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A Physical Simulation

Each automata is modeled as a rigid multi-body system. Since
the mechanisms we optimize typically exhibit numerous kinematic
loops, we opt for a maximal coordinates dynamics formulation.
Therefore, the state of each rigid body i consists of position and
orientation degrees of freedom qi, and their linear and angular
velocity derivatives q̇i. The vectors q and q̇ concatenate the states
of all rigid bodies in the system.

We model joints, virtual motors, and frictional contacts using a set
of constraints of the form C(q) = 0, and their time derivatives
Ċ(q) = Ċd [Cline and Pai 2003]. According to the principle of
virtual work, the constraints give rise to internal forces fc = JTλ,
where J denotes the Jacobian ∂C

∂q
, and λ are Lagrange multipliers

that intuitively correspond to the magnitudes of the generalized
forces needed to satisfy each constraint. To integrate the motion
of the mechanisms forward in time, we must first compute the
constraint forces fc. Without loss of generality, we can express their
magnitudes implicitly as:

λ = −kpC(qt+1)− kd(Ċ(qt+1)− Ċd) (1)

where subscript t indicates the time instance, and the coefficients kp
and kd allow us to set the relative stiffness of different types of con-
straints. A Taylor-series approximation of the position constraints
allows us to express C(qt+1) as:

C(qt + hq̇t+1)=̇C(qt) + hJT q̇t+1 (2)

where h denotes the time step. Using the chain rule, the time-
derivative of the constraints can be written as Ċ(qt+1) = JT q̇t+1.
This allows us to approximate Eq. 1 as:

Jq̇t+1 = −aλ− akpC(qt) + kdaĊ
d (3)

where a = 1
hkp+kd

. Using the equations of motion of the multi-
body system, the generalized velocities q̇t+1 are given by:

q̇t+1 = q̇t + hM−1(Fext + JTλ) (4)

where M denotes the system’s mass matrix, and the term Fext stores
the gravitational forces acting on the system. Multiplying Eq. 4 by J,
and combining the result with Eq. 3, results in the following system
of equations that is linear in λ:

Aλ = b (5)

where A = hJM−1JT+aI and b = kdaĊ
d−akpC(qt)−Jq̇t−

hJM−1Fext. Because the constraint forces arising from frictional
contacts are subject to inequality constraints, as discussed shortly,
rather than solving Eq. 5 directly, we follow the work of Smith et
al. [2012] and compute λ by solving a quadratic program:

min
λ

1

2
(Aλ− b)T (Aλ− b)s.t.Dλ ≥ 0 (6)

where the matrix D stores all the inequality constraints that need to
be enforced. Once the constraint forces are computed, we use Eq. 4
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to compute the generalized velocity term q̇t+1, and the positional
degrees of freedom qt+1 are integrated forward in time as described
by Witkin [2001].

The derivation we provide here is related to methods implemented by
some modern rigid body engines, such as the Open Dynamics Engine
[Smith 2008]. However, rather than being restricted to working with
ad-hoc parameters that hold little physical meaning, such as the
Constraint Force Mixing term, Error Reduction Parameter and the
Parameter Fudge Factor, we control the behavior of our simulations
by manipulating the stiffness and damping parameters, kp and kd,
which are set independently for each constraint type (as detailed
below). In the limit, as kp goes to infinity and kd to 0 (i.e., infinitely
stiff spring), this formulation remains well-defined, and corresponds
to solving the constraints exactly. However, from the point of view
of numerical stability, it is often better to treat the constraints as stiff
implicit penalty terms.

Pin joints that allow a pair of components to rotate relative to
each other about a pre-specified axis are implemented using two
sets of constraints. First, we ensure that the coordinates of the
pin coincide in world space using a vector-valued constraint of the
form C(q) = x(qi(t),pi) − x(qj(t),pj). Here, x(qa,p) =
ta + Rap corresponds to the world coordinates of the point p,
ta ∈ R3 is defined as the position of center of mass of rigid body
a, and Ra corresponds to its orientation. The location of the pin
joint is defined by specifying the local coordinates of the pin, pi and
pj , in the coordinate frames of the two rigid bodies i and j that are
connected to each other. To ensure that the two rigid bodies rotate
relative to each other only about the pre-scribed axis, we use an
additional vector-valued constraint, C(q) = Rini −Rjnj , where
ni and nj represent the coordinates of the rotation axis in the local
coordinates of the two rigid bodies, and are set to (0, 0, 1)T for
all our experiments. The kp and kd coefficients for the pin joint
constraints are set to 108 and 104, respectively.

Motor constraints are used to mimic the effect of physical actua-
tors. For this purpose, we prescribe the time-varying, desired relative
angle between a select set of rigid body pairs. In particular, we as-
sume that each limb of the mechanical toys has an input crank that
operates relative to the main body. As we already employ pin joint
constraints between these pairs of rigid bodies, the motor constraints
directly measure the difference between their relative orientation
and the target motor angle. The target motor angles are specified by
phase profile functions f(α), as described by Coros et al. [2013].
The desired value for the time derivative of the constraint, Ċd, is set
to ḟ(α), and it intuitively corresponds to the target velocity of the
virtual motor. The kp and kd coefficients for the motor constraints
are set to 108 and 105, respectively.

Frictional contacts move our automata around their simulated
environments, and friction and contact forces must be bounded to
generate physically-plausible results. Each contact introduces three
constraints. Let n denote the contact normal. The first constraint
specifies that the penetration distance, measured along the normal,
should be 0: C(qa) = nT (x(qa,p)− xp). Here, pa corresponds
to the coordinates of the contact point in the frame of rigid body a,



and xp is the projection of the contact point onto the environment.
For this constraint, kp = 108, kd = 104, and, importantly, the
constraint force magnitude is constrained to be positive: λn ≥ 0.

To model friction, we employ a pyramid approximation to the fric-
tion cone, as is standard in real-time simulation systems. More
precisely, we let t1 and t2 be two orthogonal vectors that are tangent
to the contact plane, and define constraints similar to the one for
the normal direction, but acting along the tangent vectors. How-
ever, friction forces should only act to reduce the relative velocity
at the contact point to 0. For this reason, we set kp to 0 for these
constraints, while kd is set to 104. To ensure that tangential forces
remain within the friction pyramid, we add inequality constraints
of the form −µλn ≤ λt ≤ µλn for the magnitude of the tangen-
tial forces acting along t1 and t2, where µ represents the friction
coefficient.
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Figure 1: Initial linkage configuration used for the Dog mechanical
automata. Linkage (a) is also the linkage used for all legs (front and
rear) for the Giraffe-like automata.
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