Dynamic Sketching: Simulating the Process of Observational Drawing
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Figure 1: Our technique simulates the process of drawing by observation. Given a 3D model with semantic segmentation and the current
viewpoint, our technique automatically simulates a visually plausible dynamic sketching process.

Abstract

The creation process of a drawing provides a vivid visual progres-
sion, allowing the audience to better comprehend the drawing. It
also enables numerous stroke-based rendering techniques. In this
work we tackle the problem of simulating the process of observa-
tional drawing, that is, how people draw lines when sketching a
given 3D model. We present a multi-phase drawing framework and
the concept of sketching entropy, which provides a unified way to
model stroke selection and ordering, both within and across phases.
We demonstrate the proposed ideas for the sketching of organic
objects and show a visually plausible simulation of their dynamic
sketching process.

CR Categories: 1.3.3 [Computer Graphics]—Line and curve gen-
eration J.5 [Arts and Humanities]: Fine arts;

Keywords: observational drawing, sketching, animation

1 Introduction

Art is more a creative journey than a deliverable end product. The
creation process of a drawing, which captures the visual progres-
sion of the drawing by an artist, is valuable, since it shows how the
artist expresses emotions and artistic apprehension, allowing the au-
dience to better appreciate the drawing. See the rich “speed draw-
ing” examples on video-sharing websites like Youtube. A stroke-
by-stroke drawing animation also has its educational value to the
viewer in seeing the drawing process unfold. It also benefits ap-
plications like visual storytelling using hand-drawn animation (also
known as video scribing) [Fu et al. 2011], and enables new stroke-
based non-photorealistic rendering effects.
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Motivated by the above applications, we aim to simulate the pro-
cess of observational drawing, that is, how an artist progressively
sketches a given 3D object starting from a blank canvas to the final
drawing. We focus on the sketching of organic objects, though an
extension to man-made objects is also briefly discussed. Given a
static 3D model with semantic segmentation, we intend to automat-
ically produce a dynamic sketching animation (see the accompany-
ing video and Figure 1) that looks like it is done by a certain novice
artist. Our goal is thus very different from those of a large body
of existing works on synthesizing visually compelling line drawing
images from 3D models [Cole et al. 2008].

Our technique is inspired by common drawing processes from
drawing books, such as Force [Mattesi 2011], as well as findings
from cognitive science: even though the sketching process may be
distinctive among artists, it generally progresses in a similar fash-
ion, from coarse to fine, global to local, near to far, and inconspic-
uous to salient parts [Mattesi 2011]. We focus on simulating the
most common and basic phases of the drawing process and present
a multi-phase sketching process, each phase abstracting the subject
at a different level of details. We introduce the concept of sketching
entropy, enabling a novel selection-cum-ordering approach that fa-
vors maximizing the shape information during the drawing process,
either in the individual phases or across different phases.

We conduct a user study to evaluate the visual plausibility of the
simulated drawing processes and the effectiveness of our proposed
method. Our experiment confirms that our results are visually plau-
sible. A statistical analysis shows that our entropy-based ordering
strategy leads to more plausible results than those driven by the
conventional Gestalt rules used in previous work [Fu et al. 2011].

2 Related Work

Synthesizing line drawings from static or dynamic 3D models has
been extensively studied. A detailed review on this topic is beyond
the scope of this paper. Please refer to [Rusinkiewicz et al. 2008]
for an insightful survey. Many techniques have been proposed to
simulate where people draw lines for a given 3D model [Cole et al.
2008]. As their target is essentially a stylized visualization of the in-
put model, they focus on finding lines lying either on the 3D model
or its projected image. In contrast, the human drawing process typ-
ically starts with guiding lines or structure lines, for example, pos-



(a) Artists’ drawing

(b) Our result

Figure 2: (a) Certain lines (highlighted in red) are commonly
drawn by artists but difficult to synthesize with the traditional line
drawing synthesis techniques [Cole et al. 2008]. (b) Our technique
is able to find such lines.

ture lines for figure drawing [Guay et al. 2013], which are not neces-
sarily on the surface of the model (Figure 2). The synthesis of such
guiding lines has been limitedly explored in [Grabli et al. 2010].
Their technique again focuses on producing non-photorealistic ren-
derings of 3D models, rather than the temporal aspect of the draw-
ing process.

The work proposed by Fu et al. [2011] is probably the most relevant
to ours. By mapping the Gestalt rules to computational procedures,
their technique is able to generate a human-like drawing animation
from a given image of line drawing. The output video is visually
plausible for storytelling, and the generated process is close to how
a human would draw in reproducing an existing line drawing. How-
ever, it considers only lines that appear in the given line drawing. It
is not clear how to integrate common sketching behaviors, such as
refinement and retracing, into their framework. We will show that a
straightforward extension of their ordering technique based on the
Gestalt rules produces less plausible results than our entropy-based
method.

3 Methodology

The sketching process commonly varies among people or even for
the same person in different times. We thus aim to produce a sketch-
ing animation that looks visually plausible to human viewers, in-
stead of the sketching process of a specific artist. To achieve this
goal, we base our solution on findings from cognitive science. In
this work we focus on drawing organic objects only.

3.1 Drawing and Cognition

Cognitive science reveals that what geometric elements artists draw
and their drawing order reflect how artists schematize and concep-
tualize objects [Tversky and Suwa 2009]. In the early stages of
drawing, the cognition process requires conceptual skills, but re-
quires perceptual skills in the later stages [Suwa 2003]. With con-
ceptual skills, artists analyze the drawing subject and abstract it into
meaningful simpler elements that make up the whole object. As
drawing progresses, the artists then treat the drawing subject as a
whole and focus on adding perceptual features that were not ex-
pressed in the conceptual stage.

The drawing process of humans comprises a series of actions, pre-
sented structurally and hierarchically [Tversky et al. 2006]. The
actions of a common sketching hierarchy can firstly be divided in
the temporal domain, forming different phases of drawing. Each
phase abstracts the subject at a certain level of details, and refines
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the previous phase by adding more details. Abstraction rather than
simplification plays a critical role [Kavakli et al. 1998]. The actions
in each phase can be further divided in the spatial domain, where
each set of strokes refines a specific object part. In other words,
artists mentally decompose the drawing subject by perceptual or
functional salience, and organize the drawing process in each phase
by object parts.

3.2 Sketching Phases

To capture common characteristics of the way humans draw, we
propose to simulate the drawing process in a sequence of phases.
The drawing actions are ordered phase by phase, since drawings,
being reflections of our mental abstraction, have a natural multi-
layered structure [Novick and Tversky 1987].

A different type of object might need a different series of draw-
ing phases. For example, the way an artist draws a man-object
object like a chair is often different from that of drawing an ani-
mal [Team 2005]. Below we present a typical drawing process for
organic models, consisting of four phases (Figure 3): posture phase,
primitive phase, contour phase, and finally detail phase. Again it
is worth reiterating that the entire sequence of phases might not be
adopted by every artist or every object, and an artist might not ex-
actly follow the phase-by-phase order. However, we expect that the
resulting animation would have a reasonably high degree of visual
plausibility, which is essentially our goal.

Our posture phase and primitive phase simulate how artists use con-
ceptual skills to sketch an object. The posture phase is the first
stage where artists express their understanding of an organic object.
Artists draw a very small number of lines to capture the motion or
posture of the subject [Guay et al. 2013]. In the primitive phase,
lines are often used for rough space allocation for individual parts.
Similar lines have recently been used as visual guides to support
drawing [larussi et al. 2013].

To enable such phasing, we require a semantic decomposition of
the input 3D model (Figure 1) to be available to our main algorithm.
Semantic mesh segmentation is a well-studied problem and is not
our focus. In our implementation, we resort to a simple interactive
segmentation system [Zheng et al. 2012]. After segmentation, inter-
segment analysis is performed to detect symmetric parts or parts of
similar shape [Zheng et al. 2013].

Next we describe how we identify the strokes in each phase. These
strokes will be turned into humanized trajectories to emulate the
drawing process (see section 3.3).

Posture Phase. In this first phase our system draws posture lines
(Figure 3a), which convey the layout and relative relationships
among object parts. Posture lines are like the armature wires used
to hold the clay in sculptures and are sketched like the way a sculp-
tor bends the armature wires. These lines are not about accuracy
or likeness but to capture the pose and action. They serve to guide
the subsequent strokes that populate the subject’s body; the likeness
will be built by other lines in subsequent phases [Mattesi 2011]. We
model these lines as a 3D curve-skeleton of the model, which can
be extracted from the segmentation information [Lien et al. 2006].
The extracted skeleton is a connected 3D curve network. Splitting
the skeleton at junctions leads to individual posture lines. As artists
tend to draw straighter and smoother lines in earlier phases, we first
simplify the posture lines using a simple line approximation algo-
rithm and then fit them with B-spline curves. The resulting posture
lines roughly conform to C- or S-shaped curves to produce lines of
actions [Guay et al. 2013].

Primitive Phase. In this phase, the drawing is refined by clearer
allocation of the space for individual object parts. Our system starts



(a) Posture lines. (b) Profile hull. (¢) Proportional marks.

(d) Ovals. (e) Contour lines. (f) Hatching.
Figure 3: Simulating a typical drawing procedure for organic ob-
Jjects. (a) Posture phase. (b-d): Primitive phase. (e) Contour phase.

(f) Detail phase.

with drawing a profile hull, which roughly captures the space of one
or more object parts (Figure 3b). The profile hull is computed as a
greatly simplified silhouette of the 3D model.

Artists often develop volumes for object parts using simple geo-
metric primitives [Tversky and Suwa 2009]. As artists do, we an-
alyze the given 3D shape to construct simple primitives forming
the whole object. Our system first draws proportional marks on the
posture lines to delimit the spaces to be filled with primitives. As
shown in Figure 3c, such marks orthogonally cross the posture lines
and divide the postures lines into portions.

Next our system draws primitives for object parts, part by part. For
organic shapes, a natural choice of primitives is deformed ellip-
soids. However, since the projection of ellipsoids essentially leads
to 2D oval shapes, we directly draw 2D oval-like shapes, which
is undoubtedly a most popular sketching element used in obser-
vational drawing of organic objects. The oval-like shapes are not
necessarily symmetric or convex (see Figure 3d). Not all object
parts properly fit ovals (e.g., neck and legs of horse in Figure 3d).
For such cases, our system draws a simple hull by simplifying the
silhouette of the object part instead of the fitted oval.

Contour Phase. The contour phase and detail phase constitute the
perceptual stage. In the contour phase, the parts are integrated into
a complete object (Figure 3e). To construct the perceptual shape,
the conceptual primitives are retained, and the unexpressed con-
tours are drawn first before the others that just refine existing lines.
Specifically, contour lines that either connect the drawn primitives
to form a complete silhouette or modify primitive lines that are far-
ther from the shape contour are drawn first. To achieve this effect,
we first extract all the suggestive contours and highlight chains [De-
Carlo and Rusinkiewicz 2007] and break them at corners of large
concavity, resulting in several excessive sets of suggestive con-
tour segments. Our entropy-based selection and ordering algorithm
(Section 3.4) then automatically draws all the unexpressed contour
segments first, followed by the rest of the lines.

Detail Phase. The perceptual saliency is fully revealed in this
phase. This final stage of the sketching process briefly shades the
subject with hatching (Figure 3f). Hatching is one more step to-
wards the perceptual view: it adds a sense of substance to the draw-
ing subject and produces a convincing tonal relationship, which
then translates to a sense of depth. Hatching can also take place
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across primitives, which further integrates object parts into one sub-
ject. We implement a simple method to produce such hatching
strokes in real time, using the top influential properties suggested
in Kalogerakis et al. [2012].

Options. We provide a simple user interface so that the user may
disable one or even more phases to get customized results. For ex-
ample, an experienced artist might omit the primitive phase, the
hatching effect is not a must in every line drawing process, and the
posture lines are usually not needed for the sketching of man-made
objects (e.g., the twoboxcloth model in Figure 8). To simulate the
sketching process of man-made objects, we may extend our current
drawing phases by, for example, replacing skeletons with symme-
try axes, and replacing ovals with 3D primitives such as cuboids,
generalized cylinders and ellipsoids.

3.3 Stroke Rendering

Humanized Trajectory. We use a variant of the Proportional Inte-
gral Derivative (PID) system by House and Singh [2007] to obtain
a non-photorealistic rendering of the lines in all the phases. The
PID system is a control system that simulates the action of a hu-
man moving a pen, to produce a drawing process similar to that
of an artist during observational drawing. The original PID system
is capable of generating human-like expressive strokes, but suffers
doodling artifacts at small damping ratios or large pen masses, thus
failing to obtain compelling loose strokes.

To eliminate such artifacts, we enhance the PID system with two
masses. Connected with a spring and a damper, one mass represents
the pen and the other represents the tracker on the target trajectory,
respectively. The tracker’s mass is then set as a small value propor-
tional to the damping ratio. In this way the tracker always follows
the pen closely, and generates strokes without the doodling arti-
facts. The enhanced system is able to produce expressive strokes at
any range of damping ratio, with a wide variety of stroke freedom.
Please see the detailed description of the enhanced control system
in the appendix. Specifically, our control system is able to simu-
late the quicker and looser strokes drawn in the earlier phases, and
produce the retracing effect of both open and closed lines. The re-
tracing starts relatively loosely and rapidly, but gradually becomes
slower and closer to the target shape as the retracing continues (see
the accompanying video). Such a wide range of stroke freedom
reproduces the dynamics of the drawing process.

Intensity, Thickness and Speed. A monotonic stroke with con-
stant intensity, thickness and speed is dull. Artists use darker and
thicker lines to emphasize important features. Their strokes move
faster for rougher lines, but slower when depicting details. Based
on these observations we set the rendering properties with respect to
the point-wise information of each stroke. The point-wise informa-
tion is computed as the entropy information (defined in Section 3.4)
conveyed by the tangent vector at every point along the stroke. This
introduces more dynamics to our animation.

3.4 Stroke Ordering

To reflect the hierarchical nature of the human drawing process, we
propose to order the lines in the four phases at three levels: first
phase by phase, then part by part, and finally stroke by stroke. The
phase-level order is always fixed: from the posture phase to the de-
tail phase, though some of the phases may be interactively omitted.
In this section we discuss how to achieve the part-level orders in
individual phases and the stroke-level orders in individual parts.

In the posture and primitive phases, a small number of construction
strokes are drawn to depict the global layout and space allocation of
individual parts. Artists’ real drawing processes reveal that strokes



that bring more information to the current drawing, typically those
that are farther from existing strokes, are often drawn first. See such
an illustration in Figure 4e-h. In contrast, the Gestalt rules, where
proximity plays a dominant role in determining stroke ordering [Fu
et al. 2011], often result in a growing process (Figure 4a—d). A sim-
ilar behavior happens in the contour phase: artists tend to first draw
lines that are not expressed in the earlier phases. These observa-
tions motivated us to model the sketching process using an entropy
model, where each new stroke is intended to maximize the infor-
mation in the developing drawing [Shannon 1948]. The sketching
entropy provides a unified way to model the selection of strokes and
their ordering across all phases.

Sketching Entropy. Essentially, we want to measure the informa-
tion gain of a stroke s given the set of previously drawn strokes
C? before s, against the target drawing as the ground truth. For
simplicity, we use the rendered mesh of the input model as the tar-
get drawing (e.g. In Figure 5 left). Let {v;} denote the whole set
of salient features in the target drawing, for example, represented
as normalized tangent vectors along the iso-contours of the target
drawing’s illumination, defined for every pixel in the drawing. As-
suming that the events of strokes capturing such features are inde-
pendent, the probability that the stroke s given C*° will appear in
the drawing, p(s|C?), is computed with regard to each individual

feature:
p(s|C°) = [ [ ps(wilC*), 0]

where ps(v;|C?) is the probability of having at least one arbitrary
stroke closer to v; than s. Intuitively, a larger probability value
means s is farther from v;.

We model the distance F'(¢,u) from a stroke ¢ to a feature u as a
Poisson process. By the Poission assumption,

—log(1 — e—A(F(vyv)—F(syv)))

ps(v) 2

where F'(t,u) measures both Euclidean and angular distances
between ¢ and u. Therefore, ps(v;|C°) can be computed as
P(N[F(s,vi)] — N[F(vi,v;)] > 1|C?®), where N is the counting
function of the Poisson process. See the appendix for the detailed
formulation of F'(¢,u) and ps(v;|C®). If s captures more of a fea-
ture v;, namely, s and v; are closer, the probability of s appearing
with regard to feature v; is smaller. The extra shape information
that is brought by s but not expressed by C'* can be computed as a
conditional information gain as

1(5|C") = — log(p(s|C")

= logps(vi]C*). (3

Clearly, the information provided by s is diminished by C*.
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Figure 4: [llustration of stroke ordering driven by parallel and
proximity Gestalt rules (top) and sketching entropy (bottom).
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Figure 5: Left: the information gain of a stroke is generally larger
when it is closer to the target drawing. Each stroke is color coded
according to its associated information. Middle: unconditional in-
Sformation gain, i.e., by calculating I(s) without considering the
previously drawn strokes (C?) (those in pencil texture). Right: con-
ditional gain 1(s|C?).

Figure 5 (middle) and (right) illustrate the information gain of a
stroke using the unconditional I(s) and conditional formulations
1(s|C?), respectively. Observe that we always have I(s|C°) <
I(s), since for I(s|C*) the previous drawn strokes diminish an up-
coming stroke’s newly conveyed information. For regions that have
not been covered by C*, the unconditional and conditional infor-
mation gains are largely the same (strokes C’ and C”). When C*
are drawn roughly, the gain of the new stroke is slightly reduced
(see the information gain of strokes B’ and B”). On the other hand,
when s goes to the regions where the previous strokes are rather
accurate and complete, the conditional gain of s will be very small
(see strokes A’ and A”). In an extreme case where s is fully covered
by the previously drawn strokes, s conveys zero information.

Entropy-based Selection. As discussed above, the conditional in-
formation gain of a stroke could be zero. Such a stroke conveys
no new information, either because the features conveyed by this
stroke are already present, or the stroke is an outlier. Such redun-
dant strokes are then discarded and not drawn. That is, the condi-
tional information gain also serves to detect and avoid clutters and
outliers. The sketching entropy enables the selection of informa-
tive strokes in addition to ordering. In contrast, a Gestalt-driven
ordering strategy draws all input strokes.

Our entropy-based selection bears some resemblance to density
measure proposed for line-drawing simplification [Grabli et al.
2004]. The key difference is that density measure does not pri-
oritize the strokes. The line omission depends on an order of input
strokes, which is given manually using existing tools. In contrast,
as we will describe below, sketching entropy can be used to derive
the order of strokes.

Entropy-based Ordering. We model our ordering problem as find-
ing a suitable path in a clustered graph. We let a clustered node in
the graph represent a set of strokes within a mesh segment for part-
level ordering, and let a primitive node simply represent a single
stroke for stroke-level ordering. Each graph edge encodes the rela-
tionships between a pair of nodes, for both clustered and primitive
nodes. In our current implementation, we encode only Gestalt re-
lations including proximity, parallel and symmetry. We assign a
value to each edge according to a prescribed priority of a Gestalt
rule, similar to [Fu et al. 2011]. Smaller values mean higher prior-

1ty.

Now we describe how we find the ordering of nodes within a phase.
The same idea applies to both part-level ordering and stroke-level
ordering. Let a and b be two graph nodes, with E(< a,b >) rep-
resenting the value associated to the edge connecting a and b. We
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Figure 6: Input segmented models of the sketching snapshots
shown in Figure 2 and 8.

define the cost of drawing b after a by

fa,0) = [|(=1(b|C")) +wi B(< a,b >)|, Q)
where I(b|C®) is the conditional information gain contained in
node b, given a set of previously drawn strokes C°, E(< a,b >)
measures the contribution due to the Gestalt rules, and w; is a bal-
ancing weight. We let wy = 0 for the posture, primitive and de-
tail phases so that our sketching entropy completely determines the
order of the involved strokes. The contour phase occasionally in-
volves extremely short strokes, whose entropy values are all close
to zero. For these tiny strokes, sketching entropy does not provide
useful ordering. We thus set w; to a small positive value (we use
0.05-0.1) for the contour phase, so that stroke ordering can also be
guided by the Gestalt rules. By using the above cost function as
weight, we adopt the greedy Prim’s minimum-spanning-tree algo-
rithm to extract the minimum cost edges until a tree is extracted
from the graph. We perform this first at the level of clustered nodes
to get part-level orders and then at the level of primitive nodes for
stroke-level ordering.

Often, part-level orders across adjacent phases should be very sim-
ilar but not exactly the same. To achieve such an effect, we add
virtual edges with small values between clustered nodes represent-
ing the same object part across adjacent phases. Then the virtual
edges act like normal edges when exploring for the order.

4 Experimental Results and Discussions

We have applied our technique to a variety of organic models and
produced interesting dynamic sketching animations. Figures 1, 7,
and 8 show snapshots of such animations. The segmented input
models can be found in Figure 6. For the synthesized sketching an-
imations please watch the accompanying video. Our results were
synthesized on an Acer Aspire laptop (Dual Core @1.90GHz and
2.40GHz, 6GB RAM ) . The computational bottleneck of our al-
gorithm lies in the entropy computation step, which takes 0.060
seconds on average for a typical stroke.

User Study. We conducted a user study to evaluate the stroke order-
ing produced with our sketching entropy formulation (Equation 4).
We compared it with the ordering generated using Gestalt rules
alone [Fu et al. 2011] in terms of visual plausibility. We simulated
the sketching of the five models, shown in Figure 1 and 8 except
the hand model. The cloth-over-two-boxes model does not have a
natural skeletal representation. We thus disabled the posture phase
for this model. To facilitate the ease of examining the ordering dif-
ference, we separated each animation into two videos, one for the
conceptual stage (posture and primitive phases) and the other for
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the perceptual stage (contour and detail phases). Note that for the
conceptual stage, w1 = 0 in Equation 4 and thus the sketching en-
tropy completely controls the ordering of strokes. In total, we had
5 (models) x 2 (stages) x 2 (methods) = 20 videos.

We had 74 people with ages ranging from 16 to 40 to help with
the user study. Among them, 55.4 % were female and 41.9%
had received professional drawing training. Each participant was
asked to rate the visual plausibility of each video on a discrete scale
from 1 (worst) to 5 (best). Repeated measure analysis of variance
(ANOVA) found a statistically significant difference in the rating
score between the two ordering strategies (p < 0.006). The aver-
age score of our method (mean=3.44, var=0.05) was slightly higher
than that of the Gestalt-driven method (mean=3.24, var=0.08).

We also checked if people with different drawing experience have
different opinions on the synthesized results. The ANOVA found
a significant effect (p < 0.002) of the drawing skill level on the
rating. The participants with drawing trainings had a clearer pref-
erence for our method. On average their score for our method was
10.14% higher than that for the Gestalt-driven method. In contrast,
the participants with limited drawing skills had no clear preference
between the two drawing strategies. We observed that their average
score for our method was only 3.04% higher. The difference coin-
cides with Sommers’ conclusion that Gestalt rules are only proved
applicable for drawing simple objects, for people with no profes-
sional drawing training [van Sommers 1984].

Strokes in latter phases usually provides little or even no new in-
formation. Our sketching entropy effectively avoid the drawing of
repeated lines, i.e., lines with no new information. In contrast, the
Gestalt rules have no such mechanism, possibly making the draw-
ing cursor moves around but drawing nothing new. The effective-
ness of clutter removal by sketching entropy is confirmed by a sig-
nificantly smaller number of the finally drawn strokes (around 30%
less) and shorter animations (around 7% shorter on average).

Limitations. The effectiveness of our approach relies on the qual-
ity of input segmentation. In addition, our drawing phases are de-
signed based on the prior knowledge and cannot be automatically
customized for different users. A more flexible solution might be
achieved using a data-driven approach.

5 Conclusion and Future Work

The study we have reported is the first to tackle the problem of
emulating the process of drawing by observation. We introduce the
concept of sketching entropy, enabling the selection and ordering of
strokes, which are vital to the automatic synthesis of visually plau-
sible dynamic sketching animations from a static 3D model with
semantic segmentation. It would be interesting to extend our tech-
nique to simulate the creation process of other stroke-based media
like ink painting, where the drawing order plays an important role
in non-photorealistic rendering of strokes. We are also interested in
applying the introduced concept of sketching entropy to other appli-
cations such as clutter removal towards line drawing simplification.
Besides our current shape-based entropy definition we would also
explore other types of information such as color and motion to de-
fine sketching entropy in the future.
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Figure 7: Top: ordering results using Gestalt rules only. Bottom: ordering results using our sketching entropy formulation alone. Observe
that the sketching entropy approach is able to implicitly group the nearly parallel strokes together without using Gestalt rules.

Figure 8: Snapshots of sketching animations used in the user study. See Figure 6 for the input segmented models and the accompanying
video for the dynamic sketching animations.
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Appendix

Enhanced PID Control System

We have made several improvements to the original linear PID con-
trol system [House and Singh 2007]. Firstly, observing that there is
often a retracing effect when artists draw ovals, we concatenate sev-
eral loops, to generate the retracing effect. Secondly, the retracing
of an oval is often a process of refinement, from quicker and looser
strokes to slower and more careful ones. To model this effect, we
start the control system with a large initial value (quick) for v(t)
and a small value (loose) for w(t), where v(t) is the velocity of a
virtual moving pen at time ¢ and w(¥) is the natural frequency of the
pen controller system. As the sketching goes on, we smoothly de-
crease the velocity and increase the natural frequency. Like [House
and Singh 2007], we use the following formulation to compute the
acceleration of the pen

de

I iy - 2 (H(t) S5 v(t)/edt,

— = 5
a2 )
where p is the pen’s position, (t) is its damping ratio, and e is the
PID controller error represented as the difference between the pen
and tracker positions.

Thirdly, the original PID system has an oscillation defect, caused
by the uniform sampling of the track to get the stationary points.
If the pen moves fast, and the values of the natural frequency and
damping ratio are small, the pen will be dragged back and forth
around these stationary points. We solve this problem by computing
the acceleration of the pen every time, and using the closest point
on tracker as the stationary point.

Distance Function F(t,u)

In our implementation, F'(¢, ) in Equation 2 is defined as

At -du

o) (©)

Fltw) = 1/(4

t u

where d 7 is the tangent vector along curve ¢, r is the Euclidean
distance between d ¢’ and du,andeisa tiny value to avoid division
by 0. This formulation is similar to the Biot-Savart’s law. Two
strokes are analogized to electronic currents.



Conditional Sketching Entropy

ps(v|C®) = PIN(F(s,v)) = N(F(v,v)) 2 1|/C”]
1 if3s’ € C°, F(s',v) < F(s,v)

= ps(v)
ming ecs {ps (v)}

@)

otherwise.

The decrease of a feature’s information gain (due to C*®), is only
determined by the tightest stroke drawn previously. It is also easy to
prove that the product of all frequencies of a feature never exceeds
1. This bound ensures that the redundant strokes can be detected.
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