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Abstract

Computational visual attention systems detect regions of interest
in images. These systems have a broad range of applications in
areas such as computer vision, computational aesthetics, and non-
photorealistic rendering. However, almost all the systems to date
are designed for low dynamic range (LDR) images and may not be
suitable for analyzing saliency in high dynamic range (HDR) im-
ages. We propose a novel algorithm for saliency analysis of HDR
images that is based on virtual photographs. Taking virtual pho-
tographs is the inverse process of generating HDR images from
multiple LDR exposures, and the virtual photograph sequence has
the capacity to more comprehensively reveal salient content in HDR
images. We demonstrate that our method can produce more consis-
tently reliable results than existing methods.

CR Categories: I.4.0 [Image Processing and Computer Vision]:
General—Image processing software; I.4.7 [Image Processing and
Computer Vision]: Scene Analysis;

Keywords: HDR images, saliency analysis, virtual photographs

1 Introduction

The human brain tends to prioritize visual data obtained from the
real world to guide our gaze, which is known as selective attention
[Frintrop et al. 2010]. Based on this mechanism, computational vi-
sual attention systems have been designed to detect regions of inter-
est in digital images and are widely used in computer vision, com-
putational aesthetics, and non-photorealistic rendering methods.

Although existing visual attention systems can lead to satisfying
results for LDR images, they do not always perform well when ap-
plied to HDR images [Brémond et al. 2012]. Compared with LDR
images, HDR images allow a much higher dynamic range to repre-
sent luminance in the real world. However, if computational visual
attention systems are applied to HDR images directly, the dynamic
range will be linearly scaled, which can lead to the loss of HDR
content that in turn makes salient regions appear not salient or vice
versa. Details and textures within HDR images may not register
as salient due to the significant contrast reduction, preventing vi-
sual attention systems from obtaining useful results. At the same
time, Narwaria et al. [2012] have found that tone mapping opera-
tors “can [. . . ] modify human attention and fixation behavior signif-
icantly”, thus rendering the approach of applying salience analysis
techniques after dynamic range compression unreliable.
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In this paper, we propose a novel algorithm for computing saliency
maps of HDR images by taking sequences of virtual photographs
with different exposure settings. To generate the virtual pho-
tographs, we use a generic camera response function mapping radi-
ances to pixel intensities in combination with a simple yet effective
approach for calibrating for varying ambient luminance. A salience
detection algorithm is applied to each of the virtual photographs,
and the resulting salience maps are combined to form the salience
map of the HDR image. We present evidence that the areas of vi-
sual attention that are identified are more meaningful than those
identified by other approaches.

2 Background

Most computational attention systems, such as those proposed by
Itti et al. [1998] or Frintrop [2006], are built on feature integration
theory as outlined by Treisman and Gelade [1980]. The core idea
is to detect several types of features and combine their saliencies
to generate a saliency map. The model of Itti et al. [1998] was
revised by Itti and Koch [2000], who adopt iterative normalization
for within-feature competition to replace the simple normalization
used in the earlier paper.

In the work of Itti and Koch [2000], the visual attention model is
designed to predict bottom-up attention, which is derived only from
the visual scene in a static color image. Multiple features, including
intensity, color, and orientation, are combined to produce saliency
or conspicuity maps. The first step is to extract early visual fea-
tures with image pyramids. Each feature is computed by center-
surround mechanisms, also known as center-surround differences,
which compare the value of center region and surround region in
the receptive fields [Frintrop et al. 2010]. The operation is imple-
mented as the difference between fine and coarse scales. Then,
cross-scale information is combined to produce maps of features.
A within-feature spatial competition scheme is used to solve the
signal-to-noise problem, and the interaction is realized by a two-
dimensional difference-of-Gaussians approach. Finally, the feature
maps are summed into a single saliency map of the image. Besides
that map, the model also computes the trajectory of visual attention
as an output, in which a winner-take-all network is used to select
image regions with local saliency maxima. A fixed size disk is ap-
plied to represent the focus of attention since the visual attention is
usually on a region rather than a single point [Frintrop et al. 2010].

The approach of Itti and Koch [2000] can achieve satisfactory per-
formance when applied to the problem of detecting salient regions
in LDR images, and therefore is widely applied to saliency-based
research, such as object detection [Viola and Jones 2004; Mo-
han et al. 2001; Walther and Koch 2006], image resizing [Avidan
and Shamir 2007; Wang et al. 2008], non-photorealistic render-
ing [Dong et al. 2013; Lee et al. 2013], video compression [Itti
2004] as well as tone mapping of HDR images [Lin and Yan 2011].
The technique is regarded as one of the most influential models for
computational saliency analysis [Frintrop et al. 2010] and we use it
as the basis for our approach.

Derived from the visual attention system by Itti et al. [1998],
Brémond et al. [2012] propose a method for computing saliency
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Figure 1: Comparison between real photographs (upper row) and virtual photographs (lower row). Exposure times in all cases increase by a
factor of two between neighboring images when moving from left to right. The center image in the lower row has an exposure time of ∆t = 1.
The HDR image that the virtual photographs are derived from as well as the real photographs are due to Paul Debevec, c© 1997 ACM.

maps of HDR images. Based on the observation that saliency is
better preserved in color maps, they modify the definition of the
other visual features. Specifically, intensity and orientation dif-
ferences are normalized by division by the intensity. The authors
suggest that the normalization of intensity “may be seen as a gain
modulation, which is the physiological mechanism of visual adap-
tation”. In eye tracking experiments with human subjects, they find
that their approach provides more accurate saliency maps than that
of Itti and Koch [2000] when the latter is applied either directly to
the HDR image or after dynamic range compression with one of six
tone mapping operators. We will use the approach of Brémond et
al. [2012] as a baseline to compare our algorithm against.

3 Algorithm

Given an HDR image, our method computes a sequence of virtual
photographs of that image, analyzes the saliency map of each vir-
tual photograph, and subsequently combines them into a unified
saliency map. We discuss the taking of virtual photographs in Sec-
tion 3.1. In Section 3.2, we describe how to combine the saliency
maps of the virtual photographs into that of the HDR image.

3.1 Taking Virtual Photographs

Taking virtual photographs was first introduced for flash-exposure
HDR imaging [Agrawal et al. 2005; Richardt 2008], in which a se-
ries of images with different flash intensity and exposures are cap-
tured and merged into HDR maps and virtual photographs can then
be taken for any combination of exposure and flash intensity. In
these methods, the response function of the camera that is recov-
ered when producing an HDR image is applied for taking virtual
photographs from the same HDR image. Consequently, it is as-
sumed that the response function is already available.

For HDR images that are captured directly by a digital camera, gen-
erated synthetically using ray tracing, or generated using other ap-

proaches different from those that combine multiple LDR images,
a response function may not easily be available. In order to ob-
tain well-exposed virtual photographs from an HDR image if the
response function of the capturing device is not available, we use
self-calibration based on ambient luminance in combination with a
generic response function.

In photography, the exposure of a scene is determined with refer-
ence to ambient lighting, which can be measured by light meter
strategies such as average metering or spot metering. The metered
light is assumed to have 18% reflectance and is recognized as mid-
dle gray on the lightness scale [Brown 2011]. Our calibration al-
gorithm is inspired by this process. Given an HDR image with
luminance values L(x, y), we compute the average logarithmic lu-
minance as

Lav = exp

 
1

N

X
x,y

ln (L(x, y))

!
(1)

where the sum extends over all pixels and N is the total number of
pixels, and refer to it as ambient luminance. The ambient luminance
should be displayed as middle gray on the lightness scale. In the
sRGB color space, middle gray is equivalent to 46.6% brightness,
which is rounded to 50% in our algorithm.

When a response function is recovered, Debevec and Malik [1997]
introduce the constraint that the logarithm of the luminance for 50%
brightness is zero. In order to convert the logarithm of ambient
luminance to zero, the calibrated luminance

L′(x, y) =
L(x, y)

Lav
(2)

can be used. The inverse of the response function g is a mapping
from the natural logarithm of exposure to the display pixel values
Ld(x, y). The exposure can be computed as the product of the cal-
ibrated luminance and the exposure time ∆t. The operation of tak-
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Figure 2: Virtual photographs (upper row) and their corresponding saliency maps (lower row). The HDR image is due to Paul Debevec,
c© 1997 ACM.

ing virtual photographs is thus

Ld(x, y) = g−1 `ln `L′(x, y)∆t
´´

(3)

which is applied to each RGB color channel separately. Choosing
∆t = 1 is akin to the automatic exposure control in a real camera.

A comparison between real and virtual photographs is shown in
Figure 1. The real photographs have been used both to generate an
HDR image and to recover the response function of the camera that
the photographs were taken with. The same response function has
been used to generate the virtual photographs from the HDR im-
age. The virtual photographs look very similar to the real originals.
We do note some very minor differences, since the exposure times
of virtual photographs are based on ambient luminance and do not
completely match those of the real photographs. However, the dif-
ferences are too small to significantly affect the saliency analysis.
Figure 5 below presents evidence that the performance of our algo-
rithm is robust with regard to the exact choice of response function.

3.2 Saliency Analysis

In order to preserve details of HDR images while reducing artifacts
that may be introduced by under- or over-exposed images, we cal-
culate a sequence of nine virtual photographs from the HDR image
with exposure times ∆t ∈ {1/15, 1/8, 1/4, 1/2, 1, 2, 4, 8, 15}.
We adopt the method of Itti and Koch [2000] to calculate the
saliency map of each image in the sequence of virtual photographs,
but other salience detection operators could be used instead.

Then the saliency maps are combined into the saliency map of the
HDR image. One difficulty in combining different saliency maps is
the signal-to-noise ratio problem identified by Itti and Koch [2000],
which means that some salient objects may be weakened or entirely
lost during combination. We solve this problem by adopting the
spatial competition scheme used by Itti and Koch [2000] for noise
reduction in the feature maps, which is realized employing a two-
dimensional difference-of-Gaussians filter. The salient locations in
each saliency map can be excited with counteraction triggered by
the inhibition from the surrounding regions.

After the within-feature competition, the saliency maps are com-
bined into the saliency map for the HDR image by computing
their weighted average, where weights decrease with increasing
degrees of over- and under-exposure. A similar strategy is used
when producing HDR images from multiple LDR images with dif-
ferent exposures. Debevec and Malik [1997] make use of a sim-

ple hat function for the weights while Mann and Picard [1995]
use the derivative of the response curve as the weighting function.
In this paper, we (somewhat arbitrarily) employ φσ(log2 ∆t) with
φσ(x) = exp(−(x/σ)2/2)/

√
2πσ2 and σ = 3 to weight the

saliency map obtained from the virtual photograph with exposure
time ∆t.

The focus of attention will be directed to the regions with the high-
est values in the saliency map. To that end, we utilize a winner-
take-all (WTA) neural network [Koch and Ullman 1985] to deter-
mine the saliency locations and a fixed-size circle to represent the
focus of attention. Inspired by biological neural networks, WTA
networks work well to simulate the selection mechanism of the hu-
man brain [Frintrop et al. 2010].

A sequence of virtual photographs and their saliency maps are
shown in Figure 2. It is apparent that some salient features are
present only in a subset of the virtual photographs, and therefore
only in some parts of the dynamic range. Prior methods fail to cap-
ture this. The final results from combining the salience maps of the
virtual photographs as well as of the real photographs using the al-
gorithm described above are shown in Figure 3. Here as well as in
all of the following figures, the HDR image is tone mapped using
the photographic tone mapping operator by Reinhard et al. [2002]
for display purposes. It can be seen that the virtual photographs
contribute to a similar saliency map and yield the same locations of
visual attention as the sequence of real photographs.

From our experience, our approach is rather insensitive to the
choice of response function. Two examples of response functions,
which we have recovered from sequences of real photographs using
the approach of Debevec and Malik [1997], are shown in Figure 4.
Figure 5 shows saliency maps computed using those functions. The
maps are almost identical, and the minor differences do not affect
the further analysis, such as region selection for visual attention. In
all of what follows, response function A is used.

4 Results and Discussion

We have tested our algorithm on HDR images with a broad range
of content. Three examples are shown in Figure 6. In each case,
our method is able to produce reliable and comprehensive results.
The targets that differ from the surrounding environment by their
unique colors, intensities, or orientations are accurately recognized.
We have made similar observations in further test cases.
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Figure 5: Results of saliency analysis with different response functions. First column: the HDR images. Second column: the saliency maps
computed with response function A. Third column: the saliency maps computed with response function B. The HDR images are from Mark
Fairchild’s HDR Photographic Survey, c© 2006-2007 Mark D. Fairchild.

A comparison with results generated by applying the method of
Itti and Koch [2000] (which is targeted to LDR images) directly to
the HDR image as well as those obtained using the algorithm of
Brémond et al. [2012] is shown in Figures 7, 8, and 9. Compared
with the earlier approaches, our method addresses the problem of
HDR content loss that occurs due to brightness compression, and
therefore consistently leads to better performance for detecting the
salient regions of HDR images. As illustrated in Figure 7, if the
luminance of the HDR image is compressed before the saliency
analysis (as is the case with the other methods), it is hard for the
visual models to analyze details in the dark areas of the image. In
this example, only the sun and its reflection on the water surface
are detected by the other approaches, while the salient targets in
other regions, such as the mountains, the sailboat, and the house,
are neglected. The same pattern occurs in Figure 8. The previously
cited methods fail to capture the targets in the background, which is
darker than the foreground. Another example is given in Figure 9.
Our method detects the trees, which clearly are eye-catching, while
the other methods do not. We hypothesize that this is because the
details in relatively dark areas are weakened or even entirely lost as
a result of significant changes in contrast.

5 Conclusion

A number of computational attention systems have been proposed
for LDR images. However, relatively poor results have been ob-
served when applying some of those systems for saliency analysis
of HDR images since lightness reduction will lead to significant
loss of details. To preserve details of HDR images and incorporate
them into the saliency analysis, a virtual photograph based method
is presented in this paper. The approach utilizes a sequence of vir-
tual photographs rather than a single image for revealing HDR con-
tent. Our method reliably characterizes regions of visual attention
for HDR images and has a wide variety of potential applications,
such as HDR image or video coding, computational aesthetics,
non-photorealistic rendering, evaluation of tone mapping operators,
and saliency-based tone mapping algorithms. Moreover, the virtual
photograph technique presented in our paper opens new avenues for
analyzing HDR content, and it may be beneficial for computational
photography as well. In future work, we plan to more formally ana-
lyze the relative performance of our approach by using eye tracking

data.
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Figure 6: Results of saliency analysis for three test images.
Left hand column: saliency maps. Right hand column: loca-
tions of visual attention (red circles). The HDR images are from
Mark Fairchild’s HDR Photographic Survey, c© 2006-2007 Mark
D. Fairchild.

Figure 7: Comparison with other approaches. From top to bottom,
saliency maps and regions of visual attention (red circles) produced
by our method, the method of Itti and Koch [2000], and the method
of Brémond et al. [2012]. The HDR image is from Mark Fairchild’s
HDR Photographic Survey, c© 2006-2007 Mark D. Fairchild.

Figure 8: Comparison with other approaches. From top to bottom,
saliency maps and regions of visual attention (red circles) produced
by our method, the method of Itti and Koch [2000], and the method
of Brémond et al. [2012]. The HDR image is from Mark Fairchild’s
HDR Photographic Survey, c© 2006-2007 Mark D. Fairchild.

Figure 9: Comparison with other approaches. From top to bottom,
saliency maps and regions of visual attention (red circles) produced
by our method, the method of Itti and Koch [2000], and the method
of Brémond et al. [2012]. The HDR image is from Mark Fairchild’s
HDR Photographic Survey, c© 2006-2007 Mark D. Fairchild.
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