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Abstract

With the increasing capabilities of measurement devices and computing machines, the amount of
recorded data grows rapidly. It is so high that manual processing is no longer feasible.

The Visual Analytics approach is powerful because it combines the strengths of human recogni-
tion and vision system with today’s computing power. Different, but strongly linked visualizations
and views provide unique perspectives on the same data elements. The views are linked using po-
sition on the screen as well as color, which also plays a secondary role in indicating the degree
of similarity. This enables the human recognition system to identify trends and anomalies in a
network of measurement readings. As a result, the data analyst has the ability to approach more
complex questions such as: are there anomalies in the measurement records? What does the
network usually look like?

In this work we propose a collection of Visual Analytics approaches to support the user in ex-
ploratory search and related tasks in graph data sets. One aspect is graph navigation, where we
use the information of existing labels to support the user in analyzing with this data set. Another
consideration is the preservation of the user’s mental map, which is supported by smooth transi-
tions between individual keyframes. The later chapters focus on sensor networks, a type of graph
data that additionally contains time series data on a per-node basis; this adds an extra dimension
of complexity to the problem space. This thesis contributes several techniques to the scientific
community in different domains and we summarize them as follows.

We begin with an approach for network exploration. This forms the basis for subsequent contri-
butions, as it to supports user in the orientation and the navigation in any kind of network structure.
This is achieved by providing a showing only a small subset of the data (in other words: a local
graph view). The user expresses interest in a certain area by selecting one of more focus nodes
that define the visible subgraph. Visual cues in the form of pointing arrows indicate other areas
of the graph that could be relevant for the user. Based on this network exploration paradigm, we
present a combination of different techniques that stabilize the layout of such local graph views
by reducing acting forces. As a result, the movement of nodes in the node-link diagram is re-
duced, which reduces the mental effort to track changes on the screen. However, up to this point
the approach suffers from one of the most prominent shortcomings of force-directed graph lay-
outs. Little changes in the initial setup, force parameters, or graph topology changes have a strong
impact on the visual representation of the drawing. When the user explores the network, the set
of visible nodes continuously changes and therefore the layout will look different when an area
of the graph is visited a second time. This makes it difficult to identify differences or recognize
different drawing as equal in terms of topology. We contribute an approach for the deterministic
generation of layouts based on pre-computed layout patches that are stitched at runtime. This
ensures that even force-directed layouts are deterministic, allowing the analyst to recognize previ-
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ously explored areas of the graph. In the next step, we apply these rather general purpose concepts
from theory in practical applications.

One of the most important network category is that of sensor networks, a type of graph data
structure where every node is annotated with a time series. Such networks exist in the form
of electric grids and other supply networks. In the wake of distributed and localized energy
generation, the analysis of these networks becomes more and more important. We present and
discuss a multi-view and multi-perspective environment for network analysis of sensor networks
that integrates different data sources. It is then extended into a visualization environment that
enables the analyst to track the automated analysis of the processing pipeline of an expert system.
As a result, the user can verify the correctness of the system and intervene where necessary. One
key issue with expert systems, which typically operate on manually written rules, is that they can
deal with explicit statements. They cannot grasp terms such as “uncommon” or “anomalous”.
Unfortunately, this is often what the domain experts are looking for. We therefore modify and
extend the system into an integrated analysis system for the detection of similar patterns in space
and in different granularities of time. Its purpose is to obtain an overview of a large system
and to identify hot spots and other anomalies. The idea here is to use similar colors to indicate
similar patterns in the network. For that, it is vital to be able to rely on the mapping of time
series patterns to color. The Colormap-Explorer supports the analysis and comparison of different
implementations of 2D color maps to find the best fit for the task.

As soon as the domain expert has identified problems in the networks, he or she might want
to take countermeasures to improve the network stability. We present an approach that integrates
simulation in the process to perform “What-If” analysis based on an underlying simulation frame-
work. Subsequent runs can be compared to quickly identify differences and discover the effect of
changes in the network.

The approaches that are presented can be utilized in a large variety of applications and applica-
tion domains. This enables the domain expert to navigate and explore networks, find key elements
such as bridges, and detect spurious trends early.
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Deutsche Zusammenfassung

Mit der wachsenden Leistung von Messgeräten und Rechnern wächst die Menge der für eine
Datenanalyse zur Verfügung stehende Menge an Rohinformation in einem Maße an, dass ein
händisches Durchsuchen und Verarbeiten für eine Analyse unmöglich macht.

Die vorliegende Arbeit setzt auf den Visual Analytics-Ansatz, der die Fähigkeiten des Men-
schen – vor allem die visuelle Wahrnehmung und Verständnis – mit der Rechenleistung heutiger
Computer in einem Prozess vereint. Damit lassen sich auch Fragen beantworten, die nur schwer
explizit zu formulieren sind: gibt es ungewöhnliche Verlaufskurven? Wie sieht das Netz norma-
lerweise aus?

In dieser Arbeit werden neue Ansätze und Visualisierungstechniken für die Datenanalyse von
Netzwerkdaten vorgestellt. Dabei geht es zunächst um Graphen im allgemeinsten Sinne, später
fokussiert sich die Arbeit auf sogenannte Sensor-Netze. Das sind Netze, die an jedem Knoten-
punkte eine kontinuierliche Variable über die Zeit hinweg messen. Analyselösungen für solche
Daten sind in vielen Anwendungsgebieten von ungeheurer Bedeutung, sei es in der Steuerung
von Strom- und Wasser- und anderen Versorgungsnetzen, bei der Überwachung von Funknetzen.
Der Beitrag dieser Arbeit zur visuellen und interaktiven Analyse von Graphdaten liegt ganz kon-
kret auf den folgenden Aspekten.

Zunächst wird ein Ansatz für die Exploration von Netzwerken vorgestellt. Dieser bildet die
Grundlage für die darauffolgenden Beiträge, da er den Nutzer bei der Orientierung und Navi-
gation in in lokalen Ansichten von Netzwerken (dynamic graph views) im allgemeinsten Sinne
unterstützt. Das wird dadurch erreicht, dass nur ein kleiner Teil des Graphs dargestellt wird. Diese
Art der Darstellung wird auch als lokale Ansicht bzw. local graph view bezeichnet. Der Benutzer
des Systems drückt sein Interesse an einem Bereich des Graphen aus, indem er oder sie eine oder
mehrere Fokusknoten auswählt und dadurch sichtbaren Bereich definiert.

Visuelle Hinweise, die die Form von Richtungspfeilen haben, zeigen dem Benutzer Wege zu
anderen Teilen, die relevant sein könnten. Aufbauend auf diesem Paradigma zur Exploration von
Netzwerken, wird eine Kombination von verschiedenen Techniken vorgestellt, die das Layout
solcher lokaler Ansichten stabilisieren. Deren Kernziel dabei ist die wirkenden Kräfte auf ein
Minimum zu reduzieren, um die Bewegung der Knoten im Layout zu reduzieren. Das wieder-
um macht es leichter, den Veränderungen auf dem Bildschirm zu folgen. Bis zu diesem Punkt
jedoch leidet das Layout des Netzwerkes unter einem der markantesten Nachteile von Kräfte-
basierten (force-directed) Layouts. Selbst kleine Änderungen bei der initialen Platzierung der
Knoten, in der Konfiguration der Parameter oder Graph-Topologie haben einen starken Einfluss
auf die Zeichnung.

Wenn der Benutzer das Netzwerk erkundet, dann ändert sich die Menge der sichtbaren Knoten
ständig. Daher sieht das Layout daher jedes Mal anders aus, wenn ein bestimmter Teilbereich
erkundet wird. Das macht es schwierig, topologische Unterschiede zu erkennen oder eine bereits
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besuchte Region als solche wiederzuerkennen. Um dem zu begegnen, stellen wir einen Ansatz
für die deterministische Erzeugung von Layouts vor. Das wird durch Vorberechnen von Layouts
basierend auf vielen kleineren Teilen des Graphen ermöglicht. Diese, zur Laufzeit fixen Layouts,
werden bei Bedarf entsprechend zusammengefügt, so dass ein kohäsiver Gesamtgraph entsteht.
Der Ansatz stellt sicher, dass selbst Kräfte-basierte Layouts deterministisch erzeugt werden kön-
nen.

Im nächsten Schritt werden diese eher allgemein gehaltenen Konzepte von der Theorie in die
Praxis übertragen. Eine der interessantesten Anwendungsgebiete sind Sensor-Netzwerke, ein Typ
von Graph, der jedem Knoten eine Zeitserie zuordnet. Beispiele für solche Netzwerke sind Strom-
netze und andere Versorgungssysteme. Durch die zunehmende Verkleinerung und Verteilung der
Energieerzeugung wird die Analyse des Stromnetzes zunehmend wichtiger. Wir stellen eine Ana-
lyseplattform für die professionelle Datenanalyse vor, die verschiedene Ansichten auf die Daten
kombiniert. Unterschiedliche Perspektiven ermöglichen das Umschalten zwischen unterschiedli-
chen Arbeitsabläufen. Verschiedene Datenquellen können am Beispiel der Analyse von Strom-
netzen integriert und kombiniert werden.

Dieses System wird dann um eine Komponente erweitert, die automatische Analyse durch ein
Expertensystem ermöglicht. Dem Benutzer wird es aber ermöglicht, die automatische Analysepi-
peline zu überwachen und, wenn nötig, einzugreifen. So kann das Verhalten überprüft, verifiziert
und wenn nötig auch eingegriffen werden. Eines der Hauptprobleme von Expertensystemen ist
die Abhängigkeit zu den üblicherweise händisch angelegten Regelwerken, die jegliches Verhalten
explizit darlegen müssen. Das macht es unmöglich, Terme wie „ungewöhnlich“ oder „auffällig“
zu verwenden, was aber notwendig wäre, da manche Situationen nicht genauer definiert werden
können.

Daher wird das System modifiziert und erweitert, so dass es dem Analysten ermöglicht wird,
ähnliche Muster und Verläufe im Raum und über die Zeit (in verschiedenen Granularitäten) zu
erkennen. Das System gibt einen informativen Überblick über das Gesamtsystem und erlaubt es,
schnell und präzise kritische Stellen und Anomalien zu identifizieren. Dem Attribut Farbe kommt
dabei eine Schlüsselrolle zu, da sie Ähnlichkeit in Mustern widerspiegelt. Daher ist es unbedingt
notwendig, dass die Kodierung von Ähnlichkeit in zeitlichen Verläufen korrekt in Farbähnlich-
keit abgebildet wird. Der Colormap-Explorer, der im Anschluss vorgestellt wird, unterstützt die
Analyse und den Vergleich von unterschiedlichen Farbkarten (colormaps), um den geeignetsten
Kandidaten zu finden.

Sobald der Domänenexperte Probleme im Netzwerk identifiziert hat, können dann mögliche
Gegenmaßnahmen evaluiert werden. Wir stellen einen Ansatz vor, der Simulation in den Pro-
zess integriert, um eine Sensitivitätsanalyse durchführen zu können. Verschiedene Durchläufe der
Simulation können damit schnell und effektiv auf Knotenbasis verglichen werden, um die Aus-
wirkung von geplanten Änderungen leichter abschätzen zu können. Das ermöglicht dem Planer
genauere Vorhersagen von Folgeeffekten durch Veränderungen im Netz zu machen.

Die vorgestellten Techniken können für eine Vielzahl von Anwendungen und Anwendungsge-
bieten realisiert werden. Dies führt dazu, dass die Domänenexperten die Möglichkeiten besitzen,
schnell und sicher in Netzwerken zu navigieren, Schlüsselstellen zu finden und Anomalien in den
Daten frühzeitig zu erkennen.
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1. Introduction

1.1. Motivation

The past years have seen a strong growth of all types of data that require analysis. This develop-
ment is increasingly driven by the machine-based generation of data. Prominent examples are the
automated logging and recording of telecommunication connection and web access, short-range
tag tracker such as RFID sensors. Large amounts of data are recorded in many application do-
mains; this includes transaction data in finance, energy consumption of individual customers of
electricity providers and environmental information in meteorology. With the increased linking of
data sets, the connectivity as such turns into a potential source of information and insight. Thus,
analysis of network data has gained strong interest because, in contrast to tabular data, explicit
links between data inherent to the network system exist. One of the most important types of net-
works are sensor networks. These networks consist of nodes that measure one or more continuous
variables over time.

One example is the Stream Gauge Networks that most industrialized countries have set up to
monitor rivers and other water bodies. Gauging stations are located alongside rivers, forming
partially connected networks at river joins. In these stations, quantities such as the surface water
level (the stage) and the flow of the water are continuously measured. Aside from water quality
assessment, geo-scientists use these networks to study hydrologic extremes such as floods and
droughts.

Another example is the measurement of energy consumption of households. Electricity is
brought to the customers through a network of electric cables and transformer stations. These
transformer stations also measure the flow of electric current, allowing for drawing conclusions
on consumption patterns of individual consumers or groups of them. This is useful for control
room operators in managing the production, distribution and transport of energy.

The amount of sensor-based data has seen a rapid growth over the past years across many dif-
ferent disciplines and applications. With more and more sensors being installed, the higher resolu-
tion of measurement devices, the recorded data grows exponentially and becomes overwhelming.
Apart from dealing with these extremely large amounts of data per se, a major challenge is to ex-
tract that information that is most relevant for the analysis from these data sets. This information
could be trends, repeating patterns, spikes, etc. and depends strongly on the application context.
The relevance of sensor networks in many practical applications motivated us to investigate the
problem domain in detail.
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1.2. Combining Strengths of Man and Machine

The problem of analyzing sensor network and network data in general is both large and complex.
High resolutions of sensors combined with the large number of installed recording devices leads
to super-linear growth of the data bases. On top of that, the partially unknown reliability and the
increasing heterogeneity of the individual data sources drive the complexity.

To tackle the size aspect of the problem, machines are necessary. Today, even mobile devices
are able to compute millions of operations every second. Commodity hardware even allows bil-
lions, as well as the ability to process (analyze) large quantities of data on multiple processors.
This computing power can be exploited in automated algorithms to find solutions to certain prob-
lems in little time with little user involvement.

An inherent requirement, however, is that the goal must be made explicit (e.g. “find users in
a database that are between 30 and 60 years old”) and the instruction algorithm for finding a
solution must be clearly laid out for machine processing. When this requirement is fulfilled, the
computer can extract the relevant information very precisely. An algorithmic approach can find
the best and fastest solutions (with respect to certain constraints, limitations and quality criteria)
faster than any human. In such cases, other means such as visualization are then not required to
find such a solution [vW05].

The process of extracting information per se is trivial in such explicit settings: the data contains
information. This information is foraged by an algorithm and then communicated to the user that
seeks to gain insight in the data. A common issue is that users must assume the algorithm (as well
as the resulting data analysis) to be correct. According to van Wijk, such automated approaches
need to be “fool-proof” [vW05] in order to be usable.

Unfortunately, the situation is far less clear in many practical applications. Hydrologists want to
see signs of an upcoming flood in a network of gauging stations. Energy providers want to obtain
an impression of consumption patterns of their customers. Generally speaking, data analysts want
to get a “feeling” (often referred to as insight) of the information in a data set. This is often
difficult to convey explicitly to machines, so that they will yield the information desired by the
user. What does a typical pattern look like? What is an anomaly?

How do we tell computers how this goal can be reached? One approach is Machine learning, a
group of algorithms and techniques that construct models based on input data. However, neither
the problem nor the expected results of the process can be explicitly formulated. Such tasks are
often described as exploratory search in the uncharted region of a data set. This is true for tabular
data and even more so for network data, which also defines relations between individual items.

The most prominent claim of Information Visualization is that its purpose is the aforementioned
Insight [vW05, Nor06]. Thomas and Cook propose the integration of the user through visualiza-
tion in the process to take advantage of certain human abilities [TC05]. These are, for example,
the human vision and the perceptional system. Humans are able to identify visual structures and
patterns in images faster and at unrivaled accuracy and precision. Computers on the other hand
perform millions of mathematical operations in a single second. The aim of interactive data anal-
ysis is to extract or generate insight from data sets by combining the advantages of human visual
recognition with the strengths of machine-based computation. This is discussed in more detail in
Section 2.6.
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1.3. Contribution

One of the most central problems domain experts are currently confronted with is the very ab-
stract question about what information is hidden in the data they hold in their hands. Generally
speaking, this is independent from the data type per se. This question is particularly interesting
for graph data since it also involves connectivity between data items, but also challenging. Col-
loquially spoken, domain experts such as control room operators need to know what is going on
in their networks. Only on the basis of precise knowledge of the situation – in both temporal and
spatial domains – they are able to make sound decisions. This thesis approaches this problem
with a set of techniques to enable the analyst to gain insight in the details of large networks and
find important connections between different parts. On this basis, the analyst can find answers
to practical questions such as: which parts of the networks behave similarly? Which ones are
affected by seasonal effects? What is the expected effect of changes in the topology?

In this work, the aforementioned combination and intertwining of computer and human strengths
is used as a key component for the exploratory analysis of data sets. We propose a collection of
approaches to support the user in exploratory search and related tasks in graph data sets. One
aspect is graph navigation, where we use the information of existing labels to support the user in
working with this data set. Another one is the preservation of the mental map which is supported
by smooth transitions between individual keyframes. Deterministic layout enables the user to
recognize previously explored parts of a graph.

While these contributions work with any type of graph data, we also claim to contribute to a
specific type of graph data, namely sensor networks. This adds an extra dimension of complexity
to the problem space. It involves not only also dealing with a different data type (time), but
requires dealing with time series data for every node of the graph. We approach this problem with
a combination of different visualizations and views and are strongly linked and provide different
perspectives on the same data elements. Aside from the position on the screen, color plays a key
role, as it is used to link different views on the same data elements, but also to indicate similarity
between different data elements. This enables the human recognition system to identify trends
and anomalies in a network of measurement readings. We claim to contribute several items to the
scientific community in different domains and summarize them as follows:

• The baseline of this work forms an approach for network exploration using local graph
views that support multiple focus nodes. It also adds visual cues to support the user’s
orientation and navigation in the most common sense. This contribution C1 was published
in [MSDK12].

• Based on that, we present an approach that stabilizes the layout of local graph views by
reducing acting forces with a combination of four different techniques. The aim is to reduce
the cognitive effort of the user that is exploring the network by damping node movement.
This contribution C2 was first published in [SMK13] and in an extended version as a journal
article in [SMK14].

• However, small changes in the data or parametrization still have a strong impact on the
display. We counter this with pre-computed layout patches that are stitched at runtime.

3
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This ensures that even such force-directed layouts become deterministic. Thus, the analyst
can recognize previously explored areas of the graph. This contribution C3 was published
in [SLTM∗13] and an extension for high-dimensional layouts in [SLTM∗14].

• Taking these approaches from theory into practice, we present a multi-view and multi-
perspective environment for network analysis of sensor networks. This includes recorded
time series data, but also integrates different data sources. This was done in the application
domain of electric grids and published in [SMDK13a] (Contribution C4).

• This visualization environment was enhanced by integrating automated analysis to also deal
with large data sets. It enables the analyst to track this automated analysis of the processing
pipeline. As a result, the user can verify the correctness of the system and intervene where
necessary. This contribution C5was published in [SMDK13b].

• Unfortunately, expert system require explicit statements, which makes is hard to identify
anomalies. We present an extension to the system that allows for the detection of similar
patterns in space and in different granularities of time. Its purpose is to get an overview over
large network systems and to identify hot spots and other anomalies. This contribution C6

was published in [SBM∗14].

• Mapping time series data to color depends strongly on the choice of color maps. We present
the ColorMap Explorer, a tool for the analysis and comparison of such maps based on
quantitative and qualitative criteria. It comes with a set of over twenty color maps from
scientific literature that visualization designers can use (Contribution C7).

• Finally, when the domain expert has identified deficits in the network structure, different
countermeasures can be analyzed with a visualization system we present. It integrates sim-
ulation in the process to perform “What-If” analysis based on an underlying simulation sys-
tem. Different runs can be compared to quickly identify differences. This contribution C8

was performed on the basis of water networks and published in [SHS∗14].

The contributions are explained in detail in the following chapters of the thesis.

1.4. Thesis Outline

Following this introductory chapter, an overview on visualizations fundamentals is given. It cov-
ers a brief history of Information Visualization in general, then outlines tasks and task models
that have been identified by the scientific community (Chapter 2). Two complementing models
for information visualization are then presented. One is by Card et al. who focus on data trans-
formation, the other one by Liu and Stasko which explains the human internalization process of
visualizations. This is followed by a data type taxonomy along with a few visualization exam-
ples on how these data types are typically displayed. The most relevant data type – graph data
– is discussed later in a separate chapter. Visualization techniques are usually complemented by
interaction techniques, to integrate the user in the analysis. Then, the most important interaction
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types are described. In the last section Visual Analytics is presented as a research field that tightly
combines the strengths of human and machine in an iterative process.

Based on these fundamentals, Chapter 3 (Local Graph Views) explicitly discusses problems
that arise when general graph and network data are analyzed in local views. Several important
requirements for graph analysis are defined, followed by an introduction to the topic. Previous
approaches are discussed before a formal definition of all discussed items is given. The main part
of this chapter is a set of contributions to the scientific community. Starting with an approach to
define local graph views on the basis of multiple focus nodes, visual cues in the form of colored
arrows are attached to support orientation and navigation tasks (C1). Based on that, several tech-
niques are presented to reduce the mental effort in the navigation process (C2, 3). Key goals are
the reduction of node movement and the generation of a deterministic layout so that the user can
recognize previously explored areas of the graph. The individual contributions for this chapter are
derived directly from the previous section. In the conclusion a comparison between the require-
ments for a successful analysis and the claimed contributions is made. A summary marks the end
of this chapter of the thesis.

In Chapter 4 (Visual Analysis of Sensor Networks), the theoretical contributions are enhanced
and applied in practical scenarios. This is performed on the basis of sensor networks, a type of
network that is highly relevant to many real-world applications. They are special in that they also
record data over time in each of the network nodes. The structure of the chapter is analogous
to the structure of the previous chapter. After a short introduction and dissociation from the
general graph analysis part, requirements are laid out. Many real-world sensor networks are
referenced by geographical coordinates in one way or another; these can be utilized within the
layout strategy. A survey of existing strategies and recommendations is given, before a series
of contributions to the scientific community is presented and discussed. An analysis system for
the visual analysis of sensor networks is presented and extended in several iterations (C4,5,6). It
integrates different data sources, combines automated processing through expert system with the
human ability to identify trends and patterns in the data. As a result, the domain expert is able to
find weaknesses or anomalies early on. One key element for the analysis of temporal pattern is
a selected 2D color map. With the help of ColorMap-Explorer, a tool for the interactive anaylsis
and comparison of different color maps, the best-fitting implementation can be identified (C7).
In the last step, different countermeasures based on a simulation forecast can be evaluate their
effect on the network as a whole and per node (C8). A conclusive chapter at the end compares
requirements and claims before the content of the chapter is summarized.

Chapter 5 concludes this thesis. It summarizes its main challenges and contributions and gives
an outlook for future developments in the related fields on a broad scale.
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In this section, we will discuss the fundamentals of information visualization. After a short intro-
duction based on the most prominent examples of information visualizations from history, differ-
ent tasks and processing models are discussed. Then, the most relevant data types are introduced,
followed by different visualization categories, each with one or more examples. Categories that
are relevant for the later chapters are discussed in more detail than the others. An overview on
interaction techniques completes the overview on interactive visual analysis. Finally, Visual An-
alytics is introduced as approach for exploratory analysis.

The content of this chapter has been partially published in the book chapter “Information Visu-
alization and Policy Modeling” [NSBK14].

2.1. History of Information Visualization

The scientific domain of information visualization is derived from several different sources like
scientific visualization and human-computer interaction [Sii07]. The foundation of the domain
was created in 1786 by William Playfair who brought the bar chart, pie chart and several other
diagrams to life [SW97]. He is thus often referenced as the founder of graphical methods of
statistics. The British nurse Florence Nightingale illustrated seasonal influences on the mortality
rate in a military field hospital using polar area charts for the first time in 1857 [Bos08]. She
was rewarded as the first female member of the Royal Statistical Society in 1859 for her contri-
butions in statistical graphics. One of the most renowned diagrams of the 19th century is the flow
visualization (a variant of a Sankey-diagram) of Napoleon’s campaign against Russia created by
Charles Minard in 1869.

The English draftsman Harry Beck created the first topological diagram in 1931 which was
used as a map for the London underground [GB94]. The average traveler is interested in getting
transported from one station to another. The topology of the railway matters more to him than
the physical locations of the stations. So Beck developed a simplified map of the stations that
was no longer a geological map. The connecting lines run only vertically, horizontally or on 45
degree diagonals. Many contemporary tube maps are based on Beck’s design. We will refer to this
conceptual work in Section 4.4. The cartographer Jacques Bertin, who is today mostly renowned
for his 1967 book “Semiology of Graphics” worked on the theory of graphical representations
with a focus on cartography [Ber67]. One remarkable result of his work was the reorderable
matrix, the first interactive visualization method for multidimensional data.

Due to advances in computers and computer graphics in particular it was now possible to create
completely new visualization techniques based on pixel-based graphics. An important image-
distortion technique, the fisheye view [Fur86], was presented. The group of Card, Robertson and
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Figure 2.1: Charles Minard: Napoleon’s campaign against Russia. This image is in the public
domain. Source: http://commons.wikimedia.org/wiki/File:Minard.png

Mackinlay presented the “Information Visualizer”, a system that used different distortion and ani-
mation techniques [CRM91]. Edward Tufte published three books on information design and data
visualizations in the 80’s and 90’s, presenting his views and guidelines on information visualiza-
tion, which are still highly relevant today. At the end of the millennium Stuart Card published
the books “The Psychology of Human-Computer Interaction” and “Information Visualization –
Using Vision to Think”; both became very influential in the field [CNM83, CMS99a]. One of
the presented contributions is the data flow pipeline which will be investigated in detail in the
following chapter.

2.2. Tasks in Information Visualization

The domain of visualization is traditionally split into two groups: scientific visualization and in-
formation visualization. Scientific Visualization deals with the display of natural phenomena. By
definition, it deals with physical data which inherently lies in physical space rather than abstract
information and metadata. Typically, these data sets are three-dimensional and the aim of visu-
alization techniques is to render that data as realistic as possible. Consequently, the techniques
from the scientific visualization domain are out of scope for this work.

Information Visualization on the other hand trades realistic representation for the generation
and communication of higher level information. Card et al. define Information Visualization
as “[. . . ] the use of computer-supported, interactive, visual representations of abstract data to
amplify cognition” [CMS99a].

Zhang lists three major tasks in the information visualization domain [Zha96]. Retrieval is the
first task and deal with searching, finding and identifying specific information in a data collection.
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The second task (Comparison) is about comparing values in one attribute or between different
attributes. In the Integration task, information from different attributes is combined.

Similarly, Keim et al. define three main roles for visualization in the context of data analysis:
result presentation, confirmatory analysis and exploratory analysis [KMS∗08]. The first of the
three roles is about communicating previously identified findings to an audience. In confirmatory
analysis, the user already has a hypothesis in mind that should be refuted or confirmed, before
the analysis process is started. In contrast to that, exploratory analysis is about gaining insight
in an data set. No a-priori knowledge is available, nor any explicitly stated aim of the analysis
process. During the process, new hypotheses can be formulated. In this work we neglect the result
presentation part in favor of analytical visualization, in particular its explorative aspect.

Brehmer and Munzer discuss a hierarchical typology for visualization tasks [BM13]. The au-
thors criticize previous work on task taxonomies for not acknowledging the user and task envi-
ronment enough. They therefore first categorize tasks by the user’s motivation: why is a task
performed? At the next level, the question on how the task is performed before asking about the
task’s input and output variables (the what? aspect).

Why? How? What? 

Consume, (Produce) 
 

Present, Discover, Enjoy 

Search 
 

Lookup, Browse, Locate, Explore 

Query 
 

Identify, Compare, Summarize 

Input (Output) Encode/Manipulate 
 

Select, Navigate, Arrange, 
Change, Filter, Aggregate 

Introduce 
 

Annotate, Import, Derive, 
Record 

Figure 2.2: An adapted and simplified version of the multi-level task typology by Brehmer and
Munzner [BM13]. It arranges tasks by asking three questions: why?, how? and what?.

In agreement with Keim, Brehmer and Munzer see presentation and discovery (confirmatory
and exploratory) as major drivers for visualization. They define it as consumption, because the
user wants to consume the information that is hidden in the data. This is followed by the search
process where the user tries to find interesting items. In some cases, the location may be unknown,
in some the actual target is unknown and in some cases even both. Lastly, the user performs a
query, for example to identify specific elements or compare different attributes. In the second part
of the typology, Brehmer and Munzner define general methods (visual encodings and interaction
techniques) to achieve the targeted transfer of information. This is depicted in the center column in
Figure 2.2. Three different categories are defined: encode information as a visual representation,
manipulate existing visual elements (often through interaction) and introduce new elements such
as annotations. The what part of the model discusses the input and – if applicable – the output of

9



2. Fundamentals of Information Visualization

visual interfaces. For example, input data can be tabular or graph data sets, sometimes specified
on a per-attribute basis (ordinal vs. categorical).

This typology allows data analysts to break down complex tasks in simpler ones and to explic-
itly specify connections between them. Highly related to this task-based classification are models
for the information visualization process. We will highlight the most relevant ones for this work
in the next section.

2.3. Information Visualization Models

One of the most influential technical model in information visualization is the model of Card,
Mackinlay and Shneiderman (see Figure 2.3). It is a data flow diagram that models the data pro-
cessing from its raw form into a visual representation. The visualization is described as a series
of partly independent transformations. Its main contribution is that the complexity of the visual-
ization process is split into smaller sub-processes. This is why it still serves as a basis for many
visualization system architectures today. Usually, scientific contributions in the information visu-
alization domain can be mapped precisely onto particular parts of the pipeline. Another important
aspect of their work is the idea of user interaction in the pipeline. A visualization technique is not
static process. Every component along the data processing pipeline serves as a basis for process
control mechanisms.

Raw Data Data Tables V isual 
Structures

V iews

Data 
Transformation

Visual Mappings View 
Transformations

Figure 2.3: Data Flow Pipeline in Information Visualization as described by Card, Mackinlay
and Shneiderman (Own drawing).

The pipeline begins with the transformation of the raw input data into data formats that are suit-
able for the visualization. This standardization is necessary if more than one data source should be
attached to the process or if a single data source is used for different visualization techniques. The
transformation aims at a data representation that is normalized in terms of content and structure
so that the visualization can be decoupled from the input data. This is an important strategy that
permits adapting techniques to different scenarios and data sets. It might involve trivial operations
like converting one data format into another, but in many cases it is also necessary to identify and
deal with incomplete, imprecise or erroneous data. Depending on the application the outcome of
this step is well-defined data for the visualization.

The second transformation element in Card’s visualization pipeline is the mapping of stan-
dardized, but raw data items into the visual space. This mapping can be considered as the core
transformation that forms the actual visualization. That is why the different visualization tech-
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niques can be differentiated in this part of the pipeline. The visual space is described by a series
of visual attributes which inherently represent the basic tools of the visualization techniques. Ware
identified four groups of these attributes: form, color, animation and space [War12].

While the second part of the pipeline describes the transformation into the visual space, the
third element is about transformations within the visual space: the view transformation. In almost
any case the transformation also takes place within the value set of a single visual attribute. This
includes, for example, rotation, zoom and other camera settings as well as modifications of the
color map for an attribute. Card’s model of the visualization pipeline is also a model for a technical
realization of visualization techniques and processes.

In many cases, the approaches for the theory and the models in information visualization can be
assigned to one of two groups. These are “data-centered” and “decision- or user-centered” tasks.
They differ mainly by the information that is available in the design phase. Amar and Stasko put
those two principles in juxtaposition in the context of information visualization [AS05].

Visualization in data-centered approaches aims at a realistic representation of data and its struc-
ture. In its most consequent form, this idea is completely independent of the human user and the
tasks that should be solved using that visualization. Its main goal is to create an identical replica-
tion of the input data in the mental model of the user. Viewing the data is an elementary low-level
process. It is supported through visualization, but it does not support the user in solving a high-
level task. According to Amar and Stasko, the static connection between analytic activities is
based on the assumption that the aims of the user are also formulated in a static and explicit man-
ner. They find it necessary to link the user tasks on different abstraction layers through information
visualization, i.e. low-level and high-level tasks.

More recently, Liu and Stasko investigate the analytical process from the perspective of differ-
ent user groups [LS10]. How does the mental model in the analyst’s mind relate to the visual-
ization that is visible to the eye? The authors define the expression mental model as a functional
representation of an interactive visualization system. Notably, they also draw a line between men-
tal model and mental map. The authors define a mental model to be more abstract and represents
data on a very high level, but in contrast to a map, it must be functional. The functional aspect is
critical for the reasoning process which the authors define as “[..] constructing and simulating a
mental model”. We agree with the authors and summarize the definition of a mental map relates
more to spatial organization. This definition is also relevant for Section 3.3.8, where publications
with a focus on the preservation of this mental map are discussed. In contrast to the mental model,
a mental model preserves all relevant properties in terms of structure and behavior and sometimes
also specific information about the analyzed data set without spatial reference. However, the user
is able to reason with this internal representation.

The model describes the interaction between the external visualization and the internal mental
model in four discrete steps. This process is illustrated in Figure 2.4.

1. internalize: Liu and Stasko refer to this process of converting the visualization to such a
mental model as internalization. It can be seen as a learning process that – among others –
depends on human factors such as user experience with visualization systems. Getting to
know the structure and semantics of the data behind the visualization is also an important
part of this process.
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Figure 2.4: The internalization process as defined by Liu and Stasko [LS10] (Own drawing).
Through representational media, visualization is perceived in the human brain. The mental model
is refined in an iterative, interactive process (Own drawing).

2. process: As soon as the model is learned, it can be used to analyze new views. The human
perception system tries to make sense of previously unknown views based on the mental
model of known visualizations. However, this process has not studied in depth and therefore
is not yet fully understood.

3. augment: Using the mental model alone for reasoning is often challenging. External visu-
alizations can support this task and improve the existing mental model.

4. create: In the last part of the pipeline, the user is enabled to design new visualizations
based on the internal mental model. The concept of analogies plays a major role in this
step. Some ideas are popular mainly because the audience is already familiar with a similar
idea.

The steps in this model are not strictly separated and often performed in parallel by the human
cognition system. It explains in a generic way the interaction process between a human user and
a visualization system.

2.4. Data Type Taxonomy and Visualizations

In the following, we will present two parts of Card’s transformation pipeline: the visual map-
pings and the interaction techniques. Mappings can be partitioned into several partitions that map
fundamentally different structures into the visual space. Interaction techniques can be roughly
classified by the part of the visualization pipeline they control. In this manner, the differentiation
is performed through technical criteria. However, it would also be possible to separate the visu-
alizations by the task they support. Card’s information visualization model that was described
in the previous section starts with the transformation of data in their raw form. Heterogeneous
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data types need to be investigated for the transformation process. Shneiderman introduced a tax-
onomy of data types, which distinguishes data types in one-, two- and three-dimensional data,
temporal and multidimensional data, and tree and network data [Shn96]. We shed light on these
categories in this section of the chapter and briefly sketch some of the most prominent visualiza-
tion approaches for each one of them. Together with an independent taxonomy of analysis tasks,
Shneiderman also mentions different visualization techniques that provide solutions for specific
tasks and data. It has to be stated, however, that it is quite common that a given data set falls into
more than one of these categories of the taxonomy. The term “dimensionality” may either refer
to the dimension of the actual data, or to the dimension of the display. In some cases, if the data
set has a “intrinsic” dimensionality (as is the case with most geo-spatial data sets) the preferred
visualization techniques naturally map this data onto this space. The work of Keim gives a survey
on the basis of Shneiderman taxonomies [Kei00].

2.4.1. One-dimensional and Temporal Data

A table with two columns can be seen as a mapping routine that transforms values from one
category to another. This is a typical example of a one-dimensional data set. If they contain at
least one temporal component in their structure, they are referred to as temporal data set or time
series data and form a special subclass of one-dimensional data. This data type can be defined
as an ordered list of time-value pairs. Given the usual complexity of input data sets, they do
not fall in the category of one-dimensional data alone. In this paragraph we present a number
of visualization approaches which emphasize the temporal or one-dimensional components of
the data sets. Havre presents a visualization technique called ThemeRiver as part of a document
analysis of news reports [HHN00]. It maps the change of headline stories in the news onto a time
scale. The basis of this technique is the appearance of a specific keyword appearing in a number
of articles and shows how specific themes may appear at the same time. Card et al. describe
a visualization that maps the temporal data is also onto a single axis, a time-line [CSP∗06] in
a hierarchical manner. The most prominent approaches for mapping temporal data to a visual
element are animation and time-lines. Highly similar to the latter are small multiples, i.e. snapshot
representations at certain points in time that are plotted side-by-side. In most cases, one of these
variants is chosen, because they can be intuitively understood.

Hao et al. propose a combination of hierarchical data together with a large time-series data
set [HDKS05]. In their application scenario, the time-series entities show intrinsic hierarchical
relationships. This technique combines the properties of a tree-map with the ability to show
temporal development of stock-market prices. The hierarchical properties of the underlying data
are used to match the level of interest and importance in the layout.

2.4.2. Two- and Three-dimensional Data

The mapping of abstract two and three-dimensional data has by far the longest tradition. All
kinds of geo-spatial information visualization can be identified as a mapping from data in a two-
dimensional space (geographical maps) or three-dimensional space (a virtual model of our phys-
ical world). Embedding abstract information in a geographic representation is one of the most
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Figure 2.5: Priestley’s Chart of Biography (1765), a list of celebrities that is ordered chrono-
logically. The lifespan of an individual is represented by a straight line along the axis. This im-
age is in the public domain. Source: http://commons.wikimedia.org/wiki/File:
PriestleyChart.gif.

abundant metaphors possible. This is because the reference to a location is one of the most impor-
tant relations people use to organize information. Hence, many visualization techniques for this
embedding have been developed. Over the years, this concept evolved from plain satellite image
visualization to sophisticated (collaborative) platforms. The abstract representation of the world
serves as a common frame of reference to contribute, search and analyze large amounts of addi-
tional geographic metadata. Not surprisingly, many visualization techniques have been developed
that use this as a basis for their data [DMK05].

2.4.3. Multi-dimensional Data

One of the most prominent mappings of abstract data into two-dimensional space is the scatterplot
technique, which appears in numerous variations [NS00]. They are often used in a grid-based
layout (also known as scatterplot matrices) for multidimensional data analysis. Scatterplots work
best for numerical data (which can be mapped on the x and y coordinates respectively), and is
of limited usage to convey categorical or even purely semantic information. The idea is rather
simple: points in n-dimensional space become points in 2-dimensional space. This is why they
are often used to visualize projections between n-dimensional data-space and display-space.

Asimov proposed to visualize high-dimensional data sets as a series of animated 2D projections,
called Grand Tour [Asi85]. However, with increasing number of attributes, the number of possible
x/y combinations becomes too large to be visualized in reasonable time. Using Projection Pursuit,
this number can be reduced based on some measure of interestingness [Hub85]. In “Rolling
the dice”, Elmqvist proposes a combination of scatterplot matrix for overview and animated 3D
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transitions for interactive analysis based on scatterplots [EDF08]. The matrix display provides an
overview and helps the user finding interesting attribute combinations.

Visualization techniques for multi-dimensional (sometimes also referred to as multi-variate)
data explicitly address the problem to visualize and identify inherent dependencies in the data
sets, which cannot be expressed by simple correlations. Such relations may involve many vari-
ables. One of the major goals in all of these techniques is to display a sufficiently represent this
information in 2-dimensional screen space to make these correlations visible.

Figure 2.6: Each of the 32x32 pixel letter images is interpreted as a single, binary coordinate
in a 1024-dimensional space. However, the intrinsic dimensionality is only two (rotation and
scale). Non-linear projection algorithms are able to reduce this dimensionality while preserving
most of the contained information. This image is in the public domain. Source: http://en.
wikipedia.org/wiki/File:Nldr.jpg.

As described in the previous section, the visual mapping is most often used to characterize
the visualization technique. It is important to note here that visualization techniques rarely con-
tain only a single visual mapping. Recently published approaches are often combinations of
elementary techniques. The work of Keim gives subjective ratings of different techniques and
approaches [Kei00]. These are typically related to the technique’s ability to solve a particular task
rather than the type of data they display. We will not discuss the class of pure iconic techniques
in detail, because it has lost importance during the past couple of years. In Keim’s classification,
every visualization technique that maps a data element directly on a visual attribute that is more
complex that a single pixel (e.g. lines, glyphs, etc.) belongs to the group of geometric methods.
It contains most of the classical diagrams like starplots, pie charts, bar charts, line charts, his-
tograms, etc. as well as geographic maps. It is highly heterogeneous and contains many hybrids
that also belong to class of projection methods.

Most of the recent frameworks and techniques derive their improvements from an adequate
combination of different basic techniques – in some cases in the same display. This holds true
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especially for glyphs, singular symbols for data objects that represent one or more attributes.
They also constitute a group of multidimensional visualization techniques, but do not refer to the
layout (i.e. the positioning of visual objects in screen space) but on the appearance of objects.
Basically every visual object that conveys more information than its position can be considered as
a glyph. Today, the results of this domain are reused particularly in glyph-based designs. Aside
from graph-based visualizations for networks and hierarchies (see Section 3.3), three classes of
techniques evolved over the years to become prominent representatives for the visualization of
multi-dimensional data: The first one is the parallel coordinate plot (PCP) and depicted in Fig-
ure 2.7, the second is about pixel-oriented layouts and more recently the category of projection-
based approaches.

2.4.3.1. Parallel Coordinates

As the name suggests, the parallel coordinate technique has a number of coordinate axes in the
display, arranged in a row of parallel lines. Basically this technique can be used for most data
types, but it works best for ordinal and numerical data. A point in the multi-dimensional space
is drawn as a poly-line connecting the (coordinate-) values on every axis. While the basic idea is
relatively old [Ins85], later studies on parallel coordinates emphasize their use for the analysis of
data sets [Sii00]. In many cases, this technique is tightly coupled with the generation of dynamic
queries and the identification of data clusters [FWR99]. Surprisingly, the first controlled user
study on the effectiveness of PCP (compared to scatter plots) with respect to correlation analysis
has been conducted only in 2010 [LMvW10].

2.4.3.2. Pixel-oriented Visualizations

A visualization technique belongs to the group of pixel-based methods if the number of used
visual attributes comprises only the position and color of a single pixel. Consequently, every
pixel represents a data element which permits to display a maximum number of data elements
at the same time. The use of “non-data-ink” is reduced to a minimum. This makes pixel-based
techniques suitable for the explorative analysis of patterns and other distinctive features. However,
pixel-based methods impose two design-problems. The value set of an attribute must be mapped
to the range of available colors, but this is a problem that persists in most visualization techniques.
The second problem is about arranging the pixels on the screen while preserving their inherent
relations. In many cases there is no strict correspondence between the similarity of the data
items and their distance. The general idea of these techniques can be found in the works of
Keim [KAK95, KK96].

The visualization can be seen as a function that values from high-dimensional space on the 2D
screen. The function that maps data elements in the visual space can be seen as the result of an
optimization process. Assuming that the data set is ordered, this optimization must ensure that
the one-dimensional ordering is kept also in the two-dimensional display. Equally important is
the selection of the display area that ensures that the average distance between pixels that belong
to the same data set is minimal. The purpose of that is to aid the user in finding relations between
different attributes in a data set.
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Figure 2.7: A parallel coordinate plot of Fisher’s Iris data. The three species are indicated by
red, green and blue lines that cross the chart plot at four points to indicate the values of different
features. The image is a cropped version of an image that is in the public domain. Source:
http://en.wikipedia.org/wiki/File:ParCorFisherIris.png

May et al. present a visualization technique that maps multiple attributes on the same display.
Every group of pixels represents a range of values that covers several data objects at the same
time. The aggregation of the data values defines the final pixel color [MK08]. It should be noted,
however, that more than one pixel are used for the representation in practice to make the area large
enough for the user to interact. In contrast to many other techniques the interesting information
is hereby contained in frequencies. Pixels that relate to similar value sets can be, but do not
need to be contiguous. Repetitions in well-defined horizontal or vertical distances also indicate
correlations. The human recognition is able to detect patterns in complex structures even if the
data is distorted by noise. While pattern detection is easy, interpreting their meaning is often
challenging.

2.4.3.3. Projection Methods

The group of projection methods reduces the data space in order to represent it in the 2D visual
space. The data space describes the set of all possible combinations of different data set attributes.
The projection tries to map the information that is inherent in this high-dimensional space into 2D.
Typically, this is performed on the base of some notion of distance, which they aim to preserve
in the screen space. Scatterplots are visual projection methods that are rather easy to understand.
The main advantage compared to other techniques is their simplicity and the fact that most users
are familiar with this concept already.
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Figure 2.8: The KV-Map, a pixel-based visualization of May et al. [MK08] (with permission). A
high-dimensional data set is mapped into a regular grid.

Most projection methods can be described as an optimization process that tries to minimize an
objective function. The Principal Component Analysis (PCA) – a linear method – is one of the
most prominent approaches. It describes the variance of points along one or more arbitrary axes
in space. All of the axes are perpendicular in multi-dimensional space. In case a data set contains
structures with an intrinsic dimensionality that is higher than the target dimensionality or not along
straight lines, linear projections often fail to represent the data set properly. Schreck at el. present
a projection method that is based on Self-Organizing Maps [SBvLK09]. This type of method is
sometimes also referred as Kohonen maps, named after Teuvo Kohonen. Figure 2.9 illustrates the
mapping of a 10-dimensional data set into a regular sampling grid. As the name already implies,
the maps are self-organizing neuronal networks that map high-dimensional attribute space in the
two-dimensional display space. In contrast to other methods, the display space is discrete rather
than continuous. Every data element is represented by an element that belongs to exactly one of
the classes (i.e. cells in the grid). Every class contains one element that represents the class as
a whole. The classes are related to with each other in terms of similarity: classes with similar
content are also close in the map.

Linear projection methods typically work with numerical data. Non-linear projection methods
are able to work with other data types if the spatial distance between two data elements is defined.
Above all, projections describe the data distribution in a multi-dimensional space. As a result,
the points are mapped so that elements that are close in the data space are also close in the 2D
space. Thus, these methods are particularly useful for clustering, similarity detection and outlier
detection. We will go into more detail on projection methods and their applicability for similarity
detection in Section 4.6.
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Figure 2.9: A Self-Organizing Map that depicts a 10-dimensional data set. Each of the cells rep-
resents a group of data items, illustrated by a Parallel Coordinate Plot. The number of contained
elements is printed in the top-right corner of each cells. The background color indicates the quan-
tization error, i.e. how well the plotted PCP represents the elements in the cell. Image taken from
Bernard with permission.

2.4.4. Hierarchies and Trees

Network data and visualizations are also part of Shneiderman’s taxonomy. They are highly rele-
vant for this work and are therefore discussed in detail in Chapter 3. Trees are a specific subgroup
of such networks that describe binary relations, often in an hierarchical manner. This makes
them different from general networks and this is why they are typically depicted by very different
techniques. Their visualizations exploit their simple structure, especially the fact they typically
describe orderings. For trees (graphs in which any two vertices are connected by exactly one
path) the classic layouts will position children nodes below their common ancestor [RT81]. In 3D
diagrams, a cone layout can be used [RMC91].

Most approaches in terms of visualization expose the hierarchy as dominant structure although
several other attributes of the elements are present in the visualization. As the hierarchy does
not impose a particular spatial structure, visualization techniques can be separated in two distinct
parts. The first group deals with the design of visual mappings, i.e. the selection of attributes
and metaphors for the display of elements and their connections. The element position in the
2D space does not play a major role for them. The second group is dedicated to different layout
algorithms that map the elements according to one or more properties into the visual space. The
working group of Keim presents two space-filling methods that display hierarchies in different
manners [HDKS05, MKN∗07]. The first one displays child nodes in their own separate space
whereas the latter uses – similar to a treemap – the space of the parent node.

Among others, the importance of leaves compared to inner nodes has influence on which one
of the two methods makes more sense. The treemap puts the focus on the leaves of the tree. In
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Figure 2.10: A TreeMap visualization that shows the contents of a computer hard disk as a nested
structure. The size of an element on the screen relates to the size on the disk. The image is in the
public domain. Source: http://en.wikipedia.org/wiki/File:Tree_Map.png.

contrast, the hierarchical layout highlights nodes that are close to the root node and less dominant
in the treemap. Holten gives an example of a combination [Hol06] with a graph visualization. A
node-link diagram is shown on top of a hierarchy with different aspects of the data. The edges
between nodes are gathered in bundles in order to reduce the overdrawing and thus increase the
readability of the graph. A simple variation of a tree layout diagrams is the traditional Dendro-
gram. It is characterized by the fact that all nodes of a hierarchy level are in the same line. This
significantly improves the visual arrangement of the tree. The simplicity of the structure and the
display allows more complex presentation of information. See Figure 2.11 for an illustration.

Figure 2.11: A dendrogram showing the classification of Drosophila, which are commonly known
as fruit flies (own drawing).
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Up to a certain point it is possible to create abstractions of the components and use more or
less independent techniques to display nodes, edges and the structure itself. The arising number
of combinations is thus a source of new designs even without fundamental novelties. Facing
aesthetic, scientific and task-related aspects, designs tend to become overly complex which is
conflicting with the user’s need for visual interfaces that are easy to understand and learn. A
meaningful visualization provides the relevant overview information on first sight without need
for the user to actively search for it. This conflict has been actively discussed in the scientific
community in the past years [Lor04, vW05]. The task defines the data that should be displayed,
but it inherently defines the amount or type of data that should be hidden from the user as well.
The data types impose a natural limitation on the repertoire of visual mappings.

2.5. Visual Interaction

Hearst gives an overview over the most important techniques for interaction and navigation in the
information visualization domain [Hea99]. The combination of visual metaphors and interaction
methods build the foundation of interactive visualization techniques. They can be classified using
the Card-Model (see Section 2.3) with respect to the step in the visualization pipeline they act on.
We will briefly discuss the classification of Hearst, but also add Direct Manipulation, because it
is often used as a basis for other interaction techniques.

2.5.1. Direct Manipulation

Strictly speaking, direct manipulation is not an interaction technique in the sense that it manipu-
lates a certain step in the visualization pipeline. As the name inclines, it defines interaction based
on the screen coordinates.

Indirect manipulation can be seen as one possible type of direct manipulation with respect to
GUI elements, because it immediately affects them. On the other hand, it is indirect with regards
to the actual visualization, which is configured through the GUI elements. A clear definition of
the parameters enables an equally clear separation of the inherent functionality and its controlling
mechanisms. However, there is always a trade-off between the complexity of the functionality
and the general usability. The means of this manipulation does not necessarily correspond to the
effect they cause. For example, moving a slider along the horizontal axis does not directly relate to
the affected parameter setting underneath. Shneiderman presents techniques to bridge this mental
aiming for intuitive user interfaces [SPCJ09].

2.5.2. Brushing and Linking

The idea of Brushing and Linking is to generate a visual connection between two or more views
on the same data entity. Selecting or hovering an entity in one view also triggers a visual change in
the other, linked views. This obviously requires processing the data elements in multiple visual-
ization pipelines, resulting in different visual representations. It also requires an inverse mapping
of the transformation: the system must be able to identify the element of interest based on screen
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coordinates. Therefore, visualization techniques that support Brushing and Linking offer meth-
ods to assign pixel coordinates to one or more data elements. The actual functionality is mostly
independent from individual visualizations, because it uses only references to the data elements.
On the other hand, the visualization system as a whole needs to provide support for exchanging
such information between different views. Brushing and Linking increases the benefit of individ-
ual visualizations by coupling them, thus allowing for analysis from different perspectives. One
prominent example is the Snap-Together Visualization of North and Shneiderman [NS00].

2.5.3. Panning and Zooming

Panning and Zooming is a group of techniques for the manipulation of the view transformation
of visual structures. Most of these interaction techniques use the metaphor of a virtual camera to
navigate in two- or three-dimensonal space. Changing the position of this camera with respect to
the screen canvas is referred to as panning. Zooming refers to moving the camera towards and
away from the canvas. This often comes with an adjustment of the number of visible details. Bed-
erson and Hollan demonstrate this approach with their Pad++ tool [BH94]. Today, panning and
zooming is particularly often used in graph visualization techniques. In abstract terms, zooming
can be seen as selection of a subset of the domain which requires the visualization to display this
information accordingly. In environments with more than three dimensions, the camera metaphor
is not always ideal. It is therefore often combined with dimensionality reduction techniques.
While the general idea of panning and zooming works in principle for any visualization, there are
other methods that adjust the perspective on the data better. One possibility is to adjust the zoom
factor for the axes individually, for example in parallel coordinate techniques.

Figure 2.12: An example of a zoomable user interface for illustrative purposes. The user can pan
across the interface, zoom in to get more detail and zoom out to gain a better overview. Some
user interfaces adjust the level of presented detail to the zoom factor. The image is in the public
domain. Source: http://en.wikipedia.org/wiki/File:ZUI_example.png.
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2.5.4. Animation

Fisher describes the principle of animation as “[..] a series of images trying to build a coherent
idea of what occurred between them” [Fis10]. In a user study, he compares animation with small
multiples (a collection of “key frames” put in juxtaposition) for different task. As it is often the
case, the quality of the results depends on the user groups and the task. Fisher states that animation
tends to take more time and is less accurate in explorative tasks, but outperforms small multiples
in presentations.

Animation can be considered exclusively as part of the visualization, but also as part of the
interaction concept. Due to its nature, it is often used to display time-dependent data. In this
application, animation can be exploited to spot significant transition patterns over time [TK07].
In this case, no interaction is involved. Interactive visualizations on the other hand use animation
to communicate changes based on user interaction. To give an example, the DynaVis framework
of Heer and Robertson animates changes between different statistical visualizations [HR07]. For-
mally speaking, the parameter space is interpolated between the value before and the value after
the user interaction. Animation supports the user’s orientation in situations where changes in the
configuration of the visualization affect the visualization as such. It preserves the perception in
transitions between two consecutive displays of the same data element. The human eye is able
to track the transformation. The cognitive load on the user is reduced by providing a consistent
visualization of data items and exploiting the human perceptual system [RM93]. We will make
use of this fact in the visualization technique that is presented in section 3.6.

2.5.5. Focus plus Context

The group of Focus plus Context approaches is strongly related to one particular problem of
zooming. The larger the zoom factor is, the more details can be displayed on some few enti-
ties of interest. The downside of this approach is that the overall structure and the location in
this larger context are no longer visible. Focus plus Context aims to overcome this limitation by
separating the displayed information into a detailed focus and a less-detailed context area. This
is similar to the concept of Overview plus Detail (see Section 2.5.6), but works with one single
view. Prominent examples in this category are distortion-based visualizations such as the FishEye
view [Fur86] and TableLens [RC94]. Kosara et al. present an entirely different method which
uses selective display of information [KMH01]. With the help of virtual depth-of-field blurring,
relevant information is highlighted without compromising the ability to show an overview of the
situation. Many Focus plus Context techniques work on the basis of an arbitrarily shaped area of
the screen – the lens – as a metaphor for interaction on data elements within this area. Typical
applications are optical zoom, but also the display of additional or otherwise hidden informa-
tion [Hea99].

Adjusting the level of information according to a (virtual) zoom factor is subject of Seman-
tic Zooming. In contrast to optical zoom, the structure of the displayed data is modified rather
than the parameters of the graphical presentation. The number and the granularity of visual ele-
ments are adjusted with respect to the desired level of detail. This includes additional graphical
metaphors such as annotations and glyphs that are inserted into the display. From an implementa-
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tion perspective, this requires that a mapping exists that defines the visual representation for every
object type for every level of detail. In the survey of Cockburn [CKB08], several aspects of the
user’s focus in graphical interfaces are discussed. One of the conclusions of this work was that
Semantic Zooming can reduce the task completion time in map-based navigation tasks.

2.5.6. Overview plus Detail

In contrast to Focus plus Context techniques, two or more linked visualizations with different
zoom factors are used in Overview plus Detail approaches. Card et al. note that the ratio of
the screen size of two displays range is mostly between five and fifteen [CMS99a]. The authors
differentiate between temporal and spatial techniques, depending on whether the visualization
displays overview and details one at a time or at the same time in different views. Cockburn et al.
define such interaction interfaces as “..the simultaneous display of both an overview and detailed
view of an information space, each in a distinct presentation space.” [CKB08].

Temporal Overview plus Detail views are conceptually similar to Semantic Zooming. Spatial
Overview plus Detail on the other hand uses two or more separated displays rather than different
zooming levels in the same display. The technique helps users to keep an overview on the entire
structure while looking at a small portion of the data at a more detailed level. Interestingly, this
metaphor is often used in map-based games in the form of a minimap that puts the camera’s view
on the map in relation to a larger (annotated) context. An early example for Overview plus Detail
visualization systems is the Harmony VRWeb 3D scene viewer [And95]. It uses a 2D-map for
browsing through search results in an information landscape.

2.6. Visual Analytics

As has been illustrated in the introductory chapters, the amount of raw data increases exponen-
tially. This comes along with the increasing computing power. Human capabilities on the con-
trary remain constant. As a consequence, the assessment of data becomes more and more time-
consuming. Even more serious is the fact that it becomes increasingly difficult to make sense
of the data, find overarching patterns and links. This group of problems is often referred to as
information overload.

Different solutions have been proposes to keep up with the increase of raw data. In particular,
information visualization has been employed successfully to enhance human capabilities of sense
making and decision making based. A key factor is the support of internal models of the data
through external representations. Fekete et al. state that:

“Visuals augment human memory to provide a larger working set for thinking and
analysis and thus become external cognition aids” [FvWSN08].

The aim of interactive data analysis is to extract or generate knowledge from data sets with the
help of the user. This can be done by manual parameter tweaking, text-based interaction or visual
interfaces. Visual Analytics is about combining the advantages of human visual recognition with
the strengths of machine-based computation. However, human’s visual intelligence can be used
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only if adequate data displays are provided. The contribution of this dissertation is settled in this
research field which is highly focused on interactive visual analysis.

2.6.1. Related Research Fields

In this section, we will describe the term and set it in relation to adjacent fields. Basically, Vi-
sual Analytics has evolved from the domains Information Visualization and Scientific Visualiza-
tion [KMS∗08]. One on the first publications on the subject was the presentation of “Waldo” by
Keim et al. [KPSN04] in 2004. It is a software tool that combines data mining with interactive
visualization to analyze large (geospatial) data sets. A major driver for Visual Analytics was the
book “Illuminating the path” by Thomas and Cook that appeared one year later [TC05]. The
authors state that:

“Visual analytics is the science of analytical reasoning facilitated by interactive
visual interfaces” [TC05].

This is related to the definition of Visual Data Mining (VDM). Simoff et al. state that “Visual
Data Mining enables discovering of regularities in data sets visually or regularities in the output
of data mining algorithms [..]” [SBM08]. The human perception system is used to identify visual
patterns that are created by data mining algorithms. Even today, this task still poses a major
challenge for computer algorithms. Consequently, the human can be seen as a part of the data
mining pipeline. In Visual Analytics on the other side, the human user is also recognized as
steering entities that should be equipped with powerful interaction tools for the analysis task.

Both analysis pipelines have the same goal: gain knowledge and insight from a potentially large
data set or confirm an existing hypothesis. In contrast to the conventional data-mining, the strong
involvement of the user plays a major role in both processes. Consequently, the goal is reached in
an iterative process that is guided by the user that steers of the computation. This is also highly
correlated with the idea of Computational Steering [WBD00]. In our opinion, the latter is more
focused on optimizing simulation processes through human-computer-interaction (HCI). While
Visual Analytics is the overarching theme for this work, we will discuss Computational Steering
in more detail as part of the network analysis tool that is presented in Section 4.8.

In the work of Keim [KMS∗08], the field of Visual Analytics is revealed as a highly interdisci-
plinary one. It overlaps with many other research areas such as Knowledge Discovery, Geospatial
Analytics, Cognitive Science and Data Management. Figure 2.13 illustrates Visual Analytics in
the context of other fields as seen by Keim.

2.6.2. The Visual Analytics Process

The main idea of Visual Analytics is the combination of machine-based computing with human
recognition and sense making. Data is processed by both visualization tools and automated meth-
ods. The two components are linked by user interaction to enable tuning the model generation
process. We will briefly describe the iterative Visual Analytics process that is depicted in Fig-
ure 2.14.
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Figure 2.13: Visual Analytics and related research fields as defined by Keim et al. [KMS∗08].
The image is in the public domain. Source: http://de.wikipedia.org/wiki/Datei:
VisualAnalyticsOverview.png.

The input data is not restricted in any way. It can come from different sources (the input), it can
be structured (tabular) or unstructured (e.g. text collections). The data is then transformed using
different, pre-processing steps that (iteratively) clean, select or aggregate different attributes. This
data can be used in two ways: for (automated) model generation and for visualization. Note
that the model generation can also be performed based on visualization. As soon as the model
is created, it can be refined iteratively, for example through parameter adjustments. The model
can also influence the visualization. This means that both data and the model was derived from
the data can be used in the visualization. Also the user plays a role here by interacting with the
visualization. This can lead to further model refinement and closes the loop between visualization
and model.

The output of the process is insight – often also referred to as knowledge. It can be reached
either through the visual access or automated algorithms. Through the Feedback Loop, gained
insight is put back into the system and process can restart in a refined manner. As can be seen in
the diagram, the Visual Analytics process is highly iterative at both a high level structure, but also
with respect to individual steps. The loop between visualization and model building plays a key
role.

In [KMS∗08], the expression hypothesis is used instead of model as in [KAF∗08]. We prefer
the model-based definition, because this better supports machine-based approaches. Knowledge
discovery is about model building. In contrast, only human can create a hypothesis. Also, models
can be parametrized which is not the case for hypotheses. Keim et al. define the Visual Analytics
mantra as follows:
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2.7. Summary
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Figure 2.14: The Visual Analytics Process as defined by Keim et al. [KMS∗08, KAF∗08] (own
drawing)

“Analyze first – Show the Important – Zoom, Filter and Analyze Further – Details on
Demand” [KMS∗08]

This is in line with Shneiderman’s information seeking mantra, starting with an overview of
the data set based on the most important aspects. Then, the user is integrated in the process in the
drill-down phase where filters and focus are defined. This allows for a more detailed analysis of
specific parts. In a final step, the user can access details on demand. The process is not a one-way
pipeline though. The user is free to navigate back and forth as desired to refine the search and
explore the data as needed. We will build upon this model in the next chapters of this thesis, in
particular on the idea of integrating the user tightly in the process of information extraction.

2.7. Summary

This section covers the foundations of Information Visualization. Starting with a retrospective
on the most prominent works and drawings, the tasks visual analysis tool users typically need to
accomplish are discussed based on a multi-level task typology. The contribution of this thesis is
most strongly linked to the exploration task that is located in the Search category in the model of
Brehmer and Munzner [BM13]. Then, the data flow pipeline of Card et al. [CMS99b] is presented.
It can be seen as the overarching architecture that the visualization systems that are presented in
the following chapters follow.

Shneiderman came up with a classification of different data types [Shn96]. We use it in combi-
nation with Keim’s taxonomy [Kei00] to identify the visualization and interaction techniques that
fit best for the different use cases. The category of graph data is discussed in more detail in the
next chapter. Linking back to the introductory chapter, we describe the powerfulness of the Visual
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Analytics approach that we use to extract valuable information from data and graphs in particular.
All of the contributions in this thesis live under this premise.
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The focus of this chapter is on Local Graph Views, a collection of visualization techniques for the
exploration of graph structures. It contains the first group of contributions of this thesis and also
sets the foundation for the second group of contributions, which are discussed in Chapter 4. Start-
ing with a Focus plus Context technique that provides visual cues for orientation and navigation,
several contributions are outlined that aim at preserving the user’s mental map in the exploration
process. This enables domain experts to work with large networks, find relevant connections
between different parts of the graph and gain detailed insight in the data.

In contrast to other graph layout approaches, the idea of Local Graph Views is to focus on a
small subset of the data instead of trying to display the entire structure as a whole. This makes it
particularly useful for large data set as the approaches typically scale very well. One example is
depicted in Figure 3.1, where the user explores a medical database. Only a few nodes are visible.
Selecting interesting nodes marks them as focus nodes and adjacent nodes appear in the display.
Visual cues point towards interesting part and thus support the user’s orientation and navigation.
This enables the analyst to browse through the network.

Figure 3.1: Navigation in a large graph from the medical domain [GCV∗07] using signposts to
provide context for the nodes in focus (as used in our user study). The focus is derived from the
focal nodes (encircled in red).

We pick up many of the ideas that are presented in Chapter 2, in particular the following con-
cepts: Card’s data flow pipeline is used as a baseline throughout all the presented approaches.
Also, projection methods play a major role in several visualization techniques as they map com-
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plex high-dimensional objects into the two-dimensional screen space. A variety of the mentioned
interaction techniques are used in different scenarios. Most importantly, the Focus plus Context
concept plays a key role for local graph views.

The chapter commences with an overview on the problem domain and sheds light on the most
relevant problems from a practical perspective. On that basis, a set of five requirements for the
successful analysis of graph data in local graph views is defined in the following section. Then,
related work is discussed, starting from a high-level perspective and narrowing down on the most
similar approaches. Before we go into details on the individual contributions of this part of the
thesis, some necessary definitions are presented in a brief overview.

The first contribution is about adding visual cues to the visible part of the network to support the
user in finding interesting parts of the network and help with orientation. A case study indicates
that these cues are helpful. In a follow-up, a group of techniques to support the preservation of
the user’s map in the exploration process by reducing the node movement. Experimental results
confirm that this is achieved. This is strengthened further with two approaches that make the
exploration process deterministic. Again, this was verified with experiments on real-world data
sets. In the last section of this chapter, we look back on the set of requirements to see if they can
be fulfilled with the presented contributions.

Parts of this chapter have been published in [MSDK12,SMK13,SMK14,SLTM∗13,SLTM∗14].

3.1. Background

The tasks in the 2012 VAST Challenge1 are about finding suspicious events that happened during
just two days. The given data set describes states and connections of all computers in a fictive
company network. The major problem here as well as in most real world scenarios is the sheer
amount of data. In total, 160 million nodes are available in the database. A visual representation
of the data is vital to gain insight and decide what is suspicious and what is not. Obviously,
displaying all entities and all interconnections at the same time cannot produce meaningful results.
Screen space is always limited, especially compared to the ever-increasing amount of graph data,
so massive overdraw is the consequence for such visualizations. But also visual perception has its
limits. Even if it would be possible to draw millions of nodes, the data analyst would not be able
to deal with that information. Typically, the user is interested in a small part of the graph, maybe
even a single node. The challenge in the visualization is to preserve a context that is large enough
for the user to orientate and navigate in the abstract spaces of graphs.

The display of networks helps to analyze relationships between entities rather than the entities
themselves. Graph visualization has become an important topic in information visualization area
over the past years and is applied in many different application areas today. For example, the site
maps of web sites as well as the browsing history of a web browser can be displayed in a directed
graph. In biology and chemistry, graphs are applied to evolutionary trees, molecule structures,
chemical reactions or biochemical pathways. In computing, data flow diagrams, subroutine-call
graphs, entity relationship diagrams (e.g., UML and database structures) and semantic networks
and knowledge-representation diagrams are the main application fields. Furthermore, document

1http://www.vacommunity.org/VAST+Challenge+2012
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management systems profit from document structure and relationship visualization. Social net-
works visualization has also become a popular application of graph visualization methods.

Who are the users of such software tools? We differentiate between casual and expert users and
focus on the latter groups that will be referred to as data scientists from now on. It is important
to differentiate between users that are experts with respect to computer science and those who are
experts in a particular application domain. Users are only rarely familiar with both domains. For
real-life applications, users know their application domain quite well, but are not computer-savvy.
The focus of this work is on such real-world scenarios and we therefore target a user group with
only little computer experience. As a consequence, visual tools must be intuitive and easy to
follow.

The tasks we support with our technique are characterized by the following assumption: Infor-
mation on the local level is more important than the global structure of the graph.

Showing the structure emerging from the network connections is one goal of graph visual-
ization. However, human’s visual intelligence can be used only if adequate data displays are
provided. Node-link diagrams are a popular visualization techniques that works particularly well
for small to medium-sized graphs. The goal of our approach is to ease the exploration of local
structures of large static graphs based on such a node-link diagram.

Graph analysis has gained strong interest due to the fact that in contrast to tabular data, graphs
also contain explicit links between data items. One type of visualizations for graphs is the node-
link diagram with its manifold variations. Despite their conceptual simplicity, they produce pleas-
ing drawings for small to medium-sized graphs. For large graphs, however, they do no longer
scale and the drawings become tangled up.

One effective counter-measure is to use dynamic views, in particular for explorative tasks. One
or more filtering criteria are applied to such a large graph and to extract a small subgraph which
contains the most relevant or interesting items. Here, the focus of the data analyst is on local
features rather than on the global structure of the graph. Instead of trying to create a complete
picture of the entire structure, dynamic views work with a selected sub-graph of the original data
set. This implies that local structures are preserved at the expense of global structures. This
filtered view is then used for the analysis instead of the large one.

3.2. Requirement Definition

We define a set of requirements that must be fulfilled to support the data analyst to successfully
solve tasks based on graph data sets.

For small to medium-sized graph a pre-computed global layout with fixed node positions has
its advantages. Above all, the visualization of a specified graph will always look the same which
helps to build a mental map of the data set. In the navigation process, the nodes are simply
toggled between visible and invisible state while their positions remain the same. But this also
means that nodes that do not exist in the partial view influence the position of the visible nodes.
This effect can be seen in Figure 3.1: some nodes are strongly pulled outwards without any visible
explanation. They have to fulfill all constraints that are imposed by the full graph.
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The time and memory limitations render global layout impractical for large graphs. Also, a
fair amount of the computed layout is never used in the navigation process later on. One way
to approach this problem is to perform the layout computation on-the-fly for the area that is cur-
rently visible. This process works quite well, if the displayed subgraph does not change over time.
Otherwise, these topological changes can have a strong and sudden impact on the visual repre-
sentation if they are not carefully dealt with. In order to communicate the performed changes it is
important to create smooth transitions, for example through animation, so that the user can better
understand which nodes appear or disappear.

Figure 3.2: Identical network parts have been highlighted in a global layout (left) and a local, in-
dependent layout (right). The former display makes the impression that the clusters were linearly
connected. In particular, it seems as if the shortest path from red to blue leaded through green
and yellow. However, the local view reveals that this is not the case.

The first requirement is to show only the part of the graph the user is interested in and to adapt
the layout to this visible subgraph. To give an example, Figure 3.2 shows a global layout with four
clusters in a linear arrangement. Instead, a local layout of the clusters exposes the actual topology
of these clusters.

Requirement 1 (Complexity Reduction) Reduce the amount of visual complexity to a minimum.

Today’s data scientists need to work with different types of graph data. Apart from company
networks, many applications ranging from chemistry, physics, life sciences and many others heav-
ily rely on the analysis of relations in these data sets. Prominent examples are investigations in
citation networks or social networks.

Let’s look at an example that is settled in the medical domain. We know today, that many
diseases are caused by genetic defects. Looking at it from the opposite side, certain genes are
responsible for many congenital disorders. The analyst investigates these diseases with respect
to their topological neighbors. From this, we derive our second requirement as follows: the user
needs to know in which part of the graph the current focus is and how it relates other parts of the
network.
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Requirement 2 (Orientation) Preserve orientation in local graph views.

Some of those diseases are linked by common genetic properties. Many of them are related to
the same body region or belong to the same group of disease, but interestingly enough, some of
them connect different groups. These connections can be of particular interest for data analysts.
The user wants to find out, which connections exist between certain regions or groups to identify
common causes. By default, these highly interesting bridges do not look different from the rest.
This makes navigating towards potentially interesting nodes hardly feasible. Consequently, the
user needs visual support in finding the right paths to be able to navigate between regions.

Requirement 3 (Navigation) Support the user in navigating between different regions of the
graph.

Dynamic layout also included the smooth transition between consecutive layouts of these visi-
ble subgraphs during exploration. Already in 1991, Eades et al. note that the visual order of screen
elements should not change for animated diagrams in order to prevent user irritation [ELMS91].
We agree with the authors: the exploration process must provide smooth transitions between dif-
ferent views so that the user can keep track on changes in the node-link diagram. The rationale
for smooth transition is to minimize the users’ effort to keep track of the evolving layout.

Requirement 4 (Smooth transitions) Support the user in the navigation process in an unobtru-
sive way, avoiding irritations and distractions from the actual task.

A typical user task is the exploration of the neighborhood around a focal area of the graph. We
consider such an exploration as success if the user is able to mentally chart the visible parts of the
graph. Thus, it increases the area the user is familiar with. To be precise, “familiarity” reflects
the ability to recall a visible area upon revisiting and to mentally extend this area beyond the
visible part. This enables the user to plan and predict navigation. Lee et al. [LPP∗06] identified
Revisitation as one of the tasks to be supported by graph visualization. However, we believe that
this task is not yet supported enough in current research.

The “smooth transition” approach applies to consecutive frames only. Revisiting a known area
of the graph after extensive exploration usually results in very different layouts. This fact leads to
our next requirement.

Whenever a user revisits an area of the graph for a second time the difference between the two
layouts should be as small as possible. We state that this requirement applies regardless of the
length or direction of the user’s exploration path between any two visits of the same area. For
static graphs we argue that the visible layout is determined by the currently visible subgraph only.
A simple solution exists if only the second requirement were to be considered: Compute a static
layout of the complete graph and toggle the visibility of nodes and edges as needed. However, a
static layout conflicts with the first requirement (1), because it naturally does not adapt to local
features.

Requirement 5 (Determinism/Familiarity) The user is able to recognize a previously visited
area of the graph.
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The overarching goal is to preserve the mental map during the exploration process. These
requirements must be fulfilled to enable successful exploration of graph networks. We propose
solutions to all of these requirements.

The first one (Preserve local features) is subject in all of our approaches and in a number
of existing dynamic layout approaches. These cover techniques for the selection of interesting
or important areas of the graph, for the definition of incremental layouts. Requirements 2 and
3 are discussed in Section 3.5, Requirement 4 in Section 3.6. We resolve the conflict of the
requirements 1 and 5 (the preservation of local features versus the reproducibility of layouts)
explicitly in Section 3.7 and improve the stability of the approach in Section 3.6.

3.3. Related Work

In this chapter we discuss scientific publications that are related to this work in one way or another,
grouped by topic or category. Our approach is related to previous approaches from different
areas including navigation concepts in visualizations, off-screen visualizations and multi-level
approaches to graph drawing. We will go through each of the areas and present the similarities
and differences between existing approaches and ours.

The key issues in graph visualization are the graph structure (directed vs. undirected graphs,
trees vs. cyclic graphs) and their size. A survey of graph visualization techniques for different
graph types can be found, for example, in the work of Herman [HMM00]. Von Landesberger
compiled a state-of-the-art report on visual graph analysis specifically for large graphs [vLKS∗11].
It covers a variety of analysis techniques for node-link diagrams as well as matrix representations
for partial graph views or dynamic graphs.

In Section 3.3, a graph was defined as a set of nodes and a set of edges (i.e. node pairs) that
connects some of these nodes. Two, very complementary approaches exist to display such data
sets: node-link diagrams and matrix displays. Matrix displays display edges as entries in a grid.
The ordering of rows and columns of these matrices plays a major role for effective identification
of clusters and many other tasks.

In node-line diagrams on the other hand, the node layout defines the visual representation.
Relationships between nodes are typically drawn with line segments. There are different graph
layout techniques suited for different graph types.

3.3.1. Adjacency Matrix Displays

Displaying the list of connected nodes in a two-dimensional grid is a straightforward approach.
If n being the number of nodes, the size of this matrix is n× n. This also means that the size is
independent from the number of edges and therefore well suited for dense networks such as small-
world graphs. The entry in row i at column j indicates if node i is connected to node j. Entries
on the diagonal are typically left out, because reflexive edges (i.e. self-loops) are prohibited by
definition. We note that this matrix is symmetric for undirected graphs. Figure 3.3 shows an
example.
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Figure 3.3: An example of a graphic representation of a symmetric adjacency ma-
trix (the Cayley graph of S4). Colored fields define links between nodes. This matrix
is symmetric, which is the case for all undirected graphs. The image is in the pub-
lic domain. Source: http://commons.wikimedia.org/wiki/File:Symmetric_
group_4;_Cayley_graph_1,5,21_%28adjacency_matrix%29.svg

This tabular display can be used to identify individual connections between nodes, but also
higher level structures can be identified. For example, a filled row i indicates that the node i is
a star node. A filled triangle that is aligned at the row and column axis represents a clique (i.e.
a fully connected cluster). In order to be able to identify such structures, the matrix must be
sorted with respect to certain criteria. This sorting process poses a major challenge as the sorting
criteria for different tasks are often conflicting and thus subject of current research. According to
Ghoniem et al., matrix visualizations are superior to node-link diagrams for many tasks and for
large graphs. However, a major shortcoming is that paths of connected nodes can be difficult to
identify and the analysis of neighborhoods is more difficult [GFC05].

3.3.2. Node-link Diagrams

In contrast to matrix displays, node-link diagrams are very intuitive. Nodes are drawn as individ-
ual elements on the canvas, often as circles and the connecting edges as (curved) line segments.
An example can be seen in Figure 3.1. In many cases, star nodes, clusters, isolated sub-graphs and
other structures can be identified with only little effort. However, the choice and parametrization
of the layout algorithm is vital for the quality of the diagram. Also, the number of nodes and edges
is somewhat limited: with increasing graph density the display becomes more and more crowded.
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3.3.3. Force-directed Layouts

Classical force-directed approaches have been researched but also used in practice for more than
two decades now. Many combinations of techniques for the graph structure and the detail view
are possible. Displaying details in the graph makes sense only if the information can be classified
and processed on first sight, for example a mapping on a color scale. The number of currently
available visualization indicates already that there is no single best visualization, neither for the
graph layout nor for displaying nodes and edges. For large graphs, the large amount of node and
link overplotting requires new visualization and clustering techniques such as (3D) hyperbolic
space layouts [LRP95,Mun98]. For a formal definition of graph/networks we refer to chapter 3.4.

Figure 3.4: A Hyperbolic Tree (a Focus plus Context technique) reserves more space to nodes
in the center at the cost of space at the boundary. Changing the focus node adjusts the amount
of reserved space (right image). The images are in the public domain. Source: http://en.
wikipedia.org/wiki/File:BasicTree.png and http://en.wikipedia.org/
wiki/File:BasicTreeFocused.png.

The placement of nodes in an arbitrary graph layout that fulfills certain optimality constraints
is quite complex, or mathematically spoken: NP-hard [BGW03]. Many graph visualizations are
variations of node-link-diagrams. The publications in the domain can be split (similar to trees and
hierarchies) in two categories: the graph layout on the one side and the visualization of nodes and
edges on the other side. The quality of a layout is measured in different criteria which often impose
conflicting constraints. It is, for example, desirable to be able to see the most significant structures
and clusters. But it is also desirable to minimize the spatial distance of related partitions. This
makes it per-se difficult to find a layout that is optimal for all demands. Technically, the layout is
often computed by mass-spring-simulations, sometimes called “spring-embedders”. They model
the optimality criteria as an energy function. The simulation then tries to find a global minimum
for that function.
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The first spring-based graph layout was presented by Eades in 1984 [Ead84]. Forces are com-
puted based on Hooke’s law to ensure a certain distance between connected nodes. It also models
repulsive forces analogous to the electric force to avoid node overlaps. The version of Fruchter-
man and Reingold improves this model by adding a “global temperature” that controls the node
movement speeds [FR91]. This also ensures that the simulation terminates. Similarly, the layout
algorithm of Kamada-Kawai uses the graph-theoretical distance to model the springs [KK89].

3.3.4. Projection-based Layouts

These first approaches aim to minimize energy in a virtual environment. A major short-coming
of that is that this optimization process often gets stuck in local minima.

Spectral layouts are quite similar as they also aim to minimize an energy function, but they
are able to find the global minimum efficiently [Kor03]. It does so by solving an eigenvector-
problem. The idea here is to put a given node in the centroid of their neighbors. The same
author also describes High-dimensional embedding (HDE), a group of methods that computes
a layout in high-dimensional space before projecting it into 2D space [HK02]. We will discuss
this in more detail in section 3.6. In an experimental study, Brandes and Pich conclude that op-
timizing an explicit model of desired aesthetic properties yields better results than force-directed
layouts [BP09].

3.3.5. Hierarchical Graph Layouts

One fundamental problem in graph visualization is the sheer amount of nodes many data sets
contain. The number of nodes that can be displayed on the screen is rather limited. Considering
that the focus of the user is either on the global structure or on a particular group of nodes it often
makes sense to hide a large part of the data set.

Balzer and Deussen create a visual abstraction on the basis of existing node hierarchies [BD07].
It can be, for example, generated by hierarchical clustering algorithms. The nodes and the edges
of a cluster are then combined into one single graphical element. A variation of this has been
presented by Henry et al. who model this graphical element as an adjacency matrix [HFM07].
Their main contribution, however, is to provide interaction tools for the user. In contrast, Gajer
et al. work with a reduced set of nodes from the original data set instead of computed clus-
ters [GGK01]. A system that is dedicated to navigate in large graphs has been developed by
Abello et al. [AvHK06]. The basis for that is again a given node hierarchy. It is used to display an
overview on the graph that is used for navigation. At the same time, it acts as filter for the nodes
that are displayed in a detailed view. Depending on the level of detail, sub-trees are expanded or
collapsed.

The complexity of network graphs is often distributed on many structural levels. Many tech-
niques assume that it has an inherent hierarchy. They exploit that by computing and using hi-
erarchical structures for the display. Even if a visualization technique is able to switch between
different levels in the hierarchy, it is probably not able to display all levels of the structure at the
same time. This does not work, though. The user’s visual ability to focus is limited to one or two
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levels. An essential task of graph visualization is thus to display one structural level as good as
possible and to support user-controlled switches between different levels if necessary.

Our approach in Section 3.5 basically uses a high-resolution representation for the focus and
an abstract representation for the context. Multi-level representations have been used to improve
different aspects of graph visualization in order to allow structural zooming within the graph.
Frishman and Tal [FT04] and Huang et al. [HEL05] present different methods to improve the
layout.

Our technique in Section 3.7 relates most to cluster-preserving dynamic layouts. However, the
“clusters” in our approach are subgraphs, which are laid out independently in a pre-processing
step and merged together depending on the current area of interest of the user. Archambault et
al. [AMA07] present a similar strategy with the static multi-level technique Topolayout. Topo-
layout creates hierarchical partition layouts with the most suited technique and merges them to
minimize edge lengths and crossings. In contrast, our technique creates overlapping subgraphs
which are dynamically merged along the overlapping nodes.

Hierarchical layout algorithms use a divide and conquer scheme to first create a coarse layout
which are refined in later steps [HK01], thus working in a top-down fashion. Using a bottom-
up approach is also possible, calculating small layouts which are recursively combined until the
whole graph can be drawn [PV06]. However, both approaches rely on certain properties of the
division process while our top-down approach is more flexible with respect to division levels.

Alternatively, multi-dimensional layouts like that of Gajer et al. [GGK01] make use of ad-
ditional dimensions to quickly create a robust layout before projecting it into two-dimensional
screen space. Our approach goes in this direction, but it not restricted to a specific algorithm.
Yuan et al. propose an approach based on crowd sourcing. Users of the system manually create
layouts of subgraphs, which are then automatically combined [YCHZ12].

3.3.6. Dynamic Graphs

In the literature, dynamic layout techniques have been proposed to solve two different problems:
The first problem is the layout computation of dynamic graphs, which has been formalized by
North [Nor96]. The second problem is the layout of a dynamic view of a graph, which has been
described by Huang at al. [HEW98]. A dynamic view is basically a visible subgraph, which
can be “moved” interactively for browsing. This problem has been applied to static graphs, for
example, by Huang et al. [HEL05] and van Ham and Perer [vHP09]. The state of the art report
on dynamic graph visualizations by Beck et al. gives an overview of recent developments in the
field [BBDW14].

Based on North’s original definition, Huang and Eades brought up the idea to create a dynamic
view of a static graph [HE98], which can be adjusted by user. We also use this metaphor to enable
the user to navigate through the graph. A major shortcoming of this is the missing context, since
no direct connection between the visible part and its context – i.e. the rest of the graph exists.
Some techniques use the fisheye concept to surround the current focus area with a distorted view
on the neighborhood [FK96, LRP95].

Many dynamic layout techniques are modifications of static layout techniques which impose
specific constraints or quality objectives on the transition between two consecutive layouts. Bran-
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des and Mader [BM12] compare different measures, especially with respect to the trade-off be-
tween individual layout quality and stability between frames. They note that even slightly low-
ered requirements in quality often offer a significant boost in stability. Virtually all elements of a
graph visualization have been covered by previous approaches to stabilize the mental model upon
dynamic changes. For example, Frishman and Tal [FT08] and Erten et al. [EHK∗04] propose
approaches where quality objectives apply to the node movement. Frishman and Tals approach
fine-tunes the inertia of nodes between consecutive frames. Erten et al. propose a natural ex-
tension to force-feedback techniques by using virtual edges across different time frames. Other
approaches, like that of Dwyer et al. [DMS∗08] and Frishman and Tal’s [FT04] focus on the
preservation of node clusters in the dynamic layout. Aside from spring-embedding layouts, dy-
namic layout methods have also been used in conjunction with other techniques. For example,
Görg et al. [GBPD05] use Sugiyama-style layout techniques.

3.3.7. Orientation & Navigation

A recent synopsis of navigation concepts has been given by Cockburn et al. [CKB08]. They
categorize Overview & Detail, Zooming & Panning, Focus & Context and other techniques based
on their interface mechanism, and give a survey on evaluations of these methods. While Overview
& Detail is considered as a spatial separation into two or more distinct visualizations, Zooming &
Panning is considered a temporal separation between emphasized and suppressed subsets of the
data. Focus & Context techniques avoid spatial or temporal separations by creating a seamless
visual embedding of detailed information (the focus) within its context.

Aside from techniques which aim to preserve the mental map on a purely structural level, the
role of interaction and navigation cues must be considered as well. In fact, Marriott et al. note
in their study [MPWG12] that node labels are powerful cues for mental mapping. However, we
think that layout stability supports the effective use of local navigation cues like labels, because
they need to be located in the view to be useful. Moscovich et al. [MCH∗09] and van Ham and
Perer [vHP12] propose techniques to ease navigation across larger distances. Their common idea
is to provide visual cues pointing to otherwise invisible nodes or regions of the graph.

3.3.8. Preserving the Mental Map

In this section we first describe fundamental work on the preservation of the mental map for the
navigation in network visualization, especially with respect to design considerations and criteria.

The preservation of the mental map of graph visualization has become an important goal ever
since its introduction by Eades et al. [ELMS91]. The original definition of the term "mental
map" has been coined by Misue et al. [MELS95]. They discuss three concepts on mental models:
Orthogonality, proximity and topology.

Based on these ideas, Purchase presented an empirical study that strengthens the assumptions
on the relevance for the understanding of node-link diagrams [PHG07]. Depending on the task,
preserving the mental map seems to be more complicated than earlier works indicated [PS08]. In
a recent evaluation [AP13], the authors showed the effects of map stability to navigation tasks for
animated and transitions and for small multiples.
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We consider the layout stability as a means to augment recall on recently visited regions of
the graph. The results of Marriott et al. [MPWG12] suggest that layout features have different
cognitive impact, e.g. favoring symmetry or orthogonality. In an earlier study, Purchase and
Samra [SP08] note that minimal node movement may not be the most relevant criterion for mental
map preservation. Archambault et al. [APP11] compare animation approaches to small-multiple
approaches, but their effect on mental map preservation are inconclusive. We have to note that
especially recall experiments are naturally limited to small graphs - and schemes to transfer results
to real world graphs have yet to be devised. According to Purchase et al. [PS08], one important
criterion is that the movement during the transition from one view to another should be minimized.
Also, different quality objectives for node movement have been introduced to enable the user
to track the changes between two consecutive frames [FT08]. The shape matching approach
we present pays respect to these findings: with the exception of stitched nodes, all nodes move
uniformly during the transition process.

While most of these concepts have been developed for the layout of dynamic graphs, we con-
clude that they also can be applied to extracted, dynamic subgraphs of large static graphs. For both
cases the same requirement applies: A significant portion of the visible graph is topologically sta-
ble between any two changes. Different metrics on how to measure and optimize these changes
has been presented earlier by Branke [Bra01], but most of them compare only key frames of the
full graphs. Navigation in partial graph views creates a series of subgraphs that are derived from
a larger graph. Diehl et al. presented a strategy for the transition between these subgraphs, but it
requires that the navigation path must be known in advance. The subgraphs required for the anima-
tion are then derived from that supergraph [DGK01]. However, this approach cannot be adopted
for interactive browsing, since user interaction cannot be aggregated beforehand. Lee et al. ap-
ply quality measurements to an optimization framework based on simulated annealing [LLY06].
While this approach is generic, the given performance suggests that simulated annealing might
not be suitable to support interactive browsing and real-time feedback.

Osawa combines traditional layout based on a mass-spring system with heat models to create
stable layouts [Osa01]. The user distributes virtual heat energy to one or more nodes, which
is then distributed to neighbor nodes. While this approach seems to be promising, it requires
the user to manually tweak the visualization. For graphs with inherent hierarchical structures,
a clustering can be built up and used for the layout. This also works for dynamic graphs, as
Frishman and Tal show with their work [FT04]. Visual changes in the layout are reduced by
adding “spacer” vertices that reserve space for future nodes. In their later work [FT08] they
present a drawing algorithm that is tailored for rendering online graphs (i.e. only previous frames
are known) efficiently on GPUs. The authors define placement strategies for new nodes and an
approach to reduce unnecessary node movement.

3.3.9. Degree of Interest

Some approaches make use of an evaluation function to extract interesting parts of the graph
with respect to one or more selected vertices. This idea of a Degree-of-Interest function was
brought up by Furnas who proposed to derive the set of most interesting points based on user
interaction [Fur86]. Degree-of-Interest-methods (DOI) are actually independent of the navigation
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concepts mentioned above, but became popular within Focus & Context visualization techniques.
In Furnas’ initial presentation of the DOI the focus was on the definition of the set of elements
that comprise the visible focus rather than the presentation of the focus.

The approach of van Ham and Perer’s approach picks up that idea with an adaptation of Fur-
nas’s DOI function with respect to graph data [vHP09]. Their work indicates that dynamic graph
visualizations can also benefit from that idea. A single node single node defines the focus and
the neighbourhood of this node provides the context. Changing the focus node affects the display
of the context. Also related is the approach of Crnovrsanin’s et al. [CLWM11], which use the
interaction history for the definition of focal nodes. It uses the exploration path of one user or
even the paths recommended by multiple users.

In the work of Dwyer et al., fading edges are used to indicate connections to invisible re-
gions [DMS∗08]. In a recent extension of their concept of DOI-based exploration of graphs, van
Ham and Perer introduce Graphcues, which are extensions to visible nodes [vHP12]. Similar to
the approach in Section 3.5 they represent links to the interesting but currently invisible parts of
the graph. While our approach is based on a signpost metaphor, van Ham and Perer guide the user
based on the result of interactive queries. These queries define the interest of individual nodes.
As a consequence, the level of interestingness is based on nodes rather than clusters or regions in
the graph.

Tominski et al. presented a lens-based technique to visualize large graph data sets [TAvHS06].
The focus acts as a local filter, which suppresses the display of edges unrelated to the visual
area, which mitigates overplotting of visual element. A similar filter is used to bring the local
neighborhood into the focus. Moscovich et al. [MCH∗09] extend this approach with the navigation
concept called Bring & Go. Guided panning along the connections to neighboring nodes supports
navigation in the graph. Their approach is also related to techniques for off-screen visualization.

3.3.10. Off-Screen Visualizations

An Off-screen visualization can be considered a variant of Focus & Context, but deserves further
elaboration here. Baudisch and Rosenholtz [BR03] compare two visualizations of off-screen
locations (isodistance rings and arrows). While the rings performed better on a geographic map,
they have no simple equivalent in the complex topology of an arbitrary graph. In fact, off-screen
visualization are most often used in the context of geographic maps like the insets techniques
presented by Karnick et al. [KCJ∗10] and Ghani et al. [GRE11]. One noteworthy exception is
presented by Frisch and Dachselt [FD10] who support the navigation in UML diagrams. The
position of visual proxies at the screen boundary indicates the global layout and provides context
for the orientation. The visualization by Jusufi et al. arranges linked parts of a graph at the border
of a focus region that shows one particular part of the network [JKKS12]. Their application is
settled in the biochemical network domain.
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3.4. Definition of Graph, Context and Focal Node

In mathematical terms, the data we work with has the form of a graph. We define such a graph
G(V,E) comprising a set of vertices V together with a set of edges E that connect some pairs of
vertices. All of our methods work with both directed and undirected edges without limitations.
The techniques in next sections we present are based on the browsing paradigm and can only be
applied to connected components. This means that new nodes are reached through their neighbors.
If the graph contains parts that are not connected to the rest of the graph, they cannot be reached.
We will therefore assume that the graph is connected, i.e. a path exists between every pair of
nodes in G. We also define a clustering C(V ) as a mapping of V to a set of classes, so that every
vertex in G is linked to one or more classes.

Based on the graph G we will extract the focus F ⊂ G, a subgraph, which is defined based
on recent user interaction. It is displayed to the user as the visible part of the full graph. It is
constructed from the focal nodes Z ⊂ V , a small set of vertices in G and a degree-of-interest
function that defines the visible neighborhood of F . The focus nodes are initially selected by the
user (e.g. through a textual search query or point and click interaction) and thus are considered
to be the most interesting points for the analysis. The subgraph F surrounds the focal nodes and
thus provides a context. The definition used here is analogous to the definition in the work of van
Ham and Perer [vHP09], but we decided to use the multiple focus points approach as described
in Section 3.5 for two reasons:

First, changing a single focus point keeps most of the context as it is induced by the other
nodes. Typically, the set of focal nodes is implemented as a first-in-first-out (FIFO) queue with
limited size. Every time the analyst puts a new node in focus, it is added to the queue of focus
points. It also adds its interesting neighbors to the visible graph. When the queue is full, the least-
recently used focus node is dropped from the queue and its neighborhood is removed from the
view. Using more than one focus node also keeps changes in the visual structure to a minimum
which preserves the context better than the single-focus-version.

The second reason is that it also gives a sense of history which is particularly useful for brows-
ing tasks where the path to the solution is not known beforehand or part of the solution. After the
focal nodes have been picked the next step is to derive the context. To achieve that, a degree-of-
interest function is used to evaluate the relevance of a node with respect to the current focus.

Regions Ri ⊂ G are arbitrary subgraphs of G. Because it differs from van Ham and Perer’s
definition, we want to clarify that when using the word context we refer to regions beyond the
visible subgraph F , and not the immediate, visible neighbourhood of Z.

3.4.1. Initial Node Selection

The initial pick of focus nodes in a large-scale graph is a non-trivial task. Following the “Overview
first, zoom and filter, then details-on-demand” paradigm by Shneiderman we notice that the
overview is not available in partial graph visualizations [Shn96]. In order to find potentially
interesting regions of the graph, we cannot drill down from a high-level view to a specific region
that demands our interest. We have to explicitly perform a search query that iterates over the full
graph and select one or more of its results as a starting point. For example, a text search could
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provide all nodes whose attributes that match the expression. Alternatively, picking a keyword
from a predefined list could select all vertices that are associated with that keyword.

3.4.2. The Degree-of-Interest Function

The concept of a Degree-of-interest (DOI) function is to evaluate the interest of a data element
with the respect to the observer. The larger the distance from the current viewport the smaller
seems to be the importance for the current task. In the original publication by Furnas, several
possible mappings for the parts of this function are presented [Fur86]. For example, the API
function can be generated from inherent attributes of the node or its relevance in the structure.
The UI function could match a node to a user defined text search query and the distance function
can be mapped directly to the minimal weighted or un-weighted distance in a graph. We use a
DOI-function as described in Section 3.5 in equation 3.7.

We will briefly sketch how the contextual subgraph can be constructed. A modified version of
the Dijkstra algorithm can be used to derive the visible nodes around the focus points. Instead of
using a single starting point, this variation works with multiple starting points, namely the focal
nodes. The DOI of neighboring nodes is used as edge weight. In every iteration, the node with
the highest interest is added to F. Typical stopping criteria are the number of total nodes in the set
or a predefined threshold that filters out nodes with a DOI lower that a certain value. As it is, this
function might lead to disconnected graphs which are undesirable. A connected subgraph can be
created by adding the shortest path between all focal nodes to the visible graph. We will call these
visible subsets of the graph frames from now on.

3.5. Signposts

In this section we present a local graph view for the exploration of large, static graphs (Contri-
bution C1). It is a Focus & Context technique that – in contrast to most other techniques – uses
a symbolic representation to present the context of the focus region. The focus is the local graph
view, and labeled signposts provide cues for the context which is defined as regions of the graph
that are outside the visible area. In analogy to real signpost alongside roads, these cues indicate the
direction of the shortest path from the visible set of nodes to these invisible or unknown regions.

We provide a definition for the off-screen regions and describe how they are selected based on
the visible subgraph. Our approach is partially based on the work of van Ham and Perer, who
dynamically extract a subgraph based on an initial focus node and a degree-of-interest function.
We picked up this idea to define the set of visible nodes and extended it to support multiple
focus nodes. Using the signposts metaphor, regions of a graph that are potentially interesting
for the analyst can be hinted with a very small visual footprint. Our approach supports the data
scientist in the exploration of large graphs based on a small subset with high relevance and cues
towards interesting off-screen areas. We briefly outline a user study we performed to evaluate the
effectiveness of the signposts for navigation tasks.
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3.5.1. Visual Cues

On the one hand, local graph views must provide enough visual context to support the preservation
of the user’s mental map. On the other hand, the visual complexity must be kept to a minimum
to avoid cluttering which quickly distracts the users focus. A major challenge for such Focus &
Context techniques is thus to balance the amount of visual information and the preservation of the
user’s sense of context.

Over the last couple of years, a broad range of navigation concepts have been discussed to
support the user in the exploration of large graphs. Those who use two separate, but linked views
at different resolutions or granularities are typically referred to as Overview & Detail techniques.
This aims to provide the user with both details for close inspection, but also orientation on a coarse
scale. Others use the Pan & Zoom metaphor of a virtual camera to adjust the visual complexity
and the area of interest based on user interaction. In contrast, Focus & Context techniques work
with a single view, providing a spatial link between the focus area and its environment. Often-
used graphical means to accomplish this are distortion techniques such as the fisheye view or
magic lenses [SB92, GNBP11]. For a detailed discussion of the different categories, we refer to
Section 2.5.

In our approach, graphical and textual cues are combined to refer to the context. In contrast
to many related techniques, this context actually lies outside of the current field of view and is
therefore not visible.

As the name already inclines, our signposts technique was inspired by real-world signposts that
guide travelers towards their destination through unknown areas. In this metaphor, the traveler’s
visible environment translates to the focus area that is visible to the analyst. Graphical cues
indicate direction and textual cues represent potential destinations beyond the visible environment.
In both cases, signposts provide the context to support navigation and exploration tasks.

We transfer this concept for the exploration of static graphs, based on a small visible subset.
The focus is depicted by a node-link diagram of a selected subgraph, while the context consists of
named glyphs that are attached to certain nodes. They point towards regions that can be reached
through these nodes, but lie beyond the boundaries of the visible focus area.

Textual representation bring two advantages: First of all, subgraphs can be represented inde-
pendently with a very small visual footprint. The second reason is that they can be recalled faster
and more accurately than graphical representations [Kos07]. However, the labels might be un-
known to the user at the beginning of the analysis and need to be learned before they can be used
effectively. Obviously, effective usage requires meaningful labels for the regions of a graph. In
some data sets, labels can be naturally derived from data attributes (for example product cate-
gories). Many network data repositories include resources like semantic annotations which can
be used as labels. This applies in particular for digital libraries. However, the initial cost for the
creation of meaningful groups and textual descriptions for unlabeled graphs can be quite high as
it typically requires human interaction. We support this manual creation of regions and labels on
the fly, but note that this interactive definition process is rather cumbersome for large graphs.

Our approach is primarily influenced by two publications: The definitions of the focus re-
gion (see Section 3.5.2) is based on the ideas of van Ham and Perer [vHP09], who transferred
the concept of Furnas’ degree-of-interest functions to graphs. We use this function to define the
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relevant set of nodes from a focus node of interest, but generalize their approach to multiple focus
nodes. Our navigation concept is also similar to some extend as it responds to changes of the
focus nodes.

The second important publication is the dynamic inset approach by Ghani et al. [GRE11]. It
shows insets at the border of the view to depict off-screen graph nodes (see Section 3.5.3). Insets at
the boundaries of the focus view refer to connected nodes outside the visible area. The idea behind
the insets is to provide the user with relevant information without the need to zoom-out first.
Notably, several similar approaches for off-screen visualization exist today [HSS11, JKKS12].

The signpost glyphs in our approach can be compared to these insets, but they point to regions
rather than individual nodes. In our approach the relevance of a region is derived from its size in
terms of nodes and its distance from the viewport. We will show in the following sections, how
we generate the contextual information and how we communicate it to the analyst.

In summary, we claim to contribute the following items to the scientific community:

• An extension to van Ham & Perers degree-of-interest function for graphs that supports
multiple focus points.

• An extension to the generation of the visible subgraph that ensures that it remains con-
nected.

• Visual cues based on direction glyphs and textual cues referring to off screen regions pro-
viding context for the navigation.

• Dynamic selection of relevant off-screen regions based on a secondary degree-of-interest
function.

In the following, we will show that we do not only contribute the general approach as described,
but also make individual contributions to several aspects that we’ve built on.

The concept we present generalizes the idea of context to invisible off-screen regions. They can
be referred to with the help of visible signposts. In turn, off-screen visualizations are generalized
with regard to the definition of the viewport, which is defined by the the graph topology rather
than the canvas geometry. Finally, to our knowledge, off-screen visualizations of abstract graphs
have not been used in combination with multi-level representations yet.

We consider this approach a Focus & Context technique as defined by Cockburn et al., because
this definition does not prescribe the level of abstraction used for the context visualization.

3.5.2. Defining the Local View

In line with the approach of van Ham and Perer, we apply a degree-of-interest (DOI) function
to the nodes in the graph in order to identify the most relevant ones for the user [vHP09]. This
function assigns an interesting value for every node and those those who cross the relevance
threshold are part of the visible subgraph while the others remain hidden. Typically, the areas
of high interest are around a certain, user-defined focus point and the interestingness fades with
increasing graph-theoretic distance to that node. Consequently, such a DOI function defines the
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visible neighborhood around a given focal node. In contrast to the original work, our DOI function
supports multiple focal nodes.

The striking advantage of this is the ability to track the development or refinement of the user’s
interest in terms of exploration history. This is particularly useful for exploratory tasks or where
the goal is not known beforehand. In these cases, the path to the solution may be of interest as
well.

We will start this section with a detailed description of our extension to van Ham and Perer’s
DOI function. Then, the derivation of the focus from the set of focal nodes is explained. Applying
the DOI function as-is would lead to the construction of subgraphs which contains disconnected
neighborhoods. We deal with this problem in the last part of this section.

3.5.2.1. A DOI Function for Multiple Focus Nodes

Van Ham and Perer describe their DOI function as a composition of three individual parts. The
first component is called a-priori interest (API) which never changes. The second is the user
interest (UI) which is derived from initial user queries. The distance-based interest (D) refers to
the distance to a focal node z ∈V (see Equation 3.1).

DOI (x) = α ·API(x)+β ·UI(x,y)+ γ ·D(x,z) (3.1)

We adopt the first two parts, but extend the last component of the DOI function and the way the
subgraph F is derived from this function. The definition for our DOI function that supports more
than one focal node looks as follows:

We denote the set of focus nodes as Z = {z1,z2, . . .} ⊂ V and the distance function d (x,y).
In the following, we assume that d is defined for all pairs of nodes in the graph. The distance
between nodes that are not connected is defined as infinite. A DOI function should respect that a
node that is closer to one or more focal nodes should be considered more interesting than a node a
away from the focal nodes. The original definition by Furnas [Fur86] of the distance component
is as follows (Equation 3.2):

D(x) =−d(x,z) (3.2)

This function was extended by Heer and Card [HC04] to multiple focal nodes in a hierarchy (see
Equation 3.3). However, it emphasizes a convex region defined by the majority of focal nodes
which is not suited for multiple focal nodes in a general graph. Nodes that are located outside of
this region – even other focal nodes – may be discarded by such a DOI function.

D(x) =−d(x,z1)−d(x,z2)−d(x,z3) · · · (3.3)

To compensate that weakness, we define an inverse distance vector for every node in the graph
instead (shown in Equation 3.5). In this definition, we use the norm of the general Lp function
space (named after Henri Lebesgue) that is defined for a real number p≥ 1:

‖dZ(x)‖p = (|d(x)1|p + |d(x)2|p + · · ·+ |d(x)n|p)
1
p (3.4)

46



3.5. Signposts

This norm equals the Euclidean norm for p = 2 and the Minkowski-norm (also known Taxicab
distance) for p = 1. For p < 1 the DOI distance component is not a metric, since it does not
fulfill the triangle inequality. The resulting general definition for multiple focal nodes is defined
in Equation 3.6.

dZ (x) =
(

1
d (x,z1)+1

,
1

d (x,z2)+1
, . . .

)
(3.5)

DZ (x) = ‖dZ(x)‖p (3.6)

The definition of of the variable p influences how the neighborhoods of the focal nodes are
combined: In general, higher values of p lead to the creation of more independent neighborhoods
in general.

A nearest-neighbour approach can be achieved by using the maximum norm ‖dZ(x)‖∞, where
only the distance to the single nearest focal point is taken into account.

The norm ‖dZ(x)‖1 averages the inverse distance to all focal points. Even though that p < 1
is not a valid distance metric, we prefer DOI distance components with values for p in the range
0 < p < 1 for our approach. The reason is that the resulting distance component emphasizes
the area between multiple focal nodes (see the illustration in Figure 3.5). In particular when the
connection between the focal nodes is considered at least as important as the set of focal nodes
itself, such DOI components prove to be useful. Furthermore, these measures are less likely to
split the visible subgraph into separate parts. However, this cannot always be avoided by the DOI
function per-se and we describe counter-measures for that in Subsection 3.5.2.3.

p ≥ 1 

p < 1 

Figure 3.5: Combined iso-distances with two focal nodes (blue) for different values of p. The
variable p defines to what extent nodes between two or more focal nodes will be preferred over
nodes near a single focal node. High values of p will lead to independent neighborhoods; lower
values of p will be more likely to cause neighborhoods to merge.

3.5.2.2. Extract the Visible Subgraph

This subsection will go into the details on how the visible subgraph is extracted from the full data
set. Our approach is based on the ideas of van Ham and Perer [vHP09], Heer and Card [HC04] and
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Huang et al. [HEW98]. The DOI function is independent from the specification of the focal nodes
Z. Typically, these nodes can be selected interactively by clicking on them. Doing so expands
the currently subgraph F so that it includes the neighborhood of the selected node. Our approach
uses a double-ended queue to track the selection history of the nodes in Z. Old focal nodes drop
out of the queue as soon as a predefined maximum size has been reached. Such an approach has
also been used by others [HEW98].

When a new focus node is added, its distance to all other nodes is computed with a distance
function d(x,y) that is based on the DOI values for each node.

The work of van Ham and Perer suggests a modified version of the Dijkstra algorithm that
works as follows: Initially, only the focus node is visible. In an iterative process, the DOI values
for neighbors are evaluated. The algorithm adds nodes with the highest DOIs until a predefined
number of nodes has been added to the visible set. Interestingly, this same method can be applied
to multiple seed nodes without change and even without extra computational cost. Multiple focal
nodes may share the same neighborhood. While this approach works quite well, it does not
guarantee that the resulting visible sub-graph is connected.

3.5.2.3. Connect Disjoint Sub-graphs

Our adoption of this algorithm takes this issue into account. It connects the neighborhoods with
chains of nodes along a reasonably short path between them. We refer to these connecting ele-
ments as bridges.

This is very much in line with the idea of the interactive expansion of the focus area, as the
set of visible nodes serves as an anchor for detailed inspection. A user that wants to investigate
the area between different focus nodes, the bridges make this area visible and highlight important
connections.

First, the algorithm checks if the set of visible nodes forms a single neighborhood. A unique
identifier is applied to all focus nodes. This marker is then applied to its neighbors, neighbors
of neighbors and so on. If a node has already been marked before with a different ID, the two
markers are merged into one. The process stops as soon as all nodes have been marked. In the
end, all connected areas are marked with the same ID. The number of distict IDs consequently
indicated the number of disjoint sub-graphs.

In a follow-up process, these separate regions are connected by the aforementioned bridge
nodes. Our approach is an iterative process that computes bridge elements for two disconnected
graphs. See Figure 3.6 for an illustration. It starts at the smallest sub-graph N0 performs a growth
process that is very similar to the definition of the visible region that was described in the previous
section. The difference is that the number of nodes is not limited.

The neighborhood N0 is increased until a different neighborhood is reached. This is again done
using a Dijktra-based shortest-path search that directly gives the optimal path between the two
regions. Adding the nodes along this path to the set of visible nodes naturally connects them.
The process as a whole is repeated until only one neighborhood is left. The resulting single area
defines the focus F , which is the visible subgraph that is used in the visualization.
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Figure 3.6: Nodes for the focus are selected by a two-step process. First (a), the area around the
focus nodes (1,2 and 3) is increased to a pre-defined number of nodes. The DOI function defines
which nodes are preferred. During this process, different neighborhoods can grow together (1
and 2, left). Second (b), disjoint areas of the visible graph are connected using bridge elements.
Starting with the smallest disconnected sub-graph (3, right), nodes are added until a different,
visible part of the graph is reached. The bridge (B) is created along the shortest path as found by
Dijkstra’s algorithm.

3.5.3. Signpost-based Context

We described how the focus is defined in the previous section. This focus area F ⊂ G allows for
the detailed inspection of a subgraph of interest. It also enables the user to interactively explore
adjacent regions by changing the focus nodes. In this visualization, the context consists of glyphs
which resemble signposts (see Figure 3.7).

These markers are located at the boundaries of the visible area. In analogy to real-world sign-
posts, they direct to areas of the graph which could be of interest to the user, but lie outside the
visible focus area. By selecting different focus nodes the visible subset changes accordingly and
the user can thus navigate through the graph.

The purpose of the signpost glyphs is to provide context information on the current location of
the visible subgraph in relation to other regions of the graph. Whenever the focus changes, the
visible sub-graph changes and consequently the the selection, position and direction of the glyphs
are updated.

We will now describe how these signposts are created and start with the definition of the off-
screen regions of a graph that can be referred to with the help of the sign glyphs. Then, will
explain how we select the subset of these regions that will be used in the visualization, based on
the current focus. In the last step, we will explain how the signposts are laid out on the screen.

3.5.3.1. Region Labels

A signpost often points to a far-away places such as cities, a regions or even different countries.
When it refers to large distances, it will probably not refer to an individual building or street. A
signpost that points to closer targets may refer to smaller anchor points as it is expected that the
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traveler is – to some extent – familiar with the closer environment. Naturally, the label of the
long-distance signpost implicitly comprises all minor signposts within the boundary of its target
area.

We transfer this concept to graphs by aggregating nodes to labelled regions and define a region
as a connected subgraph R ⊂ G. The regions in the data set do not need to partition the graph
data, i.e. they can overlap and even form hierarchies. This can be used, for example, to realize
different levels of detail (see Section 3.5.3.2). In general, there are no limitations with respect to
the definition of the set of regionsR= {R1,R2, . . .}.

Human-readable labels are required to make signposts meaningful. We will assume from now
on that this is the case for each region in the data set. The labeling procedure itself is not part of
our contribution.

The method we present can be used for navigation in graphs that is enriched with such metadata.
Today, an ever-growing number of open-access repositories provide such graph data, often even
annotated with semantic information. Such data can be used to derive representative labels for
groups of similar elements. A prominent example is the Resource Description Framework (RDF)
data type that is used in the Linked Open-Data Community. Potentially useful attributes can be
Product Categories, Authors, Topics to define region labels. In our case study, we will use the
ICD-Codes that are defined for groups of similar diseases (see Section 3.5.4). An attribute defines
a region as the set of nodes with the same value. Thus, even nodes of different types may be in
the same region if they share attributes with identical semantics.

A straight-forward approach would be to directly use a single data attribute to define the regions.
Naturally, this attribute can then be directly used as a label. Most nominal attributes in the data are
candidates to define regions. Some data sets are annotated with a taxonomy so that the inherent
hierarchy can be exploited to create regions with different sizes depending on the desired level of
detail. Regions that belong to the same super-category can be merged and labelled with the name
of this class.

Despite the fact that there are no technical restrictions on the definition of regions, some at-
tributes are better suited than others. A potential problem when using data attributes is that nodes
with that attribute do not necessarily form a connected group in the graph topology.

In order to be able to point towards a direction, the region of interest should be sufficiently
compact. It not need to be connected, but the average distances within the region should be
significantly smaller than the average distances of the complete graph. Only if this requirement is
fulfilled, region can be reasonably represented with signposts. Note that this requirement is highly
similar to the definition of graph clusters.

Regions can also be generated automatically with graph clustering algorithms. These region
often represent the graph topology better than manually creates ones, but they do not have a
meaningful label per-se. In a second cycle, classification methods could be used label the gener-
ated regions automatically, but this is beyond the scope of this work. We approach the problem
from the opposite direction by enabling the data analyst to modify and extend the set of regions.
Once a a set of nodes appears to be relevant enough to return to it later, they can be selected with a
lasso tool. Selected nodes will be stored in a new region with a user-defined label (see Figure 3.7).
The region is later referred to with its own signpost as soon as it drops out of the visible focus.
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Figure 3.7: Two signposts guide the user towards other regions in the graph. They point along the
shortest path to those regions. The user selected a group of nodes that should form a new region
with user-defined label.

3.5.3.2. Filtering Context Regions

Large graphs can contain dozens or even hundreds of regions. Without pre-defined limitation
on the definition of regions, the number of potentially relevant regions can be very high as well.
Consequently, the number of visual signposts must be filtered to a sensible amount in order to
avoid visual clutter and overplotting in the display. In analogy to the definition of visible nodes
for the focus area, we apply a degree-of-interest scheme to filter the context. We therefore assign
a DOI value for every region of the graph. This value depends on specific properties of the region
such as its size and compactness.

However, it also depends on distance from the current set of nodes F ⊂ G in the focus. When-
ever the focus area changes, regions may become more or less relevant in the context. As a
consequence, signpost glyphs appear or disappear accordingly.

Formally speaking, our definition of the degree-of-interest function for graph regions is based
on the following properties:

• Intersection with the focus: if a region R intersects with the focus F then the region is
automatically excluded from the selection.

• Region size |R|: bigger regions are considered more important than smaller regions. The
practical reason for this scheme is that the whole graph can be covered more easily by
referring to a few large regions.

• Region distance from the focus d(R,F): regions that are close to the focus get a higher
relevance score. It is assumed that they are more closely related to the nodes in the focus,
i.e. the part of the graph the user is currently exploring (see Section 3.5.3.3).

• A-priori interest API(R) and user interest UI(R): these are highly similar or even equal to
those that were defined for individual nodes (see Section 3.5.2). For example, the a-priori
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interest for user-defined regions should be increased, because the user explicitly expressed
interest in these regions by creating them.

• Exclusion: in some cases, regions can have significant overlap even when defined with
different methods. While this is interesting from an analytical point of view, having multiple
signposts referring to the multiple regions which differ only slightly does not support the
user’s mental map much. We therefore remove regions that are highly similar to any other
region in the selected set.

To fulfill the first requirement, regions which intersect the focus are assigned with a DOI value
of zero. We define the DOI function for the regions based on these requirements as follows:

D̂OI (R) = α ·API(R)+β ·UI(R)+ γ ·D(d(R,F), |R|) (3.7)

Function D(.) reflects the fact that region size and distance from F both influence the DOI
value. We will briefly sketch how the two factors can be combined based on a small example
scenario: a large region in the graph which overlaps a set of smaller regions.

From a distance, the large region is generally more interesting than the smaller ones. This high-
level is enough to provide some orientation. If the user is interested and moves the focus closer
to these regions, we can assume that a higher level of detail – i.e. more information is desired.
Consequently, smaller regions should be preferred at close range to support this scheme.

The class of functions D in the following equation satisfy this property:

D
(
(d(R,F), |R|

)
=

ω

d(R,F)ω

ω = 2− log(|R|)
log(|Rmax|)

(3.8)

The largest region is denoted by constant Rmax. Finally, we need to define how we ensure that
all regions in the selected set are sufficiently different from each other. Our approach is based on
a list of excluding regions X1,X2, · · · that are computed for each region R ∈R beforehand. These
mutual exclusions can be based on the number of common nodes, for example.

We modify the DOI based on this last component and obtain the final equation as follows:

DOI (R) =


0 if R∩F is not empty,
0 if maxi(D̂OI(Xi))> D̂OI (R),
D̂OI (R) otherwise.

(3.9)

3.5.3.3. Defining Region Distances

The graph of regionsH is defines as a weighted graph. Its nodes are the regionsR of G, its edges
define adjacent, intersecting and nested regions.

There is no natural distance measure for regions, as they are defined as sets of nodes. A variety
of approaches exist to derive distances, many of them are used in agglomerative clustering. The
work of Berkhin [Ber02] gives an overview on the topic and surveys related work. In order to
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support graph navigation an approximate solution which enables a reference to the right direction
suffices. We therefore chose the graph-theoretic distance between regions to define the weight of
the edges.

The minimum distance between a pair of nodes in different regions is called Single linkage and
the easiest one to compute. However, there are two problems with this distance measure. The first
one is that distances within regions are ignored. As a consequence, distances between two regions
in G are underestimated in general. Second, it cannot be applied to intersecting and nested regions
– the single-linkage distance is zero in both cases. We chose the average-linkage distance for the
definition of H to overcome these limitations. The graph H is a coarse representation of G and
can be exploited to speed up the distance computation. This high-level abstraction of the graph
can be pre-computed.

Every time the focus is changed, the relevant regions and their distances are recomputed. With
increasing size of the graph, this can become a time-consuming operation. However, the majority
of the regions are known in advance and their pairwise distances can be pre-computed. Whenever
the focus area is updated, only the distances to the closest regions need to be updated (see next
section). Distance to regions that are further away can be derived from the distance to the closer
ones and a look-up in the pre-computed distance table for the region of interest (see Figure 3.8
for an illustration of the approach). We note that this computation operates both on the graph of
nodes G and on the graph of regionsH.

R₂
R₁

R₄

R₃

Focus Area

Context

Figure 3.8: The visible focus area is surrounded by a number of invisible regions. The distance
to all regions is recomputed whenever the focus changes. However, only distances to neighboring
regions (R1,R2,R3) are updated. The distances to more distant regions (R4) are based on the
close ones plus the precomputed distance between the regions.

3.5.3.4. Glyph Placement

The glyphs in our approach convey at least two pieces of information. The first one is the label of
the region that the signposts points at. The second one is the visible node, which can be expanded
in order to move along the shortest path towards this region.
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Computing the distance between two regions and computing the distance to the closest visible
node are two highly correlated problems. It is therefore not surprising that both can solved using
similar approaches. We first compute the distance to the closest regions in G, based on the mod-
ified Dijkstra spanning-tree algorithm in a similar way as we did for finding the neighborhoods
nodes in the focus area.

The entire set of visible nodes (i.e. the focus F) serves as seed nodes for the algorithm. Every
time a node on a shorter path is encountered, the visible node it has been reached from is updated
as well as new minimal distance for the regions of this node. As soon as a fixed number of nodes
have been visited, this process stops. We define the regions that were found in this process, close
regions.

The same algorithm can then be used to compute the distances to regions (in the graphH) that
are further away. The previously defined set of close regions serves as now the seed nodes for
the algorithm. Summing up the distances of the two computations gives the the final distance of
all (distant) regions.

As soon as this is complete, the shortest distance to F is known for every region in the graph.
Also, the visible nodes it can be reached from along the shortest path are known. In general, the
glyphs are sorted by decreasing interest with respect to their associated regions.

When two or more visible nodes share the same interestingness value for a region, the following
strategy is used to find the best match. In case the node was used in the previous interaction cycle,
the glyph will be attached to this one to keep it in place. This minimizes visual changes across
focus changes. If the signpost was not visible before we choose the candidate node which has
fewer attached glyphs to reduce overplotting. If there are still multiple candidates after this, the
node is picked randomly.

The last thing that is missing is the direction of the signpost glyph. In our approach, it points
along the shortest path towards the labelled region. This first edge connects a visible start node in
the focus region with an invisible one that lies just outside the focus.

For static layout, the position of this node is known in advance and the edge directed can be
derived. Dynamic layouts typically do not consider invisible nodes and edges in the layout. In
order to derive the edge direction, we add all direct neighbors of the focus area F to the dynamic
layout. No other changes are necessary and our approach therefore works seamlessly with differ-
ent dynamic layout methods. Those dynamic layout that support animated transitions, the glyph
will follow the transition of its (virtual) edge.

3.5.4. User Study

We tested our approach in an initial experiment that compared multi-focal graph exploration with
and without signposts. We wanted to test whether the use of signposts supports the user in the
navigation and orientation in large graphs.

We recruited 13 participants aged between 21 and 30 for the experiment. All of the participants
were graduate or undergraduate students in computer science or computer-science-related courses.
Our experiment was a within-group test. The experiment consisted of two almost identical tasks,
each performed under different conditions. To filter out undesired learning effects we alternated
the sequence of the tasks performed by each participant.
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In each task, participants were asked to find a pair of nodes, one each from two predefined cat-
egories, and a path connecting the two nodes. We selected the categories such that the tasks were
easily solvable with the available interface. For the test we used a precalculated Fruchterman-
Reingold layout. In both tasks five focal node changes were necessary to reach the target. The
number of focal nodes to define the focus view was limited to three. The start conditions for
each task were identical. The only difference between the tasks was the availability of signposts,
providing additional contextual information to the participants.

Possible user interactions included panning and zooming, browsing the graph by adding a node
to the focal node history and the selection of nodes for detailed information. Focal nodes were
highlighted with red boundaries. The graph that we used for the experiment was based on data
from The Human Disease Network by Goh et al [GCV∗07]. We extracted the largest connected
subgraph, because in its present form, our technique cannot be applied to disconnected graphs.
We decided to use this particular data set for two reasons. Firstly, each node was already assigned
to one of 23 different categories. Thus we had a predefined set of regions to use for the definition
of signposts. Secondly, the meaning of the nodes (either genes or diseases), the links between
them and the categories that grouped them were clear to non-experts without the need for detailed
explanation. To ensure an equal level of expertise among participants we made sure that all
participants had little or no knowledge of this particular data set or medicine in general.

The nodes in the original graph were either diseases, or genes linked to those diseases. We
did not distinguish between diseases and genes in our visualization, since the same categorization
was applied to both types. We converted the originally directed graph into an undirected graph
and filtered out gene-gene relations to reduce its density. The final graph contained roughly 1500
nodes and 5500 edges.

Figure 3.9: The results of the experiment: lower mean and lower standard deviation in comple-
tion time, focus change count and selection count for the visualization with signposts.

To test our method, we measured the task completion time, as well as two click-based statistics.
The time was measured between the moment the task was given to the participant and the moment
the participant he or she had found a path and reported that to us. The click-based measurements
were the number of focal node changes and the number of selection clicks (to view detailed
information about the nodes). Figure 3.9 shows the average completion times for both tasks and
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both conditions. Direct comparison reveals that the testers were faster with the visualization that
contained landmarks.

The difference in the average task completion time, the number of focus changes and selection
clicks points to an improvement in graph navigation through the use of signposts.

3.5.5. Discussion

The user study was conducted to gain a better understanding of the problems users encounter
when using our visualization approach. One of the major problems of the participants was that
they forgot where they had started and which part of the graph they had already explored.

The queue of focal nodes we used has a length of maximum three entries. Some participants
suggested having a larger number of focal nodes to better support tracking the exploration history.
However, a larger number of focal nodes caused the edges to be cluttered in the static layout. Sim-
ilarly, other suggestions included explicitly storing the entire history of focus nodes to document
the exploration path. We expect that multiple focus points are likely to work better in conjunction
with dynamic layout techniques.

The idea of having signposts was understood without explicit explanation and recognized as
helpful by the participants. For the study, we presented a maximum of three most interesting
regions per node to avoid visual cluttering. This sometimes leads to the problem that the region
that was searched for was not always visible. One way to overcome this problem would be
to interactively browse through all signposts on demand – similar to browsing through a stack
of cards. A more sophisticated way would be to track the path the user follows and explicitly
highlight the next steps along this path.

As discussed in the previous sections, an important requirement of our approach is the defini-
tion of meaningful labels. For large graphs, it is sheer impossible to create them manually and
automated methods might fail to generate meaningful groups and labels for the groups. However,
based on the approach of user-generated cluster labels, we see two interesting alternatives for fu-
ture work. The first one is about interactive refinement of automatically generated regions, the
second one is a crowd-sourcing approach to create a public repository of user-defined regions for
large graphs.

In this chapter we presented a new approach to navigation in large graphs that is based on Ham
and Perer’s idea of presenting a meaningful sub-graph around a single focus node. Our approach
goes beyond the original work in two aspects. It supports multiple focus nodes and deal with the
problems that come with this. Additionally, it also provides visual cues to other regions of the
graph that could be worth exploring. The cues also indicate the direction of the regions in order to
support the user in navigating towards them. However, the size and number of displayed arrows is
difficult to adjust a-priori. Currently, only up to three arrows are displayed next to each other per
edge to avoid overplotting. If the shortest path to more than three regions leads through the same
node, the glyphs are rendered on top of each other, similar to a stack of cards. This indicates that
there are more glyphs underneath, but additional interaction such as browsing is required to make
them readable.

The signposts idea offers the potential to show more information than the region name. Size,
length, color or transparency could be used to represent more information about the region or the
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path leading to it. In accordance to real-world signposts, the distance to the target regions could
be added to better support the user’s orientation. Apart from showing information, the signposts
could also be used for interaction, for example to short-cut the path to the selected region.

The implementation that was used for this approach and study is based a single, static layout to
ensure that the position of nodes in space does not change over time and thus confuse the user. A
dynamic layout applied only to the visible nodes would be significantly faster and needs to deal
with fewer constraints as the number of visible nodes is a lot smaller. Nodes that become visible
through a change of focus would be added to the layout on the fly. However, the initial placement
of new nodes and edges in an existing layout is not trivial as it should not impair the existing
layout. We refer to Section 3.6 for a detailed approach and additional discussion.

3.6. Stabilized Layouts

In this section we present a set of extension techniques to stabilize interactive dynamic graph
layout algorithms (Contribution C2). It works with different existing Focus & Context methods.
We first deal with the initial placement of newly inserted nodes to mitigate acting forces in the
layout algorithm. Then, their influence on the existing layout is gradually increased to create
a smooth transition between the old and the new layout. To complement this approach we use a
look-ahead strategy that integrates additional nodes in the layout to stabilize the layout even more.
Our approach is validated using both quantitative and qualitative measures.

3.6.1. Damping Node Movement

While the DOI function that was defined by van Ham and Perer [vHP09] is based on a single
focus point, we extended the function to work with multiple focus points in Section 3.5. The
layout of the displayed subgraph that is used in local layout techniques plays a key role. However,
the approach represented in section 3.5 does not yet consider smooth transitions between the
different extracted subgraphs. We claim to contribute a combination of features that improve the
user experience with focus-based navigation concepts, based on the ideas that were presented in
the previous section:

• A new placement algorithm that puts new nodes close to their neighbors so that acting
forces are kept minimal.

• A weight function that integrates new nodes in the existing layout in a smooth transition by
gradually increasing their mass.

• A layout looking ahead for nodes that potentially visible after the next focus node change.

These features can be used as separate improvements or in an integrated system. As a result,
nodes are added and removed smoothly and node movement is reduced in general. This keeps
the visual changes in the existing layout to a minimum. We think that their effect on the layout
reduces the cognitive effort for the user and thus support the preservation of the mental map.

57



3. Local Graph Views

Figure 3.10: A screenshot from the running system showing a partial view of a graph including
a set of focal nodes (marked with circles) and a set of visible context nodes. Also, a number of
additional, potentially interesting ghost nodes (semi-transparent) are integrated to stabilize the
layout, but not shown to the user.

We employ a classic force-directed layout algorithm based on the mass-spring-model that is
described by Fruchterman and Reingold [FR91]. Its main actors are spring tension and repulsion
forces. For the initial set of nodes no placement constraints exist. Also, for subgraphs that are not
connected to the rest, random placement can be used. All other nodes are at least constrained by
edge forces that act between neighbors.

3.6.2. Placing Nodes

A typical problem of some graph layout techniques is the at least partially random behavior caused
by a random initialization of node positions. The key idea here is to avoid sudden changes in the
visualization through reduction of acting forces. Selecting a visible node as focus point creates a
new, different set of context nodes. In order to keep the layout stable, new nodes should be placed
with a distance equal to the rest length of the edge to satisfy spring constraints. However, it also
desirable to place nodes as far away from all other nodes as possible to make use of free space
and avoid repulsion forces.

The first aspect can be easily satisfied if the new node has only one edge. It can be placed
anywhere on a circle with a radius equal to the desired edge length around the existing node.
If two distance constraints exist the range of valid positions is reduced from a full circle to two
points on that circle (see the left image in Figure 3.11).
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Figure 3.11: Up to two connected nodes (semi-transparent) can be placed on the circle around
the existing vertex. Additional nodes are placed on a circle around the center of gravity of already
inserted nodes

For nodes that have links to more than two neighbors, no general solutions exist that fulfills all
criteria. We thus have to approximate the ideal position. First, the center of gravity of all neighbor
nodes that are already in the layout is computed. Then, the final node position is a position on the
circle around the center of gravity with a radius of the desired edge length (see the right image
in Figure 3.11). This node potentially lies outside the previously mentioned circle and does not
fulfill any of the imposed constraints, but it is pushed away from the areas with high node density.

The placement on the circle is performed with respect to the number of nodes in its proximity.
This area-based density measure is also required for the computation of repulsion forces of the
Fruchterman-Reingold algorithm. Often-used methods to find empty space and perform distance
tests quickly are spatial hashing algorithms. They define a grid-like structure of buckets that
contain the graph vertices based on their position. Nodes are added and removed from the buckets
as the move over the virtual grid. Given a point location the algorithm retrieves its corresponding
bucket (based on hash keys). All other nodes in the bucket are considered to be close enough for
further distance testing. Depending on the search distance, adjacent buckets are inspected, too.

We can make use of this data structure and query different positions on the circle. We count the
number of nodes in the search area of every query location and choose the one with the lowest hit
count. This ensures that new nodes are placed where most space is available.

Vertices that fall out of scope are removed from the visible graph. Typically, these nodes have
been in the layout for a while and thus have “settled”. The forces that act on them are rather small.
Consequently, removing such a node hardly affects acting forces on other nodes and can thus be
removed without having a strong visual impact.
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3.6.2.1. Look-ahead for Invisible Neighbors

When new nodes are inserted in the layout and displayed immediately, they typically move a lot
in order to satisfy all repulsion and edge forces. This can be mitigated by meaningful placement
of new nodes but not cured entirely.

This is why we propose a look-ahead technique that also adds nodes to the layout that might
become visible, if one of the currently visible nodes was selected as a focus point. Every time a
node is added to the visible graph, the DOI function is evaluated for its neighbors as if the node
was in the queue of focal nodes.

All nodes that would then become visible have already been added to the layout subgraph
before. However, this subgraph can quickly become quite large, especially for highly connected
graphs (see Figure 3.12). A restrictive DOI function that filters out the majority of neighboring
nodes mitigates the problem.
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Figure 3.12: A small subset of a graph with many potentially visible neighbors can have a signif-
icant impact on the layout. In this illustration, only one single node has been selected. This star
is one of the most central nodes of the cluster and linked to a large number of other stars. As a
result the neighborhood is very large even for small hop distances.
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3.6.2.2. Gradually Increasing Node Weights

When many new nodes are placed around an existing node, the existing node will jitter heavily
until the newly inserted spring forces have relaxed. We thus modify the algorithm by adjusting
the mass of vertices over time. The goal of this modification is to adjust the inertia of nodes,
depending on the time spent in the user’s focus. Following the “separation of concerns”-pattern
we first create a function that provides the number of layout iterations for every node. We track
this by counting the write operations in the layout on a per node basis. Removing a node sets its
counter back to zero.

We then derive the node weight from the normalized values of the counting function. It is
desirable that invisible nodes reach the mass of visible nodes smoothly as the mass of a node is in
direct relation with the acting forces that are used in the layout algorithm. For two vertices with
mass m1 and m2 the distribution of forces can be computed as:

f1 =
m2

m1 +m2
f2 =

m1

m1 +m2
(3.10)

The larger the mass of a particle is, the weaker is the influence of the force and the stronger is
the influence on its counterpart. The two functions are plotted in Figure 3.13.

Figure 3.13: The weight function starts with full effect on the newly inserted node. The influence
is shared as the number of layout steps increases until equilibrium is reached and both nodes are
equally affected.

A similar idea has been presented by Huang et al. who introduce friction forces to stabilize
dynamic layouts [HE98]. The longer a node is visible the large its friction coefficient gets.

3.6.3. Test Results

The graph data that is used for the tests has been taken from the Diseasome project. We extracted
the largest connected subgraph (disconnected parts cannot be reached with exploratory search)
which contained about 1500 nodes and 5500 edges. Although the edges per node ratio has an
influence, our approach works on partial views only and is thus independent of the graph size
per se. Starting at a randomly chosen focus node, we explored its neighborhood over six focus
changes, keeping all explored nodes visible. This created a sequence of six keyframe layouts with
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an increasing number of visible nodes (from 4 to 69). A transition between any two keyframes is
calculated with 100 iterations of the simulation.

To test our methods we measured the node velocity of all visible nodes in three different set-
tings. Few nodes with high velocities should implicate a larger penalty than many slow move-
ments. This is why we measure the average of squared velocities.
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Figure 3.14: Node velocities for three different setups measured over six transisions with 100
layout steps each. Using only visible nodes has the highest avage node velocity (blue). Including
invisible neighbors reduces velocity peaks (green). Using dynamic node weights reduces the peaks
even more as the influence of invisible nodes is still very small after their insertion (red).

The first measurement (blue) was performed with constant node weight and without the invis-
ible neighbor layout. It performs best during the first frame as only 4 nodes need to be laid out.
However, the fourth subgraph contains a star node that introduces a large number of new nodes
which causes the peak at iteration 300. The second test run (green) also included the layout of
the invisible neighborhood. The first subgraph contained additional 15 nodes that exert forces
on the visible 4 nodes causing a rather poor performance for the first 100 iterations. At the start
of frame 3 (iteration 200) a fair amount of nodes that could become visible in frame 4 has al-
ready been added. This causes a similar peak as in the first run, but less high and shifted by one
keyframe. The peak at the begin of the forth frame is thus significantly smaller. The gradual
increase of node weights has also been activated for the third test run (red). As before, the aver-
age velocity for the 4 nodes in the initial frame is very high, but once they have settled down, it
outperforms the other methods, especially when a large number of nodes is added simultaneously.

To validate the generality of our presented approach we conducted a second run of tests with
a different data set. Using the public API of a large online retailer we were able to access its
enormous product database. The network that was used for our test contains roughly 550’000
entities linked by a binary ’is-similar’ relationship. Roughly 1.2 million of those links were used
to form the edges of the graph. Most of the listed products are associated with at least one category
they belong to. This information was used to annotate nodes that are deemed to be important links
towards interesting parts of the graph. Details on these visual cues can be found in Section 3.5.
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To demonstrate the usefulness of the proposed approach we explored the graph using a dynamic
view and recorded the generated animation. A set of selected still images was extracted and is
presented in Figure 3.15–3.18.

The first series of images illustrates the expansion of the gray “Be” node at the upper right
corner. Before being selected, all directly connected neighbors are already layed out properly (see
Figure 3.15 left, transparent nodes). After the selection event the previously invisible nodes ap-
pear. Now, using the look-ahead strategy the neighbors of the newly appearing nodes are inserted
into the layout (see Figure 3.15 center, transparent nodes). While still being invisible, the algo-
rithm computes an optimal layout for these nodes in case the user explores in this direction which
would make them visible.

Figure 3.15: Exploration sequence in the product similarity graph. Note that the semi-transparent
ghost nodes are not visible in the visualization, but exert forces. Left: original layout. Center: the
node “Be” is selected for exploration. Its neighbors become visible and neighbors of neighbors
are inserted into the layout without being visible for the user. Right: over time, the layout settles
when a locally optimal solution has been found for all nodes.
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Figure 3.16: Exploring denser region of the graph shows how the node placement algorithm
works. At the left side of the visible subgraph, the “Es” node is selected for exploration. This
triggers the visibility of the star node “C” (right image). Adding all neighbors leads to a promi-
nent ring around the node, indicating that most neighbors are only linked with “C”. Those who
also have other neighbors are put in the center of gravity which is also close-by.

Figure 3.17: Again, a dense star node is being explored. Selecting the node triggers the insertion
of a large amount of new nodes that are placed in an already dense area. This does not lead to
visual clutter as the new nodes are invisible, but their repulsion forces act on the visible nodes.
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Figure 3.18: The newly inserted nodes pull some of the nodes away from the star node, especially
those who are star nodes themselves (e.g. the “AT” and three “Th” nodes). The length of the
visible edge here is no longer optimal, but the layout is already stabilized for future exploration.
Pulling stars out also makes them more prominent on the screen which can be useful, as they are
probably more important than nodes with only one link.
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3.6.4. Discussion

In this section we describe contributions that increase the quality of incremental layout algorithms.
A set of nodes that will possibly become visible in the foreseeable future is already integrated in
the layout computation to keep the visual representation stable when they are shown. After they
have been placed close to their neighbors, their influence on the layout is gradually increased from
almost none to full effect. This keeps the transition between different focal node sets smooth.

The look-ahead strategy we propose significantly improves the layout. Star nodes that are
visible have many invisible neighbors that pull the node outwards. This indicates that the vertex
is highly connected and possibly worth exploring, even if the connection cannot be seen. On the
downside, a high edge to node ratio introduces a large number of nodes on the layout which can
cause slowdowns.

Currently, navigating from one part to another and back does not necessarily produce the same
visual structure. Whenever a part of the graph is removed from the visible context, the positions
of the nodes become invalid. When the nodes are then again added to the context they are attached
in a best-fit manner to the existing layout. Reusing the old positions would not help, because the
position of the current visual context is different. Section 3.7 describes a layout algorithm that
produces such deterministic structures.

3.7. Deterministic Shape Matching

Dynamic graph layouts are often used to position nodes in local views of large graphs. These lay-
outs can be optimized to minimize changes when navigating to other parts of the graph. Dynamic
graph layout techniques do not, however, guarantee that a local layout is recognizable when the
user visits the same area twice. In this section we present a method to create stable and deter-
ministic layouts of dynamic views of large graphs (Contribution C3). It is based on a well-known
panorama-stitching algorithm from the image processing domain. Given a set of overlapping pho-
tographs it creates a larger panorama that combines the original images. In analogy to that our
algorithm stitches pre-computed layouts of subgraphs to form a larger, single layout. This deter-
ministic approach makes structures and node locations persistent which creates identical visual
representations of the graph. This enables the user to recognize previously encountered parts and
to decide whether a certain part of a data set has already been explored before or not.

3.7.1. Background and Overview

According to North [Nor96], layout stability is achieved by minimizing layout changes between
consecutive frames. Our definition for layout stability, however, does not apply to consecutive
frames alone. In addition we require that the layout of any given subgraph will be the same upon
revisitation. Hence we can only claim to solve the second problem here; the dynamic view of a
static graph. As a major contribution of this subsection, we specifically deal with requirements 1
and 5. Our solution is a resolution of this conflict fulfilling both requirements.

An important aspect in explorative analysis is about creating and preserving a mental map of the
displayed data. We are convinced that the ability to recognize areas that have been visited before
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Figure 3.19: Different exploration paths of the network yield the same visual representation of
the node-link diagram. The red spline indicates the path the user took to explore the graph.

is an important factor in this process. However, conventional force-directed algorithms do not
create identical layouts for the same set of nodes from different starting points. On the contrary,
they are very sensitive even to small changes in the initial values. As a result, the computed layout
of a sub-graph never looks the same. This makes it rather difficult for the user to decide whether
an area has already been explored or not, because the visual shape of the topological structure
appears to be different.

We propose a dynamic layout that adapts to the currently visible subgraph, but which is in-
dependent of the exploration path. The main challenge is to keep the layouts “stable” during
exploration. We use a two-level-layout strategy to solve this problem. The first-level layout is
done before interactive exploration: We compute a set of overlapping subgraphs which covers
the entire graph. The overlapping cover guarantees that most of the nodes will appear in at least
two subgraphs. For every subgraph a layout is computed independently to produce the first-level
layout. These layouts serve as “building-blocks” for the second level layout that is used during
exploration.

The challenge of the second-level layout is to combine these layouts depending on a given
visible area of the graph. The node coordinates from different subgraph layouts need to be merged
in a deterministic fashion. To achieve this goal we choose a technique that originally comes
from the field of image processing: Panorama stitching is used to merge a set of overlapping
photographs into a single, seamless image. We transfer this technique to graphs. Depending only
on the currently visible frame, individual subgraph layouts are selected, weighted and merged to
produce the final, visible layout.

To the best of our knowledge, these conflicting requirements have not been solved with a single
technique before. Our contribution is a technical solution serving as a proof-of-concept which ful-
fills both requirements. It extends the notion of layout stability from “frame-to-frame-coherence”
to “frame consistency”. This means that the layout of any subgraph looks the same or at least
similar for every visit. As a concept, it makes use of existing approaches to create subgraphs and
their layouts, but it is not bound to specific approaches. In fact, we believe that this concept offers
a design space, which is worth to be explored further in future.
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3.7.2. Concept

In this section we will describe how we derive a deterministic global layout from a set of local
layouts. We therefore transfer the panorama stitching algorithm to the graph layout domain.
Before we can perform our layout stitching algorithm, a set of subgraphs with overlapping node
sets needs to be created. A local layout is then computed for every subgraph - independent from
the rest of the graph. We refer to these subgraph layouts as patches from now on. We then align
these patches to match the positions of all nodes that exist in more than one subgraph as good as
possible. The node positions that exist in multiple patches are then merged and a unified layout
is created. The basic idea is illustrated in Figure 3.20. In the final step, we will explain how to
create a layout that consists of more than just two patches.

Figure 3.20: The green layout patch is aligned to the red patch using the four shared nodes.
Nodes that exist in both layouts are merged, creating a unified layout of both patches.

3.7.2.1. Pre-processing

The series of visible frames is defined by the user who is browsing this graph on a local level. We
do not define the means of interaction here, but we assume that the set of visible nodes can be
derived from the user’s interaction. Our concept defines a local layout for this subgraph. Given a
set of visible nodes, the set of layout patches that need to be merged can be derived. The frame
which was displayed during the last timestep does not influence the layout of the current frame.
This ensures that the same picture is created – independent from the exploration path.

If no set of patches for a graph is provided, we compute a cover of overlapping subgraphs
from a topology-based clustering, so that every vertex of the graph is contained in at least one
patch. Our approach works with basically any clustering algorithm. However, we point out that
the cluster size and content have an influence on their layout which in turn influences the cluster
shape that is used for the stitching.

The resulting clusters cannot be used directly as patches, because the clustering typically creates
a partition of the graph, i.e. every node is contained in exactly one single cluster only. A straight-
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forward approach to make them overlap is to include neighbors of the first degree. In other words:
nodes from other patches that are directly connected are added to the node set of the patch. Larger
sets are created by adding neighbors of neighbors and so on.

We consider two clusters to be connected if they share at least three nodes. This is the minimum
number of points that is required for the layout patch alignment computation.

As soon as the subgraphs are created, a layout is computed for each of them. This can be per-
formed completely independently which allows for using different layout algorithms. Moreover,
the computation can be done in a pre-processing step, but also deferred until the layout is actually
needed which avoids unnecessary computational overhead. Force-directed algorithms such as that
of Fruchterman and Reingold appear to be a sound choice as they reveal local structure and are
flexible to integrate user-specified requirements [Kob12].

3.7.2.2. Shape Matching

The sub-layouts are computed independently, therefore the position of nodes is given in a local
coordinate system. Nodes that exist in more than one layout generally have different positions in
each of them. We will now describe how two patches with overlapping node sets can be aligned
so that the distance in between is minimized. Individual node positions do not fit perfectly, but
this will be fixed in a later step.

The idea of stitching shapes is based on the work of Brown and Lowe [BL07] who describe an
approach for automatic panorama stitching. The authors compute a matching transformation for
images based on distinct, but overlapping point clouds. This process is far less complex for graph
layouts as no image post-processing such as brightness compensation is required. Most impor-
tantly, the point correspondences in the two point sets are known in our setting which simplifies
the algorithm.

The second, important contribution comes from the shape-matching algorithm of Müller et al.
which works with identical point clouds but in a very different context [MHTG05]. The authors
present a method that allows for elastic deformation of three-dimensional objects. With the help
of shape matching, the points of the deformed object can be gradually transformed back to their
original position. For that, the two geometric point sets are compared and a transformation that
reduces the pair-wise distance between all points to a minimum is deduced. Apart from translation
and scaling, their transformation scheme offers refinements such as twisting and compression
which are not present in the work of Brown and Lowe.

We trivially acquire a set of vertices that exist in two given layouts by computing the intersection
of the two sets.

As long as the set contains at least three vertices, we can use the standard least-squares fitting
method [AHB87] to compute a deterministic matching transformation. For the sake of simplicity,
we will restrict this computation to rigid transformation, i.e. rotation and translation, but gen-
eral affine transformations are feasible as well. For every point p in sublayout A we specify its
counterpart p′ in sublayout B as

p′i = Rpi + t + εi (3.11)
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Here, R is a rotation matrix, t a translation vector and ε the measure of error. After solving for
ε and accumulating the error over all points, we get to the following equation:

ε
2 =

n

∑‖εi‖2 =
n

∑‖p′i− (Rpi + t)‖2 (3.12)

The error becomes minimal if both point clouds have the same centroid [AHB87]. This can
be achieved by subtracting the centroid of their respective sets (denoted as cp and cp′) from the
point locations. The task is now to find an optimal rotation matrix where the pair-wise distance is
minimal for all points.

Figure 3.21: Rotating one of the two point clouds (green) reduces the average distance between
pairs.

This matrix can be deduced from a 2×2 cost matrix H that measures the distance between two
point clouds. We subtract the centroids from both data sets to bring them to the origin and define
this matrix H as

H =
n

∑
i
(pi− cp)(p′i− cp′)T (3.13)

Using singular value decomposition (SVD), the matrix H can be factorized into two rotations
U and V and a diagonal scaling matrix S.

[U,S,V ] = SV D(H) (3.14)

See, for example, the introduction by Wall el al. [WRR03] for details on the mathematical back-
ground of the singular value decomposition. The final desired rotation matrix can be computed
as:

R =VUT (3.15)

The final result is a transformed point p̂i that represents the point pi of sublayout A in the
coordinate system of sublayout B.

p̂i = R(pi− cp)+ cp′ (3.16)
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The accumulated difference between p̂i and the original point p′i relates to the previously com-
puted error ε and can be used as a quality measure for this transformation process.

3.7.2.3. Combining Multiple Shape-Matching Transformations

The approach we presented so far works well for combining two patches. However, in general,
a frame consists of more than that. We therefore describe how to stitch multiple patches in one
frame and how we create a smooth transition between two consecutive frames. The problem we
solve here is to find a deterministic order in which the patches are stitched. Therefore, we create
a meta-graph of the patches. Two patches are connected, if two patches share common nodes (see
Figure 3.23 left and center). Thus, they can be stitched together. For the remaining part of this
thesis, this graph is referred to as patch graph.

If the patches that should be merged are connected directly, only a deterministic order of stitch-
ing operations needs to be defined. Otherwise, also a connecting series of patch stitchings must
be generated to ensure that also distant patches can be combined.

This series of stitchings of overlapping patches can be seen as a path in the patch graph. Also,
on this level of abstraction, the interactive exploration can be seen as a user-driven traversal of
this patch graph.

Starting with a single patch, the user continues exploring, eventually reaching a part of the
graph, that cannot be visualized without including additional patches in the visible subgraph.
Adjacent patches are then added until the requested graph region can be visualized. This graph
traversal must be stateless and therefore independent of previously visible patches. If this was not
the case, different exploration paths would have different stitching orders thus result in different
global layouts. Three possible setups are depicted in Figure 3.22.

The reason for this is that the patch graph contains multiple paths that connect the visible
patches. Reducing the number of edges naturally leads to a reduction of the number of paths. To
enforce a stable matching order, we remove all edges from the patch graph that are not strictly
necessary to keep the graph connected (see the illustrations in Figure 3.23). What is left is a
spanning tree of the graph and can be computed by Kruskal’s algorithm.

It is also able to incorporate edge weights, thus computing the spanning tree with lowest total
weight – the minimum spanning tree (MST). Starting with a graph that has contains all nodes but
no edges, edges with the lowest weight are continuously added as long as they don’t lead to cycles
in the graph.

Although the error value of each matching seems like a natural choice to maximize the quality
of the whole layout, several drawbacks lead us to the decision against using it. First and foremost,
using the matching error as edge weight is possible only if the matching error was known for all
pairs of connected patches. Computing the optimal affine transformation of all possible combi-
nations of layout patches is rather time-consuming. Furthermore, interactive manipulation of a
single patch layout would result in changing weights for its incident edges, which in turn could
cause changes in the spanning tree of the patch graph.

Instead, we define a similarity-based weight function so that edges between pairs of patches
with large overlap ratios have lower edges weights. They are then most likely to be stitched first.
The Jaccard coefficient is a measure that indicates how similar two sets are and is defined as:
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3.7. Deterministic Shape Matching

Figure 3.22: Three patches (A, B, C) with corresponding 1-to-1 stichtings (top row). If the patches
would be stitched in the order they become visible, different stitched layouts would result. In this
configuration three different global layouts could be produced (bottom row).

J(A,B) =
|A∩B|
|A∪B|

(3.17)

This measure does not require the computation of the matching error between all edges in the
patch graph. Similar to the distance function that is often used in graph clustering, we can use
this (or another) similarity measure and assign this value to the edges of the patch graph.

For every pair of layout patches in this spanning tree, only one single path exists. These paths
in the tree are no longer the shortest in general when compared to the original patch graph, but this
reduction in freedom results in consistent patch stitching chains. This also ensures independence
of previous frames, as the stitching order is fixed. We use the root of the spanning tree as end
point for all paths. Thus, every visible patch is stitched to its parent patch until the root node
in encountered. This is a critical aspect as it ensures that patches are always matched to the
same neighbor patches. The local position of a node is thus transformed by the series of affine
transformations of the patches along the path to the root patch.

Some nodes belong to multiple patches and would, without additional correction, have multiple
positions on the drawing canvas. We therefore derive from all these positions a commonly shared,
unique position. In such cases, we use a linear combination of the nodes’ weight factor to place
the nodes depending on time and the user focus. This ensures a smooth transition from one layout
frame to another.
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Figure 3.23: The original graph is reduced to a graph of patches which is then reduced to a
spanning tree. This tree is used to define unique paths between any two nodes.

3.7.3. Preliminary Tests

In this section we will present some test results of both artificial and real data sets. First we
demonstrate the concept in detail using a basic test graph. Second, we use a real data set to
demonstrate that different exploration paths result in congruent layouts.

3.7.3.1. Concept Verification

The first test run is based on a graph of the form of a Venn diagram for three sets (see Figure 3.24).
It contains three node rings that overlap at the center. This graph is small yet complex enough to
test the correctness of our approach. Its structure allows, on the one hand, the extraction of three
overlapping patches – the rings – and ensures, on the other hand that their layouts overlap only
very little while having excellent matching error scores.

Figure 3.24: From left to right: The Venn diagram (1) is split into three overlapping subgraphs
(2). These form a patch graph (3) with 3 patches and 3 edges which is reduced to a tree (4) to
enable a stable interactive exploration.
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We create the patch graph and compute a spanning tree. Using the tree, we then merge one
patch after another in coordination with the interactive exploration component. The green patch is
shown first and thus forms the root patch for rendering and remains as it is (Figure 3.25 left). The
blue patch is flipped, rotated and translated to the bottom of the green, minimizing the matching
error between the green and the blue patch. The common nodes are then merged, creating the
layout in Figure 3.26 center). In the next step, the orange patch is aligned with the blue, already
aligned patch. This results in a total transformation (Figure 3.26 right) of about 180° for the
orange patch. Lastly, the node positions are unified where necessary and merged for the final,
visible graph.
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Figure 3.25: Individual layouts of the three patches of the Venn diagram graph.
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Figure 3.26: Initially, only the green layout is visible (left). In the next step, the blue patch
is matched against the green patch (center). Finally, the orange patch is matched to the blue
patch (right).

The second test we performed was with a pair of star-shaped subgraphs which has been ex-
tracted from a real data set. The layout of both subgraphs is strongly affected by the high degree
of the central nodes. The intersection of the node sets contains only four elements, but both star
nodes are included. This leads to a significant overlap of the patches, but the star patterns are still
visible (Figure 3.27).

In a similar data set, two star-shaped graphs have been extracted again, but this time, they
intersect only at their boundaries.

As can be seen in Figure 3.28, the patterns are stitched with only very little deformation of the
original shapes. More importantly, the nodes that form the connection between the two clusters
are clearly distinguishable in the stitched layout.
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Figure 3.27: Two star-shaped patches (green, blue) are stitched together forming a single graph
layout (gray). The common nodes (red) that form the base for the matching are the only nodes
that are distorted. Although the central nodes are in both sets, both patches are recognizable in
the stitched layout.

3.7.3.2. Exploration Independence

The claim of this contribution is to create a deterministic layout which is independent of the
exploration path. We test this hypothesis by navigating through several clusters of a larger graph
in different order and compare the generated layouts.

The data set for this test is a network graph from the medical domain [GCV∗07] with roughly
1.5k nodes, 5.5k edges. Our clustering algorithm created 77 layout patches. The size of the
graph features a fair amount of complexity while still being visually comprehensible when viewed
as a whole (Figure 3.29). We used a force-directed layout of the whole data set to display the
exploration path as ground truth and compare the results. With only one single parameter – the
number of iterations – the chinese whispers algorithm [Bie06] appeared to be a good choice for
the clustering of this graph.

Several different explorations have been performed to verify the validity of our approach. They
all started at different points exploring the same clusters, but in different orders. As can be seen
in the teaser figure on the first page, the resulting stitched layouts are congruent. The construction
of two exemplary stitched layouts is depicted in Figure 3.30 and Figure 3.31, respectively.
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3.7. Deterministic Shape Matching

Figure 3.28: Two star-shaped patches (green, blue). A clear outlier region in the green patch
leads to a clear separation in the stitched layout (right).

Figure 3.29: The entire graph laid out with a force-directed placement algorithm. The exploration
path in this global layout is highlighted in cyan and appears to be quite different from the stitched
local layouts.
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Figure 3.30: The first exploration through five clusters in the order 1, 2, 3, 4, 5.

Figure 3.31: In the second run, the clusters were explored in the inverse order resulting in a
congruent layout.

3.7.4. Discussion

In this section we presented a new approach that aims to create dynamic graph layouts which are
independent of the exploration path. It works independent of specific layout algorithms and thus
also works for highly dynamic force-directed layout algorithms. When the user explores large
graphs with dynamic views, new nodes are typically added in the proximity of existing, linked
nodes.

This approach is thus highly dependent on the exploration path – the layout can look very
different even for very similar explorations. Our method overcomes this limitation with techniques
from the computer vision domain where image stitching is used to merge multiple photographs
with overlapping areas into a larger image. In analogy to that, our method uses pre-computed
layout patches that are sewn together in deterministic order. Consequently, the resulting layout is
stable, independent of the user’s exploration path and will, thus, always look the same. In contrast
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to many other dynamic graph layout algorithms, a fair amount of computational effort can be
pre-computed which increases the interactivity and reduces the workload at runtime. Being able
to work with different layout algorithms for different patches makes it also very versatile.

Compared to conventional layout methods, the additional computational effort is also rather
small. The cost of layout computation is increased by the factor of nodes that exist in multiple
matches. Runtime costs are limited to the creation a 2×2 cost matrix and its decomposition which
has a constant running time [MHTG05].

The layout stitching method we presented sees the subgraph as a disconnected point cloud and
merges the patches without respect to the topological structure. Closely related to that, it also
ignores the points that are not in the intersection of the two nodes sets. As a result, two layouts
could be aligned so that the disjoint parts overlap as well which is undesired.

We assume that more sophisticated approaches for the computation of the patch overlaps could
mitigate this problem and improve the stitching quality. This includes the use of the graph topol-
ogy metrics such as connectivity to find and include the best-fitting nodes. An ideal strategy
would include nodes that emphasize certain visual features of the cluster layout to make the struc-
ture memorable.

3.8. Deterministic High-dimensional Layout Stitching

In contrast to the state-of-the-art approach that operates in the 2D screen space only (see Sec-
tion 3.7), we perform this process in high-dimensional space before projecting the results into
the 2D plane (Contribution C3). This gives additional degrees of freedom and consequently a
smoother transition process between two consecutive frames. It is rather difficult for the user to
decide whether an area in a conventional dynamic graph view has already been explored or not.
The visual shape of the topological structure is different even though the structure itself is the
same. This problem has been addressed already in Section 3.7, based on a divide-and-conquer
approach. However, one major shortcoming of this original approach is that the merging oper-
ation is not very stable. The positions of the nodes that are used for the merging operation in
one patch are often very different from those in the other subgraph. Due to the fact that only a
two-dimensional affine transformation is used to bring them together, large divergences remain.

The claim of this section is to improve the original work so that stable stitchings can be created
that were unstable before. It goes beyond the original work by solving the stitching problem in
high-dimensional space. The process involves the layout computation and the merging of two
layout patches in order to get the aforementioned additional degrees of freedom. This stabilizes
the stitching operation but also requires finding an appropriate measure to project the layout back
into the 2D plane. We interpolate the points of two consecutive frames linearly to create a smooth
transition between two exploration steps.

3.8.1. Concept

In this section we briefly outline the idea of 2D layout stitching and explain how we transfer this
idea into high-dimensional space and project it back into the 2D plane (see Figure 3.32).
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Figure 3.32: The original graph is first partitioned into clusters which are then used to create
overlapping patches. For each pair of overlapping patches a linear transformation is computed
that brings shared nodes together. They are then merged before they are projected into screen
space.

As already described in Section 3.7, we first cluster the graph data set into smaller, overlapping
patches. Adding directly connected nodes from the border of a patch creates overlaps that are re-
quired for the stitching process (see Figure 3.33). Two clusters are considered as being connected,
if and only if at least one edge exists between the two. Up to this point, we follow the original
version of the approach.

Figure 3.33: Nodes that are directly connected to nodes from other patches are used to create
overlapping patches.

In the next step, an individual layout is computed for every patch in d dimensions. We use a
straight-forward extension of the two-dimensional Fruchterman-Reingold algorithm to compute a
high-dimensional position vector for every node. However, other methods such as that of Gajer et
al. [GGK01] should work at least equally well. The algorithm runtime does not play a major role
here, as this can be precomputed.

3.8.1.1. Layout Stitching

Layout stitching defines the process of merging two overlapping layout sets. First, an optimal
linear transformation between the node positions of overlapping patches is computed. We prefer
linear over affine transformation as it preserves the shape better. We denote d as the number
of dimensions that is used for the graph layout. To define a linear transformation between two
patches in d dimensions, at least d + 1 nodes which are shared among the patches are required.
In that case, we consider these patches as overlapping. For two dimensions, three points are
sufficient to derive a unique linear transformation. It brings the nodes that exist in both layout
but with different position coordinates as close together as possible. If the patches share more
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than d+1 nodes, we calculate the linear transformation which is optimal with respect to the given
constraints.

This transformation is computed as follows: based on a least-square fitting method we define
a target function that we want to minimize. This function measures the distances between the
two corresponding positions of a node. We normalize both data sets by first moving the centroids
of the two patches to the origin. As a side product, this already gives the translation vector of
the transformation matrix. Then, a d × d cost matrix is created based on pair-wise distances.
Variable pi and p′i denote the positions of node i, cp and cp′ represent the center of gravity of their
respective patches.

H =
n

∑
i
(pi− cp)(p′i− cp′)T (3.18)

This matrix is then factorized by Singular Value Decomposition (SVD) so that the rotation
component can be extracted. Applying the SVD splits the matrix into two rotation matrices U
and V and a diagonal matrix. The rotation part R of the transformation is defined as VUT . The
original work of Steiger et al. contains a more detailed explanation of this computation.

As soon as the transformation matrix has been computed, two overlapping patches are stitched
together by merging these duplicates into single positions. This is required, because nodes that
exist in both layouts have a position in each of them and the linear transformation does not bring
them to the exact same spot in general. We therefore use a linear interpolation of their weighted
influence on the current view to derive a smooth transition between old and new node position.

3.8.1.2. Projection

In contrast to the original work, the node positions are still in high-dimensional space. Therefore,
the dimensionality of the stitched point cloud must be reduced to the two most-relevant dimen-
sions before it can be displayed on the screen.

We use non-linear multidimensional scaling (MDS) to achieve an optimal projection while
preserving distances [Tor52]. It uses a normalized stress function to define the difference in
distance between the original and the projected space. This function is then minimized using
optimization algorithms. From our practical experiments, the stress-based MDS (also referred to
as SMACOF) achieves high-quality results. However, depending on the data set, other projection
algorithms may perform better. A comparative overview of different dimensionality reduction
methods can be found in the work of Joia et al [JPC∗11]. Since this step of our approach is
transparent, it does not depend on any particular projection algorithm.

This projection is defined only up to rotation and scale, so additional constraints need to be
added to keep these two constant across multiple operations. These free variables can be fixated
by using the screen’s display area. Based on the 2D screen coordinates, a principal component
analysis (PCA) gives the two axes with the largest variances. Using rotation and scaling, they are
aligned so that the larger goes from left to right, the smaller from bottom to top. This order is
chosen to benefit from the fact that typical screen displays’ width is larger than their height.
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Nonetheless, the computed projection matrices for the old and new point cloud can be quite
different. This causes strong sudden changes in the picture which makes it difficult to follow the
transition process. We therefore interpolate the points of two consecutive frames linearly.

In this section, we outlined how we perform layout stitching based on only two overlapping
patches. Creating a combined layout consisting of more than just two patches is not as straight-
forward as it may appear, but we follow precisely the strategy of [SLTM∗13] here.

3.8.2. Proof of Concept

We conducted some tests to demonstrate the validity of our approach. For the purpose of the
illustration, the individual layouts were projected into 2D. In the actual implementation, only
the final, merged layout is projected. We performed the projection using classical MDS and a
stress-based majorization algorithm. Projecting the points using stress majorization (SMACOF)
methods is computationally more expensive, but yields a better spread between the nodes and thus
a cleaner picture. This is why only the results of this approach are discussed. The first experiment
was performed using an artificial graph (see Figure 3.34).

Figure 3.34: The subgraph on the left side contains six unique nodes, the subgraph in the center
contains a five-clique. Six nodes (in cyan) are in both layouts. The merged and projected results
are depicted on the right side.

The other tests were performed based on the Diseasome2 network data set. The second test
was based on two patches with significant overlap. Most nodes were part of both layouts, which
lead to highly similar shapes. As can be seen in Figure 3.35, the projection of the merged layout
preserved the similarity in the new, integrated layout.

The third test graph comprises two patches with 152 and 104 nodes, respectively. The patches
have only nine nodes in common. Two independent layouts were computed in 5D layout space,
then stitched together at the shared nodes and projected. The result can be seen in Figure 3.36. A
large part of both patches remain clearly separable, while the overlapping areas appear cluttered
in the 2D view. However, the visual representation is deterministic, because the layouts of the
individual patches are fixed at runtime. Also, the problem that the transformation flips one patch
which occurs frequently in the 2D version does not appear here due to the larger number of degrees
of freedom.

2http://diseasome.eu/
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Figure 3.35: Two subsets of the Diseasome network which share more than 90% of the nodes.
The merged layout on the right integrates the purple nodes (center image) into the existing layout,
preserving the general shape of the existing layout (depicted on the left).

3.8.3. Discussion

In this section we introduced an extension of the 2D layout stitching approach that works in
high-dimensional space. This brings additional freedom for the matching of precomputed layout
patches. We compute the stitching and the merge of duplicate position vectors in high-dimensional
space before we project the resulting point vectors back into screen space. Using linear interpo-
lation ensures a smooth transition between node positions before and after the stitching process.
This enables the user to trace the changes in the layout as in the 2D approach, but the algorithm
in the background is more stable.

3.9. Summary

In this chapter we discussed Local Graph Views, a group of techniques for visual graph analysis
that is based on the idea that local features are most relevant for the data scientist.

One of the major drivers is the massive increase of data volumes, but also increasing data inter-
connectivity makes analysis more complex than ever. Keeping an overview, extracting the most
relevant aspects and gaining insight are prominent requirements that today’s decision-support
tools must fulfill. These high-level expressions are split into a discrete set of explicit requirements
in Section 3.2. Of course, these problems and requirements have existed for a while and have
been tackled previously. In Section 3.3, previous approaches are discussed, grouped by category.
Most of them use node-link diagrams to depict network data and provide interaction support to
manipulate data or representation. An overarching goal is to gain insight in large data sets based
on intuitive, graphical displays.

Based on the corpora of scientific contributions, several gaps have been identified. In Sec-
tion 3.4 basic definitions of graphs are given and some mathematical background is laid out to
define a common baseline for the chapters that follow. Sections 3.5 – 3.8 specifically deal with
these shortcomings and provide approaches to fill these gaps. In each of the sections, a detailed
explanation of the contribution, followed by a discussion is given. We will now review this chapter
with an analysis of whether the the requirements that were defined in Section 3.2 are fulfilled.
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Figure 3.36: Two overlapping patches, stitched in 5D space and projected with MDS. While the
structures are still separable, some visual clutters appear in the area of the intersection. Using
a smaller number of points for the stitching process and adding an offset to one of the patches
mitigate the problem.

• Requirement 1 (Complexity Reduction): This requirement has be fulfilled by using local
views of a graph rather than showing the entire graph in one picture. This forms the basis
for all approaches that were presented in this chapter.

• Requirement 2 (Orientation): We support the user’s orientation with signposts glyphs that
indicate directions in which relevant or interesting parts of the graph lie with respect to the
current layout algorithm. Details can be found in Section 3.5.

• Requirement 3 (Navigation): The user can navigate through the node-link diagram and
explore other regions of the graph with the help of the signposts (Section 3.5)

• Requirement 4 (Smooth Transitions): Using a fore-sighted layout with ghost nodes, spring
forces are minimized in the layout. See Section 3.6.

• Requirement 5 (Determinism / Familiarity): The signposts approach is complemented by a
second approach that reconstructs previously explored parts of the graph by stitching pre-
computed layout patches (see Sections 3.7 and 3.8).

We can therefore conclude that all requirements for the successful exploration of networks in
the most general sense have been fulfilled. With these contributions as a basis, we can turn towards
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a more complex, but highly relevant structure for many practical applications: sensor networks.
In contrast to general networks, each node is attributed with a time series element. The electric
grid is an example of such a network, as it inherently exhibits network structure, but also provides
temporal information at each of the transformer stations. This information could be the current
load, voltage or the temperature of cables and transformers that changes over time. We will look
into this in detail in the following chapter of the thesis.
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In this chapter, the focus is narrowed from general networks down to Sensor Networks and we
will investigate different approaches for the visual analysis of these structures. Sensor networks
are a subtype of graphs that contain – aside from the edge structure – temporal data for each of
the nodes.

In the frame of the following sections, a visualization environment is constructed that aims
to support the analyst of such data to gain insight in the observed data sets. Following the idea
of Visual Analytics, which was presented in Chapter 2 and the concepts for graph analysis in
Chapter 3, a set of analysis tools will be presented in the following sections. This comprises
the integration of automated systems, but also the human user to benefit from the advantages of
both worlds. The analyst is enabled to track the machine-based analysis process, identify trends
and patterns in the time series domain, find correlations in the network structure and simulate the
effect of modifications in the network.

The first section of this chapter motivates the work from a practical perspective and provides
some background information. In analogy to Chapter 3, a set of requirements is defined on that
basis. They are necessary for the analyst to successfully work with such an analysis environ-
ment, gain insight in the critical areas and find appropriate countermeasures. Following this,
related work is presented, split into different categories such as fully automated approaches ver-
sus visualization-based ones. A dedicated section discusses the importance of network layouts in
a mixed geographic and topological context. This is highly relevant for many applications, since
sensor networks are often laid out and displayed in a geographic context while trying to preserve
the inherent topology.

The following sections explicitly discusses a series of contributions to the scientific domain.
Starting with the initial setup of a visualization environment, the integration of an analysis pipeline
on the basis of an expert system is discussed. Several interaction metaphors such as brushing and
linking and drill-down concepts are combined to provide different perspectives on the data. It also
integrates a variety of external data sources to provide a quick overview for the network analyst.
In the next iteration, we encode the similarity of time series data in color so that the analyst can
identify trends and patterns in the data. A case study on a real-world data set based on load mea-
surements in an electric grid illustrates the usefulness of this analysis system. Two-dimensional
color maps play a key role as they map geometric distance to perceived color differences. Finding
the ideal color map for different tasks is vital for the success of the analysis of patterns. We there-
fore present the ColorMap-Explorer, a visual tool for the analysis and comparison of color maps.
During the course of the analysis, the domain expert might identify weaknesses in the network. In
order to identify the best reinforcement strategy, different alternatives in terms of structural modi-
fications must be evaluated. We present in the last contribution of this thesis a tool that enables the
analyst to compare such changes in a side-by-side view and on a per-node basis. This is illustrated
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along a use-case in a fresh-water supply network. Finally, and again in analogy to Chapter 3, we
reflect the requirements that have been defined in the context of the corresponding contributions.

Parts of this chapter have been published [SMDK13a,SMDK13b,SHS∗14,SBM∗14,SBMK14,
SBM∗15].

4.1. Background

The amount of sensor data has seen a rapid growth over the past years in many different applica-
tions and scenarios. In this thesis, we focus on univariate sensors that measure a single variable
over time. In many applications it can be safely assumed that the sensors measure variables that
are explicitly or implicitly linked. We motivate our approach with a practical example: the ex-
ploratory analysis of the power consumption in an electrical grid. This involves on the one hand
an in-depth analysis of the nature of a given network structure and on the other hand large amounts
of sensor data that is recorded at the nodes of the network.

Over the past years, the management of geo-based infrastructures such gas and water pipeline
networks gained traction in both research and application. Of particular interest are electric grids
which are currently converging into Smart Grids. Not only since some European countries de-
cided to enforce the use of renewable energy there has been a paradigm shift towards a bigger
amount of smaller plants distributed over large areas. A remarkable trend towards renewable en-
ergies drives the innovation in the electricity supply chain. This trend causes drastic changes in
the grid, leading to a rapid increase in the grids’ complexity.

Since its inception at the end of the nineteenth century, the electrical grid has continuously
grown in size and complexity. The basic idea behind its construction was, that electricity was
generated at a few central sites – typically large power plants – and then distributed across the
country to its consumers. High-throughput and high-voltage lines at the top carry the energy over
large distances to local hubs. From there, a series of medium- and low-voltage grids distribute
electricity to individual consumers. The resulting distribution infrastructure is clearly hierarchical.

Unfortunately, this hierarchy is becoming less and less suitable for today’s requirements. A
paradigm shift away from large, central power-plants in favor of many, small and highly het-
erogeneous energy producers is in progress. The factors climate change and security are major
drivers for the demand for local, renewable energies in Europe, the US and other parts of the
world. In strong contrast to conventional electricity generation, the renewable energy providers
can only supply small amounts of electricity. The dependence on environmental factors such as
solar radiation or wind leads to strong fluctuations over time as well. Naturally, these factors were
not taken into account when the electric grid was constructed [IL08].

Also, deregulation caused a continuous growth in the diversification of stakeholders which sig-
nificantly increases the complexity of grid management as more and more partners are involved.
In order to be able to deal with these challenges, novel solutions need to be developed in the
engineering domain, but also in grid management and monitoring systems to keep this sensitive
system within permissible limits. The German ministry for trade and economics states2 that Eu-
rope’s electric grid infrastructure currently faces three major challenges:

2http://www.bmwi.de/DE/Themen/Energie/Stromnetze/stromnetze-der-zukunft
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• The generation of electricity is becoming more and more erratic which is noticeable for
wind energy plants in particular. This can lead to deterioration in the stability of the grid in
both transmission and distribution.

• The direction of flow is no longer necessarily from the plants through the transmission and
distribution grids to the consumer. With increasing decentralized generation, the grid has to
be able to deal with inverted flow directions.

• The cross-nation trade of electric energy will increase, which, in turn, will increase the
management effort, especially for transit countries such as Germany.

Typically, the operators in today’s control rooms use Supervisory Control And Data Acquisi-
tion (SCADA) systems to monitor and control the electric grid whereby a network of sensors
measures its status variables. These systems are event-based, involving messages that contain
sensor readings and other status update notifications.

At present, large numbers of sensors are installed in the transmission level of the grid hierar-
chy [CPF09]. An increase in decentralized generation will lead to an increased power input at the
medium and low voltage levels. This, in turn, necessitates the installation of sensors at these lev-
els in the hierarchy. The throughput in today’s SCADA systems is already high and will increase
dramatically as more and more sensors are installed at the lower levels of the grid [KSH07]. With
increasing net flows through the grid and limited financial options, it has also become necessary
to operate the grid closer and closer to its limits. This lead to an additional increase of the already
large number of alarms the operator has to deal with [HAB09]. The increase in information brings
great opportunities but requires dedicated analysis support.

Today, the majority of electricity is still produced at a few, large power plants. From there, the
energy is then transferred over large distances using high-voltage lines. Low voltage distribution
grids carry the electricity over the final mile to the customers. However, things are changing:
over the past years, a noticeable trend towards renewable energies has been registered in most
industrialized countries. These new source of electric energy comprise wind turbines, biomass
plant and solar plants. The majority of installed solar plants are rather small – consequently,
the number of stakeholders is rather large and the site locations are distributed across the entire
country. Taking into account that their input is directly dependent on the solar radiation and
therefore highly fluctuating, new challenges arise not only on the engineering side but also for its
management and monitoring.

4.2. Requirements

Network operators monitor the network, trying to prevent failures and detect events, before they
cause cascading effects. In case of failure, connections must be checked and alternative routes
must be identified. Clear and easy-to-understand maps play an essential role in doing so. Such
maps are still often crafted manually and whenever the grid topology changes, the corresponding
map must be updated. To date, these changes are often tracked manually. With increasing number
and requirements for shorter latency times, this becomes more and more expensive in terms of
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time and effort. Updating maps by hand is not only costly, but becomes also increasingly difficult
with the number of nodes. This makes response time a factor that is today much more important
than it was a few years ago.

In the case of geo-based networks, a natural layout already exists: the geographic coordinates
of the individual nodes and connecting lines in between. This is geographically correct, but simple
and intuitive understanding is often more important than exact geographic references, especially
in time-critical environments. Creating pleasing drawings of arbitrary networks is a well-known
research area in computer science with an entire community of its own [KW01]. While general
graph drawing algorithms work for any graph-based data set, they do not consider specific char-
acteristics of the data. In particular, most methods do not retain the initial positions of nodes or
directions of the edges.

Layouts for geo-referenced networks must respect both the geographic references but should
also be easy to read and understand. This is an important criterion for many sensor networks such
as the electric grid and other supply networks, because it enables the user to match the geographic
setting with the drawing on the screen. This is summarized in the following requirement:

Requirement 6 (Relative Directions) Preserve relative directions in node-link diagrams of geo-
referenced networks.

The main focus of the domain expert (e.g. a control room operator) of such maps obviously
is the sensor network itself. Other sources of information such as weather conditions could be
relevant and should be provided on demand. Clark et al. [CPF09] suggest the integration of data
sources such as gas and water, but also communication structures of electric grid displays. This is
required for the network analyst to assess external influence factors.

Requirement 7 (Data Sources) Integration of heterogeneous data sources to augment sensor
network data with complementary information.

The operators who manage such a complex network need to have a precise overview to be able
to act and react whenever necessary. With electrical grids growing in size and complexity, simple
visualizations such as the one-line diagram quickly reaches its limits. Complexity does not only
involve a large number of elements in the networks, but also different stakeholders, different data
sources, etc.

More generally speaking, the analyst needs to get an overview of a sensor network in order
to get an impression of the “big picture” and to identify potential problems. This requirement
comprises the two requirements 6 and 7.

Requirement 8 (Overview) Provide an overview of a sensor network in both space and time.

In many sensors networks, a large amount of connected sensors deliver measurement readings
for various kinds of data types in periodic time intervals. These events are then processed by
automated algorithms such as SCADA systems. The results are then presented to the user, often
in tabular lists.

Over the years, the complexity of many networks has increased tremendously. This results in
larger networks per se, but also in more (event) data recordings in each of the nodes. Hay et al.
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analyzed events in electric grids, concluding that only a very small subset of the data requires
the operator’s attention [HAB09]. However, identifying those few, but important events to get an
overview on the situation can be quite laborious and time-consuming. The analyst therefore needs
automated support in filtering large amounts of event data.

Requirement 9 (Automated/Manual Analysis) Monitoring and control support for operators
in order to be able to deal with large amounts of events.

Once an area has been identified as relevant for the analysis, the operator needs to get more
details to assess the situation. In particular, the spatial and temporal context must be preserved.
The operator might be interested if sensors at two stations that are connected measure similar
values or not. Depending on the task, the network analyst wants to know about daily, weekly and
seasonal patterns and trends. In how far do the consumption patterns change over the year? What
are the differences between workdays and weekends? What are the regional differences in the
grid? In summary, the comparison of different sensors at the same time but also the development
of a single sensor over time are both important analysis tasks.

Requirement 10 (Compare Sensors) Comparison of different nodes but also different time frames.

Many networks problems can be detected with automated rules such as threshold validation.
However, not all problems can be explicitly stated as rule of an expert system and automatically
identified. On the other hand, performing a manual analysis of all sensor readings is often hardly
feasible, because it is difficult to have an eye on all sensors at the same time. Also, it is quite
difficult to derive trends and frequently occurring patterns from simple line chart plots. Still, the
analyst needs to be able to recognize diverging states, anomalies and suspicious patterns as quickly
as possible. The similarity of individual patterns is often used as a basis to define “common” or
“abnormal” patterns and trends.

Requirement 11 (Identify Anomalies) Identify common and uncommon time series patterns in
the network.

In a final step of the workflow, the analyst must be enabled to prevent critical situations and
incidents in the future. A simulation of different configurations and scenarios plays a key role in
identifying the hot spots. This is required for the planning of network reinforcements.

Requirement 12 (Planning Support) Support planning and forecast of simulated networks.

In the following sections, we will discuss these requirements in details and provide individual
contributions for each one of them. While we aim for a generic application, we will motivate
the definition of tasks and goals by transfer from the specific scenario of electric grids. However,
we note that these characteristics also apply to many other application scenarios such as traffic
analysis, water-level-predictions on rivers or logistics.
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4.3. Sensor Network Analysis

Sensor Networks form a special type of data, combining graphs and time series data. As stated in
the introduction, we focus on univariate sensors that measure a single variable over time. How-
ever, we discuss possible extensions to multi-variate analysis in the conclusions chapter and refer
to related work (see Section 4.6.6). We present related techniques for time series preprocessing
and for visual-interactive time series analysis, which both depend on underlying data. For a dis-
cussion on graph data and visual graph analysis, we refer to the first part of this dissertation, in
particular to Section 3.4.

Time series preprocessing is of great concern for the quality of almost any time series analysis
application. Thus, the data mining community has spent great effort in the development of time
series preprocessing techniques [DTS∗08, Fu11]. Usually, pipelines are applied that may exe-
cute several cleaning, reduction, normalization, segmentation, or feature extraction steps on the
underlying time series data. Recently, visual-interactive applications to support time series pre-
processing and model creation have been presented [BRG∗12, BAF∗13]. Relevant overviews of
time series visualization [AMST11] and the visual analysis of time and geo-spatial data [AAD∗10]
exist.

The analysis of sensor networks is often associated with a very specific application domain,
be it wireless networks, surveillance systems or electrical grids. The Supervisory Control and
Data Acquisition (SCADA) systems process a continuous stream from connected sensors. These
sensors typically collect low-level measurement data of all kind as well as notifications and alarms
across the wire to the central node. On a higher level, also intelligent electronic devices (IEDs)
are connected to this network. These elements have the ability issue control commands and thus
actively interact with the network.

4.3.1. Automated Event Analysis

As the network sizes continuously increases in size and complexity, the number of events has
significantly increased as well [HABM08]. This lead to a number of filtering and prioritization
algorithms. For example, Kyriakides et al. present a processing pipeline that also includes the
generation of diagnoses and recommendation messages [KSH07]. In general, expert systems are
an often-used approach to automatically process the events based on a set of pre-defined rules.
These rules are usually put up by domain experts and converted into software by knowledge
engineers. Using this approach consequently also permits to identify root causes of a larger set of
error messages. A short introduction to this field is given by Rooney and Heuvel [RH04], a more
in-depth analysis is given by Julisch [Jul03]. The complexity of this rule database can quickly
become rather extensive and thus cumbersome to maintain. Marques et al. therefore present a
knowledge-based system that work with simpler fuzzy logic rules [MTF05].

Inducing more domain knowledge into the system permits to perform monitoring and problem
analysis on a higher level. Using semantic reasoning, sensor data can be put into spatial and tem-
poral context allowing for complex queries [CHL∗09]. The world-wide-web consortium recently
published a formal ontology specification of sensor network data [CBB∗12]. Li et al. advocate

92



4.3. Sensor Network Analysis

intelligent alarm management based on expert systems to be able to cope with the ever increasing
amount of alarms [LQS∗10].

Basically, an expert system contains a set of domain-specific facts, rules and an inference engine
that derives new information from this knowledge base. The setup process that transforms the
knowledge of domain experts into its adequate machine-readable representation is a complex
and time-consuming task known as knowledge engineering. Software engineers can perform this
operation either manually or with the help of domain-specific languages (DSLs) which are still
machine languages, but closer to natural language and the user’s domain.

In addition to the rule definition, the inference process must be specified. In its standard form,
it comprises one or more premises – the condition – with a conclusion that is evaluated if all
premises hold. These conclusions can insert, update or retract facts from the knowledge base. This
modification leads to another evaluation of the rules’ conditions and fires them where necessary.
Inference engines commonly have two modes of operation:

• Forward chaining: Iterating over every rule, the engine tests the conditions with all known
facts. When all conditions are fulfilled, the rule fires and the conclusion is drawn.

• Backward chaining: Starting from the opposite side with a set of hypotheses the engine
tries to find facts that support these assumptions.

Some systems also support “mixed chaining”, a combination of both approaches while others are
able to involve external information sources to query for additional knowledge.

From the monitoring and management perspective, we split existing approaches for the analysis
of event data with respect to the time frame that is used. Typical analytical approaches focus on
rather long-term knowledge building, while monitoring approaches often aim to support short-
term situational awareness. A monitoring and diagnosis system for time-series data has been
presented by McLachlan et al. [MMKN08]. We adopt their drill-down approach to diagnose the
current state of nodes in a network. For clinical data, Shahar et al. propose an exploration system
that features a knowledge base to derive a patient’s status from status measurements [SGBBT06].
Similarly, Torralba-Rodriguez et al. [TRFBMBM10] work with a knowledge base of medical
data and a custom-tailored evaluation language. Their rule-based system creates diagnoses for a
patient’s symptoms, but is also able to explain why a certain diagnosis has been put up.

All of the presented approaches focus on early detection of received event data. This might be
already too late as initiating countermeasures also takes some time. In particular when cascading
effects could occur, early detection combined with fast response times are key. Simulating the
development of measurement readings can help estimating the system state in the near future
to buy additional response time. Surprisingly, there is not too much literature available on that
topic [OMWC05]. One noteworthy exception is the work of Li and Tate who simulate forecast
errors for wind turbine power generation [LT11]. The authors show their results in a line chart
that is enriched with uncertainty information.
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4.3.2. Visualization Systems

One shortcoming of automated approaches is that the user has to rely on its functionality without
the ability to visually verify the results. As discussed in Section 2.6, integrating the user in one or
more steps of the analysis pipeline can increase the overall quality of the process. Visualization
is an important measure to convey information to the user. Using interactive tools, the user is
enabled to interfere and tweak the automated algorithms. Combining the strengths of machine-
based computation and human understanding promises to lead to improved analysis process, in
particular for explorative tasks.

We locate our contribution between knowledge-assisted visualization following the definition
by Chen et al. [CEH∗09] and, more related to the application domain, the monitoring and man-
agement of complex systems. In knowledge-assisted visualization, a knowledge base is added
to Card’s well-known visualization pipeline [CMS99a] to control the visualization. Using this
knowledge representation, [MHS07] et al. and Gilson et al. [GSGC08] select suitable mappings
from the data and its schemata. Kohlhammer used knowledge representation for decision-centered
visualization [KE05], focusing on situation awareness in emergency management. Going deeper
into the internals of the reasoning process, Shi et al. [SQW11] display the internal reasoning
network of a Rete-based expert system with an interactive animation. Possibly most related to
our work, Garg et al. [GNRM08] and Xiao et al. [XGH06] combine data visualization with an
interactive construction of its underlying models.

The display of situational context has been investigated by Laufenberg [Lau05]. A web-based
monitoring tool has been presented by Clark et al. [CPF09] that aims to integrate additional data
sources that is designed for suppliers, but also for customers. With a focus on the flow and trans-
fer capability of power lines in large-scale systems, the work of Overbye et al. [OMWC05] sheds
light on different visualization techniques. In collaboration with Overbye, Klump et al. present
a visualization system that is specifically tailored to industry-demands [KSO02] and reports on
practical experiences in the domain. To the best of our knowledge, knowledge assisted visualiza-
tion has not been applied to the smart grid monitoring domain in the approaches we discussed.
Li et al. [LQS∗10] state that the major task of visualization is to provide situational awareness
through integration and appropriate display real-time state variables. Some of their goals have
already been realized in our system. From an engineering perspective, the control room visu-
alization tools are at the end of an event processing pipeline. When it comes to management,
typical systems display event data in tabular form. The operators that monitor the system need to
manually acknowledge these messages.

Some visualization systems deal with the analysis of time-series data more explicitly. Stoffel
et al. present a client-server visual analytics systems for anomaly detection in computer net-
works [SFK13]. Its main views show a collection of vertically oriented line charts that are com-
pared with a reference model of the data. An inspiring technique is the calendar view [VWVS99]
by van Wijk et al. Similar to our approach clustering of daily patterns is applied to visually en-
code a calendar visualization. However, the original calendar view differs from ours in the chosen
clustering technique and the color coding (which is not similarity-preserving).A technique that
combines the comparison of daily temperature patterns and geo-spatial meta data information was
presented in the digital library context [BRS∗12a]. However, a chronological representation of the
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daily patterns is not provided. Techniques that focus on the visualization of periodic time series
data may rely on radial [ZFH08], cyclic [TS08], or on projection-based layouts [BWS∗12,WG11].

Other visualization systems focus more on the network part or the spatial environment in gen-
eral. The GreenGrid visualization system of Wong et al. focuses on the analysis of very large
electrical grids [WSM∗09]. It uses geographic node references to provide a ground truth coor-
dinate system, but displays the same grid in a distorted view to make better use of the available
screen space. Similar to our approach, it illustrates the potential advantages of force-directed
layouts based on physical properties over geographic coordinates. The visualization system of
Hadlak et al. analyzes the temporally changing link quality of a wireless network [HSCW13].
The authors cluster time-series data and display the data in a node-link diagram, but we take this
one step further and enable the analysis of repeating patterns which was not part of their work. It
also allows for interactively comparing different clustering settings, together with a tree view of
the time series data. Saraiya et al. conduct a user study to evaluate different node glyphs for graphs
with multi-variate node attributes [SLN05], which we use as a guideline for our glyph design. Us-
ing a combination of spiral visualizations and treemaps, Janetzko et al. detect anomalies in power
consumption data of commercial buildings [JSMK14]. Shi et al. demonstrate anomaly detection
for multi-variate sensor data in hierarchical networks. In contrast to our work, the authors do not
focus on pattern analysis [SLH∗11].

The last group of related work are explicitly settled in the electric grid application domain. The
report of Overbye et al. [OW01] gives a broad overview over a range of visualization techniques
specifically for substations and the power flows in between. Overbye’s application domain is the
energy transmission in large-scale grids. Some of their concepts have been have been evaluated
through user studies [OWRS03] and transferred to practical applications in the industry by Klump
et al. [KSO02].

Most visualizations work with a static view of the grid that is annotated with status or flow
information data [OWL99]. Evaluation has shown that dynamic resizing and appropriate coloring
of visual elements in critical condition attract the user’s attention [OWRS03].

There are visualizations that deal with the sensor networks on the smallest scale possible –
the device level. For example, Meliopoulos et al. simulate and visualize electro-thermal model
visualization of generators & transformers to analyze the health status of devices in the electric
grid [MCO04]. Going one step further, 3D visualizations have also attracted researchers interest.
Above all, one additional degree of freedom is available for visualization. This axis can be used,
for example, to augment plain 2D visualization with additional information [SO04]. Typical
elements are stacked cylinders that represent some data quantities; more complex glyphs can
provide even more information. According to Overbye et al. [OMWC05] this leads to a faster
detection of violations. On the downside, these visualization tend to be less intuitive and occlusion
of important elements can occur. Also, perceptual disambiguities of size with respect to the
viewing distance is a problem.

The monitoring of power systems is related to visualization concepts, but somewhat different
in certain aspects. Clark et al. present a map-based web tool for operators but also for end-
users for consumption analysis [CPF09]. We picked up on their idea of integrating tangential
infrastructures other resources to achieve synergy effects.
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4.4. Network Layout Strategies

Visual representations of network structures have been studied extensively, with various special-
izations for different use-cases. Our focus is on supply networks with nodes that correspond to
physical entities, and their properties that change over time. Similar to our network visualiza-
tion, Hadlak et al. use embedded line charts to link time series data to graph nodes [HSCW13].
An overview of the design space for temporal graph visualizations can be found in the work by
Kerracher et al. [KKC14].

The survey of Cockburn [CKB08] discusses several aspects of the user’s focus in graphical
interfaces. It also discusses semantic zooming, a technique where the level of detail of the visu-
alized entities corresponds to the zooming level. Applied to map navigation tasks, it reduces the
task completion time and we therefore employ it in our visualization system.

In this section we analyze different layout algorithms that preserve relative directions in geo-
referenced networks. Even today, the layouts of these networks are often created manually. This
is due to the requirement that these layouts must respect geographic references but should still
be easy to read and understand. The range of available automatic algorithms spans from general
graph layouts over schematic maps to semi-realistic drawings. At first sight, schematics seem to
be a promising compromise between geographic correctness and readability. The former property
exploits the mental map of the user while the latter makes it easier for the user to learn about
the network structure. We investigate different algorithms for such maps together with different
visualization techniques.

In particular, the group of octi-linear layouts is prominent in hand-crafted subway maps. These
algorithms have been used extensively to generate drawings for subway maps. Also known as
Metro Map layouts, only horizontal, vertical and diagonal directions are allowed. This increases
flexibility and makes the resulting layout look similar to the well-known subway maps of large
cities. The key difference to general graph layout algorithms is that geographic relations are
respected in terms of relative directions. However, it is not clear, whether this metaphor can
be transferred from metro maps to other domains. We discuss applicability of these different
approaches for geo-based networks in general with the electric grid as a use-case scenario.

4.4.1. Types of Network Representation

We group layout strategies into three different categories based on node position constraints: Gen-
eral Graph Layouts with no restrictions on node positions, Schematics which assume some degree
of correlation and Topographic Maps which stick to geographic locations rather strictly (see Fig-
ure 4.1).

Force- and energy-based layout algorithms interpret the graph data as a set of nodes that is
connected by virtual springs. Based on different energy constraints, these springs and other actors
move the nodes into a state of minimal energy. While this is a natural way of implementation,
the drawing quickly becomes tangled up if the number of nodes becomes too large. Topographic
maps, on the other hand, aim to create a picture based on a set of reference positions (see sub-
section 4.4.4.5). Such displays aim to exploit the user’s mental map of the environment and are
therefore often used for navigation (e.g. road maps).
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Layout algorithms

SchematicsGeneral Graph 
Layout Topographic Maps

Realistic Representation

Figure 4.1: Three representation categories with increasing degree of realism from left to right.

Projection-based methods on the other hand, first create a layout in a high-dimensional space
and project it according to different quality metric into 2D space. They try to find a globally
optimal solution and do not suffer from scaling issues, but the results are often not very intuitive.
The position of individual nodes is meaningless, because it is derived only based on a defined
node distance metric.

The rationale behind schematic maps is to remove information from topographic maps that is
irrelevant for the task the user is trying to solve. Using simplification algorithms, unnecessary
details are removed, leading to a clearer, abstract picture. Such information is, for example, the
geographically correct position of line segments. Schematics are an (topologically equivalent)
abstraction located between topographic maps which use with fixed node positions and traditional
graph drawing that do not pose any constraints on vertex positions [CdBvK05]. Figure 4.2 gives
an overview on different abstraction levels for geo-based networks.

One of the first attempts to create such a schematic map was a drawing of the Metropolitan
Railway London from 1896 which used distortion to better exploit the available drawing space.
Among the most popular schematic maps is one created by the British engineer Harry Beck, who
designed a layout of the London Underground in 1933. This map is based on stratified edges so
that they are easier to follow and restricted angles to multiples of 45 degrees. Consequently, only
eight directions are available for layout and these maps are today known as octi-linear layouts.
The book of Garland contains not only an introduction into the topic, but also aesthetic criteria and
rules for the manual creation of these maps [GB94]. Examples for manually drawn contemporary
designs can be found, for example, in the work of Morrison or Ovenden’s book [Mor96, Ove05].

“If you’re going underground, why bother about geography? It’s not so important.
Connections are the thing.” [Harry Beck]

In course of the study performed by Dwyer et al. on graph layouts, many participants preferred
generated layouts over hand-drawn ones. They chose layouts “based on general aesthetics, most
commonly a symmetric, ordered, or clean look” [DMW09]. Nonetheless, creating such layouts in
an automatic, computerized fashion is a challenging problem [Tuf97]. Nöllenburg was even able
to prove that the decision whether a given graph can be drawn using an octi-linear layout or not is
a NP-hard problem [Nöl05].
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Degree of Freedom

  Metro Maps   Curve Simplification  Orthogonal Layouts   Hexalinear Layouts   Curvilinear

Schematics

Figure 4.2: Different groups layout algorithms, organized by the freedom of vertex positions.

4.4.2. Design Space Criteria

The number of approaches that create schematic drawings in one way or another is large. We
therefore define a collection of general constraints that can be used to evaluate the drawing qual-
ity of the different approaches. For a list of layout criteria of general node-link diagrams of
networks, we refer to the work of Tollis et al. [TBET98]. Searching for a more precise definition
of quality in the context of octi-linear layouts, Hong et al. studied different manually created
diagrams [HMN05]. The authors do not focus on geographic or topological correctness, though.
Other rule sets can be found in later publications [HMdN06, SR05], the most comprehensive one
in the survey of Wolf [Wol07]. This set of design criteria has been put up for the design of subway
maps, which we adapted for schematic drawings in general. We therefore abstract the rules and
summarize them as follows:

• Preserve the topology of the network

• Restrict the number of allowed directions

• Ensure a minimum distance between nodes

• Minimize the total number of kinks in edges

• Preserve directions (relative positions) of nodes

• Minimize the total edge length to compactify the drawing

•
(
Display individual lines as such

)
•
(
Align text labels so they don’t overlap

)
We put the last two rules in brackets, indicating that this rules are not relevant for all network

types. Labels are important for orientation purposes, but requirements for placing, etc. can be
very different from those for metro maps. This topic is further discussed in subsection 4.4.4.1.

These six defined criteria are of rather aesthetic nature, not a set of fixed mathematical con-
straints. Running an optimization against one of the variables might lead to a decrease in quality
for another. The problem is a multi-objective problem that has a potentially large number of
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Pareto-optimal solutions. Which one “looks best” is thus up to the user. To give an example, Nöl-
lenburg and Wolff separate rules into hard and soft constraints. Hard constraints must be fulfilled
at all costs, while soft constraint are desired, but are not critical [NW11].

To evaluate the usability of a certain algorithm with respect to a given scenario, differences
between the application domains must be identified. For example, metro stations generally have
a similar purpose. In other networks, however, different roles may need to be represented by the
nodes of the network.

One of the most important properties is the size of the network. Metro maps are rather small,
compared to many geo-based networks which can have thousands of nodes and edges. For exam-
ple, with roughly 300 stations connected by roundabout 400 line segments, London has one of the
largest subway networks in the world.

Another aspect is the structure of the network. In many hand-drafted metro map drawings, the
distances are distorted to achieve a more compact drawing. Down-town stations often get more
space to avoid overlaps while suburban areas are shifted towards the city to reduce the overall size.
This is also useful for the layout of other networks, in particular large ones with heterogeneous
areas. Densely populated areas typically contain more lines than area with lower population
density. Metro networks often have a single, densely packed center area surrounded by suburbia
in a circular manner. In general, no a-priori knowledge on the network density is available.

Also, metro lines do not have an inherent hierarchy that could be exploited for aggregation. In
contrast to that, many man-made infrastructures are often designed in a tree-based fashion. For
example, the street networks in urban areas contain different types of streets that are often orga-
nized hierarchically. Similarly, supply networks such as the electric grid exhibit such a structure.
Technically speaking, the grid contains lines that operate at different voltage levels. The high-
level transmission grid moves the produced energy in overhead power lines over large distances
across the country. One level lower, the so-called sub-transmission connects the transmission and
the distribution grid, which operates at the lowest level. The voltage is gradually stepped down
on each level until the electricity reaches individual commercial and residential consumers. In
contrast to that, metro maps are typically based on a set of individual lines that reach from one
endpoint to the other, often across the entire city. This also implies that multiple lines run in par-
allel, in particular at the center of the map. It is important that passengers can easily differentiate
between those individual lines. Connections in the supply networks on the other hand are typi-
cally limited to consecutive stations. This makes it easier to find connections, because the idea of
“changing trains” is not relevant here.

4.4.3. Layout Algorithms

In this subsection we present an overview on different layout algorithms. We distinguish tech-
niques by their degree of freedom with respect to node positions. Starting from the the group with
the highest degree of freedom, we will iterate until we reach layouts with fixed vertex positions.
See Figure 4.2 for an overview.
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4.4.3.1. Orthogonal Layouts

We start with orthogonal layouts, an approach that originates from chip design. These chip designs
are typically very large necessitating fast layout computation times. Another constraint from
that domain is to avoid edge (i.e. wire) crossings at all costs. Nodes are restricted to only four
orthogonal directions, resulting in an embedding of a 4-planar graph. One advantage of orthogonal
layout is their symmetry which motivates the usage of such diagrams also for organizational and
flow charts. Also, parallel lines can be identified as such and adjacent edges can be distinguished
easily. Often, node coordinates are also restricted to integer grids, which further reduces the
degree of freedom. Consequently, many edge kinks are required to satisfy these constraints. This
makes it harder to follow edges and increases the total edge length [EFK01].

The drawing of orthogonal layouts can be efficiently solved using the topology-shape-metrics
algorithm [Tam87]. The graph is converted into a directed, acyclic graph (DAG) with one source
and one sink. Computing the Minimum-Cost-Flow problem finds the path with the lowest cost of
the flow between two nodes. Here, cost refers to the number of bends. While this methods also
works for hexa-linear layouts (with 60° angles), it fails for smaller angles.

Also coming from background in electronics, so-called one-line diagrams are often used for
the analysis of power flows. Similar to orthogonal layout, directions are often limited restricted
to four, but sometimes up to eight different directions. Nodes are displayed used standardized,
domain-dependent symbols representing electronic devices. Klump et al. present a visualization
tool with a focus on one-line diagrams [KSO02]. See subsection 4.4.4 for different visualizations
based on one-line diagrams.

4.4.3.2. Hexa-linear Diagrams

Using 60° angles between directions increasing the degree of freedom from four to six. The
rather strict limitations of orthogonal layouts are relaxed. In these hexa-linear drawings, however,
no right angles are allowed. This can have a negative impact on the symmetry of the draw-
ing [Rob12]. Using twelve instead of six directions (at 30° angles) overcomes this problem, but
makes the drawing increasingly complex.

The approach of Merrick and Gudmundsson is able to restrict the number of allowed directions
to six, but does not ensure the preservation of relative directions [MG07]. To the best of our
knowledge no automatic generation algorithm for the creation of direction-preserving drawings
exists to date.

4.4.3.3. Metro Maps

Going one step further, octi-linear layouts allow for eight different directions. The following three
algorithms that we briefly outline have already undergone an extensive analysis in the past. For
more details, the interested reader is referred to the article by Wolff [Wol07].

In the work of Hong et al., a force-directed layout is used that is similar to those for general
graph layout [HMN05, HMdN06]. The initially geographical map is converted into a set of re-
pelling nodes. Virtual springs are inserted for each pair of connected node, which attracts the
two linked nodes. Additionally, imaginary forces (the authors call them “magnetic” forces) rotate
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edges so that they align with one of the eight allowed directions. This is a local optimizing ap-
proach that looks at one node at a time. Based on geographic layout, Wong et al. apply a modified
version of their general-purpose force-directed multilevel layout algorithm [WSM∗09]. Different
attributes are mapped to node repulsion forces and edge lengths to highlight specific properties of
the grid. Due to its multi-grid architecture, this approach is one of the fastest.

Stott and Rodgers propose a method that uses Hill Climbing to solve a defined multi-criteria
problem [SR05, SRMOW11]. The algorithm first maps all nodes positions to a fixed grid. An
objective function based on a set of aesthetic rules defines the quality of the drawing. The hill
climbing algorithm then iteratively applies random changes on one node position at a time and
re-evaluates the objective function. If the value is higher than before, the new position is accepted.
The cycle is repeated until no further improvement can be made. This is a rather simplistic ap-
proach that gets stuck easily in local minimum, failing to find the best global solution. The authors
propose a fix to mitigate this shortcoming, but the basic problems remains.

A different approach has been proposed by Nöllenburg and Wolff who use linear programming
to find a globally optimal solution [NW06, NW11]. Trying to find a solution for all nodes at
the same time is in strong contrast to the force-based approaches. It is also quite different from
typical linear programming methods. The key difference is that it uses both real-valued and integer
variables, resulting in mixed-integer programs (MIP) which require dedicated solvers. The authors
justify the use of such heavy-weight solvers with the complexity of the problem. The use of
integer variables and constraints renders the solution space finite, but finding a solution becomes
more difficult. This might be counter-intuitive at first sight, but can be explained by the fact that
geometric properties of real-valued optimization strategies cannot be transferred intro integral
space. Often, not all requirements can be satisfied. While the general idea of the approach is in
some aspects similar to that of Stott, the complexity of the rule base and the solver are significantly
higher. This fact is also reflected in the computation times.

4.4.3.4. Curvilinear Layouts

Fink and the authors of the MIP approach present an extension of octi-linear layouts, namely
curvi-linear layouts [FHN∗13]. The authors use Bézier splines instead of straight line segments
to represent connected nodes. A striking advantage of that approach is that no kinks are needed to
change directions which makes it easier to follow lines. Fink even advocates avoiding edge kinks
at nodes.

This approach is motivated by a study of the Paris metro plan by Roberts et al. [RNL∗13].
Compared to conventional metro maps, users were able to plan their journey significantly faster
using a hand-drawn curvilinear map. Roberts argues that the octi-linear layouts were not neces-
sarily ideal for route planning tasks. The kinks that are created by forcing the layout to become
octi-linear also introduces cognitive load on the user.

According to Fink, curvilinear layouts are particularly useful in scenarios where networks are
very dense or the trajectories of individual transportation lines are very complex. The authors
also present a promising approach that allows for automatic generation of such maps. In their
approach every segment is a spline which leads to potentially many S-shaped elements which are
difficult to follow. Also, the placement of labels was not yet realized.
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4.4.3.5. Curve Simplification

The Curve Simplification category gathers different approaches that are less strict in terms of
topology. Many of them aim to produce octi-linear layouts, though. Barkowsky et al. use a
curve simplification algorithm to reduce the complexity of a given geographic layout [BLR00].
The authors do not, however, constrain the line’s orientation or the distances between nodes.
Avelar et al. align edges of a given network in eight directions so that a set of aesthetic criteria
is fulfilled [AM00]. The algorithm computes node positions iteratively based on the position
of neighboring nodes. This ensures that the relative positions are retained, but it is not always
possible to create octi-linear edges for all nodes. The labeling of nodes is not considered, though.
This work has been enhanced by Ware et al. with a focus on mobile devices [WTAT06]. Similar
to Barkowsky et al, Merrick and Gudmundsson propose a path simplification algorithm [MG07],
dedicated for the automatic creation of metro map layouts. Since the algorithm processes paths
separately, the relative directions are not preserved in general.

Cabello et al. create a schematic map based on a given graph layout without adjusting the node
positions [CdBvD∗01]. Edges are simplified similar to the approach of Barkowsky et al. but also
constrained to certain fixed angles. This makes it one of the few strictly octi-linear methods. As
the nodes remain at their original position, the effect of the simplification is somewhat dimin-
ished, however. The authors demonstrate in a follow-up publication an approach that also allows
shifting of nodes so that they align on horizontal, vertical and diagonal axes [CK03]. This is done,
however, at the cost of relative directions.

4.4.3.6. Summary

Most publications contain one or more use cases and explicitly state computation times for data
sets. Many of them use actual metro map data for their setup, in particular the Sydney metro net-
work. In general, however, different data sets and different machines were used. Some approaches
also include the computation of labels in their algorithm. Consequently, the timings must not be
used for direct comparison. They indicate an order of magnitude, though, which allows the reader
to get a rough idea of the time complexity.

An effective measure to reduce computation times that is used by different authors is to tem-
porarily simplify the network. The complexity is reduced by removing nodes with only two
edges (i.e. those that lie on a single line). These nodes are re-inserted afterwards at estimated
positions along the line. This can speed up computation with only little loss of layout quality. The
spring embedder and the hill climbing algorithm tests were performed on such a reduced data set,
which contains only a fraction of the original data (less than 25%). Similarly, the authors of the
MIP approach also work with a simplified network, which is about 50% of the full graph data set.
As a rule of thumb, there is always a trade-off between quality and speed when it comes to select-
ing the right algorithm. Consequently, the choice depends on the task and the use case. Among
the fastest algorithms are force-direction approaches such as Hong’s spring embedder [HMdN06]
and the multi-level layout algorithm by Wong et al [WSM∗09]. These approaches are fast enough
for interactive or almost-interactive applications. They could also be used to create a preview that
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gives a first impression of a large network. If time is not a critical constraint, slower, MIP-based
solutions can be used to create high-quality results.

Some algorithms can return a valid solution at any time, i.e. before the simulation terminates
by itself (i.e. anytime algorithms). For example, Nöllenburg and Wolf report that their approach
yielded a solution that was fairly close to the final solution when only 10% of the time had been
elapsed. In sharp contrast to that, incorporating node labels (see subsection 4.4.4.1) increases the
running time of their computation from 30 minutes to almost five hours.

The number of allowed directions is crucial for the decision of the right algorithm. Merrick and
Gudmundsson [MG07] put layouts with 4,6, and 8 valid directions in juxtaposition. With increas-
ing number of allowed directions, the drawings resemble more and more the original data set.
We conclude that octi-linear layouts create simplified drawings while still preserving the original
structure of the data. From the set of discussed categories, we will therefore limit ourselves to
these layouts.

We also assume that the network topology does not change too often. In such cases, the layout
computation can be computed once and reused later on. This allows us to use high-quality layout
as a basis for visualization concepts. Most of the publications that focus on visual interaction
concepts use MIP-based layouts.

4.4.4. Visual Interaction Concepts

The visual design of nodes and edges is a part of the design space, which is – to a large degree
– independent of the placement of nodes and edges. The means of visualization is to convey the
information in the data to the perception of the user. The usability of a visualization technique
depends on the task the user wants to solve. For example, traditional metro maps are designed
to optimize route planning. However, due to the distortion of the map, it is hardly possible to
estimate distances and travel times. Details on the useability of metro maps can be found in the
work of Roberts [Rob12, RNL∗13].

4.4.4.1. Node Labeling

Using labels is probably the most prominent approach to support the user’s orientation in the
diagram. Imhof gives an overview on different criteria for node labels [Imh75].

We identified two ways to classify node labeling algorithms: One of them differentiates be-
tween those who take the node labels into account during the layout computations and those
who add them to an existing layout in a post-processing step. For example, Stott’s Hill climbing
and Nöllenburg’s MIP algorithms include the label placing in the layout algorithm while Hong’s
Spring Embedder places labels afterwards. When the label (i.e. text size) is used for the layout
computation, the text cannot be changed afterwards. This could be an issue if the label is supposed
to reflect live status information.

The other classification differentiates intrinsic and extrinsic labeling: Intrinsic labeling is about
placing the label sufficiently close to the point they refer to (this point is also called site). External
labeling places the label further way (where more space is available) and links the label to its site
with a (straight) line segment (the leader).
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Wu et al. demonstrate a sophisticated external labeling approach by reserving enough space
for small images of metro stations in the maps [WTH∗13]. Fekete and Plaisant demonstrate an
approach that displays labels in a cirular area around the cursor [FP99]. Labels are placed outside
this area and lines connect them to the point they refer to. Similarly, Bekos et al. also demonstrate
an approach for external labeling, but place all labels are the border of the drawing [BKSW07].
The LabelHints approach of do Nascimento et al. aims at finding the maximum independent set of
non-overlapping nodes [dNE08]. It is a map labeling system based on user interaction to prevent
overlaps between labels. Apart from the two labeling approaches, some authors place labels inside
the node glyph. Due to the different text lengths, some of the labels are truncated. See Figure 4.3
for an illustration.
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Figure 4.3: An octi-linear layout of a substation network. Labels are placed inside the nodes and
truncated where necessary.

4.4.4.2. Node and Edge Display

In conventional metro maps, node glyphs are classified into two groups. Stations with only two
directions are represented by a simple tick mark across all passing lines. Stations with more than
two are typically displayed as circles or polygons (see Figure 4.4). This is different from typical
graph drawings, because of the large number of nodes with degree two.

Figure 4.4: Minor stations are indicated by tick marks, larger ones by circles or polygons.
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The size of the elements can be used to intuitively represent general importance, centrality
and/or size. Overbye et al. discuss different visual representations to encode physical quantities in
the display [OWL99,SO04,OMWC05]. One of them is animated arrows along edges to illustrate
energy transfer. A user-study indicates that they support the user in determining power flow
patterns better than digital displays, but also increase visual complexity. In another illustration,
pie charts and gauges were used to indicate workloads. The authors also experiment with 3D
shapes such as cylinders and cones to convey additional information to the user.

4.4.4.3. Focus plus Context

In contrast to physical maps, computer visualizations can also incorporate interaction techniques
to adjust the display to the user’s needs. One of the main tasks of visualization is adaption to
networks that are larger than available screen area. One typical approach is to use panning and
zooming using a virtual camera. While this allows the user to navigate, only a small part of the
entire network is visible, which impairs the user’s orientation.

Different Focus plus Context techniques such as fish-eye views can be used to emphasize some
areas while preserving at least some information around it. Often used attribute modifications are
size, level of detail and color intensity. Different scaling techniques for graphs have been inves-
tigated by Carpendale et al. [CCF97]. Haunert and Sering analyzed different Focus & Context
methods with a focus on road networks [HS11]. A major problem in most networks is that edge
crossings can be introduced by non-linear scaling of features.

An alternative to separating the view into distinguishable focus and context areas is to create a
transformation between two views. Using time, Reilly and Inkpen present an approach for inter-
active warping between topographic and octi-linear map [RI04, RI07]. Böttger et al. demonstrate
a similar, automatic approach to distort a topographic map so that it fits into a metro map lay-
out [BBDZ08]. Using an interactive fish-eye effect, the map is distorted to suit both the metro
map and the geographic layout. This allows the user to get geographic information such as the
location of the airport. The amount of distortion can be adjusted from geo-graphic to octi-linear
layout. This allows the user to correlate metro stations with over ground environment. However,
due to the distortion, it becomes difficult to correctly estimate distances.

Traditionally, the task is route-planning for metro maps, but the analysis of connected paths
is equally interesting in other domains. The basic idea is to display a particular path in focus,
arranging the rest of the network around. This path in focus is displayed as straight as possible
to make it easier to follow. The rest of the network must be transformed accordingly. Wang and
Chi [WC11], present a fast, force-based algorithm with interactive response times to accomplish
that. In their approach, the path in focus is octi-linear while the context network is created by
curve simplification.

4.4.4.4. Spider Maps

One approach to preserve the context of a selected region is to use Spider Maps. They are a
non-interactive Focus plus Context-based visualization, with different layouts for the focus and
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the context area. These route maps have been specifically designed for bus traffic1. A Spider
Map combines geo-referenced topographic map of the focus, surrounded by a schematic map of
more distant destinations. One or several closely located bus stations are put into the center of
a conventional road map. The road map is annotated with street names, bus stops and important
buildings. This area is surrounded by a metro map layout of the wider area. The intention is
to make it easier for passengers to find the right bus stop. For longer distances, passengers are
interested in general directions, direction changes, etc. and not so much in geography. Landmarks
are added to both views as anchor points for orientation.

Spider maps are more difficult to realize than metro maps, because additional criteria have to
be fulfilled. The nodes in the metro map must be located so that they are not obscured by the road
map. Also, it must be ensured that roads crossing the border are continued smoothly. Typically,
spider maps do not display the entire network. They are rather focused on a single element and
its connections. Hadlak et al. present an interactive approach for integrating different network
visualizations into a geographic map, but does not include schematics [HSS11].

4.4.4.5. Other Displays

Pure topographic maps do not use the schematic context. They work with the actual geographic
coordinates for the entire the data set. Mittelstädt et al. work with a de-saturated map in the
background providing rich geographic context [MSS∗13]. The authors display electric grids us-
ing symbolic glyphs connected with edges that were created using curve simplification. Nodes
in dense areas are aggregated to avoid overplotting. This setup is illustrated in Figure 4.5. In
their overview visualization, Overbye et al. omit the display of a map and work on a white can-
vas [OMWC05]. The authors connect nodes with straight line segments and reference larger
geographic regions by outline and text in the center. In the approach of Wong et al., geographical
references are used for the initial setup of the layout. Additional information can be encoded
using different color ramp in both nodes and edges [WSM∗09].

4.4.5. Discussion

This section discussed in how far different schematic layout algorithms can be used for the display
of geo-based supply networks. Each of the techniques performs a trade-off between realistic
representation and readability. On the one hand, a realistic representation exploits the user’s
mental map of geographic circumstances. Increased readability, on the other hand, makes it easier
for the user to grasp the structure of an unknown network. Finding the optimal trade-off between
the two therefore depends on the user and the task.

In general, we consider the restriction to eight directions (i.e. octi-linear layouts) to be a sound
compromise. These layouts create a simplified schematic drawing of geographic networks, while
retaining the relative position of the nodes. Compared to other geo-based maps, this trade-off is
favoring readability, while preserving relative directions. This preserves the mental map of the
user who is already familiar with the geographical map. Apart from subway maps, these layouts
have already been successfully applied in other traffic-related domains, such as bus and train

1http://www.tfl.gov.uk/gettingaround/maps/buses/
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Figure 4.5: Electric Grid on a topographic road map. Used with permission [MSS∗13].

maps. However, there are also a few visualizations in very different contexts, for example the
display of abstract knowledge [Nes04, NMPR07, SGH12].

The size of the network (i.e. the amount of nodes) makes working with the entire data set im-
practical for the user. Also, algorithms become slower, force-directed algorithms create tangled
drawings. For example, the number of nodes should not exceed a few hundred nodes for MIP.
As the number of constraints increases, solution finding becomes slower or even impossible. The
network complexity can be reduced by exploiting the inherent hierarchical nature of most supply
networks. No clustering algorithm is required, because hierarchy layers of the data can be used. In
case, that the data does not inherently contain such a hierarchy, the geographical information itself
can be used to create partitions, for example along jurisdictional boundaries. We therefore con-
sider hierarchical layouts such as the multilevel approach of Wong et el. as promising approaches.
This hierarchical nature also motivates using hierarchical visualizations.

Local changes should have a local effect only to preserve the mental map. To the best of our
knowledge, this property is not fulfilled by any of the currently available algorithms. There is also
no study yet on how (local) changes affect the generation of such layouts.
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The user could be allowed to change the focus to get details for a particular node in the context
of the entire network, based on a subgraph with limited distance around a user-defined focus node.
This focus area could be created using a high-quality layout while the larger context area around
is created by fast curve-simplification. While this might not be suitable for overviews, it could
be useful for a drill-down analysis such as fault detection. May et al. propose an approach for
navigation in such locally-bound views [MSDK12]. Arrow-shaped landmarks at the border of the
visible area direct to interesting parts of the network. Such visual cues could be used to point to
geographic landmarks. This display could be adjusted depending on the zoom level.

As the name implies, these octo-linear layouts permit only eight different directions. Conse-
quently, nodes with more than eight neighbors cannot be handled properly. Analogue constraints
exist for orthogonal and hexa-linear layouts. One idea is to give up the constraint for these nodes
and permit all directions. Another one is to split these nodes into multiple, smaller ones. Splitting
basically gives 2 × 7 directions plus one connection between the two. However, four directions
are immediately crossing (see Figure 4.6) and splitting thus gives only two additional directions.
Although the number of directions is not strictly limited to eight, the number of nodes with a
higher node degree should be small. In hand-crafted drawings, this problem is often addressed by
inserting large rectangular nodes that span across several parallel edges. Up to date, no algorith-
mic placement for such special nodes exist. Edges that are meant to go into the same direction, but
to different nodes impose a a similar limitation. This, however, can be countered by the insertion
of dummy nodes.

Figure 4.6: Splitting a node into two gives six additional directions, but four of them are immedi-
ately crossing. Therefore they cannot be used to connect more nodes.

Similar to landmarks, major elements are useful for orientation and therefore should be an-
notated. Node details such as labels are not necessary for all nodes, in particular not for small
elements. We propose to show labels on demand, for example in tooltips that appear when the
mouse cursor hovers of a node, similar to the approach of Fekete [FP99]. In hierarchical displays,
labeling could be shown depending on the zoom level. This could be useful, especially if the node
density is similar across the entire data set.

During design, it is important to balance the visual complexity and the amount of encoded in-
formation. If more than one variable is recorded per node, the node glyph would need to aggregate
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this information accordingly, similar to the approach of Mittelstädt et al. [MSS∗13]. In monitoring
environments, this information is also expected to change over time.

Being easy to identify, landmarks are anchor points for orientation. The user tries to match the
mental map of the area with the given schematic map. Natural elements such as rivers and coast
lines, but also man-made structures are therefore often used as landmarks. There is not yet an
generative approach for placing landmarks in such schematic maps. Therefore, manual improve-
ment of computed maps is required. For interactive maps, however, the automatic arrangement of
landmarks could be useful.

4.5. Sensor Network Monitoring through Visual Analysis

In the following we present a visualization system for the real-time monitoring of sensor networks.
This refers to Contributions C4,5. One of the most prominent application scenarios is are supply
networks such as gas, water or electricity. In the following we will focus on the latter.

In particular, it supports the control room operators of electric grids with large amounts of
distributed power generation. It introduces the combination of an expert system with a visual-
ization system, specifically designed for SmartGrid control rooms. The rule-based expert system
filters the stream of a large amount of incoming events, searching for potential problems. As
measurements are continuously read from connected Smart Meters, the expert system performs a
classification of these events to relieve the operator from the manual inspection of irrelevant and
trivial information items. As a result, the user is provided with the required situational awareness.

A coordinated, multiple view environment displays the electric grid model which is annotated
with status indicators. This supports operators in the efficient monitoring of electric grids with a
focus on distributed, small-scale power generation. Being a critical infrastructure, the electric grid
is highly sensitive and any modification must be well justified. Our visualization system therefore
also provides insight into the expert system enabling the user to validate and verify the expert
system’s analysis process. This provides the required decision support to assist the operator in
keeping the grid in stable operating condition.

The analysis results are presented in a details-on-demand manner. This gives the operator
both a reasonable overview on the entire system, but also enables him to inspect specific parts in
detail. Other sources of information such as ICT coverage and weather conditions are included to
provide additional context. The visualization system thus provides monitoring and control support
for operators to keep the grid in a stable condition.

4.5.1. Combining Automatic and Manual Analysis

The task of the control room operators is to monitor events in the monitored networks. Based on
their knowledge and years of experience, domain experts decide whether an event or a series of
events indicates a problem in the grid or not. Where necessary, they must interfere and instruct
counter-measures before the problem propagates through the grid causing cascading effects.

The visualization system we present supports the control room operators in their task of moni-
toring a large and complex system. It uses an expert system to analyze the measurement data and
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displays all relevant information in a multiple view environment. A large overview visualization
displays the current state of the grid and allows the user to get additional details on particular
points of interest on demand. Not only the electric grid, but also other sources of information
such as tangential infrastructure and weather forecasts are shown. Additional supporting views
display the data from different perspectives. With their help, the operator can then gather related
information to gain the situation awareness which is required for decision making.

In the electric engineering domain, an event is most commonly referred to as an alarm even if
its content has purely informational character. Different automatic tools have been proposed to
assist the operators. Most of them are about alarm processing, i.e. the pre-processing, filtering
and prioritization [KSH07] of events. However, they typically operate in a ”black box” manner,
prohibiting insight into the internal workings. Thus, the user is not able to verify the correctness
and is bound to rely rather blindly on the assumption that the reduced data set contains all vital
information. Typical approaches include expert systems that are based on rule inference to analyze
the system in a fully automated manner. The user has to rely on the fact that the a-priori knowledge
encoded in the rules is sufficient. On the other hand, performing a manual analysis of all sensor
readings is often hardly feasible, because it is difficult to have an eye on all sensors at the same
time.

In this section we present a system that combines the strengths of an automated analysis with
a visualization that enables the operator to track this process. We therefore define a knowledge
base which contains a collection of so-called facts that represent all known entities and properties
of the domain model. With a set of rules that describe how these facts relate, the inference engine
can then derive new facts from existing ones. The combination of knowledge base and inference
engine is commonly known as expert system. We use such a system to be able to automatically
process large amounts of sensor data in real time. The strict separation of business logic and
visualization also allows us to adjust and modify the domain-specific content without touching the
view component. Even switching to an entirely different domain is possible with this approach.

The concept of Visual Analytics is about combining manual and automatic analysis in an iter-
ative and alternating cycle which is an ideal choice for our analysis process flow. We think that it
is crucial that no action is performed in fully automatic manner; the operator must have the final
word on every decision.

Our expert system follows the pipeline design and is split into several distinct analysis steps.
Suspicious events are first filtered and grouped according to the similarity of different intrin-
sic properties such as location or severity. Then, diagnoses over these events are put up before
user recommendations are generated. The system keeps track on items that are linked across the
pipeline stages so that the visualization can display which facts and rules led to the generation of
which diagnosis and recommendation. With this setup, the control room operator can verify the
correctness of how these assumptions were made and decide which action should be taken.

Our visualization system as a whole goes beyond pure monitoring: a dedicated view displays
the analysis pipeline of the expert system that operates in the background. In contrast, our system
enables the operator to trace the workflow pipeline of the expert system and thus verify its cor-
rectness. We are convinced that no action should be taken automatically – the operator must be
the final decision maker.
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4.5.2. Domain Model and Event Processing

In the following chapter we outline the concept of a monitoring system that combines the knowl-
edge of an expert system with a visualization that conveys the gathered information from the
sensor measurement network in a verifiable manner to the control room (see Figure 4.7). Based
on that information, the operator can then control the actual model which influences future mea-
surements.
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Figure 4.7: Incoming events are delegated to the monitoring system that internally uses an expert
system to process the data. With the help of the visualization, the user applies changes to the
physical model which in turn influences the measurements.

The foundation of the visualization system we present is generic, but we will discuss a cus-
tomized version for distribution networks. Its underlying domain model contains transformer
stations, distribution bars, meters, lines and the like. With respect to the ongoing changes in the
way electricity is produced, we also integrated different of kinds power plants such as solar plants
or wind turbines.

Today, most of the data in sensor networks is transmitted over the wire, but wireless solutions
are gaining more and more traction in the community [EKM11,PKS10]. Cellular base stations are
required to receive the sensor data from the system and send commands to the control elements.
However, they require power which they receive from the electric grid they control. Ergo, failures
in one system can cause the other system to fail as well. This hazard can be mitigated by ensuring
that every grid element in the grid is covered by at least two base stations. Consequently, the
coverage of ICT infrastructure with respect to Smart Metering and its controls plays an important
role and needs to be represented in the model as well.

Measurement events arrive at high rates from the Smart Meters in the grid. The system pro-
cesses and updates the state of the domain model accordingly and in real-time. Expert systems
have proven to provide valuable support for this task in different application domains in the past.
We use such an expert system to perform automatic assessment and filtering of incoming events.
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Figure 4.8: The list of problems as detected by the expert system in tabular form. This type of
display is familiar to many domain experts and preserves the temporal order of events, but lacks
spatial context.

Based on a set of user-defined rules, the system evaluates the measurement readings, filters
them and generates diagnoses and recommendation actions where necessary. Most operators are
familiar with the tabular display of system events. We transferred this metaphor to our system, so
that operators would recognize known elements from conventional displays (see Figure 4.8).

4.5.3. A Rule-based Analysis Pipeline

The knowledge base provides the application context for the system. In our setup, it contains facts
from the electric engineering domain such as transformer stations, overhead lines, voltage meters,
measurement readings, etc. The collection of rules has been constructed with the knowledge of
control room operators and defines how these elements relate with each other.

The expert system is designed as a pipeline with three distinct analysis steps. First, the large
collection of alarms is filtered so that only suspicious items proceed to the next stage. All other
events are discarded as early as possible which keeps the computational effort and memory re-
quirements to a minimum. In the next step, the set of suspicious alarms is diagnosed and grouped
by similarity leading to an even smaller set of diagnosis entries in the fact base. The information,
which alarm contributed to which diagnosis is retained for the visualization. The third stage of
the pipeline renders zero, one or more recommendations for each diagnosis. Again, the link be-
tween diagnosis and recommended action is recorded and displayed later on. See Figure 4.9 for
an overview and an exemplary path through the expert system pipeline.

The expert knowledge in the system is used for the first, low-level analysis of the data and
can be performed up to this point automatically – no user interaction is required. The generated
set of recommendations can then be analyzed on a higher level by the user who can verify the
correctness of the assumptions and conclusions that have been made. It is therefore essential to
provide assistance for the human reasoning process, especially decision support to enable the user
to decide which recommendation to follow.
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Figure 4.9: Pipeline configuration of the expert system. The analysis path leads from the pool
of alarms to two groups of similar, suspicious alarms. These alarms can be explained by one
diagnosis which is linked to two alternative corrective actions.

The results of the automatic analysis process are delegated to the actual visualization which
conveys the extracted information to the operator. Visual domain elements are annotated with
problem indicators and links to corrective actions where necessary.

4.5.4. Visualization & Interaction

The task of the visualization component of the system is to provide this decision support. The
need for analysis in real-time and the provision of situational awareness – i.e. the context which
is used to comprehend the meaning of status variables – impose additional requirements for the
monitoring environment. The operator must be able to get an overview on the health status of the
entire system quickly. We approach this challenge with a view environment that contains a set of
coordinated views that display the data from different perspectives.

One important source of information for the visualization system is the fact based that is main-
tained by the expert system. Its structure is an analysis pipeline with the stages filtering, diagnosis
and recommendation. Operators can use the visualization to trace the path that different input
events take through this pipeline (see Figure 4.10 for an example).

Figure 4.10: Input events are filtered so that only those which require attention are further pro-
cessed. Based on that, diagnoses that explain the problems are put up. The expert system then
recommends one or more curative actions.
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The first main contribution, the display of the overall status of the system is displayed in a
large view (Figure 4.16, top). Most importantly, the operator needs to grasp the "big picture",
i.e. to get a comprehensive overview over the state of the entire system (see Figure 4.11). This
is accomplished with a high-level display that uses geographic references to provide a spatial
orientation for the operator, but displays domain entities only. A geographic map is not displayed
underneath as it is typically not needed by control room operators. The only exception to this
rule is the display of lines: overhead cables are more sensitive to disruptions than buried cables
and are thus displayed differently. Transformer stations are displayed as rectangular elements
that comprise its distribution bars and the installed meters. Initially, the view contains connected
outlined rectangles that represent transformer stations at their respective geographic coordinates.

The color indicates the overall state of the station as determined by the expert system. Green
stands for tested and o.k., gray for undetermined and red indicates problems. Zooming in on a
station ”opens” it, giving more details on its distribution bars. Similarly, the font color of the
voltage grid label indicates the status of all connected meters. One level deeper, individual meters
are displayed. At the deepest level, the meters expand in size and display the latest measurement
readings in a small linechart. Hovering over a defective meter with the cursor shows a tooltip that
displays the latest alarm that relates to that meter.

Figure 4.11: Detail of the overview visualization with three stations with several distribution bars
each (columns). The frame color indicates the overall status while tooltips give details in text form
on individual meters. Three solar plants are connected to the station at the center.

Energy suppliers are displayed on demand to indicate the sources of additional input. Their size
and shape are illustrated by their respective glyphs. Lines to the connected transformer stations are
also displayed to show where the electricity comes into the system. Whenever problems occur, the
respective visual elements are highlighted with red color to indicate that the operator’s attention
is required. Additional details on a particular problem are available on-demand using tooltips.

To complete the picture, we also integrated the coverage of ICT infrastructure in the overview.
On demand, communication towers are included in the overview display as glyphs. Their cover-
age area is represented as filled circles to indicate which station covers which transformer stations.
Failures at a communication tower render the circle translucent. The color of the coverage areas
is accumulative – overlapping areas become darker, uncovered areas become white. This helps
the operator to find out for which areas a single failure would lead to a disconnection. As can be
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seen in the example setup in Figure 4.12, the blackout at the communication tower can be traced
to a failure at the transformer station nearby. Operators can use this display to create a mental link
between these different infrastructures.

Figure 4.12: The overview visualization showing a blackout at one communication tower. The
expert system reports problems at the station "Preswick Heath" which are likely to relate to the
failure. The communication tower in the north west still covers "Milby Lake", but the other
stations are cut off.

A major challenge here is to preserve the spatial and temporal context so that the operator can
investigate an incident. We therefore display additional views to enable the operator to analyze
the data model from different perspectives. If we were to depict all elements of the entire domain
model on the screen at the same time, overplotting would occur. A common approach to deal
with this is to use aggregation (i.e. group similar elements of a hierarchy) and to use a virtual
camera (often referred to as zooming and panning). Depending on the camera’s current zoom
level, we group meters, distribution bars and transformer stations (see Figure 4.13). This enables
the operator to quickly get an idea of the overall status. The zooming metaphor is employed to
enable the operator to "drill down" where necessary. We also use the panning mode of the virtual
camera to navigate in the Smart Grid domain model.

However, when aggregation is used, special care must be taken in order not to hide important
information. Therefore, problem indicators propagate their state upwards to higher level elements
if necessary. For example, if a meter reports overload but is not visible in the current setting, the
transformer station that contains the meter is marked. This indicates that at least one element in
the group requires the operator’s attention.
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Figure 4.13: Zooming in increases the level of detail of the display. Fewer stations can be shown
at the same time without overlap, but more information on a particular station of interest becomes
visible.

More information on particular elements can be requested on-demand by hovering. A tooltip
displays text messages according to the type and the status of an element. This information comes
again from the expert system’s evaluation process. Thus, also problem diagnoses and proposed
fixes can displayed and applied in-situ.

The user can interactively select a set of elements such as voltage meters in one view which
causes the visualization system to select the same items in other views, too. This allows, for
example, showing a meter’s measurement readings in one view and displaying the geographic
location of its transformer station in a different view. This coupling metaphor is typically referred
to as brushing & linking [Kei00] and is used throughout the system.

Selecting an element indicates to the system that the user is interested in more details. It then
automatically updates all linked views that can display information about this element. In Fig-
ure 4.14, three views displays the status of a voltage meter with respect to current and historic
values. The historic data is aggregated on a daily and yearly basis. Two line charts display the
values as box plots where each group represents 50% and 99% respectively. They are linked
with the live data view through time: the boxes that receive the current measurement values are
marked. The temporal context enables the operator to decide whether the current measurements
are typical for the current month and weekday.

Equally important is to display current weather conditions for the region. The majority of the
small energy providers is highly dependent on either solar radiation or wind. Thus, knowing the
current conditions enables the operator to derive how much energy is produced at these sites.
Even if the amount of produced electricity is not for the privately owned plants, the overall power
consumption of the connected transformer station to can be analyzed. In Figure 4.15, the solar
radiation of a sunny day is put in juxtaposition with the recorded power consumption at a particular
secondary substation. The average power consumption for that day for central Europe is displayed
as an overlay to allow for quick comparison between expected and actual values. Together, they
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Figure 4.14: Three linked analysis views that put a meter’s measurement readings into context.
The Live View on the left shows the actual values together with frequently-used support functions
such as Moving Average or Linear Trend. The other two views display historic values aggregated
into box-plots. Every box represents 50% of the data value within a certain perioid of time (here:
month and weekday). The whiskers enclose a total of 99% of the data, the remaining 1% is
displayed as individual dots to indicate outliers. In each view, one box is marked with blueish
color to indicate its correlation to the values in the Live View. Thus, the operator can derive
whether the latest measurement readings are typical with respect to the month and the weekday.

make the strong correlation between solar radiation and the reduction in power consumption for
that station apparent.

Displaying the analysis process of the expert system is the second major task of the visualiza-
tion. The analysis view displays the expert system pipeline. Starting on the left side with the
pool of events, suspicious elements are transferred to the second stage. In Figure 4.16 (bottom),
the alarms are grouped by the meter they are related to. Selecting a group opens it and displays
all contained items, selecting a single alarm highlights the linked domain entity in the overview
display. The third column displays all diagnoses and the last one shows the set of recommended
actions.

The view draws connections from one stage of the pipeline to the next on demand only, because
the total number of links can be quite large which makes them difficult to follow. Thus, the view
allows for the interactive tracking of the path of specific alarms through the analysis pipeline.
The two views are linked, i.e. selecting an element also selects it in the overview, thus providing
a spatial context. Where necessary, the camera aligns the overview so that the selected meter
becomes visible. Similarly, selecting a recommendation in the analysis view displays a preview
of its effect in the overview. This can be, for example, the display of throttling values for energy
providers.

4.5.5. Discussion

In this section we outlined a monitoring system that combines the real-time processing capabil-
ities of an expert system with an operator-friendly multiple view environment. It supports the
monitoring and controlling of electric grids with a focus on distributed generation. Data from
connected Smart Meters at the transformer stations can be viewed and analyzed. In contrast to
conventional systems, it also integrates other sources of information such as weather conditions
and ICT coverage.
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Figure 4.15: Top: power consumption of the selected station versus average power consumption
in central Europe (dotted line). Bottom: Measured solar radiation at the closest weather station
The correlation with between the two can be explained by the high amount of connected solar
plants. In fact, the power consumption goes significantly below zero indicating a surplus up to
20kW for sunny days.

Using an expert system makes it possible to to quickly assess incoming measurement events
and to update the displayed domain elements accordingly. This expert system is designed to work
as an analysis pipeline and its workflow is displayed in the visualization. This enables the operator
to track the processing path of alarms and verify the correctness of the system. An overview visu-
alization complements this approach by providing a temporal and spatial context to the discovered
issues. First indicators show that the combination of expert system and visualization can provide
valuable decision support for operators. The integration of renewable energy providers together
with weather data has been implemented successfully, but an exhaustive description is beyond the
scope of this thesis. This additional information aims to improve the situational awareness of the
operators, but must be integrated in the system so that the user can easily understand them.

Supporting the operator to create a virtual model of real-life conditions without the need of a
computer scientist would simplify the knowledge engineering process significantly. Going one
step further, evaluation of planned new lines and stations in a virtual environment with simulation
support can bring substantial benefits for planners. The simulation of the effect that different
action alternatives have on the system is an important aspect is discussed in Section 4.8.

As a whole, the system provides situation awareness for control room operators, but also en-
ables them to get diagnosis information and choose corrective actions.
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Figure 4.16: Screenshot of the running system with its different views. In the overview (top),
transformer stations are displayed together with all contained meters as rectangles, grouped by
distribution bar (mains and medium voltage grids). The background color of the individual me-
ters reflects the analysis result of the expert system, (green=ok, gray=unknown, red=problem).
Tooltips give details on discovered problems. The status is propagated upwards in the hierarchy
causing the frame of a station to become thick red if any contained meters report problems. Se-
lected items are tinted with blueish color. In the analysis view(bottom) the user can get a detailed
explanation on why a certain meter has reported problems and what the expert system recom-
mends to cure this.

4.6. Anomaly Detection in Sensor Networks

In this section, we extend the system to support exploratory tasks for the comparison of univariate,
geo-referenced sensor data, in particular for anomaly detection (Contribution C6). We split the
recordings into fixed-length patterns and show them in order to compare them over time and
space using two linked views. Apart from geo-based comparison across sensors we also support
different temporal patterns to discover seasonal effects, anomalies and periodicities.

The methods we use are best practices in the information visualization domain. They cover
the daily, the weekly and seasonal and patterns of the data. Daily patterns can be analyzed
in a clustering-based view, weekly patterns in a calendar-based view and seasonal patterns in
a projection-based view. The connectivity of the sensors can be analyzed through a dedicated
topological network view. We assist the domain expert with interaction techniques to make the
results understandable. As a result, the user can identify and analyze erroneous and suspicious
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measurements in the network. A case study with a domain expert verified the usefulness of our
approach.

4.6.1. Revealing Similarity of Time-series Data

Typical approaches include expert systems based on rule inference to analyze the system in a
fully automated manner. These software systems usually operate in a black box manner that do
not allow for user interaction. The user has to rely on the fact that the a-priori knowledge encoded
in the rules is sufficient. We refer to Section 4.5 for an in-depth discussion of the issue.

Performing a manual analysis of all sensor readings on the other hand is often hardly feasible,
because it is difficult to have an eye on all sensors at the same time. Also, it is quite difficult to
derive trends and frequently occurring patterns from simple line chart plots. A set of visual tools
can successfully assist the human in the analysis process to become more effective and efficient.

Figure 4.17: A screenshot of the entire system. The similarity view on the left side shows all
daily patterns of all sensors. Similar patterns are assigned to the same group and color. The
change of patterns over time for a selected sensor is indicated by the black spline. The network
view on the right side gives an overview of the network topology. The small calendar in the node
glyph shows changes over time and a fingerprint view underneath shows the sensor patterns in
the global context.

The users that work with this kind of data are, for example, operators in the control room of an
electrical grid. Their task is to monitor the state of the network using the measurements provided
by the installed power meters across the country. The operators must be able to identify repeating
patterns as well as anomalies with respect to changes over time and across different sensors. For
that, it is important to recognize diverging states, anomalies and suspicious patterns as quickly as
possible. More specifically, we have identified the following problems:

• Getting an overview of a sensor network is required in order to get an impression of the
“big picture” and to identify potential problems.
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• The user needs to analyze the network in space and time to find atypical patterns in the
network.

• Comparison of different sensors at the same time but also the development of a single sensor
over time is relevant.

• Based on the pattern similarity, the user must be enabled to quickly identify non-standard
patterns and trends.

Based on these tasks, we derive a set of design criteria. Atomic entities (i.e. daily patterns) are
analyzed with respect to three different criteria: based on content and relations to the geographic
and temporal context. These different aspects must be linked to enable the analyst to provide addi-
tional insight and to solve multi-criteria problems. We identify the most appropriate visualizations
with respect to the properties of the data and the user task:

• The data is recorded at several linked univariate sensors that measure the same physical
quantity.

• The time-series data can be segmented into meaningful equally-sized day-long patterns.

• Interesting patterns are expected to be daily, weekly or yearly.

• The system must be able to robustly detect and deal with outliers and missing values.

We contribute a visualization system that is able to assist the analyst in dealing with these prob-
lems. It consists of two tightly coupled views that complement each other: a Similarity View and a
Network View (see Figure 4.17). A topological map of the network gives a geo-based topological
overview on the network in space and development of patterns over time for every sensor. Using a
calendar-based visualization, the analyst is able to identify trends on different scales, based on in-
dividual sensors. As a result, the user can identify erroneous and suspicious measurements in the
network. A similarity-based view gives important details on the global relations of different tem-
poral patterns (in our example the power consumption over the day). The user can thus analyze
daily patterns of the sensors, grouped by their pair-wise similarity. On demand, points that belong
to the same sensor can be connected. This gives the analyst a quick overview on the variability of
daily patterns over a period of time. If the patterns are very similar this spline would look like a
tiny hairball and anomalies can be easily spotted. Tight linking between the two ensures that the
user recognizes the same element and sets of similar elements in both views.

4.6.2. Data and Algorithms of the System

In this chapter we present the data and algorithms for the visualization system. We do not use pat-
tern shapes directly but provide similarity-based measures to support the identification of similar
and different patterns, as well as projection and clustering techniques. In this way we support the
user in the identification of both frequent patterns as well as outlier patterns. We first cover the
data preprocessing routines before we explain the rationale behind the design decisions. Before
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we start, the data is condensed from high-dimensional data vectors to lower-dimensional feature
vectors that are presumed to contain the majority of information and are faster and more robust
to work with. We compute the similarity based on this data, before we aggregate similar patterns
into groups. This allows the user to get an overview of recorded measurements and identify trends
and repeating patterns in the visualization.

4.6.2.1. Input Data

The input data is a collection of time series measurements of a single variable spanning over one
year. The sensors that record the measurements are organized in a network structure. Nodes
indicate sensors, the edges between two nodes indicate some kind of connectivity.

Market Nor.. Foxfold

Blackden

Harwike

Harwick

Hindham

Marsbury L..

Lower Norh..

Newham

Oulford

Hartham

Great Ilwell

Figure 4.18: A part of the sensor network, displayed as a octi-linear topological map. At the cost
of uniform edge lengths, geographical directions are preserved, if possible [NW06].

Not all sensors have recordings for every time stamp, and day, respectively. Since missing
values may be an important aspect for analytical tasks, our visual representations need to be
sensitive to an explicitly defined missing value indicator. Another aspect of the data is that some
patterns are partly filled with zeros. In some scenarios, zero can be interpreted as missing value,
whereas in others, it cannot. We therefore do not assign a special meaning to this value. We prefer
a shape-preserving in favor of a domain-preserving pattern comparison strategy. Thus, we apply
a standard score normalization for the input data per sensor. To reduce the impact of outliers we
previously apply a moving average procedure with a kernel range of one hour. The next step in
the analysis process is the segmentation of the time series data into individual patterns. In our
scenario, diurnal variations are the smallest repeating patterns and therefore the segmentation into
days appears to be the right level of granularity.

4.6.2.2. Similarity Measures

Many different algorithms for measuring the similarity of time series data exist. Our system
supports different analysis tasks and therefore supplies different similarity measures. For the
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analysis of values or changes in the values, the Euclidean distance is a useful measure to compare
patterns. We argue in accordance to Hadlak et al. [HSCW13] that trend-based similarity measures
support the user in finding simultaneous changes over time well. If the shape of the consumption
pattern is of interest, the correlation coefficient and Dynamic Time Warping (DTW) are reasonable
choices. The DTW algorithm compares two time series by aligning sequences of the data so that
the distance between the two is minimal [BC94]. This makes DTW robust to shifts and length
of the temporal sequences. While the original version is rather expensive to compute – it is in
complexity class O(n2) – several speed improvements have been implemented since then. We use
the optimized FastDTW algorithm as described by Salvador and Chan [SC07].

4.6.2.3. Dimensionality Reduction

In order to make large data sets accessible to the user, a variety of data reduction techniques
exist. One of the most used projections is Principal Component Analysis (PCA). Being a linear
method, it is very sensitive to outliers and does not use the available display space too well.
Multi-Dimensional Scaling (MDS), a group of methods for dimensionality reduction, is also very
popular. Since its original presentation [Tor52], many variations have been developed [Kru64]
and has gained popularity also in the graph drawing community [BP09]. Also, non-deterministic
projection methods such as Stochastic Neighbor Embedding have been employed [HR02]. Using
locally restricted projections, Joia et al. present not only a new projection approach, but also a
comparison of different approaches [JPC∗11]. Another survey is presented by Lee et al. who
discuss dimensionality reduction schemes without user supervision [LV10].

4.6.2.4. Dimensionality Reduction Quality

With the reduction of data comes a loss of data quality. Many different measures are available that
assess the quality of a given projection. A natural choice, in particular for MDS methods, is to use
the weighted stress function as an indicator for the projection quality. Kruskal proposed a small
variation of this stress function as well as some reference values for quality [Kru64]. However,
measuring the quality with the same means as the actual algorithm seems to be an unreliable
choice for MDS. Sips presents “...two quantitative measures of class consistency, one based on
the distance to the class’s center of gravity, and another based on the entropies of the spatial
distributions of classes...” [SNLH09], which are robust against outliers. In the work of Bertini et
al., an overview on many different quality measures, pros and cons as well as application domains
can be found [BTK11].

4.6.2.5. Projecting Similarity

The generated distance information is rather extensive and not directly interpretable by the analyst.
At this point, dimensionality reduction becomes necessary to be able to convey the information
to the user. The user needs to be enabled to detect changes, especially outlier patterns and to find
clusters of similar patterns.

Inspired by projection-based approaches such as the MotionExplorer system [BWK∗13], we
derive a 2D projection of the time series patterns based on the pair-wise distances. The goal here
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is to preserve the distances from the original data set as good as possible. Patterns that are similar
should have 2D positions that are close and patterns that are very different should have a large
distance between them. Here, the first part of the statement is more important than the second
one. If two very similar patterns are plotted apart, the user gets a wrong impression of the data.
On the other side, if two different patterns are far apart, it is not that important how different they
are. This allows us to use non-linear projection methods that preserve local structure in favor of
global projection quality.

The resulting scatter-plot represents the similarity of the daily patterns. Any kind of projection
introduces errors, due to the expected loss of information. After a series of tests, the class con-
sistency measure of Sips et al. turned out to be the most robust quality measure [SNLH09]. For
each point, the set of n nearest neighbors in high-dimensional space is compared to the n nearest
neighbors in 2D space. The quality is defined by the set of elements that appear in both sets. We
use this approach to assure that the projection quality is high enough to allow for drawing reliable
conclusions from the data. In practice, stress-based non-linear projection methods such as those
from the MDS family perform quite well for many data sets [JPC∗11].

4.6.3. Visualization & Interaction

We present two tightly coupled views of the linked time-series data to the domain expert. Based
on an atomic entity – i.e. daily patterns – all data records are arranged based on their pair-wise
similarity and displayed in the Similarity View (Figure 4.17, left). This provides an overview of
the recorded patterns in the network and allows for different interactions. In a second, geo-based
view (Figure 4.17, right), the same patterns can be analyzed on different levels of granularity in
time, but also in space using a visual calendar. The visual link in between is based on the color
that is assigned to the different groups of daily patterns. In combination, the two views show the
data from two complementary perspectives, both supporting each other.

4.6.3.1. Similarity View

The Similarity View gives an overview on all recorded patterns of the entire network. It displays
the patterns with respect to their pairwise similarities that were computed in Section 4.6.2.5. Every
pattern is represented by a single point in the screen space.

By selecting a particular node in the network, the analyst can investigate the change of patterns
over time. The view connects all daily patterns of that stations and orders them by time. The
result can be seen in Figure 4.19. All days of the station Newham are plotted for the month May.
The patterns oscillate at a high frequency up and down with one outlier on the left. In contrast
to straight line segments, bézier splines are used to interpolate between the patterns, because the
changes are expected to happen gradually.

Using a range-based slider that spans over the entire year, the user can filter the data set with
respect to recording time. Filtered elements are not being hidden to preserve the context, but they
are rendered small and their color becomes faint. The filtered part of the spline turns into a thin,
gray, dashed line. See Figure 4.19 for an example.
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Figure 4.19: The sensor at Newham, plotted based on the similarity of daily patterns for the
month May. The thick line represents the month May as indicated by the time slider at the bottom.
The gray dashed line represents the rest of the year.

The user can access the actual shape of the pattern on demand by hovering over any element.
A tooltip with additional information about the data point appears, providing details about the
sensor, the recording date and a line-chart of the time series of the particular day.

As already mentioned, the axes in this display do not have an intrinsic meaning. The infor-
mation in the scatter-plot is very fine-grain and does not permit an intuitive understanding of its
organization. We create an abstraction layer on top of the scatter-plot display. In other words, we
discretize the continuous space into a set of discrete partitions. In this layer, similar patterns are
aggregated into larger groups which help the user in getting an overview of available patterns and
their location. This is accomplished by clustering of the data and displaying the groups, each an-
notated with a representative element. Clustering is performed in 2D space, after projection of the
data, to prevent clusters from being rendered as fragmented regions. The result of this operation
can be seen Figure 4.20.

Generally speaking, the intrinsic property of good clusters is that the elements within have low
pair-wise distances while distances to elements in other clusters are comparatively large. If a
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Figure 4.20: The projected pattern similarities, clustered and colored using a 2D color map.
Some of the patterns show negative energy consupmtion during daytime (purpelish red patterns
at the top). This could indicate that connected solar plants produced significant amounts of energy
on that days.

central element in the cluster can be identified, it would represent the other elements in the cluster
with a minimum of lost information. The k-means algorithm creates a clustering based on such
cluster representatives. While this algorithm is rather basic, it produces the cluster representatives.
This pattern stands for the means of the cluster, i.e. an artificial pattern with the smallest distance
to all other pattern in the cluster. In cases where no new element can or should be created,
the closely related k-medians algorithm works on existing elements only [JD88]. The common
challenge of choosing an optimal number of desired clusters is not a problem in our main use case,
because its main purpose is to create a simplified version of the data. The number of clusters is
limited by the number of pattern shapes the user is expected to differentiate. In practice, choosing
k in the range of 10 to 20 seems to be reasonable.

To improve the readability of the drawing, every cluster is annotated with a small line chart
glyph of the mean pattern that the cluster stands for. This technique is similar to the Micro-Macro
Views display [BvLBS09], which uses the rectangular grid of a SOM to derive the 2D position of
the entities together with a representative for each of the clusters. In our system, the clustering is
separate from the projection, resulting in a non-rectangular layout of the clusters. It is shown as
small line chart in the center of every cluster.

We emphasize similar patterns using a discrete set of colors to indicate cluster membership.
Thus, the color indicates the shape of the pattern without having to show the actual pattern. Pat-
terns of similar color are expected to have a similar shape. Using the 2D position in the similarity
plot, the corresponding color of a pattern can be derived from a 2D color map. This allows us to
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Figure 4.21: A 2D color map created by interpolation of four perceptually distant colors. It
defines the color of the similarity clusters.

also use the color as an indicator of similarity. However, using only one color per clusters makes
it easier for the user to recognize a certain color as the same in another view if many different
slight variations coexist. The color map must enable intuitive and accurate readings in order to
express the metrics of similarity. On the one hand, it should exploit a maximum of different col-
ors. On the other hand, the user must be able to estimate the approximate the distance between
two objects correctly, which requires a perceptual uniform interpolation. In contrast to the RGB or
the HSV color space, CIELAB is a non-linear colorspace that can be used to extract perceptually
uniform 2D planes. However, as presented by Bremm et al. [BvLBS11], these color maps do not
contain many perceptually different colors. Inspired by the work of Ziegler et al. [ZNK07] we
use four perceptually distant colors and interpolate between these colors. However, we slightly
use a different set of colors, namely yellow, cyan, red and blue. The goal of this selection is to
separate the color map into complementary color tones and also from fully saturated (bottom) to
fully intense (top) colors. We use cyan instead of green in order to approximately equalize the
perceptually distance between all corner colors. The corner colors are equalized in intensity and
saturation in the HSI color space [Kei00] and then interpolated in the CIELab color space. The
color map is depicted in Figure 4.21.

While this view already contains a lot of information on the occurring patterns in the network,
the network structure is not visible. Also, it is not immediately clear, which sensor measures
which pattern at which time of the year. We overcome these limitations with a second view that
displays just that. Tight coupling and interactive linking between the two ensures that the user can
bridge the mental gap between two different visual representations of the same entity.

4.6.3.2. Network View

This second part of our system has its focus on the network topology. The visualization is a node-
link diagram with drill-down functionality that displays temporal information in the node glyphs
on demand. In this manner, the user can not only learn about the spatial organization, but also the
pattern distribution in different temporal granularities.
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4. Visual Analysis of Sensor Networks

Nodes represent sensors and edges denote connections between the sensor. A sound layout
should create an intuitive display of the topology, but preserve directions, if possible. The user is
interested in an abstraction of local geographic coordinates to reduce the visual complexity of the
network. General graph layout algorithms, however, try to satisfy edge length constraints and/or
minimize the number of edge crossings. This are typically not problems for sensor networks, as
both criteria are not overly important.
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Figure 4.22: The network view at the second level of detail. Both calendar and cluster fingerprint
view appear.

A prominent group of methods that achieves this is the octi-linear layout family. These algo-
rithms create a schematic representation that is inspired by the metro map metaphor. Originally,
these methods were used to generate layouts of subway lines, which lead to the name Metro Maps.
They restrict the angles of edges between nodes of the network to multiples of 45 degrees, yield-
ing a stratified version of the original layout. They also try to preserve directions where possible.
We adopt one of these algorithms to compute the layout of a sensor network. While different
algorithms exist, we chose the work of Nöllenburg et al. [NW06]. In contrast to other works, it
favors quality over computation speed. As the layout is static, this can be pre-computed and thus
speed is not a major issue.

In order to avoid cognitive overload, this view uses different level of details to adjust the visual
complexity. A “virtual camera” that supports zooming and panning enables the user to navigate in
this spatial view. Zooming in and out triggers different levels of detail of the sensor node glyphs.
At the most abstract level, all nodes are represented by simple, labeled rectangles (Figure 4.18).
Starting at the second level, higher zoom levels show two small views: the calender and the cluster
fingerprint (Figure 4.22). Every zoom level scales the views in intervals, because only discrete
scale factors make sense for the contained calender view.

Focusing on a particular station, the user is interested in its behavior over time. The patterns in
the contained time series can be analyzed with respect to different occurrence frequencies. Using
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4.6. Anomaly Detection in Sensor Networks

van Wijk’s Calendar View [VWVS99], we assign a single color value per day based on the cluster
the pattern belongs to. This color is then used to colorize a calendar (Figure 4.23). In this manner,
the user can thus identify seasonal patterns. In contrast to radial plots, the calendar view assigns
the same amount of screen space to individual patterns, which gives them equal visual importance.
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Figure 4.23: Calendar view of a partly selected sensor. The calendar maps colored patterns to
a cluster. A selection is active which causes unselected elements (mostly in summer) to become
smaller.

Every day in the calendar is colored by the cluster color this day belongs to. While different
layouts for calendars exist, we decided to align weekdays on along horizontal axis. Weekdays are
ordered according to the international standard ISO 8601 which defines Monday as the first day of
the week. This alignment brings Saturday and Sunday together, which facilitates the distinction
between workdays and weekends. From left to right, weekly patterns and changes over the year
for a given weekday become apparent. From top to bottom, patterns within a week are visible.
Looking at a distance on the small calendar, larger seasonal changes are most recognizable. A
tooltip shows the actual pattern together with the date and the ID of the cluster. Using cluster IDs
serves as an alternative to matching the color across different views, in particular for people with
color deficiency.

The analyst also wants to know which patterns are specific to a particular sensor. We therefore
added a small filtered version of the similarity view. All clusters are displayed in light gray to
provide context to the current focus (the sensor). Then, a filtered set of clusters that contain only
patterns from this sensor is created. In a Focus & Context approach, these reduced clusters are
then drawn on top of the faint, unfiltered clusters. Patterns that were recorded by the sensor in
focus are highlighted using the same set of colors. This creates a visual fingerprint of the sensor
that also has its representation in the similarity view. As in the similarity view, the clusters are
drawn using their convex hull, similar to the work of Schreck and Panse [SP07]. Again, tooltips
indicate the cluster ID to differentiate borderline cases. See Figure 4.24 for an example.

The system also shows a legend on the right side of the view to facilitate the matching between
pattern and color. It is based on the representative pattern of the cluster and the color that is
derived from its location in the color map. It enables the user to see which color relates to which
pattern. Again, corresponding IDs are displayed to differentiate borderline cases. The displayed
glyph contains the representative pattern of the cluster which is also used in the similarity view.
This strengthens the link between the two views.
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Figure 4.24: A sensor shown at the highest level of detail. The calendar maps time to a cluster
of patterns. The fingerprint view below illustrates which patterns this sensor recorded compared
to the other sensors. Low and even negative consumption patterns are recorded from March to
October.

4.6.3.3. Linking the Two Views

Aside from the visual linking between the two views, interaction with one of them can also affect
the other. Selecting a sensor in the network view triggers the selection of all linked time series
patterns in the similarity view. Using a single selection color to highlight a selected element would
overwrite the cluster association of the elements. We therefore use the color of the corresponding
cluster to highlight selected patterns and display the remaining ones in gray.

On the opposite side, we can also select interesting patterns in the similarity view and see their
distribution in the network. We use a lasso selection tool that is known from image manipulation
software to maximize flexibility. Again, selected patterns are colored while unselected patterns
remain gray.

On the lowest level of detail, the network view shows the distribution of selected patterns across
the network. We use a progress bar metaphor (blue bar on bright background) to reflect the
fraction of patterns that were selected. As can be seen in Figure 4.25, the selection affects mostly
the sensors at Hartham and Harwick. About two thirds of the sensor at Hartham are selected.
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Figure 4.25: Selected patterns distributed to their related sensors in the network. Sensors that are
at least partly selected are accordingly marked with bluish selection bars on bright background.

The analyst can also zoom in to also see the selection distributed to individual days. As can be
seen in Figure 4.26, mostly Saturdays and Sundays are selected. In this example, only patterns
on the left part of view have been selected. Thus, selected patterns are in different variations of
orange. The cyan clusters are not part of the selection and do not appear in the calendar view.
Filtered patterns are drawn as miniaturized rectangles to indicate that they are not part of the
selection. Missing values are not drawn. The fingerprint view is not affected by the selection.

4.6.4. Case Study

We performed a guided case study with a domain expert to demonstrate the usability of our ap-
proach in a real-world use case. The expert identified two major areas of relevance: monitoring
and planning. The first step was to identify interesting patterns with the help of the legend of
the network view (Figure 4.24). In the legend, the pattern that occurred most frequently gave the
expert a quick overview on the network. An interesting finding was the prominence of patterns
with backflow (i.e. patterns with significant values below zero) during daytime which is unusual.
These patterns indicate an electric flow from the consumers back into the grid – an often unde-
sired result which is due to the high amount of solar panels in the pilot region where the data was
recorded.

In the next step, the grid was explored using the Network View. The domain expert first fo-
cused on the calendar view, because it was considered the most intuitive one and most similar
to the tools the expert uses. Typically, manual lookup of patterns from the previous years is
required to derive typical daily patterns, based on the day of week, season of year and other
circumstances (e.g. public holidays). For the monitoring task, the focus was on some of the pre-
viously identified patterns (see Figure 4.24). After that, the Similarity View was used to select the
interesting parts (patterns with back-flow) in the top-left corner using the lasso tool. This selec-
tion action highlighted in the Network View that most of the patterns were recorded at only 5-6
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Figure 4.26: Partly selected sensor at Hartham. Mostly weekends are affected by the selection.
Filtered patterns are displayed only as small rectangles. The months August and September do
not contain any data.

stations in the network (e.g. in Figure 4.25). The expert concluded that only these few stations
needed to be investigated further in terms of backflow protection. For the planning task, the in-
terest was on finding the right time to temporarily isolate stations or cables for maintenance. This
should be done when power flow is at the lowest for all relevant stations. The expert therefore
used the network overview to anticipate the pattern for different station on a given day based on
the recordings of the previous year.

4.6.5. Design Process

In order to optimize the design choices, we performed the design process in an iterative manner.
Different data mappings, visual representations and interactions were explained to a group of
8 non-expert users and two experts from the electrical grid domain. We conducted informal
interviews with the running prototype which led to fruitful discussions about the pros and cons of
different aspects of the system. In a final round, we gave a video demonstration to two usability
professionals to get feedback on the usability of the system.

The first idea was to create a geo-referenced layout that is drawn on top of a thematic or naviga-
tional map. A result from the interview with the experts was that geographic reference is required
only in exceptional cases. The most important design factors for them were the network topology,
followed by simplicity.
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The visual representation of the sensor node has changed significantly through the design phase.
One idea was to split the calendar into four distinct seasons. The fingerprint view was motivated
by the fact that users could not correlate the two views without explanation. Putting the calendar
above the fingerprint was motivated by the fact that it was unclear to some of the users where the
calendar legend belongs to if put the other way round.

Different concepts to connect the similarity trajectory of a single sensor were proposed. The
idea of drawing arrow heads to indicate the direction of the spline was rejected, because the glyphs
were often misinterpreted in crowded displays. Aside from line segments and splines, convex
hulls [SP07] and bubble sets [CPC09] were evaluated. While they two emphasize areas, they also
cover much screen space, especially when outliers are present. Also, the temporal sequence was
no longer visible. Combing multiple techniques seemed promising at first, but produced too much
overplotting. We conducted a survey with about 15 non-experts with 12 screenshots of the system,
each with a different color map. It clearly confirmed that the four colors we used achieved the
clearest color separation.

Using integer IDs for clusters was suggested by one of the users to enforce the ability to recog-
nize the same cluster in different representations, especially for color deficient people. The ID is
used in the legend and in the tooltips of the calendar view, the fingerprint view and the similarity
view.

4.6.6. Discussion

In this section we presented a visualization system for interactive pattern analysis in univariate
sensor networks. The focus is on the analysis of similar patterns over different temporal scales,
but it also respects the network structure of the sensors. It consists of two strongly linked views
that enable the analyst to gain insight into the data set. The cluster prototypes show typical,
often occurring patterns. The network view gives an overview over the network topology and the
patterns for each sensor. This enables the analyst to compare different sensors and to see seasonal
trends.

We considered two types of scalability: the number of stations and the length of measurement
data. The application is fairly robust with respect to the number of nodes. The similarity view
is not affected by the network complexity and the network view uses a drill-down metaphor to
adjust the amount to displayed information. For very large networks, aggregation based on either
topology or geography could be used. Currently, only one year of measurements can be analyzed.
Comparing yearly patterns requires a different visual encoding of the data.

4.7. Explorative Analysis of 2D Color Maps

Color is one of the most important visual variables in information visualization. As discussed in
Section 4.6, one prominent example is the encoding of similarity in perceived similarity of colors.
In many cases, two-dimensional information can be color-coded based on a 2D color map. A
variety of color maps as well as a number of quality criteria for the use of color have been pre-
sented. The choice of the best color map depends on the analytical task users intend to perform
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Figure 4.27: The main window of the ColorMap-Explorer: the config and info panel is placed
on left side, the collection of views is stored in individual tabs at the right. The Overview tab
enumerates all available color map implementations.

and the design space in choosing an appropriate 2D color map is large. In this section, we present
the ColorMap-Explorer, a visual-interactive system that helps users in selecting the most appro-
priate 2D color map for their particular use case (Contribution C7). The ColorMap-Explorer also
provides a library of many color map implementations that have been proposed in the scientific
literature. To analyze their usefulness for different tasks, ColorMap-Explorer provides use case
scenarios to allow users to obtain qualitative feedback. In addition, quantitative metrics are pro-
vided on a global (i.e. per color map) and local (i.e. per point) scale. ColorMap-Explorer enables
users to explore the strengths and weaknesses of existing as well as user-provided color maps to
find the best fit for their task. Any color map can be exported to be reused in other visualization
tools.

4.7.1. Visual Access to Color Maps

Depending on the properties of the underlying data, different types of color maps can be applied
to encode data attributes visually in the most accurate way. Qualitative color maps allow for
the distinction between different categories of elements. Quantitative color maps allow for an
identification of similar (and dissimilar) data elements with respect to a quantitative value domain.
For quantitative color maps, the most relevant representatives are either sequential (unipolar) or
diverging (bipolar). In those cases where a single data variable (attribute) is encoded, a one-
dimensional color ramp can be used.
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For high-dimensional data, 2D color maps are used to preserve similarity of the items in a visual
variable. Data items with more than two attributes are first mapped into the two-dimensional space
according to some transformation or projection method. The result of these upstream techniques
is a mapping in 2D that can directly be used as position information in a 2D color map.

As a result, the viewer can estimate the relative similarity of high-dimensional data by compar-
ing colors. As such, 2D color maps are appropriate for high-dimensional data; we do not recom-
mend the direct use of two data attributes as coordinates in the map (cf. Wainer et al. [WF80]).

A variety of different static 2D color maps has been presented in the past. The survey of Bernard
et al. gives an overview [BSM∗15]. The authors review quality criteria and design guidelines for
color maps and depict the huge design space for the design and the use of static 2D color maps.

In order to faithfully reflect the relative pair-wise distances of the original data as closely as
possible, such a 2D color map should preserve the notion of perceived similarity in terms of color.
The perceived distance between colors should be linearly related to the geometric distance in both
the high- and the 2-dimensional space. Another quality criterion for a color map is to exploit the
given color space, aiming for a maximum number of distinguishable colors. In many cases the
choice of color maps is also made with respect to colorblindness sensitivity. For example, about
8-10 percent of the male population in Europe suffer from a color vision deficiency [Alb10].
Additional requirements to color maps may be based on user-centered constraints like corporate
designs. In some cases, 2D color maps may also require a certain contrast against the background
color so that the visual elements can be clearly identified as such. Some other visualizations may
require that text and other overlays are legible on a canvas that is drawn based on the color map.

A taxonomy of different color map design criteria is presented by Tominski et al. [TFS08].
According to the authors, meaningful color encodings strongly depend on the data, the task, the
target user group, and the display device. A fourth dimension in the problem space is the large
number of static 2D color maps presented in literature. Naturally, there is no color map that is
perfect with respect to all requirements. To give an example, a color map can hardly be colorblind-
safe and maximize color exploitation at the same time. Visualization designers need to balance a
trade-off between different complementary design criteria. A premature color map decision may
lead to false assumptions with respect to the underlying data properties. Consequently, choosing
a 2D color map for a visualization should be done carefully.

To the best of our knowledge, a decision support system that supports the user in making such
a choice has not yet been presented. We identify the following challenges:

• Visual overview of existing color maps

• Comparison of color maps with respect to global quantitative quality measures

• Assessment of local properties of an individual map

• Visual analysis of the shape of a color map with respect to different color spaces.

• Assessment of the maximum amount of discernible information that can be encoded in a
color map

• Showing the homogeneity of perceived similarity

135



4. Visual Analysis of Sensor Networks

• Assessment of the interplay of color map with other visual variables

We present the ColorMap-Explorer, a visual-interactive decision support system for 2D color
maps. The system assists visualization designers to find the best-fitting color map in this com-
plex search space. At the moment, it contains 22 color map implementations that were discussed
in the scientific literature. Visual access to these 2D color maps is provided in an overview vi-
sualization. For every color map, quantitative metrics are provided on a global (i.e. per color
map) and local (i.e. per point) scale. For the comparison of multiple color maps, we provide a
view utilizing the global measures. A detailed analysis of local properties is provided by several
views, each shedding light from a different perspective. In particular, we allow for the detailed
analysis of a) different color channels b) local perceptual linearity, and c) the shape of the area in
different color spaces for every color map. In order to get a first impression of how the color map
behaves in a targeted downstream visualization, several views stress the color map against other
visual variables in different example scenarios. Finally, the selected color map can be exported
for re-use in downstream visualization tools.

The workflow of the the ColorMap-Explorer is as follows: starting with an overview of all
color map implementations, the user can select up to three color maps which then are put in
juxtaposition. This allows for direct comparison to narrow down the number of candidates with
respect to the analytical task. Individual color maps are then investigated in more detail before the
best fit is identified. When the decision on the best matching color map has been made, the user
can save the color map as an image to disk. The user can always move backwards and forwards
in this workflow pipeline as desired.

4.7.2. Encoding Information in Color Maps

Appropriate color maps for specific tasks and specific data properties is a well discussed topic
in the literature. General guidelines on selecting color maps can be found in [RO86, War88,
RTB96, Rhe00]. In addition, linear color ranges (1D) for segmentation and categorical data have
been discussed previously [Hea96,HB03a]. For two-dimensional color maps there are few guide-
lines available. The study of Wainer et al. [WF80] showed that encoding of two dimensional
data with two dimensional color maps is not intelligible. In contrast to this statement, Ware
and Beatty [WB88] found that each additional color dimension (red, green, blue channel) is as
effective as an additional spatial dimension in the encoding of multivariate (more than two dimen-
sional) data. As described in [MBS∗14], there is a difference of between encoding single data
dimensions with color and encoding (multidimensional) data relations. The first case requires a
precise mapping of one data dimension to one color dimension or a one dimensional color map.
The second case involves multiple dimensions for each visual object whose characteristics and
relations to other objects should be revealed by color.

In [MBS∗14] the authors present data-driven quality measures that are used to perceptually
optimize color mapping for high-dimensional data. These measures are very effective if and only
if the data set and its distribution as well as subsets (e.g., classes or clusters within the data)
are known apriori and should be preserved in the color mapping. In this section, we focus on a
data-independent approach, which focuses rather on the analysis tasks and not on data properties.
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In multivariate data analysis applications, two dimensional color maps have been success-
fully applied [RO86, Him98, SA99, GGMZ05, GCML06, ZNK07, SvLB10, BvLBS11, AAS∗12,
BRS∗12b,BWK∗13,GP13,SBM∗14,BSW∗14] (see Figure 4.28 for an overview of implemented
color maps). From this background, many two dimensional color maps have been proposed in the
literature, each with different strengths and weaknesses. A recent survey has been conducted by
Bernard et al. [BSM∗15], enriched with a quality assessment for different tasks. Our work uses
their quality metrics and provides them in an interactive manner to the user. In many aspects,
our tool is similar to PRAVDAColor, an IBM software module that aims at supporting the user
in selecting the right color map [BRT95]. Its main feature, however, is a set of perception-based
rules that makes suggestions depending on task and data type.

4.7.3. Perceived Color Differences

For the rest of this section, we will refer to a measure that indicates how similar two colors are.
Such a measure takes the human visual system into account in order to be reliable. In this section,
we give a definition of a metric for measuring perceived color differences. This difference is 0 if
two colors are perceived as equal and 1.0 if and only if the difference between two colors is “just
noticeable” (visible by half the observers).

This definition of perceived color difference is based on the standardized color appearance
model CieCAM02 [MFH∗02]. Luo et al. have defined a distance measure ∆E for this model,
based on the idea that a CAM should be a natural candidate to define a ∆E because similarity
of colors should be rooted in their appearance attributes [LCL06]. The authors correlate appear-
ance attribute differences to the color difference data sets and obtained a color difference formula
and different parameterizations for the formula. They report that the predictive performance of
the overarching CAM02-UCS parametrization is comparable to the specific parameterizations for
small and large distances. This property is of particular importance for the evaluation of color
maps, because it enables a quantification of the expected errors occurring when taking color dis-
tance for data distance.

A shortened definition is given in Equation 4.1, for a complete discussion, we refer to the orig-
inal work of Luo et al [LCL06]. The definition is based on color appearance attributes J, M, and
h (other choices turned out to have inferior predictive power with regard to color difference) and
constants KL, c1, and c2. The constants serve the purpose of fitting to small color distance (SCD)
and/or large color distance (LCD) data, resulting in CAM02-SCD, CAM02-LCD respectively and
CAM02-UCS (i.e. uniform) when fitted in combination.

J′ =
(1+100c1)J

1+ c1J
M′ = (1/c2)ln(1+ c2M)

a′ = M′cos(h)

b′ = M′sin(h)

∆E = ∆EUCS =
√

(∆J′/KL)2 +∆a′2 +∆b′2

(4.1)
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Discounting for the constants, ∆EUCS is an euclidean distance defined in a suitable derivate of
CieCAM02. As an effect, J is being expanded by about 20%, with the coefficient c1 actually being
constant across the SCD, LCD, and UCS variants. On the other hand, the colorfulness M′, is being
compressed significantly, with noticeable differences between CAM02-LCD and SCD variants.
This hints at unexplained psycho-visual differences in the chroma component when judging small
and large color differences. However, most color maps do not rely on chromatic content alone to
differentiate colors. The hue h remains unchanged.

In summary, ∆E has the properties of a distance and a good approximation of perceived global
and local color differences. Despite minor uncertainty regarding the role of the chroma compo-
nent, is seems a very good assessment tool for quantifying the relation between value distance
and perceived color distance inherent to color scales. Being based on CieCAM02, ∆EUCS could
even account for differences in lighting conditions and surroundings, but this has not been studied.
The measure is thus based on standard lighting conditions, the sRGB “typical lighting conditions”
representative for office use. It is therefore not an absolute measure; the actual perceived differ-
ence in color depends on many environmental factors such as lighting conditions, display, and the
visual system of the user.

Figure 4.28: The initial overview lists all available color map implementations.

4.7.4. The ColorMap-Explorer

In this section, we present the different views of the ColorMap-Explorer along a typical workflow.
The different views support the decision making process by showing individual features of the
color maps. See Figure 4.27 for an overview screenshot of the software tool.

In total, 22 color maps mentioned in the information visualization literature have been re-
implemented based on either functional description or digital images in publications. Software
developers can extend the publicly available system by adding new color map implementations.
In addition, an image-based file import enables non-experts to import custom color maps into the
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system. Thus, visualization designers can easily extend the set of color maps and compare new
designs with existing ones.

4.7.4.1. Overview Panel

Figure 4.28 shows all available color map implementations that currently exist in the ColorMap-
Explorer. The Overview Panel lists all implementations as iconic images, annotated with name
tags. The decision making workflow typically starts with this visualization, as this enables the
analyst to gain an overview. In this juxtaposition, the visualization designer can narrow down the
set of candidates to the most relevant ones.

Criteria for this filtering step may be based on user preference such as the existence or lack
of specific colors. The display device is yet another restricting aspect. For example, foreground
and background colors influence the applicability for the visualization design. In addition, the
analytical task may be a limiting aspect for the set of relevant color maps. A guideline for the fit-
ness of specific color maps with respect to specific analytical tasks has been discussed by Bernard
et al. [BSM∗15]. Other criteria could be based on color theory or perceptual aspects such as
brightness levels.

Individual color maps can be selected to get additional meta information such as scientific pub-
lications that define or reference the color map. In these publications, the user can find additional
information on the construction, usage scenarios, etc. (see Figure 4.27, left). This information can
be used to further narrow down the collection of candidates.

4.7.4.2. Comparative View

The Comparative View allows for the direct comparison of the most relevant candidates. See
Figure 4.29 for an illustration. For every color map, six complementing quality measures indicate
the fitness for a given analysis task (cf. [BSM∗15]). These quality measures assess the global
quality of the color map with a single value; we therefore refer to them as global measures. For
every quality measure, score, and ranking information is provided to facilitate the comparison
with all other color maps of the system. A box-plot chart displays the mean score (red line mark)
and the range of 25% and 75% quantile (pink background). The 10% and 90% quantiles are
indicated by a thin line (the whiskers). The color maps and their quality measures are arranged
on panels that are put in juxtaposition. By that means, the visualization designer is enabled to
directly compare global quality aspects of different color maps.

As a result, the visualization designer can further reduce the number of candidates. An individ-
ual color maps can be analyzed further in the Decomposed View.

4.7.4.3. Decomposed View

The Decomposed View allows for the detailed analysis of single color maps. Two complementing
aspects are considered. First, the color map is split into a set of color attributes from different
color spaces. Second, local features of every attribute can be analyzed.
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Figure 4.29: The Comparative View shows two selected color maps and their relative scores in
different categories. This enables the user to compare scores and find the color map that fits best.

Viewing multiple color attributes In order to get an in-depth understanding of the properties
of the color map, the map can be viewed from eight alternative perspectives. Each of them shows
the same color map, but is filtered by a different color attribute.

We provide views for the red, green, and blue color components (center row in Figure 4.30),
hue, saturation, and brightness (bottom row) as well as luma and attention steering (top row).
Hue is special in that it highly depends on saturation. Without saturation, the value of hue is
meaningless. Therefore, the tiles in the hue view are scaled according to its saturation. The
original color map is shown in the top left panel. The first six values are directly extracted from
the RGB and HSB color models.

Studies of Camgöz [CYG04] show that humans are predominantly attracted by bright and sat-
urated colors. Attention steering effects may be harmful in several visual analysis tasks, because
the analyst may be mislead by striking features in the visualization that suppress less visual promi-
nent features or patterns. Therefore, we approximate the potential of colors to attract the analyst’s
eye with

√
J2 +M2 where J is the relative lightness and M the colorfulness. This definition ac-

cords to the findings of Camgöz et al. [CYG04]. However, it is an approximation of the attention
steering effects and is yet to be evaluated. Therefore, we show the both components J and M as
decomposed views.
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As a result, the homogeneity of a color map can be assessed. It also reveals how the color map
is constructed. For example, the color map shown in Figure 4.30 is constructed by three diagonal
color ramps in the RGB channels.

Revealing local characteristics The spatial distribution of color in the different filtered views
yields a variety of local features that can be validated. We support the user in identifying varia-
tions across the map with glyph-based annotations. As can been seen in Figure 4.30, the display
of the individual views is discretized. This allows us to enrich the view with local glyphs, similar
to vector field arrow grids that are well-known in the SciVis community.

We chose regular hexagons as spatial discretization, because this reveals equal spatial distances
between tiles and all neighbors (in contrast to rectangular tiles). The number of tiles is automati-
cally adjusted according to the viewport dimensions. Thus, the user can adjust the discretization
level.

Figure 4.30: The color map (top left) is split into different components such as the color channels.
The arrows point in the direction of the strongest perceived color change.

By default, each tile is annotated with a black arrow that indicates the perceived color distance
with respect to its neighboring tiles. The length of the arrow represents the strength of the change,
it points towards the strongest perceived change. Changes are normalized across all color maps to
allow for a fair comparison. The pseudo-code in Algorithm 1 illustrates the computation.

We compute it by averaging the color distances between the center of the tile and all neighbors
in ∆E as defined in Equation 4.1. We avoid false assumptions caused by extrapolation by com-
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Algorithm 1 Compute difference arrows
Vector force← [0, 0]
Color color← tileColor(x, y)
for all Direction dir : directions(x, y) do

Tile n← tileModel.getNeighborFor(x, y, dir)
Color ncolor← tileColor(n.x, n.y)
force += distance(color, ncolor) * dir

end for
return force

puting forces at border tiles only with a subset of tiles. As a consequence, arrows in border tiles
always point along the border, never inside.

Interactive analysis of quantitative information More detailed information on the ∆E dis-
tances of an individual tile is shown when hovering it with the mouse cursor (see Figure 4.31 –
right). The arrow glyphs for the tile at the cursor and adjacent tiles are removed and a detailed
glyph is shown instead. As a result relative color distances of a tile to the closest neighbors can
be analyzed in detail. The glyph consists of six arrows, each pointing to the center of one of the
neighboring tiles (i.e. they all have equal length). The stroke thickness indicates the perceived
color change. Detailed quantitative information for the point in the color map at the cursor posi-
tion is listed in tabular form in a separate info panel. This pane is partly depicted in Figure 4.31
at the left.

Figure 4.31: The detail arrow glyph shows individual difference to neighbor tiles. Quantitative
information for that tile is given in the Info Panel at the left of the window.

The first two entries, X and Y, indicate the relative position of the mouse cursor on the color
map in normalized coordinates. The next values represent the red, green, and blue component in
the standard RGB color model that is used in many applications. The next three variables describe
the color in the HSB color model, i.e. hue, saturation, and brightness. Hue is defined on a circular
(connected) range from 0°-360°. Saturation and value are percentages.

CAM Lightness J is the brightness of a sample relative to the reference white. CAM Hue is the
hue as defined in CieCAM02, which is not fundamentally different from other hue definitions,
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but is well-aligned to human perception because hue linearity is one of its design goals. That is,
a human observer is likely to perceive the same hue when given another sample with the same
CAM hue but different brightness and/or chromatic content. Hue quadrature is a hue measure
derived from hue where the values 0, 100, 200, and 300 correspond to the psychologically mean-
ingful hues of red, yellow, green, and blue, respectively. CAM Chroma is the colorfulness of a
stimulus as compared to the reference white, with 0 representing neutral colors. It is designed
to be independent of lighting conditions. CAM saturation is the colorfulness of a stimulus as a
proportion of its brightness. It is designed to be independent of the perceived brightness differ-
ences observable for different hues. The CIECAM02 Brightness (Q) and colorfulness (M) have
not been included due to their strong dependency to the assumed viewing conditions. The view-
ing conditions are chosen based on the sRGB “typical” conditions and the guidance given in the
CIECAM02 technical report (CIE 159:2004).

4.7.4.4. 3D View

In the 3D View, the visualization designer can assess how the shape of a single color map behaves
in different color spaces. We take advantage of the fact that the RGB, CAM02-UCS (based on
CIECAM02 as detailed above), HSB, and CIELAB color space can be spanned by three parame-
ters. We provide 3D visualizations of the shape of a color map for every color space. These four
visualizations are shown side by side in the 3D View. The shape of the color maps allows for
an in-depth analysis of their properties. For example, a plane in the CieLab or CieCAM02 space
indicates high perceptual linearity.

To transform the color map into the different 3D color spaces, we first sample the color map at
regular grid coordinates. The color at the sampling points is then converted into the different color
spaces. The Lab conversion is achieved by assuming sRGB primaries and an E reference white
source as appropriate for self-luminous displays. The exact conversion routines can be found in
the corresponding literature, which is comprised of CIE Publications (Lab: ISO 11664-4:2008(E)
/ CIE S 014-4/E:2007; CIECAM02: Technical Report 159:2004), the HSB proposal [Smi78], and
the Luo et al. CAM02-UCS proposal [LCL06]. All of them have three components, and most
of them can be used directly as spatial coordinates in a 3D surface plot. In order to represent
the hue and saturation values of the HSB color space as spatial coordinates in 3D, we apply
a transformation into polar coordinates where hue denotes the angle and saturation the radius.
Consequently, the color space is a cylinder, not a cube as in the other cases.

One of the benefits of the 3D View is that visualization designers are supported in the identi-
fication of the color space that was used for the design of the color map. As an example, many
color maps are constructed as planar cuts through the RGB cube. An illustrative example based
on the HSB color space is the map of Alhoniemi and Simula as shown in Figure 4.32. It covers
the entire hue and brightness ranges at a constant saturation. This is why it appears as a cylinder
in the HSB visualization. The individual 3D visualizations allow for interactive manipulation of
the virtual camera. The designer can rotate the plot and adjust the axis scaling.
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Figure 4.32: The 3D View of the map by Simula and Alhoniemi [SA99]: The color map is plotted
in four different 3D spaces: the RGB and CIECAM02 cubes are at the top. The HSB space is
actually a cylinder as the hue components defines a circle, the saturation its radius.

4.7.4.5. Color Sampling View

One of the most important quality aspects of a 2D color map is to faithfully represent spatial
distances on the map with perceived color distances. This criterion is often called the perceptual
linearity. Another important aspect is the number of distinguishable colors. The more colors a
color map provides the more different information units can be encoded visually. We measure and
illustrate the quality of both aspects in the Color Sampling View (see Figure 4.33).

Our approach first estimates the number of distinguishable colors based on the ∆E distance
measure as described in Section 4.7.3. We solve an optimization problem trying to maximize
the number of coordinates on the color map that fulfill the condition of a ∆E larger than a given
threshold value t. The threshold is a user parameter and adjusts the minimum color distance in
∆E. A distance of t = 1.0 means that half of the observers are able to identify two colors as
distinct. These points are depicted as white dots in Figure 4.33.

We compute the set of points using a circular sampling strategy: First, the center of the map
is added to the result set. The algorithm then iterates on concentric circles around the center.
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Each of these circles is sampled in regular intervals. The number of sampling points on the circle
increases with the radius of the circle increases to guarantee an equal sampling density. Once
the set of points is defined, pair-wise distances are computed. For each sample point, the color
distance to all points in result set is computed in ∆E. A point is added to the result set if the
distance is always smaller than t. We note that is algorithm produces merely an approximation,
but a valid lower bound for the number of points. Assuming that the approximation quality is
similar for different maps, it also allows to compare the number of colors.

Figure 4.33: The Color Sampling View for the color maps of Bremm (left) and TeulingFig3 (right):
white dots indicate centroids of distinguishable colors, black surrounding polygons are isolines
similar to McAdam ellipses revealing information about local perceptual features.

In a second step, our approach estimates the perceptual linearity of the color map based on
the regions with similar colors. Based on the set of points that define distinguishable colors, the
areas with a distance of max. 1/2 t to the central point are approximated. Starting at the center, the
algorithm samples along a set of straight line segments at different angles. For every line segment,
we estimate the point where the threshold 1/2 t is crossed. These crossing points are connected
to an iso-line polygon. The resulting polygon is similar to the MacAdam ellipse [Mac42]. Major
differences are that MacAdam ellipses are defined in the xy-plane and are real ellipses based on
the minimum and maximum ratio between geometric distance and perceived color distance (as
measured by a human test person).

The Color Sampling View depicts the coordinates of the result set as white dots and the sur-
rounding iso-lines as black polygons. The number of white dots indicates the number of dis-
tinguishable colors. The shape of an iso-line allows for an in-depth analysis of local perceptual
features. Circular areas indicate a high local perceptual linearity, because the change of color is
identical for all directions. On the contrary, distorted shapes indicate a varying local perceptual
linearity. An example can be seen at the upper right of Figure 4.33 – left. While most shapes
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are rather circular, the upper right corner exhibits elliptical distortion. Individual divergences in
shape can be identified easily by the user in this view.

The view also enables the visualization designer to compare different shapes. Variations in
size indicate variances in the distribution of distinguishable colors. Thus, it can be seen that the
perceptual linearity varies across the color map. In Figure 4.33, the color maps have 176 and
295 colors with a pair-wise distance of 5 ∆E. Interestingly, their distribution on the map is very
different. In contrast, the map of Simula and Alhoniemi exhibits more than 600 colors.

4.7.4.6. Example Views

The usefulness of a color map for a visualization depends not only on intrinsic quality measures,
but also on the usage context. Other visual environment parameters should be considered. With
the example views, we support the visualization designer with test environments stressing color
maps with other visual variables.

Figure 4.34: The Points Example View. A set of 100 points is plotted on different backgrounds
with different levels of transparency. The color of overlapping circles is blended.

Point Set Example The first scenario illustrates the combination of the visual variables color (of
the color map) and the position attribute. To that means, 100 equally-sized points with random
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colors are aligned at random positions in a point-based scatterplot. The test environment is shown
in Figure 4.34. The visualization designer is enabled to assess the applicability of a color map for
spatial object distributions. For the sake of comparability of different tests the randomization is
deterministic.

Additional visual aspects of possible interest are the transparency of the colored points and
the interplay of the color map with the background color. To this end, we utilize the small-
multiples pattern and duplicate the test setup by means of a 4×3 juxtaposition. The 12 test setups
differ in the color transparency level (25%, 50%, 75%, and 100% alpha channel) and the chosen
background colors (white, gray, and black). This grid is depicted in Figure 4.34.

As a result, the user can immediately see whether the chosen color map has a significant dis-
tance to the background and to which extent transparency can be used.

Text Overlay Example An important requirement of many visualizations is that text must be
legible. Therefore, the readability of fine visual structures (such as printed text) on colored back-
ground is illustrated in the Text Overlay View, as shown in Figure 4.35. Visualization designers
are enabled to assess the readability of the provided text snippets in a qualitative way.

We use black, medium gray, and white as contrasting text colors. The text is printed at different
font sizes on a background that is generated from the color map. The two dynamic parame-
ters (i.e. text color and font size) are varied in a small-multiples setup. The background of the test
environments reflects the colors of the chosen color map.

Based on our experiments, the way the background is defined has a strong impact on the read-
ability of the text. In particular, edges with sharp color contrast seem to distract the user’s at-
tention. To mitigate such effects, we use smooth (i.e. bilinear) interpolation of again pseudo-
randomly selected color samples from the color map. This color is assigned to rectangles which
are arranged in a two-dimensional grid in order to avoid irregular color changes. This view sup-
ports the user in comparing different environment variables in a text-based scenario.

Figure 4.35: The Text Overlay View. Text is printed at different sizes in different colors on space-
filling background that is generated from the selected color map.
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4.7.4.7. Use Case Examples

In this section, we demonstrate the usefulness of the ColorMap-Explorer tool. We show the some
of the findings that were made along an exemplary analysis workflow.

We conduct a scenario where a given color map is assumed to be ideal, be it on past experience
or user preference. In this scenario, color should be used to encode information in a calendar-
based visualization. We refer to Section 4.6 for a concrete use case of this colored calendar.
Different variation of an example data set are depicted in Figure 4.36. The analytical task of the
calendar view is mainly the comparison of individual (high-dimensional) data elements. Thus, the
first important criterion is a large number of distinguishable colors to facilitate comparison tasks.
The second criterion is perceptual linearity to adequately represent similarities of the data with
color. Since the calendar grid is black, this color should be avoided.

Figure 4.36: The calendar, rendered with different color maps. From top to bottom: BCP37,
TeulingFig3, Simula and Alhoniemi, Bremm (regular).

The visualization designer uses the color map library that comes with the ColorMap-Explorer
to experiment with different color maps. While some of the visualizations are more colorful than
others, it is unclear to what extend similarity of items from the original data set is preserved. The
ColorMap-Explorer can help finding out which color maps are suited for this task.

After starting the tool, the overview panel comes up and the visualization designer can view all
22 color maps at a glance as shown in Figure 4.27. Large discrepancies in the colorfulness of the
different solutions become immediately visible. Since candidate maps should provide high color
variations, the designer excludes maps such as BCP37 (the upper color map in Figure 4.36) or
Robertson and O’Callaghan from further analysis due to their low colorfulness.
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Based on the gained overview, the designer picks the most interesting color maps including the
two variations of the color map of Bremm et al. [BvLBS11]. The Comparative View in Figure 4.29
shows them in juxtaposition. Although the number of colors is about average in the regular map,
it is superior in the other scoring categories. Bremm et al. (regular) has a higher score than the
stretched version in most categories. As a consequence, the stretched version is excluded from
the candidate set.

In a next step, the visualization designer continues to the Decomposition Panel with remaining
candidates for detailed inspection. In Figure 4.30 (Teuling Fig 2. [TSS11]), the second row shows
that the red, green, and blue components increase across the map, but in different directions. The
color map exploits all three RGB channels yielding a large number of distinguishable colors.
However, the top-left view shows large arrow vectors along the rising diagonal. This reveals that
the perceived color varies strongly leading to an inhomogeneous perceptual linearity in general.
As a result, the designer rejects this color map for this task.

Aiming for high color exploitation, a colorful map such as Simula and Alhoniemi [SA99] is
picked from the Overview Panel. The 3D view in Figure 4.32 confirms that the map covers large
areas in the RGB and HSB color spaces. However, in the CieLab and CieCAM spaces the shape
divergences strongly from a plane indicating a lack of perceptual linearity. As a consequence, the
visualization designer concludes that the similarity of data items is not preserved well enough.

Our visualization expert returns to Bremm (regular) and opens the Color Sampling View. As
can be seen in Figure 4.33 (left), the largest part of the map comprises small and well-shaped
ellipses. However, in the top right corner an anomaly can be identified. The black outlines are
unproportionally large and distorted. The color variation is this regions is very low, leading of
these large areas of similar color. Despite the fact that the map is mostly homogeneous, local
features in the upper right corner hamper the homogeneity of the perceptual linearity. In contrast,
in the map of Steiger et al. (see Figure 4.21) and in Teuling Fig. 3 [TSS11] (Figure 4.33 – right)
this deficiency is less prominent. Repeating this comparison with other color maps reveals that
(and why) Teuling Fig. 3 is among the best scored color maps with respect to the preservation of
perceptual linearity.

In Figure 4.34, Guo’s cone-shaped color map [GGMZ05] is plotted as a randomized Point Set
Example. This color map has a very high color exploitation, which makes it easy to identify
differently colored circles as such. However, some of the colors are very bright and hard to
differentiate on white background, in particular at higher transparency levels. It is therefore better
suited on dark backgrounds.

Looking at the Text Overlay example in Figure 4.35, the ColorMap-Explorer reveals that black
text is fairly easy to read with the Teuling Fig. 3 color map [TSS11] – independent of the font
size. On the other hand, gray and white are not ideal. One possible explanation is the similar
brightness of foreground and background. Since bright text is not used in the target visualization,
this is not an exclusion criterion.

The visualization designer concludes the decision support process of the use case. BCP37
was rejected due to the limited number of distinguishable colors. Simula and Alhoniemi has a
high color exploitation, but the 3D View revealed a lack of perceptual linearity. With the Color
Sampling View, Bremm (regular) was ruled out. The color maps of Teuling Fig. 3 and Steiger et
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al. both exhibit high perceptual linearity and provide a fair color exploitation. The visualization
designer therefore picks these two maps for the calendar visualization.

Having started with a set of preferred color maps, the ColorMap-Explorer enabled the visual-
ization designer to reduce the number to two well-suited color maps. The decision support system
enriched the decision making with qualitative and quantitative means.

4.7.5. Discussion

In this section, we showcased the ColorMap-Explorer, a tool for the visual exploration of 2D
color maps. It gives an overview over many color maps that have been proposed in the literature
on information visualization, provides different views for an in-detail analysis of strengths and
weaknesses of color maps, and supports direct comparison, both visual and quantitative (i.e based
on explicit quality measures). Each color map can be exported as a high-resolution image. This
enables the data scientist not only to find the best fit for a given task, but also to directly re-use
the color map in other visualization software tools.

Current color map implementations are general purpose and independent from the data set.
Similar to the optimization approach, color maps can be custom-tailored to specific data sets in
order to achieve higher overall performance. The work of Mittelstädt et al. [MBS∗14] already
points in that direction. Integration such customized color maps in the explorer could help foster-
ing that research area.

4.8. Exploring Simulation in Sensor Network Models

As soon as problems in the grid have been identified, the operators evaluate different options to
compensate weaknesses through additional infrastructure or maintenance operations. But which
options brings with most benefit in relation to expected cost and effort? Simulation is an important
measure to estimate different properties of a planned network changes such as throughput and
downtime. However, many parameters need to be adjusted to approximate real-world conditions
properly. In this section we present a visualization system that visually supports and guides the
analysis of (physical) network simulation problems (Contribution C8). Automatic optimizers run
as a black box giving an (locally) optimal result in terms of the underlying simulation model and
parameter configuration. This is often not ideal for practical usage. Our system assists the user
in the process of comparing different simulations to quickly achieve the optimal configuration in
terms of user preference. It highlights differences between simulation runs and indicates which
parameter modification leads to the best improvement. We expect that this results in large time
savings for the domain expert while configuring the simulation system.

4.8.1. Visual Support for Simulations

Over the past years, urbanization has increased significantly, leading to continuous construction
and extension of densely populated areas. Every time a new developing area is set up, not only
houses and supermarkets are built, but also supply networks that provide gas, electricity and
drinking water. These networks need to be laid out so that all customers are supplied at a minimum
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of cost, time and effort. This is an optimization problem that needs to be solved. Several software-
based solutions exist that simulate flow, cost and other quantities in such networks.

We have identified two tasks for urban planners and other, related domains: the first one is
about defining a new plan for an optimal network layout based on a set of given constraints. The
second one is about improving an existing network configuration to identify solutions that bring
the largest benefit at the lowest cost.

Taking existing structures into account is more complex, but comes with the advantage that
simulation results can be compared to physical conditions and real measurements. In either case,
the simulation system must be configured to match real-world conditions as closely as possible.
Only if this is given, the results of an optimization process are reliable and can therefore be trusted.

In general, the default configuration of the simulation system does not match the real circum-
stances of the user’s task domain. She therefore needs to iteratively tweak the parameters until a
desired target result is achieved. In this process, it is important to compare different simulation
runs to find out which effect a parameter change has on which target variables.

Based on a formal description of the simulation parameters, optimizers can find a configuration
that is “best” for one or more variables in a mathematical sense. However, the mathematical
optimal result is not always the optimal result from the user’s perspective. The user might have
a target state in mind, but it is not always clear how to converge from the current state towards
the target state: The optimizer may provide an optimal solution, but it will usually not be able
to determine whether the transition from the current state to the optimal state is feasible. This
feasibility can refer to explicit constraints that are imposed by the simulation model, for example,
the conservation of momentum and energy, or box constraints that are taken into account during
the optimization. But it may also refer to implicit constraints that are not part of the simulation
model. For example, whether a modification or restructuring of a supply network is feasible
within a certain time constraint or not needs to be clarified.

Another problem with this is that these simulators run as a black-box and the user is confronted
with a large number of input- and result variables, often in tabular form. An appropriate visu-
alization of the network with interactive analysis properties is key to an in-depth understanding
of the optimization problem. In the scientific community, this is sometimes referred to as Com-
putational Steering: an iterative, interactive process that intertwines user and machine to achieve
better results in less time [WBD00]. Closely related is the field of Visual Analytics where iterative,
alternating human and automatic analysis are combined.

4.8.1.1. Overview

We present an analysis system to overcome the aforementioned limitations: It consists of several,
closely coupled views with interaction support, which can help the user to gain a more intuitive
understanding about the inter-dependencies between the input- and output parameters and the
behavior of the system as a whole:

• A network visualization that shows the topological and geographic layout

• An simulation browser that provides the configuration history tree
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• Drill-down support that adjust the level of detail depending on the zoom factor

• Visual-interactive configuration of simulation parameters

As a result the user can interactively explore different network simulation parameter settings.
The global effect of changing individual design parameters is visualized in the parameter config-
uration view. The local effects for the individual network nodes are shown in the network view,
and changes can be compared on a per-node basis.

The user is supported in the exploration by a visual history of parameter changes. The manual
analysis process is documented in the history view, supporting an active, user-steered exploration
of the design space.

Figure 4.37: The main window of the visualization system with its two views. The Simulation
History View on the left illustrates the different branches of the simulation parameter changes.
The Network View on the right gives an overview on the simulation results distributed in the
network topology.

4.8.1.2. Simulation History

In the work of Afzal et al. the impact of user decisions is shown in a simulation of epidemic
spreading [AME11]. Similar to our history view, one of the views illustrates the decision his-
tory the user made during the simulation and its impacts on chosen target functions. Unger et
al. describe a system to visualize different statistical experiments of biochemical reaction net-
works [US09]. The focus of this work was on comparing different simulation runs. Compared to
our approach, it focuses on the results in terms of minimal and maximal extent, not on differences
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in time or in the parameter space. In the work of Brodlie et al. [BPW∗93] a history tree is used,
again similar to our approach, to enable the user to backtrack parameter value changes.

A recent survey of methods to “visualize alternatives in multiple criteria decision making prob-
lems” can be found in the publication by Miettinen et al. [Mie14].

4.8.1.3. Parameter Space Exploration

The exploration of parameter spaces for complex simulation models is a task with many practical
applications, and a large variety of tools supporting this exploration and analysis process exist.

A visualization for refining a coarsely sampled subspace of the parameter space was realized by
Luboschik et al. [LRHS14]. Heterogeneous information between adjacent scales of the parameter
and time space of the simulation results is used to enable the user to refine the simulation results at
a reasonable level. Their work, however, does not focus on networks. Matkovic et al. [MGJH11]
present a visual-interactive system for simulation analysis. They define a fixed set of control
parameters and response parameters for the simulation. Similar to our approach, the control
parameters are sampled with a certain number of variations, but the simulation runs are pre-
computed.

The HyperMoVal tool, developed by Piringer et al. [PBK10], also aims at the optimization of
engine construction, but more focused on the validation of regression models. The work identifies
several key tasks, like comparison of results and models, as well as quality estimation and assess-
ment of plausibility. We picked up these ideas by differentiating local and global parameters and
their effects in the simulated network.

The concept of Design Steering, as a special case for the Computational Steering during the
design process, was investigated by Wright et al. [WBD00]. Their system allows the user to man-
ually or automatically navigate in a six-dimensional space of design parameters, while building
a trajectory that also served as a history of previous design attempts. In our work, all parame-
ters are projected into 2D space for better comparison and also to allow for a higher number of
parameters.

Another application of parameter space exploration was examined by Bruckner et al. [BM10].
In their case, the parameters are shown as circular parallel-coordinate plots, because the main
focus of this work was not on the visualization of the parameter space, but on the visualization of
the simulation space and its time characteristics.

An approach for parameter space exploration that is agnostic from the application domain was
presented by Berger et al. [BPFG11]. It covers visual guidance to quickly identify interesting
parameter regions. This is mainly achieved by sampling parameter values in a certain range and
with a certain step size. As a result, the sensitivity and general effects of changing individual
parameters can be estimated. This approach is similar to the Parameter Configuration View that
we describe in Section 4.8.2.5.
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4.8.2. Concept

In this section we will first present the data and the simulation system we are working with. We
will then outline the idea behind of our visualization systems and discuss the main views in more
detail.

4.8.2.1. Data

We start with the simulation data for the visualization system. The underlying data structure is
a (geographical) network with one or more time-dependent variables for each graph node. This
could be, for example, water pressure sensors in a network of pump stations or the time-varying
demand of water supply at a particular node.

Using a simulation system, we can compute different quantities for the nodes in this network.
It can be modeled as a function that takes a set of global parameters and parameters for each node.
This input data is transformed into a time-based series of output variables. The data in this case
stems from purely artificial data sources, namely from the simulation. Therefore we do not have to
take into account measurement imprecision or missing values. It is, however, important to either
specify valid parameter ranges or identify illegal configurations. Some parameters might have
explicit minimum and maximum values, while some have cross-dependencies to other parameters.
In the latter case, this specification is difficult and it is often easier to deal with invalid results. We
will describe in Section 4.8.2.5 how invalid simulation results may be treated in the visualization.

4.8.2.2. Visualization System Overview

The visualization system consists of complementary views and a supporting configuration di-
alog. The main window consists of the Network View and the Simulation History View (see
Figure 4.37). This window is complemented by the Parameter Configuration Dialog (see Fig-
ure 4.40). All views are discussed in detail in the order they appear in a typical workflow pattern
in the following sections.

4.8.2.3. Network View

The Network View that gives an overview on the simulation network, as shown in Figure 4.38. In
our use cases, the number of nodes is rather limited and usually associated with a geographical
position. The natural choice for the visual representation of these networks is a node-link dia-
grams with a geo-referenced layout. This makes it easier for the user to identify the nodes and
map them to the real entities (pumps, tanks, etc). The user can thus quickly get the ’big picture’ of
the layout, including domain-specific elements such as tanks, pumps, etc. Nodes are represented
by filled rectangles, the links in between are indicated by straight line segments.

Although the nodes are typically referenced geographically, we do not show a map in the back-
ground to keep the visual attention on the network. Geographical layout is not the focus in this
application – we therefore chose a plain white background to avoid any kind of distraction.

154



4.8. Exploring Simulation in Sensor Network Models

Figure 4.38: An initial overview over the simulation network.

The user can interact with this view with the mouse, similar to well-known online web map
services. Using a virtual camera, the user can pan the view by dragging the mouse cursor and
zoom in and out using the mouse wheel.

4.8.2.4. Forking

In case that the user is not satisfied with this initial simulation parametrization, a new simulation
run can be defined. This new parameter configuration is based on the current (in the first iteration
the initial) setup, but with slightly different settings. Akin to the natural phenomena and the
operation in software revision control systems, we call this operation “fork”, because it describes
a deviating branch.

There are two different modes: a fork can modify global simulation parameters or based on
a single element (i.e. node or edge) in the network. Forking the global configuration is always
permitted while the other mode requires the user to first select the element that should be recon-
figured. This is done by simply clicking individual nodes or edges.

4.8.2.5. Parameter Configuration View

The forking operation is performed using the Parameter Configuration View. The parameter set
of the underlying simulation is displayed as a series of GUI components based on the data type
of the parameters: Categorical values are mapped to combo boxes and Boolean flags to check-
boxes. Numerical values are represented as spinning text fields. The mapped parameter model is
illustrated in Figure 4.39.

The user can then modify the parameter configuration using the UI controls. Our tool assists
the user with an interactive preview: The effect of changing parameters with continuous ranges is
shown in aggregated form (see Figure 4.40). Starting from the current configuration, changes in
individual parameter values are simulated in a background process and displayed as soon as the
value is computed.
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Figure 4.39: The parameter configuration model is converted into a set of UI component to enable
the user to interactively modify values within valid bounds. Parameters that are continuous are
simulated and therefore annotated with a small legend icon.

The process iterates on every parameter individually, starting from the current value towards
both the minimum and the maximum value. The parameter range is sampled at equidistant in-
tervals, but more sophisticated strategies are also feasible. As the individual simulations are not
dependent on each other, they can be run in parallel, which is key to the interactive display of
the view. The view is continuously updated as new values are computed in the background. The
tasks for the computation of the simulation results are scheduled in an order that corresponds to
a breadth-first search in the parameter space: The tasks with small changes in each parameter are
scheduled first, and the tasks for the simulation with the largest parameter changes are scheduled
last. This has the effect of the result paths “growing“ starting at the initial state. This allows
the user to quickly evaluate the most promising parameter changes without having to wait for all
simulation runs to complete.

We can define an arbitrary projection of the result space into the screen space. The simplest
is to pick two variables from the result space and use them as x and y coordinates to visualize
the outcome of the simulation in a scatterplot-like display. Axes and a grid are drawn in the
background to provide information about the actual parameter values and the currently displayed
area of the projected result space.

Individual parameters are assigned to unique colors, shown as a legend next to the correspond-
ing UI controls. The most important decision criterion for the set of used colors was to be dis-
criminative on white background. This is why we chose the set of qualitative colors as defined by
Harrower and Brewer [HB03b].

Depending on the zoom level, individual results are depicted as dots or small circles. Results
from consecutive adjustments on the same parameter value are connected with a straight line
segment in the color of the corresponding parameter to indicate their relatedness. We refer to
these connected sets as result paths. We prefer straight lines over splines, because they clearly
indicate that no information is available in between two consecutive points.

Hovering the mouse over any of the results provides a tooltip with information about the name
and value of the parameter that was changed to achieve the result, as well as optional information
about the actual simulation output. Additionally, the corresponding path is painted with a thicker
stroke, while the others are painted thinner. This allows the user to focus on the analysis of the
behavior of a single parameter even when multiple parameter paths are displayed or have a similar
shape.
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Figure 4.40: The parameter view gives a first impression of the effect a single parameter change
has. Each parameter is represented with a unique color, points along a line represent different
parameter values. The point location is derived from two global target functions.

Depending on the underlying simulation system, information about the feasibility of a given
parameter configuration can be incorporated in the output. One option would be to simply omit
the corresponding result paths. In other cases, it could be preferable to paint the invalid results in a
pale color, so that they are not distracting the user from the feasible results. This would still allow
her to see the connections between the results for the case that one parameter was only passing
through an infeasible region during the interpolation.

Depending on the validity of the simulation results, the stability of the simulation and the
chosen projection of the results into 2D, the points representing the results may be at extreme
positions. For this reason, we chose to not perform an automatic normalization, zooming or clip-
ping. Instead, a virtual camera – similar to that one in the main view – was introduced to support
interactive panning and zooming. This camera additionally allows to independently zoom the
horizontal and vertical axis. The codomains of the result space are both abstract and independent
from each other, so the user can freely choose the region of the result space that is to be displayed,
focusing on the result path that he is currently interested in.

To summarize, the Parameter View enables the user to view the effect of parameter changes
in a single and quick overview. She can find out which parameter changes brings the largest
improvement based on the current configuration or tweak a mathematically optimal solution to
other, user-defined preferences.
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4.8.2.6. Simulation History View

Once the user has decided on which parameter to change, the corresponding values are set and the
user returns to the main window. This completes the forking operation and the Simulation History
View is updated accordingly. In this view, an overview over previously computed simulation
runs is given in a tree-based hierarchical layout. It starts at the top-left corner with the initial
configuration; directly derived configurations are placed one level (on the vertical axis) below.
Configurations that stem from the same parent configuration reside on the same level. The first
child element is always put directly below the parent element; its siblings are added to the right.
Related configurations are linked by elbow connectors. See Figure 4.41 for an example.

Figure 4.41: The History View depicts all simulation parameter configurations that were derived
from an initial starting point. This tree-view shows the history in terms of configuration changes.
It can be split into different branches and any two configurations can be shown and compared by
selecting them (cyan and magenta).

Two of the configurations can be selected by the user to compare them in detail in the Network
View. We chose the colors cyan and magenta, because this pair fulfills the following criteria:
They have similar brightness and saturation (almost 100%), they are discriminative even for color-
deficient users and they do not have a intrinsic attribution.

4.8.2.7. Network Node Glyph

When the user has selected two configurations, the Network View allows comparing them on a
per-node level. The content of the node glyphs depends on the zoom level and the user selection.
Figure 4.42 depicts a node with two time-varying output variables as an embedded line chart.
The two line charts have the same color as the selected configurations in the History View. This
enables the user to map the line charts to the corresponding simulations. Initially, a simulation
based on the default settings is run on startup, and the results are then shown in the node glyphs.
When two different simulation runs are selected for comparison, they are drawn in the upper and

158



4.8. Exploring Simulation in Sensor Network Models

lower half of the glyph, respectively. Zooming in increases the granularity of the displayed time
series.

The third part of the glyph is the display of temporal shifts between the two simulations. We
use the approximate Dynamic Time Warping (DTW) approach by Salvador and Chan [SP04] to
compute the distance between two time-series data sets. We are, however, not only interested in
the total distance, but also in the actual computation of that distance. In contrast to the Euclidean
distance, DTW aligns sequences of the data based on a cost function to respect shifts along the
time axis. These shifts are displayed in the node glyph by connecting those nodes with the small-
est computed distance. If the corresponding indices are identical for both configurations, a thin
vertical black line is drawn. Different indices indicate distortions and the line is drawn thicker to
raise more awareness. The line color is either red or blue, depending on the direction of the shift.

Figure 4.42: Comparison of simulation results for a single node. One of the output variables can
be displayed in the node glyph (here: pressure over time) The color of the line chart corresponds
to the color of the selected configurations. Shifts in the data are highlighted by connecting lines.
The line color indicates the direction of the shift.

In this section, we described the different views and their use in detail. The “Fork” operation
creates a new simulation based on the current one. This new branch can be configured using the
Parameter View. The Simulation History keeps track of changes while Network View enables the
user to analyze differences in the network in detail.

4.8.3. Case Study

We performed a case study on the basis of a water distribution piping system in order to evaluate
the applicability of our system for optimization tasks, and in order to validate the workflow.

4.8.3.1. Setup and Task

The network structure for our test case is taken from an anonymized small real-world data set
containing 25 nodes, one tank, one pump and 41 connecting pipes. The public domain simulation
software EPANET [US 08] was used to simulate the node pressures, the flow in the pipes and the
height of the water in each tank. It was originally developed by the US Environmental Protection
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Agency (EPA), later continued and ported to Java by the company Addition [Add12]. This soft-
ware was used to simulate the network for 24 hours in 10 minute sample intervals. Computing
such a simulation took less than one second on a 2014 commodity computer.

The goal of the user is to modify the network in order to minimize the fluctuations in the node
pressure and increase the stability in the network. He wants to achieve this by replacing a tank in
the network with a different one.

4.8.3.2. Workflow

The first step is to load the simulation input file containing the network information and the default
simulation settings. The Network View gives the analyst an overview on the infrastructure. Zoom-
ing and panning and the node labels allow quickly locating and focusing on the tank. Selecting
the tank allows for forking the initial simulation configuration based on different parameters for
the tank.

Therefore, the user opens the Parameter Configuration View. Variations of the simulation set-
tings are computed in the background, and displayed in the view. Based on the shape of the result
paths, the user decides to increase the size of the tank by 50% to have additional reserve capacity.
After changing this parameter, he returns to the main window, where the new configuration is
displayed as a new child node of the initial configuration in the Simulation History View.

Figure 4.43: The nodes that are close to the modified tank are strongly affected by the change
while those that are further away and close to the main pump (right image) are almost identical
to the previous simulation.

Zooming into the Network View increases the level of detail of the information displayed in the
node glyphs to show the time-dependent variables. Selecting two nodes in the Simulation History
View reveals the temporal shifts between these properties in form of a dynamic time warping
comparison. This shows that the node pressure changed, but there still are large fluctuations in
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the node pressure. So he continues his exploration with another parameter. The Parameter Con-
figuration View showed a strong influence of the tank base height on the node pressure, indicated
by the result path covering a wide range of possible values of the objective function (see Fig-
ure 4.40). So instead of changing the tank size, the user now decided to change the base height of
the tank. Selecting the original and the new node in the Simulation History View again visualizes
the effect of this change on the network: The fluctuations in the node pressure of the nodes close
to the tank become smaller. With increasing distance to the tank, the effect becomes weaker (see
Figure 4.43).

The actual goal that has been achieved with this modification – namely, reducing the fluctuation
of the pressure – could also be achieved with a completely automated optimization. However,
there are several advantages when using the visual-interactive approach: First of all, it is not
necessary to find a mathematical description of the design goal that can serve as an objective
function for the optimizer. The user can gain a more intuitive understanding of the simulation
model. Additionally, the process of how the optimization goal was achieved is documented in the
history view.

4.8.4. Discussion

In this section we demonstrated a visualization system to visually explore different parameter
configurations for time-dependent network simulations. Using the combination of Network View,
History View and the Simulation Configuration Dialog, the user is enabled to configure the sim-
ulation system and keep track of these changes. The influence of individual parameters on the
target function and their effects on the time-dependent output variables can be evaluated visually.
This may lead to a deeper understanding of the network structure and interdependencies between
properties of the individual network nodes, and a more focused and goal-oriented exploration of
the parameter space while analyzing and optimizing the network model.

In our current implementation, the edges are represented as simple lines, suggesting an undi-
rected graph. In many real-world applications and tasks, like the water supply networks that we
are examining in our use case, the networks are actually directed graphs. An appropriate repre-
sentation of the edge direction might serve as an additional visual aid in order to understand the
structure of the network as well as the effects that modifications in the network will have. Holten
et al. discuss representations for directed edges in terms of precision and readability [HIvWF11].
The focus of this part is on the support of the analysis workflow itself.

The most important limitation for interactive exploration of simulation data is the responsive-
ness of the simulation. In those cases where simulation takes a second or longer, the use of
simplified model that is faster to compute could be considered. Similarly, sophisticated sampling
strategies could help to reduce the number of runs or increase the quality of the result path.

The parameter visualization view shows two global output variables. When more than two
dimensions are required, different visualizations such as a scatterplot matrix might be more ap-
propriate. On the other hand, the parameter changes that affect only parts of the network could be
of interest. Then, a small parameter visualization could be shown inside the node glyphs.
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4.9. Summary

This chapter discussed the Visual Analysis of Sensor Networks, a particular group of networks that
combine time-series data with graph data. With the increase of installed sensors in many aspects
of both daily life but also industrial production and monitoring, the analysis of this type of data is
highly relevant for many practical problems.

Of particular interest are electric grids, not only since some European countries decided to
enforce the use of renewable energy. The shift of interests towards a bigger amount of smaller
plants distributed over large areas drives the innovation in this domain. This trend leads to a
significant amount of innovation, but also causes drastic changes in the grid. Some of approaches
that are discussed in this chapter use this scenario as an application example, but their applicability
holds also for other types of sensor network data.

In analogy to Chapter 3, a set of explicit requirements is defined in Section 4.2. These require-
ments aim to cover the ability of a data analyst to successfully work with an analysis tool for
sensor networks. The overarching goals here are to gain an overview of a potentially large net-
work, identify anomalies without explicit declaration in space and time and to provide support for
planning operations. Section 4.3 covers the fundamentals of sensor networks; later sections refer
to this part for the basic definitions. Previous approaches and related scientific work is discussed
in Section 4.3. This section is split into two parts. The first one covers automated approaches,
which are typically backed by expert systems or similar algorithms. The other part deals with
approaches that involve the human user through visualization and interaction metaphors. Highly
correlated is Section 4.4, which explicitly discusses a variety of approaches for the visual layout
of sensor networks.

Based on the literature review, several missing points have been identified. Sections 4.5 – 4.8
present different variations of a visualization system that explicitly deal with these shortcomings.
The approaches that are discussed in these sections aim to fulfill the aforementioned requirements.
We will now check in how far this has been accomplished.

• Requirement 6 (Relative Directions): This requirement can be fulfilled by a collection of
approaches. Section 4.4 gives an overview over the state of the art for direction-preserving
layout strategies.

• Requirement 7 (Data Sources): The approach that is presented in Section 4.5 integrates
heterogeneous data sources such as weather data or ICT coverage in a multi-view and multi-
perspective analysis environment. To give a real-world example, analyst can thus correlate
electricity production with solar radiation to assess the effect of solar panels on the electric
grid.,

• Requirement 8 (Overview): An overview visualization was provided in all of the presented
approaches based on the metaphor of a virtual camera. Mouse-based panning and zooming
adjusts the visible viewport as needed. Zooming in and out also adjusts the level of details
that is employed to depict nodes in the network. We refer to Sections 4.5, 4.6, and 4.8 for
different variations.
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• Requirement 9 (Automated/Manual Analysis): In Section 4.5, a combination of expert sys-
tem and multi-view environment is presented. This enables the operator to gain insight in
the modus operandi of the algorithmic analysis pipeline and adjust it as needed.

• Requirement 10 (Compare Sensors): The calendar view that was described in Section 4.6
enables the analyst to compare different sensors. Even more so, the node glyph of the
approach that was presented in Section 4.8 provides a side-by-side comparison inside a
single glyph.

• Requirement 11 (Identify Anomalies): This requirement is fulfilled by the approach that
was described in Section 4.6.

• Requirement 12 (Planning Support): As described in Section 4.8, a “What-If”-Analysis can
be performed to assess the sensitivity of different parameters in a network simulation. The
effect of modifications to the simulation parametrization is shown for every node.

As can be seen from the enumeration, all requirements have been met. In this chapter of the
thesis, a series of approaches was presented and discussed that use visualization and interaction
to support the analysis of sensor networks. From a practical perspective, this is useful for the
management of structures such as electrical grids or water supply networks. Operators and man-
agers are provided with tools to explore networks, find anomalies in time and space and evaluate
network simulations for planning and maintenance operations.
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The machine-based recording of observations and environmental measurements exist for decades.
However, with the exponential increase of computing power and resolution of sensing devices,
the amount of data has become overwhelming. Computers need explicit processing instructions
in order to extract valuable information from it. As a consequence, the analyst needs to know
beforehand what the machine should do to get the expected results. Whenever this is not possible,
a tighter integration of human understanding in the computing process is necessary.

The focus of this work is on network data, and more specifically on sensor networks. This
special kind of network integrates time-series data and graph structure on a per-node basis. The
overarching goal of this work is the support of the user in exploratory search and related analysis
tasks.

The thesis started with a general introduction and motivation in Chapter 1. It briefly outlined
the advantages of combining strengths of man and machine and gave an overview of the thesis’
contribution to the scientific domain. Chapter 2 presented the foundation on which visual analysis
tools are built upon. It covered a short history of Information Visualization, sketched the most
relevant models and tasks before going into more detail on data types and visualizations. This also
included interaction techniques and their integration in the Visual Analytics process. In Chapter 3,
several approaches were described in the frame of explorative network analysis of general graph
structures. These approaches follow a common strategy, namely to focus on local areas that are
of specific interest to the data analyst. The remaining part of the graph is not shown, but hinted by
visual signposts. Successful exploration of such networks requires the preservation of the mental
map of the analyst. This, in turn, requires that changes in the layout can be tracked by the user
and orientation guidelines that point towards interesting or relevant parts of the graph outside the
visible region. A stable and deterministic graph layout plays a key role for this. All of these
aspects were discussed in detail in this chapter.

Chapter 4 picked up these ideas on general graph layout and navigation and applied them to
the domain of sensor networks. It covered an introduction to the different data types, followed by
a review of layout strategies that preserve relative directions or even exact position coordinates.
Such properties are often useful for practitioners as many physical sensor networks have a planar
layout in geographical coordinates. This helps orienting in the visualization as it reflects the
physical layout. On that background, different visualization and interaction approaches were
presented. They discuss the integration of automatic assessment of networks events (e.g. through
expert systems) and heterogeneous data sources (e.g. weather, ICT coverage). As a consequence,
the analyst is enabled to inspect the network with respect to anomaly detection in space and time.
As soon as problems have been identified, the analyst might want to plan countermeasures. Tools
that work with “What-if”-simulation provide support to anticipate the effect of different options
on the network.
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In summary, the series of approaches that were discussed in the frame of this thesis support the
analysis and management of sensor networks. With the set of contributions that was presented in
the first part the analyst is enabled to browse through graph data in efficient, yet effective way.
The visual representation of sub-graphs that have already been explored before are re-created in a
deterministic manner, enabling the analyst to recognize known areas. Several other closely linked
techniques aim to preserve the user’s mental map by creating smooth layout transitions between
consecutive steps of the exploration process. With the help of a signposts metaphor, interesting
other parts of the graph are indicated but also support the user’s orientation in analogy to real
signposts.

In the second part of this work specifically deals with a combination of graph data with time-
series data, where each of the nodes is linked to one time-series. We refer to this data as sensor
networks. A multi-faceted visualization system for the analysis supports the effective monitoring
management of these sensor networks was presented. With its help, the analyst can quickly gain
an overview on the network itself, but also see linked data sources, for example to assess the in-
fluence of weather. Similar to existing systems, event data can be processed using a rule-based
automatic approach. However, our system goes beyond the state of the art by integrating this
automated process into the visualization system, allowing the analyst to open this “black box”
and monitor the process. One major short-coming of automated systems is that they can deal with
explicit facts only. We presented an approach for the analysis of temporal patterns in sensor net-
work data to enable the analyst to identify nodes that behave differently from the others without
the need to explicitly state what “similar” or “different” means. This even works in the temporal
domain and in different granularities, enabling the identification of daily, weekly or seasonal ef-
fects. One application scenario is the monitoring of the electric grid where domain experts can
use this knowledge to find weaknesses in the network, identify the best point in time for mainte-
nance work on cables and see the effect of solar plants on the flow in the network. As soon as a
weak node or link has been identified, our system supports the experts in finding the best strategy
to compensate by integrating simulation in the visualization. Different scenarios can be run and
compared on a per-node basis, thus giving very detailed feedback on the expected effect of the
planned changes. The use cases of this work were located in the domain of supply networks, in
particular electricity and and fresh-water. Since no domain-specific knowledge is required, the
system is equally applicable to other domains such as logistics, transportation and industrial man-
ufacturing. As a whole, the system supports the analyst in different stages of network operation:
daily operation, long-term analysis, maintenance and grid expansion.

5.1. Future Work

The initial motivation for our work – the increase of data beyond the ability to process it manually
– will become even stronger in the future. We group possible directions for future work in two
categories. In analogy to the overall structure of this thesis, the first category specifically deals
with Local Graph Views, in particular with the results of the user study. The second category
discusses future work for the sensor networks.
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5.1.1. Local Graph Views

In Chapter 3, a list of requirements for the successful exploration of graphs on the basis of local
graph views that was enumerated. While we realize that all of them have been met, we also
see possible further improvements of the presented approaches. We plan to pick of some of the
ideas from the initial user study on the signposts approach to further improve visualization and
interaction means. Future work includes better support for the history of the exploration.

The dynamic layout approaches improve the stability during the exploration process. Using
stitching to combine pre-computed layout patches even ensures that the exploration is determinis-
tic and structures can be recognized. However, the strength of layout stitching is also a weakness:
interpreting a graph as a point cloud without structure allows to create a unified layout of both but
at the cost of its structure. We are convinced that the interpretation of layouts as images features
a plethora of concepts and approaches just waiting to be transferred and applied to graph layouts.

In particular for large graphs, navigating through the entire data set is a cumbersome feature
and makes it difficult to identify larger structure. Using aggregation techniques like clustering, the
graph complexity can be significantly reduced. However, the overall appearance of the network
can be quite different. The ability to preserve shape across different levels-of-details appears to be
both an important, but also an achievable goal. Therefore, the next logical step for us is to apply
this approach to hierarchical navigation concepts.

5.1.2. Sensor Networks

In a similar manner, different requirements for the analysis of sensor networks have been identified
in Chapter 4. Again, all of the mentioned item have been addressed with one or more of the
presented contributions. Nonetheless, we also see room for further improvements of the presented
approaches.

At present, the visualization environment that wraps around the expert system is predominantly
designed for monitoring purposes. It could be useful to extend its functionality to a modeling tool.
This would require that the domain expert interactively modifies the model and the rule collection.
The operator could update the model whenever changes in the physical world are made.

That aside, a major aspect of the visualization is that the data is univariate, i.e. only a single
series temporal data is attached to a node. Future work includes the extension to multi-variate
data sets. A challenge is to integrate both multi-variate data and the time domain in one similarity
model. Moreover, an appropriate visual representation of the data is required, in particular for the
glyph that represents clusters of similar elements.

Also, the inclusion of semi-interactive clustering to better adjust the representation patterns is
of interest. This could be achieved by iterative split and merge operations or through adjustment
of the distance functions and the clustering parameters. Another aspect is to extend the system
to also support live monitoring. As of now, the major restriction is the insertion of new measures
in already existing projections. One possible solution would be to insert new measures in an
existing projection. This, however, requires a deterministic projection function and the quality
may decrease as the projection is computed based on the old patterns only. Another option would
be to recompute the projection every time a new pattern is added. While this is a sound approach in
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theory, it will be challenging to communicate the changes between the old and the new projection
effectively to the user, especially if it changes significantly. One lesson we learned is the role of
familiar visualizations to enable the learning of new techniques. Here, the calendar view was the
anchoring point for the user to understand the rest of the system featuring visualizations which
have not been used before.

5.2. Outlook

From a scientific perspective, the combined analysis of graph and time series data still poses a
vast amount of unsolved challenges. In this thesis the analysis of a set of univariate time-series
data that is assigned to a corresponding set of graph nodes was presented. Two challenges can
be directly derived from this. The first is about multi-variate temporal data, the second is about
mixed data analysis.

Multi-variate temporal data is highly relevant in many applications. In earth observation, for ex-
ample, sensor typically measure a variety of individual quantities such as temperature, humidity,
downfall and the like. Finding correlations between different types of variables is challenging not
only because adequate definitions of similarity must be put up. Several approaches in that direc-
tion have been made (e.g. in the TimeSeriesPaths visualization tool by Bernard et al. [BWS∗12]),
but not to an exhaustive extent.

In analogy to that, the analysis of mixed data in combination with temporal network data also
asks for new analysis tools. In contrast to additional temporal data, the data comprises a variety
of categorical or ordinal values. While coping with multi-variate feature spaces is a problem
on its own, the combined analysis of these two feature spaces implies a particular challenge.
Such combinations occur in a variety of application domains such as medical science, industrial
manufacturing, and environmental services, confronting domain experts with the question how to
gain insight in an effective and efficient way. Again, the answer(s) to that question have not been
thoroughly discussed yet and will surely gain interest in both the scientific community, but also
by practitioners.

Apart from the data complexity, the amount of data begins to become a challenge, since data
volumes become larger and larger. Along with increasing volume comes an increase of variety and
at higher processing velocity. These three words are often used to denote Big Data, sometimes
complemented by veracity, indicating different levels of consistency or trustworthiness. This
combination brings conventional hardware and software architecture to its limits, asking for new
setups. Under the headline of Big Data Analytics, large hardware infrastructures have been set
up to tackle scalability problems. Based on the map-reduce paradigm, software is distributed to
where the data is rather than the other way around. Notably, large parts of developed software
was and still is made available for public use under an open-source license.

Enterprises that publish the internals of a software project do that for a good reason. Require-
ments for data analysis have been going up, leading to highly sophisticated tools. Developing and
maintaining such complex software is becoming increasingly costly. As a consequence, re-using
software has turned from a nice-to-have-feature into an absolute must. Thus, recent software
tends to be generic rather than a custom-tailored, individual product. Only in a second step, this
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common product is adjusted to a specific business case through add-ons, plugins, etc. This opens
up possibilities for third-party users, which makes this open access principle more attractive than
ever.

A logical consequence is that software is longer created by a single individual or enterprise, but
comprises a conglomerate of many intertwined projects and libraries. Integration and coupling
of involved systems requires very careful design and suitable architectures. One strategy that
emerged recently and gained strong interest since then is loose coupling based on reactive systems.
Instead of combining all software parts into a fully integrated product, components act as more or
less self-contained actors in a network. Communication is done through message buses rather than
direct method calls. This obviously comes with performance penalties, but provides enormous
flexibility. An additional benefit is that such software can be distributed to different machines and
communicate across physical boundaries. Parts can be added and removed (sometimes even at
runtime) without breaking the environment. Many of the services the software tools offer can be
easily provided on the web through message adapters.

This is of great value: we are convinced that the trend towards web-based visualizations will
continue. Many users of visualization and analysis tools are not overly computer-savvy. Web
applications lowers the usage barrier as no software must be downloaded and installed. Also,
software security is hardly an issue on web-based imagery. Closely linked is the usage on mobile
– in particular handheld – devices. In our opinion, visualizations on such devices can be very
useful for information presentation. One reason is that interaction is mostly limited to “touch”.
Even though screen resolution increases continuously, the physical size is rather limited. As the
finger covers the display while pressing, it can be rather difficult to hit small interaction elements.
This could change with the ability to interact and control software through voice commands, but
it may take a few more years until that works reliable enough.
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A. Publications

Relevant Publications

The thesis is partially based on the following publications:

2015

• EXPLORATIVE ANALYSIS OF 2D COLOR MAPS

Steiger, Martin; Bernard, Jürgen; Hutter, Marco; Thum, Simon; Mittelstädt, Sebastian;
Keim, Daniel; Kohlhammer, Jörn [SBM∗15]

2014

• EXPLORING SIMULATION IN SENSOR NETWORK MODELS

Steiger, Martin; Hutter, Marco; Schader, Philipp; Kohlhammer, Jörn and Kuijper, Ar-
jan [SHS∗14].

• VISUAL ANALYSIS OF TIME-SERIES SIMILARITIES FOR ANOMALY DETECTION IN SEN-
SOR NETWORKS

Steiger, Martin; Bernard, Jürgen; Mittelstädt, Sebastian; Lücke-Tieke, Hendrik; Keim,
Daniel; May, Thorsten; Kohlhammer, Jörn [SBM∗14]

• A SURVEY OF DIRECTION-PRESERVING LAYOUT STRATEGIES

Steiger, Martin; Bernard, Jürgen; May, Thorsten; Kohlhammer, Jörn) [SBMK14].

• DETERMINISTIC LOCAL LAYOUTS THROUGH HIGH-DIMENSIONAL LAYOUT STITCH-
ING

Steiger, Martin; Lücke-Tieke, Hendrik; May, Thorsten; Kuijper, Arjan; Kohlhammer,
Jörn [SLTM∗14].

• INFORMATION VISUALIZATION AND POLICY MODELING

Nazemi, Kawa; Steiger, Martin; Burkhardt, Dirk; Kohlhammer, Jörn [NSBK14].

2013

• STABLE INCREMENTAL LAYOUTS FOR DYNAMIC GRAPH VISUALIZATIONS

Steiger, Martin; May, Thorsten; Kohlhammer, Jörn [SMK13], [SMK14] (Journal article).
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A. Publications

• USING LAYOUT STITCHING TO CREATE DETERMINISTIC LOCAL GRAPH LAYOUTS

Steiger, Martin; Lücke-Tieke, Hendrik; May, Thorsten; Kuijper, Arjan; Kohlhammer,
Jörn [SLTM∗13].

• SMART GRID MONITORING THROUGH VISUAL ANALYSIS

Steiger, Martin; May, Thorsten; Davey, James; Kohlhammer, Jörn [SMDK13a].

• VISUAL ANALYSIS OF EXPERT SYSTEMS FOR SMART GRID MONITORING

Steiger, Martin; May, Thorsten; Davey, James; Kohlhammer, Jörn [SMDK13b].

2012

• USING SIGNPOSTS FOR NAVIGATION IN LARGE GRAPHS

May, Thorsten; Steiger, Martin; Davey, James; Kohlhammer, Jörn [MSDK12]

Other Publications

2015

• VISUAL ANALYSIS OF RELATIONS IN ATTRIBUTED TIME-SERIES DATA

Steiger, Martin; Bernard, Jürgen; Schader, Philipp; Kohlhammer, Jörn [SBSK15]

• A SURVEY AND TASK-BASED QUALITY ASSESSMENT OF STATIC 2D COLOR MAPS

Bernard, Jürgen; Steiger, Martin; Mittelstädt, Sebastian; Thum, Simon; Keim, Daniel;
Kohlhammer, Jörn [BSM∗15]

2014

• INTERACTIVE MULTI-CRITERIA OPTIMIZATION OF 2D COLOR MAPS

Hutter, Marco; Steiger, Martin; Bernard, Jürgen; Zurloh, Corinna; Kohlhammer, Jörn
[Poster at VMV Conference, 2015]

• VISUAL-INTERACTIVE EXPLORATION OF INTERESTING MULTIVARIATE RELATIONS IN

MIXED RESEARCH DATA SETS

Bernard, Jürgen; Steiger, Martin; Widmer, Sven; Lücke-Tieke, Hendrik; May, Thorsten;
Kohlhammer, Jörn [BSW∗14]

• REVISITING PERCEPTUALLY OPTIMIZED COLOR MAPPING FOR HIGH-DIMENSIONAL

DATA ANALYSIS

Mittelstädt, Sebastian; Bernard, Jürgen; Schreck, Tobias; Steiger, Martin; Kohlhammer
Jöern; Keim, Daniel [MBS∗14]
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2013

• VISUAL STATISTICS COCKPITS FOR INFORMATION GATHERING IN THE POLICY-MAKING

PROCESS

Burkhardt, Dirk; Nazemi, Kawa; Stab, Christian; Steiger, Martin; Kuijper, Arjan; Kohlham-
mer, Jörn [BNS∗13]

• VISUALIZING UNCERTAIN UNDERGROUND INFORMATION FOR URBAN MANAGEMENT

Steiger, Martin; Krämer, Michel; Ruppert, Tobias; Kohlhammer, Jörn [SKRK13]

2012

• INTERACTIVE EXPLORATION SYSTEM: A USER-CENTERED INTERACTION APPROACH

IN SEMANTICS VISUALIZATIONS

Burkhardt, Dirk; Stab, Christian; Steiger, Martin; Breyer, Matthias; Nazemi, Kawa [BSS∗12]

2011

• TACKLING UNCERTAINTY IN COMBINED VISUALIZATIONS OF UNDERGROUND INFOR-
MATION AND 3D CITY MODELS

Krämer, Michel; Steiger, Martin; Ruppert, Tobias; Kohlhammer, Jörn [KDRK11]
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B. Supervising Activities

The following list summarizes the student bachelor, diploma and master thesis supervised by the
author. The results of these works were partially used as an input into the thesis.

Diploma and Master Theses

• Xin Zhou – Implementierung einer Stoffsimulation und deren Parallelisierung

• Daniel Tillner – Metro Graph Layouts für Stromnetze

Bachelor Theses

• Bernd Klemm – Transport und Visualisierung von 3D-Daten in Echtzeit

• Philipp Schader – Assistiertes Energiemanagement durch Visuelle Analyse

Internships

• Dennis Klugmann – Working with Linux and LaTeX, updating Wiki-Content

• Corinna Zurloh – Interactive Multi-Criteria Optimization of 2D Color Maps

• Alexander Distergoft – Programmieren eines grafischen Systems
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