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GLOSSARY

API application programming interface. 147, 162, 163
APOD Assess, Parallelize, Optimize, Deploy. 157, 158

application programming interface Specifies how some software components should
interact with each other. 147, 162, 163

ASID Assess, Select, Implement, Deploy. 157, 158

Assess, Parallelize, Optimize, Deploy Application optimization process for Graph-
ics Processing Units (GPUs) proposed by NVIDIA Corporation [2013b]. 157,
158

Assess, Select, Implement, Deploy Cyclic development model built around the strat-
egy tree. It is based on the Assess, Parallelize, Optimize, Deploy (APOD) scheme.
157, 158

CCVD Capacity-constrained Voronoi Diagrams. 43, 46, 47, 51, 52

cluster set of loosely or tightly connected computers that work together so that in
many respects they can be viewed as a single system. 7, 10, 19, 21, 40, 105, 163

Compute Unified Device Architecture A parallel computing platform and program-
ming model created by NVIDIA. 157, 161, 163

CPU Central Processing Unit. 7, 9, 10, 12, 16-18, 20, 21, 151, 152, 161
CT computed tomography. 24, 60, 117, 118, 123

CUDA Compute Unified Device Architecture. 157, 161, 163

data parallelism each processor performs the same task on different chunks of dis-
tributed data. 11, 24

DFT Discrete Fourier Transform. 161

distributed memory processors have their own local memory. Information is ex-
changed by passing messages using communication links. 12

General-Purpose computing on Graphics Processing Units Using GPUs for general-
purpose scientific and engineering applications. 18, 166

X
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GPGPU General-Purpose computing on Graphics Processing Units. 18, 166

GPU Graphics Processing Unit. 7-9, 16-21, 24, 28, 29, 33, 44, 46, 49-52, 55, 59, 60, 64,
105, 108, 117, 118, 123, 125-127, 138, 157-161, 163, 167

high-performance visualization High-performance visualization focuses on the
subset of scientific visualization concerned with algorithm design, implementa-
tion, and optimization for use on today’s computational platforms. 157, 164, 166,
168

HPV high-performance visualization. 157, 164, 166, 168

instruction-level parallelism measure of the average number of instructions in a
program that, in theory, a processor might be able to execute at the same time. This
is mostly determined by the number of true (data) dependencies and procedural
(control) dependencies in relation to the number of other instructions. Typically,
it means extracting parallelism from a single instruction stream working on a
single stream of data. 17

k-d tree A space-partitioning binary tree for organizing points in a k-dimensional
space. 30, 44, 45, 48-50, 61, 160

LCCVD Loose Capacity-constrained Voronoi Diagrams. 46-49, 51-55, 57, 141
LDI Layered Depth Image. 30, 88, 95, 97, 98, 100-102

level of detail Decrease the complexity of a 3D object representation as it with respect
to metric such as distance from the viewer or object importance. 29, 31

LOD level of detail. 29, 31

MC Marching Cubes. 26, 27, 100-102

MIMD Multiple Instruction, Multiple Data. 8-11
MISD Multiple Instruction, Single Data. 8, 9
MRT magnetic resonance tomography. 24

MS Marching Squares. 38

Multiple Instruction, Multiple Data Every processor executes different instruction
and data streams. 8-11
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Multiple Instruction, Single Data Only a single data stream is fed into multiple
processing units, whereas each processing unit operates on the data independently
via separate instruction streams. 8, 9

nonuniform memory access While memory is uniformly addressable from all pro-
cessors like in SMP, some blocks of memory may be physically more closely
associated with some processors than others. 12

NUMA nonuniform memory access. 12

octree Each internal node of this tree tree data structure has exactly eight children.
They are typically used to partition a three dimensional space by recursive subdi-
vision into eight octants. They can bee seen as the three-dimensional analog of
quadtrees. 29

SDK software development kit. 162

shared memory processors have direct access to the same memory. 12
SIMD Single Instruction, Multiple Data. 8, 9, 11

SIMT Single Instruction, Multiple Thread. 8, 9, 14, 19, 24, 28, 126

Single Instruction, Multiple Data All processing units execute the same instruction
at any given clock cycle, while each can operate on a different data element. 8, 9,
11

Single Instruction, Multiple Thread The SIMT architecture is akin to Single In-
struction, Multiple Data (SIMD) in that a single instruction controls multiple
processing elements. A key difference is that SIMD expose the SIMD width to
the software, whereas SIMT instructions specify the execution and branching
behavior of a single thread. 8, 9, 14, 19, 24, 28, 126

Single Instruction, Single Data One stream of instructions processes a single data
stream. 8

SISD Single Instruction, Single Data. 8
SM Streaming Multiprocessor. 18, 19, 44—-46, 50, 55, 134
SMP symmetric multiprocessors. 12

strategy In the context of this work, a strategy describes a way to exploit potentials for
performance improvement in the field of high-performance visualization (HPV).
158, 167
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strategy tree Hierarchical organization of strategies toward HPV. 2, 4, 155, 157-159,
164, 166—168

Streaming Multiprocessor Each NVIDIA GPU contains a couple of streaming mul-
tiprocessors. The threads of a thread block execute concurrently on one multi-
processor, and multiple thread blocks can execute concurrently on one multi-
processor. As thread blocks terminate, new blocks are launched on the vacated
multiprocessors. 18, 19, 44-46, 50, 55, 134

symmetric multiprocessors All processors share a connection to common memory
and all memory locations can be accessed at equal speeds. 12

task A logically discrete section of computational work. A task is typically a program
or program-like set of instructions that is executed by a processor. 3, 24, 35-37,
147, 148, 152

task item Task items are subdivisions of tasks. When applying a task to solve a specific
problem, task items are generated from a specific task, that collectively solve that
problem. Executing task items belonging to the same task in parallel is depicted
as data-parallel in the following, if the task items executed in parallel belong
to different tasks it is referred to as task-parallelism. 21, 35, 37, 38, 45, 46, 50,
126-134, 136, 137, 139, 147-152

task parallelism each processor performs a different task. 11, 24

TIC task item context. 130-132

VDI Volumetric Depth Image. 88-94, 164

volume raycasting Image-based volume rendering technique accumulating values
along rays from a virtual camera through a volume. The goal is to determine
radiance leaving the volume for each pixel on the image plane. In contrast to
raytracing, secondary rays, i.e., reflection, refraction, and shadow rays, are not
considered. Additionally, the volume has to be sampled along each ray since
there is no explicit geometry given to perform ray-geometry intersections inside
the volume. Sampling along the viewing rays allows to directly evaluate the
discretized volume rendering integral given in (2.17) . 4

warp When a multiprocessor is given one or more thread blocks to execute, it partitions
them into warps (or waves in AMD terminology) and each warp individually
gets scheduled for execution. Threads composing a warp start together at the
same program address, but they have their own instruction address counter and
register state and are therefore free to branch and execute independently. 9, 14,
15, 17-20, 44, 46, 127, 129-135, 161
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ABSTRACT

Visualization is a crucial tool for analyzing data and gaining a deeper understanding of
underlying features. In particular, interactive exploration has shown to be indispensable,
as it can provide new insights beyond the original focus of analysis. However, efficient
interaction requires almost immediate feedback to user input, and achieving this poses
a big challenge for the visualization of data that is ever-growing in size and complex-
ity. This motivates the increasing effort in recent years towards high-performance
visualization using powerful parallel hardware architectures.

The analysis and rendering of large volumetric grids and time-dependent data is partic-
ularly challenging. Despite many years of active research, significant improvements
are still required to enable the efficient explorative analysis for many use cases and
scenarios. In addition, while many diverse kinds of approaches have been introduced
to tackle different angles of the issue, no consistent scheme exists to classify previous
efforts and to guide further development.

This thesis presents research that enables or improves the interactive analysis in various
areas of scientific visualization. To begin with, new techniques for the interactive
analysis of time-dependent field and particle data are introduced, focusing both on the
expressiveness of the visualization and on a structure allowing for efficient parallel
computing. Volume rendering is a core technique in scientific visualization, that induces
significant costs. In this work, approaches are presented that decrease this cost by
means of a new acceleration data structure, and handle it dynamically by adapting the
progressive visualization process on-the-fly based on the estimation of spatio-temporal
errors. In addition, view-dependent representations are presented that both reduce
the size and render cost of volume data with only minor quality impact for a range
of camera configurations. Remote and in-situ rendering approaches are discussed for
enabling the interactive volume visualization without having to move the actual volume
data. In detail, an approach for the integrated adaptive sampling and compression is
introduced, as well as a technique allowing for user prioritization of critical results.
Computations are further dynamically redistributed to reduce load imbalance. In detail,
this encompasses the tackling of divergence issues on GPUs, the adaptation of volume
data assigned to each node for rendering in distributed GPU clusters, and the detailed
consideration of the different performance characteristics of the components in a
heterogeneous system.

From these research projects, a variety of generic strategies towards high-performance
visualization is extracted, ranging from the parallelization of the program structure and
algorithmic optimization, to the efficient execution on parallel hardware architectures.
The introduced strategy tree further provides a consistent and comprehensive hierar-
chical classification of these strategies. It can provide guidance during development to

xiii



Abstract

identify and exploit potentials for improving the performance of visualization appli-
cations, and it can be used as expressive taxonomy for research on high-performance
visualization and computer graphics.
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GERMAN ABSTRACT -
ZUSAMMENFASSUNG

Visualisierung ist grundlegend fiir die Analyse von Daten und die Gewinnung von
Einsichten in zugrundeliegende Prozesse. Insbesondere die interaktive Exploration
hat sich hierbei als wertvoll erwiesen, da sie den Erwerb neuer Erkenntnisse jenseits
des urspriinglichen Analysefokus erlaubt. Fiir die effiziente Interaktion werden jedoch
schnelle Antwortzeiten auf Benutzereingaben benétigt. Diese zu gewahrleisten stellt
eine grofle Herausforderung fiir die Visualisierung von Daten dar, die sowohl in Gréfle
als auch Komplexitat stetig zunehmen. Dies ist die Motivation fiir die zunehmenden
Bemiihungen in den letzten Jahren hinsichtlich High Performance Visualisierung und
dem Einsatz von leistungsfahigen parallelen Hardwarearchitekturen.

Die Analyse und das Rendering von grofien Volumen und zeitabhéngigen Datensétzen
stellt hier eine besondere Herausforderung dar. Trotz vieler Jahre aktiver Forschung
miissen fiir viele Anwendungsszenarien auch heute noch mafigeschneiderte Ansétze
entwickelt werden, um die effiziente explorative Analyse zu erméglichen. Obwohl
verschiedene Losungsansitze fiir unterschiedliche Teilbereiche vorgestellt wurden,
existiert bislang kein konsistentes Schema, das die verschiedenen Arbeiten klassifizieren,
und somit auch Neu- sowie Weiterentwicklungen unterstiitzen kann.

In dieser Dissertation werden Forschungsarbeiten vorgestellt, die die interaktive Anal-
yse in verschiedenen Bereichen der wissenschaftlichen Visualisierung verbessern, oder
gar erst ermoglichen. Es werden neue Techniken fiir die interaktive Analyse von
zeitabhiangigen Feld- und Partikeldaten eingefiihrt, die den Fokus sowohl auf eine
hohe Aussagekraft der Visualisierung als auch eine parallelisierungsfreundliche Pro-
grammarchitektur legen. Hierbei kommt auch Volumenrendering zum Einsatz, eine
grundlegende Technik in der wissenschaftlichen Visualisierung, die insbesondere bei
grofleren Datensatzen erhebliche Kosten verursacht. Die vorliegende Arbeit zeigt
Ansatze, die diese Kosten zum einen durch die Einfithrung neuer Beschleunigungs-
datenstrukturen verringern, und sie zum anderen durch die fehlerschatzungsbasierte
Steuerung des progressiven Visualisierungsprozesses dynamisch anpassen. Zudem wer-
den ansichtsabhédngige Reprasentation vorgestellt, die sowohl die Datengrof3e als auch
die Bilderzeugungskosten von Volumendaten reduzieren, und dabei ledigliche geringe
Qualitatseinbuflen fiir einen weiten Bereich von Kameraeinstellungen verursachen.
Aufiderdem werden Remote und In-Situ Ansatze diskutiert, die interaktive Volumenvi-
sualisierung ermoglichen ohne Volumendaten iibertragen zu miissen. Hierfiir werden
unter anderem sowohl adaptives Sampling und Kompression integrativ gehandhabt,
als auch die Priorisierung von zeitkritischen Teilergebnissen ermdéglicht. Die Berech-
nungen werden zudem dynamisch verteilt, um die Ungleichheit der Lastverteilung

XV



German Abstract — Zusammenfassung

auszubalancieren. Dies beinhaltet die Behandlung von Divergenzproblemen auf GPUs,
die Anpassung der Verteilung der Bilderzeugung in GPU Clustern, und die explizite
Beriicksichtigung von unterschiedlichen Performanzcharakteristiken verschiedener
Komponenten in heterogenen Systemen.

Aus diesen Forschungsprojekten werden verschiedene Strategien zur High Performance
Visualisierung extrahiert. Diese reichen von der Parallelisierung der Programstruktur
tber die Optimierung von Algorithmen zur effizienten Ausfithrung auf parallelen Hard-
warearchitekturen. Diese Strategien werden in einen neu eingefithrten, umfassenden
und konsistenten hierarchischen Strategiebaum eingeordnet. Dieser soll als Hilfe dienen
bei der Entwicklung neuer Ansétze durch die Unterstiitzung der Identifikation und
Ausnutzung von Verbesserungspotentialen bei der Performanz von Visualisierungsan-
wendungen. Auflerdem kann der Strategiebaum als aussagekraftige Taxonomie fiir
Forschung und Entwicklung im Bereich von High Permance Visualisierung und Com-
putergrafik verwendet werden.

XVi









CHAPTER

INTRODUCTION

1.1 Introduction and Motivation

Visualization graphically illustrates scientific data to enable the examination and the
understanding of inherent structures and processes. Beyond the inspection of a static
image, dynamic interaction with the visualization allows for an exploratory approach.
Ultimately, this enables a user to gain insight beyond the original focus [Ferster, 2012].
Interactive exploration requires fast response times to deliver immediate feedback to
parameter changes, like changing viewpoints. However, the size and complexity of
the data sets that need to be analyzed are ever growing. This is mainly driven by the
advent of new simulation and data acquisition methods as well as substantial increases
in parallel hardware processing power. Alongside with this, the complexity of the
visualization techniques themselves is also increasing. As a consequence, achieving
interactivity without significantly compromising the quality of the visualization is
often times very challenging. To avoid critical shortcomings, visualization applications
need to efficiently exploit the large potential of parallel hardware to enable high-
quality responsive interactive analysis for today’s and future real-world data sets and
visualization techniques. Approaches toward this goal are commonly classified as
high-performance visualization techniques [Bethel et al., 2012].

This work pursues two main objectives. First, it aims to introduce techniques that
individually help to solve specific problems in scientific visualization efficiently. Sec-
ond, from these techniques, strategies are extracted to approach high-performance
visualization in general. As the complete development and implementation process is
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known for these techniques, effort and innovation spent in the development process
can be considered more truthfully than this would be the case for external research
with merely the published results being available. In more detail, the contributions of
this work are as follows:

m Novel techniques are introduced for interactive parallel visualization in a variety
of areas, including

v the analysis of time-dependent field and particle data (Ch. 3),
v the reduction of render cost (Ch. 4),

v view-dependent representations, (Ch. 5)

v remote and in-situ rendering (Ch. 6),

v and the tackling of GPU divergence and load imbalance on clusters (Ch. 7).

m We extract generic strategies from these approaches and organize them in a
consistent and comprehensive structure, the strategy tree. Possible applications
of this strategy tree are discussed in Ch. &, both as

v a guideline for the development of new parallel visualization techniques,

v and as a taxonomy to classify and analyze research efforts in the field.

1.2 Basic Scope and Structure

There is a variety of different aspects to consider to create an insightful visualization
application. Most prominently, expressive images need to be generated that allow to
gain a deeper understanding of the data. Furthermore, the visualization application
should also be accessible and intuitive to enable users to leverage the visualization
application’s full potential. To enable explorative data analysis, the application further
needs to respond quickly to requests.

The focus of this work is on the latter aspect, i.e., on improving the responsiveness
of (scientific) visualization applications to allow for prompt data analysis and quick
(optimally interactive) iteration cycles. In practice, improving the responsiveness
typically goes along with enhancing the efficiency of the visualization in the parallel
environments that are omnipresent nowadays. Various projects tackling different
aspects of this overall goal are presented in this work. From this, generic strategies
toward High-Performance Parallel Visualization (Strat. 1) are extracted. These are
classified into three fundamental strategies around the pivotal goal of High-Performance
Parallel Visualization (Strat. 1), forming the basis of our strategy tree (Fig. 1.1). First,
Structure (Strat. 2) basically encompasses the parallelization-friendly structuring of the
application. Regarding the parallelization terminology used in this context, the different
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functionalities in which a technique can be partitioned are denoted as tasks. Tasks are
further divided into task items, each of which perform the same programs on different
data elements. Second, Cost (Strat. 3) comprises the reduction of cost induced by the
visualization technique. Third, Resources (Strat. 4) contains strategies for the efficient
handling and distribution of the load.

High-
Performance
Parallel Visu-
alization (1)

Resources

©)

Figure 1.1: Categories of basic generic visualization strategies toward high-performance visual-
ization.

Strategy 1 High-Performance Parallel Visualization @
Solve visualization problems using parallel computing such that the
available resources are utilized efficiently to achieve responsive visual

data exploration.

Structure @
Structure an approach for good efficiency characteristics, with a focus
on the best possible parallelization properties.

Cost
Minimize the overall work required to complete a task, i.e., reduce the
amount, complexity or extent of tasks and their respective task items. @
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%l/\&lm
ay 1 Balance

Display / ay 2 raycasting load
between
processors
Early Ray Termination

Figure 1.2: Illustration of fundamental strategy categories at the example of basic volume
raycasting.

Processor 0 Processor 1

Strategy 4 Resources

Optimize the investment of hardware resources to maximize key factors,
like responsiveness, energy efficiency, etc., by adjusting the distribution,
cost, and the number of task items, among others.

This basic segmentation of strategies toward High-Performance Parallel Visualiza-
tion (Strat. 1) is primarily based on the experiences made during the development
of the different approaches presented in this work. It also reflects separate subject areas
tackled by different communities as well as the structure of parallel programming devel-
opment guidelines [Mattson et al., 2004; NVIDIA Corporation, 2013b]. Ch. 8 elaborates
on this in more detail.

A simple example demonstrating the basic strategies by means of volume raycasting
is illustrated in Fig. 1.2. Here, a ray is sent through each pixel, accumulating color
and opacity along its way through the volume. Rays can be processed independently
from each other (Strat. 2, Structure). A simple technique to reduce the cost for each
ray is early ray termination [Levoy, 1990c], i.e, the computation of the rays is stopped
when the opacity is saturated (Strat. 3, Cost). Load balancing then can be employed to
distribute the computation of different rays to processors such that the overall execution
time is minimized (Strat. 4, Resources). Raycasting-related techniques are discussed in
more detail in Sec. 2.2.

1.3 Document Organization

Ch. 2 covers the basics of parallel programming (Sec. 2.1) and visualization (Sec. 2.2)
which are fundamental for the remainder of this work. In the following chapters 3 to
6, novel approaches for parallel visualization are discussed. Along the way, strategies
are extracted from these approaches and added to the strategy tree. In detail, Ch. 3
introduces new techniques for the analysis of time-dependent scalar fields and the data
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reduction of results from molecular dynamics simulation. In this context, the focus
lies on structuring the approach such that it has favorable properties when it comes to
parallel computing. Ch. 4 presents techniques for reducing the computational effort of
volume raycasting. Ch. 5 presents approaches for the view-dependent representation
of volumes and their rendering. Ch. 6 discusses interactive in-situ volume generation
and remote rendering. Ch. 7 introduces techniques for alleviating the load-imbalance
occurring with parallel volume raycasting. An overview on the discussed projects is
given at the beginning of the respective chapter. Ch. 8 discusses possible applications
of the strategy tree that has been constructed along the presentation of the different
research projects. In this chapter, also the properties, characteristics and limitations of
the strategy tree are discussed, before finally concluding this work.






CHAPTER

BAsics

A major aspect of this work is the integration of parallel computing and scientific
visualization. The fundamentals for both of these areas are covered in this chapter in
Sec. 2.1 and Sec. 2.2, respectively.

2.1 Parallel Computing

Parallel computing denotes a form of computation in which many calculations are
performed simultaneously. It operates on the principle that large problems can often
be divided into smaller ones, which are then solved concurrently. Kirk and Hwu [2012,
chapter 10.1] give three goals for adopting parallel computing: solve a given problem in
less time, solve bigger problems, and achieve better solutions for a given problem and a
given amount of time. Applications that are good candidates for parallel computing
typically involve large problem sizes and high computational cost, i.e., a large amount
of data is processed, many iterations are performed on the data, or both. In this section,
we discuss fundamental models of parallel computing (Sec. 2.1.1), modern hardware
architectures (Sec. 2.1.2), and finally tools and frameworks that make them accessible
to the programmer (Sec. 2.1.2). An overview on hardware architectures and some of
their characteristics that are discussed in the following is given in Tab. 2.1.
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’ H CPU ‘ GPU ‘ Cluster ‘
Flynn’s Taxonomy MIMD SIMD (SIMT) MIMD
(Sec. 2.1.1) (Shared Memory) (Distributed Memory)
Programming Model Task & Data Data (& Task) Task & Data
(Sec. 2.1.1)
Classification Parallel, Multicore Parallel, Manycore Distributed
(Sec. 2.1.2)
Programming OpenMP, OpenCL CUDA, OpenCL, | MPI, Sockets
(Sec. 2.1.2) GLSL

Table 2.1: Overview on the characteristics and properties of different hardware architectures
that are discussed in this section.

Instructions‘ Input Data

Control Unit

Processor

Output Datal

Figure 2.1: SISD: One stream of instructions processes a single data stream

2.1.1 Fundamentals

In the following, several fundamental models of parallel computing are discussed.
Starting with Flynn’s taxonomy, different models are outlined regarding programming,
memory, and performance considerations.

Flynn’s Taxonomy

Flynn’s Taxonomy [Flynn, 1972] is the most widely used classification for parallel
computers. It distinguishes multi-processor computer architectures with respect to
their classification along the two independent dimensions of instruction (I) and data
(D). Each of these dimensions has two possible states: single (S) and multiple (M).
Thus, there are four possible classifications: SISD, MISD, SIMD, and MIMD. For SIMD,
a variant called SIMT (T stands for threads) has been introduce to more adequately
describe the architecture of modern GPUs. In visualization, SIMD (SIMT) and MIMD
are by far the most commonly employed categories.

SISD simply depicts a serial (non-parallel) machine (Fig. 2.1). A single data stream
is processed by one stream of instruction processes. In contrast, in MISD, such a
single data stream is fed into multiple processing units, each of which operates on the
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Instructions‘ InstructionsL Instructions
[d

Control Unit Control Unit

—
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Outputl Outputl Outputl Outputl
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Figure 2.2: MISD: Only a single data stream is fed into multiple processing units, whereas each
processing unit operates on the data independently via separate instruction streams

Instructions‘ Input Data Input Data‘ Input Data Input Data

(| [ ! ( I [ |

[ Processor ] [ Processor ] [ Processor ] ( Processor ]

Output Datal Output Datal Output Datal Output Datal

Figure 2.3: SIMD: All processing units execute the same instruction at any given clock cycle,
while each can operate on a different data element

data independently via separate instruction streams (Fig. 2.2). In practice, only few
implementations of such a machine haven been implemented. The most prominent
application scenarios include space shuttle flight control, code cracking in cryptography,
and fault-tolerant computers executing the same instructions redundantly.

In SIMD, all processing units execute the same instruction at any given clock cycle,
while each can operate on a different data element (Fig. 2.3). Such machines exploit data
level parallelism (discussed in detail below) and are best suited for problems with a high
degree of regularity, which is typically the case for the processing of graphics, image,
or audio data. Most modern CPU designs include SIMD instructions (e.g., MMX, SSE
or AltiVec) to improve the performance of multimedia operations. Modern GPUs are
also frequently classified as SIMD architectures. However, there are some differences
to classical SIMD. The SIMT classification has been introduced to adequately address
these [NVIDIA Corporation, 2013a].

SIMT is akin to SIMD in that a single instruction controls multiple processing elements.
A key difference is that SIMD exposes the SIMD width to the software (Fig. 2.4(a)),
whereas SIMT instructions specify the execution and branching behavior of a single
thread (Fig. 2.4(b)). In SIMT, programmers basically write thread-level parallel code for
independent, scalar threads (similar to MIMD that is explained in detail below). For
the purpose of correctness, the underlying characteristics of SIMT can essentially be
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(a) SIMD: The SIMD-width of 4 explicitly needs (b) SIMT: Threads (dark gray) process one chan-

to be considered, and the vectors are added up in nel only, the underlying thread organization (light

chunks which were specified by the programmer.  gray) does not need to be considered explicitly by a
programmer.

Figure 2.4: Differences from a programmers perspective of SIMD and SIMT. In this example,
four vectors a, b, c and d are summed up, each of which features eight elements.

ignored, however, substantial performance improvements can be realized by explicitly
taking them into account. Similar to SIMD, certain groups of threads (so-called warps)
share the same instruction stream. Threads composing a warp start together at the same
program address, but they have their own instruction address counter and register state
and are therefore free to branch and execute independently. Nevertheless, threads of a
warp run in lockstep, i.e., if threads of a warp diverge via a data-dependent conditional
branch, the warp is forced to serially execute each branch path taken, disabling threads
that are not on that path. Thus, full efficiency is only realized when all threads of a
warp agree on their execution path.

In MIMD, processors execute different instruction on different data streams indepen-
dently (Fig. 2.5). MIMD machines belong either to the shared memory or the distributed
memory category, depending on whether they share the same address space. In ei-
ther case, processors can communicate over interconnects. Both multicore CPUs and
compute clusters can be classified as MIMD.

Input
Data

Control Unit

Input
Data

Control Unit

Input
Data

Control Unit

Input
Data

Control Unit

Instructions‘ Instructions‘ Instructions‘ Instructions‘

Processor Processor Processor Processor

Outputl nter- utpu utpu utpu
Data connection  Data Data Data

Figure 2.5: MIMD: Every processor executes different instruction and data streams
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Programming Models

Algorithm 1 Data parallelism with data array d and two processors py and p;. Pro-
cessors are assigned different data ranges {7y, - . . , "max } for which they evaluate a
function f.

1: if py then > Data element assignment for processor 0
2: Tmin < 0

3: Tmax < |d|/2

4: if p; then > Data element assignment for processor 1
T'min < |d|/2 +1

Tmax < |d| = 1

: for i <« ryiy to ryax do > Perform task f on every element of d

f(dfi])

® N >

There are two basic forms of parallelization across multiple processors in parallel
computing environments: data parallelism and task parallelism. In data parallelism,
each processor performs the same task on different chunks of distributed data (Alg. 1).
It is the most widely used model in visualization [Moreland, 2013]. The extent of
concurrency is limited only by the number of pieces the data can be split into, which
can be very high for large-scale data. It is well-suited for large, homogeneous problems,
but may suffer from severe efficiency drops in the case of irregularity. Data parallelism
is the typical model for SIMD but also works well on MIMD architectures. It has been
shown to be very scalable on current supercomputers [Childs et al., 2010].

Algorithm 2 Task parallelism with tasks f and g, two processors py and p;, and data d.

1: if py then D> Task assignment for processor 0
2 f(d)
3: if p; then > Task assignment for processor 1
& g(d)

In task parallelism, each processor performs a different task (Alg. 2), i.e., independent
portions of a program are executed concurrently. Task parallelism can be applied to
almost any type of algorithm and scale well even with irregular problems. However,
there are typically significant practical limits on how much concurrency can be achieved
with each processor performing a different task. In particular, visualization applications
in real working environments can seldom be broken into more than a handful of
independent parts [Moreland, 2013].
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[ Processor ] [ Processor ] ( Processor ] ( Processor ] ( Processor ] [ Processor ]

{ Memory ] { Memory ] { Memory ] { Memory ]

(a) Distributed memory: processors have their (b) Shared memory: processors have direct
own local memory. Information is exchanged by  access to the same memory
passing messages using communication links

Figure 2.6: Different memory models for hardware architectures with multiple processors.

Memory Models

The terms “parallel computing”, and “distributed computing” significantly overlap,
and no clear distinction exists between them [Ghosh, 2007; Keidar, 2008]. However,
popularly, parallel computing is regarded as a tightly coupled form of distributed
computing [Peleg, 2000], and distributed computing may be seen as a loosely coupled
form of parallel computing [Ghosh, 2007; Mattson et al., 1996; Adiga et al., 2002].
Accordingly, in parallel computing, all processors may have access to a shared memory
to exchange information between processors (SIMD, MIMD with shared memory)
[Keidar, 2008]. In distributed computing, each processor has its own private memory
(MIMD, distributed memory) (Fig. 2.6). The combination of the two is commonly
denoted as hybrid [Mattson et al., 1996].

In a shared memory system, all processes share a single address space and communicate
with each other by writing and reading shared variables. This class is further decom-
posed into SMP and NUMA. In SMP, all processors share a connection to common
memory and all memory locations can be accessed at equal speeds. SMP systems are
arguably the easiest parallel systems to program, but the limited processor-to-memory
bandwidth heavily impedes their scaling properties. As a result, SMP systems are typi-
cally restricted to small numbers of processors. Memory is also uniformly addressable
from all processors in NUMA, but some blocks of memory may be physically more
closely associated with some processors than others. This reduces the memory band-
width bottleneck and allows systems with more processors. In addition, nearly all CPU
architectures use a small amount of very fast non-shared (cache) memory to exploit
locality in memory accesses, along with a protocol to keep cache entries coherent (this
is also called cache coherent NUMA or ccNUMA). A NUMA system can be programmed
in the same ways as an SMP system, but data locality and cache effects need to be taken
into account to obtain the best performance.

In a distributed memory system, each process has its own address space and commu-
nicates with other processes by message passing (sending and receiving messages).
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Typically, communication and data distribution need to be handled manually by the
programmer, although experimental frameworks have been proposed that are able to
automatically take care of this under certain circumstances (Sec. 2.1.2).

Performance Models

Simple analytic models for an idealized model problem can be used to illustrate some
of the factors that influence the performance of a parallel program.

Processing. Let a computation consist of two tasks f, and £,, with the total total run
time for one processor ¢y (1) given by

ts(1) =t, +1, (2.1)

Now, there are p (identical) processors available for computation. Assuming that £, can
only be run serially (e.g., typical setup and finalization code) and solely £, can be run in
parallel, this yields

19

o U #
ts(p) =ts+ ;p (2.2)

A widely used measure of how useful additional processors are is strong scaling. , i.e.,
the relative speedup s that is defined as follows: It denotes the speedup s for a varying
number of processors and a fixed problem size:

Vz(l).
tx(p)

Another widely used notion is weak scaling, in which the problem size assigned to
each processor stays constant, and more processors are used to solve a larger overall
problem. The goal is typically to achieve a perfect linear speedup (i.e., s = p for strong
scaling). Unfortunately, this can only rarely be achieved due to several factors.

s(p) =

(2.3)

One of these reasons hindering perfect scaling are serial parts of program that cannot
be parallelized. In the following, o is used to denote the ratio of the time spent in the
serial parts with respect to the total run time.

v

ts
g ==
tx(1)

With (1 - o) denoting the ratio of the parallel parts accordingly, plugging this into
Eq. 2.2 yields:

(2.4)

fzzafz(l)+(1—0)le()1). (2.5)
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Finally, reformulating speedup s (Eq. 2.3) using Eq. 2.5 results in Amdahl’s law, giving
the maximum speedup that can be achieved with respect to serial computing by using
D processors:

tx(1) 1
(0’+1_Ta)tz(1) O’+1_T(7

s(p) = (2.6)

As a consequence, this means that the obtainable speedup is ultimately restricted by
the serial part.

p

lim L = 1 (2.7)
o

Dependencies. Data dependencies can have a major impact on the computation time.
No program can run more quickly than the longest chain of dependent calculations
(also denoted as the critical path). Let O = fo(Ip) and Oy = f1(I1) be two sequences
of operations, performing computations on input data I and producing output data O.
The conditions of Bernstein [1966] state that they are independent and can be processed
in parallel if they satisfy the following:

LNnOy =0 (2.8)
I() N 01 =g (2.9)
0y O, = . (2.10)

Violation of the first two input-output conditions (Egs. 2.8 and 2.9) means that one
sequence produces results that the other sequence depends on. Eq. 2.10 describes an
output dependency, in that f; and f; write potentially different results to the same
location.

Communication. In parallel systems, dependencies typically translate into communi-
cation effort. The total time for message transfer {5 can be modeled as the sum of a
fixed cost (latency #;) plus a variable cost that depends on the size of the message n and
the bandwidth 0. n

fs=fi+ (2.11)

Latency ?; is essentially the time it takes to send an empty message over the communi-
cation medium, from the time the send routine is called to the time the data is received.
It includes overhead due to software and network hardware plus the time it takes for
the message to traverse the communication medium. The bandwidth b is a measure of
the capacity of the communication medium.

Load Imbalance. There are two basic causes for load imbalance in parallel applica-
tions [Yelick, 2007, chapter 10]: different processor performance and different load
across processors. Different processor performance can not only occur due to het-
erogeneous hardware (in hybrid systems), but also stem from load on the respective
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Iteration 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Branch 0 ! 2 3 4 5 6 7
Conditon T F T F T F T F T F T F T F T F

Thread 0| [ S of X X X X X X X X X X X X X [theado|[of X]Y X S X| ]| SI[X LIX S
Tead |V S AAAASASASASAAASASAS S |headi|[f XIS S XS X S SXASXAS
Thread2| [ S L S LSS X XXX XXX XX Thead2|[X W[y [ X[ X[ [ LIV X[X ¢
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Warp X lterations:64  # Iterations Executed: 36  # Iterations Wasted: 28 Warp 3 Code Blocks: 64  # Blocks Executed: 52 # Blocks Masked: 20

(a) Termination Divergence: All threads run until (b) Branch Divergence: All threads need to step
all threads of their warp are finished. through a branch if (at least) one thread of their
warp needs to enter it.

Figure 2.7: Threads of a warp are executed in lockstep, resulting in termination divergence (a)
and branch divergence (b), among others.

Spectrum Easy Harder Hardest
Cost Uniform | Different, but known | Unknown until after execution
Dependency || None Predictable structure | Dynamically changing structure

Table 2.2: Different causes of load imbalance, and the difficulty of resolving them (based on
Yelick [2007, chapter 10]).

machine. Different load can be due to variations in computation, dependencies and
communication (Tab. 2.2). Different manifestations of this issue arise for different
hardware architectures.

In SIMT, for instance, the negative impact of heterogeneous load is made even worse
by the lockstep characteristic forcing threads of a warp to execute the same code path.
This is commonly denoted as warp divergence and can be further classified with respect
to the cause.

Memory Divergence Some threads of a warp perform costly memory accesses and
stall, forcing the other threads to idle.

Termination Divergence Terminated threads waste compute cycles until all threads
of their warp are finished with their computation steps (Fig. 2.7(a)).

Branch Divergence A warp serially executes each branch path taken, masking threads
that are not on that path (Fig. 2.7(b)).

The effort and cost for resolving load imbalance depends on when certain informa-
tion about the load balancing problem is available, how costly the acquisition of this
information is, and how expensive it is to actually use this information (Tab. 2.2). De-
pending both on these costs and their effectiveness in reducing the imbalance, different
approaches for load balancing can be useful. These approaches can be distinguished
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into centralized and distributed load balancing with respect to where they operate.
They are further popularly classified according to when they are applied:

Static The schedule is determined before the execution. This requires all relevant
information to be available beforehand.

Semi-Static The schedule is defined between major steps (well-defined points), e.g.,
at the beginning of each timestep or frame.

Dynamic The schedule is determined in mid-execution. It can thus utilize the latest
information and react very flexibly to rapidly changing behavior.

2.1.2 Parallel and Distributed Computing Systems

Traditionally, the vast majority of software applications are written as sequential
programs. The performance of single core processors has grown several orders of
magnitude over the past 25 years, driven by transistor speed and energy scaling, as
well as by microarchitecture advances that exploited the transistor density gains from
Moore’s law. However, diminishing transistor-speed scaling and practical energy limits
create new challenges for continued performance scaling. As a result, the frequency of
operations only increases slowly, with energy being the major limiting factor [Borkar
and Chien, 2011]. To address this, several variations of parallel designs have been
introduced to still enable larger improvements in compute performance.

Shared Memory Systems: Multicore and Manycore

One way to increase the amount of work performed per clock cycle is to clone single
cores multiple times on the chip [Gaster et al,, 2011]. Two different kinds of design for
parallel processors have evolved in the past years [Hwu et al., 2008]. The multicore
(CPU) direction basically seeks to maintain the execution speed of sequential programs
while moving into multiple cores (currently typically 2 to 16). In contrast, the manycore
(GPU) direction focuses more on the execution throughput of parallel applications with
thousands of cores. At the time of this writing, the peak double precision floating-point
calculation throughput differs between manycore GPUs and multicore CPUs by about
one order of magnitude. Currently, GPUs also have approximately six times the memory
bandwidth of CPUs, which is particularly important in visualization as many typical
applications are memory-bound (i.e., their speed is limited by data fetches from graphics
memory).

The gap in floating-point performance stems from differences in the fundamental design
philosophies of the two types of processors (Fig. 2.8). The design of a CPU is optimized
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Figure 2.8: Schematic illustration of relative transistor expenditure. (a) The GPU is specialized
for compute-intense, highly parallel computation. This means that more transistors are em-
ployed for data processing (b) rather than for data caching and flow control (based on NVIDIA
Corporation [2013a, figure 7]).

for sequential code performance. It makes use of sophisticated control logic to allow
instructions from a single thread to execute in parallel or even out of their sequential
order while maintaining the appearance of sequential execution. Additionally, large
cache memories are provided to reduce the instruction and data access latencies of
complex applications, with neither control logic nor cache memories contributing to the
peak calculation speed. As the goal of this design is the minimization of the execution
latency of a single thread, it is commonly denoted as latency-oriented design [Kirk and
Hwu, 2012].

In contrast, the application software for manycore architectures like GPUs is expected
to be designed with a large number of parallel threads. Instructions are pipelined to
leverage instruction-level parallelism within a single thread, as well as thread-level
parallelism extensively through simultaneous hardware multithreading. However,
unlike CPU cores, instructions are not issued out of order, and there is no branch
prediction or speculative execution. A warp scheduler periodically selects a warp that
is ready to execute its next instruction, if possible. Full utilization is achieved when
all warp schedulers always have some instruction to issue for some warp. This allows
to hide latency stemming from memory accesses or register dependencies (i.e., some
of the input operands are written by some previous instruction(s) whose execution
has not completed yet) [NVIDIA Corporation, 2013a, chapter 4]. To reduce memory
access latency, small cache memories are employed such that multiple threads that
access the same memory data do not all need to access graphics memory directly. This
design style is commonly referred to as throughput-oriented design since it strives to
maximize the total execution throughput of a large number of threads while allowing
individual threads to take a potentially much longer time to execute [Kirk and Hwu,
2012].
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Thread Hierarchy Level Grid c Thread Block \ c Warp c Thread
Processor Hierarchy Level GPU cSM c Processor
Memory Hierarchy Level Global Memory + Shared Memory + Private Memory

Execution Synchronization Asynchronous ‘ Synchronous

Table 2.3: Organization and properties of GPU hierarchy levels.

As a result, for a low degree of parallelism, CPUs with lower operation latencies can
achieve much higher performance than GPUs. However, for a high degree of parallelism,
GPUs with higher execution throughput can achieve much higher performance than
CPUs. As larger programs typically feature a combination of the two degrees of
parallelism, typically a combination of the two is used. This work particularly focuses
on GPUs, which in many cases are a good match for compute-intense visualization
approaches.

GPUs as Generic Manycore Processors

Graphics chips started as fixed-function graphics processors but became increasingly
programmable and computationally powerful. During the 90s, graphics processors
moved beyond being just simple rasterizers by adding functionality in hardware that
previously had to be done in software on the CPU. From 2000-2005, pixel and vertex
shaders were introduced and iteratively improved with respect to both speed and
flexibility. With these, looping and complex floating point math could be implemented,
and certain operations, like the modifications of image-arrays, took significantly less
time to execute on the GPU than on the CPU. Stream processors for generic applications
have been introduced around 2006. Using GPUs for general-purpose scientific and
engineering applications is commonly referred to as GPGPU.

Modern GPUs are organized as an array of Streaming Multiprocessors (SMs) (Fig. 2.8(a)).
Each SM has a number of streaming processors that share control logic and instruction
cache (Tab. 2.3). Memory is also organized hierarchically [NVIDIA Corporation, 2013a,
chapter 2.3]. On the lowest level, each processor can access private local memory. In
hardware, this typically maps to registers and provides storage space in the order of
hundreds of bytes. Each SM further features so-called shared memory (tens of kilobytes)
and all streaming processors have direct access to the same global memory (hundreds
of megabytes to several gigabytes). Shared memory resides on-chip and is very fast,
with access speeds comparable to registers [NVIDIA Corporation, 2013a]. In contrast,
global memory is located off-chip. It provides high bandwidth, yet exhibits relatively
high latency. However, for massively parallel applications, the higher bandwidth makes
up for the longer latency. In addition to these types of memory that can be directly
controlled via reads and writes by the processors, there are two read-only memory
spaces accessible by all threads: the constant and texture memory spaces. In contrast
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to private and shared memory, the global, constant, and texture memory spaces are
persistent across kernel launches by the same application. Texture memory further
offers different addressing and filtering modes for a number of data formats. Note that
depending on the implementation, these distinctions between memory spaces can be
merely logical and not directly represented in hardware (i.e., constant memory uses the
same on-chip memory as shared memory).

A task that the programmer wants to carry out on the GPU is implemented in a so-called
kernel. As specified by the programmer, threads executing the kernel are grouped into
thread blocks that are executed on the same SM. These thread blocks are organized in a
so-called grid (Tab. 2.3). For execution, the respective blocks of the grid are enumerated
and distributed on-the-fly to SMs with available execution capacity. Multiple thread
blocks can execute concurrently on one SM. As thread blocks terminate, new blocks are
launched on the vacated SMs [NVIDIA Corporation, 2013a, chapter 4]. For execution, a
SM partitions thread blocks into warps, which are then scheduled individually. Note
that the SIMT divergence issue discussed above occurs only within a warp, i.e., different
warps execute independently regardless of whether they are executing common or
disjoint code paths.

Distributed Memory Systems

There are numerous examples of distributed systems used in everyday life in a variety
of applications, like the internet or peer-to-peer networks [Ghosh, 2007]. In the context
of this work, we focus on compute clusters that have proven to be a good match for
interactive visualization. A compute cluster is a set of loosely or tightly connected
computers that work together so that in many respects they can be viewed as a single
system. Homogeneous clusters consist of many of the same or similar types of machines
while heterogeneous systems can offer a wide variation of nodes. The components of a
cluster are usually connected to each other through fast network interconnects, with
each node running its own instance of an operating system. All machines also typically
share a common file system.

Apart from clusters, there is a variety of other approaches with a more distributed
nature [Mattson et al., 1996; Adiga et al., 2002]. With the original idea being the linking
of multiple supercomputers over wide area networks like the internet, grid computing
has evolved into a general way to share heterogeneous resources, like compute time,
storage, application servers, information services, or even scientific instruments [Foster
and Kesselman, 2003]. Cloud computing can be seen as a specialized form of distributed
computing that offers compute resources as a service, with the underlying hardware
and software being largely abstracted from the consumer [Erl et al., 2013].
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Programming Tools and APIs

The emergence of various novel parallel hardware architectures resulted in significantly
improved efforts toward parallel program development. This has been referred to as
the concurrency revolution [Sutter and Larus, 2005]. Numerous programming tools
and APIs have been proposed to make parallelism accessible to the programmer, and
alleviate issues such as load imbalance. Tools and frameworks are typically targeted at
a specific kind of architecture.

Multi and Manycore Systems. OpenMP is a widely used API that supports multi-
platform shared memory multiprocessing programming on a wide range of multi-
processors and operating systems [OpenMP Architecture Review Board, 2011]. A
programmer specifies directives (commands) and pragmas (hints) about a loop to the
OpenMP compiler. With these, compilers generate parallel code that is executed with
the OpenMP runtime transparently managing parallel threads and resources. While
OpenMP was originally designed for CPU execution, a variation called OpenACC has
been proposed for programming homogeneous and heterogeneous computing systems
in general [OpenACC, 2013].

CUDA is an extension to the C programming language designed to take advantage
of NVIDIA GPUs [NVIDIA Corporation, 2013a]. Similar to CUDA, OpenCL has been
developed primarily for massively parallel processors. In contrast to CUDA, OpenCL
is a standardized programming model, and applications developed in OpenCL can
potentially run on any device if an implementation exists [Stone et al.,, 2010]. However,
an applications typically needs to be modified manually to achieve high performance
for a new processor [Kirk and Hwu, 2012]. Addressing this drawback, RapidMind can
automatically divide computations among the available processing cores, if they are
expressed as a sequence of functions applied to arrays [Christadler and Weinberg, 2010].
Similar to RapidMind, HMPP is a tool to enable device-transparent programming and
execution of applications on machine level featuring multi-core processors [Dolbeau
et al., 2007]. Both these frameworks base on a runtime system that provides a uniform
execution model, scheduling policies and automated data transfers, as discussed by
Augonnet et al. [2009] among others.

As discussed in Sec. 2.1.2, warp divergence can be a problem with GPUs, and several
(mostly application-specific) approaches have been proposed to alleviate this issue.
For tackling termination divergence, persistent threads have been introduced by Aila
and Laine [2009] to deal with strongly varying iteration counts in ray tracing. Just
enough threads are launched to occupy the hardware, and thread blocks are allowed
to fetch new tasks from a task pool in global memory. Tzeng et al. [2010] also employ
persistent threads to address irregular parallel work in their GPU task management
system. In a GPU-based path tracer, Novak et al. [2010] dynamically generate new rays
for terminated rays, thus allowing for a higher ray throughput and result in improved
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image quality overall. Han and Abdelrahman [2011] target the problem of divergent
branches within loops and propose a software solution that only executes one branch
per loop iteration, and discuss different strategies for selecting the active branch. Zhang
et al. [2010] handle conditional branches by runtime data remapping between threads
using a CPU-GPU pipelining scheme. Besides branches within loops, their approach
can also handle differing loop iteration counts. Another line of research concerns itself
with finding hardware solutions for the divergence problem. For ray tracing, Aila and
Karras [2010] focus on handling incoherent rays efficiently. Meng et al. [2010] tackle
cache-hit-induced divergence in memory access latency by utilizing several indepen-
dent scheduling entities that allow divergent branch paths to interleave their execution.
Fung et al. [2007] dynamically regroup threads into new warps when discovering a
divergent branch. Other approaches for branch divergence include compiler-generated
priority [Lorie and Strong, 1984], hardware stacks [Woop et al., 2005], task serializa-
tion [Moy and Lindholm, 2005], regrouping [Cervini, 2005], and micro-kernels [Steffen
and Zambreno, 2010].

Distributed Computing. The most widely used approach today for communication
between cluster nodes is MPI (Message Passing Interface) [Gropp et al., 1994]. As nodes
in a cluster do not share memory, all data sharing and interaction is done through
explicit message passing. Multiple MPI compute threads can reside on the same physical
device and/or across an arbitrary number of devices. As a modern compute node
typically features multi-/manycore processors, MPI is frequently used in a hybrid
fashion in combination with OpenMP or CUDA for instance. MPI is a specification
which has been implemented in systems such as MPICH and Open MPI [Prabhu, 2010].
A popular predecessor that has largely by supplemented by MPI was PVM (Parallel
Virtual Machine) [Beguelin et al., 1991]. Besides these very generic techniques, there are
frameworks focusing on a certain type of computing, like BOINC [Anderson, 2004] on
large-scale grid batch computing. Additionally, many application-specific environments
for user transparent computation on clusters have been proposed, especially in the area
of image and multimedia processing [Baker et al., 1993; Li et al., 2002; Park et al., 2009;
Seinstra et al., 2007].

One of the simplest and most common approaches of scheduling algorithms is to assign
open task items to the first idle compute device. However, in many problem scenarios the
differences of the heterogeneous processors in performance and bandwidth need to be
taken into account to achieve full efficiency. Such resource-aware distributed scheduling
strategies for large-scale grid/cluster systems were proposed by Viswanathan et al.
[2007]. Teresco et al. [2005] worked on a distributed system in which every CPU requests
task items from the scheduler which are sized according to the device’s measured
performance score. Wang et al. [2008] proposed a simple task scheduling algorithm
for single machine CPU-GPU environments that not just uses the first idle compute
device but chooses the fastest device from all idling devices. There has also been a lot of
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research on application-specific load balancing strategies. Zhou et al. [2009] propose a
multi-GPU scheduling technique based on work stealing to support scalable rendering.
In order to allow a seamless integration of load balancing techniques into an application,
object-oriented load balancing libraries and frameworks were developed [Devine et al.,
2000; Stankovic and Zhang, 2002].

The data dependencies of distributed parallel applications can be described by a graph
structure (e.g., [Diekmann, 1998]). Here, it is assumed that the vertices of this graph
represent data elements and that the edges denote the data dependencies. A distribution
of the vertices across the available compute devices is achieved by partitioning the
graph. Based on this graph, schedulers have been proposed that employ the critical
path method, which was originally developed for scheduling project activities [Kelley
and Walker, 1959]. An early application of the critical path scheduling to computation
considering resource and processor constraints was presented by Lloyd [1982]. Kwok
and Ahmad [1996] discuss the mapping of a task graph to multiprocessors.

2.2 Visualization Fundamentals

The goal of visualization is to create images that convey salient information about the
underlying data and processes. This data can come from medicine, earth and space
sciences, fluid flow and biology among many others areas [Johnson and Hansen, 2004].
Visualization has been used throughout history to provide a visual representation that
explains complex phenomena, like the famous illustration of spatio-temporal movement
of Napoleon’s troops (cf. [Friendly, 2002]). However, the modern, compute-driven field
of visualization was created with the advent of scientific computing and the use of
computer graphics for depicting computational data. Sensor devices from medical
scanners to satellites have also driven the field. The visualization of such simulated or
measured spatial data is commonly referred to as scientific visualization. In contrast,
information visualization works with data that typically lacks a (predominant) spatial
domain, like data bases, social networks or text collections [Johnson and Hansen, 2004].
In this work, we focus on scientific visualization, and in particular the area of volume
rendering.

2.2.1 Visualization Fundamentals and Characteristics

The concept of a visualization pipeline to describe the process of visualizing data was
first proposed by Haber and McNabb [1990] (Fig. 2.9). Raw data, the input to the vi-
sualization pipeline, is obtained during data acquisition from different sources, like
numerical simulations, databases, or sensors. Subsequently, filtering transforms raw
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Figure 2.9: The visualization pipeline (based on [Weiskopf, 2006, chapter 1]).
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data into visualization data with operations like smoothing, denoising, resampling,
segmentation, classification, and selection. Next, mapping creates graphical primitives
from visualization data, the so-called renderable representation. Attributes of a render-
able representation may include geometry, time, color, surface texture, and opacity.
Finally, rendering generates an observable representation that is intended to be used for
analysis by a human, like (sequences of) images.

Traditionally, interactive post-processing is used for the visualization process. This
means that data is generated or collected beforehand and stored on permanent storage.
In this setup, visualization is completely decoupled from data acquisition and the data
is loaded on demand into the visualization pipeline. Another approach is computational
steering [Mulder et al., 1999], also known as interactive steering, with a tight connection
between data acquisition and the visualization process. This implies that parameters
for both, visualization and simulation, can be tweaked interactively, and is particularly
popular with numerical simulations.

Throughout all stages of the pipeline, there are many degrees of freedom that have
a critical influence on the outcome. Due to this large parameter space and the fact
that oftentimes there is no detailed knowledge of the data beforehand, it is almost
impossible to optimally adjust the parameters of the pipeline a priori. User interaction
is therefore crucial to explore the large parameter space of simulation and visualization.
Productive interactivity requires fast response times—in the order of tens to hundreds
of milliseconds—to requested changes, e.g., a fast image update for changed camera
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configurations. As a consequence, the need for interactive visualization triggers the
need for efficient algorithms and techniques.

Overall, while individual use cases might differ, scientific visualization applications
typically share a number of characteristic properties.

Interactivity At least the rendering step of the visualization pipeline is typically
required to be interactive, i.e., the computation of results is required to be fast
with low latency.

Coherence In many cases, visualization routines on spatially or temporally adjacent
data execute mostly similar computational steps and deliver largely similar results.

Large Data In scientific visualization, the data often consists of a large number of
elements (currently typically in the order of millions to billions of elements).
This poses challenges not only with respect to data handling in general, but also
concerning the creation of an adequate mapping that is able to deliver expressive
representations.

Data Parallelism Data parallelism is typical for most visualization problems [More-
land, 2013], e.g., the stages Filtering, Mapping and Rendering in the visualization
pipeline potentially execute the same tasks for each incoming data element. In
contrast, task parallelism is typically not enough to achieve the high degree of
parallelism required for massively parallel systems. For instance, networks of
process objects in the Visualization Toolkit [Avila, 2010] can reach a certain size
with tasks that may be executed independently [Schroeder et al., 1998], but this
is commonly by far not enough to occupy the thousands of cores of a GPU.

GPUs Today’s visualization techniques commonly make use of one or multiple GPUs.
With their SIMT architecture (Sec. 2.1.1), they are well-suited for the data par-
allelism inherent in typical visualization applications, and they are also able to
deliver the high memory bandwidth that is required for data-intense computa-
tions.

2.2.2 Volume Rendering

Volume rendering is a core technique in scientific visualization that describes a set of
techniques used to display a 2D projection from a 3D volume. It is not only applied
to medical data from MRT or CT, but also to simulation and measurement data from
numerous areas in engineering and science. A volume can be seen as a map that
assigns a scalar value to positions in 3D Euclidean space. This data is typically given
by means of discretely sampled data points, which necessitates the reconstruction of a
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continuous representation during rendering. For uniform data, this is most commonly
accomplished by means of trilinear interpolation, that is directly supported by modern
GPUs.

Optical Models

A volume can be visualized directly by evaluating an optical model which describes
how it emits, reflects, scatters, absorbs and occludes light. The most important optical
models for direct volume rendering are described as follows (according to Max [1995]):

Absorption only The volume consist of cold, perfectly black particles that absorb,
but do not emit or scatter any light.

Emission only The volume consists of particles that emit, but do not absorb or scatter
light.

Absorption plus emission Particles emit light, and occlude, i.e., absorb, incoming
light. This is by far the most commonly used model in scientific visualization.

Scattering and shading/shadowing On top of absorption and/or emission, this model
additionally includes the scattering of light. Scattered light can either be assumed
to come undisturbed from a source, or it can be shadowed by particles in between
the light and spatial position under consideration.

Multiple scattering This model extends single scattering to incident light that has
already been scattered by multiple particles before it is directed toward the eye.

Note that this model is based on geometrical optics. It neglects effects such as diffraction,
interference, polarization, etc.

The Volume Rendering Integral

In direct volume visualization, the light propagation is computed by integrating light
interaction effects along viewing rays based on the emission-absorption model. For
this, the change of radiance L at distance ¢ from the eye can be formulated as

dL(t) = g(t) - k(t)L(t) dt. (2.12)

The amount of emitted light at ¢ is given by the source term ¢(t). The extinction coeffi-
cient x(t) defines how much of the incoming light is attenuated by the participating
medium.
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Integrating Equation 2.12 for a viewing ray starting at ¢ = 0 and ending at ¢ = D yields
the volume rendering integral [Max, 1995]:

D D D
_ (¢ dt _ (Y dt
L(D) = L(0)e 4" " [ atoye [rOa 4y (2.13)

Y 0
absorption term

emission term

With L(0) giving the radiance at the start of the ray (¢ = 0), the accumulated radiance
leaving the volume is provided by L(D). Using the definition of optical transparency,

t2
- [ w(t')dt
T(ty,t2)=e " ; (2.19)

the volume render integral (Eq. 2.13) can be rewritten as
D
L(D) = L(0)T(0, D) + f g()T(t, D) dt. (2.15)
0

During rendering, Eq. 2.15 is typically solved numerically, i.e., it is approximated by a
Riemann sum. In the simplest and most popular case, n equidistant segments of length
0 are used. Variable (adaptive) step sizes §(i) are also commonly employed. With this,
the approximation of optical transparency (Eq. 2.14) between segment 7 at ¢; = Z§'=o 5(7)
and the end point at ¢ = D yields

n—1
- % R(ty)s() ok ,
T(t“ D) e k=i r = H e_"i(tk)(s(z), (2.16)
k=1

With the transparency of the ith segment given by T'(i) = e (%)) | the volume
rendering integral from Eq. 2.15 can be approximated as follows with n segments (g(+)
provides non-premultiplied color):

L(D) ~ L(O)t{jT(z’) + Tg; (T(@)g(z) ﬁ T(j)) . (2.17)

j=i+l

Raycasting is widely considered to be the most direct numerical method for evaluating
the (discretized) volume rendering integral. In essence, raycasting shoots a single ray
from the eye through the pixel’s center into the volume, and integrates the optical prop-
erties obtained from the encountered volume densities along the ray. Transparency is
typically provided by means of the transfer function lookup « (%), which is independent
of segment length 6(t). Thus, 7°(7) is computed as follows:

T(i) = w(a(i),5(i)) =1 - (1 - (i), (2.18)
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Classification Direct Volume Rendering Indirect Volume Rendering
Image-space Raycasting [Levoy, 1990a] Raycasting Isosurfaces
(Backward Mapping) [Parker et al., 1998]
Object-space Texture Mapping [Kriiger and Wester- | Marching Cubes

(Forward Mapping) | mann, 2003], Splatting [Westover, 1991] | [Lorensen and Cline, 1987]

Table 2.4: Classical techniques of different classes of volume rendering approaches.

with w(a(i),d(i)) being the opacity correction operator. Similar to transparency, the
source term ¢(i) is also determined by means of a transfer function lookup ¢(7) that
typically represents an RGB color. Eq. 2.17 can be implemented with a simple compute
kernel that is executed for each ray (Alg. 3).

Algorithm 3 Simple front-to-back raycasting kernel implementation. C' denotes the
final RGB color for a pixel (akin to radiance L).
1: function VOLUMETRIC RAYCASTING KERNEL

2: C < (0,0,0) > One channel for red, green and blue
3: T<1 > Initially no radiance is absorbed.
4: fori=0—- N-1do > step along ray (forming a new segment)
5: T(i)«<1- (1 - Oz(i))é(z) [> compute opacity of segment
6: C <~ C+T(i)e(i) > composit color
7: T<T-(1-T(i)) > accumulate opacities

Classification of Volume Rendering Approaches

Volume rendering techniques are popularly classified into direct and indirect as well as
in image and object space techniques (Tab. 2.4). Indirect volume rendering methods are
typically implemented by making use of isosurfaces, i.e., surfaces that represent points
of constant value. Isosurfaces can either be rendered using raycasting or explicitly be
extracted in the form of a mesh by techniques like Marching Cubes (MC). In contrast,
direct volume rendering utilizes the discretized volume rendering integral (Eq. 2.17) in
different variations. While object-space techniques compute the contribution of each
element in the volume individually, image-order techniques sample the 2D image plane
and determine the radiance leaving the volume for each pixel. Different techniques for
all four combinations are briefly outlined in the following.

Direct Object-space Techniques The contribution of each grid cell is computed
and then projected onto the image plane. Texture-based slicing by Westermann and
Ertl [1998] blends object-space-aligned stacks of layers on the graphics card. As an
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extension using capabilities of more recent graphics hardware, texture-based rendering
via 3D textures slices the texture block in back-to-front order with planes oriented
parallel to the view plane [Kriiger and Westermann, 2003]. Shear-warp factorization
transforms the volume to sheared object space by translation and resampling, and
projects this representation to an intermediate image that is warped to produce the final
image [Lacroute and Levoy, 1994]. Projected tetrahedra renders partially transparent
polygons based on the projected profile of tetrahedral cells [Shirley and Tuchman,
1990; Rottger et al., 2000]. Splatting accumulates data points by projecting flat disc-like
kernels for each voxel to the image plane [Westover, 1991]. Many adjustments have
been proposed to improve both the quality and speed of splatting (e.g., [Mueller et al.,
1999; Vega-Higuera et al., 2005]). Cell-projection techniques project volume elements
to the image plane one after the other in their order of their visibility. Unfortunately,
due to this, non-convex cells cannot be handled, and a correct sorting even of convex
cells is not always possible due to visibility cycles [Kraus and Ertl, 2001].

Indirect Object-space Techniques: Isosurface Extraction One of the classical
visualization techniques is Marching Cubes (MC) due to Lorensen and Cline [1987]. It
generates a triangle mesh from volume data given on uniform grids. Numerous variants
have been proposed for improving different properties of the original algorithm [Kobbelt
et al., 2001; Theisel, 2002; Dietrich et al., 2009; Bommes et al., 2012]. For instance, dual
MC generates quad patches that tend to eliminate the common issue of poorly shaped
triangles of the MC isosurfaces [Nielson, 2004]. MC adaptations were also proposed
for tetrahedral meshes [Zhou et al., 1997; Anderson et al.,, 2005], and supporting adap-
tive reconstruction [Grosso and Ertl, 1998; Westermann et al., 1999]. For isosurface
extraction from higher-order data, quad mesh generation techniques [Remacle et al.,
2012], contouring [Wiley et al., 2003], and approximate isocontouring [Pagot et al.,
2011] have been proposed. Other approaches use Voronoi diagrams [Dey and Levine,
2007], advancing front techniques [Schreiner et al., 2006], and meshing from point
clouds [Scheidegger et al., 2005]. Some isosurface extraction techniques provide dis-
joint meshes as a result. Several approaches have been proposed for combining these,
including sewing [Kobbelt and Botsch, 2000], volumetric methods [Curless and Levoy,
1996], zipping overlapping meshes [Turk and Levoy, 1994], laser range images from
different views [Rocchini et al., 2004], and polygon triangulation [Held, 2000].

Indirect Image-space Techniques: Isosurface Rendering For isosurface visual-
ization, point-based [Rosenthal and Linsen, 2006; Meyer et al., 2007] and raycasting-
based [Stegmaier et al., 2005] visualization approaches have been presented. Point-based
techniques generate a point cloud representation of the isosurface which is then vi-
sualized using point-based rendering techniques, most prominently splatting [Pfister
et al,, 2000]. Raycasting-based techniques trace a ray until the isosurface is hit, typically
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employing intersection refinement to determine a more exact position on the isosurface.
Different techniques have been proposed for various areas of application. Sadlo et al.
[2011] presented a technique for rendering cell-based higher-order fields. Nelson et al.
[2011] proposed a raytracer for cut-surfaces. Knoll et al. [2009b] discuss the raycasting
of classical polynomials, while Gamito and Maddock [2007] render radial basis functions
from smoothed-particle hydrodynamics.

Direct Image-space Techniques: GPU Volumetric Raycasting Nowadays, GPU-
based raycasting is the state-of-the art technique for interactive volume rendering [Rezk-
Salama et al., 2009]. In typical scenarios, the computation of each ray is completely
independent, and rays are largely coherent, which makes raycasting well-suited for
the SIMT architecture of GPUs. An early implementation of GPU raycasting required
multiple passes due to hardware restrictions [Kriiger and Westermann, 2003]. With more
flexible GPU programming capabilities, this has been superseded by single-pass volume
raycasting [Hadwiger et al,, 2005; Stegmaier et al., 2005]. To initiate the rendering,
the bounding box of the volume is rendered as proxy geometry. The object space
coordinates of the bounding box vertices are interpolated for each render primitive
and are then used in each covered fragment to set up a ray. The individual rays are
sampled equidistantly in the fragment shader until they leave the bounding box. The
volumetric data is stored in a 3D texture and accessed using hardware-accelerated
trilinear interpolation. Subsequently, the transfer function is applied, which is typically
implemented by means of another texture lookup. Illumination is often employed to
improve spatial perception, typically using the gradient of the volume at the respective
sampling position for this purpose [Hadwiger et al., 2008; Rezk-Salama et al., 2009].
The gradient is either obtained on-the-fly, e.g., by applying central differences, or by a
lookup to a precomputed texture.

Advanced Volume Rendering Techniques

Raycasting for direct volume rendering is one of the fundamental techniques for this
work, and scientific visualization in general. In the following, optimized variants of
this technique are outlined, focusing on different aspects.

Object-space Acceleration Many diverse approaches exist for accelerating volume
rendering. A classical method is early ray termination, which stops the integration of
a ray when the opacity exceeds a certain threshold [Levoy, 1990c]. Another classical
technique is empty space skipping. For this, proximity clouds employ a distance trans-
form of the object to accelerate the rays in regions far from object boundaries [Cohen
and Sheffer, 1994; Zuiderveld et al., 1992]. Distance transform values are stored in
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place of density values in these empty regions, and therefore storage is not increased.
Freund and Sloan [1997] additionally utilize the fact that medical imaging scanners only
produce twelve bit intensity values for each voxel, and use the remaining four bits to
store adaptive step sizes in occupied regions. Instead of using a dedicated data structure,
Klein et al. [2005] utilize the spatial coherence of consecutively rendered images to
determine the initial sampling point of a ray on the GPU. Additionally, numerous
approaches employing hierarchical data structures like octrees were presented (e.g.,
Levoy [1990a]). Non-leaf nodes usually store an entropy metric of its children to be able
to traverse occupied space faster when the entropy is low. Employed metrics popularly
include standard deviation [Danskin and Hanrahan, 1992] and the minimum-maximum
range of values [Wilhelms and Van Gelder, 1992]. Guthe and Strasser [2001] store
a measure of the error that is committed when its children are not rendered in each
non-leaf node of the octree. Crassin et al. [2009] use a dynamic sparse octree approach
to exploit occlusion information. Furthermore, adaptive techniques have been proposed
that take entropy into account. Object-space importance sampling techniques typically
rely on precomputed data structures (e.g., LOD volumes [Ljung et al., 2006]). Viola et al.
[2004] present an importance-driven automatic focus and context display technique.

Image-space Acceleration Levoy [1990b] proposed to not necessarily cast one ray
per pixel for volumetric raycasting, but to use one retrieved value for multiple pixels.
Kratz et al. [2011] use an error estimator from the field of finite element methods
for adaptive screen-space sampling. For unstructured volumes, Callahan and Silva
[2009] propose to employ the combination of a low resolution image of the whole
dataset and a high resolution image of the boundary geometry. Qu et al. [2000] and
Shen and Johnson [1994] (among others) exploit frame coherency by reutilizing pixel
values from the previous frame by warping the positions to the current frame. Bolin
and Meyer [1995] propose an adaptive raytracing approach that utilizes perception-
based metrics in frequency space. While for interactive volumetric raycasting typically
undersampling schemes are employed that send maximally one ray per pixel, Monte
Carlo rendering techniques for photorealistic rendering employ oversampling to reduce
noise. Overbeck et al. [2009] adaptively distribute Monte Carlo samples to reduce the
variance in wavelet space. Farrugia and Péroche [2004] present a perceptually based
approach for progressive rendering for global illumination. Bolin and Meyer [1998]
employ perceptually based adaptive sampling based on an extended image procession
vision model. Ramasubramanian et al. [1999] utilize a physical error metric with global
illumination algorithms.

View-Dependent Representations Image-based rendering infers new images from
existing ones, e.g., with changed lighting or camera configuration [Shum and Kang,
1999]. A number of techniques has been proposed to construct such different represen-
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tations from multiple views, like view-dependent texture maps [Debevec et al., 1996],
warping [Mark et al., 1997; McMillan and Bishop, 1995], light fields [Levoy and Hanra-
han, 1996] or Lumigraphs [Gortler et al., 1996]. Rezk-Salama et al. [2008] employ depth
layers to generate light field representations from volumetric data. Other techniques
use multiple images to synthesize new surface-based views of volume data (e.g., [Choi
and Shin, 1998; Chen et al.,, 2001]). Such techniques allow the adaptation of color and
lighting parameters [He et al.,, 1996], or transfer functions [Wu and Qu, 2007].

Shade et al. [1998] introduced Layered Depth Images (LDIs) that represent one camera
view with multiple pixels along each line of sight. Since then, multi-layered represen-
tations have been popularized in commercial rendering software to simulate complex
materials like skin on synthetic objects [Donner and Jensen, 2005]. In volume rendering,
layer-based representations have been used to defer operations such as lighting and
volume classification [Ropinski et al., 2008; Rautek et al., 2007]. Such representations
have also proven effective to cache results [Luke and Hansen, 2002; LaMar and Pascucci,
2003] or certain volumetric properties along view rays [Ma et al., 1991] that can be later
reused for efficient transfer function exploration. Also for deferred transfer function
exploration, Tikhonova et al. [2010a] convert a small number of volume renderings to
a multi-layered image representation. In another work, Tikhonova et al. [2010b] use an
intermediate volume data representation which encodes the distribution of samples
along each ray. Shareef et al. [2006] use image-based modeling to render unstructured
grids based on parallel sampling rays and 2D texture slicing.

Distributed Volume Rendering Most of the existing systems for distributed volume
rendering fit into the sort-first or sort-last category according to the classification due
to Molnar et al. [1994]. In the sort-first category, different sections of the screen are
rendered in parallel by different nodes. In the sort-last category, data is split between the
nodes, and each node renders its own portion. For sort-last approaches, a compositing
step combining each node’s rendering is additionally required to generate a final image.
Wylie et al. [2001] demonstrated that sort-last volume rendering techniques are able to
handle very large datasets by statically distributing these datasets among the nodes. The
predominant hierarchical compositing schemes that are used in sort-last architectures
aiming at rendering large data sets are the Direct Send approach by Neumann [1993]
and the Binary-Swap algorithm due to Ma et al. [1993]. Palmer et al. [1997] discussed
how to efficiently exploit all levels of the deep memory hierarchy of a cluster system.
Using the clusters that compute the simulation also for volume rendering has been
investigated by Peterka et al. [2008b].

There has been a lot of work in the past years on data structures that can be used to
address dynamic load balancing issues in distributed volume rendering systems. Wang
et al. [2004] proposed a hierarchical space-filling curve for that purpose. Lee et al. [2005]
employ a combination of octree and BSP tree to both distribute workload and skip
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empty regions. Miiller et al. [2006] and Marchesin et al. [2006], among others, employ a
k-d tree to dynamically reorganize the data distribution in a cluster. They demonstrated
that zooming on parts of the data sets critically impairs the balance of the load. To
achieve good load balancing, they dynamically adapt the k-d tree according to the
load of the previous frame. An approach to statically avoid significant load imbalance
has been proposed by Peterka et al. [2008a]. They generate more volume bricks than
there are devices and assign every brick to one device during initialization using a
round-robin scheme. Frank and Kaufman [2009] use data dependency information to
automate and improve load balanced volume distribution and ray-task scheduling. A
directed acyclic graph of bricks is employed and a cost function is evaluated to create a
load balanced network distribution.

Remote Rendering Remote rendering has been used for a multitude of different
applications, including complex visualization on mobile devices [Diepstraten et al.,
2004], cloud gaming (OnLive or Gaikai), protection of proprietary data [Koller et al.,
2004], in-situ visualization of time-varying volume data [Ma and Camp, 2000], and visu-
alization in medical applications [Engel et al., 2000]. The data transfer size is typically
reduced by employing lossy compression, e.g., by means of JPEG [Koller et al., 2004] or
MPEG [Herzog et al., 2008]. In more detail, Herzog et al. [2008] propose an approach to
couple global illumination rendering and MPEG compression for non-interactive 3D
animation rendering. To reduce latency in cloud gaming, Lee et al. [2014] propose to
produce speculative rendered frames of future possible outcomes on the server and
deliver them to the client in advance. A CUDA-based parallel entropy encoding method
targeted at remote rendering was presented by Lietsch and Marquardt [2007]. Pajak
et al. [2011] discuss efficient compression and streaming of frames rendered from a
dynamic 3D model. LOD techniques are frequently employed in this context to handle
excessive server load [Moreland et al., 2008; Koller et al., 2004].

Parallel Visualization Frameworks Scientific visualization has a long history of
using high performance parallel computing to handle large-scale data [Moreland, 2013;
Ament et al.,, 2012], and several architectures and frameworks have been introduced
that do not limit themselves to a single application but can be applied to a more generic
class of visualization problems. Haimes and Edwards [1997] discuss an early interactive
visualization system based on MPI combining visualization and parallel processing
environments for the analysis of engineering applications. Ellsworth et al. [2006]
describe a concurrent visualization pipeline for a supercomputing environment. Even
more generically, ParaView [Ahrens et al., 2005] provides a graphical user interface for
the creation and dynamic execution of visualization tasks.



CHAPTER

ANALYSIS OF TIME-DEPENDENT DATA

The analysis of time-dependent data is challenging, not only in terms of finding mean-
ingful representations, but also in the context of efficient data processing. This often
requires solving a number of different problems, eventually leading to comparatively
complex applications. However, this also means that there are numerous degrees of
freedom in the design phase of the algorithm. Utilizing this flexibility, the goal here
is to structure the overall approach such that it can be executed efficiently on parallel
hardware, optimally with the ability to execute the most compute-intense parts inde-
pendently from each other in parallel. Among others, one key question arising in this
context is what interaction possibilities can or should be provided to the user, and what
parts needs to be precomputed.

Sec. 3.1 A novel visualization approach for detecting and showing spatio-temporal
similarity in field data. It is structured from the ground up for good parallelization
PIOPEIties. ...ttt e [Frey et al., 2012b]

Sec. 3.2 A technique for reducing the particle numbers from molecular dynamics
simulations that is specially designed for the hierarchical parallel architecture of
A GPU. [Frey et al., 2011]
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3.1 Parallel Design of a Temporal Similarity Visual-
ization Technique

) Structure

(2)

Two-dimensional grids of signals, so-called time-dependent field data, are a common
representation in large parts of science and engineering. Detecting and exploring
spatio-temporal similarity or patterns in this data may help to detect new correlations.
On the level of individual signals, similarity matrices have been a popular tool for
the examination of temporal similarity for many years. This representation is capable
to depict the self-similarity of one signal or the cross-similarity of two signals. The
similarity between the different states in time for signals f; and f; is shown as a
dense gray level 2D plot in which both abscissa and ordinate represent the same time
interval (Fig. 3.1(b)). Dark values represent high similarity, and accordingly, similar
processes represent similar sequences of states and appear as dark lines in these plots.
While similarity matrices primarily provide a visual representation, they also allow the
extraction of certain structures. In this project, similar sequences of states are extracted
by means of so called similarity lines (colored lines in Fig. 3.1(b)). These are then put
into spatial context and finally visualized using volume rendering supported by further
annotations (Fig. 3.1(a)).

From an algorithm design point of view, the requirement for global similarity analysis
inherently introduces dependencies that cannot be avoided completely. However, an
adverse dependency structure is one of the main factors hindering parallel scaling
by forcing frequent waiting, synchronization, and data transfers among others. The
extraction of similarity information using similarity matrices is by far the most compute-
intense part, and therefore needs to be carefully designed for independent parallel
computation in this project. In contrast, the subsequent usage of this information to
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(left) and Hot Room A (right) data sets. for the selected cluster connection in (a).

Figure 3.1: (a) Clusters of space-time similarity are depicted in blue, red, and green. Similarity
between cluster masters (spheres) is depicted by thickness of their links (tubes). These can be
interactively selected (green). (b) Their normalized signals f; and fs are then used to determine
and visualize their similarity by means of a similarity matrix.

generate clusters of similarity across signals exhibits complex interdependencies, but is
cheap to compute in comparison.

Dependencies Q
Minimize the dependencies between task items to reduce both synchro- 2
nization overhead and load imbalance.

High-Cost Dependency Minimization @
Keep the dependencies within and between costly tasks as low as possible, 2
and instead swap more complex dependency relations to cheaper tasks 5
whenever possible.

Another goal is to generate enough work to fully harness highly parallel computation
devices, but to keep the ratio of induced synchronization overhead low at the same time.
For this, task items are chosen to reach the granularity of a single spatial data element
(i.e., signal) level in the early, costly stages of the procedure. Here, a finer grained
subdivision with single spatio-temporal points would induce redundant computation or
dependencies. Additionally, basic similarity extraction and visualization are decoupled
to achieve a separation of interactive and non-interactive parts of the algorithm.
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Figure 3.2: Partitioning of the similarity extraction into tasks one to four (based on this, tasks
five to eight generate a similarity visualization (Fig. 3.3)). O(-) depicts the number of task items.
Variables s and ¢ stand for the number of spatial elements and time steps, respectively.
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Figure 3.3: Partitioning of the spatio-temporal similarity visualization into tasks five to eight.
This is based on the extracted similarity information from tasks one to four (Fig. 3.2). c represents
the number of clusters and 7 denotes the number of pixels in the rendering.

Granularity Q( )
Optimize the granularity to achieve the most efficient ratio of computa- (2)
tion to communication. The finer the granularity, the bigger the potential
for parallelism and hence speed-up, but also the larger the overhead for
synchronization and communication.

2 Y7

Execution Frequencies @
Partition the program structure into different frequencies of execution,

e.g., seperate preprocessing from interaction-capable parts.
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Figure 3.4: Similarity matrix (black ~ similar, white ~ different) and (multicolored) lines. Red
graphs (left and bottom of the matrix) show the smoothed signals f; and fo of the test functions
sin(x) and sin(0.01-22 +0.1-z), respectively. Blue graphs (right and top) depict the normalized
versions f; and fo used for similarity matrix computation.

3.1.1 Parallel Structure

Our approach to reveal temporal similarity in field data is broken down into separate
tasks. The expensive computations necessary to extract the similarity information
are partitioned into the parallelization-friendly tasks one to four (Strat. 6, High-Cost
Dependency Minimization). This cost-aware splitting also divides the system into a batch
part and a part that allows for interactive exploration (Strat. 8, Execution Frequencies)
(Figs. 3.2 and 3.3). Here, our discussion mainly focuses on computational aspects. Please
refer to the respective paper for more details and a closer evaluation of the visualization
properties [Frey et al., 2012b].

Task 1 Signal Preprocessing Signals are preprocessed individually to make them
directly comparable to each other. For this, we first reduce noise using triangular
smoothing. Second, the signals are normalized with respect to homological persis-
tence [Edelsbrunner et al., 2000; Reininghaus et al., 2011] of its local extrema (blue
and red signal in Fig. 3.1(b), respectively) to make them invariant toward offset and
amplitude. These operations can be carried out for all signals in parallel without any
inter-dependencies.

Task 2 Similarity Matrices Similarity matrices are generated by comparing all
states of signal f; to all states of signal f5. For every signal of a data set, we generate
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one self-similiarity matrix as well as two cross-similarity matrices (each consisting
of scalar entries), one with its bottom neighbor and one with its top neighbor. For
parallelization, independent operations can be as small as the similarity computation of
any two points of the signal(s) in space-time. However, here, one task item is mapped
to the generation of a whole similarity matrix to avoid unnecessary overhead (Strat. 7,
Granularity).

Task 3 Similarity Lines Similar sequences of states can be geometrically extracted
from similarity matrices. These are denoted as similarity lines (Figs. 3.1(b), 3.4(b)).
They directly represent important characteristics regarding the temporal variation of
the underlying signals, e.g., the slope of similarity lines shows the temporal scale of
similar processes (or the “ratio of their frequencies”). As similarity lines often intersect,
contours as obtained by the traditional isoline extraction technique Marching Squares
(MS) tend to form “islands” instead of the desired long intersecting lines (Fig. 3.5(b)).
Our modified version introduces transition nodes (Fig. 3.5(a), gray) and provides an
additional set of MS cases to handle them. A node becomes a transition node when both
its two horizontal (or vertical) neighbors have an opposite sign (e.g., both are negative
and the considered node is positive), and when no other transition nodes are adjacent.
The introduction of these transition nodes introduces dependencies between pixels.
However, this does not matter for parallelization as, like in Task 2, the granularity of
task items is on the level of whole similarity matrices.

Task 4 Filtering Similarity lines are filtered, as shown in Fig. 3.1(b), to select certain
similarity characteristics of interest according to recurrence quantification analysis
(RQA) [Zbilut and Webber, 1992; Marwan et al., 2007]. Each line can be processed in
parallel without having to consider any dependencies. We found two criteria to be
particularly useful in our experiments. First, the length of a similarity line relates to
the duration of the respective similar process. Second, the slope reflects the respective
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Figure 3.6: (a) Visualizing self-
similarity directly and (b) via clus-
ters for the von Karman data set.
Thick lines connect regions with
similar frequency (defined by spin
and Spax), while thin lines connect
regions that are not as closely re-
lated (top right: the lines for the
blue and the orange cluster are fil-
tered out for similarity determina-
tion here and are only shown for
demonstration purposes). S S

(a) Self-similarity (b) Similarity clusters

relative time scale of a similar process. For instance in Fig. 3.4(b), the dashed line has a
high slope close to (1 1,21), because the frequency of f; is much higher there than
that of fy. Close to (t12,%22) the slope is approximately 7/4, which means that the
frequencies are similar.

Task 5 Clustering Using the similarity information generated so far, we aggregate
space-time voxels to regions of similar time variation. As a heuristic, the number of lines
present after filtering at a given time step is used as an indicator for similarity. Fig. 3.1(a)
shows the space-time voxels exceeding this similarity threshold with respect to their
self-similarity matrix. With the generated cross-similarity matrices, each space-time
voxel also has similarity information for its neighbors. This allows a simple region-
growing approach to cluster different areas of similarity (blue, orange and green volumes
in Fig. 3.6(b)). Separating the structures using clustering helps the visualization and
enables further analysis techniques. While the clustering step features many inherent
dependencies, it is relatively cheap to compute, even serially, as it mostly relies on the
previously computed similarity information.

Task 6 Cluster Masters The relation between the clusters can provide valuable
insight. For efficient cluster comparison, a space-time voxel is determined to be the
representative for its cluster (the so-called master, depicted as sphere in Fig. 3.6(b)).
The cluster master is simply identified as the space-time voxel that is most strongly
connected to its six neighbors, according to the same criteria that is also used for
clustering in Task 5.
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Task 7 Cluster Comparison The cross-similarity matrix between pairs of cluster
masters is computed to provide a measure for the similarity of clusters. As a heuristic,
we used the length of the longest similarity line in the respective matrix, i.e., the
duration of the longest common process. The result is then visualized via the width
of the cluster-connecting line (e.g., tubes in Fig. 3.6(b)). Cluster-connecting lines can
be selected by the user (e.g., green line in Fig. 3.1(a)) for a detailed investigation of
the similarity relation by means of the cross-similarity matrix (Fig. 3.1(b)). The filter
criteria on which the cluster comparison is based can be adjusted interactively. In
Fig. 3.6(b) for instance, the thick link between the left and the right cluster shows strong
temporal similarity (with respect to frequency) as their processes are basically mirrored
horizontally. In contrast to this, the two links to the middle cluster are thin because the
frequency of the signals differs.

Task 8 Space-Time Volume Rendering The time-dependent fields in space-time
representation are visualized using a CUDA-based volume raycaster, combined with
OpenGL geometry to draw the links between clusters as well as the domain outlines
(Fig. 3.1(a)). The data can be explored interactively, e.g., by changing the camera
position, modifying the clustering parameters, or shifting the fields along the time axis
and clipping them at the front plane at times ¢, and ¢, to reveal the respective state of
the field (see also the dashed end of time indicators t,,,x in Fig. 3.1(a)).

3.1.2 Results

The approach is evaluated by means of measured and simulated data sets (Table 3.1) on
a machine equipped with a Core i7 with 2.66 GHz using OpenMP, 8 GB of main memory,
and an NVIDIA GTX580 with 3 GB of memory. The space-time visualization part runs at
interactive rates in our implementation (Task 8). Tasks 5-7 exhibit computation times in
the order of a couple of seconds on the CPU, which could be brought to interactive rates
as well with a more tuned implementation (e.g., utilizing the GPU). However, extracting

Table 3.1: Data sets used in the evaluation. Timings are given for connectivity extraction
(Tasks 1-4) on a cluster featuring eight nodes, each equipped with an eight core Intel Xeon
CPU running at 2.4GHz. The ocean temperature data set is discussed in [Frey et al., 2012b].

Name Width x Height Timesteps Timing

von Karman Vel. Mag. 301 x 101 800 4 Mins
Hot Room A Temp. 101 x 101 1600 8 Mins
Hot Room A Vel. Mag. 101 x 101 1600 7 Mins
Hot Room B Temp. 101 x 101 1600 8 Mins

Ocean Temp. 360 x 180 1826 89 Mins
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(a) Temperature in Hot Room A (left) and Hot Room B (b) Similarity matrix for green
(right). line in (a)

Figure 3.7: Cross-comparison between temperature development in Hot Room A and Hot Room
B. In (a), the von Karman Vortex Street sets in much later in A than in B. B further exhibits two
interruptions of temporal similarity, resulting in an additional cluster (orange). (b) Both, the
time frame of the cluster in A (red label) as well as the two interruptions in B (blue and purple)
also show in the cross-similarity matrix of the respective masters.

the similarity information required for the detection of self-similarity and clustering is
expensive (Tasks 1-4). Yet, these computations can be carried out independently from
each other and distributed across a cluster (timings in Table 3.1).

The Hot Room data set results from a time-dependent 2D simulation of air flow within
a closed container, driven by buoyant forces imposed by a heated bottom plate and
a cooled top plate. To provoke transient aperiodic flow, the container exhibits two
barriers. Two variants of this data set are used for evaluation here. They only differ in
the size of the barrier at the bottom wall: variant “Hot Room A” has a square obstacle,
whereas “Hot Room B” features a quadrangular obstacle of double height. Both data
sets include velocity and temperature. The data sets consist of 1600 timesteps, but we
skip the first 800 in our analysis to focus on the interesting effects between time steps
800 and 1600 (Fig. 3.7).

For the temperature fields, the difference of the shape of the obstacle at the bottom
wall results in a significant change in the time frame in which recurrent processes
occur (Fig. 3.7(a)). Most prominently, data set A features only two clusters of sufficient
size, compared to seven in B. It can also be seen that the recurrent processes in B start
earlier (front-most clusters (1) and (3) in (a) as well as their similarity lines in (b)). The
cross-similarity lines show that the processes run at approximately the same frequency.
The temporal disruption of clusters (3), (4) and (5) as well as the temporal offsets of the
clusters also appear in the cross-similarity lines (note that the masters of clusters (3), (4)
and (5) are virtually identical). The thickness of the cluster-connecting lines indicates
that there is high similarity between clusters (1) from A and (3), (4), and (5) from B.
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Figure 3.8: Cross-comparison between
temperature (left) and velocity magnitude
(right) of Hot Room A. The cluster connect-
ing lines show that two major and one mi-
nor clusters of the velocity magnitude are
similar to the major temperature cluster,
while one velocity cluster (orange) substan-
tially differs.

This means that despite all differences between the two data sets, the spatial points
right of the horizontal obstacles in both data sets exhibit similar variation, however, at
different points in time.

Comparing velocity magnitude against temperature, the velocity magnitude splits into
three regions while there is only one large cluster for temperature (Fig. 3.8). The
thickness of the connecting lines shows that the behavior of the large temperature
cluster is similar to the bottom and top clusters in the velocity data, but not to the
middle cluster. This visualizes that the middle cluster exhibits twice the frequency (as
in Fig. 3.6).

3.1.3 Directions for Future Work

A simple way to accelerate the implementation significantly would be to move the sim-
ilarity matrix-related tasks to the GPU. Further evaluation of the visual representation
is also required, particularly including the comparison with other temporal feature
detection approaches as well as a more detailed analysis with a larger range of data sets.
Additionally, the approach can be extended to not only handle similarity lines but also
similarity structures. The method could further be applied to data along trajectories in
vector fields to also account for the Lagrangian frame. Finally, the presented approach
breaks down the similarity detection to single signals or signal pairs, such that they can
be handled computationally efficiently by standard 2D similarity matrices. However,
similarities could be detected without any conversion directly in high dimensional
space (6D for time-dependent 2D fields, 8D for time-dependent 3D volumes). This
similarity extraction scheme would allow to identify more generic correlations.
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3.2 Reduction of Point Data Sets

Cost (3)

) Granularity
Structure (7)

()

Dependencies

)

Molecular dynamics is a widely used simulation technique to investigate material
properties and structural changes under external forces. Like in temporal similarity
visualization (Section 3.1), the increasing spatial and temporal extent (millions of
particles and thousands of time steps) of the simulation domain poses a particular
challenge for the visualization of the underlying processes. Reduction of these results
is both important from a data handling perspective, and for improving the occlusion
problem from a visualization perspective as exemplified in Fig. 3.9(a).

In this project, the key idea is to replace points by a smaller set of representatives
(so-called sites) with a technique building upon K-means [Duda and Hart, 1973] and
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CCVD [Balzer et al., 2009] (Fig. 3.9). Here, a group of points is represented by a site that
is located at their average position (Fig. 3.9(b) and (c)). The size of the group varies in a
user-defined capacity range. Starting from a random assignment of points to sites, two
sites exchange a point if it is farther from the site it is originally assigned to and the
capacity constraints are not violated. The exchange of points between sites proceeds in
an iterative process until convergence.

Data Representation
Reduce the amount of data that is required to carry out a computation.
This typically decreases data-induced cost like storage space and transfer
load, as well as visualization effort. @

3

Condense Representation 9
Decrease the data size with the goal to preserve its contained information '’
as far as possible. This can typically be applied to generic types of data @

and does not require manual selection or higher-level content-awareness.

Potentially, all sites need to exchange points with all other sites. However, most do
not exchange any points, but processing these superfluous cases alone would induce
significant cost. To determine beforehand some site pair comparisons with no impact,
we employ criteria on the basis of distances and recent activity.

Computation Steps
Reduce the computational steps to achieve a certain result by algorithmic
optimization. It is crucial to carry out the additional computations
required to achieve this in a cost-effective manner as well. @

3

Prune Steps Without Contribution
Prune operations that are known beforehand to have no influence on the
final result.

3

O

We utilize the hierarchical structure of a GPU and its execution characteristics for a
cost-efficient mapping of the point-swapping algorithm. Processing the swaps between
two sites in parallel needs to assure that no site is used twice to avoid conflicts. For
this purpose, sites are partitioned using a k-d tree, and a swapping network is created
for each site partition with the requirement that no site appears twice within one pass
and the goal of a minimum total amount of passes. By executing spatial partitions of
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(a) Path lines of particles

(c) LCCVD representatives for groups of (b) (d) Path lines of representatives

Figure 3.9: Reduction at the example of a molecular dynamics simulation data set featuring
81672 molecules over 600 time steps.

sites on the same SM by the threads of one warp, this is handled very efficiently by
exploiting the lockstep property, i.e., no explicit synchronization is required to ensure
that they are all in the same iteration.

Hardware Architecture .
Ys3)

Explicitly consider the hardware architecture and its characteristics for
optimizing an algorithm. 6

Hierarchy Characteristics
Adapt the algorithm to exploit the different characteristics present in
different levels of hierarchical hardware architectures.
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Figure 3.10: Task item sequencing (Strat. 16, Adaptive Granularity) and partitioning for reducing
dependencies (Strat. 15, Structure Hierarchically).

In our implementation, one task item is generated for each candidate site pair (Fig. 3.10(a)).
Task items have a complex dependency structure, that needs to be mapped efficiently

to the multi-level hardware architecture of a GPU. For this, the sites are spatially par-

titioned into sets of a certain size using a k-d tree (Fig. 3.14). This allows to restrict

swapping operations to groups of adjacent sites (Fig. 3.10(b)), i.e., each set can be pro-

cessed independently from the other sets on different SMs. This partitioning needs

to be varied, still grouping nearby sites, such that all sites are able to at least once

exchange points with all sites in their proximity. Swapping with more distant sites

occurs indirectly by successively handing over points from site to site.

Structure Hierarchically @
Partition the task items into dependency groups that can be processed :
independently. This can be accomplished by dividing the spatial or 5
computational domain.

Several task items are further merged in order to reduce the dependencies that need to
be handled, yet still leaving enough parallel work to fully occupy a GPU (Fig. 3.10(b),
sequential). In detail, we consolidate them such that there are exactly as many task
items as threads in a warp (32 or 64 for modern GPUs). This allows a SM to process
such a consolidated task item in parallel without having to consider any dependency
relations.

Adaptive Granularity @

Consolidate task items to reduce interdependencies between task items
(within the same or across different tasks), i.e., by doing an explicit
serialization. This can significantly increase the effort for dealing with
dependencies, but also decreases the degree of parallelism.
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Figure 3.11: Two-dimensional point data set represented by sites using LCCVD. Sites are depicted
by black circles while points are shown as colored dots. Different colors depict that points
belong to different sites. No constraints and CCVD do not represent the density faithfully due to
a largely varying number of representatives for a certain number of points (a) or representatives
in inadequate locations (b). These issues can be avoided with LCCVD (c)-(d).

3.2.1 Loose Capacity-constrained Voronoi Diagrams

The goal of Loose Capacity-constrained Voronoi Diagrams (LCCVD) is to drastically
reduce the amount of points very quickly using a GPU-friendly algorithm, still preserv-
ing the basic structure of the data set (Strat. 9, Data Representation). Loose capacity
constraints means that the number of points assigned to each site is not fixed, but may
reside within an interval [Cpin, Crnaz |- In the following, this is also given in terms of the
capacity looseness [ which translates to the interval by ¢,ninjmaes = max(m - (1£1),1),
with m denoting the average number of points per site. A setting that has proven useful
during our experiments is [ = 0.2, i.e., the capacity interval allows a 20% deviation from
m. Accordingly, LCCVD can be seen as a flexible hybrid between the CCVD-based
method and the K-means approach.

The advantages of LCCVD over its originating techniques CCVD [Balzer et al., 2009] and
K-means clustering [Duda and Hart, 1973] are demonstrated exemplarily in Fig. 3.11.
Applying strict capacity constraints as in CCVD may result in sites being located
inappropriately in-between accumulations of points, making them poor representatives
for their sets of associated points. K-means clustering does not share this problem, but
instead does not allow to draw any conclusions about the underlying point density. This
is emphasized by the closeup images where the top groups of points are represented
by either too few or too many sites. Figs. 3.11(c) and (d) show that these issues can be
avoided with our LCCVD approach.
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Figure 3.12: Computation steps
and control flow of LCCVD.

3.2.2 Generating Representative Sites

Prior to the computation, the number of generated sites is calculated based on the desired
average number of points that should be represented by a site. The user-defined capacity
interval allows to span the whole range from the pure distance-based K-means approach
(Cmin = 0 and ¢4, = 00) to the strict capacity-constrained approach (C,nin = Cinaz)- Then,
points are initially assigned to sites (Fig. 3.12). Points are exchanged between sites until
convergence (i.e., no points are exchanged anymore, sites only move insignificantly,
or a certain time or iteration limit is reached). This is the most expensive part of the
algorithm, thus most optimization effort goes here. When it is acceptable to spend more
time on the computation to achieve better results, we further perform a step called
temporary ¢;,;, relaxation which temporarily ignores the minimum constraint to allow
an even better adaptation of sites to points (Fig. 3.11(d)). This is followed by another
point exchange phase. For time-dependent data sets, the whole procedure is performed
for each time step, using the results from the previous time step as initialization to
exploit coherency.

(A) Site Initialization

We use the input point set to determine the initial site positions. For static data sets (and
for the first step of a time-dependent series), sites are initially placed at the locations
of randomly chosen points. To fulfill its minimum capacity constraint, each site then
searches for the c,,;, nearest points that have not yet been assigned to another site.
The remaining points are then assigned to the closest site which has not yet reached
its maximum capacity constraint ¢,,,,. The necessary nearest-neighbor queries are
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Figure 3.13: Overview on the LCCVD parallel point exchange. Selected connections between
the three steps are indicated by dashed lines.

efficiently performed using a k-d tree, removing points which have been assigned to
sites, or sites which have reached c,,,,, respectively. For subsequent steps of a time-
dependent data set, the assignments of points to sites are passed on from the previous
time step, just updating the site positions using the mean position of all assigned points.

(B) Point Exchange

Sites are partitioned into groups for parallel processing (illustrated in Fig. 3.13(a)). This
partitioning is implemented by enumerating each site s such that its index ¢ gives its
respective leaf in a k-d tree of all sites S (Fig. 3.14), and then sorting them accordingly.
To determine its index ¢, we search for the enclosing k-d tree node of site s by traversing
the tree (starting from the root with ¢ = 0). Whenever we descend to the left child, 7
remains unchanged, whenever we descend to the right child, i is increased by P - 27"
where h denotes the level of the tree (h = 0 for the root node), and P stands for the
underlying set of points. The traversal is stopped as soon as we reach a node that
contains m = |P|/|S| points or less. Subsequently, sites are sorted with respect to i
using the in-place GPU radix sorting algorithm of Satish et al. [2009].

In order to avoid that sites always belong to the same group, we displace the k-d tree
splitting planes in each iteration by applying an offset. For the displacement directions,
we alternate between the main axial directions and the diagonal directions, while
the displacement magnitude for each site—according to our experiments—should be
roughly half the extent of the site group’s bounding box (as determined without any
displacements). Since it is impractical to displace the whole tree with all different group
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Figure 3.14: The partitioning of sites into
site groups using a k-d tree.

extents (i.e., the size of the respective leaves) along all directions, we consolidate similar
displacement magnitudes.

Instead of considering all pairs of sites within a group for point exchange, the set of
pairs is pruned (Strat. 12, Prune Steps Without Contribution) by excluding sites which
are guaranteed not to swap points Fig. 3.13(b)). For this, two criteria are used:

Bounding Sphere The distance between two sites is larger than the sum of the dis-
tances to their farthermost points. This means that all points are closer to the
site they are assigned to than to the other one.

Stability A pair of sites has not exchanged points the last time it was processed, and
the point assignment has not changed since for either of the sites.

The bounding sphere criterion is particularly beneficial when sites are roughly at their
final position but not yet stable. The stability criterion has a strong impact during the
final steps of the optimization when many sites have already reached stable positions.

While site groups are distributed over SMs, the swapping operations between sites
(within a group) are executed in parallel by each SM (Fig. 3.13(d)). This design was
chosen to optimally leverage the GPU architecture (Strat. 13, Hardware Architecture). For
each site group, a set of consolidated task items is considered, each of which consists of
some site exchange directives. In order to make use of the lockstep property of threads
belonging to the same warp, for each site group as many (consolidated) task items
are generated as there are threads of a warp (implying a 1-to-1 mapping of threads to
task items). As the lockstep property already provides an implicit synchronization of
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processing steps within a task item, it further only needs to be ensured that no site is
processed in more than one thread at a time (i.e., in the same step). To achieve this,
a swap network is generated that schedules which site pairs are to be processed in
parallel, and which are to be processed successively (Fig. 3.13(c)). It further maximizes
the utilization of threads by generating task items with approximately equal numbers
of sites.

In our GPU implementation, points are stored in an array with c,,,, elements or slots.
Slots are placeholders for points from the data set such that each site can have at most
Cmaz points. Some of these slots are free slots in the case that the number of points is
smaller than c,,,,. Free slots can be exchanged between two sites instead of points as
long as the minimum capacity constraint ¢,,;, for points is not violated. Initially, all
points are located at the beginning of the array while free slots are located at the end.
The free slot index indicates the slot from which no points are stored in the remaining
array. A site is able to trade free slots for points as long as the free slot index does not
point to the end of the array. When a point is exchanged for a free slot, the free slot is
stored in the former location of the point. These free slots form gaps between occupied
slots and are fixed the next time the algorithm iterates over the array: either the free
slot forming the gap is used to store a point of another site, or it is swapped internally
with the point just before the current free slot index. The free slot index is subsequently
decremented until it points to the first free slot.

(C) Temporary Minimum Constraint Relaxation

One problem from CCVD is partly inherited by our LCCVD approach: sites may
get positioned between adjacent point clouds (Fig. 3.11(c)), making this site a bad
representative. This is due to the minimum constraint c¢,,,;, which can prevent that
points are removed from sites between two such clouds. Points cannot be swapped
to another site either, since other points are even further away. We denote these
problematic sites bad sites in the following.

We found that temporarily relaxing the minimum constraint for bad sites largely resolves
this problem which is why we interpose an optional correction step after each exchange
phase (cf. Fig. 3.12). During this correction step, we perform the following substeps:

1. Identify bad sites: A site s is considered a bad site when it is at its minimum
capacity and its farthest point p is much closer to any other site Sypert |Sother —
pl/|s = p| < z. In our experiments across all our data sets, z = 0.85 proved to
reliably detect bad sites with only a small amount of false positives.

2. Assign points of bad site to closest sites: Release points to closer sites while
constantly updating the site position. While this may temporarily violate ¢,,;,
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for the bad site, the c,,,, constraint for the receptive sites remains intact. After
this step, the bad site only represents the points it is closest to.

3. Bad site takes on points from nearby sites: Identify the closest sites and
insert them into a priority queue based on their distance to the bad site. Take the
first site from the queue and—as long as its minimum constraint is not violated—
reassign points from it to the bad site in the order of proximity. Proceed with the
next site from the queue until the bad site has reached its minimum capacity.

We initiate this correction step after each exchange phase (cf. Fig. 3.12), but no more
than five times per time step (this proved to be a good tradeoff between speed and
quality). This avoids infinite loops since it is not always possible to resolve a bad site
without permanently violating ¢,,;,,. Overall, the temporary relaxation of the minimum
constraint allows to reduce the number of bad sites without losing the flexibility of
loose capacity constraints.

3.2.3 Evaluation

This section presents the evaluation of our approach in different scenarios. First, we
compare the performance of our method for computing strict CCVDs on the GPU
to the original CPU-based method by Balzer et al. [2009] to show the advantages of
our parallel algorithm. We then present LCCVD results, including comments from
application domain experts, for real-world data sets using 3D molecular dynamics
simulation and flow data. All measurements were done using a NVIDIA GTX 480 and
an Intel Core i7. The partitioning of sites into groups and the swapping algorithm
were implemented in CUDA using a block size of 128 threads and a group size of 128
sites. The remaining computational steps of LCCVD were executed on the CPU using
OpenMP. For visualization, MegaMol is used, a package tailored toward molecular
dynamics simulation using raycasting [Grottel et al., 2014].

CCVD of 2D Point Distributions

In their original work, Balzer et al. [2009] generated initial 2D point data sets by rejection
sampling of a given density function. Among these were a constant density functions
as well as p = e(-202°-209*) 4 () 2sin?(72) sin?(7y). Table 3.2 lists timings and quality
results computed by the metrics normalized radius o [Lagae and Dutré, 2008] which
should be around 0.75, and capacity error 6. [Balzer et al., 2009] which optimally should
be close to zero. Both metrics underline that our improved parallel algorithm does not
sacrifice the quality of the resulting site distributions.
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Sites Points Per Site Computation Time Normalized Radius «
Constant || Balzer et al. [2009] our Balzer et al. [2009] our
1024 4096 237.9s 129.7s 0.7628 0.7543
2048 4096 451.9s 152.3s 0.7481 0.7451
4096 4096 991.1s 175.6s 0.7470 0.7454
8192 4096 2413.3s 241.6s 0.7455 0.7588

16384 4096 6361.8s 525.7s 0.7367 0.7382
8192 8192 8319.1s | 1258.0s 0.7576 0.7588
24576 1500 6720.4s 125.3s 0.7072 0.7035
P H Computation Time H Capacity Error 0, ‘
1024 4096 214.6s 231.3s 0.00349 0.00346
2048 4096 421.9s 235.2s 0.00291 0.00318
4096 4096 876.6s 338.4s 0.00263 0.00304
8192 4096 1927.0s 542.4s 0.00245 0.00259
16384 4096 4911.7s 857.3s 0.00239 0.00246
8192 8192 6543.7s | 2836.5s 0.00204 0.00220
24576 1500 2734.5s 158.7s 0.00333 0.00327

Table 3.2: Computation times and quality metrics (see [Frey et al., 2011] for details) for varying
numbers of sites and points per site m using a constant and a non-constant two-dimensional
density function. Optimally, a = 0.75 and 6. = 0.

As expected, our parallel approach becomes more and more beneficial timing-wise
as the number of sites increases. It does not slow down as drastically as the original
implementation for large numbers of sites as the higher utilization of the GPU cushions
the increased computation costs. Naturally, for a small number of points per site m the
parallel nature of our approach shows its strength much more clearly, with speedups
of one to two orders of magnitude. For large m, speedup is hampered by the less
sophisticated selection of point swapping candidates, which is due to the requirements
of an efficient GPU implementation.

LCCVD of 3D Molecular Dynamics Data Sets

The effectiveness of our approach is demonstrated by means of a data set from particle
tracing for vector field visualization—Arnold-Beltrami-Childress (ABC, with A = V3,
B=v2,C=1andT = -8) shown in Fig. 3.15—and two molecular simulation data
sets: compressed argon surrounded by vacuum (Fig. 3.16), and two colliding liquid
droplets (methane and ethane) (Fig. 3.17). Refer to [Frey et al.,, 2011] for a more detailed
evaluation including expert feedback. Particle numbers and the amount of time steps
per data set are listed in Table 3.3. Visualizing sites instead of points has numerous
benefits apart from rendering speed and storage requirements. For example, Fig. 3.15(a)
illustrates the structure of the flow of the ABC data set. It can be seen that sites
move smoothly over time as long as there are no rapid, incoherent movements in the
data set. Fig. 3.15(c) shows that the density in different regions of the data set can be
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(a) Sites temporal lines I = 0.2, m = (b) Points, t =90 (c) Sites, m = 512, (d) Sites, m = 512,
8192, ¢t = (0,400) 1=0.2,t=90 random, £ = 90

Figure 3.15: Arnold-Beltrami-Childress flow. (a) Data set represented by a set of sites over
numerous time steps. (b) Full data set for a single time step t = 90. (c¢) Reduced version for t = 90
sites which represents m = 512 points on average. It fully preserves the basic structure and
allows better insight into the data set, e.g. the point density at the left is much lower than in
the middle or on the right. (d) Reduced version based on random sampling exhibits an irregular
structure that does not preserve densities and results in the loss of smaller features (e.g. thin
structures on the bottom left and top right indicated by arrows).

estimated much better with a set of site representatives than with rendering points
directly (Fig. 3.15(b)). It also demonstrates that the basic structure of the data set is
preserved even when using a drastically reduced amount of points. Random sampling
(Fig. 3.15(d)) does not preserve the data set structure well and results in the loss of many
small features.

Fig. 3.16 illustrates that a strict capacity constraint (/ = 0) potentially forces sites to
represent points from two or more dense clusters. This leads to sites floating in-between
clusters of points such that they are located where no associated points are (e.g. the
purple site on the left, or the green site on the right in Fig. 3.16(b)). Loosening the
capacity constraint using a value of [ = 0.2 and temporarily relaxing the minimum
constraint as described in Section 3.2.2 largely avoids these issues (see Fig. 3.16(c)).

However, constraints that are too loose may lead to an over- or underrepresentation of
point density, i.e., regions where a site either represents a too small or too big portion of
the data set. Fig. 3.17 demonstrates overrepresentation for the methane-ethane collision
data set with a very loose constraint of [ = 5 (Fig. 3.17(a)). Thus, when displaying
sites only, the surrounding of the droplets appears much more dense than it actually is.
This way, temporal lines generated with a very loose constraint (Fig. 3.17(b)) give the
impression of a much larger amount of points being spread (Fig. 3.17(d)).

These observations from the example data sets are underlined by our quality metric
assessing point coverage. Roughly speaking, it only operates on the sets of points
and sites without any additional information like point-to-site and assignments, and
determines how adequately the sites represent the point distribution (see [Frey et al.,
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(a) Overview with Sites, [ = 0.2, m = 500, ¢t = 70

(b) Closeup for [ = 0, m = 50 with inappropriate (c) Closeup for [ = 0.2, m = 50
sites highlighted

Figure 3.16: Argon in vacuum. Points belonging to the same site are shown with the same color.
(a) Overview over the reduced version. (b) Strict capacity constraints (1 = 0) force inappropriate
site locations between dense point groups, falsely creating the impression of occupied space.
(c) Loose constraints (1 = 0.2) largely remedy this issue.

2011] for details). For each data set, Table 3.3 lists both the quality ¢ and the asso-
ciated computation times while varying the capacity looseness [ from [ = 5 (almost
unconstrained) to [ = 0 (strictly constrained). For better comparability, we omitted
the temporary relaxation of the minimum constraint as described in Section 3.2.2 for
this test series. Across all data sets, the best results were obtained by applying a loose
capacity constraint of [ ~ 0.2 despite the variations due to different data sets or site
configurations; [ = 0.1 delivered nearly as good results and might be favorable if stricter
bounds are required. Note that a difference in the quality metric of 0.001 is equal
to the difference of a thousand points being completely covered or uncovered in a
data set of a million points. Smaller quality values thus either indicate poorly located
sites, or an inappropriate amount of sites covering a particular part of the data set.
As demonstrated in the examples, these cases typically occur in regions with a rapid
change in point density. In turn, we measure negligible differences for our example
data sets for regions of approximately constant density. Quality results for a statistical
sampling-based approach (provided for comparison) are typically around » 0.62.

The timing results in Table 3.3 underline that the computation time for LCCVD strongly
depends on the amount of points per site m. Here, the main reason for this is that
the GPU load decreases with a decreasing number of sites. For example, a GTX 480
features 15 SMs, each of which can execute two warps concurrently. As each warp
processes point swapping operations in groups of 128 sites, any number of sites below
15-2-128 = 3840 is theoretically not able to fully utilize the GPU. In order to hide
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Capacity Looseness [
1=50 [ 1=05 [ 1=03 [ 1=02 [ 1=01 ] 1=0

[ Argon in Vacu;;no, 2000000 points; 100dtime stepls, periodic ) ] Table 3.3: Performance of LCCVD for
4000 sites, m = points per site (random sampling: .61829 . .
02709 | 00549 | .00159 | .00006 | .86951 | .01683 different data sets, loose constraints /
11162.6s | 17157.7s | 16371.1s | 15289.4s | 14469.7s | 14028.0s and no ¢y, relaxation. The top rows
20000 sites, = 100 points per site (random sampling: .62090) depicts the best (meaning largest)
.03593 .00806 .00182 .86262 .00040 .02100 . i .
9005.7s | 74763 | 7374.2s | 73064s | 7012.6s | 6412.8s quality results in bold while the other
40000 sites, m = 50 points per site (random sampling: .62269) results are offset with respect to this
.04639 0.00957 .00183 .85439 .00073 .02050 f 1 The bott
9003.1s | 100383s | 10159.0s | 9986.1s | 9846.4s | 9572.3s relerence value. 1he bottom rows
Laser Ablation, 562500 points, 400 time steps, periodic ] give the computation times in sec-
1125 sites, m = 500 points per site (random sampling: .63140) onds. Additionally, quality results
00723 | 00234 | 0.00057 | .89489 | .00136 | .02374 for random sampling are provided

10545.7s 10066.8s 9419.4s 8753.3s 9460.2s 4559.7s
11250 sites, m = 50 points per site (random sampling: .63249)

.03189 .00698 .00190 .89575 .00026 .03704

4497.3s 4529.9s 3801.6s 4476.6s 4438.1s 5954.0s

Methane-Ethane Collision, 81672 points, 1782 time steps, periodic

for comparison.

3403 sites, m = 24 points per site (random sampling: .61536)
17199 .019660 .00369 .85184 .00149 .07216
1586.8s 1566.4s 1575.2s 1575.0s 1984.2s 1476.4s

1992 sites, m = 41 points per site (random sampling: .61234)
17063 .02065 .00299 .00007 .84938 .02328
1894.3s 1847.6s 2228.1s 1865.8s 1837.3s 1633.8s

ABC, 2097152 points, 400 time steps ]

16384 sites, m = 128 points per site (random sampling: .62235)
.02554 .01221 .00335 .85882 .00018 .01205
4002.4s 4195.0s 4178.9s 4135.7s 3974.0s 4217.0s

4096 sites, m = 512 points per site (random sampling: .62183)
06424 .02968 .01034 .00307 .86803 0.00810
6566.4s 8393.2s 8180.8s 7886.8s 7027.9s 5124.9s

latencies, the actual number of sites should even be significantly higher since warps
may be paused or stalled. In contrast to the number of points per site m, the capacity
looseness [ only has minor influence on the runtime.

Lastly, we measured the effect of the temporary c,,;, relaxation compared to the best
quality values listed in Table 3.3. In general, the technique is most beneficial for data
sets which induce the generation of bad sites—e.g., due to multiple groups of points of
varying density—as discussed in Section 3.2.2. This particularly applies to the argon
in vacuum data set (Fig. 3.16). In this scenario, the quality ¢ can approximately be
improved by 0.01 for m = 50. At the same time, however, the execution time is almost
tripled to 28409s. For data sets with significantly less bad sites, e.g., the laser ablation
data set, the quality improvement is only about .001 on average at roughly twice the
execution time. The coverage quality of the methane-ethane collision data set with 3403
and 1992 sites increases by .00153 and .00055 respectively, while the runtime roughly
doubles. Furthermore, we observed that the processing time as well as the quality value
achieved for a single time step is largely independent of whether it has been computed
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(¢) 1=0.2,m =23, t =400 d) 1 =0.2,m =23, ¢ = (0,400)

Figure 3.17: Collision of methane and ethane. (a)-(b) Very loose or no capacity constraints
lead to points that are highly overrepresented by sites which gives the false impression of a
substantial amount of particles in the outer regions. (c)-(d) A loose constraint of 1 = 0.2 yields a
much more genuine result.

as part of a time series or individually. In some cases, however, time steps which are
part of a series are processed significantly faster if the changes between two subsequent
time steps are rather small. In such a case, the site-to-point assignment of the new time
step only requires minor adjustments compared to the previous step of the series.

3.2.4 Directions for Further Research

In the current approach, there are only two levels of detail: points and sites. The
extension of LCCVD to build multi-level hierarchical structures from large point data
sets would be able to capture the density distribution adequately for a wide range of
usage scenarios, even when considering very large data sets. Furthermore, reducing
the amount of points not only in the spatial but also across the temporal dimension
would allow for smaller data sizes, and might further be helpful in the analysis of
time-dependent particle movement. Sites and temporal lines could further be enhanced
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such that they visually indicate the extent of the spatial distribution of the points they
represent. Temporal lines could additionally illustrate their coherency with respect to
their respective points, e.g., by means of opacity. Finally, more elaborate site partitioning
schemes could be investigated, e.g., based on connected components analysis.



CHAPTER

ACCELERATING RAYCASTING

Volume raycasting is a fundamental core technique in scientific visualization. While
it has some favorable properties, like great flexibility and good parallelization charac-
teristics, it is also computationally expensive. Accordingly, even when using high-end
GPUs, it is challenging to achieve interactivity for larger volumes on a single machine.
A simple approach to alleviate this issue is an overall reduction in quality, e.g., by
uniformly increasing the sampling distance. To ensure a more efficient resource usage,
rendering effort can also be focussed on regions with higher entropy. Furthermore,
even when used efficiently, the available processing capabilities might not suffice to
consistently meet certain criteria, like an acceptable frame rate for fluent interaction. In
such cases, dynamic approaches are required to adapt on-the-fly to runtime conditions.

Sec. 4.1 An adaptive raycasting scheme for volumes consisting of larger homogeneous
parts. An integrated acceleration data structure is employed to save texture
LoOKUPS. e [Frey and Ertl, 2009]

Sec. 4.2 A dynamic model to steer interactive progressive volume visualization to
minimize the total error of the shown frame. ............... [Frey et al., 2014]
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4.1 Exploit Volume Segmentation of Industrial CT Data

Computation
Steps (11)

Hardware
Architec-
ture (13)

Cost (3)

Visual inspection of CT data is widely employed not onlyQGr medical purposes, but also
for industrial material testing and quality assurance. However, raycasting of big volumes
only achieves low frame rates, thus impairing interactive exploration, even when using
modern high-end GPUs. To overcome this issue, we exploit the property that industrial
CT data typically exhibits large homogeneous regions which can be sampled sparsely
without introducing significant errors. In detail, homogeneous regions are detected by
means of volume segmentation, and rays use larger step sizes when passing through
them. The acceleration information derived from these detected homogeneous regions
is encoded in a data structure. It is accessed during rendering to check how far a ray
can be safely advanced to take its next sample.

Adaptive Computation
Adapt the invested computation in certain areas or regions with respect
to the underlying data, previous results, or intermediate outcomes.

3

O,

Volumetric raycasting is typically memory bound, i.e., the bottleneck are the texture
accesses required for sampling the volume, applying a transfer function, performing
lighting and so on. Additional data fetches are usually required for the acceleration
structure, which can have a significant negative impact on performance. For this
reason, we design our acceleration approach to cause no extra texture lookups, at the
cost of only marginal computational and storage overhead by integrating volume data
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and acceleration information in the same data structure. Despite this integration, the
graphics card’s hardware can still be used for trilinear interpolation of density values
without producing incorrect results, although care must be taken to not interpolate
between density and acceleration values.

Trade Loads
Substitute computational work for memory lookups and vice versa to
optimize the inherent trade-off with respect to the hardware architecture
and the program characteristics. @

13

4.1.1 Integrated Data Structure

Our data structure consists of three types of voxels (Fig. 4.1). Leap voxels give the
distance that the ray can safely skip without leaving the homogeneous region. Unmodi-
fied voxels simply keep their density value from the original volume. In any case, the
most significant bit of each voxel is reserved to classify its value either as density (0) or
leap value (1). Leap and guard voxels are situated in homogeneous regions, which we
generate by using a fully automatic variant of the 3D flood fill algorithm (any other
approach would work as well). We use the maximum range of values as segmentation
criterion, but also more specialized constraints could be applied. Guard voxels contain
the (average) density value of homogeneous regions and are situated in a layer around
the leap voxels. Their purpose is to detect the transition between unmodified and
leap voxels. The thickness of the layer depends on the standard sampling distance for
unmodified areas.

During raycasting, density values are sampled with trilinear interpolation, but inter-
polation between leaping and density values needs to be prevented as this would lead
to invalid results. It is thus critical for the proposed acceleration technique that no
leap voxel can be reached without switching to nearest neighbor interpolation. For this
purpose, guard values are located at the border of each homogeneous region, such that
it can be guaranteed that two consecutive samples of a ray entering the region exhibit
their very density value. This then triggers the switch.

To determine the values of leap voxels, we first determine the voxels at the boundary
of the respective homogeneous region. Next, these boundary voxels are organized in
a k-d tree, which allows to efficiently determine the value of leap voxels by a nearest
point request. As even these k-d tree nearest neighbor requests consume a significant
amount of pre-processing time, we employ an approximation that reuses a leap value
for a whole group of voxels around a so-called center voxel. Voxels that are classified as
leap voxels only become center voxels with a certain, user-defined probability. A radius
that is defined relative to the center voxel leap value determines its associated group
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Figure 4.1: Two rays passing
through a small region. The right
one leaps and the associate leap
value is displayed by the big circle
around the respective leap voxel.
Boundary voxels are merely used
to calculate leap values.

©® Nearest-

Unmodified Original Voxel Guard Voxel Leap Voxel
® fied Original Voxel - [l Guard Vox pvox @ Trilinear-

of voxels. For the voxels of the group, the actual leap values can be underestimated,
but must not be overestimated as this would allow a ray to leap out of the volume and
thus potentially skip critical data. Thus, leap values for group voxels are determined
by subtracting the leap value determined for the center voxel with the distance of
the considered group voxel to the center voxel. Should they be part of another voxel
group later on, the maximum of the already applied and the newly calculated leap
value is utilized. In general, the bigger the center voxel probability or the smaller the
relative radius is, the larger are the leap values but the more time is consumed by the
classification and especially the leap value determination.

4.1.2 Raycasting the Modified Volume

Slight modifications to a standard raycaster are required to enable it to use the integrated
data structure. First of all, it needs to correctly handle variable adaptive step sizes along
a ray. In particular, the opacity has to be corrected depending on the length of a
leap [Engel et al., 2004]. Furthermore, during raycasting, trilinear interpolation must
exclusively be used between density voxels as the result is invalid when leap voxels
are involved. Thus, it needs to be switched off virtually in some cases and a nearest
neighbor access scheme must be used instead. This is triggered with the help of the
guard voxels which enclose the leap voxels of their region. When passing through
these guards from the outside, the interpolation mode is switched to nearest neighbor.
Trilinear interpolation is switched back on again when first encountering a voxel that
does not belong to the current region. A region voxel is either a leap voxel as indicated
by the MSB or a guard voxel containing the regions average density (Figure 4.1). If a
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(a) Voxel Radius 0.25 (b) Voxel Radius 0.5 (c) Voxel Radius 1.0

Figure 4.2: Slices of the toy car dataset with different voxel radius settings. Blue and green
denote leap and density values, respectively, with color intensity indicating their magnitude.

sample is taken in nearest-neighbor interpolation mode, the sample value is classified
as leap or density value using the most significant bit. Accordingly, the raycaster needs
to switch between nearest-neighbor and trilinear interpolation on the fly. This can be
done efficiently by enabling trilinear interpolation per default and rounding texture
access coordinates in the case for nearest-neighbor access.

4.1.3 Results

We tested our approach on a machine equipped with an Intel Core2 Quad CPU 2.4 GHz,
4GB of RAM and a NVIDIA GeForce GTX 280. We use five data sets for evaluation: toy
car (559 x 1023 x 347), engine (256%) and ellipses (256?), as well as Zeiss512 (5123) and
Zeiss768 (7683). The toy car, engine and ellipses data sets are relatively noise free. The
materials have homogeneous values, and transitions can clearly be distinguished. In
contrast, Zeiss512 and Zeiss768 were reconstructed from noisy X-ray images without
any smoothing, filtering or post-processing applied.

We evaluated the performance of generating the acceleration structure at the example
of the Zeiss512 data set with varying segmentation ranges, group voxel radii and center
voxel probabilities in a series of 125 measurements. The classification of the voxels and
the determination of the leap values utilize four CPU cores with OpenMP, while the
region segmentation employs a single core only. Without the center voxel modification,
guard voxel classification takes five minutes and leap value determination one hour.
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Figure 4.3: Performance of acceler-
ated raycasting with respect to differ-
ent data sets and segmentation ranges.
Left: The increase of frame rate with
wider segmentation ranges varies de-
pending on the data set. Speedup
compared to standard raycaster noted.
Right: The speedup is directly linked
with the leap values determined for the
data set (given with respect to edge
length of a voxel).

When employing the modification, computation time is reduced significantly to approx-
imately 2.5 minutes and slightly varies with different group voxel radius and probability
settings as well as the segmentation range. Contrary to the voxel classification and leap
value determination, our exemplary region segmentation algorithm heavily depends on
the segmentation range and takes from 1.5 minutes for big segmentation ranges (few
regions) up to one hour for a tiny segmentation range (many regions).

The raycasting procedure was implemented using CUDA. The performance was mea-
sured for different region segmentation ranges with a fixed center voxel probability
0.25 as well as a fixed group voxel radius of 0.25. The impact of different group voxel
radii on the actual leap values is visualized in Fig. 4.2. Fig. 4.3 shows that significant
increases in performance can be achieved, even with the very noisy Zeiss data sets and
conservative segmentation settings. It can also be seen that the segmentation range
has a huge impact on the rendering performance as it influences how large regions
grow, which again affects the leap values. However, an increase of segmentation range
has a different effect for different volumes. This is due to the fact that the additional
range needed for a substantial increase of the regions might be much larger in one
data set than in another. For example, the engine data set consists naturally of very
homogeneous regions and distinct transitions, so that the segmentation does not vary
much with increasing value ranges and the maximum leap potential is almost reached
already with a low range. Likewise, the visible difference between two renderings of the
same volume with different range values depends on the data set. For the tested data
sets, the results of the standard raycaster and the accelerated raycaster exhibit virtually
no visual differences for small segmentation ranges. However, big ranges potentially
lead to significant differences depending on the data set (Figure 4.4).
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(a) Ellipse, 3% (b) Ellipse, 20% (c) Zeiss768, 3% (d) Zeiss768,20% (e) Engine, 3% (f) Engine, 20%

Figure 4.4: Comparison of renderings of data sets with a small and a big segmentation range.

4.1.4 Directions for Further Research

The integrated data structure only encodes unidirectional leap values. Taking the ray
direction into account here, e.g., by classifying it into different direction categories,
would allow to reduce the amount of samples required per ray even further. How-
ever, this would require implementing non-linear, or region-dependent leap values, as
one 16 bit variable then needs to store multiple leap values. A small lookup in GPU
shared memory could be utilized to execute this efficiently. The proposed acceleration
algorithm could also be combined with out-of-core approaches and distributed volume
rendering schemes to allow for the visualization of huge volumes exceeding the GPU’s
main memory. This would not require any changes to the data structure and only minor
modifications to the raycasting kernel.
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4.2 Spatio-Temporal Error-based Dynamic Progressive
Rendering for Interactive Visualization

Adaptability
(19)

Resources

(4)

Planning (21)

Despite all efforts toward optimization and growing computational power, volumetric
raycasting is still very time-consuming in many scenarios. To alleviate this issue and
still enable fluent interactive exploration in these cases, the computational cost can be
reduced during interaction at the cost of reducing the rendering quality.

Strategy 19 Adaptability ‘
Provide the flexibility to allow for dynamic adjustment to changing input. ”

In doing so, consider the trade-off between the flexibility and hand-tuned °
optimization for a fixed setup. Increased flexibility usually also results

in higher implementation complexity.

Dynamic Computations
Allow dynamic adaptations regarding the amount and order of compu-
tational work.

Static settings toward a certain image quality or frame rate during interaction are
popularly used, but are not flexible enough to avoid significant shortcomings regarding
user utility in a variety of situations. We propose a dynamic model, in which we
distinguish between spatial and temporal errors, that typically occur from insufficient
image-space sampling and response delays, respectively (Fig. 4.5). The correlation of
these errors is the basis of the dynamic steering of interrupt, show, and power, with sub-
frame granularity. While spatial and temporal error are computed using fast heuristics
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Figure 4.5: In interactive visualization, different sampling rate or frame settings are desirable
for different user actions (see Sec. 4.2.3 for our definition of sampling rate). In contrast to static
frame rate or sampling rate settings, our error-based approach adjusts dynamically to optimize
the utility for a user. The frame numbers are given with respect to the video used for automatic
evaluation in Sec. 4.2.4 (30 frames per second).

for on-the-fly usage, we also incorporate elaborate offline video quality analysis for
optimizing the error correlation.

Strategy 21 Planning

The planning process adjusts the spending of resources toward a certain
goal, i.e., minimal computation time. The inputs to the planning are
the identified key factors (Strat. 29, Performance Model) and the outputs
are adjustments to the system (Strat. 19, Adaptability). This procedure
is typically required to deliver good results at the cost of only minor
computational overhead.

4.2.1 Progressive Visualization Model

Our technique is based on an idealized model of interactive progressive visualization.
We derived it from a simple standard workstation setup with a single display. Its
extension to setups with more than one camera like stereo rendering, more than one
display like multiprojector configurations, or limited display throughput like in remote
rendering, is beyond the scope of this paper and remains for future work.

Our model (Fig. 4.6(a)) consists of three basic processes: dynamic change, progressive
renderer, and frame control. Dynamic change comprises the factors that alter a render
configuration over time, like user interaction or change due to time-varying data. In
this work, we address frame-based progressive visualization by means of a progressive
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Figure 4.6: (a) Progressive visualization model and (b) an illustrating example. Restart triggers
when to stop the refinement of the active frame (back buffer) and start computing a new one
instead with the current render configuration. Show determines when to copy the active frame to
the shown frame (front buffer) for display. Resources controls the share of the compute capacity
that is consumed by the progressive renderer.

renderer. This is by far the most widespread variant, an alternative being frameless
rendering techniques [Bishop et al.,, 1994; Dayal et al., 2005]. The progressive renderer
continually refines the active frame, which reflects an individual render configuration.
In this sense, a frame consists of both an (intermediate) rendering result of the active
frame together with the render configuration of the active frame.

The model follows the principle of double buffering (Fig. 4.6(b)). In progressive visu-
alization, a rendering result of the active frame is typically already shown while the
active frame is further refined in the background. In our model, this is triggered by the
show control function, which copies the active frame to the shown frame including the
respective render configuration. If the active frame changes through an issued restart
control function, i.e., the active frame is supplied with a new render configuration, the
progressive renderer immediately starts to render a new image of the active frame from
scratch. How fast the refinement advances can vary significantly, both depending
on the render configuration (e.g., data set or camera position) as well as the compute
resources allotted by the resources control function.

In total, our model requires three basic decisions: when to restart an active frame, when
to show it, and what share of resources to consume in the progressive renderer. These
three decisions are managed by frame control, using the available information about the
(previous states of the) interactive system, and based on the frame control parameters. In
these terms, (traditional) fixed-quality settings only consider the quality of the rendered
image of the active frame, while (traditional) fixed-frame-rate settings take only into
account the time stamp of the last rendered image. As long as there are no changes to
the render configuration, i.e., dynamic change is idle, the image is progressively refined
beyond the quality or frame rate limits.
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4.2.2 Error-Based Frame Control

The fixed limits in typical progressive visualization systems cannot adapt flexibly to
dynamic change due to camera rotations, transfer function changes, progressing time-
dependent data, etc. As exemplified in Fig. 4.5, this can lead to significant shortcomings
in compute-intense interactive visualization sessions. In this section, we introduce a
new dynamic frame control approach, based on sampling error and response delay, to
overcome these issues.

Motivation and Overview

The main goal of our error-based frame control is to minimize the perceived error in
the shown frame over the course of an interactive visualization session. The error
may additionally be balanced against the utilization of resources, which, however,
heavily depends on the hardware-related setting, involving several questions. For
instance, are the resources shared with other processes or users in the context of a
remote visualization server? How are priorities determined? Is power consumption
above a certain threshold problematic in the context of mobile devices? Under which
circumstances may this threshold be exceeded temporally? While our progressive
visualization model can cover these aspects, we use a simplified resource model in our
exemplary implementation—a detailed consideration of these questions for different
scenarios has to remain for future work.

In this paper, we focus on optimizing frame control by minimizing the error during
interaction. Hence, offline optimization, i.e., a posteriori error evaluation by means of
user studies or video quality metrics [Seshadrinathan and Bovik, 2010; Aydin et al., 2010;
Sheikh and Bovik, 2006] is not practicable. Instead, error minimization by frame control
has to take place online, during user interaction, and introduce very low overhead to
avoid delay. This means that neither costly quality evaluation algorithms nor constant
manual user adjustment are affordable during interactive visualization.

As a consequence, we split the quality evaluation into an online component (spatial
error estimator and temporal error estimator) and an offline component (frame control
parameters optimization). Akin to the notion of spatial and temporal errors from
video encoders and quality metrics (e.g., [Seshadrinathan and Bovik, 2010]), our online
component consists of a spatial error estimator and a temporal error estimator (Sec. 4.2.2),
both providing error estimates at very low overhead. These estimates are then used by
our heuristics to operate restart, show, and resources (Sec. 4.2.2). The heuristics itself is
steered by the frame control parameters, which are determined and optimized by means
of user adjustment, video quality analysis algorithms (Sec. 4.2.2), or user studies.
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Space-Time Error Estimation

In an interactive visualization system, the temporal error 7 shall reflect delayed response
to changes, while the spatial error ¢ reflects compromises in image quality. Naturally, ¢
and T are subject to a trade-off: while ¢ is typically monotonically decreasing with the
time spent for rendering, 7 is monotonically increasing. This partitioning into two types
of error is a good fit for the frame generation pipeline in interactive visualization. The
easiest way to implement the spatial error estimator would be to directly use the sampling
density (e.g., [Woolley et al., 2003]). However, we take a more expressive, yet slightly
more expensive content-aware approach that considers color variance (Sec. 4.2.3). The
temporal error estimator can be derived directly from the difference between subsequent
images, or indirectly by measures operating on subsequent render configurations. For
instance, a simple indirect approach would be to project a precomputed set of vertices
surrounding a geometric model to the screen, and then determine the largest difference
to the previous projection [Woolley et al., 2003]. However, among other issues, this
approach would ignore the degree of detail in the data. In contrast, we use a direct
approach and assess the error analogously to the spatial error estimator directly from
the images (Sec. 4.2.3). Inherently, this considers the spatial complexity of the data set
and allows, e.g., to account for render configurations that are rich in detail by lowering
the frame rate.

Control Heuristics

The temporal and spatial errors determined by the error estimators are used to control
restart, show, and resources. For this, we employ the following heuristics. Restart strives
to achieve the best-possible result for the current active frame with respect to errors in
time 7 and errors in space <. This is based on the active frame and does not consider
the shown frame. For show, both the errors of the current shown frame as well as those
of the active frame are taken into account. The rationale behind this is that the frame
control parameters are used to determine which combination of temporal and spatial
error gives the lower overall error. For resources, as good settings highly depend on
the use case, no clear, objective metric exists to balance the power or computation
time consumed by the progressive renderer against the quality of the output. Here,
we utilize the spatial error of the active frame to determine a maximum spatial error
that is acceptable during interaction. In case the progressive renderer is capable of
overachieving this value, resource usage can be reduced.

While errors could be related directly (e.g., [Woolley et al., 2003]), more flexible ap-
proaches are required to introduce a degree of freedom that allows the consideration of
advanced aspects in dynamic frame control, like user preferences (Sec. 4.2.4). At the
same time, parameters should be intuitively adjustable for a user and enable efficient
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automatic optimization. To achieve these goals, we introduce the frame control param-
eters consisting of a single parameter for each restart, show, and resources, denoted
as p, v, x € [0,1], respectively. These parameters are defined by the user or by the
automatic optimization process. The frame control can be represented by a function ¢
as follows, with multiple actions possible (note that restart automatically triggers show
in our heuristics):

restart,  if u(p) -7 - 20
¢ =1 show, ifpu(d)-(rf=17)+ (st =¢f) 20, (4.1)

resources if x > ¢t v 5% > 0X

where ¢ and ¢; denote the spatial error of the active and the shown frame at time ¢,
respectively, 7/ and 7;° the temporal error of the active and the shown frame, and p(+)
maps the parameters from their original range [0, 1] to [0, 00): u(s) = tan(s-7/2), &}
gives the idle time of the resource at time ¢, and 46X denotes the respective threshold.
The rationale behind the triggering of restart, show, and resources is discussed in detail
next.

Restart. The temporal error 7 of the active frame is weighted with p against the spatial
error ¢/, thus defining the desired trade-off between these two quantities. Note that 7;*
continuously increases with ¢, while ¢/ is continuously decreasing.

Show. Similar to restart, we weight temporal against spatial error, but this time with
respect to the differences between the active frame and the shown frame. Practically, the
goal is to determine when the decrease in temporal error compensates for the higher
spatial error. For all possible settings of ¥, the active frame is shown as soon as ¢ > ¢,
because (7 — 77) should always be nonnegative for reasonable implementations.

Resources. In our simple implementation, the resource usage is binary, i.e., either we
are progressively refining a frame or idling. Here, the parameter y defines a static target
error value. If the spatial error estimation ¢/ falls below X during interaction, we pause
rendering until the frame is restarted. We also limit the pause time ;' to a maximum
value 6% (we used 6X = 1 s), to ensure that the full (spatial) sampling rate is achieved
eventually.

For the purpose of comparison, we also implement an alternative frame control ¢ for
the commonly used fixed image quality w settings and fixed render time per frame
settings.

: (4.2)

— restart, if (wi>WVI26)ATE>0
show, if (Wf>WvE§>d%)ATe=0.

where w gives the current sampling rate, and 0f denotes the time since the rendering
of the active frame has been started. Practically, this means that for fixed settings, the
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progressive renderer proceeds until the target value is reached, and the shown frame
is iteratively updated toward the full quality beyond these restrictions only when the
render configuration is not modified (i.e., the temporal error 7¢ is zero).

Parameter Optimization

The goal of the parameter optimization is to determine frame control parameters such
that frame control delivers the best result according to a metric or user assessment. We
distinguish between the following two basic variants: user evaluation and automatic
evaluation by means of video quality metrics. In the former, a user simply assesses how
well settings for p, ¥, and x are suited for the scenarios he works on (i.e., a data set,
a task to accomplish, etc.) during an interactive session, and chooses the parameters
accordingly. In the latter, automatic evaluation makes use of interaction logs recorded
during previous interactive visualization sessions. Each interaction log defines a render
configuration sequence, that along with different hardware settings define scenarios. Each
scenario is rendered with a range of different frame control parameters and evaluated by
means of a video quality metric. The output of the quality evaluation finally provides the
basis for parameter evaluation to determine the best setting over all scenarios (Fig. 4.7).
The respective components are implemented as follows.

(a) Scenarios. In our case, each scenario features a specific data set that is explored by
means of a sequence of render configurations. We consider the exploration of different
volumes in the following. A scenario may include computationally weaker systems,
which might be simulated by virtually slowing down the test machine through different
hardware settings. Optimally, scenarios should be representative in terms of the data
sets, camera positioning, and so on, with respect to the target field of application.

(b) Parameter Tuples. Numerous parameter setting tuples (p, ¢, x) are considered for
evaluation. Previous experience with the system or explicit pre-evaluation can help
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narrow down the considered range of parameters, thus pruning clearly undesirable
settings early for a more efficient evaluation.

(c) Render Configuration Sequence. In the course of a user evaluation, the user
may simply interact with the respective tool. For the automatic evaluation of our
implementation, we use timelined series of changes to the camera setup and the transfer
function. In our case, they come from recorded user interaction logs from previous
sessions.

(d) Quality Evaluation. When a user is evaluating the interactive application, he or
she may explicitly provide a score for the experience. Such a score could be determined
automatically by measuring the user’s performance for predefined tasks. In contrast,
in our evaluation in this paper, we do not assess such explicit performance scores,
but instead let the user provide his choice of parameters directly (Sec. 4.2.4). For
automatic evaluation, algorithmic video metrics have been used for many years to
assess the perceived quality of a video without the need for a user study. We use
MOVIE [Seshadrinathan and Bovik, 2010] for the evaluation of interactive visualization,
due to its high quality results and the availability of the source code. This gives us the
possibility to seamlessly integrate it within our parameter optimization pipeline in a
distributed environment. MOVIE is a full reference metric that compares a candidate
video against a reference, and delivers a single error value as result. We generate these
candidate videos by capturing the image from the display buffer 30 times per second.
After completing a render configuration sequence for a certain parameter setting, we
write the respective image files to disk, convert them to the required YUV video format
using FFmpeg, and analyze it with the metric. The whole process runs automatically
for given parameter tuples and scenarios. It also generates a script that can be used
directly as input to the grid engine of our compute cluster. This script file defines a
job array that invokes as many parallel instances of MOVIE as there are videos that
need to be evaluated. As output, among others, MOVIE writes a text file containing a
single overall scalar error value for each test, which we use for parameter evaluation
in the following. Although these video metrics have been extensively researched and
evaluated over the past 20 years, they can only be an approximation to the ground
truth, the quality assessment by a human user. A detailed discussion of this aspect can
be found at the end of Sec. 4.2.4.

(e) Parameter Evaluation. As indicated above, in the case of manual user evaluation,
we simply let the user choose his favorite setting according to his interactive experience
(Sec. 4.2.4). For the automatic evaluation, the error values are determined by the video
quality metric for the m scenarios and the n parameter tuples to find the most favorable
setting. This is accomplished by minimizing the least-squares relative error € on the
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basis of the error measure (-, -,-) from the video metric:

) m-1 " . 9
€ = min ( > (Vi 9 x) 17 (b s Doy > Xomy) = 1) ), (4.3)

0<i<n 3=0

with b(m) € {0,...,n} denoting the index of the parameter setting giving the lowest
error for scenario m. We use relative errors to account for the fact that the absolute
error values given by a metric can vary significantly (e.g., with the length of an image
sequence). In particular, this allows us to avoid any bias toward scenarios with higher
error values overall, and to support the combined use of different error metrics.

4.2.3 Error-Based Progressive Volume Visualization

Despite significant improvements in algorithms and hardware, volume rendering is
still computationally challenging for the data sets produced by up-to-date scanners
and simulations. We implement a progressive, multiresolution GPU volume raycaster
for illustrating and evaluating our error-based frame control. In particular, an efficient
integrated implementation for the spatio-temporal error estimates is provided.

Progressive Volume Visualization

The main goals of our progressive volume rendering scheme are performance, flexibility,
and simplicity, both with respect to implementation and integration with existing
renderers. By flexibility, we mean both the capability to interrupt the renderer at
virtually any time, and the absence of any kind of preprocessing or assumptions of
coherence across frames. We utilize a multiresolution volume raycaster with optimized
sample distribution in image space [Balzer et al., 2009].

Sampling. The renderer uses multiple resolution levels in image space, each of which
is subdivided into tiles. The goal is to achieve both flexible interruptability of the
progressive renderer as well as efficient usage of the hardware. Thus, the granularity
(i-e., the tile size) needs to be chosen according to device characteristics. For our CUDA
implementation, we determined by experiment that 16K samples per tile are sufficient to
efficiently utilize the 512 stream processors of a NVIDIA GTX580 without introducing
significant overhead. For the chosen aspect ratio, we generate sample points by means
of capacity-constrained point distributions with periodic boundary conditions [Balzer
et al., 2009] (Fig. 4.8). Next, following a quad-tree approach, we subdivide the image
space into tiles of increasing resolution levels until there is more than one sample point
per pixel. For each resolution level, starting from our original set of samples, we add
the required periodic copies to the list of samples. In our experiments, we use WXGA+
(1440 x 900) as the screen resolution for our renderer, because this constitutes a good
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Figure 4.9: Tiles at different resolution levels | generated for a 1440 x 900 screen. Their sampling
rate s is given and order of processing is depicted by numbers and colors.

trade-off between screen space and the induced cost for automatic video analysis. In
total, this results in 5 resolution levels and 341 tiles in total (Fig. 4.9). In this paper, we
measure the sampling rate by means of the ratio of completed to total tiles. Akin to
the image-space sampling, the sampling distance along rays in object space is doubled,
starting from the highest, most detailed resolution level. To render a frame, the tiles are
processed from the lowest to highest resolution level. Within each resolution level, they
are ordered from the screen center to the outside. Error estimation and frame control are
carried out between the computation of tiles. The achieved high, sub-frame granularity
is essential to be able to react quickly to sudden changes. Our volume raycaster uses
a simple local lighting model, making use of gradients that are determined on-the-fly
using central differences. The raycaster further makes use of early ray termination, and
lighting computations are only executed in non-empty space.

Image Reconstruction and Blending,. Pixel color values are reconstructed from the
sample points using a Gaussian filter kernel

2

f(d) =eo® — o (4.4)

with d denoting the distance in image space, o controlling the falloff, and the radius r



76 Chapter 4 o Accelerating Raycasting

(a) s =0.3%, 103.3 fps (b) s =3%, 6.4 fps (c) s =10%, 1.5 fps (d) s =100%, 0.2 fps

Figure 4.10: Different sampling rate settings s and achieved frame rates with our renderer for
the Chameleon data set.

Algorithm 4 Integrated image reconstruction and error estimation. Spatial error
estimation implementation is based on incremental variance computation and depicted
in blue. Temporal error is simply computed from the difference to the previous color as
shown in green.

1: procedure RECONSTRUCTION(zZ, ¥, () D> pixel coordinates (x,y) in tile with resolution level [
2: wy, ey < 0 D> initialize sum of weights and sum of colors
3: m,my < 0 D> initialize mean and squared differences from mean
4: for all (i, w) € S(z,y,l) do D> fetch sample index ¢ and weight w from sampling table S
5: cp < C(1) > lookup sample color from output of renderer
6: Cy < Con+W- ¢ > update weighted color sum
7: w§ < Wy > back up sum of weights from previous iteration
8: Wy < Wx + W > update sum of weights
9: d<~c-m > deviation from current mean
10: d,<d- % > relative weighted deviation from current mean
11: m <« m+d, > update mean
12: my < Mg +wy, - d- dﬁ > update sum of squared differences from current mean
13: ¢+ cxfws I> output color for pixel (z,y)
14: o? < (mojws) - |S(z,y)|/(|S(z,y)| - 1) I> compute variance
15: s« |o? D> spatial error ¢ is length of variance vector
16: 7' < |c = Cprev] > 7' is difference between ¢ and previous color Cyrey
17: return (¢,<) or (¢,7') D> return resulting pixel and respective error

ensuring that the filter goes to zero at the boundary of its support [Pharr and Humphreys,
2010]. On this basis, in a precomputation step, we generate the sampling table .S, that
lists for each pixel (x,y) of a tile of sampling resolution [ which samples are required
for its reconstruction along with their respective weights (Fig. 4.8). S is then used at
runtime in a CUDA kernel to compute the color value of each pixel of a tile (Alg. 4).
Finally, for display, we use OpenGL to blend the boundary between tiles of different
levels to reduce visual disturbances occurring from visible edges. This is implemented
by employing precomputed opacity maps which are generated with respect to the
distance of the pixels to the border between tiles of different resolution levels. Results
for different sampling rates are shown in Fig. 4.10.
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Error Estimation

As the basis for frame control, fast yet expressive metrics are required for the spatial
and temporal error estimators to provide updated values after the rendering of each
tile.

Spatial Error Estimation. For each pixel, the estimation of spatial error ¢ can be
efficiently achieved along with image reconstruction such that it only induces marginal
computational and no memory lookup overhead (Alg. 4, green). In our implementation,
the spatial error is determined by the magnitude of the weighted RGB variance vector
over the considered RGB sample color values C|(-) (Alg. 4, line 15). The underlying
incremental algorithm to compute the weighted variance is due to West [West, 1979].
Pixel error values are then summed up using a hierarchical reduction scheme on the
GPU that makes use of shared memory. Finally, the average pixel error value serves
as spatial error estimation. Note that after the completion of each tile only a partial
update to the previous error value is required, as only the image region covered by the
respective tile needs to be considered. In our implementation, for each pixel covered
by the tile, the difference between the previous and the current error value is added to
the total value. When restart is issued, the spatial error of the active frame ¢¢ is simply
carried over to the shown frame error value ¢*.

Temporal Error Estimation. For temporal error estimation, we first generate a quick
approximation of the frame with the current render configuration, i.e., the latest camera
position, transfer function, and data time step. In detail, we omit lighting, and sample
the volume only sparsely during raycasting by using the lowest resolution tile and
significantly increase the step size along rays (we use a factor of 50 with respect to the
highest level). The respective temporal error is computed by means of per-pixel color
differences of the current to the previous approximated rendering (Alg. 4, line 16). Next,
the temporal error values 7/ of all pixels are summed up by employing the hierarchical
scheme that is also used for spatial error estimation. This value is added to the total
temporal error value 7¢ of the active frame and the shown frame 7%, with 7¢ = 0 after
each restart. As with the spatial error value, the temporal error value of the active frame
7 is carried over to the error of the shown frame 7% in case of a show or restart. Note
that in contrast to the spatial error that is computed during the reconstruction of every
tile for display, the temporal error is only evaluated in case of changes to the render
configuration since the last assessment.

4.2.4 Application and Evaluation

For running our measurements, we use a NVIDIA GTX580 and an Intel Core i7 with 3.4
GHz. We employ four data sets from both CT scans and simulations in our evaluation
(references to renderings and data set resolution are given in brackets): the Chameleon
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data set (Fig. 4.10, 1024x1024x1080), the Jet data set (Figs. 4.12(a) and (b), 720x320x320),
the Flower data set (Fig. 4.5, 1024 x 1024 x 1024, courtesy of the Computer-Assisted
Paleoanthropology group and the Visualization and MultiMedia Lab at University of
Zirich), and the time-dependent Vortex data set (Figs. 4.12(c)—-(e), 529 x 529 x 529, with
60 time steps). All compute-intense steps required for interactive rendering are executed
in parallel on the GPU using CUDA, particularly including the volume raycaster and the
reconstruction along with the error estimation. For our 1440 x 900 screen resolution, the
image reconstruction takes 5 ms for the lowest level, 1.5 ms for the second-lowest level,
and below half a millisecond for all subsequent levels. This decrease in reconstruction
time exhibits a roughly linear dependence on the decreasing number of pixels covered
by a tile (Fig. 4.9). To reduce this cost for higher levels, a hybrid reconstruction and
upscaling approach could be investigated for future work.

As discussed in Sec. 4.2.3, computing the spatial error through the variance of the
samples can be done without significant overhead, basically requiring only a couple of
additional floating point operations. Determining the temporal error basically consists
of two steps, namely the approximate rendering and the integrated reconstruction
and difference computation to the previous approximation. In our measurements, the
approximate sampling was in the range of 1% to maximally 10% of the full render
time of a tile, while the subsequent reconstruction and error computation always took
around 0.5 ms (e.g., for reference, the sampling of tile 22 in Fig. 4.10 took 24 ms). This
means that the computational overhead for assessing the temporal error is fairly low,
particularly when considering that this is only done in case of changes to the render
configuration.

Practical Example of Error-Based Frame Control

We showcase the characteristics of error-based frame control at the example of an
interactive exploration session with the Chameleon data set (Fig. 4.11). In the first
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Figure 4.12: Key frames of the videos
from the simulation data sets that were
used for automatic evaluation. In the
respective camera path, the Jet data
set was quickly rotated from the side
view (a) to the tip of the pressure ad-
vancement (b), which was then inves-

tigated in detail. The Vortex series (c)- L

(a) Jet (frame 40)

(e) shows the temporal development
of the vortex cascade, visualized with
the Ag criterion [Jeong and Hussain,
1995].

(c) Vortex (t = 10) (d) Vortex (t =70) (e) Vortex (t =100)

100 frames the data set is quickly rotated. This induces a high temporal error and
accordingly frame rates around 25 fps for more fluent navigation. From frame 110 to
140, no changes occur for almost a second, which leads to a continuous refinement of
the current frame, as can also be seen from the increasing sampling rate. Then, there is
a sequence of slower camera movement (frames 150-250), followed by another phase of
no change (frames 250-300). Then, after slower changes to the camera position (frames
300-380), a certain feature is investigated in detail. This requires a high sampling rate
to enable the user to assess fine details. We refer the readers to the accompanying video
for further details.

Automatic Evaluation Using a Video Quality Metric

By means of automatic evaluation, we aim to optimize the parameters p for restart and
¥ for show, and study the impact of the power reduction parameter y. We considered
seven scenarios in total: the Chameleon, Jet, and Flower data sets, each with one
sequence adjusting the camera path and one adjusting the transfer function, and the
Vortex data set receiving a new time step every 100 ms. As input for MOVIE, we compute
a video for each parameter setting along with a reference video that batch renders a
full-quality image for every frame. The videos are generated from transformations that
were recorded from user interaction. To be representative for a variety of user actions,
they contain both slow and fast-paced changes. These videos are only between six and
twenty seconds long to keep computation time both for generation and subsequent
evaluation within reasonable limits.

In our experiments, the evaluation of a video with a resolution of 1440 x 900 and 30
frames per second using MOVIE took twelve to sixteen hours on an Intel Xeon processor
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running at 2.4 GHz. By using a small cluster, we could process up to 64 videos in parallel.
However, considering variations of multiple parameter values in one measurement
series would still take a prohibitively long time. Thus, we use a multi-stage process
to significantly cut down the number of evaluations. First, we optimize the restart
parameter p, which has been shown by our previous experiments to be of predominant
impact in comparison to the show parameter ¢). Then, for the resulting optimal setting
for p, we evaluate different parameter settings for . On this basis, we finally examine
the impact of the resource parameter Y.
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timal global setting of p = 0.6 from (a).

Figure 4.13: Automatic optimization of the restart parameter p using the MOVIE video metric
and a variety of different scenarios.

For the restart parameter p, we consider values from 0.1 to 0.9 in steps of 0.1. We further
include static frame rates with 10 fps and 30 fps as well as static sampling rates of
5% and 20% in our evaluation. Fig. 4.13(a) shows the resulting least-squares relative
error over all scenarios (as discussed in Sec. 4.2.2). According to this, error-based frame
control with p = 0.6 achieves the smallest error value overall. The relatively high static
sampling rate (20%) that delivers high-quality renderings but frame rates below 1 fps
delivers the worst result. Here, low quality settings (5%) favoring higher frame rates
improve the results significantly. For static frame rates, 10 fps delivers significantly
lower errors than 30 fps, meaning that it provides a better trade-off between sampling
rate and responsiveness for the considered cases.

As indicated by the low slope of error values for p across a wide range of values in
Fig. 4.13(a), a variety of different settings are potential candidates for delivering the best
result in one specific scenario (Fig. 4.13(b)). However, it can be seen that the determined
optimal setting p = 0.6 is only marginally worse in any scenario, with respect to the
best result for each scenario individually. Our error-based control further yields the
lowest error for each scenario individually, except for the Vortex series. Naturally, its
discrete refreshes 10 times a second yields good results with the 10 fps setting. In total,
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it can be seen that error-based frame control with p = 0.6 can be used successfully
across all considered use cases without requiring further adjustment.

For p = 0.6, the impact of the show parameter is investigated with the following settings:
v € {0,0.0001, 0.0005,0.001,0.005,0.01,0.05,0.1,0.2,0.5}. Our results indicate that
the lowest overall error is achieved with ¥} = 0. This means that show is only issued
when a frame is restarted or when the spatial error of the active frame is smaller than
that of the shown frame. While a more early show operation can reduce the visible
temporal error and allow the frame to still refine further, we think this result is due to
the induced strong variation of displayed image quality, leading to significant flickering.

Finally, Fig. 4.14 shows the impact of the power parameter x on the resource usage and
the error determined by MOVIE. In our implementation, x defines an error threshold
with respect to our spatial error estimation. Most prominently, it can be seen that a
quite significant reduction of resource usage can be achieved with only little increase
in error. This is due to the fact that an increasing sample count has decreasing impact
on the perceived image quality, i.e., the resource usage can be lowered for sampling
rates beyond a certain threshold with merely sub-linear quality impact. The negative
effect of trading resource usage against sampling rate is further significantly dampened
by the adaptivity of our approach, i.e., resource utilization is only reduced in adequate
situations as defined by the user. More elaborate schemes and a more detailed evaluation
of its effects, e.g., on explicit power consumption, remain for future work.

Expert Review

Scope and Structure. The primary goal of our expert review was to evaluate the
usefulness of our approach for volume rendering against fixed settings for frame rate
and quality (denoted as modes below). Further objectives of the study were to identify
preferred parameter settings, and to assess similarities and differences to the automatic
evaluation from Sec. 4.2.4. Five visualization researchers evaluated our implementation
by interactively exploring the Chameleon and the Jet data set. They are primarily
concerned with the development of new visualization techniques, but also use their
own and other interactive tools for analysis on a regular basis. Each participant spent
45 minutes to 1 hour interacting with our implementation.

The procedure was loosely structured into three phases. First, we asked the participants
to make themselves familiar with the volume rendering tool and the different modes
of the program. Second, we gave them a number of exploration tasks to accomplish
and asked them to evaluate the usefulness of our tool along the way. In this phase, the
parameter values of the different modes were fixed as follows: the static frame rate was
set to 30 fps, while the sampling rate was at 20%, and the restart parameter p was set to
0.6. For simplicity and time constraints, the show and power parameters were set to 0



82 Chapter 4 o Accelerating Raycasting

and ignored throughout the study. A task consisted either of matching a certain camera
view or transfer function to a precomputed visualization result. Twenty randomly
distributed and uniformly colored marker crosses were added to the volume to support
the matching. Tasks were structured into groups of three (one for each mode), and the
order in which the modes had to be used was shuffled quasi-randomly. Finally, there
was a free exploration phase in which we asked the participants to explore different
parameter settings, and compare the different modes freely to determine the one they
like best. After phase two, the participants were handed a small questionnaire. They
were asked to complete the part about their experience so far right away, and fill in
the remaining parts during the final phase three. The questionnaire contained both
multiple choice fields regarding the preferred modes as well as text fields for providing
comments regarding different aspects.

User Comments. First, the participants were asked to assess the usefulness of the
different modes with respect to the camera configuration and transfer function matching
tasks. Overall, all participants found the fast response time of the static frame rate
very helpful, particularly for quick camera rotations. However, Participants 2 and 4
noted that this also loses a significant amount of detail in the data set. With respect
to the provided static sampling rate, all participants complained that while providing
detailed renderings, its significant delays impede precise navigation. Our error-based
frame control was rated as being a good compromise between responsiveness and
detail (Participant 4), which adaptively allows for a high enough frame rate but also
provides detail (Participants 0 and 3). Participants 0 and 1 additionally noted that they
found it particularly helpful for matching transfer functions. However, also for transfer
function matching, Participant 2 perceived the delays for small changes to be a little too
long with our error-based control. In summary, error-based frame control was chosen
over static frame rate or quality as the overall preferred method for the task phase.
However, there were some remarks that the tasks were not emphasizing the properties
and characteristics of the different modes strongly enough. For instance, Participant 0
noted that the disadvantage of low quality for static frame rate did not affect the tasks
that much because the provided orientation markers were still visible. For future work,
we would like to more closely emulate real world tasks in a more extensive study.

Next, in the exploration phase, the participants were asked to navigate freely, i.e., to
explore the data set on their own and determine their personal preferences this way. We
summarize their comments in the following. It was noted that the required sampling
rate in general strongly depends on the data set and that it is thus hard to set for general
purposes (Participants 0, 3, and 4). According to Participant 3, it also always bears
the potential of sudden drops in frame rate should the rendering cost change quickly.
Thus, the parameter setting highly depends on what the goal of the exploration is
(Participant 0). As a result, Participant 2 found the static sampling rate unpleasant to
use, particularly for longer sessions. Most of the time during interactive exploration, the
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effects of a static sampling rate are either choppy movement or low rendering quality
that misses important features (Participant 1). While static frame rate delivers better
results more independently from the underlying data set (Participant 4), the strong loss
of quality that occurs even for only slight changes was found unpleasant, particularly
for cases in which details are of importance (Participant 3). Error-based frame control
was generally found to be “a good compromise between static frame rate and static
sampling rate” (Participant 3). Participant 1 stated that error-based frame control is
most appropriate for adjusting transfer functions and the camera position, both when
it comes to slow and fast movement. Participant 0 particularly preferred error-based
frame control for detailed adjustments of the transfer function because more detailed
and thus more helpful renderings were available during interaction.

Ratings and Parameter Settings. Like the participant’s comments discussed above,
the order of suitability selected by the participants in the questionnaire clearly reflect a
preference toward error-based frame control (Table 4.1). They favored it four to one
for detailed investigation of the data set as well as for overall usage, with the other
one being static frame rate. While a static frame rate delivering high quality would
be great for detailed investigation once an interesting spot has been reached, getting
there is cumbersome due to the involved sluggishness. For just getting a quick, rough
overview of the data sets, comments and selected preferences suggest that both a high
static frame rate and error-based frame control are well suited for this use case. This
could be expected, as for faster movement, error-based frame control leads to high fps
as well. However, the parameter settings vary in a certain range with specific settings
depending on general user preferences toward high quality or responsiveness. For the
static sampling rate, parameter settings in the low range between 2% and 7.5% were
chosen, despite the significant visual disturbances associated with that (e.g., Fig. 4.10(b)).
For static frame rate settings, preferred settings vary between 10 fps or 30 fps, with
a slight preference overall toward the lower end for higher visual quality. Parameter
settings for the restart parameter p range between 0.3 and 0.7, with a preference toward
the higher end, i.e., toward higher frame rates. Furthermore, preferred settings may
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vary with the data set, with lower values for the both more expensive to render and
complex structured Chameleon in comparison to the Jet data set. Relating to this,
Participant 1 stated that the Jet data set contains less detail, and thus different settings
seem adequate as compared to the Chameleon data set.

Comparison to Automatic Evaluation. In essence, the results from the user study
confirm the basic trend from the automatic evaluation (Sec. 4.2.4 and Fig. 4.13). For
the static sampling rate, relatively low quality settings are preferred by the users,
as they allow for fluid interaction for a wide range of camera and transfer function
configurations. In the automatic evaluation, this is reflected by the much lower relative
least-squares error € for the lower sampling rate setting in Fig. 4.13(a). For static frame
rate, user preferences range approximately between 10 fps or 30 fps, i.e., varying in its
trend toward image quality or responsiveness. Automatic evaluation exhibits basically
the same trend, yet a lot more distinctively (Fig. 4.13(a)). For error-based frame control,
the restart parameter p = 0.6 was determined as the best setting by the automatic
evaluation, with lower values exhibiting only slightly, yet continuously worse results.
Similar settings were also popular with the participants.

Regarding the chosen preferences with respect to the mode, both the user study and the
automatic evaluation clearly favored our error-based frame control. However, while
user preferences lean toward fixed frame rate when compared to fixed sampling rate,
they perform about equally well with their optimal parameter setting according to
automatic evaluation (Fig. 4.13(a)). Note that for the results in Sec. 4.2.4, four different
data sets were used, while only two were part of the expert study here. More definite
qualitative and quantitative statements would require an automatic evaluation with
a wider range of data sets and performed interactions, a more extensive expert study
with more participants, and possibly additional video metrics. In particular, while
video metrics have the important advantage of allowing for automatic evaluation and
optimization, they are optimized for determining the quality of videos, which might
differ from the user experience of an interactive visualization tool. Here, we believe
that more research is required to better quantify these differences.

4.2.5 Directions for Future Work

We plan to significantly expand the aspect of resource utilization and study the possi-
bilities of intelligently decreasing power consumption in more detail. We would further
like to extend our evaluation by means of other video metrics (like DRIVQM [Aydin
et al,, 2010]) and a more extensive user study. This user study should incorporate a
more diverse group of users, particularly featuring application domain scientists, and
consider the experiences of users utilizing it in their everyday work. In this context,
taking the characteristics of human interaction into account more comprehensively
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Table 4.1: Ratings given by the visualization experts in the following order: fixed frame rate,
fixed sampling rate, error-based frame control. O stands for the order of preference, 1 being the
most preferable to 3 being the least preferable. P stands for the selection of the best-suited
parameter value for each of these. Tasks denotes the rating of the task phase of our evaluation.
Overv. denotes the suitability for getting a quick overview of the data set, while Det. stands for
the suitability for the detailed analysis of a certain feature. Tot. gives the overall rating.

Id O Tasks P Cham. P Jet O Overv. ODet. O Tot.

0 231 5502 56 0.07 13 2 231 231
132 286203 25207 132 231 231
132 9207 94 0.6 231 132 132
231 10303 255 0.6 231 231 231
231 10 2 0.15 10 75 0.2 132 231 231

B W N =

could also be a promising direction. We would further like to implement and evaluate
our error-based control scheme for an extended raycaster (featuring other data types
and out-of-core rendering), as well as other visualization techniques beyond volume
rendering. In addition, limiting ourselves to one technique for generating frames, like
to raycasting in this paper, cannot avoid significant (temporal and/or spatial) artifacts
in cases in which the gap is too large between the cost of this technique and the power
of the available compute resources. The extension to hybrid approaches that switch
to other, computationally cheaper techniques (like warping [Qu et al., 2000; Shen and
Johnson, 1994]) when required could help handling these cases in a more suitable way
for the user. Finally, considering additional information like the rate of incoming data
(e.g., with simulations running in parallel), or outgoing images over the network in
remote rendering could allow for more efficient frame control in such scenarios, too.






CHAPTER

VIEW-DEPENDENT REPRESENTATIONS

Scientists must be able to analyze the full extent of the simulation output at high
resolution. However, transferring data at large scale for post-processing visualization
and analysis is not feasable in many situations. Even if the data files can be moved,
desktop data analysis and visualization tools struggle to handle such large-scale data.
To alleviate this issue, view-dependent image-based rendering techniques have become
increasingly popular in recent years as they combine the high quality of images with the
explorability of interactive techniques. These approaches make use of an intermediate
representation, often referred to as explorable image, that allows for deferred interaction.
Explorable images have many different applications in a variety of areas. They can be
used to generate frame previews when rendering is expensive, or provide a compact
in-situ representation for results from large-scale, high-fidelity simulations.

Sec. 5.1 Extension of the explorable image concept to a view-dependent representation
for volume rendering, that achieves the reduction of both the cost for storage and
rendering. . ... [Frey et al., 2013b]

Sec. 5.2 A technique supporting the quick extraction of isosurfaces by means of ex-
plorable images. ........... .. .. i [Frey et al., 2013a]
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5.1 Volumetric Depth Images

Data Repre-
sentation (9)

Cost (3)

The interactive analysis of a data set may particularly concentrate on certain features
and areas. Here, we aim at preserving full quality for a certain parameter configuration
of interest, while still maintaining some flexibility to allow for user exploration by
means of arbitrary changes to the camera. For this, Volumetric Depth Images (VDIs)
are introduced, a condensed representation for volume data. Instead of only saving
one color value for each view ray as in standard images, VDIs store a set of so-called
supersegments, each consisting of a depth range as well as composited color and opacity.
This compact representation is independent from the structure of the original data and
can quickly be generated by a slight modification of raycasters. VDIs can be rendered
efficiently at high quality with arbitrary camera configurations.

Selective Conversion
Convert the data set to a different, more compact representation. For this, 9
additional knowledge may be exploited concerning regions or character- ' °

istics of interest. @

5.1.1 Generation from Raycasting

As a generalization of Layered Depth Images (LDIs), VDIs allows to capture not just a
surface, but a volume from a certain camera configuration in a fast and efficient way for
subsequent rendering (Fig. 5.1). It can easily be generated during volumetric raycasting
by partitioning the samples along rays (Fig. 5.1(a)) according to their similarity. Empty
regions are skipped completely. These partitions can then be stored as lists of so-
called supersegments containing the bounding depth pair (s¢, s;) and partial color
accumulation values (Fig. 5.1(b)). Each pixel in the image plane forms a square pyramid
with the camera position at its apex. Accordingly, supersegments are rendered as
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Figure 5.1: VDI generation and rendering. (a) Supersegments are generated during raycasting
(b) and stored as tuples that are organized in a 2D array of lists (Sec. 5.1.1). (c) For rendering,
frustums constitute the 3D representations of supersegments (d) that are accumulated to generate
a new image (Sec. 5.1.2).

frustums of these pyramids (Fig. 5.1(c)). Frustums generated by the same ray are
conceptually grouped into a frustum list. Color and opacity are modeled constant within
a frustum, and determined during VDI-generation in a raycaster. During rendering,
frustum lists are depth-ordered and composited (Fig. 5.1(d)). For this, the length [ a
ray passes through each frustum is determined to correctly adjust a frustum’s opacity
contribution.

A modified front-to-back raycasting procedure for creating supersegments is depicted
in Alg. 5. The main difference to standard raycasting is that color and opacity are not
composited over the whole ray but only within supersegments. The segmentation
criterion I" (Line 4, Eq. 5.1) returns true if the old supersegment needs to be terminated
(Lines 8-10) and a new one has to be started (Lines 12-13). The current supersegment
is also finalized when entering a transparent segment (Line 5), and a new supersegment
is started when leaving such a transparent segment (Line 11). Finally, a supersegment
is closed before terminating the ray (Line 6). When a new supersegment is started,
the color and opacity values are reset (Line 13). As c represents a premultiplied color
value after compositing, it is divided by the opacity of the supersegment to make it
non-premultiplied (Line 10) as a preparation for the subsequent over-operator type
blending in the rendering stage (Sec. 5.1.2).

Naturally, mostly homogeneous supersegments are desirable to achieve good results,
particularly for large view parameter changes in VDI rendering. There is a trade-
off between quality and both storage requirements and rendering speed: the more
supersegments, the higher the quality but also the higher the memory usage and render
cost. Our criterion I is based on premultiplied color values and the correction of opacity
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Algorithm 5 Generation of supersegments with color C5/ and opacity as/ using
raycasting. Modified version of standard raycasting routine (Alg. 3).

1: function SUPERSEGMENTGENERATION

2: ¢ < (0,0,0),T < 1,p < -1 D initialize color ¢, opacity 7', and supersegment

count p
3: fori=1—- N do D> step along ray (iterating over segments)
4: g < L'(7,C,a, c(i), a(i)) > new supersegment? (Eq. 5.1)
5: ep < (a(i) =0na(i-1) +0) [> transition into an empty region?
6: fB<i=N D> last segment?
7: if p£-1A(gpVvepV fp) then > close old supersegment
8: sp(p) < min(i, N) > write back depth
9: O‘Z((g)) «1-T I> write opacity
10: C’j; ((pp)) </ Ozzz ((5)) > factor out opacity and write color
11: if (ggva(i-1)=0)A-fgAra(i)>0then  [>start new supersegment
12: p<p+1,s¢(p) «i [> increment count and write front depth
13: ¢« (0,0,0),7T < 1 > reset color and opacity
14: c<T-a(i)e(i), T < T-(1-a«a(i)) > standard front-to-back compositing

with respect to integration lengths:

Dy > (et o) = (G(sy,)e(i), 6(sy, 1)) (5.1)

with + being the sensitivity parameter, s¢ is the starting index of the supersegment,
(ci;', ") represent color and opacity of the supersegment respectively, and 7 depicts
the current segment. The opacity is length-corrected

a(sg, i) =wla(i), p(sp,i-1)),

with p being the length of the supersegment (i.e., the sum of lengths of the contained
segments):

u(f,b) - iém. 5.2

In total, this means that a raycaster segment is merged into the supersegment if the
adjusted color and opacity difference is below the user-provided sensitivity parameter
. Otherwise, a new supersegment is started. This greedy criterion is fast and simple to
compute, can easily be integrated with existing raycasting codes, and proved to deliver
good results during our experiments. Many other (more complex) schemes are possible
and could easily be used with our flexible approach to meet different demands of a
specific application at hand.
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Figure 5.2: The engine data set (see Sec. 5.1.3 for
details) with very low resolution settings demon-
strates the geometry of frustums, and the results
of depth sorting and opacity determination.

(a) VDI original (b) Moved cam-
view era

5.1.2 Rendering

Each supersegment is represented by a frustum for rendering. For every supersegment
list of a VDI, four rays are cast from the initial camera position through the corners of
the respective pixel. For this purpose, the original modelview and projection matrices
are used. The “bottom left” ray defines a perpendicular front and a back plane by using
its direction vector as well as the two depth values marking the beginning and end of
the respective supersegment. The front and back planes are then intersected by the
other three rays, thus defining a quadrilateral frustum belonging to each supersegment.

For rendering our frustums, we employ alpha compositing with the over operator-
according to Eq. 5.3: a over b computes the resulting color C' as follows Max [1995]:

C= CaOéa + Cb(l — Oéb), (5.3)

where C,, and C}, are the colors, and o, and «; are the opacity values belonging to a
and b, respectively. This requires depth ordering for correct results. Due to the way
our frustums are constructed, we can perform sorting with respect to their Euclidean
distance to the new camera position in O(Llog(L)) in contrast to O(Slog(S)) that
would be required when sorting every polygon or frustum on its own (L being the
number of supersegment lists while S is the number of supersegments) (Fig. 5.1(d)).
For this, we exploit that frustums of the same supersegment list are implicitly sorted
already. This significantly decreases the sorting cost and makes it invariant with respect
to 7. Note that the ordering within a frustum list needs to be inverted if a supersegment
list is viewed in opposite direction with respect to its generating view ray.

The length [ of a new view ray in a frustum (Fig. 5.1(d)) is used to adjust the opacity
contribution of the respective part of a supersegment. The opacity contribution of
supersegments can be adjusted in the same way as for segments with respect to the step
size 9. This can be computed for an arbitrary length [ in relation to the original length
p(sp, sy) of the supersegment (Eq. 5.2), where [ is determined by intersecting the view
ray belonging to the current pixel with the frustum belonging to the supersegment.
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Figure 5.3: Comparison of ground-truth raycasting (leftmost) and the VDI renderings with
decreasing 7y from left to right and 50° rotation with respect to the original camera configuration.
Captions give render time and supersegment count. Closeups are given for the black rectangle.

5.1.3 Results

The evaluation was performed by using an Intel Core i7-2600k and a NVIDIA GTX 580
with 3GB of video memory, and an image resolution of 512 x 512. The list of data sets
we used in our experiments, including their standard raycasting timings, is given in
Table 5.1. All data sets are given in 16-bit. The timing overhead for generating a VDI
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Data set Resolution Size Raycast. | Gen.
Engine 256 x 256 x 256 32MB 23ms 11ms
Chameleon | 1024 x 1024 x 1080 | 2160MB 560ms 54ms
Vertebra 512 x 512 x 512 256 MB 48ms 18ms
Flow 2018 x 220 x 1085 919MB 37ms 5ms

Table 5.1: Data sets and their raycasting time for results of Fig. 5.3 with v = 1.

during raycasting (Table 5.1, Gen.) is generally low, but varies depending on various
factors like the data set and transfer function complexity.

Fig. 5.3 shows VDIs rotated by 50° with respect to their direction of generation, for
different settings of . In general, the rendering gets crisper and closer to the raycasting
reference the lower the value for v is. This is due to the fact that the supersegments
exhibit a lower deviation in color and opacity from the original underlying data, which
leads to less blur during rendering. The loss of detail due to too large segments can
clearly be seen by means of the almost opaque bone structure of the chameleon data set
(q). A similar effect can be observed by the example of the vertebra in (g). (j), (0), and
(t) show that particularly for low values of 7, the VDIs provide a good approximation
of both the structure and value with respect to the reference volume raycasting.

L L] U L 0

(a) VDL 0°,42ms (b) VDL 5°,42ms (c) VDI, 10°,40ms (d) VDI, 45°,39ms (e) VDI, 90°, 39ms

L L L L Cl

(f) Ref., 0°,560ms (g) Ref, 5°,592ms (h) Ref., 10°, 604ms (i) Ref, 45°, 558ms (j) Ref., 90°, 542ms

Figure 5.4: Comparison of ground-truth renderings (a)-(e) with the raycaster and VDI-
renderings with v = 0.8 and 450k supersegments (f)—(j). The geometry was generated at
0°. Timings for VDI both include sorting and rendering.

Table 5.2 shows that the number of supersegments increases approximately linearly
with the number of supersegment lists across different resolutions, and so does the time
for geometry creation and rendering. Sorting times are consistently below rendering
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Res. | Lists | SupSegs | Geometry | Sorting [ Rendering

Engine
2567 [ 29k 67k 36ms 5ms 11ms
5122 | 118k 269k 142ms 6ms 33ms
7682 | 267k 606k 393ms 21ms 71ms Table 5.2: Supersegment numbers

, Chameleon and timings for v = 1. Respective

256 | 29k 103k 48ms Sms 10ms raycasting times are given in Ta-
512 119k 415k 189ms 6ms 33ms
7682 | 268k | 934k 428ms 20ms 67ms ble 5.1.

Vertebra
2562 [ 29k 94k 45ms 5ms 10ms
5122 | 118k 375k 175ms 8ms 33ms
7682 | 267k 846k 398ms 22ms 68ms

Flow
2562 [ 15k 46k 28ms 4ms 11ms
5122 | 63k 186k 111ms 6ms 22ms
7682 | 113k 419k 250ms 8ms 40ms

times and only depend on the number of supersegment lists as expected. In our imple-
mentation, geometry generation only needs to be carried out once as a preprocessing
step and is only executed on a single CPU core with large potential for improvement.

Fig. 5.4 shows the influence of the rotation angle away from the original camera view
on quality, as determined by means of the images from VDI rendering and respective
reference images from raycasting. The rendered VDI match the raycasting image
initially (Figs. 5.4(a) and 5.4(f)), and the visual difference is minor for small rotation
angles. It only becomes significant for large angles (e.g., Figs. 5.4(d) and 5.4(e)). Timings
for VDI rendering are about one order of magnitude faster in comparison to raycasting,
leading to a significant gain from less than 2 fps to over 20 fps (Fig. 5.4). This goes along
with a much lower graphics memory usage, enabling the rendering on more limited
hardware.

5.1.4 Directions for Further Research

In addition to investigating specific application scenarios in detail, the technique could
be extended to further degrees of freedom for interactive exploration as proposed in
related research work (e.g., transfer function modification). Additionally, techniques
suggesting informative views in volume visualization could be used to select the initial
camera configuration (e.g., Zheng et al. [2011]). Further, more elaborate supersegment
partitioning criteria could yield higher rendering quality. The extension of VDIs to
space-time VDIs that consolidate supersegments across neighboring pixels and time
steps for better compression has been performed by Fernandes et al. [2014] and is briefly
outlined in Sec. 8.3.1.
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5.2 Preview Geometry

) Granularity
Structure (7)

()

Raycasting data directly can be impracticable due to high storage and computation
costs, in particular for more complex representations like radial basis functions from
smoothed-particle hydrodynamics, and cell-based fields featuring piecewise polyno-
mial representation from discontinuous Galerkin simulations [Uffinger et al., 2010].
LDIs [Shade et al., 1998] of isosurfaces can quickly be generated and used as a replace-
ment for the actual data to drastically lower hardware requirements, e.g., for preview
rendering. However, common LDI rendering methods (warping or splatting) suffer
from quality or performance issues in a number of scenarios, and many analysis opera-
tions (e.g., distance measurement) are not applicable. A technique is discussed in the
following that generates LDIs and subsequently extracts a mesh from these (Strat. 22,
Selective Conversion). Starting from a quickly generated stub for preview rendering,
different methods to improve the mesh quality may flexibly be selected and applied
depending on the imposed requirements on the results.

Functionality Requirements
Different scenarios can have different requirements with respect to the @ ~ {7
outcome of an application. A program structure that allows to flexibly
remove expendable functionality can help to significantly reduce the
overall cost.

5.2.1 Mesh Generation and Trimming

For generating L.DIs with a raycaster, the only modification required is to store depth
and gradient information for all hits occurring along a ray (Fig. 5.5(a)). The following
discussion limits itself to parallel projection for the sake of simplicity (perspective
projection works accordingly with slight adjustments). To form a quad from this, every
sample (s, located at (z,y)) selects one sample (its best match) each from the right
(x+1,y), top (z,y+ 1) and the top right (z + 1,y + 1) image position (Fig. 5.5(b)). The
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Figure 5.5: Extraction of isosurfaces on the basis of LDIs from different directions (a). (b) For
each sample s at (x,y) of a LDI, quads are potentially generated with samples of the same
LDI from (z + 1,y), (z,y + 1), and (z + 1,y + 1). (c) Normal-based depth prediction is used to
identify the best match (s3 in this case, normals are depicted by black arrows).

(a) 1d:x (b) 2d:x () 2d:iy  (d) 2d:xy  (e) 3d:x (f) 3d:iy  (g) 3d:xyy (h) 3d:x,y,z

Figure 5.6: Preview meshes of the KleinBottle with a resolution of 128 x 128 per direction
(Tab. 5.3), showing the differences in trimming for the same r = 0.5 but a varying set of directions
(subcaption depicts the total number of directions as well as the ones that are rendered).

best match is determined by depth predictions based on normals. In detail, s, estimates
the depth value e(sg, z + a,y + b) at the image position of the neighbor set (a,b € {0, 1},
(z + 1,y) in Fig. 5.5(c)). Likewise, all candidate samples s (s3 and s4 in Fig. 5.5(c))
estimate a depth value e(s, z, y) at image position (x,y). The best match for s is then
the sample s with the smallest sum of distances |e(s, z,y)—d(so)|+|e(d(s0), a,b)—d(s)
where d(-) returns a sample’s depth.

5

Using a single mesh can deliver a good approximation for slightly varying camera
positions, but meshes from multiple directions substantially improve the result for
larger surface variations (Figs. 5.6 and 5.7). While our approach works with an arbitrary
number of directions, we restrict ourselves to three as a reasonable trade-off between
cost and quality (refer to [Frey et al., 2013a] for a more detailed discussion). Meshes from
multiple directions cover some surface areas multiple times. Overlaying meshes from
different directions for rendering simply requires enabled depth testing. For merging
meshes, distinguished boundaries are advantageous which are achieved by trimming
the meshes according to their quality of coverage, as defined by means of the view
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(a) (b) r = 0.9, (c) r=1,34k (d) r =1b,31k (e) 64 (f) 128 (g) 256 (h) 512
r=0.5,51k 38k

Figure 5.7: Preview meshes with different parameter settings. (a)-(d) Varying the trimming
parameter 7 with meshes from x, y and z-direction colored in red, yellow and green respectively
for the KleinBottle (subcaption depicts r, b in case of additional boundary trimming, and the
number of triangles). (e)—(h) Barth data set with » = 0.5 for z,y, and z-directions and an
increasing number of samples per direction, resulting in higher quality with a higher number
of triangles: 642 : 24k, 1282 : 136k, 2562 : 625k, 5122 : 2646k.

direction and the surface normal. For every quadrilateral primitive q € (), from view
direction d € D, we compute the normal vector n of each of its four vertices v € ¢ as the
cross product with its two neighboring vertices: 1, = (v — Uprey) X (U = Upest ). Whether
a vertex v is valid or not is determined by testing for |n, - d,|/ max(|n, - d|,Yd € D) > r,
with d, being the view direction from which ¢ was generated. The user-adjustable
trimming parameter r specifies the extent of surface reduction with respect to its normal
and view direction as well as all other view directions. The larger r, the more vertices
are classified as invalid and the more primitives are eventually discarded (Fig. 5.7). The
choice of r is application-dependent, and should thus be chosen such that there are
neither low quality primitives occluding fine details, nor holes in the geometry. Finally,
only quads with no invalid vertex remain.

5.2.2 Mesh Refinement

Templates can be employed for refining the meshes to better represent areas of high
curvature without generating hanging vertices (i). This requires new samples for the
LDI (ii). Refinement not only happens within meshes, but also at boundaries for growing
the mesh toward silhouettes (iii).

(i) Refinement Templates. Templates differ for triangle and quad output. For trian-
gles, a classical quadtree approach is used (Fig. 5.8(a)—(c)) with the maximum subdivision
level difference between neighboring cells being restricted to one to achieve good qual-
ity triangles. After cells are marked for subdivision, an additional iterative I-level
difference pass is employed that marks cells that have to be subdivided additionally to
assure the constraint before generating triangles.

For quad mesh output the 1-level difference pass is substituted with 2-refinement quad
templates (Fig. 5.8(d)—(e)) [Schneiders, 1996; Ebeida et al., 2011]. Two templates featuring



98 Chapter 5 e View-Dependent Representations

g5,
&

(d) (@)

Figure 5.8: Mesh refinement for triangles and quads demonstrated with the higher-order Shock
Channel data [Uffinger et al.,, 2010] (¢ = 3.0, isovalue 4.6) showing the density of the flow
around a box obstacle (c), (e). Triangles: (a) The subdivision of a cell (dark gray) forces further
subdivisions (light gray) according to the 1-level difference rule. (b) Triangles are generated
using six triangle templates (up to rotation and inversion). Quads: (d) Subdivision of a cell
(dark gray) marks two respective edge nodes (dark circles) and thus cells (light gray). New edge
nodes are introduced and previously marked edge nodes are removed. Another cell is chosen
for subdivision (dark gray), respective edge nodes are marked and transition cells selected (light
gray). Finally, quads are created using two templates.

“reference nodes” (dark circles in Fig. 5.8(d)) have to match so-called edge nodes inside
the mesh. During subdivision, an edge node is created each time an edge is subdivided.
For example, classical quadtree subdivision produces 5 new nodes, one in the center and
one on each of the edges of the original cell. Ebeida et al. [2011] propose to subdivide
every cell of the initial mesh for producing an initial set of edge nodes. Instead, we
identify edge nodes for the initial (unrefined) mesh from the pixel coordinates (z,y) of
a vertex by testing if x + y mod 2 = 0, thus producing a “chessboard pattern” of initial
edge nodes. First, edge nodes are identified that belong to cells marked for subdivision
(active edge nodes, gray circles). Subsequently, all cells sharing such an active edge node
are identified (transition cells marked by light gray quads) and templates are applied
to all identified cells. Finally, previously active edge nodes are removed from the edge
node set. A quad is marked for refinement, if any of its vertices is invalid, or the smallest
dot product of a vertex normal with all neighboring vertex normals is below a certain
value (0.99 proved successful in our experiments).

(ii) LDI Extension Sampling. Requests for additional LDI samples using the raycaster
contain the direction and the new image position. All requests of one refinement pass
are collected and processed at one go. Quad generation then works analogous to the
initial mesh creation process (Section 5.2.1). If no new quad can be generated with the
samples, an “invalid” vertex is used instead whose depth and normal are generated by
interpolation from surrounding vertices. Invalid vertices are used for refining toward
boundaries and silhouettes (iii). Primitives containing invalid vertices at the end of the
refinement phase are removed.

(iii) Growing toward Boundaries and Silhouettes. The initial quads might not suf-
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Figure 5.9: Refinement at silhouettes. (a) Initial quad and true silhouette (gray curve). Cells
containing true (gray) and invalid (white) samples are refined. (b) After two levels of refinement
(c), the edge growing rule marks the right upper quad because it contains a valid sample on its
left edge. (d) To resolve the hanging node at the right edge of the original quad, a new quad to
its right is generated (e) and subdivided (f)-(g) to the respective level.

L]

Figure 5.10: Exemplary refinement of (a) |
toward edges (and corners) with triangles

(b) and quads (c).
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fice as features can be missed that are smaller than the initial sampling distance. Thus
boundaries and sharp tips of the isosurface might not be represented appropriately
(Figs. 5.9 and 5.10). To refine toward these (Fig. 5.9(a)), a new top level quad is added
if one valid vertex exists on an open edge of an existing top level quad (quad before
subdivision) (Figs. 5.9(b)-(d)). Such a vertex represents a hanging node that is resolved
by quad subdivision (Figs. 5.9(f)-(g)). Adding a top level quad instead of an already
refined one allows efficient recognition of quads growing from different boundaries
to a sharing edge, thus preventing mesh overlaps. Furthermore, the refinement tem-
plates with their 1-level-difference criterion or marked vertices can be handled more
consistently.

5.2.3 Combining Meshes

First, we trim overlapping parts (Section 5.2.1) using r = 1 (i.e., keeping only vertices
whose normal best matches its original view direction) and then remove the “boundary”
layer of cells featuring an edge with no neighbor (e.g., Fig. 5.7(d)). The resulting
parts are combined by inserting so-called bridges (i) that connect close meshes. The
remaining holes in the connected meshes are filled with triangles (ii) which can be
quality-improved (iii), and finally converted to quads (iv).

(i) Bridge Generation. Bridges are quads with one edge e, being connected to mesh
a, one edge e, connected to another mesh b, and two connecting open edges e,, and
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(i) Sew triangles (ii) Greedy triangle merging

) AL T T L (B
(iv) Quality Pass w/ Laplacian Smoothing

(iii) Fill triangle holes

(a) Triangle to quad conversion for sewing regions (light (i)-(iii)) ~ (b) Quad mesh from CFD flow

Figure 5.11: Merged and refined quadrilateral isosurface meshes from three LDIs.

epa- Bounding boxes are used to determine the distances of all mesh patch pairs a and b
in order to identify the bridge to be inserted with the smallest edge lengths |e,| and
lesa|- The bridge is kept and thus the meshes are merged if neither |e,;| nor |ey,| exceed
[ = |eq| + |ep|- In our experiments, the search was stopped early if |eq| + |epa| < /2.

(ii) Hole Filling. Bridges reduce mesh combination to a hole filling problem. An
ear-cutting algorithm is employed for this due to its simplicity and low computational
complexity: iteratively the shortest possible edge is introduced that forms a triangle
with two existing open edges until there are no open edges left. While these approaches
are “heuristics” that typically cannot be proven to provide the correct result [Held,
2000], refinement and trimming typically provide good-natured problems.

(iii) Triangle Mesh Enhancement. First, all quads that are directly adjacent to hole-
filling triangles are split into triangles (resulting in the sewing region Fig. 5.11(a)(i)
(light)). Next, edge flips based on edge length are performed. 3-to-1 triangle merges
then resolve configurations of three adjacent triangles that are almost coplanar, which
is detected by a vanishing determinant of the spanned tetrahedron.

(iv) Quad Mesh Generation. The Catmull-Clark algorithm would generate three
quads for each sew triangle, resulting in a high primitive count. Instead, we iteratively
combine the pair of triangles that leads to the best quad according to a simple quality
metric (ratio of minimum to maximum edge length) (Fig. 5.11(a)(ii)). Typically a small
number of triangles remains, for which iteratively the triangle pair with the shortest
connecting path is determined using Dijkstra’s algorithm. On this edge-connected
path, we go from one triangle to the other, splitting traversed edges by introducing
edge vertices (Fig. 5.11(a)(iii)). Passing a quad straight splits the quad in two, while
passing adjacent edges splits the quad in three (using the quad refinement template from
Fig. 5.8(d)). Finally, quads sharing two edges are merged, the vertex valence is improved
via quad edge flips toward four, and Laplacian smoothing is applied(Fig. 5.11(a)(iv)).
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Fig. | Mesh. [ Ref [ Bridge [ Sew | Qual. [ Tot.
Klein Bottle [Knoll et al., 2009a] (1282)
Table 5.3: Timing results in seconds 5657 ] 004 [ - [ - ] - [ - | om
. Barth [Knoll et al., 2009a] (642, 1282, 2562, 5127)
for different data sets and steps of 570 T 002 - = - = 0.02
our approach (if executed) on a sin- 5700 | 0a1 - - - - 0.11
gle core of an Intel Core i7 with 3.4 : Zéi)) (1)';431 - - - - (1)‘3431
GHz. Tlmll’lgS do not include ray- Marschner-Lobb [Marschner and Lobb, 1994] (642, 5122)
casting times to generate the under- 5.12(d) | 0.08 - 0.11 0.04 0.23 0.46
lvine LDI 5.12(e) | 0.08 0.73 0.62 0.1 0.79 232
ymg . 5.12(6) | 7.19 - 0.82 338 2207 | 33.46
Coulomb [Knoll et al., 2009a] 64
511(a) [ <0.01 [ <0.01 [ 001 [ 001 | 184 [ 186
Sphere [Uffinger et al., 2010] 642
511(b) [ <0.01 | - [ <001 ] 001 | 040 [ 040
Shock Channel [Uffinger et al., 2010] 642
58 [ <001 ] o001 [ - - [ - T oom
Slices 162,242 322
22 +y? + 22 +sin(5z + 15y + 62) — 1
5.13(b) | <0.01 - <0.01 | <0.01 | <0.01 | <0.01
5.13(d) | <0.01 - 0.01 001 | <0.01 | 0.02
5.13(f) | 0.02 - 0.02 0.01 0.04 0.09

5.2.4 Results

For evaluation, we use the higher-order unstructured grid raycaster by Uffinger et al.
[2010] using CUDA, and the implicit surface raycaster by Knoll et al. [2009a] imple-
mented in Cg. Data sets and timings are listed in Tab. 5.3. Results were obtained using
three viewing directions along the z, y, and z-axis unless otherwise noted. Fig. 5.7(a)-(c)
show that the larger r, the larger the mutually covered regions, thus reducing the risk
of holes, but also potentially leading to invalid coverings. In our experience, r = 0.5
provides a good trade-off overall. The timings (Tab. 5.3) also suggest that r could be
interactively adjusted to best fit the data set and the requirements of the user. Fig. 5.7(d)
shows r = 1 with the additional boundary trimming prior to sewing. Preview meshes
generated from different LDIs resolutions (Fig. 5.7(e)-(h)) provide more details for
higher resolutions with better coverage of thin features and strong curvature with an
approximately linear relation between primitive numbers and generation time. Even
the generation of high-resolution meshes at interactive rates would be possible, consid-
ering the large improvement potential through parallelization. An LDI from only one
direction may already suffice depending on the nature of the isosurface (Fig. 5.8).

In Fig. 5.12, we demonstrate the accuracy of our approach using geometric distances
in comparison to meshes from MC [Cignoni et al., 1998] with an approximately equal
triangle count. We compare all vertices of the candidate mesh to a reference (MC with
5M triangles) (forward) and all vertices of the reference to the candidate (backward). In
contrast to MC with a similar triangle count, our meshes deliver close to perfect results
with forward comparison, and are also consistently better for backward comparison
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(e) . (f) 5122

Figure 5.12: Comparison of our approach (bottom row with LDI resolution, “ref” denotes
refinement) to MC (top row with triangle count) using the Marschner-Lobb signal, with vertical
image pairs having approximately the same triangle count. Forward and backward geometrical
distances are additionally depicted (top and bottom right) using a rainbow color map from 0 to
0.005 and 0.03, respectively.

(a) MC, 1.6k  (b) Our, 162 (c) MC, 3.8k  (d) Our, 242 (e) MC, 15.1k  (f) Our, 48>

Figure 5.13: Comparison of results from our approach (LDI resolution given) to meshes from
MC (triangle count given) with a similar triangle count using the Slices data set.

(particularly at signal peaks in comparison to the jagged coverage of MC). Much better
results than MC (Fig. 5.12(a)) are also achieved for very low resolutions, despite some
artifacts due to insufficient sampling (Fig. 5.12(d), incorrect bridges, and hole filling as
both steps rely on sampling distance for finding correct matches). Refinement leads to
smaller gaps between mesh patches that belong together topologically and thus reduces
artifacts (Fig. 5.12(e)). However, although significantly decreasing, small holes in the
peaks of the signal in boundary regions even persist with fine sampling (Fig. 5.12(f)) as
connections across the peak are shorter than along the peak. This could be fixed by
advanced bridging and hole filling heuristics considering normal variation in addition
to distance. Nevertheless, as also shown by Fig. 5.13, from low to high resolution, our
approach was able to generate a more detailed approximation for roughly equal triangle
counts.
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5.2.5 Directions for Further Research

A data-dependent LDI view selection would allow to accurately and efficiently capture
the views that are of interest. Additionally, a more in-depth evaluation of the technique
in comparison to other meshing techniques beyond classic MC is required, e.g., by
using topology verification techniques [Etiene et al., 2012]. Further work might also
include considering different mesh combination strategies, testing our algorithm with
other type of higher order data as well as parallelizing expensive stages of the pipeline.






CHAPTER

REMOTE AND IN-S1TU VOLUME
RENDERING

Storage and network bandwidth constraints more and more become the limiting factor
for overall compute performance. This has significant impact on almost all applications
run on larger scale machines, as they typically not only need to process a large number
of operations, but also produce and/or require significant amounts of data. One general
approach to alleviate this issue is to directly process the data as locally as possible where
it has been generated by simulation or reconstruction from sensor data. For instance,
data size can be significantly reduced by extracting certain structures or transforming
it to any kind of different representation (like the view-dependent representations
discussed in Ch. 5). A slightly different approach is to not generate and transmit any
interaction-capable representation at all, but to visualize data remotely on-demand on
the machine that originally generated it.

Sec. 6.1 An approach for remote visualization that shares concepts, criteria, and com-
putational effort for integrated lossy frame compression and adaptive volumetric
rayCasting. . ......oiin [not yet published]

Sec. 6.2 Concurrent reconstruction and visualization of volume data on a GPU cluster.
Volume bricks can be prioritized for reconstruction and are integrated upon
completion into a low resolution representation. This allows for the interactive
exploration of the best available data at all times. ........... [Frey et al., 2009]
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6.1 Integrated Adaptive Sampling and Compression
for Remote Volume Rendering

Performance
Model (29)

In interactive remote rendering, there are basically two major components causing the
response delay to user input: the generation of the visualization and the transfer of the
resulting image. In practice, the time required in each one is influenced by a variety
of factors, including the power of the hardware used for rendering, the complexity
of the data set, the viewpoint, the quality of the network connection of the client to
the server, and so on. As a result, in different scenarios, the achieved latency varies
hugely. Typically, the image generation and transfer parts are controlled independently
by specifying the quality of the visualization and the quality of the lossy compression
used for transfer. As a consequence, different parameter settings need to be chosen in
each scenario to harmonize image generation and transfer and yield the most optimal
result with respect to user-defined constraints.

In this project, we attempt to optimize remote rendering with the constraint of a
fixed setting regarding the response latency to a user request. For this, we use a local
heuristic that aims to achieve the best quality for each individual frame. While the
cost for rendering and transfer need to be reduced individually, they need to be related
in a meaningful way. To achieve this, our approach for remote visualization shares
concepts, criteria, and computation steps for integrated lossy frame compression and
adaptive volume raycasting. Without a tight integration, high effort for rendering
would eventually be wasted by subsequent compression, or data transfer size would
be unnecessarily large with respect to the details provided in the frame. For this tight
integration, we not only do compression but also adaptive sampling in the frequency
domain. This allows us to directly relate the loss that stems from undersampling and
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Frequency Domain
Operations (Sec. 6.1.2)

Figure 6.1: Processing a frame on the server.

lossy compression, and map it to a combined image quality metric. For this purpose,
we use multi-scale structural similarity (MSSSIM) [Wang et al., 2003]. MSSSIM is a
full-reference metric (i.e., it is computed with respect to the perfect image), thus this
mapping needs to be generated offline. For this, we use a series of representative camera
paths.

Quality Metrics
Quality metrics quantifying the achieved outcome from a users perspec-
tive can provide more meaningful target values for optimization.

29

Our approach follows an extended progressive visualization procedure on the server
(Fig. 6.1). After refining the current frame by means of adaptive sampling (Sec. 6.1.1),
we update the frequency representation of the modified parts (Sec. 6.1.2). The frequency
representation is then used to estimate a number of key figures required in the following,
including the compression quality that yields the requested latency based on the time
spent for sampling already, and an estimation of the overall frame quality (Sec. 6.1.3).
Based on this, it is decided whether the current frame is further refined in another
iteration, or whether it is compressed and transferred to the client (Sec. 6.1.4).

6.1.1 Adaptive Sampling

Blocks. The image space is partitioned into blocks. While we restrict ourselves to 8 x 8
blocks in the following, basically any block size could be used. Whenever a block is
processed, the additionally required samples for the next resolution level [ need to be
generated by the renderer. For this, predefined sampling patterns are used with respect
to [ (Fig. 6.2).

Since determining deviation values ¢ that are required for control and adaptive sampling
(discussed in more detail below) are computed using subsequent resolution levels,
resolution levels 0 and 1 are computed in the same step. Here, resolution level 1 does
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Resolution | #Additional | #Frequency
Level Samples (S) | Values (N)
0 R 1
1 0 4
2 [ 3t0s 9
3 [ 12016 2 Figure 6.2: Image-space sampling pat-
4 M 48 64 terns for different resolution levels.

not require any additional samples, as values from other blocks are used (Fig. 6.2).
Similarly, resolution levels 2 and 3 also use adjacent pixels from the neighboring right,
bottom, and bottom right blocks, respectively. This sharing of samples requires each
block to check whether the neighboring right, bottom and bottom right blocks are also
updated to the next level. If they are not, their shared samples at the border need to be
added extra.

In case of a change to the render configuration between frames, all blocks are reset
to level [ = -1 and refined to [ = 1 in the first iteration. Otherwise, refinement just
continues where it left off from the computation of the previous frame.

Refinement Iterations. For adaptive sampling, the blocks are sorted with respect to
their deviation value ¢ (Sec. 6.1.3). Blocks that have reached their full resolution level
are always set to 0 = 0 and removed from the list. To be able to leverage massively
parallel hardware like GPUs, samples for several blocks need to be generated in parallel
in each sampling iteration. Starting from the block with the highest d, we select blocks
for refinement with decreasing d, until a predefined chunk size is reached. Similar to
Sec. 4.2, this chunk size should be chosen such that it is big enough to fully occupy the
target hardware, but also as small as possible for sufficient granularity.

6.1.2 Frequency Domain Operations

Frequency Domain Transform. Transform and quantization work akin to common
image and video compression techniques. In particular, we orient ourselves at the
procedure of JPEG [JPEG, 1992]. First, the image is transformed into YCbCr color space.
Each (8 x 8) block is then transformed individually to the frequency domain using the
discrete cosine transform (DCT).

In order to obtain a frequency representation for the incomplete sampling patterns
from Fig. 6.2, i.e., where not all 8 x 8 pixels of a block are given, we use the approach
due to Bolin and Meyer [Bolin and Meyer, 1995] to estimate two-dimensional type-II
DCT coefficients G, ,, from arbitrary samplings. Their approach employs least-squares
fitting and obtains S frequency coefficients from S samples. The least squares solution
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for G, ,,, with 0 <4 < S from the S monochromatic samples z_, , located at positions
(zs,ys) within the block, is given by

S-1
a‘rg mln ( Z (ggs,ys - Tgs,ys)2) ) (61)

Gui»“i’ 0<i<S s=0

with rg_ representing the sampled values for either of the Y, Cj, or €. color channels.

Eq. 6.1 is then solved, with X being the transformed set of frequencies and Y denoting
the transformed set of samples:

X =Jy, (6.2)
with
S-1
Ji,j = Z Cx57ui0y37vi01'57uj Cys,vj (6.3)
s=0
S-1 1
}/i = Z Tacfsayscx&uioysvvi ’ Xl = ZK/(UZ)/{(U@)G’Z“UZ (64)
s=0

In our implementation, we solve for G¢, , using a precomputed N x S matrix for each
resolution level. This can be done by a simple matrix multiplication with Y, the
transformed set of samples of the block. We implemented this on the GPU such that
one frequency value G, , is computed per thread.

Frequency Weighting. The human eye is geared toward detecting small brightness
variations over comparably large areas, but is not so good at distinguishing the exact
strength of a high frequency brightness variation. To account for this, frequencies are
weighted with factors depending on their position within a block and their channel ¢
(luminance or chrominance). For this, we use the JPEG quantization matrices Q¢ (see
JPEG Standard [JPEG, 1992], Annex K, Luminance and Chrominance). In detail, the
weighted components C_}fw for channel c of GG, , are then simply determined as follows:

c

_ G
G = = (6.5)
u,v

Frequency Deviation. For estimating the overall frame quality as well as for ordering
the blocks for adaptive sampling, we determine the deviation ¢ for each block. In this
process, we distinguish between spatial deviation d; and temporal deviation d,. Spatial
deviation quantifies the difference between the current resolution level [ of a block, and
its previous resolution level [ — 1 for the currently computed frame f by determining
the maximum deviation of any weighted frequency component G, ,,:

6s= max (|Guio(l, f) = Guws (1= 1,£)]) - (6.6)

0<i<|G(L.f)
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Temporal deviation d, is computed similarly, yet it quantifies the difference between
the current frame f and the previous frame f — 1:

5t = ,m—ax (|éui,vi(l, f) - Gui,vi(lmaxa f - 1)|) . (67)
0<i<|G(1,f)]

In the end, the total deviation ¢ is determined as the minimum of the spatial and the
temporal deviation:

d = min(Jg, o). (6.8)

The minimum is taken because ultimately only one of the measures is adequate, as
discussed in more detail in the following paragraph.

Reusing Previous Frequencies. For each block individually, it is decided whether
frequencies from the previous frame should be reused. This is done with respect to
spatial and temporal deviation values. If the temporal deviation is smaller, frequencies
are taken from the previous frame for the positions for which no frequencies have been
computed yet:

é(lmaxa f - 1) + (é(laf) - é(lvf - 1)) (6'9)

The heuristics behind this is that if the difference to the previous frame for a block is
low, then it is assumed that the block remained largely the same, and if it has been
previously refined to a high resolution, taking its frequencies is more adequate than
using a low-resolution version of the current frame.

6.1.3 Estimation of Key Figures

The main constraint in our approach is the specified latency [ from a user request to the
response. As indicated above, in the following discussion, we restrict ourselves to the
two major cost factors frame generation and transfer. Accordingly, depending on the
amount of time ¢, spent for processing a frame already, [ — ¢; time remains for further
sampling and data transfer. Several measures are computed in this step to determine
how latency [ can be achieved, and to supply the control component with the basis to
decide how the remaining processing time [ — ¢ ; of the frame is spent most efficiently.

First, we aim to determine the compression quality that would lead to data size 7 and
eventually require [ — t; to transfer the compressed frame to the client. Below, we first
quickly outline JPEG’s quantization process that we use in the following (a), and how
we can quickly estimate the resulting data size after entropy encoding (b). Based on
this, the compression quality is estimated that yields the target data size 7 (c). With
the current state of sampling and the determined compression quality, we estimate the
resulting overall quality of the frame (d). Finally, estimations regarding the achieved
overall quality after one more sampling iteration are carried out (e).
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(a) Compression. In JPEG, quantization of the frequency terms is steered by the
user-defined quality term ¢ with 0 < ¢ < 1:

. Ge '
Goo= [—"”] , o= { /(). ifq<1/2 (6.10)
’ (6]

2-2q, otherwise.

Hence, the lower g, the stronger the quantization, yielding a higher loss in quality but
also allowing for stronger compression. For further increasing the efficiency of the com-
pression, we use the transferred frequencies from the previous frame for determining a
residual. For this, as the current compression quality ¢; may differ from the compres-
sion quality of the previous frame ¢;_;, the previous (quantized) frequencies are scaled
accordingly by a factor of a(gs-1)/c(qy) to account for this. Finally, a combination of
LZ4 and Huffman compression is used for entropy encoding.

(b) Data Size Estimation. Compression O finally reduces the size of the quantized
frequencies. As full compression is relatively expensive, we use an estimation © to
quickly approximate the resulting data size. This is required for determining ¢ in
the subsequent step (c). Our experiments showed that just 10% of the original data
is already enough to allow for a sufficiently exact estimation in almost all cases. As
entropy encoding works more efficiently on larger data sizes, the outcome of the partial
compression cannot just be scaled up by a factor of ten. To determine the factor that
should be used, we carry out simple linear fitting without a constant term with partial
and full compression value pairs over the last 10 frames. This can be done easily, as the
ground truth O is evaluated every time the full frame is compressed for transfer to the
client. In our experiments, this such factors typically ranged from 6-8.

(c) Compression Quality Determination. This fast way to estimate the size of the
compressed data now allows us to optimize the compression quality ¢, such that the
target data size 7 is met:

¢, = arg min (é(é, q) - 7') : (6.11)
q, 0<g<1
In our implementation, we use a simple bisection approach to solve this optimization
problem.

(d) Frame Quality Estimation. To estimate the overall frame quality, we use a pre-
computed mapping function from the quantification factor from image compression
and the root-mean-square deviation (RMSD) d, of deviations ¢ over all blocks from

sampling:
ZO<1‘<|B\ 5(1)2
= _— 12
00 \| B (6.12)

As indicated previously, we use MSSSIM (=) to quantify frame quality in the range
[0, 1], with 0 denoting the maximal difference between two images, and 1 denoting the
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) 0.95
o 075
0.7 Figure 6.3: Measured MSSSIM data
with = (grid from measured data)
051155 255 a(q) and its estimation = (planar fit with
30445570 Eq. 6.14) generated by Levenberg-
Marquardt fitting.

identity of two images (i.e., full quality in our context) [Wang et al., 2003]. Evaluating
= on-the-fly is impractical, as it is both computationally expensive and requires a full
sampling (with frequency representation I') for reference. Thus, we estimate = with =
on the basis of g and ¢,: .

=(G,T) ~Z(dq, q.). (6.13)

In detail, we compute = as follows:
26,q)=a-6+b-a(q)+1. (6.14)

The matching of the parameters a and b is carried out offline using a data base of
precomputed values of = and their respective d, and ¢, by means of the nonlinear
least-squares Levenberg-Marquardt algorithm (Fig. 6.3). Note that the fit works well in
practice because both ¢ and «/(q) represent values in the same domain (deviations of
frequency terms).

(e) Prediction of Frame Quality after the Next Iteration. From the previous and
current iteration, the frequency deviation value of the next frame needs to be predicted
for the control stage (Sec. 6.1.4). It is computed as the difference between the RMSD for
the maximum and minimum of the deviation values of each block 7, with j denoting
the current sampling iteration:

ASo = ZOSi<|B| max(5(z,j),5(z,] - 1))2 ZOSi<\B| mln(é(laj)aa(%j - 1))2
. Bl i B |

(6.15)

6.1.4 Control

Local Control Heuristic. In the control stage, we aim to optimize the quality of each
frame as specified by quality metric =. This should be achieved by steering the size of
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(b) kSamples=102, ¢ = 0.16, = = 0.91
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(c) kSamples=151, ¢ = 0.05, = = 0.88 (d) Development of key figures within a frame.

Figure 6.4: (a)—(c) Selected frames within the refinement of a frame and (d) representative
development of differences and measures. This was taken from the first frame of the Chameleon
data set, without interrupting the frame when control detected the optimum.

the allocated time slots for sampling and transfer, respectively. Our local heuristic can
be seen as a kind of (limited) hill climbing optimization. In detail, sampling is stopped
and the frame is transferred to the client if the current frame quality is higher than the
predicted frame quality after the next iteration:

2(da, ¢7) > Z(da + Adq, ). (6.16)

Here, 7/ is the determined target data size, based on the assumption that the next
sampling iteration takes as long as the current sampling iteration.

Local Versus Global Optimization. Note that this is a local heuristic targeted at
optimizing each frame individually instead of the whole sequence of frames in an
interactive rendering session. An optimal choice over a whole sequence of frames
would require knowing (or estimates regarding) future events. For instance, spending
more time on sampling can be advantageous overall if the render configuration does
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(a) Image quality and latency. (b) Time usage.

Figure 6.5: Flexible settings against a fixed quality setting of ¢ = 0.2, a bandwidth of 1MB/s and
a rendering performance of 2M samples per second.

not (or only marginally) change for the next rendered frame, as samples can be reused
directly. In such a case, quality of the current frame might be sacrificed due to stronger
compression as less time is available for transfer, but the more refined image provides a
better basis for continued sampling in upcoming frames. As exact knowledge about
future events is intrinsically not available in interactive applications, assumptions are
required to still employ a global optimization approach (e.g., Sec. 4.2).

6.1.5 Results

For the purposes of detailed evaluation, the comparability of different variants, and
flexible development, we utilize a simple simulation of an interactive remote rendering
application on the basis of precomputed reference camera paths. For this, we used the
Chameleon and Flower camera paths that were also used in Sec. 4.2. Regarding the
cost of fundamental components of or approach, frequency transforms can easily be
executed in parallel, and basically come down to floating point MAD (multiply-add)
operations that are very efficient on GPUs. In our experiments, these operations took
around 2-10 ms for transforming a full frame on a NVIDIA GTX580. A major cost factor
is the full compression of a frame using a combination of Huffman and LZ4 compression
which takes around 30-40 ms on an Intel Core i7-2600k.

Fig. 6.4 shows selected snapshots during the computation of an exemplary frame (a)-
(c) as well as a chart of the development of key figures (d). It can be seen that the
deviation due to sampling ¢ and the deviation due to compression «(¢) monotonously
decrease and increase, respectively, with the number of samples taken. In the case of
compression, this is due to the fact that less time is available for transfer and thus a
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‘ kSamples/s  kB/s data q% ‘ min(Z) max(E) rmsd(Z) max(t) rmsd(t-1)
a 2048 1024 Chameleon 0 | 0.846 0.977 0.114 0.127 0.003
b 2048 1024 Chameleon 20 | 0.849 0.972 0.122 0.145 [OOZIN
c 2048 1024 Flower 0 | 0817 0.964 0.130 0.111 0.003
d 2048 1024 Flower 20 | 0.819 0.938 0.135 0.146 OO
e 2048 8192 Chameleon 0 | 0.931 1.000 0.034 0.115 0.002
f 2048 8192 Chameleon 20 | 0.923 0.983 0.042 0.105 0.002
g 2048 8192 Flower 0 | 0915 1.000 0.053 0.103 0.001
h 2048 8192  Flower 20 | 0.909 0.983 0.059 0.105 0.002
i 8192 1024 Chameleon 0 | 0.882 0.982 0.085 0.136 0.004
j 8192 1024 Chameleon 20 | 0.850 0.980 0.120 0.134 [OOIN
k 8192 1024 Flower 0 | 03850 0.982 0.091 0.112 0.003
1 8192 1024 Flower 20 | 0.818 0.955 0.126 0.136 [0 REN
m 8192 8192 Chameleon 0 | 0.979 1.000 0.008 0.122 0.002
n 8192 8192 Chameleon 20 | 0973 0.983 0.019 0.103 0.001
0 8192 8192  Flower 0 | 0958 1.000 0.016 0.106 0.001
p 8192 8192  Flower 20 | 0.967 0.983 0.022 0.102 0.001

Table 6.1: Results for different balancing settings and input scenarios.

lower value for ¢ needs to be taken to achieve the target latency. This reverse behavior
of the two functions typically results in one maximum for the overall quality measure
=, as well as its estimated counterpart =.

Fig. 6.5 depicts the performance of flexible balancing against a hand-tuned, yet fixed
compression quality setting ¢ = 0.2. Fig. 6.5(a) shows major drawbacks of a fixed
compression quality setting. From 0 s to 18 s, the content of the frame changes only
slowly, and higher compression quality is required to reach higher quality overall. From
1 8s, frames change more strongly between time steps, and the given latency constraint
of 0.1 s is significantly exceeded by the fixed quality setting. Fig. 6.5(b) shows that, with
respect to the fixed compression setting ¢ = 0.2, transfer time is traded for rendering
time in the flexible approach, allowing for higher quality overall.

Tab. 6.1 shows measures for different data sets, rendering speeds, bandwidths, and
compression quality settings. Overall, it can be seen that our approach flexibly adapts
to systems with different performance characteristics, in terms of quality values =
performs better than the tuned fixed setting (¢ = 20%). Furthermore, for the low
bandwidth settings (1024 kB/s), the fixed quality setting often significantly exceeds the
target latency time (Tab. 6.1b, d, j, and 1). This may also happen in the variable setting
(a), yet the RMSD is still much lower than that of ¢ = 0.2 (b). Here, it is not directly a
consequence of the steering heuristic but rather due to mispredictions of the data size
of the full compressed frame.
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6.1.6 Directions for Further Research

The evaluation of the approach was carried out using a simulated interactive remote
rendering system as this allows for a simpler, cleaner evaluation of the core concepts,
minimizing side effects that occasionally occur when doing timing measurements.
However, as a next step, the full system needs to be evaluated in practice, and compared
against other remote rendering systems. Furthermore, with the discussed approach
as a basis, more flexible, adaptive adjustments could also be applied directly (like the
one discussed in Sec. 4.2). In particular, it would be interesting to compare the local
approach of optimization taken here to global optimization approaches like in Sec. 4.2.
Furthermore, as entropy encoding consumes a significant share of processing time, we
would like to consider recently developed GPU entropy encoding methods as drop-in
replacements for our current technique (e.g. [Patel et al., 2012]). This could further
help with the issue of the occasional mispredictions of compression data size that may
lead to violation of the latency restrictions when underestimating the resulting data
size. In addition, further means of estimation should be evaluated. Finally, we aim
at integrating more advanced sampling patterns to potentially improve the rendering
results particularly in low-quality settings.
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6.2 Distributed Concurrent CT Reconstruction and
Visual Analysis

Adaptability
(19)

Modern CT scanners acquire high-resolution 2D X-ray images from a huge number
of different angles at rapid pace. Engineers and scientists require a high-resolution
reconstruction and segmentation, while it is often also critical to have the results, e.g.,
of a non-destructive quality test, at hand as early as possible. However, volumetric
reconstruction from X-ray images is very time consuming, even with fast GPU recon-
struction algorithms (the most popular method due to Feldkamp et al. [1984] has a
runtime complexity of O(N?)).

Here, to alleviate this issue, the reconstruction and segmentation processes of volumetric
bricks are distributed to a GPU cluster. By employing a hybrid mult-resolution renderer,
finished full-resolution parts are successively displayed in the context of a low-resolution
volume. The low-resolution data set can be created quickly by a single GPU within
several seconds on a single node. The full-resolution volume is progressively created by
the cluster nodes, that also segment and render their respective blocks. As in practice
some bricks are of higher interest to the user than others, bricks can be prioritized
graphically in a low-resolution preview volume.

Priority
Different areas or parts of the result might be more important to the p
user than others. Computing them with higher priority to make them !
available earlier can help the user to reach conclusions more quickly.

6.2.1 Architecture Overview

The integrated reconstruction and visualization system consists of two classes of nodes:
a single front-end node and one or more back-end nodes. The front-end node displays
the volume rendering and exposes the interface that allows the user to influence the
order of reconstruction. For this, it generates a low-resolution preview reconstruction
of the volume at startup, that is subsequently used for rendering the parts of the volume
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Figure 6.6: The user can find interesting regions
by stepping through the layers and simply click on
a sub-volume that should be prioritized in recon-
struction or changed in rendering mode (selected
sub-volumes are highlighted red).

that are not yet available at full resolution. At the beginning, this low-resolution preview
reconstruction volume data is exclusively used for rendering. As a detailed sub-volume
block has been reconstructed on a back-end node, it is rendered on the same node and
included in the final rendering on the front-end node as a kind of pre-integrated sub-
volume block using our hybrid raycasting and compositing approach. Additionally, the
sub-volume is queued for region segmentation on the multicore CPU of the respective
node. The segmentation module is a fully automatic 3D flood-fill variant designed
for distributed operation on multicore CPUs (see [Frey et al.,, 2009] for a a detailed
discussion). It uses multiple CPU threads while reconstruction and rendering are done
on the GPU concurrently. At the front-end node, the preview rendering can further be
superimposed by a grid showing the sub-volume blocks that are reconstructed on the
back-end nodes (Fig. 6.6), which allows the user to specify the order of reconstruction
that is then communicated from the front-end node to the back-end nodes. It displays
the coarse volume and allows the precise selection of sub-volume blocks by mouse click
for prioritization.

Reconstruction of Sub-volume Blocks

The Feldkamp cone beam reconstruction algorithm works for industrial CT scanners
which move the source in a circular trajectory shooting rays diverging as a cone
through the object of interest on a detector [Feldkamp et al., 1984; Turbell, 2001].
Several GPU implementations have been presented in recent years [Xu and Mueller,
2005; Scherl et al., 2007]. In general, the Feldkamp algorithm can be subdivided into two
phases: the preparation of the projection images and their subsequent depth-weighted
backprojection into the volume. The preparation consists of weighting and filtering
each image with a filter kernel derived from a ramp filter. The computationally most
expensive part of the reconstruction is the backprojection, on which we will concentrate
in the following. It is commonly implemented by determining for each volume element
which projection image value it corresponds to by projecting it along the X-ray from
the source to the detector. The depth-weighted sum of the respective pixels from all
projection images yields the reconstructed voxel value.
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Figure 6.7: For the reconstruction of a sub-volume (or-
ange), only a part of the original projection image is

needed (yellow), and in the implementation only the small- i
est axis-aligned rectangle (red) containing it is loaded. Object

In order to completely reconstruct a group of voxels in parallel by backprojection in a
single CUDA kernel pass, all required projection image data must reside in graphics
memory. This can be accomplished - even for large data sets as we focus on — by only
considering one sub-volume block for reconstruction at a time such that just subsets
of the projection images are needed (Fig. 6.7). The dimensions of the sub-volumes are
determined in a preprocessing step to cover the volume with a minimal amount of
blocks considering the graphics memory available. All projection images are cropped
and stored in a single container texture, similar to the storage of renderings for the
front-end raycaster. Please refer to Frey et al. [2009] for further details regarding the
reconstruction process.

Hybrid Multiresolution Volume Rendering Incorporating Sub-volume Blocks

Whenever requested by the front-end node, a back-end node renders images of the
high-resolution sub-volume blocks it has reconstructed and segmented. The renderer
only raycasts the pixels that lie within the image-space footprint of the current sub-
volume with respect to the camera parameters transmitted by the head node. As the
reconstruction of a subvolume can be interrupted by rendering requests, the renderer
must be able to handle sub-volumes for which high-resolution images are only available
up to a certain slice b. For this, the renderer substitutes the missing high-resolution
slices with coarse volume data that has been reconstructed by the front-end node during
the initialisation phase. In order to avoid dynamic branching on the GPU and to achieve
more efficient texture fetching, the coarse volume data of resolution [ is appended to
the texture of high resolution h. Thus, the sampling coordinates s on the ray must be
scaled to yield the texture coordinates c for the coarse volume past the boundary b in
z-direction to low-resolution data: ¢ = (5,7, 57y, (5. —b) -7, +b) with 7 = (}IZ—IL, ,%, /ITZZ
for s, >band 7 = (1,1, 1) otherwise (note that b = h, for a complete block).

Eventually, the renderer on the front-end node integrates the high-resolution imagery
from the back-end nodes with the coarse volume data in a raycasting process (Fig. 6.8).
High-resolution images are raycasted by the front-end node as a kind of pre-integrated
voxels. All pre-rendered images are stored in one color texture on the graphics card,
similar to the container texture of the reconstruction algorithm. Images are placed next
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to each other until the end of the texture is reached and then a new row of images is
started at the base level of the tallest image of the previous row (Fig. 6.8).

The information on whether a high-resolution rendering for a sub-volume exists, respec-
tively the coordinates to access it, are uploaded to the graphics card’s shared memory
for efficient access. Two 16 bit integers per sub-volume are utilised to determine the
texture coordinates of a pre-rendered pixel for the sample point of a ray. These coor-
dinates have already been pre-modified such that the pixel position of a ray only has
to be added to fetch a pre-rendered pixel. Due to the use of shared memory and the
overloading of the color map access, no actual branching is required and the amount of
texture memory accesses in the sampling loop is the same as of a standard single pass
raycaster: one volume texture fetch requesting a scalar density value and one color
transfer texture lookup retrieving a 4D vector. Yet here the color texture lookup is also
used for accessing a rendered high-resolution image, depending on the sub-volume the
respective sample is in.

6.2.2 Results

We tested our system on an eight node GPU cluster with an InfiniBand interconnect.
Each node was equipped with an Intel Core2 Quad CPU, 4GB of RAM, an NVIDIA
GeForce 8800GTX and a commodity SATA hard-disk. One node acted as front-end
creating a 2562 voxel preview volume, while the remaining ones reconstructed a 10243
volume from 720 32-bit X-ray images with a resolution of 10242 pixels (Fig. 6.9 shows the
volumes). The calculated sub-volume size was 3523 resulting in a total of 27 sub-volumes.
The time from program start until the preview volume is reconstructed on the frontend-
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(a) Coarse (b) Coarse/Full (c) Full

Figure 6.9: Renderings for different states of reconstruction with a coarse volume resolution of
256 and a high-resolution of 10243. The left half of figures (a) and (b) depicts the difference to
(c) (level adjusted with gamma value 2.5), while the right half shows the original rendering.

node and rendered is around 29s. Most of this time is required for the I/O caused
by projection image downsampling that runs in parallel with the data distribution,
while the actual reconstruction on the GPU takes only 1.3s. The determination of the
sub-volume dimension only takes a few seconds and runs concurrently.

Fig. 6.10 shows the data distribution and reconstruction times measured on the front-end
and the back-end nodes. The times for the front-end node also include communication
overhead and show the time span between program start and the availability of the
complete high-resolution volume. In contrast, the numbers for the back-end nodes
comprise only the longest computation. So although the average reconstruction time on
the back-end nodes quickly decreases with an increasing number of nodes, the observed
time on the front-end node declines more slowly, because this timing includes the input
distribution and other communication overhead. The rendering times indicate the
time span between the moment the front-end node requests new sub-volume images
and the moment the first respectively the last remotely generated image is used in
the visualization. Images from the back-end nodes can either be sent in batches or as
separate messages. In our measurements, we let the batch requests—in contrast to the
separate requests—interrupt the reconstruction not only after a sub-volume block but
already after a sub-volume slice has been completed. For the reconstruction, this means
that after rendering projection images have to be re-uploaded to the graphics card,
resulting in a slightly worse rendering performance than when interrupts are prohibited.
For the separate transfer of sub-images there is only little latency between the request
and display of an image on the front-end node which gives the impression of a more
fluid interaction, while in our test setup the time until the last image is received on the
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Figure 6.10: Timing results for several cluster configurations. The bar chart shows setup and
reconstruction times on the front-end and back-end nodes (units on the left), while the lines
show the average time from a remote rendering request until the reception of the first/last
sub-volume image on the front-end node (units on the right).

head node is much longer. This is partly due to the decrease in network throughput
and the potential interruption of the image transfer by higher priority messages. But
more significantly, a node potentially has to wait the reconstruction time of up to 14s
for a sub-volume block to be completed by the reconstruction until rendering can be
started. Naturally, the likelihood of such a delay occurring on any node increases with
the number of involved nodes. This hinders scaling with the cluster size of the average
latency until the last image has been received. Please note, however, that the system
always remains responsive as it can use the coarse volume data that is available from
the beginning.

Fig. 6.11 shows the mutual influence of the reconstruction, the segmentation and user
interaction during the reconstruction phase. Frequently interrupting the reconstruction
by manipulating the scene increases overall reconstruction time and subsequently also
segmentation time. The latter is caused by the fact that all sub-volumes have to be
read for rendering from disk resulting in reduced I/O performance of the segmentation
threads. The same holds true for reconstruction performance, but in this case both
computations additionally conflict in the usage of the GPU.

When reconstructing a 20483 volume from 1440 x 20482 projection images on eight
nodes, data distribution takes ~13.5min. It is limited by disk I/O as nodes need to read
and write data simultaneously. The reconstruction needs ~103min, which is about 84
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Figure 6.11: Mutual influence of reconstruction, segmentation and user interaction during the
segmentation.

times longer than reconstructing the 10242 volume. The scaling behaviour is severely
hindered by I/O performance in this case due to the excessive need for data swapping,
which affects primarily the storage/access of the input data (23GB versus 4GB of RAM).
Sub-volume sizes are further limited to 2563 due to GPU memory restrictions, which
requires a total of 512 sub-volumes to cover the complete volume - resulting in 19 times
more accesses to projection images and sub-volumes. This significantly adds to the
permanent memory pressure as the ratio of projection images and sub-volumes that
can be stored in memory is already eight times worse in comparison to the 10243 case.

6.2.3 Directions for Further Research

The size and resolution of industrial CT scanners has further increased since the
publication of this work in 2009. Accordingly, the system should be evaluated with
the resulting bigger data sizes and current hardware. On top of that, a larger cluster
could also be used to study the the scalability properties in more detail. Overall, the
reconstruction process limited by lacking I/O performance and the capacity of the GPUs
main memory. Thus, also using a fast distributed filesystem could be promising. Our
architecture could be further extended by (semi-)automatically assisting the user during
the sub-volume selection by pointing out regions that could be of high interest, e.g., by
identifying areas with large gradients in the coarse volume. Finally, the architecture
could be used to implement an interleaved data generation and visualization for other
applications beyond CT reconstruction like simulations.






CHAPTER

LoAD-BALANCING IN PARALLEL VOLUME
RENDERING

Rendering large volume data is very costly, both with respect to storage and compu-
tation. Distributing the computation over several devices is a common and powerful
approach to alleviate this issue, both providing more processing and memory resources.
However, significant load imbalance may be caused by the inherent heterogeneity, like
the inhomogeneous distribution of costs or varying processor processor speeds. In
effect, this means that resources are not utilized to their full potential.

Sec. 7.1 Alleviate the warp divergence issues on GPUs by means of an efficient work
fetching scheme. ....... ... . ... ... i [Frey et al., 2012a]

Sec. 7.2 Redundantly distributed volume data to GPUs gives the scheduler the flexibility
to balance the load without inducing data transfers. ...... [Frey and Ertl, 2011]

Sec. 7.3 Explicit handling of heterogeneous applications and hardware environments
using graph-based algorithms with the goal to achieve the most efficient device
USAZE. .« ettt ettt e e e e e [Frey and Ertl, 2010]



126 Chapter 7 o Load-Balancing in Parallel Volume Rendering

7.1 SIMT Microscheduling: Reducing Thread Stalling
in Divergent Iterative Algorithms

Hardware
Architec-
ture (13)

Resources

4)

In raycasting, the workload for rays can differ significantly, even if they are directly
adjacent. On GPUs, this introduces divergence issues stemming from their underlying
SIMT architecture (Sec. 2.1.1). Relaxing divergence on the fly within a computation
kernel by assigning new work to otherwise idle GPU threads can achieve a much higher
total utilization of processing cores.

Dynamic Resource Utilization ‘
Allow the flexible adaptation of resource allocation to achieve efficient D
device utilization, i.e., the adjustment to changing load and other factors A °

that influence device utilization during runtime.
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The number of new task items that are fetched during a kernel run can flexibly be
adjusted—and with that implicitly how often this fetching needs to take place—to
optimize for different scenarios.

Fitted Planning Frequency
Changes in plans or schedules can occur at different rates (corresponding
to static, semi-static and dynamic scheduling, Section 2.1.1). This typi-
cally comes down to a trade-off between the overhead cost for balancing 21
and the degree of adaptivity.

In order to avoid race conditions, task items from global task pools are fetched using
atomic operations on global memory. Local task pools can either be accessed similarly
using atomic operations on shared memory or using warp vote functions depending on
the device capability. Exploring the different possibilities and optimizing accordingly
can lead to significant speedups.

Utilize Special Capabilities 13
Utilize special hardware capabilities in order to more efficiently imple- ’
ment performance-critical algorithms. @

7.1.1 Tackling Iteration and Branch Divergence

To alleviate termination divergence, an ordinary iterative application (Fig. 7.1(a)) is
modified to check after an iteration step whether their associated task item is finished,
and to fetch a new one if this is the case (Fig. 7.1(b)). The basic idea to avoid branch
divergence and the resulting serialization of execution paths (Fig. 7.2(a)) is to choose
only one (active) branch for execution and to switch task item contexts accordingly
such that preferably all threads are active (Fig. 7.2(b)). The active branch is determined
by the largest amount of task contexts that need to execute either of the branches. We
limit ourselves to 1 f—-then-else statements in the following discussion without loss
of generality

7.1.2 Task Pool Hierarchy

In interactive applications, a low overhead of fetching task items from a task pool
during the execution of kernels is crucial. To achieve this, we design our scheme to
most efficiently utilize the memory hierarchy of a GPU by employing different levels of
task pools in global and shared GPU memory (Strat. 14, Hierarchy Characteristics). We
explore different possible techniques utilizing the hierarchical memory organization of
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Figure 7.1: Tackling iteration divergence by altering the structure of iterative applications.

the GPU in various ways. Task pools are organized hierarchically, and distinguished in
the following with respect to the group of threads which have collaborative access to it
(Fig. 7.3). All threads have access to the Global Task Pool (in global memory), while only
threads of the same thread block or warp (depending on the technique) have access to
the same Local Task Pool (in shared memory). The Private Task Pool (in register space)
may be used only by one thread. Task items are embodied by monotonically increasing,
continuous integers. Accordingly, all task pools are represented by two counters, one
for the current task and one for the last available task items. Task items are cached
from the global task pool to the local or the private task pool in chunks to reduce costly
global memory accesses, with the chunk size being a user-defined parameter.

7.1.3 Task Item Fetching

While task items from global task pools are fetched using at omicAdd () in global
memory, local task pools can either be accessed using at omicAdd () in shared mem-
ory or a combination of ballot () andpopc () (refer to NVIDIA Corporation [2013a]
for details on these functions). Three basic work distribution techniques (Local, Global
and Hybrid) are introduced and evaluated in this project. They can be distinguished by
the employed task pool hierarchy (Fig. 7.3). Properties of different work distribution
techniques are summarized in Tab. 7.1.

Local (Fig. 7.3(a)). The local work acquisition strategy only uses local task pools with
one being assigned to each thread block. Task pools are statically initialized before
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Figure 7.2: Modify the handling of branches to tackle branch divergence.

none local  global hybrid persistent

collaboration | thread block thread  warp block
atomics none shared global both global
coherency high high low  medium high
grid size task task gpu gpu gpu

Table 7.1: Feature overview of task fetching strategies.

device kernel invocation with a certain number of task items c. On top of that, there
is no transfer of other task items from or to other task pools. As the local task pool
only contains a small subset of all task items, high divergence cannot be cushioned as
smoothly as with a global pool, but task fetching is cheap as no operations on global
memory are required.

Global (Fig. 7.3(b)). The global task fetching strategy uses one global task pool (con-
taining all task items) and one private task pool per thread. When its private task pool
is empty (Locality Check), a thread attempts to refill it with task items from the global
task pool. The number of transferred task items depends on the user-defined chunk
size c. If the private task pool is still empty after the global task fetch (because of a lack
of task items in the global task pool) the thread exits the task fetch loop. Especially for
small chunk sizes, this strategy allows a very fine-granular distribution of task items
leading to very good iteration length divergence compensation. However, this also
introduces high costs due to the large amount of global memory accesses required to
refill the private task pools.
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Figure 7.3: Work acquisition for the local, global and hybrid strategies, with parameter c
denoting the chunk size of task items that are fetched at once.

Hybrid (Fig. 7.3(c)). The hybrid strategy uses both local and global task pools. Threads
which are out of work attempt to fetch new task items from the local task pool. If
threads cannot get a new task due to the local task pool being empty (Locality Check),
the thread that gets the smallest task item id beyond the valid range transfers tasks from
the global to the local task pool (Single-Thread Global Fetch). The amount of fetched
task items is determined by the number of threads which are currently out of work
plus the chunk size c. The local task pool is shared by a warp, and all involved threads
run in lockstep which avoids expensive thread block level synchronization calls after
updating the local task pool. Initially, the local task pool is empty.

When threads exit the computation loop to fetch new task items is determined by Fetch
Control (Fig. 7.1(b)). We experimented with the following variants:

Any Leave the loop as soon as any thread is out of work

All Only leave the computation loop when all threads are finished with their task
items (similar to the persistent threads technique [Aila and Laine, 2009]).

Ballot/Atomic Exit the computation loop when a user-defined number of threads is fin-
ished. (Ballot uses warp voting, while atomic uses at omicAdd to determine
the amount of idle threads).

Leaving the computation loop early (Any) leads to the masking of result writing and
task item fetching. In contrast, exiting the computation loop late (All) masks iterations
of the computation loop, and as a consequence does not alleviate divergence.
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7.1.4 Task Item Context Switching

Branch Divergence is tackled by attempting to achieve that all threads need to take the
same path, e.g., that the evaluation of the conditions of the respective task items yields
the same results. This is achieved by allowing threads to switch to a fitting task item
context (TIC) on the fly to minimize wasted clock cycles. We choose only one (active)
branch for execution and subsequently switching TICs such that preferably all threads
are active (i.e., the evaluation of the conditions of the respective task items yields the
same results, and no clock cycles are wasted). The active branch is determinined by
the largest amount of TICs that need to execute either of the branches (similar to [Han
and Abdelrahman, 2011]). Subsequently, we increase this amount by swapping TICs.
While a task item contains all information necessary for its initialization — which can
be as little as one integer —, a TIC contains the complete description of the state of a
computation, which is necessary for storing and resuming jobs at certain positions in
the code. Branches to which we apply our technique are denoted as managed branches
in the following.

Task Item Contexts (TICs). TICs can be attached to and detached from threads
dynamically, with exactly one TIC being active for a thread at any time. TICs that
are currently not attached are shared amongst threads of a warp through the TIC pool
residing in shared memory. The branch map contains a list of references to the TIC pool
for each managed branch and each possible condition leading to a different branch there
(typically true and false for an if -statement). The branch map is used when switching
TICs to provide the information which contexts can be loaded that fit the upcoming
branch path. Besides the task item-specific information contained in a TIC, it also
features an integer giving information about the current state of the context (0: Active;
1-254: Temporarily invalidated before a managed branch with the respective number;
255: Permanently invalidated). TICs are invalidated temporarily if the branch path it
actually needs to execute does not match with the executed branch path. Temporarily
invalidated TICs are not allowed to vote on any upcoming managed branches until the
initially diverging branch is reached again in order not to corrupt code semantics. TICs
are invalidated permanently when the respective task item is completed. A certain
number of TICs (typically two to four times the warp size) is initialized at the very start
of a kernel with distinct task items.

Task Item Context Switching. To determine the branch path with the highest satu-
ration, votes on the upcoming branch consider both currently attached and detached
TICs. Threads not agreeing with the upcoming branch path attempt to switch their
current TIC with one that fits the upcoming path. The references to these detached
TICs are looked up from the branch map. Whether a TIC for a certain thread is available
(and which) is determined efficiently with respect to the thread id within its warp and
the branch map (refer to Frey et al. [2012a] for details). In case no detached TIC is
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(a) Local, Blocks (b) Global, Warps (c) Hybrid, Warps  (d) Persistent, Blocks

Figure 7.4: Color depicts warp or block membership of a thread per pixel of a 128x128 image
with different work distribution techniques (block consists of eight warps).

available for a thread for the upcoming branch when required, the thread cannot switch
its context and the current context is temporarily invalidated until this managed branch
is reached again. The kernel is exited when no more contexts are referenced in the
branch map and all attached contexts are completed (i.e., permanently invalid).

Deferred Context Switching. In cases in which a single iteration step is cheap,
the TIC switching procedure might introduce significant overhead. Deferred context
switching can circumvent this issue by carrying out the task switching procedure
every nth iteration only and using a pre-defined voting outcome otherwise. TICs not
complying with the pre-defined outcome are temporarily invalidated. The default vote
and the n need to be adapted by the programmer to the problem at hand.

7.1.5 Results

Our techniques are evaluated by means of a synthetic Monte Carlo program (termi-
nation and branch divergence) and two real world applications: Fractals (termination
divergence) and isosurface ray casting (branch divergence). In our evaluation, we
further incorporate another variant called persistent threads by Aila and Laine [2009].
It launches just enough threads to occupy the hardware and allows thread blocks to
fetch new task items from a task pool in global memory when all of its threads are
idle. We concentrate on removing computational divergence only and try to avoid
other effects influencing the timing results like caching in memory accesses as much as
possible. All tests were run on an NVIDIA GeForce GTX580 using CUDA. Reasonable
chunk sizes for tackling termination divergence were determined empirically, ranging
between 256 and 12000 for Local, 1 and 8 for Global and 0 to 128 for Hybrid. The number
of acceptable idle threads for Ballot and Atomic techniques was varied between 1 and
32. Variants of techniques resolving iteration divergence are denoted in the form [Task
Item Fetching Technique] [Task Item Fetch Control Technique]. For resolving branch
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Figure 7.5: The Monte Carlo testing scenario for termination and branch divergence. Termina-
tion divergence results are given relative to the vanilla variant (=100) whose absolute values
are depicted in seconds by the black line (right y-axis). Measurements were performed over a
variety of chunk sizes, only the results for the best test case are depicted. Branch divergence
was measured with varying probabilities for entering the branch.

divergence, the most beneficial amount of TICs per warp was empirically determined
to be 160 for Monte Carlo and 64 for ray casting.

Task Item Fetching Properties. The distribution of task items logged from an actual
run can be seen in Fig. 7.4. The global task pool approach may lead to a strong scattering
of task items that are processed by threads of the same warp. This might have a negative
impact if this results in scattered memory accesses (Fig. 7.4(b)). Unlike with the local
strategy, the number of thread blocks which are created at the beginning of the kernel
invocation is independent of the actual problem size but is chosen such that the device
can be fully occupied. In the hybrid strategy, the task locality within a warp can be
preserved to a large extent (Fig. 7.4(c)). Similar to the global method, the amount of
thread blocks generated only depends on the targeted hardware. Only the persistent
technique starts task items simultaneously for all threads of a block (Fig. 7.4(d)).

Monte Carlo. In each iteration of this generic, synthetic test case, a random number
is generated using the Sobol32 generator of NVIDIA’s CURAND Library. Depending
on the testing scenario, this number either determines when to exit the computation
loop (for termination divergence) or when a branch is entered that sums up several
random numbers within an inner loop (for branch divergence). In both cases, a single
iteration is cheap, but there can be significant overhead for stepping through a masked
branch path (branch divergence) or having a large iteration count difference between
threads of a warp respectively (termination divergence). Fig. 7.5(a) shows the results
for different scenarios with increasing termination divergence through a decreasing
kill probability. Techniques that do not waste computation iterations by leaving the
computation loop early (Any and Ballot/ Atomic with a low amount of idle threads)
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Figure 7.6: The amount of iterations (black
= high) necessary for computing a pixel in
the Julia set with different offsets (left: offset
0, right: offset 1). The divergent warp counts
are based on a vanilla kernel with 8 x 4 warp
tiles.

perform best with speedups up to factors of 4 to 5. In general, speedups increase with
divergence. With a kill ratio of 0.1 (meaning low divergence and few iterations) it
shows that task item fetch overhead can also be an important factor, especially when
the computation steps are cheap like in this scenario. In particular Global Any—which
for higher load divergences is very close to our best result—suffers from the overhead
of frequently accessing the global task pool, especially because many accesses to the
pool happen simultaneously. Conversely, Hybrid Any and Hybrid Ballot are even able
to achieve a speedup of almost 1.2 in this scenario due to their small overhead but
nonetheless good scheduling quality. Techniques that do not address thread divergence
(All and Persistent) do not achieve any speedup.

Fig. 7.5(b) shows the performance of the branch divergence test case with increasing
probability to enter the computation branch. Both the loop surrounding and the loop
inside of the branch run 1000 iterations. The effect of branch serialization and the
resulting negative performance impact show clearly in the vanilla case: there is no
performance difference between one thread entering the branch or all threads entering
the branch. It can be expected that at least one thread enters the branch in each iteration
for a branch probability of ~ 0.1. With our technique, in contrast, the runtime almost
linearly scales with the actual work that needs to be done. Speedups of up to 15 were
achieved with our technique for low branch probabilities. However, if the branch
probability is higher than 84% (i.e. the efficiency loss due to divergence is low), the
introduced overhead causes longer runtimes.

Fractals. The reduction of termination divergence is further evaluated at the example
of Julia set fractals at a resolution of 2048 x 2048. Iteratively, a formula is evaluated for
every pixel until it either converges or the maximum amount of iterations (specified by
the crunch factor) is exceeded. Besides the crunch factor, we also modify the precision
(single or double) and offset parameters that influence the distribution of necessary
iteration counts from strongly divergent (offset 0) to constant (offset 2) (Fig. 7.6). This
allows us to cover the most important execution characteristics of parallel programs:
iteration cost is steered by the precision (computations with double precision take
significantly longer), iteration count depends on the crunch factor and iteration count
distribution is a function of the offset parameter.
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Figure 7.7: Timing results in relation to vanilla technique (=100, absolute values depicted in
seconds by the black line (right y-axis)) the Julia set test scenarios. Persistent Orig. refers to the
unmodified implementation of the CUDA SDK, while Persistent refers to our implementation
using more thread blocks. The top bars depict the best results for a given scenario across a wide
range of chunk size and idle thread settings while the bottom bars show the difference between
these and the best-performing constant parameter settings across all test scenarios.

Our measurements show that fetching new task items immediately when a task is
finished (Any and Ballot/Atomic with minimal idle thread threshold) is most beneficial
in almost all scenarios (Fig. 7.7, top). When divergence is low, thread level work
distribution is largely reduced to warp level work distribution (like Persistent and
All) leading to similar speedups across all techniques doing task item fetching. Our
Persistent Threads implementation in the framework and the original implementation
actually perform equally well when starting them with the same amount of blocks.
The difference in the diagram results from the fact that we spawn three blocks per SM,
while we left the original implementation completely untouched (one block per SM).
We believe that this effect is due to a better occupancy with more active warps per SM
that can be used for latency hiding. Naturally, the speedup potential is higher for more
divergent cases (julia offset 0 allows for higher speedups than julia offset 1). In the
constant case (julia offset 2), there are no speedups since no cycles are wasted by the
vanilla variant. The difference bars (Fig. 7.7, bottom) show that good settings for chunk
size and idle threads can be determined once and remain close-to-optimal across a wide
range of scenarios. Across all our tests (including Monte Carlo), chunk sizes favoring
the most flexible task distribution (at the expense of higher task item fetching costs)
proved to be most beneficial (small chunk sizes for Global and Hybrid as well as large
chunk sizes for the static task pool of Local). Similarly, the best idle thread granularity
setting is 1 across all scenarios for Atomic and Ballot, basically reducing both to Any.

Raycasting Isosurfaces. Finally, we study branch divergence for the example of multi-
layer isosurface raycasting of scalar 3D functions. Rays are cast from the view point
into the function domain. When a ray intersects one of eight isosurfaces, it determines
an accurate intersection position using bisection. For rendering an isosurface, the first
and second order derivative are evaluated numerically at this position using the SOBEL
operator. Blinn-Phong shading is employed for lighting using the first order derivative
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Figure 7.8: Isosurface raycasting of the hydrogen atomic wave function 13 2 1 with a resolution
of 512 x 512 and on-the-fly evaluation and respective timing results with varying step sizes
(sampling distances). In the rendering, each isosurface is mapped to a distinct color.

(i.e. the gradient), while the opacity of the isosurface is calculated using the magnitude
of the second order derivative (Fig. 7.8(a), similar to Parker et al. [1998] and Hadwiger
et al. [2005] among others). Branch divergence incurs from rays hitting isosurfaces after
a different number of volume sampling iterations, which forces threads to step through
the isosurface rendering procedure significantly more often than actually needed. We
measured speedups of up to 7 using our proposed technique (Fig. 7.8(b)). Overall, higher
performance is achieved for an increasing sampling distance (or step size), yet at the
cost of lower precision. More divergence and thus higher speedups were measured
with smaller step sizes because fewer rays of a warp hit an isosurface at the exact same
step count. In contrast to the Monte Carlo test case, using deferred context switching
(with n = 32) achieved speedups of up to 30% towards the standard branch divergence
alleviation technique. As expected, our approach achieves higher speedups for small
step sizes as isosurface hits of neighboring rays are more likely to occur in different
iterations. It further shows that when there are many iterations without an isosurface
hit, it is beneficial to defer the execution of the voting and switching procedure to
reduce its overhead.

7.1.6 Directions for Further Research

Task item fetching can not only be used for balancing the workload but also for im-
plementing additional features. For instance, new task items could be generated by
pushing them onto a dynamic task stack at any point in the code. Elements of such a
dynamic task stack could also be prioritized when executing a task item fetch to keep
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the task stack level as low as possible. A user could further be allowed to specify the
exact order in which the task items should be executed, e.g, by means of a priority
map. This would enable task items to be processed earlier if they are more relevant.
For example, in combination with page-locked memory, this would allow to render
and display the most important parts (e.g., the focus region) of an image first while the
overall computation is still running.

A more detailed analysis of our techniques using different types of applications could
be the basis for customized improvements. In particular, closely investigating memory
coherency effects could be interesting as they are strongly influenced by dynamic task
fetching. Based on this, a general scheme could be developed that provides a guideline as
to which applications benefit most from which technique. Based on this, the framework
could also automatically determine the best approach at application startup via a series
of measurements. Finally, to be applicable to a wider set of techniques, the presented
approach could be extended to additionally consider dependencies between task items.



138 Chapter 7 o Load-Balancing in Parallel Volume Rendering

7.2 LoadBalancing Utilizing Data Redundancy in Dis-
tributed Volume Rendering

Planning (21)

Volume data can easily exceed the storage capabilities of a single GPU. Thus, particularly
for large data sets, sort-last distributed volume rendering (Sec. 2.2.2) is advantageous as
not all nodes of a cluster individually need to have enough memory, but merely all nodes
combined. For this, data is partitioned into volume blocks (or bricks) and distributed
across different nodes. However, the rendering cost of bricks can vary significantly and
change quickly with interactively changing parameters like the camera configuration
(Fig. 7.9(a)). Typically, one brick is assigned to one device, and bricks are resized to
adapt to the changing load. However, moving the rendering of certain volume parts
from one node to another induces time consuming data transfers (Sec. 2.2.2).

In this project, to avoid the cost involved with resizing, the volume data is partitioned
into many equally sized bricks. Bricks assigned to a device are widely scattered through-
out the volume (Fig. 7.9(b)). This minimizes the dependency on the view parameters,
as the distribution of relatively cheap and expensive bricks stays roughly the same
for most camera configurations. Most importantly, bricks are saved redundantly on
different compute devices to achieve evenly balanced load without any data transfers.
This redundancy allows to change the work assignment without data transfers. Further,
when the rendering of only one or very few bricks constitutes the major share of the
overall cost, bricks can also be split logically to render them on multiple nodes (Strat. 16,
Adaptive Granularity). As a basis for assigning bricks to devices for each frame, the
render time of a brick from the previous frame is taken into account as well as the brick
distribution.
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Figure 7.9: (a) The cost of volume bricks highly depends on dynamically adjustable parameters,
like camera position and orientation. (b) Distributing bricks redundantly to compute devices (c)
allows our scheduler to evenly spread the load across devices by reassigning brick render task
items without inducing costly data transfers.

Strategy 29 Performance Model
Optimize the model determining which input values have a significant
impact on the outcome, and how they can be put into relation.

expressiveness and the cost of collection. While expressiveness denotes
how valuable it is to model or predict the performance behavior of the
application, the cost of collection comprises the expenses required to
obtain and communicate this information.

Key Factors 0
In the selection of key factors two main aspects need to be considered: Q

To evenly balance the load (Fig. 7.9(c)), a best-fit decreasing heuristic is employed that
is commonly used to tackle the class of bin packing problems.

Optimization Heuristic ‘
Typically, runtime minimization problems could be solved optimally,
yet appropriate heuristics from mathematics and theoretical computer e

science need to be used in practice to meet time constraints. 0

The scheduling process is run locally on every host node with the same input data
yielding the same results. This avoids transferring the schedule to all nodes, but natu-
rally requires the timing results to be broadcast to all nodes after rendering. However,



140 Chapter 7 o Load-Balancing in Parallel Volume Rendering

Distributed Volume Rendering

Subdivide To Bricks Distribute Bricks To GPE Scheduling: Assign Bricks To GPUs and Compositing
5% doe’]
[ |
° e -
—1— —> —>
# - ‘
‘_
I:‘ Volume Brick . . Compute Devices (assigned to bricks) I Estimated Cost for Rendering

Figure 7.10: Initially, the volume is subdivided into bricks and distributed redundantly to
compute devices. For every frame, the scheduler determines which device should be used to
render a specific (sub-)brick.

transmitting the timing results can be done in parallel to the rendering and compositing
computations.

Plan Distribution ‘
Minimize computational overhead of generating a plan and distributing
it by customizing it with respect to the overall application.

\/21 )

7.2.1 Initialization

The brick size is influenced by several factors like device memory or device architecture
and the number of devices. In particular, there must be enough work to do in parallel
for good device occupancy on each graphics card, but also across all nodes in a cluster
(Fig. 7.10). Distributing these bricks to devices sensibly is also important to enable good
load balancing properties. For this, desirable properties are defined as follows:

1. Each device holds the maximum amount of bricks depending on its memory
capacity.

2. Bricks should be distributed about the same number of times whenever possible.

Any two devices do not share a large amount of associated bricks.

4. The minimum distance of the bricks assigned to a device is as big as possible to
achieve a wide load diversity for all camera configurations.

w

To achieve this, firstly, the bricks are distributed randomly, taking care of conditions 1,
2 and 3 (Fig. 7.11, Brick Distribution Optimization). Secondly, the brick distribution is
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optimized regarding condition 4 by swapping bricks between devices (Brick Distribution
Optimization).

Brick Distribution Initialization. First of all, the list of devices and the list of bricks
are shuffled randomly. Then, a brick and a device index are used to iterate over the
respective lists. In every iteration, it is attempted to add the current brick to the current
device. If it was successful, i.e., the brick has not already been assigned to the device
previously, both indices are incremented. In case of an index reaching the end of a
list, the respective list is shuffled and the index is set to the beginning of that list. If
a brick cannot be added to device, the index of the brick stays the same and only the
device index is incremented. A brick is deleted from the list if it could not be added to
any device (anymore). Devices are erased from the device list when they reach their
maximum brick capacity. The initialization is complete when either the brick list or the
device list is empty.

Brick Distribution Optimization. In the second step, devices swap bricks to optimize
the brick distribution (the process bears some similarity to swapping points between
sites for LCCVD as discussed in Sec. 3.2). For each pair of devices, the most beneficial
swap of bricks occurs if it marks an improvement. The quality g, of the distribution of
bricks b € B, for a device d is measured based on the pairwise distance between bricks

as follows:
qa= Y \/Ibi = bj|. (7.1)

0<i<j<|B|

The optimization step ends when all possible device pairs have been considered without
inducing a swap.

7.2.2 Load Balancing

Splitting Bricks. In the simplest case, rendering a brick translates into one job that is
handled by one device. A good balancing of load between devices can be achieved that
way when the major rendering load is distributed across many bricks. However, when
the rendering of only one or very few bricks constitutes the major share of the overall
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Figure 7.12: Splitting jobs improves the balancing of load across devices with certain camera
configurations. The assignment of bricks to devices is taken from Fig. 7.9.

cost, the bricks need to be split to allow for more equal load distribution (Fig. 7.12). To
achieve this, each brick is split recursively as long as each job’s estimated rendering
cost exceeds a certain value. Please refer to Frey and Ertl [2011] for details regarding
the job splitting process.

Scheduling The scheduler needs to decide in every frame what jobs a device needs to
render such that every brick is rendered exactly once and the maximum load occurring
on any device is minimal. Formally, this is an optimization problem that is closely
related to the class of packing problems. Given is a set of devices D, a set of jobs J and
a cost function ¢: D x J - R U oo, with ¢(d, j) = oo if the brick belonging to the job
j € J is not present on device d € D. The goal is to find a surjective assignment function
a: D — J such that maxgep (¥ jeqa) ¢(d, j)) is minimal. As our scheduler needs to
generate only minimal overhead, we opted for a quick and simple approach that still
delivers good results instead of solving this complex problem optimally. For this, we
employ a best-fit decreasing heuristic that can be used for bin packing problems in
general (see Fig. 7.12 for an exemplary result):

1. Sort all jobs in order of their anticipated cost in descending order.
2. Iterate through the job list and assign each job to a device such that the overall
estimated execution time of all jobs of a device across all devices is minimal.



7.2 o Load Balancing Utilizing Data Redundancy in Distributed Volume Rendering
143

Figure 7.13: Renderings from the first four camera and focus positions in our camera path.
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7.2.3 Results

For the evaluation of our approach, we employed a conventional volume raycaster and a
simple compositer written in CUDA. We used a cluster featuring eight nodes connected
via gigabit Ethernet. Each node is equipped with a NVIDIA GTX285 (featuring 1 GB of
graphics memory) and a Quad-Core AMD Opteron Processor with 2.3 GHz. We further
used a 10243 volume data set with 16 bit accuracy (i.e., a total size of 2GB) and rendered
10242 images. A brick size of 352 was used as it causes only marginal compositing
overhead compared to common sort-last rendering, and still bricks can be distributed
well enough to enable good load balancing. Accordingly, there is a total number of
33 = 27 bricks and each device is capable of saving 10 bricks. For evaluation, we use a
pre-defined camera path (Fig. 7.13, refer to [Frey and Ertl, 2011] for details). Fig. 7.14
demonstrate that with each step the rendering cost might change significantly. The
magnitude of the changes in our camera path might even be less favorable in terms of
frame coherency than the average interactive volume rendering session. Nevertheless,
Fig. 7.15 shows that the relative differences between predictions and actual render time
are within the range of a few percent. Another estimation approach would be required
in low frame rate scenarios to be able to deal appropriately with rapid navigation.

Scaling. The strong scaling results depicted in Fig. 7.16 show that the maximal render
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time per device significantly decreases with an increasing number of devices. Its scaling
factor is even slightly larger than one. For instance, the longest time any device needs
to render its bricks is 122.9 ms with four nodes and 55.5 ms with eight nodes. The
reason for that is that with more devices more memory becomes available and the level
of redundancy rises, which allows the scheduler to find a more optimal device-brick
assignment with less load imbalance (as can be seen from the difference between the
maximum and minimum time taken for rendering by a device). The increasing brick
redundancy p is also plotted in Fig. 7.16 by means of

-y 1Bl | Bl

(7.2)
deD |B|

with D being the set of devices,
stored on a device d € D.

Brick Distribution Variations. Our approach consists of a set of optimizations that
can be enabled or disabled to study their benefit. It can be seen from Table 7.2 and
Fig. 7.17 that the improvement of using a certain optimization depends on the amount
of devices that are involved in the computation. In detail, the following variants are
evaluated:

Standard The normal approach with all features enabled.

No Redundancy Each brick is assigned to only one device.

Brick Cluster Bricks belonging to a device are not distributed across the volume but
concentrated in one area. This is computed by using the inverse quality function
in the optimization step of the initial brick distribution (see Section 7.2.1). In
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BC &NR | 1415 852
No Job Split (N]) | 123.2 75.2
BC&NJ | 1422 68.2

combination with No Redundancy, this approximates the common one-brick-per-
device strategy.

No Job Split Splitting of jobs into smaller jobs is disabled. This means that a brick
translates into exactly one job.

The table shows the aforementioned effect that the technique for the standard variant
scales a little better than linearly due to an increased level of redundancy. Furthermore,
it can be seen that the negative effect of brick clustering is worse for few nodes, as
the scheduler has less possibilities to soften the negative effects. This becomes more
apparent when considering the variant with clustered bricks and no redundancy (BC&
NR). While the impact is only minor for setups with few devices (as there is no high level
of redundancy to begin with), the required rendering time for 8 nodes is significantly
higher. This is also true to a smaller extent when considering the No Redundancy case
only. Additionally, due to the higher amount of scheduling possibilities, disabling job
splitting also has a much higher impact with large number of devices. When a brick
is only distributed once or twice, there is not much room for a scheduler to widely
distribute the expensive job.

General System Timings. The overall execution time of the whole application is
largely dominated by the volumetric raycasting performance. Compositing the 27
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images (or more in case of job splits) takes approximately 10 ms in total with our naive
compositor written in CUDA. Transferring the render image over the network is done
in parallel to raycasting and does not have a significant performance impact in our
testing scenario. Distributing the job render times for scheduling is a n-to-n operation
(every node needs to send its job render time to all other nodes), but its size is only
a few bytes and did not contribute significantly to the overall execution time either.
Finally, our simple scheduler delivers very high performance and takes significantly
less than a millisecond to run in our scenario, even with a large number of jobs and
devices.

7.2.4 Directions for Further Research

This work focuses on the volume raycasting part and largely neglects the performance
impact induced by compositing. While negligible on our small cluster test system, this
impact can be expected to grow significantly for larger systems. Taking compositing
timing effects into consideration would be important for these systems. This would also
involve considering advanced techniques from that area, e.g., Ma et al. [1993]; Makhinya
et al. [2010]. Additionally, a more elaborate scheduler could be integrated, that is able
to compute a closer to optimal solution, but still preserves the good complexity and
execution time properties of our current scheduler. Finally, the usage of redundancy not
only for the purpose of efficient load balancing but also for implementing fault-tolerance
could be a promising approach.



7.3 o Heterogeneous Computing 147

7.3 Heterogeneous Computing

Performance

Model (29)

When distributing complex computations across multiple, heterogeneous compute
devices, load imbalance is a major issue: the performance of executing a task on different
devices or even device classes can differ significantly, and complicated dependency
structures further impair the balance. The framework PaTraCo (Parallel Transparent
Computation) has been introduced to support the efficient handling of this heterogeneity.
As a basis, for each task, optimized implementations for different device classes may be
provided by using any API. For the respective task items, required and provided data
is then also specified by the programmer. This allows PaTraCo to automatically take
care of the data exchange between task items. Furthermore, from this, an application
graph is generated that depicts the dependencies (and their size) between all task
items created for the computation. While the application graph models the system
from the software side, a device graph is utilized to model the hardware. In detail,
the device graph depicts the capabilities and characteristics of each device as well as
their connectivity (bandwidth and latency). These abstract figures are combined with
previous measurements to predict timings for computation and transfer.

Hybrid Modeling
Generate separate models (e.g., for hardware and software), and combine
them to a hybrid model to achieve a specific prediction. This initial ")
separation improves clarity as well as flexibility. 29

Using the device graph and the application graph, the scheduler determines the mapping
of task items to devices based on the critical path method. In particular, since the best
hardware is not necessarily the hardware that processes the problem fastest, also the
cost of transferring the input data to the device as well as the availability of the device
are taken into account. Determining this mapping prior to the actual computation not
only enables explicitly minimizing the runtime, but also allows data to be transferred to
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Figure 7.18: PaTraCo computation stages for an interactive application.

a compute device before the actual need for it arises (Strat. 27, Fitted Planning Frequency).
Transferring data in parallel to computations reduces device idling times and leads to a
more efficient device utilization overall (Strat. 31, Optimization Heuristic).

7.3.1 Overview

Initially, a user requests a new computation (Fig. 7.18). With respect to the parameters
provided with that, task items are generated from the respective tasks. In this process, a
new application graph is generated, that is part of the overall performance model, along
with the device graph and previously determined timings. Using this performance
model, the scheduler assigns task items to devices by employing a load-balancing
heuristic based on critical paths. Finally, the determined plan is executed and timings
are measured in process. Similar to Sec. 7.2, the measurements are distributed to all
involved nodes, and the same scheduling procedure is executed by each of them. Task
item generation and scheduling is discussed below, please refer to [Frey and Ertl, 2010]
for a more detailed description of the complete procedure.

Task Item Generation. For every task, task items are generated as implemented by
the programmer with respect to user-defined input data and characteristics of available
compute devices. From the generated task item, an application graph is constructed. It
is a directed acyclic graph (DAG) in which both the edges and the vertices are weighted
(e.g., Fig. 7.19, right). The vertices stand for task items and feature one weight for each
device class implementation which is available for the respective task. This weight
is determined from a combination of measurements (see Figure 7.20) and task item
characteristics, which may be specified by the user in task subdivision.

The application graph is constructed back-to-front from the task items that provide the
result data to the task items that contain the input data. For every visited task item,
edges are created to the vertices (task items) that provide required data and subsequently
these are visited. Next, task items that are not required to compute the final result are
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removed. After that, the resulting graph is checked for cycles to ensure a seamless
execution and provide feedback about potential problems.

Scheduling. The scheduler needs to assign task items to devices considering the
induced compute time, the implied transfer costs, and the availability of the device.
Our scheduling heuristic iteratively identifies the longest, critical and thus the most
time consuming paths through the graph until all vertices (task items) are assigned to a
compute device. The critical path contains those computations that, when delayed, lead
to a later completion of the overall task described by all vertices in the graph. At the end
of each iteration, a critical path is identified, compute devices are allocated accordingly
(if the respective task item has not yet been assigned to a device in a previous iteration),
and the respective edges are removed from the application graph. The sooner a task
item is identified as part of a critical path of the remaining graph, the earlier it may
allocate the most suitable device for a certain time span.

In each iteration, the longest (critical) path is determined by using a modified version
of the Bellman-Ford algorithm [Bellman, 1958] (negative costs are used to determine
the most expensive instead of the least expensive path). In addition to the original
Bellman-Ford, we also consider edge weights which depend on the chosen compute
device for a vertex. Initially, the distance of all vertices (task items) to the destination
(final task item of the computation) is set to infinity. Then for all edges, if the distance to
the destination can be shortened by taking the edge, the distance is updated to the new
lower value. Edge and vertex weights vary with the compute devices that are assigned
to the vertices. The vertex weight is determined by the product of the complexity
measure of each task item (derived from measurements), general device class suitability
for the given task (specified by the user), and device speed relative to other devices
of its class (from the device graph). Additionally, a device might already be busy for
the requested time frame. Device availability is taken into account by adding the wait
time until it can be used according to its schedule. The edge weight is calculated by
multiplying the transfer speed between two devices, as determined by means of the
device graph and Dijkstra’s algorithm, with the size of the data required to satisfy the
dependencies (as specified in the application graph). Accordingly, the compute device
is chosen greedily for a task item (vertex) that leads to the shortest path considering
the suitability of the device for the task block, the device availability, and transfer cost
from and to the device. To guarantee the finding of the shortest path, the edges must
be scanned as often as there are task items. However, according to our experiments, a
fraction of this suffices to achieve close to optimal results already in our context.
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Figure 7.19: Exemplary implementation of distributed volume raycasting featuring shadows.

7.3.2 Results

Volume Rendering Example. For evaluation, we implemented an interactive dis-
tributed volume renderer incorporating shadow volumes (illustrated in Fig. 7.19). In the
following, a simplified version of the application is discussed, for the full version please
refer to Frey and Ertl [2010]. The distributed volume renderer employs object-space
data distribution (bricks and task items V0-V8) and uses shadow volumes for deter-
mining the illumination contribution of an omnidirectional point light source L with a
limited radius (Figure 7.19(a) and (b)). This example application consists of three tasks:
generation of the shadow volume, volume rendering and compositing (Fig. 7.19(a)). The
first task generates a shadow volume for all volume bricks within the radius of the light
source by naively sending a ray for each voxel towards the light source (task items
S0-S3, for a more sophisticated algorithm see Hadwiger et al. [2006]). For all adjacent
volume bricks, where a ray exits is originating brick on its way to the light source, a
one voxel thin shadow volume layer needs to be available for light value contribution
lookup (Fig. 7.19(b)). This results in an in-task dependency structure. The second
task implements volume raycasting and employs the shadow volume for lighting each
sample point (task items S0-S3). The third task combines the renderings of all bricks
generated in the previous task into the final image (task item CO0). For both shadow
volume generation and volume rendering CPU and GPU implementations using CUDA
are provided. Compositing is implemented on the GPU only using CUDA.

The effort to compute a volume rendering task item depends on the view matrix (i.e.
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Figure 7.20: Five performance monitoring outputs generated by PaTraCo using a timeline for
each device that computes at least one task item. Time lines from different nodes can be shifted
to each other as computations do not start exactly at the same time. The black bars depict the
beginning of a task item with its identification number. Device ids without host information
belong to the node collecting the results. Task item ids can be matched with tasks using the
bottom right table. wait (red) depicts the time until all data is available to start computing a
task item, assign (yellow) the time to prepare the data for computation (e.g. GPU upload) and
compute (blue) the time for task item computation and result extraction (e.g. GPU download).

camera position and orientation) and the size and position of the associated volume
brick as well as the screen resolution. Using this input data, the relative cost of rendering
a brick is estimated in the task item generation by computing the rendering size of the
brick on the screen.

Evaluation. All nodes used in the evaluation were connected with gigabit Ethernet,
and equipped with a Intel Core2 Quad 2.4 GHz CPU. They featured three different
kinds of GeForce graphics cards: 8600 GT, 8800 GTX and GTX 280. In our scenario, we
rendered a 1600 x 1024 frame using a 5123 volume data set with 16 bit accuracy, which
was split into 16 bricks by the the scheduler, so that each brick has the dimension of
128 x 256 x 256. The timings in Fig. 7.20 include all steps from providing input data
until the output data is available. However, they do not include scheduling, which
took between 5 — 30 ms, depending on the amount of devices given and the number
of iterations specified. In our testing scenario, three iterations per critical path were
already enough to achieve a good schedule. Even though CPU implementations are
available for shadow volume generation and volume rendering, the computation ran on
the GPU exclusively due to its vastly superior performance in this context. Using the
CPU for the execution of a task item would have significantly slowed down the overall
computation with our hardware setup (the CPU was slower by two orders of magnitude).
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As the relative performance might substantially differ using different setups or slightly
different tasks, this case shows the importance of explicitly considering device speed
and not simply using an available device.

In the first series of measurements, no shadow volume is generated because we moved
the light source out of the volume and gave it a tiny radius. With two identical machines
each equipped with a GeForce 8800 GTX besides the frontend node (Figure 7.20 (a)), an
even distribution of costs is achieved. In a heterogeneous setup using a node with a
8600 GT and a GTX 280 (Figure 7.20 (b)), the adaptation of the scheduler to different
device speeds can be seen. The node featuring the 8600 GT is not assigned more than
two task items, even though the device and further tasks are available, because this
would result in an overall slowdown. Next, we artificially decreased the CPU cost for
volume rendering artificially by sending less rays through the volume. The GPU and
three CPU cores of one node were used. The results show the advantage of systems
featuring many compute devices locally as opposed to distributed systems which cause
a lot of network traffic, even though our framework hides transfer times by predictively
copying data in parallel to ongoing computations (Figure 7.20 (e)).

For the second series of measurements, we moved the light source inside the volume and
set its radius such that four volume bricks were covered. The primary critical path was
determined by the scheduler to consist of task items with the following ids: 22 (input)
- 0 (shadow) — 1 (shadow) — 3 (shadow) — 14 (render) — 20 (composit) — 23 (output)
that dominates the total computation time (Figure 7.20 (c)). The volume rendering task
items 5 and 7 are also scheduled on the frontend GPU, because they require the shadow
volumes generated by the shadow tasks 0 and 1 for lighting and the transfer over the
network of a shadow volume brick is too expensive. The allocation of other devices
for these blocks would have substantially increased the total computation time, even
though the other devices idle otherwise. When running the application with a node
featuring a 8600 GT and a node featuring a GTX 280 besides the frontend node, it can be
seen that the scheduler exploits the fast GTX 280 for execution of the primary critical
path (Figure 7.20 (d)). The overall computation is not significantly faster compared to
the previous case though, because the 8600 GT is significantly slower than the 8800
GTX (the system measured a factor of 3.1). The advantage of pre-copying data also
manifests itself in the shadow volume measurements: task item 2 requires data from
task item 1 and task item 3 requires data from task item 2, but there is no waiting time
involved even though volumes are processed on different nodes.

7.3.3 Directions for Further Research

The semi-static scheduling scheme could be made more flexible during the computation
by supplementing it with a dynamic work stealing mechanism. In order to enable such
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changes in device assignment, the node on which the originally assigned device is
located needs to be informed about the changes. This node should then pass rerouting
information to nodes requesting relocated data from it. Furthermore, adding the pos-
sibility to transfer precomputed device schedules can help nodes with weak CPUs by
removing the scheduling load. Additionally network interconnects could be treated
like compute devices, with the ability to schedule them in order to take bandwidth
occupancy into account. Additionally, a graphical user interface supporting the user
in implementing and connecting tasks would be very helpful in the development pro-
cess. Furthermore, the scheduling algorithm could be compared to other scheduling
strategies (i.e. first-come-first-serve) in a wide range of computing scenarios.






CHAPTER

STRATEGY APPLICATION, DISCUSSION
AND CONCLUSION

In the previous chapters, generic strategies were extracted from the presented ap-
proaches. The collection of these strategies now forms our strategy tree (Fig. 8.1). It
not only gives an overview on the explored directions of this work, but it can further
be of use beyond this. In the following, we discuss the suitability of the strategy tree
for the classification of existing techniques on the one hand, and the development of
new techniques on the other hand. In detail, after an overview on available guidelines
and taxonomies in visualization and parallel computing (Sec. 8.1), the usage of the
strategy tree for the development of applications in research is outlined. Sec. 8.3 then
demonstrates the utilization of the strategy tree as a taxonomy to classify research
papers, conferences etc. Then, characteristics, properties and limitations of the strategy
tree are discussed in Sec. 8.4. Finally, Sec. 8.5 summarizes and concludes this work.

8.1 Guidelines and Taxonomies in Visualization and
Parallel Computing

Both in visualization and parallel computing, taxonomies are very commonly used to
classify hardware architectures and software. Some of the most popular taxonomies
have been covered already in Sec. 2, including Flynn’s taxonomy for multi-processor
computer architectures, programming models, different volume rendering techniques,
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or Molnar’s classification of (distributed) volume rendering. Another widely used classi-
fication scheme is the ACM Computing Classification System that covers the whole field
of computing [ACM, 2002]. Due to its focus on generality, it only superficially covers the
area of visualization, and parallel computing and visualization are addressed seperately
altogether. For generic program development, numerous parallel programming books
have been published that give guidelines for certain types of parallel environments. For
instance, Mattson et al. [2004] propose a pattern language for parallel programming
that is organized into four design spaces, Finding Concurrency, Algorithm Structure,
Supporting Structures, and Implementation Mechanisms.

In visualization, classifications are frequently given with respect to the input data, like
the distinction between scientific visualization and information visualization (Card et al.
[1999], among others). This allows scientists to quickly identify various techniques
that can be applied to their domain of interest. However, the benefit of this prominent
distinction has been subject to ongoing discussion for quite some time [Rhyne et al.,
2003]. For information visualization, Chi [2000] proposes a classification based on the
data state model, that can be seen as a variation of the visualization pipeline discussed
in Sec. 2.2.1. Tory and Moller [2004] classify visualization algorithms with respect
to the assumptions they make about the data, considering a user’s conceptual model.
Lumsdaine et al. [2012] present a taxonomy and conceptual framework to examine
the effects of dynamically changing data on the interpretability of illustrations in
information visualization. Heer and Shneiderman [2012] differentiate with respect to
the kind of input data and/or the chosen visualization techniques, concentrating on the
expressiveness of the results.

8.2 HPV Development with the Strategy Tree

Research typically features a high degree of uncertainty in the development process.
Accordingly, development schemes featuring quick iterations with frequent evaluation
of the current state have proven to be a good match for this [Highsmith, 2002]. As-
sess, Parallelize, Optimize, Deploy (APOD) is such a scheme introduced by NVIDIA
Corporation [2013b] for the development and optimization of CUDA applications. It
bases on the presumption that speedups resulting from changes can be accomplished,
tested, and deployed fairly quickly. This process can be repeated by identifying further
optimization opportunities, seeing additional speedups, and then deploying the even
faster versions of the application into production. The scheme also contains specific
advice on GPU-hardware specific optimization.

To demonstrate the use of our strategy tree for development, a modified version of
APOD is discussed in the following. It is denoted as Assess, Select, Implement, Deploy
(ASID), and uses the strategy tree as an integral part. It focuses on the identification
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ﬁm—> Select Figure 8.2: Cyclic devel-

opment model ASID built
V4 \ around the strategy tree.
It is based on the ASOP
DI« Implement scheme by NVIDIA Corpora-
tion [2013b].

and implementation of promising strategies for HPV research (Fig. 8.2). The phases
Assess and Deploy are largely carried over from APOD, yet shifted from the original
industry focus to our research focus. The subsequent stages Parallelize and Optimize in
APOD constitute a top-down approach, similar to [Mattson et al., 2004], with a largely
domain-independent GPU focus. In more detail, the phases of our ASID model are as
follows:

Assess Understand the requirements and constraints of the visualization application.
Locate the parts of the application that are worthwhile for optimization, e.g., that
are responsible for the bulk of the execution time.

Select Traverse the strategy tree and analyze how promising the respective strategies
are for tackling the considered parts of the application.

Implement Then, exploit the selected improvement potentials by developing and
applying modifications by following the identified strategy.

Deploy Thoroughly test the improved application for important use cases, and evaluate
the impact of the committed changes in comparison to original expectations.

Naturally, a prerequisite for employing the scheme is a basic understanding of both the
visualization and the parallel programming aspects involved. Additional knowledge, e.g.,
about the data set or application scenarios, can further enable the specific optimization
towards certain use cases.

In the Select and Implementation phases, the multitude of options can be confusing,
particularly for developers who are inexperienced in the field. As a start, according to
our experience, it typically makes sense in many cases to consider strategies in their
order of introduction during the course of this work, from Strat. 2 (Structure), over
Strat. 3 (Cost) to Strat. 4 (Resources). Thus, initially, the structuring (or parallelization)
of the application for performing efficiently on parallel hardware is considered (Strat. 2,
Structure). Next, different options for reducing the cost of the selected parts of the
application should be regarded (Strat. 3, Cost). Finally, various options for optimizing
the execution on the target hardware are considered (Strat. 4, Resources). This sequence
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is also roughly employed in the related guidelines discussed above (e.g., in APOD or
[Mattson et al., 2004]).

The flexibility of an iterative development process is also important as a single change of
the application following a strategy can trigger other strategies to be reconsidered. For
instance, the approach tackling divergence on GPUs works by load-balancing during
the execution (Strat. 4, Resources). However, in order to make this work efficiently, an
optimized implementation of the respective algorithms is required (Strat. 3, Cost). Note
that a possible use of the strategy tree by means of ASID has merely been outlined here,
and a detailed discussion and evaluation remains for future work.

8.3 Classification With The Strategy Tree

In the following, further research projects are briefly discussed (Sec. 8.3.1). In particular,
the utilized strategies are highlighted, thereby exemplifying their categorization in the
context of the strategy tree (the respective strategies are graphically depicted for each
project). Subsequently, we show the classification of sets of research papers published
in the proceedings of different conferences (Sec. 8.3.2).

8.3.1 Further Research Projects

Interactive High-Quality Visualization of Higher-Order Finite Elements
[Uffinger, Frey, and Ertl, 2010]

In the discussion so far, we concentrated on the widespread “lower-
order” type of volume visualization. It employs trilinear interpo-
lation on uniform grids which is directly supported by graphics
hardware (Strat. 13, Hardware Architecture). Recently higher-order
finite element methods have emerged as another important dis-
cretization scheme for simulation. It utilizes an hp-adaptive field
representation. h-adaptivity means that a mesh is locally refined
and can consist of different cell types. p-adaptivity denotes that a
polynomial field representation is used, and that the polynomial
order may differ per cell. These characteristics make the direct in-
teractive visualization of hp-adaptive higher-order representations
particularly challenging.

Different strategies need to be employed to still reach the required low response times.
A high level of parallelism is achieved by both partitioning the visualization technique
in image and the object space (Strat. 2, Structure). We use that to distribute the volume
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Figure 8.3: Distributed visualization of higher-order data on a GPU cluster.

on different GPUs, with each GPU tracing rays through its respective volume block
in parallel. Furthermore, an adaptive evaluation scheme is employed to minimize the
number of expensive polynomial evaluations (Strat. 17, Adaptive Computation). For
this, the optimal step size is estimated per cell based on the transfer function frequency
and the maximum field gradient. To lower the cost per sample, additionally a cell-
barycentric monomial basis representation is used, allowing for an efficient evaluation
(Strat. 9, Data Representation). With this basis only the coefficients need to be stored
and thus the whole polynomial can be cached in shared memory for chunks of rays to
reduce the amount of expensive lookups from GPU main memory (Strat. 14, Hierarchy
Characteristics).

The cost for rendering a certain block not only depends on its size and the complexity of
the cells it contains, but also strongly varies with dynamically changing parameters (this
issue has already been discussed in Cha. 7, among others). This particularly involves
the camera configuration as well as the transfer function (Strat. 30, Key Factors), and
potentially causes severe load-imbalance. To allow for balancing the load, the blocks
are represented by means of a k-d tree which can be adjusted dynamically (Fig. 8.3(a))
(Strat. 26, Dynamic Resource Utilization). This is based on fine-granular render time
predictions, which are generated by distributing the measured rendering time of each
block over all its cells relative to their geometric complexity and their featured number of
monomials (Strat. 29, Performance Model). The k-d tree is finally adjusted by traversing
from its root to its leaves (each leaf represents a GPU), shifting the split planes on each
level to equally balance the predicted render time on both sides (Strat. 21, Planning). As
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shown by the scaling behavior in Fig. 8.3(b), this allows to achieve low response times
using a small GPU cluster.

Memory Saving Fourier Transform on GPUs
[Kauker, Sanftmann, Frey, and Ertl, 2010]

DFT is a popular method that is widely used in imaging software,

among others. For accelerated computation, NVIDIA provides a @

library for their CUDA-enabled graphic cards. However, it requires a

large buffer for storing intermediate results for the two-dimensional

Discrete Fourier Transform. Here, the separability of the Fourier

transform can be exploited to compute the same overall operation with a more fine-
granular set of task items (Strat. 7, Granularity). More specifically, rows and columns
are transformed independently, i.e., a 2D DFT is substituted by 1D DFT operations. This
more fine-granular partitioning significantly reduces the memory requirements (thus
enabling the efficient handling of larger data) at comparable processing times.

CUDA-Accelerated Continuous 2D Scatterplots
[Bachthaler, Frey, and Weiskopf, 2009]

Continuous scatterplots make use of continuously defined data by

drawing the scatterplot in a dense way, i.e., instead of rendering

discrete glyphs, the density of the data samples is drawn in the

scatterplot domain. Depending on data set size, the time to compute @

a scatterplot on the CPU with the original implementation could

take up to several minutes—too long to efficiently use a continuous

scatterplot for exploring a data set interactively. While promising some gain in per-
formance, straight-forward porting from the CPU to the GPU, however, would lead to
ineflicient device utilization, partly due to branch divergence.

When considering a tetrahedral grid, the density of each tetrahedron needs to be
computed to generate a continuous scatterplot. This requires a separate handling of
tetrahedra based on their different projection footprints. To achieve optimal perfor-
mance on the GPU, tetrahedra are sorted such that only tetrahedra of the same category
are computed by a warp to avoid branch divergence issues (Strat. 28, Utilize Special
Capabilities).
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GPU-Based Two-Dimensional Flow Simulation Steering using Coherent Struc-
tures
[Ament, Frey, Sadlo, Ertl, and Weiskopf, 2011]

Flow simulations exhibit high computational cost and generate vast

amounts of multi-attribute data. The analysis of their results usually

leads to a redesign of boundary conditions and to a reparametriza-

tion of the simulation. Typically, this time-consuming process is

iterated until the desired goal is achieved. Interactive investigation

and manipulation (e.g., changing boundary conditions like obstacles

or velocity profiles) provides a means of achieving targeted flow d)

behavior in an intuitive way, since changes of the parametrization of

the simulation are directly reflected in the visualization. In order to achieve the required
fast response times, the numerous redundant computations between two frames are
identified and significantly reduced in this project by reutilizing previously computed
values (Strat. 12, Prune Steps Without Contribution).

DIANA: A Device Abstraction Framework for Parallel Computations
[Panagiotidis, Kauker, Frey, and Ertl, 2011]

In general, different APIs are used to program for different device

classes. Porting a program to a new set of devices and/or APIs re-

quires an adjustment or even rewrite of the existing implementation.

A common interface can be used to hide the complexity of managing

different APIs, SDKs, and libraries for different many-core devices.

This allows for easier maintainability as well as higher flexibility

and portability (Strat. 26, Dynamic Resource Utilization). Further, a

database stores information about available devices and computations, debug messages,
and profiling data (Strat. 29, Performance Model), which can then be used for efficient
work distribution.
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A Compute Unified System Architecture for Graphics Clusters Incorporating

Data Locality

[Miiller, Frey, Strengert, Dachsbacher, and Ertl, 2009]

CUDASA is a development environment for distributed GPU com-
puting (Fig. 8.4). It is based on CUDA and logically extends its
parallel programming model for graphics processors to higher lev-
els of parallelism, namely the PCI bus and network interconnects.
While the extended API mimics the full function set of current
graphics hardware - including the concept of global memory - on
all distribution layers, the underlying communication mechanisms
are handled transparently for the application developer (Strat. 14,
Hierarchy Characteristics). However, there is potentially a lot of
data that has to be shifted when the scheduling assignment changes.
This cost for communication between different processing or stor-
age entities can severely limit the overall performance of the system. To alleviate this
issue, tasks and data are distributed explicitly for good data locality properties by an
automatic GPU-accelerated scheduling mechanism (Strat. 31, Optimization Heuristic).
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(a) EGPGV13 from 9 papers. (b) HPG12 from 8 papers. (c) LDAV12 from 11 papers.

Figure 8.5: Strategy classification of various conferences, with color saturation depicting the
prevalence of certain strategy classes.

Space-Time Volumetric Depth Images for In-Situ-Visualization
[Fernandes, Frey, Sadlo, and Ertl, 2014]

Volumetric Depth Images (VDIs) compress the scalar data along view

rays into sets of coherent supersegments (Sec. 5.1). This project

introduces space-time VDIs that achieve the data reduction that is re-

quired for efficient in-situ visualization, while still maintaining spa- d)
tiotemporal flexibility. For efficient space-time representation of VDI

streams inter-ray and inter-frame coherence are exploited (Strat. 10,

Condense Representation). A particular focus lies on the introduction

of only small computational overhead, and an easy integration into existing simulation
environments.

8.3.2 Taxonomy of Conference Papers

Research papers can be classified with respect to the strategies they employ toward HPV.
Fig. 8.5 shows the condensed classification of papers that were presented at different
conferences. For this, the opacity of the nodes in the strategy tree is adjusted to depict
the frequency with which certain strategies were identified (in contrast to the previous
visualizations of the strategy tree, the saturation of the nodes does not automatically
decrease from the inside to the outside). In short, the criterion for classifying a strategy
is its explicit description and discussion in the paper (beyond a brief mention). Most
prominently, strategies are featured that are part of the paper’s contribution. The
detailed classification of individual papers is listed in Appendix A.
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Fig. 8.5 lists the results for three conferences, all of which focus on high-performance
visualization and rendering. Their self-descriptions are given below:

EGPGV13 (Fig. 8.5(a)) “EGPGV [focuses] on parallel graphics and visualization tech-
nology, where novel solutions exploiting and defining new trends in parallel
hardware and software architectures are presented. The aim of the symposium is
[to discuss] parallel and distributed visual computing and its application to all
aspects of computer graphics and data visualization.”
http://www.vis.uni-stuttgart.de/egpgv/egpgv2013

HPG12 (Fig. 8.5(b)) “ High Performance Graphics [focuses on] performance-oriented
graphics systems research including innovative algorithms, efficient implemen-
tations, and hardware architecture. The conference [addresses] the complex
interactions of massively parallel hardware, novel programming models, efficient
graphics algorithms, and novel applications.”
http://highperformancegraphics.org

LDAV12 (Fig. 8.5(c)) “This new symposium [...] aims [...] at develop[ing] the next-
generation data-intensive analysis and visualization technology. [It covers] large
data management, analysis, and visualization, [and their impact on] data intensive
computing and knowledge discovery ”
http://www.ldav.org

The topical bias of these conferences reflects in their identified strategy usage, and
several differences between them can be seen from Fig. 8.5. First of all, EGPGV13 exhibits
the most balanced representation of all the basic strategy categories overall. For LDAV12,
a particular focus lies on Strat. 9 (Data Representation), which can be accounted to the
conference’s large data focus. The partitioning of the application is of high importance,
too, to be able to handle the large amounts of data efficiently (Strat. 2, Structure). Finally,
HPG12 particularly covers the reduction of computational cost of certain rendering
algorithms (Strat. 11, Computation Steps) as well as the customization and optimization
toward certain hardware architectures (Strat. 13, Hardware Architecture). A particular
focus lies on exploiting special functionality of certain target computation devices
(Strat. 28, Utilize Special Capabilities).

The analysis at hand already gives a first, expressive characterization of three confer-
ences with a similar scope. For future work, a more complete, detailed analysis with
considering more specific strategies (i.e., more refined, deeper tree levels) could provide
more insight. In particular, more details and a wider range of classified papers could
give some indication of technological trends, and maybe even help to identify promising
possibilities that are underused currently.


http://www.vis.uni-stuttgart.de/egpgv/egpgv2013
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Considering the prevalence of strategies with respect to certain fields, a particularly
interesting question for future research would be to investigate the reasons behind this.
There is a couple of possible aspects that can be identified, including the following.

« Some techniques are more promising for research because they feature parts
which exhibit a large room for improvement with optimized or novel algorithms.

+ General trends or a high degree of familiarity by the researchers working in
the field. For instance, the computer graphics and visualization community was
among the pioneers of GPGPU, one of the reasons certainly being that historically
they always intensively worked with graphics hardware for image synthesis.

+ The degree of complexity involved in applying a strategy successfully to a field.

« Availability of tools that either have the strategy implemented already or ease its
development. For instance, in visualization, this applies to techniques that are
already implemented in a basic variant in frameworks like VislIt [Childs et al.,
2010] or ParaView [Ahrens et al., 2005].

As already indicated above, an important question is whether some strategies are hardly
considered in a certain field due to the reasons discussed above, even though they might
be promising. Possibly, identifying them and looking deeper into these directions might
be an interesting path to new research projects. A detailed consideration and evaluation
of this remains for future work.

Here, papers were classified manually, which consumes a considerable amount of time.
Automatic classification would be desirable especially when looking at large collections
of papers. For future work, document classification techniques and toolkits could be
used for the automatic classification of research papers on the basis of the previously
classified documents (using it as training data). Intuitively, while some strategies are
not trivial to detect as their description requires a higher level of understanding, others
might be relatively easy to identify by means of the accumulation specific keywords.

8.4 Limitations of the Strategy Tree

So far, we have discussed the utilization of the strategy tree both in the development of
new techniques and as a taxonomy for the analysis of existing approaches. There are
also some limitations of the strategy tree that need to be considered:

Scope The strategy tree developed in this work is not complete, in a sense that it
encompasses all strategies that may be useful in any given situation in HPV. Note
however, that the strategy tree structure can easily be extended toward a more
complete representation in future work.
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Generality In this work, we consider projects from the field of scientific visualization,
with a focus on volume visualization. As this is only a subset of the wide areas
of topics covered by HPV in general, this might cause a certain bias in our
determined manifestation of the strategy tree .

Optimality Due to the generality of the strategies, they might not always provide
the best solution. For instance, in some cases, if there is specific knowledge
about the problem (e.g., the employed hardware), there might be a quasi-optimal
specialized solution that could even contradict some strategies. However, the
strategies provided in this context are intended be a good starting point and
provide a reasonable solution in the vast majority of cases.

Detail In this work, strategies are formulated abstractly from specific algorithms, data
structures etc. In a significantly extended, more detailed (deeper) strategy tree,
they would eventually appear on the leaf level, as a specializaton of the more
generic concepts.

Subjectiveness The construction of taxonomies is often a highly subjective process
in that different experts might reach different results [Liu et al., 2012]. Here, the
strategy tree is completely derived from research done in the context of this work
which inherently includes a certain bias.

8.5 Conclusion

Interactive visualization allows the viewer to explore the data in an ad-hoc fashion,
which strongly supports the gain of new insights and a deeper understanding of un-
derlying principles [Ferster, 2012]. A fundamental prerequisite for this is a very short
delay in responding to user requests. This can be very difficult to achieve for large data
sets and complex visualization techniques, even when employing powerful state of the
art parallel hardware.

To address this, we developed novel performance-oriented visualization techniques
which tackle specific issues in different areas of scientific visualization. First, the analy-
sis of time-dependent data is addressed. It is challenging not only in terms of finding
meaningful representations, but also in the context of efficient data processing. Sec. 3
introduced techniques for the the analysis of time-dependent field and particle data,
with a particular focus on structuring the application for efficient parallel computa-
tion. Second, while raycasting for volume visualization has some favorable properties,
like great flexibility and good parallelization characteristics, it also computationally
expensive. Sec. 4 introduced techniques improving the performance of interactive volu-
metric raycasting on GPUs. Third, transferring data at large scale for post-processing
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visualization and analysis is not feasable in many situations, and storage and network
bandwidth constraints more and more become the limiting factor for overall compute
performance. Sec. 5 discussed view-dependent representations for volume rendering
as a way to both reduce the data size of the representation and accelerate rendering.
Sec. 6 further introduces remote and in-situ visualization systems that are designed to
process the data as local as possible. Fourth, in parallel volume visualization, significant
load imbalance may be caused by the inherent heterogeneity, like the inhomogeneous
distribution of costs or varying processor processor speeds. Sec. 7 concentrates on
techniques to balance this load. Overall, the discussed techniques and projects share the
general objective of supporting or even enabling the efficient exploration and analysis
in scientific visualization.

From these projects, generic strategies toward HPV were extracted. In scope, they
range from the parallelization of the program structure and the cost optimization of
the visualization procedure to the efficient execution on parallel hardware. These were
structured in the newly introduced strategy tree, a consistent and comprehensive hier-
archical classification of the employed strategies in the context of this work (Sec. 8). The
potential use of this strategy tree was discussed for supporting the development process
in visualization research or providing classification of published papers or conferences
in the field. On the one hand, during the development of a visualization application
in research, it could help in identifying and exploiting potentials for improving per-
formance (Sec. 8.2). On the other hand, the use of the strategy tree as an expressive
taxonomy for research on HPV has been exemplified in Sec. 8.3 by illustrating the
different foci of conferences with a similar scope.

The work presented in this thesis opens multiple directions for future work. For each
individual project and its presented technique, a variety of possibilities for their further
development have been discussed in the respective sections. Generically speaking,
this particularly encompasses ideas how to further improve scaling behavior, optimize
toward a specific use case, or generalize the techniques to be successfully applicable in
other scenarios. Regarding the strategy tree, future work includes complementing it
with possibly missing strategies from a larger set of visualization research papers as
well as a adding strategies for a higher degree of detail (e.g., specific data structures
for skipping computations as a specialization of Strat. 17 (Adaptive Computation)).
Comparisons to other fields besides scientific visualization should also be promising, as
identifying similarities and particularly differences might provide new perspectives and
possibilities, and considering them for a longer period of time might reveal certain trends.
Finally, automatic classification would be crucial for this, and while some strategies
should be relatively easy to detect by the accumulation of specific keywords, others
might require a higher level of understanding, hence imposing a special challenge.
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STRATEGY CLASSIFICATION OF

A.1 EGPGV13

VISUALIZATION PAPERS

GPU Acceleration of Particle Advection Work-
loads in a Parallel, Distributed Memory Setting

Strat. 5 (Dependencies), Strat. 7 (Granularity), Strat. 33 (Hybrid
Modeling)

In Situ Pathtube Visualization with Explorable
Images

Strat. 22 (Selective Conversion), Strat. 15 (Structure Hierarchi-
cally)

Scalable Parallel Feature Extraction and Track-
ing for Large Time-varying 3D Volume Data

Strat. 22 (Selective Conversion), Strat. 15 (Structure Hierarchi-
cally), Strat. 5 (Dependencies), Strat. 7 (Granularity)

Scalable Seams for Gigapixel Panoramas

Strat. 14 (Hierarchy Characteristics), Strat. 15 (Structure Hierar-
chically), Strat. 7 (Granularity), Strat. 5 (Dependencies)

Rendering Molecular Surfaces using Order-
Independent Transparency

Strat. 28 (Utilize Special Capabilities)

VtkSMP: Task-based Parallel Operators for
VTK Filters

Strat. 5 (Dependencies), Strat. 7 (Granularity), Strat. 17 (Adap-
tive Computation), Strat. 21 (Planning), Strat. 30 (Key Factors)

Practical parallel rendering of detailed neuron
simulations

Strat. 2 (Structure), Strat. 22 (Selective Conversion),
Strat. 17 (Adaptive Computation), Strat. 12 (Prune Steps
Without Contribution), Strat. 33 (Hybrid Modeling)

Analysis of Cache Behavior and Performance
of Different BVH Memory Layouts for Tracing
Incoherent Rays

Strat. 17 (Adaptive Computation), Strat. 14 (Hierarchy Charac-
teristics), Strat. 28 (Utilize Special Capabilities), Strat. 33 (Hybrid
Modeling)

Image-parallel Ray Tracing using OpenGL In-
terception

Strat. 14 (Hierarchy Characteristics), Strat. 26 (Dynamic Re-
source Utilization), Strat. 21 (Planning)
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A.2 HPG12

Design and Novel Uses of Higher-Dimensional
Rasterization

Strat. 28 (Utilize Special Capabilities)

Adaptive Image Space Shading for Motion and
Defocus Blur

Strat. 17 (Adaptive Computation)

High-Quality Parallel Depth-of-Field Using
Line Samples

Strat. 5 (Dependencies), Strat. 7 (Granularity), Strat. 17 (Adap-
tive Computation)

Maximizing Parallelism in the Construction of
BVHs, Octrees and k-d Trees

Strat. 17 (Adaptive Computation), Strat. 13 (Hardware Architec-
ture), Strat. 7 (Granularity)

kANN on the GPU with Shifted Sorting

SRDH: Specializing BVH Construction and
Traversal Order Using Representative Shadow
Ray Sets

Strat. 33 (Hybrid Modeling), Strat.
Strat. 28 (Utilize Special Capabilities)

5 (Dependencies),

Algorithm and VLSI Architecture for Real-
Time 1080p60 Video Retargeting

Strat. 28 (Utilize Special Capabilities), Strat. 5 (Dependencies),
Strat. 7 (Granularity), Strat. 17 (Adaptive Computation)

Power Efficiency for Software Algorithms run-
ning on Graphics Processors

Strat. 33 (Hybrid Modeling)

A.3 LDAV12

Panning and Zooming the Observable Universe
with Prefix-Matching Indices and Pixel-Based
Overlays

Strat. 5 (Dependencies), Strat. 10 (Condense Representation)

Interactive Exploration of Large-Scale Time-
Varying Data using Dynamic Tracking Graphs

Strat. 17 (Adaptive Computation), Strat. 22 (Selective Conver-
sion)

Interactive Transfer Function Design on Large
Multiresolution Volumes

Strat. 10 (Condense Representation)

Query-driven Parallel Exploration of Large
Datasets

Strat. 26 (Dynamic Resource Utilization), Strat. 9 (Data Represen-
tation)

Efficient Parallel Extraction of Crack-Free
Isosurfaces from Adaptive Mesh Refinement
(AMR) Data

Strat. 22 (Selective Conversion),
Strat. 7 (Granularity)

Strat. 5 (Dependencies),

Parallel Stream Surface Computation for Large
Data Sets

Strat. 14 (Hierarchy Characteristics), Strat. 5 (Dependencies)

Salient Time Steps Selection from Large Scale
Time-Varying Data Sets with Dynamic Time
Warping

Strat. 5 (Dependencies), Strat. 12 (Prune Steps Without Contribu-
tion), Strat. 7 (Granularity)

On the Use of Graph Search Techniques for the
Analysis of Extreme-Scale Combustion Simula-
tion Data

Strat. 22 (Selective Conversion), Strat. 8 (Execution Frequencies),
Strat. 12 (Prune Steps Without Contribution)

Visual Analysis of Massive Web Session Data

Strat. 8 (Execution Frequencies), Strat. 22 (Selective Conversion),
Strat. 10 (Condense Representation)

Gaussian Mixture Model Based Volume Visual-
ization

Strat. 9 (Data Representation), Strat. 17 (Adaptive Computation)

Virtual Rheoscopic Fluids for Dense, Large-
Scale Fluid Flow Visualizations

Strat. 5 (Dependencies), Strat. 15 (Structure Hierarchically)
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Figure A.1: Strategy classification of EGPGV13 from 9 papers.
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Figure A.2: Strategy classification of HPG12 from 8 papers.
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APPENDIX

VOLUME DATASETS

| Name (Rendering) || Grid | Acquisition | Source
Chameleon . . .
(Fig. 4.10) 1024 x 1024 x 1080 CT University of Texas, Austin
Ellipses (Fig. 4.4(a)) 256 x 256 x 256 CT Daimler AG
Engine (Fig. 5.3(a)) 256 x 256 x 256 CT General Electric
. . . Institute of Aerodynamics and Gas Dynamics,
Flow (Fig. 5.3(k)) 2018 x 220 x 1085 Simulation University of Stuttgart
Flow Around Unstructured Simulati Institute of Aerodynamics and Gas Dynamics,
Sphere (Fig. 8.3(a)) nstructure rmuiation University of Stuttgart
Computer-Assisted Paleoanthropology group and the
Flower (Fig. 4.5) 1024 x 1024 x 1024 CT Visualization and MultiMedia Lab, University of
Zurich
Hydrogen Atomic . _
(Fig. 7.8(2)) wave function 13,21 Model
Jet (Flg('béi')lz(a) & 720 x 320 x 320 Simulation University of Stuttgart
Vertebra (Fig. 5.3(f)) 512 x 512 x 512 CT Viatronix Inc.
Vortex . . Institute of Aerodynamics and Gas Dynamics,
(Fig. 4.12(c)~(e)) 2R Simulation University of Stuttgart
Supernova (Cover) 432 x 432 x 432 Simulation North Carolina State University
Toy Car (Fig. 4.2) 559 x 1023 x 347 CT Computer Graphics Group, University of Erlangen
Zeiss (Fig. 4.4(c)) rxrxr (varying r) CT Daimler AG
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