedral angle will

stay low (Figure 2.5) (c)). This is why we need to detect such a situation and flip edges

if needed (Figure 2.5) (d)) in order to be able to model the division of a flat region in

any direction. This is done in the following way.

To measure the compression of an edge e, we consider the deformation of its length

ce = (le − le)/le,

where le and le are the length of e belonging respectively to S and S.

We consider e as compressed if ce is greater than a user defined threshold εc (between

10−3 to 10−2 in our examples). We flip en edge e1 between two triangles of the same

flat region when e1 is compressed and the alternative edge e2 is not.
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Note that it is important to find the edges which separate two flat regions because,

contrary to edges inside a flat region, they are also edges of SP and have a notable

influence on the physical simulation and also on the visual representation.

2.4.2 Analyzing mesh compression to generate bent surfaces

Most of the time, flipping edges does not enable to fully prevent triangles in a flat region

from getting compressed. In such case, a planar part of the paper must be able to

bend in the direction implied by the compression. Note that such direction may be

arbitrary within the triangle plane. The refined triangulation (see Section 2.3) of the

planar regions enables the physical simulation to bend them slightly when compressed.

But in order to enable them to bend further in a smooth way, we need to adapt the

geometry of the compressed region.

When a flat region bends in SP , leading to compression for the coarse triangles in SG,

new rulings (i.e. directions of zero curvature) are inserted into SG along the direction of

minimal compression (see Figure 2.6). Therefore, bending in the direction of maximal

compression will be favored, whereas the surface will be more rigid in the direction of

the rulings and more likely to avoid future compression or bending along this orthogonal

direction.

This specific local remeshing is performed in the 2D pattern space before applying it to

SG in 3D. It is applied to each flat region F ∈ F and consists of 3 steps:

(a) Computing the most compressed triangle in F and the direction of minimal com-

pression;

(b) Computing a triangle strip spanning F , and aligned with the direction of minimal

compression;

(c) Remeshing F locally, with possibly the insertion of new singular vertices (see

Section 2.4.3).

Analyzing local compression

For each triangle in F , the direction in which the triangle is the most compressed is

computed using the standard method based on stretch tensors described in Rohmer et

al. [RPC∗10] which computes the principal directions of strain:

Given a triangle t (respectively t) from the 3D mesh S (respectively S), let (e0, e1)

and (e0, e1) be the 2D edge vectors of the shape in the local frames of t and t. Let

F = [e0 e1][e0 e1]
−1, be the 2x2 transformation matrix and U = (FT F)1/2 the stretch
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tensor. If the triangle t is compressed with respect to t in at least one direction, then the

largest eigenvector λ of U with 0 < λ < 1 indicates compression and the corresponding

eigenvector v the direction of maximal compression. (λ = 1 when t and t are congruent,

λ > 1 indicates extension: note that we do not treat such cases in this chapter; Tearing

being handled in Chapter 3.) The maximal compression ratio of t can thus be measured

by 1− λ.

We call Tcomp the triangle of TF (set of triangles of F ) of the largest compression ratio

(red triangle in Figures 2.10,2.11,2.12(a)). This triangle should actually not belong to a

flat region anymore but should bend during the next simulation step. To encourage this

bending behavior, our algorithm remeshes the surface locally such that the new edges

align as well as possible with v⊥, i.e. the direction of minimal compression, orthogonal to

v, see Figure 2.6. This remeshing step (corresponding to Section 2.4.2 and Section 2.4.3)

is then repeated until there is no flat region with a highly compressed triangle anymore.

Figure 2.6: Bending of a triangle. We remesh a compressed triangle from SG using
rulings in the direction of minimal compression v⊥, to favor uni-directional bending in

subsequent simulation steps.

We now detail the actual remeshing process relying on a propagation algorithm com-

puted in the 2D pattern space. This is done using a fast procedural method based

on geometrical considerations (finding a physically accurate method for this step is left

for future work). The idea is to compute the region affected by the bending of Tcomp

by propagating endpoints of imaginary rulings aligned along the direction of minimal

compression v⊥ in both directions until reaching the boundary of F .

To achieve this, we use a method divided in two steps: First, as explained in the para-

graph (Step 1), we use an iterative algorithm in the 2D pattern space to compute the

prolongation of the imaginary rulings generated by the compression of Tcomp. This al-

lows us to determine a strip of triangles of TF affected by the bending of the Tcomp and

the two borders which are the limit of the rulings of the new curved region. To obtain

each border, we compute on each side whether the rulings can reach the boundary ∂S

on the paper, in which case the border is a boundary edge, or if they reach an already

constrained edge, in which case the border is the interior singular point created to solve

the conflict.
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Second (see the paragraph (Step 2) for more details), we divide the region found into

the parts which stay planar and the part corresponding to the new curved region and

then remesh the region accordingly.

(Step 1) Computing a triangle strip aligned with v⊥: this algorithm takes the

compressed triangle Tcomp and the direction of minimal compression v⊥ as input. It

computes and returns a triangle strip composed by triangles affected by the compression

of Tcomp and the two borders of the strip. We call border the edges of triangles in TF

where the triangle strip ends. This border is either a part of ∂S (Figure 2.8(b)), or an

internal ruling (Figure 2.8(c,d)).

To initialize the algorithm, we choose the two edges of Tcomp which are the most af-

fected by the compression by selecting the edges which form the largest angle with v⊥,

as shown in Figure 2.7-top. We then iteratively apply to each of the selected edges e one

of the following propagation steps with the direction of propagation being respectively

dprop = v⊥ and then −v⊥ until finding the corresponding borders of the region.

Figure 2.7: Initialization of the propagation method. New edges (rulings)
inserted in the direction of minimal compression make a triangle likely to be bent as a
conical surface during the next simulation step. Top: triangle without singular point.

Bottom: triangle with singular point.

A particular case arises when the edge e of Tcomp with the largest angle to v⊥ is opposite

to a singular point s (see Figure 2.7-bottom). In this case, the singular point (i.e. apex

of a d-cone) plays the role of a special border imposing that all rulings pass through it.

The propagation algorithm iterates for a given edge e and a direction of propagation

dprop until a border is found as follows:
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• if e is common to another triangle T ∈ TF (the dihedral angle of e being smaller

than θ0), then we collect T and we selected the edge of T (other than e) which

forms the largest angle with dprop, see Figure 2.8(a), and continue the propagation

with the next iteration. Note that of the other edge of T may also be affected by

the compression, in this case, a following step of remeshing will affect it.

• if e belongs to the boundary of the paper, it can bend freely. So we return e as

border of the triangle strip, see Figure 2.8(b).

• if e is common with a triangle T belonging to another flat region (the dihedral

angle of e being larger than θ0), the angle between the two triangles prevents the

edge from bending freely. We need to add a singular point along the edge e which

will split it in two. The newly created singular point s is returned as border of the

triangle strip, see Figure 2.8(c).

• in the same way, if e is a ruling of a curved region C, the rulings of the curved

region to be created will be in conflict with the rulings of C. To deal with the

two different directions of curvature, a singular point s has to be added inside the

curved region and is returned as border of the affected region, see Figure 2.8(d).

The last two cases (Figure 2.8) (c) and (d)) lead to the main contribution in this section,

namely the insertion of new singular points. Indeed the conflict between the rulings

we intend to place in TF and the already existing curved part they cross is solved

by generating a new singular point. The technical details related to singular points

generation are given in Section 2.4.3.

(Step 2) Remeshing F locally:

The algorithm above gives us a triangle strip which will contain the new curved region.

The deformation may however not necessarily affect the whole region. We define the

actual limit of the curved region to be created by the extremal rulings rlim1 and rlim2

such that there is no singular point inside the region, see Figure 2.9. According to the

borders previously computed, we have three cases:

• Both borders eb1 and eb2 are edges of the boundary of the paper ∂S. In this

case the inserted rulings are parallel to the direction of propagation v⊥ and are

delimited by an endpoint on each border, see Figure 2.9(a). This configuration

also occurs in the example shown in Figure 2.10.

• One border is an edge, eb, of the boundary of the paper, the other is a singular

point s. In this case, s being an apex of a generalized cone, the rulings are attracted

by s and are thus delimited by s and an endpoint on eb. So the rulings actually
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Figure 2.8: One step of the propagation algorithm. The four possible cases of
the imaginary rulings propagation algorithm. The edges met during propagation may
respectively belong to: another triangle of the same flat region (a), ∂S (b), another flat

region (c), a curved region (d).

inserted are conical instead of parallel to v⊥, see Figure 2.9(b). Another example

is shown in Figure 2.11.

• Both borders are singular points s1 and s2. The rulings are attracted at the same

time by s1 and s2, so the curved region degenerates into a single edge (s1, s2), see

Figure 2.9(c). Figure 2.12 shows such an example.

In the rare cases where we cannot find two rulings rlim1 and rlim2 without any singular

point between them, we do not generate a new curved region and let the physical sim-

ulation further deform this region until the geometrical step could find a proper change

of connectivity.

If not degenerated, the curved region is defined by a set of rulings between rlim1 and

rlim2 . We choose the number of rulings in order to respect the sampling density ρbound.

Each ruling is defined by two endpoints (singular or belonging to the boundary ∂S of

the paper). The position of an endpoint belonging to ∂S in the 2D pattern space S is
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Figure 2.9: Remeshing locally. The propagation algorithm returns two borders –
either a point or an edge – of the region that needs to be remeshed. This gives us three
cases: (a) both borders are edges, (b) one edge and one singular point, and (c) two

singular points.

computed as the intersection of the ruling and ∂S. The 3D coordinates of these points

are computed using cubic interpolation along the boundary curve given by the mesh SP

used in the physical simulation. Thus the newly created region is actually curved and

its boundaries correspond to the curved boundary of SP .

Finally, the rest of the region is triangulated, with the additional constraint in the

degenerated case to enforce (s1, s2) as an edge.

We can see in the Figure 2.10 (bottom left) that the deformation of a flat region induces

bending of SP whereas the triangles of SG become compressed since the coarse trian-

gulation of SG is not flexible enough. These two meshes are input to the ”bending and

crumpling” step of our animation loop as described in Section 5. The specific remeshing

of SG (Figure 2.10 (bottom right)) with rulings inserted as explained in Section 5, can

bend more easily and therefore better matches the shape of the input SP .

The whole process is also represented in Figure 2.3(d), where the first row shows the

case of inserting rulings into a non-constrained flat region, whereas in the second row a

singular point needs to be created.
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Figure 2.10: An example of remeshing without creating any singular point.
Generation of rulings to favor further bending when the propagation reaches the bound-
ary ∂S at both ends. (a) The triangle of maximal compression is marked in red. (b)
Propagation of triangle strip with imaginary rulings as dashed lines. Both borders

belong to ∂S. (c) Rulings inserted (purple lines). (d) Final meshing of S and SG.
Top: the steps in the 2D pattern S.

Bottom: the 3D structure of SG and the mesh SP used by the physical simulation at
the beginning (left) and at the end (right) of the process.

Figure 2.11: An example of remeshing with the creation of one singular
point. (a) compressed triangle in flat region. (b) The imaginary rulings of the triangle
strip encounter a non-constrained border (fat black) at one end and a constrained
existing ruling (fat purple) at the other end. (c) A singular vertex is created and (d)

conical rulings are inserted in SG.

Figure 2.12: An example of remeshing with the creation of two singular
points. (a) compressed triangle in flat region. (b) Imaginary rulings and 2 constrained
borders (fat purple lines). (c) 2 singular points and a ruling between them are then

inserted. (d) Final meshing of SG.

2.4.3 Singularity generation

As stated previously, a piece of surface that starts to bend generates rulings that prop-

agate throughout the whole surface. When these rulings intersect another preexisting

ruling, see Figure 2.8 (c) and (d), defined in our mesh by an edge called elim, we introduce

a new singular vertex to accommodate for the two non-compatible constraints.
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Finding the singularity position.

The formation of new singularities when real pieces of paper are compressed in two oppo-

site directions depends on various parameters such as paper mechanical properties and

external mechanical constraints. We can also note that the position of the singularity

can largely vary even when crumpling sheets of paper of the same thickness and under

similar constraints.

As easily verified by experiments, changing the direction of zero curvature (direction

of the rulings) of a piece of paper in order to bend it smoothly in an arbitrary direction

is easy as long as the surface is flat, or has a sufficiently low curvature along its cur-

rent rulings direction. The singularities appear when the change of the zero-curvature

direction reaches another region with high curvature values. This is why singular points

usually appear at the junction between weakly curved regions and higher curved regions.

Let us first consider the case where elim is a ruling of a curved region C (blue edge

in Figure 2.8(d)). In order to derive a law for placing the singular vertex, we repeated

many times the same simple experiment shown in Figure 2.13 with real paper. We

observed that the singular point does not exactly appear on elim but is shifted in the

direction of v⊥ where the surface starts to bend. See Section 2.6.1 and Figure 2.20 for

more details on this experiment. We therefore pursue the previous propagation algo-

rithm until we reach a ruling with higher curvature in the orthogonal direction, which

we quantify using the dihedral angle (i.e. the angle between the two adjacent triangles

or quadrangles whose common edge is the ruling). Let esing be the first ruling encoun-

tered in the v⊥ direction with dihedral angle larger than θ0. The edge associated with

this ruling will be considered as the most probable location for new singularity insertion.

We define s, the actual position in the 2D pattern S of the singular point s to be

added, as being at a random position close to the edge esing as illustrated in Figure 2.13

(left). To this end, we choose the probability χ(s) of creation of a singularity at a posi-

tion s as being uniform along the edge esing, and normally distributed according to the

distance to this edge. This is done using the law χ(s) = exp(−d2/σ2), where d is the

distance between s and esing, and σ is a parameter taking into account the variability of

the position of the singular vertex. In our experiments, we chose σ = 0.1 cm. Finally,

we compute the 3D coordinates of s from s.

The second possible case we consider arises when the ruling elim is an edge shared by

two triangles belonging to two different flat regions (blue edge in Figure 2.8(c)). Then,

the large dihedral angle prevents the surface from bending. In this case, we insert the

singularity directly on this edge at a random position and set esing = elim.
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Figure 2.13: Computing the position of a singular point. A configuration
where compression acts on top of an existing curved domain. The singular vertex to
be inserted has a higher probability to appear in the red region. The edge esing at the

center of this region is highlighted in red.

Remeshing the pattern and the surface around the singularity.

The singularity ps, i.e. the apex of a d-cone, is inserted when the propagating rulings

of the flat surface region meet the ruling of an existing surface part. We have already

described in Section 2.4.2 how we set actually the newly introduced rulings of the flat

surface. In this section, we describe how we change the existing rulings of the already

bent surface.

The introduction of the singular point into a curved area also makes the closest rulings

of this area converge toward the singularity. Changing arbitrarily the direction of the

rulings is only possible in the flat regions, i.e. as long as the dihedral angle of the rulings

is smaller than θ0. In practice, when adding a singular point s into a curved area C, we

suppress the rulings of C in the direction v⊥ from esing until reaching the next rulings

to have an angle superior to θ0 –or the opposite border of C– that we call esup, and we

create new curved areas, which are represented by a single generalized cone whose apex is

s, between the old position of the border ruling and the new one as show in Figure 2.14

left and middle. To enable geometric continuity between the newly remeshed region

and the existing bent surface, we introduce a transition surface as a flat surface (green

triangle in Figure 2.14 left and middle).

In the case of a singular point created between two triangles (Figure 2.14 right), the

common edge will be considered as a degenerate curved area with only one ruling.
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Figure 2.14: Newly inserted singularity and associated remeshing.

2.5 Developable, isometric tracking

The last step of our method consists in computing a fully developable approximation of

the current geometric mesh SG and ensuring its isometry with the 2D pattern S. The

resulting geometric mesh will be refined into SP by tessellating flat regions before display.

While segmenting an arbitrary mesh into approximately developable regions is a dif-

ficult problem requiring non-linear optimization [LP98, JKS05], we take benefits of the

specific structure of SG in our case: we first update junction points at the limit between



Chapter 2. Modeling crumpling paper 50

flat and curved regions (Section 2.5.1) and then segment the latter into generalized

cones, providing us with rulings for edge alignment (Section 2.5.2). We then apply a

new method, introduced in Section 2.5.3, for improving the length of mesh edges in

order to keep accurate isometry with S. Note that ensuring developability first gives us

a good starting point for this isometry optimization process.

2.5.1 Finding the limit between flat areas and curved areas

Junction points are points at the surface boundary ∂S where at least one curved re-

gion and at least one flat region connect (yellow points in Figure 2.1, Figure 2.11 and

Figure 2.12). They can be considered singular as they are points where rulings (from

different regions) cross. Yet these points do not model a permanent plastic effect: there-

fore, contrary to interior singular vertices, which represent actual damage in the fibrous

structure of the paper, they may move over the 2D pattern during the animation. For

instance, if the constraints applied to a smoothly curved region progressively relax, junc-

tion points slide and may disappear leading to a large planar region. Our process for

updating these points, described next, corresponds to the arrow (e) in Figure 2.3.

To take the possible expansion or shrinking of planar regions into account, we com-

pute for each curved region C, the dihedral angle θCF at each border ruling between C

and an adjacent flat region F (these border rulings are either defined by two junction

points or by a singular point and a junction point). We compare this angle to two

thresholds θlow and θhigh as follows: if θCF < θlow, we move the corresponding junction

point(s) as to expand the planar region until we reach a ruling whose angle is larger

than θlow (see Figure 2.15-left). Inversely, if θCF > θhigh, we move the junction point(s)

as to expand the curved region, enabling subsequent simulation steps to smooth out this

angle (see Figure 2.15-right). If F is also adjacent to another planar region Fopp or to

another curved region Copp with the same junction point, we allow C to expand only if

θCF > θopp (see Figure 2.16).

We usually choose θhigh = θ0 and θlow = θ0/10. Choosing θhigh sufficiently different

from θlow is important, such that the hysteresis prevents junction points from oscillating

too much. If the dihedral angle at all rulings of C are < θlow, the curved region is com-

pletely replaced by a flat region, which captures the case of a curved region becoming flat.

In order to maintain the consistency of the geometric model, we also prevent a junction

point from moving if it would cause an interior singular point to get inside a curved

region.
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Figure 2.15: Displacement of a junction point. 2D view of a border of the sheet
of paper showing the displacement of a junction point between a curved region and a

flat region.

Figure 2.16: Displacement of a junction point joining a flat region and two
curved regions.

2.5.2 Fitting generalized cones

We now seek to approximate each curved region by generalized conical surfaces as il-

lustrated in Figure 2.17. A curved region which contains an interior singular point s is

necessarily represented only by one generalized cone whose apex is s. In this case, we

just ensure that the corresponding border of the surface is correctly sampled (i.e that

the number of points on this border corresponds to the density ρbound). The following

explanations therefore concern only the other case, when the curved region does not

contain any interior singular point.

We approximate the surface of a curved region C in a set of generalized cones based

on the current rulings. Note that, as we saw earlier, when a curved region is created
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the rulings are initialized all in the same direction parallel to the direction of minimum

compression. The rulings are then updated to fit the set of approximating generalized

cones.

Figure 2.17: Segmentation of the surface into piecewise conical pieces in
the top. The colored parts correspond to pieces of developable generalized cones
whose rulings are converging toward their respective apex a satisfying equation 2.3.
Each region may be separated by flat triangular regions in green ensuring tangential

continuity. The junction vertices are shown as yellow dots.

Finding the apex of a generalized cone.

In order to find the apex of a generalized cone that approximates a list of rulings, we

take inspiration from the surface reconstruction method in [Pet04] and compute the

best approximating generalized cones using the Blaschke model1, which is particularly

well adapted to our setting. This model enables us to fit a one-parameter family of

tangent planes from the estimated tangent planes along the rulings of our surface strips.

The resulting surface is developable. We summarize this model and the way we use

it below. See [Pet04] and the references herein for a more detailed description in the

context of Laguerre geometry.

Let E be an oriented plane in Euclidean space R3. E is uniquely defined by its unit

normal vector n = (n1, n2, n3) and the signed Euclidean distance w between E and the

origin of R3. Thus E can be represented by the point (n1, n2, n3, w) of R4. Similarly, the

whole set of oriented planes of R3 is represented by a set of points u = (u1, u2, u3, u4)

of R4 obeying:

B : u21 + u22 + u23 = 1

This set is called the Blaschke cylinder. You can visualize it as the Gaussian sphere

extruded along the fourth coordinate.

Each tangent plane, represented by a point (n1, n2, n3, w) in R4, of a generalized cone

passes though the same point a which is the apex of the cone. Thus, they all are

1Wilhelm Blaschke (1885-1962) Mathematician, differential geometer.
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contained in the hyperplane:

H : n · a + w = 0,

with ‖n‖2 = 1. We use this property to compute the apex a of the generalized cone that

best approximates a surface as follows:

Let us consider N rulings r associated with a smooth part of the mesh and their asso-

ciated normals (constant along the ruling) n. We call ni (resp. Ti) the i-th consecutive

normal (resp. tangent plane associated to this normal). Finding the point a in a least

squares sense requires to minimize the error e given by:

e =
∑

i=1...N

‖ni · a + wi‖2, (2.3)

where wi is the Euclidian distance between the origin and the tangent plane Ti. Note

that this error can be seen as the sum of the squared distances between all the tangent

planes and the apex a.

Algorithm 2: Segmentation

Data: rulings list ; // current rulings of the curved region

Result: apices list ; // apices of the cones segmenting the curved region

indices list ; // indices of the rulings corresponding to each cones

n ← size(rulings list)
apices list ← {}
indices list ← {0, n }
segmentation rec (rulings list, apices list, indices list)

An iterative segmentation algorithm.

In practice, we use an iterative algorithm to find a segmentation into generalized cones of

our curved surface strips such that the error e is smaller than a fixed threshold εblaschke

that we set to 0.5% × Lpaper. We start our algorithm by setting Icur = {ri}i=1...N as

the list of ordered rulings defining a curved area in the current segmentation. We also

initialize two empty lists Ibegin and Iend. Using the Blaschke model presented above,

we compute the apex a of the approximating generalized cone defined by Icur and the

corresponding error. Until the error is smaller than εblaschke, we iteratively remove either

the first or the last ruling from Icur and either add it to the list Ibegin or to Iend. The

selected ruling is the one associated to the largest, between the two possible rulings,

error contribution ei = ‖nbi · a + wi‖2, meaning that its tangent plane has the largest

distance to a. The result of this algorithm is a suitable subset of rulings that can be

approximated by a generalized cone with apex a with an error smaller than εblaschke.

We then restart the process on Ibegin and then Iend. In this way, we obtain a list of

apices with, for each one, a list of corresponding rulings. The recursive algorithm is
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Figure 2.18: Segmentation algorithm: an example.
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Algorithm 3: Segmentation: takes in entry a list of rulings and two indices and
return the list of apices approximating the rulings between those two indices and the
corresponding list of indices.

Data: rulings list, apices list, indices list
Result: apices list, indices list
if ← indices list.front() ;
ib ← indices list.back() ;
apex ← compute apex approx (rulings list, if , ib) ;
. compute the apex of the cone the best approximate rulings between the indices using
Blaschke Cylinder

error = compute error (apex, rulings list, if , ib) ;
. compute the error of this apex

while error > εblaschke do
if compute error ( apex, rulings list, if ) > error( apex, rulings list, il) then

if + + ;
else

ib −− ;
end
apex ← compute apex approx (rulings list, if , ib) ;
error ← compute error (apex, rulings list, if , ib) ;

end
if indices list.front() 6= if then

segmentation rec (rulings list, front apices list = {},
front indices list = {indices list.front(), if}) ;

else
front indices list← {if} ;
front apices list← {} ;

end
if indices list.back() 6= ib then

segmentation rec (rulings list, back apices list = {},
back indices list = {ib, indices list.back()}) ;

else
back indices list← {ib} ;
back apices list← {} ;

end
apices list ← front apices list :: apex :: back apices list ;
indices list ← front indices list :: back indices list ;

described in Algorithm 2 and Algorithm 3. An example of this algorithm is depicted in

Figure 2.18.

The last step consists in aligning the existing rulings (magenta lines in Figure 2.1) with

the rulings of the corresponding generalized cones, as follows. We consider the ruling

rj associated to the minimal error contribution ej = ‖nbj · a + wj‖2 and compute the

orthogonal projection of the apex aproj onto this ruling. The image of aproj in the

2D pattern space aproj is computed using its local coordinate within the ruling frame.

Then, we resample the vertices on the boundary curve such that the 2D edge lines are all
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converging to aproj as shown in Figure 2.19. The 3D coordinates of the newly sampled

vertices are finally mapped to the 3D boundary curve using cubic interpolation.

Two successive generalized cones c1 and c2 join on the boundary ∂S either on a common

ruling (as the two most left cones on Figure 2.19) or at the point b where their extremal

rulings cross. In the second case, the point sb is singular. Thus we consider the gap

between the two cones (in green in Figure 2.17 and Figure 2.19) as a generalized cone

cgap whose apex is b and remesh it accordingly. Note that the first and the last rulings of

cgap are respectively the extremal ruling of c1 and c2. In this way, the remeshed curved

area is represented by a set of generalized cones joined by common rules and thus is

developable.

Figure 2.19: Remeshing inside a curved region. First row: the current rulings
are used to find a list of apices a1, a2, a3, a4 (a4 being at the infinity) corresponding
to the surface. Second row left : area of influence of each apex. Second row right:
resampling of the boundaries in order to have in each area the rulings converging to
the corresponding area. Last row left: resampling of the gaps between the area by
considering them as cones whose apices are b1, b2, b3 and b4. Last row right: final mesh
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During the resampling process we have just explained, we may need to add or remove

rulings in order to keep a sample density ≥ ρbound along the border of the paper for each

cone.

The approximating surface is a succession of patches of generalized cones joined along

a common ruling, so it is developable.

2.5.3 Preserving length with respect to the pattern

To explicitly enforce the lengths of edges of the mesh in S to match those of the pattern

S̄, we use a new, efficient optimization process implemented by Jerry Shuo Jin and

Charlie Wang. The algorithm is decomposed into two phases. In the first phase, the

optimal directional vectors of edges are computed using constrained optimization. In

the second phase, the positions of vertices are updated using a least-square formulation.

Unlike vertex-based prior work of shape optimization, this new formulation can explicitly

enforce the preservation of edge lengths.

More details can be found in [SRH∗15].

2.6 Results

In addition to the results provided in this section, we encourage the reader to look at

the video available at the following link https://hal.inria.fr/hal-01202571/file/

video_with_sound.mp4. The video shows notably the animations presented in Fig-

ure 2.21 and Figure 2.26.

2.6.1 Validation

In this section, we use experiments involving real pieces of paper to validate our animated

model. Note that contrary to previous approaches, we specifically conduct comparisons

in the critical state when the paper begins to deform and just a few singular vertices

appear. Indeed, these cases are easily reproducible with real paper and their specific

behavior is rather familiar. Contrary to very crumpled paper in which one can hardly

predict where the next sharp features will appear, the shape of little crumpled paper

and also when and where the first sharp features appear is very visually noticeable.

Capturing these accurately is thus a key element towards realism.

https://hal.inria.fr/hal-01202571/file/video_with_sound.mp4
https://hal.inria.fr/hal-01202571/file/video_with_sound.mp4
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For each validation test, we started from an flat initial mesh S (which helped to reproduce

the same situation in real life), of size Lpaper = 10cm. The boundary ∂S of the virtual

paper is initially sampled with 12 vertices.

First sharp feature. The first experiment, shown in Figure 2.20 (left), was used to

validate the way new singular vertices appear: we move the two opposite sides of an

undamaged sheet of paper closer to each other by a factor of 10% and then apply an

orthogonal constraint on one of the edges until a singular point appears. We then mark

the real paper with the position of this singular point, and repeat the experiment 20

times with a new sheet each time. The same experiment is conducted the same number

of times with our virtual paper model, using the random factors in the placement of

singular vertices described in Section 2.4.3. The resulting distributions of the position

of the first singular point are depicted in Figure 2.20 (center and right), for printer paper

and writing paper. In order to adapt our model to the type of paper, we choose the

variance of the probability law to be σ = 0.001 for the printer paper (whose density is

70 g/m2) and σ = 0.01 for the writing paper (whose density is 90 g/m2). Our results

show a good correspondence between real measurements and our model.

Figure 2.20: Comparison between the positions of the first singular vertex,
in real and in virtual. The real measurements are shown as black crosses, while the
positions generated by our method are represented as red dots. The graph in the center
refers to a 70 g/m2 paper, modeled using σ = 0.001. The graph on the right refers to

a 90 g/m2 paper, modeled using σ = 0.01.

Visual comparisons between real paper and our results are also provided in Fig-

ure 2.21 with two experiments. The top row illustrates the deformation of a smooth

strip of paper continuously twisted towards a Moebius strip. This experiment validates

in particular our method to segment a smooth curved region into a set of generalized

cones (Section 2.5.2). Our method enables to handle even complicated twisted shapes,

with different directions of curvature and highly bent parts. Note that a similar idea

has been recently proposed in [SHCB15] to simulate inextensible ribbons.
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Figure 2.21: Comparison with real paper. We compare our results with the
deformation obtained with real paper for a smooth surface (top) and the creation of a

singularity (bottom).

The second row compares the behavior of a sheet of paper after a singular vertex is

inserted: we get the same effect of the sheet straightening when the constrained points

at the back are unloaded. The rigidification effect of the curved parts mentioned earlier

is visible here. Note also that our mesh remains coarse throughout the animation, with

its edges aligned along the surface rulings. Moreover, the singular vertex is persistent in

the model even if the surface is totally unloaded, which is one of the key features of the

method.

Figure 2.22 shows a step-by-step comparison between our virtual paper and real one.

The paper is deformed from a flat undamaged state to a mildly crumpled state with a

few singular points.

2.6.2 Comparison with other methods

Comparison with FEM and adaptive meshing methods.

Figure 2.23 compares our method with a standard FEM applied to a mesh of fixed

connectivity and with simulation with adaptive remeshing from Narain et al. [NPO13].

Each of the three methods relies on a physical simulation so we use the same FEM solver

(arcsim from Narain) for all three. The differences in the results come then mainly from

the remeshing strategy (or its absence). We use the set-up of the experiment described

in Section 2.6.1. We compare first the computational times needed to obtain results of

similar quality. We then observe the quality of the results obtained for similar times –by

adapting the density of the meshes to adjust the computational times. The results are

shown in Table 2.2.
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Figure 2.22: Step-by-step comparison with real paper. (left) real paper, (mid-
dle) geometric structure, (right) virtual paper.

The standard FEM approach with fixed connectivity requires very dense meshes to ob-

tain visually sharp features. The triangulation obtained from the adaptive remeshing

method in Narain et al. is roughly two times coarser than this dense mesh for sim-

ilar visual results, but still requires approximately ten times more triangles than our

method. As most computation time in all three methods is spent in the simulation step,

which depends on the number of triangles, our approach reaches interactive frame rates

when several seconds to a minute per frame are required using other approaches, see

Table 2.2. The lower row of Figure 2.23 show a comparison where we decreased the

number of triangles of the standard FEM approach and of the approach from Narain et

al. such that the corresponding methods reach roughly the same time rate than ours.

We can note that the quality of the visual appearance drastically decreased and does

not capture anymore the interesting sharp feature effect.

Comparison with “Fast Simulation of Mass-Spring Systems”.
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Figure 2.23: Comparison with other methods. The upper row shows how much
mesh refinement is required for Standard FEM (top left) and Narain et al. [NPO13]
method (top middle), in order to get a result of similar visual quality as our method

(right).
The lower row compares the mesh refinements for which the three methods converge
with the same amount of time: Standard FEM (bottom left) and Narain et al. method

(bottom middle), our method (right),

Our standard Narain coarse coarse
method FEM et al. FEM Narain

Remeshing time 1 - 450 - 30
Simulation time 100 14 700 4 640 340 480
Nb. of triangles 89 1 668 788 212 221

Table 2.2: Average computation times for the example presented in Figure 2.23.
All timings are expressed in ms per frame.

The technique we present in Section 2.5.3 treats the preservation of edge lengths as a ge-

ometric problem while Liu et al. [LBOK13] simulate a mass-spring system in a physical

perspective with their approach called Fast Simulation of Mass-Spring Systems (FSMS).

In the optimization method of FSMS, the edge length is set as a hard constraint. In

our formulation, the optimization variables are the edge directions instead of vertex

positions. Our method does not exploit any physical information so the objective func-

tion is simpler. As a result, it can be optimized by iteratively solving 2x2 linear systems.

Comparison with “Shape-Up”.
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The Shape-Up method [BDS∗12] provides a good solution for achieving isometry preser-

vation. The original Shape-Up framework treats all constraints as soft constraints and

requires minimizing, in a least-square sense, an energy function that incorporates the

projections of all constraints to the targets. Therefore, the resulting model will always

be a balance between the input status and the constrained projections, which indicate

that a shape distortion will occur. As we expect to keep the surface isometric to its

2D pattern, i.e. to preserve the length of the edges without significant shape distortion,

we modify the Shape-Up framework to enforce all constraints as hard constraints. In

the following discussion, we focus on the comparison between the Shape-Up with hard

constraints and our scheme.

About speed of computation: although the Shape-Up method uses a single matrix pre-

factorization step, our method is less expensive as it avoids solving large systems of

equations. Comparison of computation time between the Shape-Up method and our

isometry preservation method (Section 2.5.3) is given in Table 2.3, and clearly shows

that computational efficiency is higher with our method.

About shape distortion and preservation of isometry: both methods treat all require-

ments as hard constraints (with theoretically no conflict to each other) and find the

nearest isometric status based on the current input. Experiments have shown, that

our method leads generally to less deviation from the initial shape compared with the

Shape-Up method, whereas the Shape-Up method achieves better isometry restoration.

Quantitative comparisons are given in Table 2.3. For our application it is important

to keep the deviation as small as possible, otherwise it may introduce instabilities in

the physical simulation. We further observed that the Shape-Up method may introduce

perceptible visual artifacts such as discontinuities in a smooth region or flattening of

weakly curved regions as depicted in Figure 2.24. This is particularly non-desirable for

our application, where singularities, flat and curved regions are processed explicitly.

2.6.3 Other results

Variation of compression factor. The first row of Figure 2.26 shows a sheet of paper

bent twice, in two perpendicular directions: after smoothly wrapping the sheet into a

cylindrical shape, a second bending is applied orthogonally to the cylinder axis. The

resulting shape exhibits sharp singularities while still remaining almost isometric to its

pattern. In changing the parameter εc defining the maximal admissible compression,

we model different types of papers as shown in Figure 2.25, while keeping the same

handle animation scenario. Larger values of εc capture the behavior of stiff, thick paper,
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Figure 2.24: Distortion caused by the isometry optimization. Comparison of
an input shape (left) with the results of our isometry optimization method (middle)
and of Shape-Up isometry optimization (right). Contrary to our method, Shape-Up
introduces unwanted discontinuities (right-most circle) or local shape flattening (left-

most circle).

Our Shape-Up
Models cinit topt cm dm topt cm dm

Figure 2.24 0.75 196 0.38 2e-3 721 0.17 1e-2
Figure 2.21 (top) 0.11 112 0.06 9e-4 530 0.02 1e-3
Figure 2.21 (bottom) 0.15 97 0.10 7e-4 480 0.03 1e-3
Figure 2.26 (1st row) 0.15 143 0.13 7e-4 760 0.03 3e-3
Figure 2.26 (3rd row) 0.55 113 0.42 3e-3 580 0.15 8e-3
Figure 2.26 (5th row) 0.22 122 0.20 2e-3 590 0.02 4e-3

Table 2.3: Comparison of our length preservation method (Section 2.5.3)
and the Shape-Up method. We apply our optimization (Section 2.5.3) and the

Shape-Up optimization to a final mesh of some of ours examples.
cinit is the mean percentage of compression computed over all the edges of the model
before any optimization is applied. topt is the time (in ms) taken by the optimization.
cm is the mean percentage of compression over all the model edges. dm is the average

displacement of the vertices from their initial position.

while smaller values capture the behavior or thinner paper, for which a larger number

of singular points appear.

Some other examples. Figure 2.26 gathers other results of our method. The second

row illustrates smooth deformations highlighting the dynamic adaptation of the trian-

gulation. The third row shows a full crumpling animation where more than twenty

singular vertices are progressively generated. The fourth row illustrates a newspaper

type of surfaces with a pre-set crease in the middle. The later highly influences the

subsequent deformation of the surface. Finally, the last row shows various paper defor-

mations obtained by interactively playing with the handles.

Isometry. To get quantitative results, we measured the error of lengths compared to the
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Figure 2.25: Variation of the compression factor. The same experiment as in
Figure 2.26 (first row) is performed with different values of the allowed compression

factor εc: from left to right, 1%, 0.5%, and 0.2%.

pattern Elength =
∑

edges e(le− le)/le, where le and le are the length of the edge e belong-

ing respectively to SP and S. Table 2.4 provides, for different examples, the mean value

of Elength for all the edges of the mesh, averaged over all the animation frames. This

value, cmean, is given in %. We can see that this mean compression value stays below 1%

except when the paper begins to get really crumpled as in the 3rd row of Figure 2.26. In

a similar way, we observe that the average number ncomp of compressed edges (aka with

Elength ≥ 1%) stays under 10% when the paper is not too much crumpled. As the paper

gets more crumpled, many singular points appear and the simulation cannot anymore

take advantage of the developable properties as area of the regions modeled by smooth

developable surfaces becomes negligible. Also the constraints are stronger in the case of

very crumpled paper, so the model struggles more to solve all of them.

Computation times. The computational times for the different examples are given in

Table 2.5. We can see that the time used by the geometric remeshing step is negligible

compared to the time of the physical simulation. The simulation times is much reduced,

due mainly to the very small number of triangles, compared to other methods using

FEM (see Section 2.6.2). Indeed we reach interactive times but the simulation remains

the bottleneck preventing us from reaching real times.

2.6.4 Discussion and future work

We have obtained a variety of results that qualitatively look like real paper, even when

animated (see the associated video). This indicates that our method has reached most

of its goals. However, we have also identified a number of limitations, listed next:
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Figure 2.26: Paper crumpling examples. The black points indicate the positions
of the handles.

Firstly, although much faster than state of the art methods, our model does not meet

the real-time performances we were expecting: our prototype currently runs at 1 to 10

fps. As shown by the timing table, most of the time is spent in the physically-based
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Models cmean ncomp

Figure 2.21 (top) 0.17 0.1
Figure 2.21 (bottom) 0.19 2.0
Figure 2.26 (1st row) 0.89 8.0
Figure 2.26 (3rd row) 1.47 11
Figure 2.26 (5th row) 0.20 2.0

Table 2.4: Measures of error in length for our examples. cmean is the mean
percentage of compression over all the model edges and ncomp is the percentage of edges

whose compression is > 1%.

Mesh size Simulation Geometry
Models Nt Ns Nit tint tcol trem tiso

Figure 2.21 (top) 117 0 11 232 62 0.2 3.1
Figure 2.21 (bottom) 87 1 4 50 10 0.4 1.0
Figure 2.26 (1st row) 118 2 5 117 25 0.4 1.0
Figure 2.26 (3rd row) 156 15 5 190 57 0.5 2.3
Figure 2.26 (5th row) 120 21 8 190 48 0.8 0.9

Table 2.5: Computational time analysis for our examples. We separate the
time spent in the simulation part and the time spent in the geometrical part. Nt and Ns

are respectively the average number of triangles of SP through the animation and the
maximum number of interior singular vertices. Nit is the average number of iterations
needed in the simulation steps. tint and tcol are the respective average time spent in
the integration steps of the physical simulation and to treat the collisions. The timings
from the geometrical parts correspond to the time spent in remeshing trem, and in the

isometry tracking tiso. All times are given in ms.

simulation step. Note that we re-used some existing code, including a collision detection

module, without trying to optimize it specifically for our application. We believe that

increasing efficiency should be possible, given the small size of our meshes. Particularly,

possibly due to the very specific structure of the mesh, the collision module is neither

really efficient nor accurate. A specific implementation for our model may prove to be

a noticeable improvement.

Secondly, another limitation hampering the interactive manipulation is the fact that we

only provide point-wise handles to the user. Offering more complex handles, such as

the ability to crumple paper within some bounding volume, is not only a user-interface

concern but would deeply modify the existing approach. To get this effect, one could

imagine to constrain all points located on the convex hull, at each time step. These

two limitations explain why for now, we are not able to create tightly crumpled balls of

paper.

Thirdly, as our meshes rely on very coarse triangulations, the dynamic adaptation of

connectivity may introduce discontinuous behavior during the animation. This can

be observed in some of our animation. While such geometrical discontinuities may

arise for real paper as well when fibers break and singularities appear, these effects are
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Symbol unit default
value

ρbound
vertices

cm 1.2 density of the sample on the boundary

ρint
vertices
cm2 6 density of sample inside the surface

θ0 rad 0.01 threshold angle for the limit planar region

θlow, rad θ0/10, hysteresis threshold
θhigh θ0 for the displacement of junction point

εBlaschke cm 0.5% of maximal acceptable
Lpaper error for an estimation with Blaschke cylinder

Lpaper cm 10 maximal length on the surface of the paper

εc % 0.1 limit compression

σ cm 0.1 variance of the probability law of the position of the
new singular point

Table 2.6: Summary of user-defined parameters

exaggerated by the coarse triangulation we use. Smoother temporal animation could

be explored using temporal smoothing. We observe here that when happening for real

paper, those sudden changes are accompanied by a characteristic “clac” sound. We will

use this observation in Chapter 4.

Moreover, our model only generates singular points as sharp features, although previ-

ous studies indicate that crumpled paper geometry can exhibit creased curves as well.

[KGK94] computes such curves using physical simulation on a geometric model even

simpler than ours. Exploring the detection and generation of similar creased curves into

our model is left for future research. Here, the creases modeled in [KFC∗08] could be

a source of inspiration. Also it may be interesting to explore the use of tangent devel-

opable instead of generalized cones, as they have singular curves, and not only singular

points.

Lastly, although each individual generalized cone, as well as each flat part, is developable,

the overall surface may not be globally developable. It is however almost the case, due

to the quasi-isometry with the 2D pattern. Developability could be further improved by

minimizing the angular defect around each singular vertex.

2.7 Conclusion

In this chapter, we introduced a new hybrid geometric and physical model for paper,

able to qualitatively capture the dynamic shapes of this complex material, and efficient

enough to be manipulated at interactive times. Our model is based on some high-level

understanding of the physical constraints that act on real sheets of paper, and on their

geometric counterparts. This understanding enabled us to use an adaptive mesh carefully
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representing the main geometric features of the model in terms of singular points and

rulings, throughout the simulation. In addition to accelerating animation, this coarse

mesh yields fast, good quality renderings.

Our unique combination of interwoven geometric and physical processing may inspire

the modeling of other complex materials, for which the same general methodology could

be used.

Finally, our model outputs not only the animation of the mesh representing the surface,

but also information about the geometry of the surface that can be used for different

purposes, notably tearing the paper or modeling its sound, as we will see in the following

chapters.



Chapter 3

Modeling tearing paper

“Help me, you tear down my reason”

Nine Inch Nails, Closer, 1994.

3.1 Introduction

As explained in Chapter 2, the length-preserving nature of the paper surface leads to

crumpling and bending behavior when the surface undergoes compression forces. This

chapter, instead, will focus on the opposite case, i.e. applying extension forces onto the

paper. In this case, tearing will occur, still preventing any in-plane deformation, but

instead modifying the boundaries of the sheet of paper. Similarly to the crumpling case,

the fibrous structure is also related to this tearing behavior: Under extension forces, the

bonds between fibers break which leads to tearing.

We identify four features needed to reproduce a plausible tearing behavior:

Local length preservation. As already explained, the fibrous structure of paper pre-

vents in-plane deformations. Note that in the tearing case, the boundary of the

2D pattern changes to integrate the tears.

Generation and propagation of the tear. A tear is initiated or grows only if enough

stress is applied to the tear’s tip. At a large scale, the tear follows a predictable

path that depends mainly of the motion imposed on the sheet: the same deforma-

tion applied on two different sheets will produce similar paths. In some specific

69
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cases, it is possible to mathematically predict the curve formed by the path as

described in Roman’s work [Rom13].

Tear appearance. As the distribution of the fibers is inhomogeneous within the paper

material, the shape of the tear exhibits small details where fibers have been pulled

apart leading to highly detailed tearing shape at small scale. The details may have

a size of the same order that the size of the fibers, having a width about 30 µm

(see Figure 3.1).

Figure 3.1: Fracture process zone in paper made visible by impregnation with a
silicone that has been cured before the fracture test. Image from [AN06].

As explained previously, teared paper exhibits highly detailed geometry along the tearing

path. Computing tearing at the scale of the smallest detail would therefore require a very

dense mesh and would not be appropriate for interactive applications. At the opposite

of most previous works handling geometry and details of the tear simultaneously, we

use a layered model to separate two levels of detail. At the larger scale, a first layer

models the macroscopic geometry of the sheet and handles the computation of the global

tearing path using simulation or geometrical assumptions. At the smaller scale, a second

layer models the microscopic details around the fracture path. As the fibrous structure

within the paper material exhibits stochastic organization, this layer can be used locally

without interfering with the macroscopic scale. Separating these two layers enables very

efficient computation at both scales using only a coarse triangle mesh at the macroscopic

level, and local texture for details at the microscopic scale.

This chapter introduces two new methods for efficiently handling paper tearing using

this layered model. Firstly, we present a procedural approach for modeling the tear in

a specific scenario. Although this first model is restricted to a limited set of interaction
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possibilities, the fully procedural description enables real-time computation. Secondly,

we describe a more general approach to model the tearing with wider interaction possi-

bilities using physics-based criteria and underlying simulation adapting the stress field

around the tip of the tear. This second model is coupled with our geometrical paper

model described in Chapter 2 and enables both tearing and crumpling at interactive

rates.

The procedural method presented in the first section has been published as a short paper

in Motion In Games (MIG) [LFD∗15].

3.2 A particular case using a procedural method

Figure 3.2: Possible application of our technique using interactive paper tearing
for torn paper collage creation on a multi-touch tablet.

In this section we present the first technique in computer graphics for real-time paper

tearing using a phenomenological model. Note that the work presented is this section

has been realized in the context of a student project I co-advised.

We propose here an interactive method that allows easy manipulation and tearing of

virtual paper for games or artistic applications, such as the virtual crafts application

proposed in Figure 3.2. In addition to the realism of the results, we must ensure real-time

computation that we achieved based on a phenomenological approach that procedurally

reproduces the behavior of paper being torn.

We focus on a simplified interactive case illustrated in Figure 3.2 where positional con-

straints are modeled by the displacement of the index and thumb of the two hands.

These constrained positions are constantly lying within the 2D plane. Starting from an

initially flat sheet of paper, the relative rotation of the hands implies both the tearing

of the piece of paper and a 3D deformation due to out of plane buckling.
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Our contribution is a real-time solution for the challenges of modeling and animating

detailed tear shapes and paper bucking.

(a) (b) (c)

Figure 3.3: (a) The model for the movement of the hands. (b) The two planar regions
in yellow and the generalized cone shown in red. (c) An example of the cone shape
formed between the tip of the tear s and the thumbs. The position and orientation of
the two flat regions of the paper on either side of the cone are driven by the motion of
the hands. The cone is defined by its apex s and two Hermit curves joining, respectively,
each thumb and the vertex m at the middle of the geodesic passing though both thumbs.

3.2.1 Paper deformation model

In order to capture the key features of paper deformation, we performed several informal

experiments and observed the behavior of tearing paper. The setting of our experiments

(and our model) is a paper sheet placed on a planar surface and manipulated with two

hands as described above. An example observation can be seen in Figure 3.3a.

Even when external constraints are purely 2D, torn paper is necessarily associated with

3D deformation in order to keep constant local length. In our case, where the fingers

are kept on the 2D plane, bending occurs as soon as the paper is torn. We consider

the assumption introduced in the previous chapter that paper can be modeled as a

piecewise C2-developable surface. The resulting surface consists therefore of patches

of planes, cylinders, cones and tangent developables. In order to model the scenario

illustrated in Figure 3.3b, we consider three geometrical surfaces: two planar surfaces

respectively on the left and right of the tear, and a curved region linking them. As the

tip of the tear can be considered as a singular point, we choose to model this curved

region by a generalized cone whose apex is the tip (see Figure 3.3c).

In our model, each hand is modeled by two points that represent the index finger and

the thumb. They can be placed anywhere on the paper sheet. At each time step, the

hands perform a rotation, which we denote ∆θ1 for the left hand and ∆θ2 for the right.

This hand motion induces tearing (as described in Section 3.2.2) and a deformation

of the surface between the thumbs. The planar regions follow a rigid motion directly

imposed by the hands, rotating around the tip of the tear at each step by a small
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(a) 2D configuration (b) 3D bend (c) 3D tilt for isometry (d) 2D and 3D triangulation

Figure 3.4: Construction of the generalized cone begins (a) with the 2D posi-
tion of m set at the midpoint between the thumbs, and (b) with the 3D position of m
initially set vertically above the plane such that the Hermite curves preserve the dis-
tance between the thumbs. The 3D position of m is then rotated about an axis going
through the thumbs (c) to ensure the distance between m and the apex s matches the
corresponding distance in the initial flat state. Finally, the cone is discretized (d) in
the initial flat state, and the 3D positions of the points on the border of the paper are
computed such that they lie on the corresponding ruling and that the distance between

border points and the cone apex is preserved.

angle corresponding to the hand rotation. The conical region articulates the two planar

regions, enabling to keep the isometry as the planar parts rotate.

The generalized cone is defined by the tear’s tip s (its apex) and the geodesic curve

C that joins the two thumbs. The generalized cone is thus delimited by the two lines

respectively going through s and each thumb. This conical region is composed of the

set of rulings going through the apex s and each vertices of C . We now detail the

geometrical process to generate this generalized cone, illustrated in Figure 3.4.

The first step is to build the curve C . C has to be C2 to get a smooth surface. We

choose to approximate it by two cubic Hermite splines which meet at vertex m which

is the point at equal geodesic distance of each thumb. To get a C2 transition between

the two curves and to simulate the pressure applied by the thumbs on the paper we

constrain the tangents at the ends of the Hermite’s curves to be parallel to the line

between the thumbs. Note that we select in advance an appropriate magnitude for the

tangents according to the size and type of paper, as discussed in Section 4.3.5.1.

The length of C has to be equal to the distance dT between the thumbs on the 2D pattern

as shown in Figure 3.4 (a). So we adjust the vertical position of the middle point m using

an iterative algorithm until the length of each curve between m and a thumb matches

the distance dT
2 (see Figure 3.4 (b)). In order to approximately preserve the distance

between the tear’s tip s and the points of the curve, the next step consists in rotating

the curve such that the distance ds between m and s on the 3D shape corresponds to

the one on the 2D pattern (see Figure 3.4 (c)).

The last step is to compute the 3D position of the vertices on the curved part of the

paper’s boundary, i.e. the part of the boundary between the two lines going through s

and the thumbs. Each ruling of the cone is defined by s and one point of C . So to find
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each vertex b on the curved border of the paper, we compute the point at the distance

ds, distance between s̄ and b̄ in the 2D pattern, of s along the corresponding ruling (see

Figure 3.4 (d)).

3.2.2 Tearing model

Paper tearing in real-time is not a trivial problem. An extremely fine discretization

is necessary to produce realistic small scale details of torn paper. This makes stress-

based crack direction computations, as used in physics-based simulation, inappropriate

for real-time paper tearing.

Figure 3.5: Stochastic appear-
ance of the details of a real torn

piece of paper

Instead, we develop a procedural tearing algorithm that

exhibits the characteristic stochastic details of torn pa-

per that we observe in empirical experiments (see Fig-

ure 3.5). Our algorithm is based on two observations.

First, the main crack direction is guided by the mo-

tion of the hands. Second, the details along the crack

are due to the distribution of fibers and a resistance

to stress that are not uniform across the paper’s sur-

face. Our algorithm is therefore made of two steps.

We first compute a main tearing direction based on

hand motion, and then add tearing details based on an

anisotropic fiber distribution model.

Tearing direction

We observe that tearing initiates at a random posi-

tion on the edge between the two index fingers. In

our model, we therefore choose to initiate tearing at a

random point along the edge of the sheet, specifically,

at a point inbetween the positions where the rays from thumb to index positions inter-

sect the edge. Then, at each time step t, we compute the position of the next crack tip

st+1 according to the motion of the hands. For this, we define a vector t that represents

the advance of the tear between st+1 and the previous crack tip position st, as shown in

Figure 3.6.

In our experiments, we observe that rotating a single hand produces a tear in the di-

rection of the thumb of that hand. Therefore we compute t as a linear combination of

the unit vectors v1 and v2 representing the direction defined by the crack tip st and the

thumb of each hand. We weight each vector by the corresponding rotation angle ∆θ to
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Figure 3.6: Our model for determining the direction of the tear at each time step
depends on the incremental rotation of each hand.

compute the current tearing direction

t = C (∆θ1v1 + ∆θ2v2) , (3.1)

where C is a constant that controls the tearing speed ||t||.

Tearing details

Advancing the tear using only the tear direction computed above would not produce

the rough edges we see in real torn paper. Therefore we procedurally add fine details

along the path between two successive crack tip positions. Our algorithm is inspired by

the work of Chen et al. [CYFW14], and makes use of two 2D functions as shown in

Figure 3.7. A 2D texture Tfibers lets us represent the stress resistance of fibers at each

point of the paper. We used here a Perlin noise to create the fiber texture. A Gaussian

function models the stress field Gt produced by hand motion between the steps t and

t+1. Specifically, the Gaussian is centered on the edge between st and st+1. We combine

these two functions to obtain a 2D texture

νt(u, v) = (1− p) Tfibers(u, v) + p Gt(u, v), (3.2)

where Tfibers(x, y) ∈ [0, 1] is the value of the fibers texture at the position (u, v) and

Gt(u, v) ∈ [0, 1] the value of the stress field at (u, v). So each pixel νt(u, v) ∈ [0, 1] can

be considered as a breaking coefficient that intuitively represents the probability that

the tear will go through this pixel. The parameter p ∈ [0, 1] lets us adjust the blend

between the two functions to achieve a desired rough appearance of the tear.
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Figure 3.7: Variation in the tearing direction is produced with the combination of
2D Perlin noise (left) with a 2D Gaussian function (right) aligned with the current

tear-trajectory direction.

Figure 3.8: The path between st and st+1 is computed by iteratively choosing
among the neighboring pixels that are closer to st+1 the one with the highest breaking

coefficient.

From this texture, the tear details between st and st+1 can be chosen as the shortest path,

but we prefer a more intuitive and simple approach. Going from the pixel representing

st, we iteratively choose the neighboring pixel with the greatest breaking coefficient

until we reach the destination si (see Figure 3.8). To ensure that we actually reach st+1

without going backward, we only consider the pixels in directions that form an angle

smaller than π
2 with the vector between the current pixel and the destination si.

We can control the resolution of the details by adapting the resolution of the texture.

Note that we represent here the fibers by a Perlin noise, but it is possible to replace it

by any texture as, for example, an anisotropic pattern obtained from real data.
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Figure 3.9: Results of cone. Two different views of the generalized cone.

Figure 3.10: Results on the path. (left) Path obtained by moving successively
each hand, (right) path obtained for three different motions of the hands.

Figure 3.11: Results on details. A closer view of the geometry of the tear.

3.2.3 Results and discussion for the procedural model

We use scripted motions to produce different real-time simulations of tearing paper.

Figure 3.9 shows two examples with different views of the generalized cone. It is easily

possible to control the direction of the tear, see Figure 3.10 for two examples of paths
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Figure 3.12: Experimental evaluation shows that our cone deformation model
produces results that correspond to real paper.

that we can obtain just by controlling the angle of rotation of the hands. The details of

the tear are shown in Figure 3.30. We have fine geometry while keeping the animation

fast enough for real-time. A video providing additional examples that also include

synthesized tearing sounds can be found at the following link: https://hal.inria.fr/

hal-01206764/file/Lejemble_MIG2015_IPSPTS.mp4.

We performed a simple experimental evaluation of our deformation model. Figure 3.12

shows a comparison of the cone height produced by our model with that of a real sheet

of paper. Specifically, we compare the real and simulated cone height normalized by

original distance between the thumbs at different amounts of strain (i.e. compression

normalized by the original distance between the thumbs). The results suggest that the

choice of the magnitude of Hermite curve tangents in our model works well for the scale

of paper and our particular interactions (e.g. thumb placement as shown in the figure).

We note that our model could be improved by making the tangent magnitude a function

of the type of paper and the original distance between the thumbs.

Note that our examples in the video are accompanied by the sound of the tearing paper,

and explain how this sound is generated in Chapter 4.

We have presented in this section a first geometric model for tearing paper in real

time. Although we obtain plausible visual and even audio results, these are limited

to the described scenario. Note that the method was originally designed to be used

on multi-touch tablets or tables with limited user positional inputs, therefore in this

context this scenario may be fully sufficient. For more general applications however, the

position and number of fingers may not be restricted to the described case. Then tearing

and crumpling may occur at the same time, and the tearing computation may not be

longer fully described as a procedural function of the fingers position. The next section

describes a new model compatible with crumpling including physics based computation

https://hal.inria.fr/hal-01206764/file/Lejemble_MIG2015_IPSPTS.mp4
https://hal.inria.fr/hal-01206764/file/Lejemble_MIG2015_IPSPTS.mp4
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of the tearing shape in order to model more general scenarios while still being very

efficiently computed.

3.3 General case of paper tearing

The fracture of any material, either thin or solid, is a difficult problem. But modeling

paper being torn is a particularly challenging one. For most material, the fracture

pattern can hardly be intuitively predicted or controlled. For example, thin materials

less rigid than paper, as fabrics, often undergo large elastic and plastic deformations

before being torn, making it hard for someone to predict the path followed by the tear.

In a different way, it is also difficult to predict the fracture pattern of a solid object being

broken, as the fracture usually happens too fast for the eyes to follow. Inversely, tearing

paper is a rather slow process and the small plastic deformation at the tip of a tear is

hardly noticeable. Most people can intuitively control the direction of propagation of a

tear in paper. And thus a user should expect the same kind of intuitive control over the

tearing of virtual paper.

In the previous section, we proposed a model that procedurally creates a path that a user

might expect, based on observations in a particular case. The method presented in the

rest of this chapter can be seen both as a generalization of this procedural method and

as an additional improvement of our crumpling model. Indeed, we couple the crumpling

model with a generalized version of the procedural method of tearing. If the basic idea

of separating the general direction of the tear and the details of the path stays the

same, the propagation based on the motion of the hands is not valid anymore in the

general case. We base our new solution on previous studies of tears in paper. As for the

crumpling, our method is specifically dedicated to paper or paper-like materials since the

solutions adapted for a wider range of material struggle to reproduce the very specific

and complex behavior of paper.

Our contributions are the following:

• potential tearing points: we use the geometric information provided by the

geometric structure of the crumpling method to identify a small number of points

where a tear can potentially be created or propagated. We thus limit the number

of points that need to be tested.

• propagation: we propose a new criterion for deciding when and how a tear

propagates by reducing the situation to a known case for which we know a 2D

geometric solution.
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• texture-based details: we propose an efficient representation of the details of

the path, based on the texture rather than on the triangulation in order to keep

the triangle mesh coarse.

3.3.1 Hybrid model for tearing

Physics of the tearing of paper. Most of the features of our model rely on studies

from Physics or Material Sciences researches, rather than on observations as the pro-

cedural model proposed Section 3.2. Roman reviews in [Rom13] numerous studies on

tearing brittle thin sheets and shows that crack paths in material that can be approxi-

mated as inextensible and infinitely flexible are highly reproducible and seem to follow

geometric rules. This leads us to base our computation of the propagation direction of

a tear on few simple geometric rules. In the context of linear elastic fracture mechan-

ics (LEFM), the propagation behavior of a tear is mainly influenced by the stress field

around the tip [Fre98, LG03]. We use this assumption and simplify our tearing model to

only take into account the forces applied on the tip of the tear, and not the one applied

on the other part of the surface. As for the procedural model proposed in the previous

section, the small details are handled by a stochastic procedural algorithm.

The Griffith criterion [Gri21] is used in many works to predict if a crack should propagate.

The condition for a crack to propagate is to have:

Er >= Ef , (3.3)

where Er is the energy release rate, i.e. the energy released by the propagation of the

tear, and Ef is the fracture energy, i.e. the energy required to create a new free surface

in the material. We use this criterion in our method and explain how we compute Ef

in Section 3.3.2 and Er in Section 3.3.3.

Roman [Rom13] looks into several cases of crack paths obeying geometry. For instance,

he studied the case of pulling a flap or pushing a cylindrical object through a sheet of

paper. In particular, he examines the propagation of a tear when pulling away with two

points, A and B, of the piece of paper (see Figure 3.13). In this case, he showed that

the energy release rate can be computed as:

Er = F · 2 cos(θ
2

), (3.4)

where F is the amplitude of the force applied on the pulling points and θ ∈ [0, 2π] is the

angle between ~AS and ~BS (see Figure 3.13) where S is the tip of the tear. In addition,

the direction of propagation is given by the bisector of the vectors ~AS and ~BS. So when
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tearing is created by two pulling points which are fixed with respect to the pattern of

the paper, the tear trajectory follows a hyperbola with focal points A and B. Note that

this case is only valid for isotropic paper, and the complete study for anisotropic paper

can be found in [OKe94]. In the present thesis, we take the assumption that a general

tearing scenario can be equivalently modeled by two opposite forces acting locally on

the tip. Under this assumption the propagation of the tear can be computed on the 2D

pattern, reducing therefore the complexity of the problem (see Section 3.3.3).

Figure 3.13: Tearing hyperbolae: (right) Two points on a flat sheet are pulled
away from each other. The crack in C propagates when the sheet is pulled by points
A and B. (left) The optimal direction bisects the angles ACB (θ1 = θ2). So that
the possible trajectories are hyperbolae, with focal points in A and B. Pictures from

[Rom13].

Most of the existing works studying the propagation of tears use a predefined notch to

initiate the tear. But we aim in this work to develop an interactive model where the

start of the tear cannot be pre-defined. Phenomenological observations lead us to make

the hypothesis that most often a tear starts on a so-called singular point of the border

of the paper. The stress tends to focus on d-cone [AP97, Wit07] making these points

more likely to be under large stress and therefore to be the starting point of a tear.

Although it is possible to create a tear by pulling a piece of paper in opposite directions

while keeping it flat, one can observe than the force required to initiate the tear must in

this case be quite large as the stress spreads on a large area. In our work, we therefore

consider only singular points as potential starting points for a tear.
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Overview. Our tearing process relies on the crumpling model explained in Chapter 2

for the deformation of the surface. The tearing-related computations are done at each

frame on the surface computed by the crumpling model. The tearing method is sum-

marized as follows, see also Figure 3.14.

For each frame t of the animation:

• Step 1: Potential tearing points (see Section 3.3.2)

Get a list a potential, or candidate, tearing points and their associate resistance

energy to the tearing (i.e: the fracture energy at this point).

• Step 2: Propagation of tears (see Section 3.3.3)

For each potential tearing point st:

– approximate forces around st into two opposite forces.

– determine if a tear must be generated or propagated at this point, and if so,

compute the position of the next tip of the tear st+1.

– if needed, remesh to add the tear to the boundary of the paper.

• Step 3: Adding details (see Section 3.3.4)

if the tear is propagated:

– compute the detailed path between st and st+1 using a fibers texture.

– create the path on the texture of the paper.

– eventually update the fibers texture to model damages.

• Physical simulation step to update the mesh surface geometry with respect to

the internal and external forces.

Figure 3.14: Overview of our method obtained in adding three extra steps to the
existing model of crumpled paper introduced in the previous chapter.
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3.3.2 Singular points as potential tearing points

Potential tearing points Finding the location of the starting points of a tear is an

interesting problem that has not been explicitly studied in Computer Graphics so far.

Most of the works dealing with the tearing of thin shells test all the points of the mesh

to determine which ones should be torn. In addition to be inefficient, this may lead to

inaccurately positioned starting point or unwanted branching. This kind of artifacts is

particularly noticeable in the case of paper since the tearing is generally a rather slow

and well controlled process.

We saw in Chapter 2 that the stress tends to concentrate into singular regions, that

we approximated by singular points, leading damages to the fibrous structure of paper.

We can observe by tearing paper that the usual location for a tear to be initiated (see

Figure 3.15) corresponds to those singular regions of the border of the surface of paper.

In our model for crumpling paper, we not only detect the interior singular points where

the fibers’ links are broken, but also the singular points (in yellow in Figure 3.15) on the

border of the paper at the junction between some flat and curved regions. We consider

those points to be our potential starting points of a tear.

Figure 3.15: The starting points of the tears seem to be in the singular regions on the
border of the paper. These correspond to the junction points in our crumpling model.

At each frame, we need to check only the following small number of points as potential

tearing points (see Section 3.3.3):

• the junction points (yellow in Figure 3.14), points on the boundary of the paper

belonging to at least on flat region and one curved region.

• the points delimiting the position of the fingers (red in Figure 3.14), as junction

between the flat part of the surface imposed by the pressure of a finger and the

rest of the surface.

• the points where the boundary of the 2D pattern of the piece of paper makes

an inward angle (sky blue in Figure 3.14). They usually become singular when

applying a tearing motion near them but to ease the work of the simulation we
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Figure 3.16: The fracture process zone is rather large and diffuse and extends well
ahead of the region where noticeable microcracks or voids can be seen. Image from

[AN06]

consider them as singular by default. In this way, all the tear tips are always

considered as singular.

Fracture energy of the potential tearing points. We define the fracture energy

Ef , representing the threshold above which the energy release rate Er is sufficient for

generating or propagating a tear, for each potential tearing points. We model the resis-

tance of the fibers by a 2D texture Tfibers over the surface. Similarly to the procedural

method described in Section 3.2, we use a Perlin noise as fibers’ texture. The parame-

ters of noise can be easily modified to adapt the appearance of the details of the tear.

Note that it would be possible to replace the Perlin noise by a more physically accurate

representation of the distribution of the fibers as a future work.

In order to take into account the plastic damage occurring at the tip of a tear (see

Figure 3.16), we associate a damage parameter dp to each potential tearing point p =

(u, v) (u and v being the coordinates of the point in the 2D pattern). If p is a tip of a

tear, dp = D, where D ∈ [0, 1] is a constant value chosen by the user to define how easily

of tear can be propagated. For any other point, we have dp = 1. The fracture energy of

p is then defined as

Ef (p) = C Tfiber(u, v) dp,

where Tfibers(u, v) ∈ [0, 1] is the value of the fibers’ texture at the position (u, v) and

C is a constant modeling the general resistance of the paper. We use C = 0.005 in our

examples.
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3.3.3 Generation and propagation of tears

For each potential tearing point we compute at each time step whether it has to be torn

or not. Note that our computation is the same for a tip currently torn than for any

other potential tearing points. Moreover, we proceed the same way whether a tear is

created or propagated. The first problem to tackle is find a criterion to decide whether

a tear needs to be propagated –or created– or not. The second problem, when the tear

is propagated, is to determine the position of the tip of the tear at the next time step.

Let us call the potential tearing point to be tested s. We solve both problems by

approximating the 3D in-plane forces applied on s by the physical simulation by two

opposite forces. We can then relate to the case of two pulling points and determine the

propagation using the 2D solution described in Section 3.3.1. We neglect the bending

forces as they are several orders of magnitude weaker than the strain forces.

Computing two opposite forces. We want to separate the strain forces applied on

s into two clusters, each one gathering forces directed in a similar direction. To this end,

we inspire from classical clustering methods and use the following iterative algorithm.

This computation takes place in the 3D space. We obtain from the physical simulation

the forces applied on st by the deformation of each adjacent triangles –these forces are

based on Green strain described in Chapter 5. We use the direction of the tear as first

estimate for the direction of separating the two clusters, t is computed as the bisector

of the tear lips (as they are often along different directions during tearing) or as the

bisector of the directions of the boundary at each side of s (see Figure 3.17). We have

then b0 = t.

At the iteration i, we call Fi
left and Fi

right the sum of the forces of each cluster and bi the

direction bisecting Fi
left and Fi

right (see Figure 3.17). For each iteration i, we compute

Fi+1
right and Fi+1

left (see Figure 3.18) as being respectively the sum of the forces of each side

of the plane P i defined by n, the normal of the surface at s, and bi. Concretely, we

compute the direction di orthogonal to P i:

di = bi ∧ n.

Then

Fi+1
left =

∑
f .di>0

f and Fi+1
right =

∑
f .di<0

f .

We stop the iterative algorithm when bi = bi+1 which usually takes less than 10 it-

erations, since there are only a small number of forces, and set Fleft = Fi+1
left and
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Figure 3.17: The direction t of the tear is computed as the bisector of the directions
of the boundary at each side of s.

Fright = Fi+1
right. Otherwise we limit the number of iterations to 10 to be sure to avoid

any infinite loop.

Computing the next tear tip. Once we have obtained the two opposites forces

Fleft and Fright, we can consider them as forces applied by two pulling points, and

compute the energy release rate and the direction of propagation as described before in

Section 3.3.1.

The forces composing Fleft and Fright are in-plane forces, so we can map them in the

2D pattern to get F̄left and F̄right.The direction d̄prop (shown in Figure 3.19) in which

the tear should propagate to release the maximum of energy is then the bisector of F̄left

and F̄right and the corresponding energy release rate (derived from 3.4) is:

Er = (Fleft + Fright) cos(
θ

2
),

where θ is the angle ∈ [0, 2π] between F̄left and F̄right.

If the energy release rate Er is superior to the fracture energy Ef at the point s then

the tear propagate and a new tip of the tear is created in the direction d̄prop. We adjust

the speed of propagation according to the energy released by the propagation:

s̄t+1 = s̄t + V Er d̄prop,
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Figure 3.18: An iteration of the clustering algorithm. (left) Fi+1
left is computed

as the sum of the forces (in red) of the left side of the plane defined by bi and the
normal to the surface and Fi+1

right as the sum of the forces on the right side (in blue).

(right) bi+1 is then computed as the bisector of Fi+1
left and Fi+1

right.

Figure 3.19: The propagation of a tear depends on the 2D angle θ between F̄left and
F̄right. If propagated, the next tip is found in the direction dprop, the bisector of F̄left

and F̄right.

where V is a constant parameter enabling the user to tune the speed of propagation of

the tear.
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The 3D position of st+1 is finally computed by projecting s̄t+1 onto the 3D surface.

Figure 3.20: Depending on the angle made by the tear at st, we either (right) split
or (left) remove it.

Figure 3.21: Case 1 of the remeshing scheme after the propagation of a tear: st is
the apex of a cone and st+1 is inside this cone. After remeshing, st+1 is the apex.

Figure 3.22: Case 2 of the remeshing scheme: st+1 is inside a curved region.

Remeshing. We aim at keeping the mesh consistent and as coarse as possible while

propagating a tear. As st is a point defining the boundary of the paper, it is a point

of the physical simulation, and at the same time a point belonging to the geometric

structure used for the crumpling model. We either split st into two points, s1t and s2t ,

if the angle, in the 2D pattern, made by the general path of the tear at st is > εa or

just remove it otherwise (see Figure 3.20). We choose to have εa = 0.1 gradient in our
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Figure 3.23: Case 3 of the remeshing scheme: st+1 is inside a flat region.

examples. In this way, if the tear goes straight, st is no longer a point defining the

boundary and does not belong to the geometric structure anymore. Thus we can keep

the representation of the flat regions in the geometric structure very coarse. Note that

for the mesh used by the physical simulation, the newly created edges are sampled as

any other edge of the boundary of the paper. The suppression of st does not hamper the

degrees of freedom of the physical simulation. In the other case, when the tear forms

an angle, one of the two points, s1t or s2t , has an inward angle of the boundary. This

means that it is a potential tearing point and so that the tear could possibly branch at

this point.

We also need to keep the geometric structure used by the crumpling model consistent.

Three main cases occur:

Case 1 st+1 is inside a generalized cone (i.e. s̄t+1 is inside the 2D pattern of the cone)

whose apex is st, in which case we modify the cone such that its apex becomes

st+1 (see Figure 3.21).

Case 2 st+1 is inside a curved region and st is not the apex of a generalized cone. We

apply a remeshing scheme similar to the one used when creating a singular point

inside a curved region (see Figure 3.22).

Case 3 st+1 is inside a flat region. We just update the coarse triangulation representing

the flat region in the geometric structure (see Figure 3.23).

3.3.4 Texture-based details

We compute the detailed path between two successive tear tips by using the algorithm

explained in Section 3.2.2 that consists in finding a low energy path in the combination

(described by 3.2) of a fibers texture Tfibers and a fracture-centered stress field Gt.
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Representation of the detailed path as textures. Let us call the initial texture

used to render the piece of paper Tpaper. To effectively represent the detailed path we

modify this texture. When a new tear is created, we compute two textures from Tpaper,

Tright and Tleft, that are respectively transparent on each side of the detailed path of

tear (see Figure 3.24). The triangles that are adjacent to the tear are textured by either

Tright or Tleft according to which side of the tear they belong to.

Tpaper Tleft Tright

Figure 3.24: The two textures (right) corresponding to the tear (in red) and the
initial texture on the left.

When a tear is propagated, the textures Tright and Tleft are updated in order to include

the new path. When a tear is branching, two new textures are created for the new

branch of the tear from the texture corresponding the parent tear.

The detailed path between two successive tear tips is shared by two triangles. To have

all the details of the path represented for both of them, we extend those triangles by a

small textured rectangle as shown in Figure 3.25.

Figure 3.25: An support rectangle is used to represent the details outside a triangle
bordering a tear.
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3.3.5 Preliminary results

We present in this section our result for the general scenario including both crumpling

and tearing. Note that all the presented results are still at preliminary state and corre-

spond to unpublished work which may be improved in the near future.

Figure 3.26: A tear is created on virtual paper by flattening on border of the bent
surface. The deformation is generated by two hands represented each by two red points
(modeling two fingers) relied by a red line. The tear appear at a junction point between

the curved region and one of the flat ones.

Figure 3.27: A tear created in real paper by reproducing the situation of Figure 3.26.

Validation of the starting points Figure 3.26 shows a piece of paper bent into

a cylinder by two hands modeled by two points (each represented by two red points

linked by a red line). Then the two hands rotate to flatten one border of the cylinder

until creating a tear. The same experiment is realized with a real piece of paper (see

Figure 3.27). We can see that with both virtual and real paper the tear appears near

one finger between the curved region and one of the parts maintained flat by a hand.

We can also notice that when a piece of paper is torn near a concave border, the tear

usually starts from an inward angle of the border. We reproduce this case in Figure 3.28

and Figure 3.29.

Validation of the tear trajectory As explained in Section 4.3.1, and in more details

in [Rom13] and [OKe94], when the propagation of the tear is only due to two fixed points
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being pulled apart, the curve followed by the tear on the 2D pattern is a hyperbola with

focal points given by the two pulling points. It means that at each point c of the curve,

the tangent to the curve is the bisector of the lines between each pulling points at the

point c. In the next experiment, we validate our model with respect to this behavior.

Figure 3.28: Two pulling points a equal distance of the starting point of the tear create
a straight tear. (top) Evolution of the 3D surface as the tear propagate. (bottom) 2D

pattern, the tear path is the mediator of the two pulling points.

Figure 3.28 shows the paper being torn by pulling two points located at equal distances

of the starting point of the tear. As seen on the picture, the tear follows the mediators of

the line between the two pulling points describing therefore the expected tear trajectory.

Figure 3.29 shows the tear obtained by pulling two points located at different distances

from the starting points. The tear follows indeed a curve whose tangent at each point

corresponds closely to the expected bisector.

Details Figure 3.30 shows the tear with the added stochastic details. We obtain small

details without needing a denser mesh.

When the successive tips of the tear are separated by a very small and regular space

step, the tear may seems to regular (see Figure 3.30 (top-left)) as the path is defined by

successive tips and so goes through each of them. One possible improvement would thus

be to allows the path to deviate a little from its defining point in order to take better

advantage of the stochastic path method.
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Figure 3.29: Two pulling points at different distances of the starting point of the tear
create a curved tear. (right) The 3D surface of the torn paper. (left) 2D pattern, at each
point, the tangent to the path is approximately cut the angle between the directions

toward each pulling points into two equal part.

Figure 3.30: Evolution of a tear with stochastic details. (right) Just before the
start of the tear, (middle) first step of the tear, (left) the whole tear.

(top) The speed of the tear is set at V = 2. (bottom) The speed of the tear is V = 10.
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3.4 Discussion and conclusion

We presented in this chapter a procedural method for tearing paper in a specific case

and a generalization based on our crumpling model and on Material Sciences studies.

Although more general scenarii could be explored, the method already provides promis-

ing results. Notably we can reproduce some characteristic to paper, geometrically-ruled

tearing path which are validated with respect to behaviors described in the physical

literature.

In the near future, we plane to improve the details appearance by generating damages

in the fibers’ texture around singular regions representing broken fibers and where the

fibrous structure should thus be weaker. Another idea would be to use several fiber’s tex-

tures to represent multiple layers of fibers. In this way, the same tear would correspond

to several detailed path and then represented by layered semi-transparent textures.



Chapter 4

Sound synthesis for paper

“The empty vessel makes the loudest sound.”

William Shakespeare, Henry V, 1599.

4.1 Introduction

In the two previous chapters, we have introduced a model to simulate paper that create

visually compelling animation. Yet to aim at a fully immersive experience, a synthetic

model needs to stimulate also the other senses, particularly the hearing. Realistic audi-

tory feedback plays an important part in the creation of compelling virtual experiences

in providing to the listener feedback information about the environment and material

involved.

The automatic generation of sound for virtual animation is still a recent research area.

Generating sound for video games and interactive applications is a particularly diffi-

cult problem as the sound has to be synthesized interactively while only using limited

computing resources –2 to 50 MB of memory and around 10% of the total CPU.

The case of sound synthesis for paper material is particularly challenging as paper is

not only extremely deformable – preventing from using rigid body simulation – but also,

contrary to the sound of cloth garments, the sound of paper depends heavily on its

shape –which may change dramatically during its crumpling. In addition, paper sound

is a complex combination of different sound styles. It is a mix between continuous

95
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noisy sounds produced by frictional sliding, and discrete events produced by geometric

bending and crumpling processes. These discrete sounds may also vary between long

“flap” sounds when the sheet is still smooth, and more short “clac” sounds in more

crumpled cases. Also tearing sound is again another kind of sound composed of small

bursts of energy caused by the breaking of the bond between fibers. Those characteristic

sounds of paper-like material is very familiar to humans – as for example the universally

recognized crumpling of money bills.

The work presented in this chapter tackles these challenges. We aim at obtaining a

realistic sound model able to synthesize the sound at run time as the user interacts with

the virtual paper while taking into account paper’s shape and its environment. We first

introduce a shape and environment dependent sound synthesis for crumpling, bending,

and friction. Secondly, we present a method to procedurally synthesize the sound of

torn paper.

The method for synthesizing the sound of crumpling paper described in Section 4.3 has

been published and presented at Eurographics/ ACM SIGGRAPH Symposium on Com-

puter Animation (2016) [SRJ∗16]. This work has also been presented earlier at the

“Journées de l’AFIG” in November 2015.

4.2 Digital sound

This section explains some basic notions about digital sound required to understand the

rest of the chapter.

Sampling rate. The average human hearing range –i.e. the average range of frequencies

audible for human hears– goes from 20Hz to 20kHz. To capture a band of frequencies

without aliasing, according to the Nyquist criterion, the sampling rate rs must be such

that rs > 2B where B is the higher frequency of the sound. Which means that to

accurately represent a sound (destined to human hearing), we need a sample rate of a

least 40k samples per second –i.e. 1 second of sound is represented in the time domain

by 40k samples of the amplitude of the sound, so 40k numbers between [−1; 1]. In this

chapter, we use a sample rate of 44100Hz which is commonly used in audio, notably for

audio CDs.

Spectrum of a sound. A sound can be represented in the frequency domain by its

spectrum. For digital sound, the FFT (Fast Fourier Transform) algorithm is usually

used to go from the temporal domain to the frequency domain. This algorithm takes a

window of N sound samples –so a window of N
rs

seconds– and return a spectrum s = [si]

represented by N complex numbers sampling the frequency band [0, rs2 ]. The ith value si
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Figure 4.1: Sound of crumpling paper.

correspond to the frequency fi = rs
2N i. The module |si| is the amplitude of the sound at

the frequency fi and the argument of si is its phase. The power spectrum represents only

the amplitude of the spectrum. It is common to compute the average power spectrum

of a sound by averaging the spectra obtained for a sliding windows spanning the whole

sound.

Figure 4.2: A spectrum of a sound.

Spectrogram of a sound.
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A spectrogram represents a time-frequency analysis of a sound: it shows the variation

of the power spectrum of a sound over time. It is obtained by computing the power

spectrum for a windows spanning the sound over time. As shown in Fig. (ajouter

figure), the horizontal axis of the spectrogram represents the time while the vertical axis

are frequencies. The pixel color in position (t, f) encodes the amplitude of the frequency

f at time t. Note that frequency may be represented on a logarithmic scale in order to

model octaves, ie. a multiplication of frequency by a factor of 2. It is well known that

temporal precision is inversely proportional to frequency precision. Therefore width of

the sliding windows is a trade-off between fast time change expected to be captured,

and frequency precision.

Figure 4.3: Spectrogram of a sound a crumpling paper.

4.3 Shape-dependent sound synthesis for crumpling paper

For generating the sound of paper being crumpled, we choose to adapt motion-driven

concatenative synthesis of sound to the case of paper by introducing the concept of

Figure 4.4: Real-time paper sounds: Our method can automatically synthesize a
plausible, synchronized soundtrack (shown as a spectrogram) for interactive simulations
of a rectangular sheet of paper. In this 3.3s animation, the back edge of the sheet is
held while the front edge slides toward it, thereby curving the paper; then, when the

back edge is released and the front edge is pinched, the back edge stands up.
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Figure 4.5: Overview: After computing the sound-producing events, each of them is
associated with a set of resonators. Each of those resonators leads to a sound unit after
querying it on a pre-computed sound data-base. Each sound unit is spatialized to adapt
to our scene and the final resulting sound is obtained by mixing all the contributing

sounds.

geometry-dependent resonators. We also proposed a spatialization algorithm in order

to handle the environment’s influence.

Our approach consists of four steps performed at run-time during the visual simula-

tion of the sheet of paper. First, sound-producing events are detected by analyzing the

paper surface animation. Second, each event is characterized using the geometry and

the motion of the surface to parameterize our sound models. Third, the sound is syn-

thesized using the estimated model parameters using computed characteristics and two

pre-recorded data-bases of primitive sounds: one for the discrete crumpling sounds, and

another for the continuous friction sounds. Fourth, the resulting sound is spatialized in

3D to account for the influence of nearby planar surfaces, such as a wall or table.

Our three main contributions are as follows. First, we develop a new shape-dependent

model for friction and crumpling sounds. Our model is based on local surface regions we

call resonators, which characterize the regions where significant sound-related vibrations

occur. Second, we propose a two-sided detection and characterization method for both

friction and crumpling sounds, that incorporates their dependence on nearby free (un-

constrained) boundaries of the sheet, leading to four different sound types: constrained

and unconstrained crumpling sounds depending on the presence of a free border in the

producing region; and similarly, constrained and unconstrained friction sounds. Third,

we propose a new efficient approximation method for sound spatialization, adapted to

model the sound of thin-sheet surfaces near flat surfaces, such as tables or walls.

4.3.1 Overview

Two kinds of sounds are usually identified for thin-sheet material:
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1. Friction sounds caused by regions of the surface sliding along either another

object of the scene or another part of the same surface. The sound is produced by

the sliding part bumping randomly against small irregularities of the other surface

and can be approximated by a colored noise (a stochastic signal with a slowly

time-varying power spectrum, see Figure 4.6).

2. Crumpling sounds generated in regions where the bending direction changes

suddenly, such as when the sign of surface curvature changes. The transition be-

tween two equilibrium states can produce a sudden burst of energy which is quickly

dampened (see Figure 4.7). Although it may happen in some forced configurations,

we discard the cases when the bending direction change suddenly enough to cause

sound without the curvature changing sign. We only consider crumpling sound

occurring because of an inversion of curvature.

Paper material is extremely rigid compared to other thin materials, such as fabric.

Consequently, resonant vibrations can have a strong impact on the sound. The size and

the shape of theses resonating regions influence the resulting sound. A good experiment

to convince oneself of the importance of this phenomenon is to listen to the difference

between the sounds produced while sliding a flat piece of paper over a table, compared

to sliding a curved piece of paper enabling the sound to resonate (Figure 4.6).

We call free borders natural edges of the paper that are curved enough to be able to

vibrate (see Figure 4.8 (left)). As they have more degrees of freedom than interior edges

or borders constrained to be flat, they have a notable influence on the sound. When

the resonating region has no free border, we observe that the friction sound is close to

a white noise (Figure 4.6 left) and is less loud than friction sounds produced by a bent

surface containing therefore a free border (Figure 4.6 right). Similarly for the crumpling

sounds, we register sharp “clac” sounds (Figure 4.7 left) – which you can hear while

crumpling a paper into a ball – that are produced by constrained regions dampening

the sound in a few milliseconds. On the opposite, when the vibrations can reach a free

border a longer “flap” sound lasting few hundreds of milliseconds (Figure 4.7 right) –

which you can hear while wiggling a sheet of paper held on one border – is produced.

Based on these observations, we therefore make a difference between sounds produced

by regions containing one or more free border(s), that we call unconstrained regions, and

those produced by regions that contains none, i.e. constrained regions (see Figure 4.8

(right)).

Our key idea is to reproduce these resonance phenomena thanks to a procedural detection

of representative regions in which the vibrations caused by a crumpling or friction event
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Figure 4.6: Spectrogram of recorded friction sound reveals slowly varying
spectra in time, which is well approximated by a colored noise model. (left) Constrained
friction sound obtained for a flat sheet of paper. (right) Unconstrained friction sound

produced by a curved sheet.

Figure 4.7: Spectrogram of recorded crumpling sound: (left) “clac” sound
produced by a constrained resonating region. (right) “flap” sound produced by an

unconstrained region.

occur. This enables us to produce, for each of these regions we call resonators, an

appropriate shape-dependent sound. Resonators are then parameterized by their shape

and size (see Section 4.3.3) and subdivided into two classes: unconstrained resonators or

constrained resonators, depending on whether or not they have a free border that is able

to oscillate. This leads to the four categories of sounds described above: clac and flap

sounds for respectively constrained and unconstrained resonators in case of crumpling

events, and different friction sounds for constrained and unconstrained resonators in case

of friction events.

In order to output sounds as rich as those of real paper in real time, we use pre-recorded

sound units stored in Crumpling and Friction sound databases. Due to their different

natures, we need the whole sound to replay a crumpling sound, while we just use the time-

averaged power spectrum to reproduce a friction sound (see Section 4.3.3). Therefore

our Friction sound database only stores spectra.

Our processing pipeline is summarized in Figure 4.5. Given an animated mesh modeling
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Figure 4.8: Free borders are smoothly curved edges of the paper allowing enough
degrees of freedom to oscillate (in red). A region of the surface is considered as con-

strained if it has no free border, and unconstrained if it contains at least one.

the deformation of the paper surface through time (Figure 4.5 (a)), we extract two

types of sound source events at each time step (Figure 4.5 (b)): (1) we compute the

parts of the surface in contact with other objects, since each of these parts defines a

friction event ; and (2) we detect surface regions where the curvature changes sign, and

use these features to identify crumpling events. For each sound source event, we then

compute a set of resonators (Figure 4.5 (c)), i.e., the regions in which vibrations caused

by this event occur (see Section 4.3.2). For each resonator, a sound is extracted from

the appropriate database depending on the type of resonator and the type of sound

event (Figure 4.5 (d)). A specific sound is extracted based on the geometric parameters

of the resonator, and then reduced or amplified depending on the magnitude of the

sound-source event. Finally, the assembled sound is spatially embedded within a 3D

environment (Figure 4.5 (e)), by taking into account the relative positioning of the

paper with respect to surrounding obstacles such as tables or walls, and the position of

the listener (see Section 4.3.4).
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Figure 4.9: Geometric structure of surface animation model: The surface is
segmented by a set of curved regions (purple) and flat regions (green).

These steps are more precisely described by the algorithm shown in Algorithm 4.

Algorithm 4: Animation loop with sound

animation ()

crumpling events detection (out crumpling events list)

for ce ∈ crumpling events list do
compute resonators (ce, out crumpling resonators list) . See Section 4.3.2

for cr ∈ crumpling resonators list do
sound buffer ← gsfdb(cr, crumpling database)

multiply sound buffer by amplitude of ce

send sound buffer to the audio output

end

end

friction events detection(out friction events list)

for fe ∈ friction events list do
compute resonators (fe, out friction resonators list) . See Section 4.3.2

for fr ∈ friction resonators list do
spectrum ← spectrum + get spectrum from db (fr, friction database) ×
amplitude of fe

end

end

sound buffer ← IFFT (spectrum)

send sound buffer to the audio output

4.3.2 Detecting resonators

Geometric Model: At each animation step, the first stage of our method consists in

detecting the sound-source events on a 3D virtual paper surface provided by an external
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animation or simulation engine. As we aim at providing sound synthesis in real-time,

choosing an interactive animation system for paper crumpling is mandatory. We use

the model described in Chapter 2, which is, to our knowledge, the only existing model

capable of animating paper crumpling at interactive rates. It has the advantage of being

built on high level geometric descriptors, which we can reuse. In particular, we get from

the geometric structure the partition Rpaper of the surface, composed of:

1. Curved regions (in purple in Figure 4.9) that segment sections of generalized

cones, and are represented by the rulings of these cones (purple lines in Figure 4.9).

2. Flat regions (in green in Figure 4.9) that are represented by a set of coarse

triangles whose vertices are either singular points or anchored points. The dihedral

angle between every pair of adjacent triangles of a same flat region is inferior to a

threshold, εa.

We use this surface partition to help represent surface resonators by considering each

region of Rpaper as a possible resonator. As curved regions have necessarily a curved

border they are considered in the following as unconstrained regions, whereas flat regions

are considered as constrained regions (see Figure 4.9 (left)).

Event Detection: We detect the sound producing events using a heuristic similar

to the one proposed in An et al [AJM12]. Friction events are associated with vertices

in contact with an obstacle (based on proximity computations), that are spatially con-

nected. Each connected component represents the locus of a friction event. The mean

speed of its vertices represent the amplitude of the event.

The location and time of crumpling events are estimated by analyzing the mean curva-

ture over the surface. As the mesh given in input is constantly recomputed, we chose

to compute the curvature using a regular grid projected onto the surface (see fig. 4.10).

The curvature Hv can thus be easily computed at each vertex v of the grid using its

direct neighbors, and its previous curvature can be stored. Crumpling events are rep-

resented by connected components of vertices whose mean curvature has undergone the

same change of sign between the current and the previous animation step. To avoid

having too many sounds caused by small instabilities in the simulation, we only select

vertices where the change of curvature is significant; a vertex v belongs to a crumpling

region if its mean curvature change of sign from time t−1 to time t and if the difference

between the curvature ∆t
v = |Ht

v −Ht−1
v | is greater than a threshold εc. The associated

amplitude is computed as the sum of the curvature changes ∆t
v for all the vertices v

contributing to the event.
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Figure 4.10: By projecting a grid on the surface, the curvature can be computed in
any vertex of the grid using its neighbors.

Figure 4.11: Resonator estimation (for a crumpling event): (left) curved and flat
regions, (middle-left) detecting sound event, (middle-right) finding region of event and
recursively finding the regions in which the vibrations can propagate, (right) resonators.

As already stressed, contrary to cloth material where crumpling and vibrations only

occur locally within the material, paper is very stiff (because of strong isometry con-

straints), and can support spatially coherent vibrations and buckling events over large

regions. The sound produced by friction and crumpling events is thus much more de-

pendent on the current geometrical state of the surface than it is for softer materials,

such as cloth. Therefore, instead of directly associating a sound to each event as in

[AJM12], we first associate a set of geometrically defined resonators to each event, and

then synthesize the sound accordingly. While this is a crude approximation of the com-

plex underlying phenomena, it enables the sound to have geometric dependence which

can improve realism.

Resonator Estimation: In order to compute the set of resonators for an event, de-

fined as a collection of connected surface pieces, we need to identify the boundary of the

surface region that the event causes to vibrate. We choose to define this boundary in an

intuitive way as follows. The borders of the sheet naturally belongs to this boundary.

Moreover, paper material tends to get very stiff in the direction of highly curved folds,

or “ridges” (which are aligned to some of the rulings; see Figure 4.9), but the sheet is
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more flexible in the main curvature direction. Consequently, transverse vibrations tend

to be trapped in these interior resonator regions by ridges [GWV02]. Therefore, we as-

sume that vibrations do not propagate across ridges, which we define as a ruling whose

dihedral angle is above a threshold, amax; we use amax =0.5 rad in our implementation.

We then stamp as boundaries of the propagation region all the edges with high dihe-

dral angle, in addition to free borders and to edges with an anchored point (position of

virtual fingers manipulating the sheet) or in contact with another object, since this also

prevents further propagation.

Defining these limits enable us to estimate the set of resonators where a sound event prop-

agates by recursively collecting the neighboring regions until reaching an edge stamped

as propagation border. In more details, to compute the set of resonators Sres associated

to an event e, we use the following algorithm.

We initialize a list of regions Lregions with the region(s) of Rpaper where e took place

(see fig. 4.11 (b) and (c)). While Lregions is not empty, we remove its first item r0 and

add it to Sres. Then for each neighboring regions r of r0:

• if a common edge of r and r0 has a dihedral angle inferior to amax:

– If r is a flat region, the angle between two adjacent triangles is smaller than

εa. We choose amax ≤ εa such that the vibrations can propagate through the

whole flat region. So we just add it to Lregions.

– If r is a curved region, the vibration can be stopped by a ruling, within the

region, whose dihedral angle is greater than amax . In this case, we only add

the relevant sub-part of r to the set of resonators Sres. Else, all the rulings

have angle small enough, so we add r to Lregions.

Each of the regions of Rpaper collected in Sres is considered as a resonator and will

produce a sound as explained in the next section.

4.3.3 Geometry-based sound synthesis

Resonator Parameters: As already stated, our method to produce rich and natural

sounds in real time is to re-play pre-recorded sound units, selected from a database. We

therefore need to parameterize resonators in order to match them to a specific sound unit,

easy to query in a database, and we need to register sounds in the database accordingly.

The number of parameters needs to be kept small in order to keep the database to a

reasonable size. They should also discriminate well enough the different possible sounds.
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In this work, we propose to parameterize each resonator by the following two variables:

lc the sum of lengths of all the free curved borders (red in Figure 4.12), and lr the mean

length of the rulings (purple in Figure 4.12). As already discussed, free borders of the

surface are of major importance to characterize the sound. In selecting their length, we

aim at extracting the parameters of the dominant sound. By associating it with the

mean length of the rulings, we sample uncorrelated variables related to the area of the

resonator. We therefore claim that the couple (lr, lc) is a good choice of parameters to

correlate significantly a geometrical measurement of a region to the sound it produces.

Note that we further validated this choice by performing real measurements, as described

in Section 4.3.5.1.

The constrained resonators can then be identified as the resonators whose parameter lc

is null.

Sound Databases: Let us detail how we pre-record the databases of sound units to

be played at run time. Firstly, such databases are specific to a given type of paper

material and to a given type of obstacle for the friction sound. In our experiments we

used printer paper (80g/m2) and a wooden table. We also recorded databases for tracing

paper and paper of a bank note.

We actually created two different databases, respectively for friction sounds and for

crumpling sounds (see Figure 4.13). As friction sounds can easily be continuously syn-

thesized as noise, without taking into account their temporal phase, we only store the

power spectrum in the frequency domain of the sounds recorded in the sound database.

In reverse, crumpling sounds have a specific time duration with a specific beginning and

end, and are therefore stored in the temporal domain.

For these two databases, we sampled the (lr, lc) space, and for each value, we cut a rect-

angular sheet of paper with (lr, lc/2) edge length, bent its edge of length lc/2, recorded

the sound produced by its friction, and by a change of sign of curvature (for the crum-

pling database). The unconstrained friction sound and the flap sounds are related to

non-zero free border lengths and are the most dependent on the shape of the surface.

The two others constrained types of sound, namely constrained friction and clac (corre-

sponding to lc = 0) do not depend much on the shape of the surface and were therefore

considered as special cases. To ease the recording process, we stored these two specific

sounds in the (lr = 0, lc = 0) entry of their respective database. Several sound samples

were stored per entry to increase variety.

Sound Synthesis: Given the databases and the resonator, sounds are synthesized at

run-time in the following way: For each resonator, we select the closest recorded (lr, lc)
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Figure 4.12: Resonator parameterization using the mean length of its (purple)
rulings (lr) and the sum of the lengths of the (red) free borders (lc).

Figure 4.13: Sound Databases: Ordered in a matrix form according to the di-
mensions lr and lc. The crumpling database contains short sound clips, whereas the

friction database contains sound spectra.

parameter in the relevant database, considering also the special case (0, 0) when the

resonator does not have any free border, and randomly select one of the corresponding

sound samples. Finally, all sounds are assembled together.

As explained before, each crumpling sound is entirely stored in the temporal domain

in the database. In order to take into account the magnitude of the event, the sound

magnitude is linearly scaled with respect to the event amplitude. Note that we let the

computer system handle the mixing of the sounds . Each sound is individually handled

in a separated thread such that geometrical animation can be updated interactively in

parallel of the sound synthesis.

Contrary to crumpling sounds, the duration of a friction sound is not known a priori.

Thus we need to generate the sound for as long as the friction lasts. As repetition is

very noticeable for human, looping over the same recorded sound several times should

be avoided, instead we choose to approximate a friction sound by a colored noise with

equivalent spectral properties. To synthesize such sound, we use the inverse Fast Fourier
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Transform method [RDRD92, MAKMV10] in order to generate a stochastic signal with

a specific power spectrum: Let’s call s = [sk]0...M−1 the vector of size M representing

the power spectrum (M = 2048 in our case). We obtain a vector of size M describing

the sound by applying an iFFt to the complex vector v = [vk]0...M−1 such that:

vk = sk e
i ωk for k = 0 . . .M − 1,

where ωk is a random phase uniformly chosen in the range [−π, π]. The sound thus

obtained has s for power spectrum and a stochastic phase.

In order to avoid to much computation, instead of generating separately each friction

sound, we first sum all the friction spectra selected for the current frame, each one

weighted with the amplitude of its corresponding event. We thus get a general friction

spectrum and apply the iFFT method to it. Buffers of general friction sound are pro-

duced and send to the audio output on a different thread as long as friction is detected.

There are no guaranties that the transition between two successive buffers would be

continuous, so in order to smooth it, two consecutive buffers are overlapped of M
2 .

It may be interesting to note that the synthesized sound is always guaranteed to be

synchronized with the frame of the animation, independently of the possibly variable

time between two frames. The parameters of the sounds (i.e: the nature and amplitude of

the events and the size of their corresponding resonators) are computed at each frame,

fast enough not to hamper the animation time. Then the sound can be produced in

real time, the most costly operation being the iFFT (see Section 4.3.5.1 of experimental

times). This method can produce the sound at run time during the interactive animation

of the paper, as well as being created for an already recorder animation with static fps

if the parameters of the sound have been recorded for each frame.

4.3.4 Spatialization

In this section, we describe our approach to embed the synthesized sound in the 3D

space by taking into account both the listener’s position and sound reflection on the

surrounding table or walls. Such planar surfaces interact with the sound vibrations of

paper material which can be modeled as a dipole.

The dipole-like radiation behavior of paper surfaces leads to significant frequency-related

interference effects above planar surfaces. For example when sliding a sheet of paper

on a table to bend it more, as in Figure 4.4 (left), one may notice a pitch-shift. This

is partly caused by the fact that the friction sound is reflecting on the table and the

reflected source interferes with the original source. A pitch-shift is also noticeable when
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one moves a sheet of paper closer to a wall while wiggling it. As the paper gets closer

to the wall, the “flap” sounds change. Note that in this work, we do not consider the

interference caused by self-reflections on the surface by cavities formed by the paper.

We develop below a simplified model for these phenomena for both time-domain (crum-

pling) and frequency-domain (friction) sounds. Transverse vibrations of the paper sheet

give rise to positive and negative pressure fluctuations on either side of the sheet. If we

approximate each resonator a small vibrating disk sound sources, then we can reason

about each disk’s sound emission and any planar reflections.

Let us consider the sound field, perceived by a listener located at x, due to a vibrating

rigid disk of radius a and zero thickness whose center is positioned at y and whose unit

normal vector is n (see Figure 4.14). If we assume that the normal velocity is U(t), and

that the disk is acoustically compact, i.e., the important wavelengths associated with

the frequencies in U(t) are much larger than a, then one can derive the acoustic pressure

field p generated by the motion (see [How02] page 81, problem 9) as:

p(R, t) ≈ 2ρ

3πc
a3

cosθ

R

∂2U

∂t2
(t− R

c
), (4.1)

where c is the speed of sound in the air and the relative location is given by:

R = x− y, (4.2)

R = ||R||, (4.3)

R̂ = R/R, (4.4)

cosθ = R̂ · n, (4.5)

as shown on Figure 4.14. This vibrating disk produces a dipole pressure field, with

characteristic 1/R distance scaling, and a cosine lobe about direction n. Without loss

of generality, we can discard the scalar factor 2ρ
3πc (which is common to all our sound

sources) and use:

p(R, t) ≈ a3 cosθ

R
A(t− R

c
), (4.6)

where A = ∂2U
∂t2

is the acceleration of the patch along n.

Consider the dipole source from (4.6) at height d above an infinite rigid plane, as shown

in Figure 4.14. Since the rigid plane imposes a zero boundary condition ∂p
∂n = 0 on

the normal acoustic particle velocity on the surface, a fictitious image dipole source p̃ is

introduced in the sound field. The global pressure field P is then the sum of the pressure
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Figure 4.14: Scattering: Geometric configuration of a vibrating paper patch above
a planar surface, along with its image source.

fields of the dipole source and its image source:

P (x, t) = p(x, t) + p̃(x, t) (4.7)

= a3
cosθ

R
A(t− R

c
) + a3

cosθ̃

R̃
A(t− R̃

c
) (4.8)

The image source has reflected position ỹ and normal ñ, and corresponding relative

coordinates R̃ and cosθ̃ = R̃ · ñ. The frequency domain form of (4.11) can be obtained

by replacing A(t) by A(ω)e−iωt to obtain

P (x, ω) = p(x, ω) + p̃(x, ω) (4.9)

= a3A(ω)

[
cosθ

R
eiω

R
c +

cosθ̃

R̃
eiω

R̃
c

]
, (4.10)

where the second term in brackets is the reflection.

Using this simplified model, we approximate the sound reflections in crumpling and

friction sounds using the time- and frequency-domain reflection models, respectively, as

follows.

Time-domain crumpling sounds: we scale each current time-domain crumpling

sound pressure event A(t) selected from the database to obtain its dipole-spatialized

version and generate the following delayed sound source for the image dipole:

P (x, t) =

(
a3

cosθ

R

)
A(t) +

(
a3

cosθ̃

R̃

)
A(t− R̃−R

c
). (4.11)

This change is done to each crumpling sound before synthesis.

Frequency-domain friction sounds: we obtain the dipole-spatialized version of each

friction sound by placing Equation (4.11) in the frequency-domain (effectively replacing
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A(t) by A(ω)e−iωt):

P (x, ω) =

(
a3

cosθ

R
eiω

R
c + a3

cosθ̃

R̃
eiω

R̃
c

)
A(ω). (4.12)

This multiplication factor is applied to the friction spectra A(ω) prior to region-based

summation and synthesis of the final sound.

4.3.5 Results and discussion

Most of the sounds presented in this section are represented graphically by their spec-

trum or spectrogram, but we strongly encourage the reader to watch and listen to the

video provided at the following link, preferably using good headphones in a quiet envi-

ronment: https://hal.inria.fr/hal-01333238v3/file/sound_of_paper.mp4

Implementation Details: In our results, we use sounds recorded at a sampling rate

of 44100 Hz and play the generated sounds at the same rate. The spectra of the friction

sounds contains 2048 frequencies which means that a buffer contains 2048 samples (≈
50 milliseconds) and we use an overlap of 1024 samples between two buffers. Our

implementation makes use of the C++ library STK [CS99, SC05] to read and play

sounds.

Recording of the database: Our two databases contain samples of sizes lc and lr,

using the values {2.5, 5, 7.5, 10, 12.5, 15, 20, 25, 30} cm. We recorded three crumpling

sounds and one friction sound for each sheet size. The sounds were recorded manually

under the same conditions. The microphone was placed one meter away from the sound

source.

We used for the real recording several rectangular pieces of paper that we bent in order

to give them the shape of a generalized cylinder (). Each rectangular piece has therefore

a curved and a straight border. We call L the length of the curved border, and l the

length of the straight one. We consider that the recorded sound corresponds to the one

produced by a resonator of size lc = L
2 and lr = l. We quantify the amount of bending of

the cylinder by a so called compression factor referring to the equivalent loss of length

between the border extremity in Cartesian distance. For example, if the curved border

measure 10cm and is compressed by 30%, this means that the distance between the two

endpoints of the curved border is 7cm, as they have moved closer of each other by 3cm

(=10cm*30%). This measure will be used later to quantify the influence of the curvature

on the sound.

https://hal.inria.fr/hal-01333238v3/file/sound_of_paper.mp4


Chapter 4. Sound synthesis for paper 113

For the friction sounds, the speed was measured by the time needed to go over the

friction distance (2s for 20cm). To avoid artifacts caused by the beginning or the end of

the slide, we compute the average power spectrum from a 200ms window at the middle

of the friction . The shape was retained by keeping the same amount of compression of

the curved edges (30%). We recorded the unconstrained (”flap”) sounds by holding both

ends of a sheet (slightly curved by compression curved edges of 10 %) of the required size

and twisting them to change the sign of the curvature. The constraint (”clac”) sounds

were isolated in a recording of crumpling paper.

4.3.5.1 Validation of the resonators’ parameters

We used two parameters (lc, lr) to characterize the sound of a given resonator. To

validate this choice in the case of the friction sound, we show that modifying these two

parameters has a larger influence on the sound produced by friction than modifying

other geometrical shape features with constant (lc, lr).

We perform several experiments in which we compare the friction sounds obtain with

resonators of different shapes. To compare the different recordings, we computed the

histogram corresponding to the spectrum of each sound and then compared them using

the quadratic-form distance [PW10]. In a first experiment, we use a square paper sheet

of size 10cm×10cm and and modified its shape by compressing the two extremities of the

sheet as illustrated in Figure 4.15 (a) (we measure as parameter the compression of the

curved borders, expressed in % In the following experiment represented in Figure 4.15

(b), we record the sound of different rectangular sheets such that they have the same

compression (= 30%) and the same value for the parameter lc (= 20cm) but different

values for the parameter lr. And then we do the same (as shown in Figure 4.15 (c)) for

the parameter lc (lr = 10cm, comp = 30%).

Table 4.1 gathers our results. The first four columns show that modifying the lc or lr pa-

rameters respectively by a factor of 50 to 75% leads to a modification of their spectrum,

quantified between 0.07 and 0.16. The next two columns show that keeping constant lc

and lr parameters but changing the curvature of the sheet leads to a change of spectrum

quantified between 0.03 to 0.05, which always stays below the influence of modifying lc

or lr.

To further study the influence of shape, we also compared the sound produced by three

different sheets of shape S1, S2 and S3, shown in Figure 4.15 (d). Each piece of paper is

compressed by a factor of 30% and the results on their respective histogram distances

computed using the same approach as above are gathered in the last two columns of
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Figure 4.15: Validation experiment: We compare sounds obtained while varying
three parameters: amount of compression (a), lr (b) and lc (c). We also measured the
sounds obtained for 3 sheet shapes with the same compression, lr and lc: S1 is a square
10 cm x 10cm (d top); S2 is a trapezoid whose bases, of respective sizes 4cm and 16cm,
are the curved borders (d middle); S3 is a trapezoid whose bases of sizes 4cm and 16cm,

are the flat borders (d bottom).

Table 4.1. We obtained distances comparable to those obtained for change of curvature,

and once again lower than those obtained for changes of lr and lc.

lr dr
5 vs. 10 0.10

10 vs. 20 0.07
5 vs. 20 0.16

lc/2 dc
5 vs. 10 0.04

10 vs. 20 0.12
5 vs. 20 0.13

comp dcomp

20 vs. 40 0.03
40 vs. 80 0.05
20 vs. 80 0.03

s ds
s1 vs. s2 0.04
s1 vs. s3 0.01
s2 vs. s3 0.03

Table 4.1: Distances between friction spectra of rectangular sheets of paper
while varying the parameters as shown in Figure 4.15. lr and lc/2 are the consid-
ered edge length parameters in cm, dr and dc are the respective histograms distances.
comp is the relative compression ratio, dcomp the associated histogram distance. ds
are the distances between friction spectra of the shapes s described in Figure 4.15(d)
compressed of 30%. s refers to the shape pattern show in Figure 4.15 (right), and ds
corresponds to the histograms distances. For example, the first line of the first table
indicates that the histogram distance is 0.10 between the friction spectrum produced
by a resonator with lr = 5 cm and the one produced by a resonator with lr = 10 cm.

Those experiments show that lr and lc are plausible parameters to characterize a res-

onator, although other factors that we didn’t took into account may indeed influence

the sound. Still limiting the sound parametrization to these two values gives plausible

results (see the rest of this section) with a limited number of sound samples.

To achieve more accurate results, one could aim at taking into account more geometrical

parameter into account, and ideally, to procedurally adapt the sound generation to the

shape described with a larger number of parameters. Another idea would be to use
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Figure 4.16: Real-virtual comparison of friction sound spectra for different
sheet sizes.

the developable property to simplify the physical computation of the vibrations in a

resonator. All these suggestions could be developed as future works.

4.3.5.2 Comparison with real paper material

To validate our resonator model, we compared the results obtained using our method

with sounds produced by real sheets of paper of different sizes. First, we focused on

friction sounds produced by sheets of paper slid over a table. We used rectangular

sheets of different sizes –210x297 millimeters (A4 format), 210x148 (half A4),105x297

(A5), 105x148 (A6)– and folded them as shown in Figure 4.16 (left). We also recorded

the sound of an A4-sized flat sheet. We compared the resulting five spectra of virtual and

real sounds in log scaled space (respectively top-right and bottom-right of Figure 4.16).

The results show that our model follows a similar evolution of the spectrum with respect

to the sheet size, i.e. a general translation of the spectrum towards higher frequencies
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Figure 4.17: Real-virtual comparison of “flap” sounds for different sheet sizes,
obtained by changing the curvature of bent paper.

when the size decreases. This evolution –and particularly the clear difference between

flat paper and folded paper being slid along the same table– can also be heard in the

video.

Next, we compared real and virtual crumpling flap sounds for different sizes of sheets.

Considering the same sizes than in the previous experiment, we folded each sheet of paper

as shown in Figure 4.17 and revert the sheet while recording its sound. The attached

video plays the resulting sounds. In both (real and virtual) cases, we get distinctive

sounds depending on the size of the sheet.

4.3.5.3 Spatialization

Here, we conducted two experiments. Figure 4.18 (left and middle) and the associated

video presents the result of our frequency-domain spatialization method for the friction

sound. The friction sound of our virtual paper is recorded for an A4 sheet compressed

by a factor of 30% first and 10% then, leading to a change of height of the sound source.

One can hear in the video that the friction sound depends on the height of the sound

source, as it is the case for real paper sound. We can also hear the slight pitch shift as

the sheet is bent.

We also show in the video the modification of sound depending on the position of the

listener in front and on the side of the sheet of paper (Figure 4.18). Figure 4.19 corre-

sponds to a sheet of paper being wiggled while changing its distance with respect to the

wall. The time-domain spatialization of the crumpling sounds causes the sound shift we

can hear in the video.
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Figure 4.18: Spatialization: The accompanying video shows the result of spatial-
ization for friction sound from two different points of view.

Figure 4.19: Spatialization: The sound may be modified by the proximity of a wall.
It is noticeable for example when one wriggles a sheet of paper near a wall. A change
a pitch can be heard while moving the sheet away from the wall. The accompanying

video shows similar effect obtains thanks to the spatialization step.

4.3.5.4 Computational Performance

Memory requirements: The crumpling database contains 249 sound units whose

lengths are going from 200 to 800 milliseconds. The friction database contains 63 spectra

sampling 2048 frequencies –between 0 and 22kHz. The memory footprint of the database

is around 10MB.

Computation times: The detection of the events and the computation of their res-

onators are done once per frame. Table 4.2 compares the mean time per frame for these

audio operations to the computation time of the animation. We computed the sound

of the animation represented Figure 4.22 (right) with three different resolutions. The
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computation time of the curvature depends on the resolution, so real-time performances

get harder to reach when the resolution increases. Still, the computational time required

for the audio-related operations always remains negligible compared to the one required

for the animation.

Playing sounds is done using different threads than computing the animation To achieve

real time sound synthesis, it is necessary to generate at least 44100 audio samples per

second. A thread is created for each crumpling sound. Note that at run time, only

scaling operations need to be applied to the recorded samples before sending them to

the audio output. A single thread is used for friction sounds. A new buffer is computed

every 1024 samples using the weighted sum of the spectra of all the friction sounds.

Then the actual sound is computed by applying an Inverse Fast Fourier Transform.

This computation has to be done 44 times per second and took 4ms in average in our

examples, which makes ∼200ms for generating 1 second of sound.

examples animation audio
(Figure number) (ms per frame) (ms per frame)

Figure 4.4 168 5
Figure 4.21 182 6
Figure 4.22 (left) (183 triangles) 252 6
Figure 4.22 (left) (446 triangles) 1322 17
Figure 4.22 (left) (1333 triangles) 11860 75

Table 4.2: Mean computation time for the animation and mean computation
time for the audio operations, done once per simulation step

4.3.5.5 Others results

In this section, we present some more complex examples, which are also shown in the

video. Figure 4.4 and Figure 4.20 illustrate, respectively in the virtual case and in the

real case, the spectrogram of the sound generated while sliding one edge of a sheet along

the table thereby curving the paper, then pinching the front border causing the back to

stand up. This example mixes all the different categories of sounds we considered. We

can note that the synthetic friction sounds are much more regular than the real ones.

This is mainly due to the fact the it very difficult to reproduce a smooth movement “by

hand.” Nonetheless, we obtain the same type of event at the same moment, notably

the “flap” sound when the sheet stands up and different kinds of friction sound for the

different shapes that the sheet takes. Figure 4.21 shows a sheet (real and virtual) held

by one border and wiggled and the corresponding spectrograms. Figure 4.22 (left) shows

the example of a sheet being crumpled. We also simulated the sound of different cate-

gories of paper material by recording different databases, such as for tracing paper and
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Figure 4.20: Comparison: Spectrogram obtained while reproducing the experiment
shown in Figure 4.4 with real paper.

(a) (Left) Virtual paper. (Right) Real paper.

(b) Spectrogram obtained for (Top) virtual paper, and (Bottom) real paper. Both examples show
1.5s of the sound

Figure 4.21: An A4 sheet of paper held by two corners is lightly shaken.

Figure 4.22: Different paper materials being crumpled can be synthesized in
recording different databases: (Left) printer paper, (Middle) tracing paper, (Right) a

bank note.

paper of a bank note (Figure 4.22 (middle) and (right)).

4.3.6 Conclusion for the sound of crumpling paper

We presented the first method that automatically generates plausible sounds fitting an

interactive animation of paper material. We achieved real-time sound synthesis through

a trade-off between speed and accuracy, leading to several noticeable limitations. First,
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the range of possible sounds is limited when using pre-recorded sound databases. More-

over, each database is associated with a specific type of paper and obstacle materials

(for friction sounds), and changing them requires recording a new database.

The visual simulation of paper is also a bottleneck, and currently there are no meth-

ods that are both interactive and able to model very crumpled paper, especially with

self contact. We used an interactive method to demonstrate our fast sound synthesis,

and also because it enabled efficient estimation of resonators. Challenging but familiar

scenarios, such as crumpling paper into a ball, remain outside the scope of this work,

since they would require detailed simulation of self contact, as well as more sophisticated

modeling of sound inter-reflections and scattering. Nevertheless, our results still depict

a large range of scenarios.

By requiring only animated mesh sequences, our method can handle a large variety of

animation inputs. However, since it does not have access to physical contact force infor-

mation, it cannot, for instance, include dependence of friction sound volume on contact

force. Moreover, our resonator model approximates paper vibrations in a resolution-

dependent manner, and does not actually model vibrations directly.

Another limitation is due to the small set of physical parameters taken into account dur-

ing the synthesis process. Studying more the effect of different parameters, in addition

to the two we already use, on the sound or taking into account the specific properties

of developable surfaces to allow for more accurate vibration modeling without sacrific-

ing computational efficiency, these are leading toward being able to model sound more

efficiently. Ideally, this may permit to know how to adapt a sound –either a recording,

a reconstructed noise or a procedural sound– to any shape.

In the next section, we complete the crumpling and friction sound by a tearing sound.

The same principle than the approach proposed in this section could apply, but as it is

much more difficult to record only the tearing sound while controlling reliably the size a

the resonator and the speed of tearing, we propose to generate it using a fast procedural

method and shape independent method, avoiding thus the need of recording a database

and its memory cost.

4.4 The sound of tearing paper

To generate a sound with minimal memory and computational costs, a sensible solution

is to use a procedural method. So in this section, we try a phenomenological approach

and enhance our interactive tearing animation with a simple and fast algorithm to create



Chapter 4. Sound synthesis for paper 121

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6

am
pl

itu
de

time (second)

fast
slow

Figure 4.23: Comparison between the audio signal of a fast tear (red) and a slow tear
(blue). The amplitude of the fast tearing is larger than the slow one, while the large

peaks are generally closer for the fast tear.

sound. Our method is based on observations made from audio recordings of real paper,

and hypotheses concerning the breaking of fibers and the speed of the tear.

4.4.1 A fast procedural model

(a) Slow tearing

(b) Fast tearing

(c) Spectra of the fast tearing (red) and the
slow tearing (blue).

Figure 4.24: Spectrograms of 0.05 s clips from the middle of the recorded sounds
shown in Figure 4.23, with a plot of the spectral power densities. All frequencies
are present at a relatively constant speed-dependent power, with a small frequency

dependent power drop for fast tearing.
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The sound of paper being torn is generated when fibers, or more often links between

them, are breaking releasing energy. As fibers are randomly distributed within the paper

material, this process can be considered as stochastic, and therefore synthesized using a

noise model.

We recorded slow and fast paper tearing and reported the respective spectrogram and

spectrum of the record in Figure 4.24. Spectrum exhibits a rather constant value on

the hearing bandwidth and indicates that the sound is close to a white noise. The

spectrograms show temporal variations in the amplitude of the sound. This can be

explained by the physical organization of paper material. While being torn apart, fibers

produce an energy burst leading to a sound. Moreover, as noted previously, the fiber

density is not homogeneous within the paper material. These variations of density

encountered during the tearing process leads to sudden changes of energy making the

sound resemble to a crackling noise. These variations are mostly visible in the slow

tearing example shown in blue in Figure 4.23.

We reproduced this phenomenon using the following model. We first model a white

noise. Then each sample of the noise is multiply by rα , r being a random number

between 0 and 1 generated for each sample. α is a parameter used to tune the sound

between a white noise, for α = 1, and a crackling noise for large value of α. We typically

used in our experiment α = 100.

The crack propagation speed also affects the sound. First, the sound energy changes

according to the speed, as can be seen the comparison between a slow tearing and a

fast tearing in Figure 4.23. This can be explained by the fact that a faster tear involves

a larger number of broken fibers in the same amount of time. Second, the amplitude

changes that are caused by varying density of fibers across the sheet will also occur faster.

Thus, we linearly tune the amplitude and pitch of the modified white noise according to

the speed.

4.4.2 Results

In Figure 4.25, we show spectrograms and spectral power density plots of synthesized

slow and fast tearing sounds. We are able to capture the noise and crackling features of

tearing, but in comparison to recorded sounds, our synthesized sounds focus only on the

tear and are therefore missing several important qualities related to the shape. Indeed,

we can see in Figure 4.24c that the sound of real tearing has a specific tone while the

spectrum of the synthesized one (see Figure 4.25c) is nearly flat (it makes sense since it

is based on a white noise).
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(a) Slow tearing

(b) Fast tearing

(c) Spectra of the fast (red) and slow (blue)
tearings.

Figure 4.25: Spectrograms of 0.05 s clips of synthesized sounds, with a plot of the
spectral power densities.

4.5 Conclusion

We have proposed here two different approaches to model the sound of different behaviors

of the paper corresponding to the behaviors of our animation model. Our approach for

generating the sound of tearing paper use very few time and memory ressources making

it particularly well-adapted to games, that dedicated very few resources to the sound

generation. But it fails to take into account the shape of paper. The pitch shift that

one can hear as the undamaged region get smaller is not reproduce. On the opposite,

our approach for modeling crumpling and friction sound is shape-dependent but is more

expensive in time and memory although it can still reach real-time.

A deeper study of the behavior of the sound of the paper, of how it changes according

to its shape, or how the vibration propagate in developable surfaces would be some

interesting future as it may put within reach an approach combining the advantages of

both methods proposed is this section.



Conclusion:

The future of the virtual paper

“Welcome back my friend, to the show that never end.”

Emerson, Lake and Palmer, Brain Salad Surgery, 1973.

In this thesis, we presented a complete model for interactively create animation of virtual

paper, including bending, crumpling, tearing and the automatic on-the-fly generation

of the corresponding sound. By using a hybrid model mixing physical and geometric

approaches we are able to reach most of the objectives we aimed at:

Realism. The underlying deformation of our model is based on physical simulation enabling

therefore to obtain natural motion of the surface for general scenario. The pro-

cedural and geometric layers, on their side, ensured to reproduce either observed

or described phenomena in studies dedicated to paper material, thus enabling its

plausible behaviour. Although our model would still need to incorporate colli-

sion handling to allow fully crumpled modeling, we can already simulate many

interesting scenarii.

Efficiency. The geometric step of our crumpling model computes a remeshing of the surface

that gives the necessary degrees of freedom to the surface while keeping the mesh

as coarse as possible. The methods for tearing the paper and generating the sound

rely on the information given by this step to efficiently reduce the computational

time. Our model thus runs fast enough for interactivity.

Intuitive control. The physical simulation enables a smooth deformation and the specific features

of the paper as folds, tears or sound are automatically computed based on prior

knowledge. The user does not need to provide complex inputs, like the position of

sharp edges or folding patterns for example.

124
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In the different works proposed in this thesis, we made a point of testing and comparing

our virtual paper and real paper in situations when the sheet of paper starts to crumple

or tear. These cases –when paper goes from undamaged flat state to a more distorted

state– are often skipped in standard computer graphics literature, while we believe

instead that they are essential for plausible interactive deformations. The deformations

at the beginning of the process do not only influence notably the final shape, but there

are also very familiar to our daily life, and contrary to very distorted states where small

artifacts may be unnoticed, these situations require therefore special care with respect to

visual and audio feedback plausibility. We thus claim that they are a key point toward

interactive realism.

Our model still has some limitations and there are many possibilities of improvements

for future works.

• For the moment, self-collisions are not properly handled. This prevents us from

obtaining entirely crumpled balls of paper. The sound of friction of the surface

against itself is also a major component of the sound of crumpling paper. One

interesting future work would be to integrate an efficient self-collision handling

that takes advantage of the specific structure of our model and may provide the

geometrical deformation and re-meshing adapted to the collision state.

• Many parts of our model rely on phenomenological observations. Although it still

let us obtain plausible results, better understanding of the underlying physics of

paper may help to improve the method and its accuracy.

• Some properties of the paper that we neglected or simplified could be integrated

into the model. Notably we consider the paper as an isotropic material. Actu-

ally most of papers are anisotropic, leading to some interesting phenomena. For

example the bending stiffness would be different according to the direction of cur-

vature. Also the path taken by the tear would change according to the direction

of propagation.

• Our user-interface is not very advanced and only offer to control some chosen

handles on the surface and the corresponding tangents as if moving fingers handling

the paper. A better user-interface combined with a good handling of the collisions

could enable a wide range of interactions and make the manipulation of the virtual

paper really similar to the manipulation of real paper.

• Another future work, to improve the user-interface, would be to include haptic

or pseudo-haptic feedbacks in order to better guide the motion given by the user.

Indeed the stiffness of the paper, in particular in highly bent regions, influences

the motions of someone manipulating real paper.
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• In this thesis, we kept the assumptions that paper fibres can be considered as

inextensible. However when paper gets burn or wet, the length of some fibers may

change and the paper would not be developable anymore. Investigating this kind

of phenomena may also be the object of some interesting future works.

Finally, combining the advantages of geometric, procedural and physics-based method

leads us to present the first interactive model, to our knowledge, for creating animation

of paper with immediate visual and audio feedback. If this model is dedicated to paper

or material with similar properties, the idea to use prior knowledge to optimize a physical

simulation may be applied to other materials that would be difficult to model with more

general methods.



Appendix A

Résumé

A.1 Introduction

Le papier est un matériau très commun que l’on utilise dans la vie de tous les jours.

Pourtant on ne le trouve que très rarement dans les environnements virtuels. En effet le

papier présente un comportement très spécifique et particulièrement complexe à repro-

duire par les moyens habituels. De ce fait, il n’existe pas pour le moment de méthode

efficace, à la fois interactive et reproduisant le comportement caractéristique du papier.

Les principales caractéristiques nécessaires pour obtenir un comportement plausible du

papier sont les suivantes:

• La conservation des longueurs: le papier est constitué de fibres que l’on peut

considérer comme inextensibles. La surface du papier reste isométrique à son

patron 2D (à savoir l’état initial de la feuille plane et intacte). Ainsi, lorsqu’il

est soumis à des contraintes, le papier se plie plutôt que de se compresser, ou se

déchire plutôt que de s’étirer.

• Les plis francs et les détails fins: lorsqu’il est déchiré et froissé, le papier présente

des plis marqués et des détails le long des déchirures. Ces caractéristiques nécessitent

habituellement un maillage très dense afin d’être représentées par les méthodes

usuelles.

• Plasticité: la déchirure et le froissement du papier causent des dommages ir-

réversibles dans la structure fibreuse du papier, ce qui modifie le comportement

mécanique du papier.

• Le son dépendant de la géométrie: le son du papier est également très spécifique à

ce matériau. En particulier, il dépend fortement de la forme prise par la surface.

127
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Dans cette thèse, nous proposons un modèle capable de reproduire de façon plausible

toutes ces caractéristiques tout en étant à la fois suffisamment rapide à calculer afin de

pouvoir être manipulé interactivement.

Les méthodes existantes permettant de modéliser du papier ou de générer le son du

papier peuvent être classifiées suivant deux catégories. D’un côté les méthodes dites

physiques qui s’appuient sur des modèles à éléments finis appliquées à un maillage sur-

facique (employées initialement par Terzopoulos [TF88] en informatique graphique). Ces

méthodes permettent d’obtenir des mouvements et déformations qui paraissent naturels

et réalistes. Cependant modéliser du papier avec ces méthodes est particulièrement

coûteux sur le plan calculatoire. Non seulement simuler l’inextensiblité de la surface

impose une rigidité très importante et donc des pas de temps très courts, mais aussi

représenter les plis francs nécessite un maillage extrêmement dense. Il est possible

d’améliorer ces méthodes en utilisant un maillage adaptatif, comme proposé par Narain

et. al. [NSO12, NPO13], qui devient plus dense dans les régions très courbées et plus

grossier dans les régions qui le sont moins. Mais le maillage doit toujours être très

dense au niveau de plis francs et des régions très courbées, ce qui empêche d’atteindre

des temps interactifs. D’un autre côté, les méthodes procédurales s’appuient sur les

propriétés géométriques du papier, des connaissances préalables ou des données. Ces

méthodes sont en général beaucoup plus rapides que les simulations physiques mais elles

nécessitent habituellement des entrées complexes de la part de l’utilisateur comme le

bord 3D ([RCHbT11]) ou la position des plis sur le patron 2D ([SVWG12]). De plus il

est difficile de reproduire un mouvement naturel en utilisant ces méthodes.

L’idée commune aux travaux présentés dans cette thèse est de combiner une simulation

physique avec de nouvelles méthodes procédurales de façon à cumuler les avantages des

deux types d’approches.

Nous appliquons notre approche hybride à trois cas d’applications différents:

• le papier froissé : notre méthode entrelace une simulation physique avec une étape

géométrique qui remaille la surface de façon à l’adapter aux plis du papier.

• la déchirure du papier : nous proposons de séparer le calcul de la direction générale

de la déchirure et la génération de détails fins le long de la déchirure. Nous pro-

posons d’abord une méthode qui détermine la direction de déchirure de façon

entièrement procédurale dans un cas particulier. Puis nous généralisons cette

méthode en la couplant avec notre modèle de papier froissé et en appuyant le

calcul de la direction de déchirure sur différents critères issus de la littérature

physique.
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• le son du papier : nous proposons une méthode pour générer le son du papier froissé

qui s’appuie sur une base de données d’unités de son et le concept de résonateur

pour produire un son qui dépend de la géométrie de la surface. Nous décrivons

également une méthode procédurale pour créer le son correspondant à la déchirure

du papier.

A.2 Modéliser le papier froissé

En froissant du papier, on peut observer différents phénomènes. Notamment une feuille

de papier plane peut être courbée dans n’importe quelle direction mais devient alors

rigide dans la direction orthogonale de courbure nulle. Dans ce cas si l’on essaie de lui

donner une seconde direction de courbure, des plis francs vont alors se créer et rompre le

caractère lisse de la surface modélisant la feuille de papier. Dans notre approche, nous

approximons ces régions où apparaissent les plis francs sous forme de points singuliers.

Le papier est une surface développable, c’est-à-dire qu’il peut être déplié sur un plan sans

être ni compressé ni étiré. Sa surface peut notamment être décomposée en morceaux de

surface développable C2 (surfaces réglées dont le plan tangent est constant le long d’une

règle). Dans ce cas, et en tenant compte que l’on considère les plis francs comme des

points, nous approximons la surface par un ensemble de morceaux de cônes généralisés

-formés par un ensemble de règles qui se croisent en un point unique-, et de plans. Les

sommets des cônes généralisés se situant à l’intérieur de la surface modélisent les points

singuliers, et donc les régions plissées du papier.

La boucle d’animation de notre algorithme entrelace une simulation physique à éléments

finis avec une étape de remaillage géométrique. Cette dernière est fondée sur les hy-

pothèses précédemment décrites et approxime la surface par un ensemble régions courbes,

modélisées par des cônes généralisés, et de régions planes afin de synthétiser un maillage

spécifiquement adapté aux plis du papier.

L’étape géométrique est divisée en trois parties:

• la création de nouvelles régions courbes : la compression des régions planes du

modèle physique élastique est analysée. Des régions courbes sont créées dans les

parties compressées, et des règles sont insérées dans la direction de minimum de

courbure. Lors de la création d’une région courbe, il peut arriver que les règles

nouvellement créées croisent des règles déjà existantes. Dans ce cas, le conflit est

résolu par l’insertion d’un point singulier.

• insertion d’un point singulier : dans la situation décrite ci-dessus, un point singulier

est créé dans la zone de conflit. Sa position est choisie selon une loi de probabilité
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basée sur la courbure de la zone de conflit. Un point singulier représentant le som-

met d’un cône généralisé, un remaillage local est réalisé dans la région avoisinant

ce point.

• mise à jour des régions courbes : afin de pouvoir représenter des surfaces lisses

complexes, nous segmentons chacune des régions courbes en un ou plusieurs cônes

généralisés.

Le maillage utilisé par la simulation physique est créé à partir de l’approximation en

régions courbes et planes de sorte que :

• les points singuliers soient explicitement des points du maillage.

• les règles des régions courbes correspondent à des arrêtes du maillage.

• les régions planes sont triangulées de manière isotrope afin de permettre une cour-

bure suivant une direction quelconque.

Cette approche est associée aux deux avantages suivants. Premièrement le maillage

contient très peu de triangles et convient donc pour des applications interactives. Deux-

ièmement, les plis francs sont représentés de manière explicite et permettent de modéliser

ainsi aisément le comportement plastique du papier en conservant ceux-ci dans le reste

de l’animation.

Nous comparons nos résultats avec du papier réel dans des scénarios simples mais fam-

iliers dans lesquels le papier commence à se froisser. Nous comparons notamment la

position du premier point singulier. Notre méthode est comparée également avec une

méthode élément finis sur un maillage fixe, puis avec le maillage adaptatif proposé par

Narain [NPO13]. Notre méthode parvient à des résultats de qualité similaire en temps

interactifs alors que les deux autres méthodes prennent plusieurs secondes par image.

D’autres déformations plus générales telles que la pliure d’un cylindre en papier ou

encore d’une feuille de journal sont également proposées.

L’une des limitations actuelles de la méthode concerne la non-prise en compte des col-

lisions internes qui ne permettent pas de modéliser, par exemple, une balle de papier

entièrement froissée. Notons qu’une méthode de gestion de collision utilisant la struc-

ture particulière de notre modèle pourrait faire l’objet de travaux futurs. Une autre voie

intéressante à développer serait de modéliser plus précisément les régions froissées sous

la forme de courbes à la place de simplifier ceux-ci sous forme de points.

À notre connaissance, nous avons présenté le premier modèle permettant d’animer du

papier froissé de façon interactive. Ce modèle traitant explicitement les zones lisses et
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froissées du papier procure, en plus des maillages associés à l’animation, de nombreuses

informations se révélant utiles pour implémenter d’autres fonctionnalités telles que la

synthèse de la déchirure ou du son.

A.3 Modéliser la déchirure du papier

La méthode présentée dans la section précédente traite du cas où les contraintes tendent

à compresser le modèle physique élastique et aboutit au froissement du papier de par

son inextensibilité. À l’opposé, dans le cas où les contraintes extérieures tendent à étirer

la surface, le papier finit par se déchirer. Basée sur des études physiques ([Rom13]), la

courbe décrite par la déchirure est reproductible (la même déformation appliquée sur

deux feuilles différentes donnera des courbes de déchirures similaires). Par contre, les

détails issus de la structure fibreuse du papier visible le long de la déchirure semblent

stochastiques et dépendent principalement de la répartition aléatoire des fibres. Nous

séparons donc le calcul de la trajectoire de la déchirure, de la génération des détails

le long de celle-ci. Pour reproduire le phénomène de déchirure de façon plausible nous

devons donc résoudre les problèmes suivants:

• inextensibilité locale : comme précédemment la surface du papier ne peut être ni

compressée ni étirée localement.

• propagation de la déchirure : nous devons calculer quand et comment une déchirure

va se propager.

• détails de la déchirure : les détails très fins de la déchirure doivent être calculés et

représentés de façon efficace.

Nous proposons d’abord une méthode procédurale traitant un cas particulier. Deux

mains sont représentées chacune par deux points (qui sont les positions du pouce et

de l’index). Les mains imposent un mouvement de rotation tout en restant toujours

dans le même plan. La direction de propagation de la déchirure est calculée comme une

combinaison linéaire des vecteurs représentant la direction entre chacun des pouces et

l’extrémité de la déchirure, chacun pondéré par l’angle de rotation de chacune des mains.

Le chemin détaillé entre deux extrémités successives de la déchirure est calculé comme

le plus court chemin dans une texture combinant la résistance des fibres et le stress

généré par la déchirure. Le papier est représenté par deux régions planes articulées par

un cône généralisé dont le sommet est l’extrémité de la déchirure. Le cône est calculé de

façon à préserver l’isométrie du papier pendant la déformation. Cette méthode donne

des résultats probants en temps réel mais reste limitée à une situation très spécifique.
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Nous généralisons cette méthode en la couplant avec notre modèle de papier froissé.

O’Keefe [OKe94] décrit les principes physiques décrivant la direction de propagation

de la déchirure que nous réutilisons dans notre approche. Pour cela, nous considérons

l’hypothèse que les forces à l’origine de la déchirure peuvent être modélisées localement

par deux forces opposées appliquées sur l’extrémité dela déchirure. Suivant cette hy-

pothèse, les principes de propagation de la déchirure décrits par O’Keefe peuvent être

appliqués de manière géométrique et procédurale. De plus, notre approche permet de

déterminer efficacement les points de départ de la déchirure définis par les régions où

le stress se concentre et caractérisés explicitement dans notre modèle précédent comme

étant des points singuliers.

Notre algorithme fonctionne suivant l’approche décrite ci-après. À chaque instant :

• la déformation est obtenue par le biais du modèle de papier froissé décrit au

chapitre précédent.

• une liste de points potentiels de départ de déchirure est récupérée à partir des

informations géométriques du modèle de papier froissé.

• pour chacun de ces points de déchirures potentiels, nous approximons les forces 3D,

calculées à partir de la simulation physique pour chacun des triangles adjacents,

en deux forces opposées. Cela nous permet de réduire le problème à la situation

décrite par O’Keefe [OKe94], situation pour laquelle la direction de propagation

du pli peut être décrite géométriquement dans l’espace 2D du patron.

• le chemin entre deux extrémités successives est calculé procéduralement puis rep-

résenté à l’aide de texture et non d’une triangulation de façon à garder le maillage

peu dense.

Nous obtenons des résultats largement prometteurs bien qu’encore en développement à

l’heure actuelle, notamment nous pouvons d’ores et déjà valider les courbes trajectoires

des déchirures correspondant à l’étude de O’Keefe.

A.4 Générer le son du papier

La dernière partie de notre travail concerne la synthèse du son du papier s’appuyant

sur les modèles géométriques décrits précédemment. Notons tout d’abord que le son

du phénomène visualisé permet d’améliorer considérablement l’impression de réalisme

et d’immersion de cette scène. Bien que la synthèse de son commence à attirer l’intérêt

des chercheurs en informatique graphique, le son est encore très souvent créé par des
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artistes dans les applications standards. En particulier, il n’existe pour le moment

aucune méthode capable de synthétiser efficacement le son d’un papier virtuel froissé.

Nous proposons ici une telle synthèse prenant en compte la géométrie de la surface.

Nous identifions deux types de sons différents produits par le papier : les sons de fric-

tion et les sons de froissement. Nous constatons également que les sons dépendent

grandement de la géométrie de la région qui les produit. Nous introduisons donc la

notion de résonnateur : un résonnateur représente une région dans laquelle les vibra-

tions produites par un évènement de friction ou de froissement se propagent. Chaque

évènement (friction ou froissement) produisant un son va donc activer un certain nombre

de résonnateurs, qui vont chacun produire un son dépendant de leur géométrie. Nous

utilisons les régions courbes et planes fournies par le modèle de papier froissé comme

résonnateurs potentiels.

Nous caractérisons l’influence de la géométrie suivant deux paramètres, qui ont une in-

cidence majeure sur le son, pour décrire un résonnateur : la longueur des bords libres

(bord de la surface) du résonnateur et la longueur moyenne des règles. Les sons pro-

duits par les résonnateurs proviennent d’une base de données contenant des unités de

son. Chaque unité de son correspond au son enregistré d’un évènement (friction ou

froissement) pour un résonnateur dont les paramètres sont connus. Les sons peuvent

donc être classés dans la base de données selon les deux paramètres permettant ainsi de

pouvoir accéder efficacement à un son avec des paramètres spécifiques.

Le son est généré suivant une approche dite de synthèse concaténation [S∗00]. À chaque

instant :

• le modèle d’animation calcule la nouvelle surface.

• les évènements de froissement et de friction sont détectés sur la surface.

• pour chaque évènement, une liste de résonnateurs est calculée en collectant itér-

ativement, à partir de la location de l’évènement, les régions (courbes et planes du

modèle d’animation) voisines jusqu’à atteindre une région bloquant les vibrations.

Chacune de ses régions est considérée comme un résonnateur.

• pour chacun des résonnateurs de chaque évènement, un son est récupéré dans la

base de données dépendant du type d’évènement (friction ou froissement) et des

paramètres du résonnateur. Ce son est ensuite spatialisé pour tenir compte de sa

position dans l’espace et de l’environnement.

• tous les sons sont envoyés au système audio de l’ordinateur.
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Nous obtenons ainsi le son correspondant à une animation de papier que nous validons

qualitativement par rapport à des enregistrements réels de papier froissé. Le son obtenu

dépend de la forme prise par la surface, il est synchronisé avec l’animation et il peut être

généré en temps réel à l’exécution pendant qu’un utilisateur manipule interactivement

le papier.

La principale limitation de notre approche provient de la large utilisation d’observations

phénoménologiques. Une meilleure compréhension des phénomènes physiques impliqués

spécifiquement dans la génération du son du papier, ou encore apporter une solution

mathématique à la propagation des vibrations dans une surface développable seraient

des pistes potentielles à explorer pour améliorer cette approche.

A.5 Conclusion

Nous avons présenté un modèle permettant de créer de façon interactive des animations

de papier froissé et déchiré incluant la génération automatique du son correspondant.

Nous nous sommes attachés à comparer notre modèle à des situations simples où le

papier commence à se déformer à partir d’un état planaire, et qui sont souvent négligées

dans les travaux d’informatique graphique. Pourtant ce sont les situations qui, non

seulement nous sont très familières et faciles à reconnaitre, mais aussi déterminent en

grande partie la forme finale du papier, et souhaitons appuyer par le biais de ce travail

qu’elles sont essentielles à étudier.

Plusieurs voies pourraient être explorées dans des travaux futurs. Par exemple, implé-

menter une gestion efficace des collisions pourrait élargir le nombre de scénarios possibles.

Une autre extension pourrait consister à explorer davantage les principes physiques du

comportement du papier lié à sa structure fibrée afin d’améliorer la précision des modèles

de simulation.

Au final, l’utilisation de méthodes hybrides - combinant simulation physique et méthodes

procédurales - fondées sur des connaissances préalables pourrait également être utile pour

modéliser d’autres matériaux complexes à modéliser et liés à d’autres contraintes que

celle d’inextensibilité.
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