3D for all!

Jarek Rossignac
GVU
Georgia Tech

Compressing and simplifying
complex 3D polyhedra

Jarek Rossignac
GVU
Georgia Tech

What motivates you?

Problem solving pleasures?
Peer recognition?

A hunger for knowledge?
The need to impact society?

A vision for GVU

Invent technologies that will make humans
more effective in their professional,
scholastic, and private activities

Teach objectives, motivation, creativity,
teamwork... the theory... and Java3D

Work with industrials to understand where
they are coming from and to help them
decide where to go

How do we get there?

Study humans and organizations
— Activities/needs
— Capabilities/limitations

Explore technologies and inventions

— R&D strategies and invention history

— State-of-the art, possibilities, limitations
— Hands-on experience/use what you create

Understand commercialization

— Market forces and acceptance issues
— Engineering and testing for usability
— Development and maintenance

Some Examples

Multimedia capture of courses
Mobile visual communication devices
Intelligent appliances

VR treatment of phobia
Collaborative CAD

Data mining

Visualization

How big is 3D graphics?

All graphic adaptors will be 3D enabled
Next “must’’ after mouse, color, www
Perspective = Detail + Background
Intuitive

Appealing

Drives huge markets

What is it good for?

3D models of

— terrain, underground cavities

— homes, offices, buildings, cities

— factories, assembly lines, robots
— airplanes, cars, ships

— consumer products

— human organs, molecules

— engineering simulation results

— avatars, shopping malls, enemies

Why would I use it?

Games, electronic commerce
Design, PDM

Design review, ergonomy
Bids/part catalogs
Communication/marketing
Data understanding
Intuitive navigation/selection
Training/therapy

Why can’t 1?

Complex models

Accessed through internet/phone
Slow connections

Limited rendering speed and storage
Difficult user interface

What is a 3D graphic model?

Representation of 3D geometry

Surfaces and lighting model

3D images, textures

Sampling of 4D light field

Procedure + parameters for 3D graphics

What is a 3D graphic application?

Representation

— Geometry: vertex coordinates

— Topology: triangle/vertex incidence

— Photometry: colors, normals, textures

Architecture of a 3D system

design
measure

¢

control 3D model archive
manipulate ¢ transfer

display
simulate

What makes it effective?

Fast access to 3D databases

Internet connectivity

Intuitive view and model manipulation
Realtime feedback

The human needs?

I want to access the data!
— Compression
— Progressive transmission

I want to see what I am doing!
— Simplification, graphic acceleration

I want to be in control!
— Virtual camera

Why focus on triangles?

Optimized rendering systems
Easily derived from polygons and surfaces

Good measure of graphic complexity
— Twice more triangles than vertices

add 1 vertex
and 2 triangles

|

How many do you need?

A sphere=12x24x2 triangles
Airplane=50,000,000 triangles
A city?

A human body?

How much space do they take?

Geometry: 3 coordinates per vertex
Topology: 3 vertex indices per triangle
Photometry: Normals, textures, colors
Total: up to a 100 bytes per triangle

Is that a problem?

A 100MT model takes:

— A month to download over the phone
— An hour to display

Complexity will grow faster than bandwidth
and graphic performance

How to cope with this complexity?

Don’t bother with unimportant details

Compress
— Helps with transfer, storage, paging

Eliminate redundant graphic operations
— Visibility, back-face culling, triangle-strips

Trade accuracy for performance
— Lossy compression, simplification, images

How good is compression?

Lossless compression

— Preserves geometry and topology

— Reduces # of bits for triangle/vertex incidence
— Does not compress vertex representation

Current approach (Taubin&Rossignac)
— Cut surface into tree of corridors

— Encode internal triangulation of corridors
— 1.2 to 2.2 bits per Triangle

— plus the vertex coordinates

Do I need full numeric accuracy?

Models are approximations anyway

— Imprecise measures or toleranced dimensions

— Limited accuracy in geometric computation

— Truncated coordinates to nearest float or double

Use very short integers!

— Floats are bad for geometry
» Accuracy grows with distance to origin
» (Geometric models need uniform accuracy
— Integers are perfect
» Uniform accuracy through out the model
» More precise than floats for same number of bits

— Don’t need 32 bits

» 11 bits: 1/2mm for an engine block

Can this save more storage?

Lossy compression

— shorter representations of vertex coordinates
— more frequent repetitions of values

— efficient entropy coding schemes

Current approach (Taubin&Rossignac)
— Quantize vertex coordinates to 8-12 bits

— Predict location of next vertex

— Code difference (short corrective vector)

— Use variable length coding (entropy)

— Compresses down to about 6 b/T

Do I need all these triangles?

Can’t see most of them
— quickly discard invisible ones

Many details are smaller than a pixel
— remove them or use an impostor

Surface tesselations are not optimal
— Need accuracy at silhouettes
— Could use coarser meshes elsewhere

How do I take advantage of this?

Preompute approximations of features:
— surface subsets, objects, groups

Use approximations to accelerate graphics
— when resulting visual error acceptable

Current approaches

— Coalesce clusters of vertices

» How to form the clusters’ hierarchy?

» Where to place the result of coalescing a cluster?
— Remove degenerate triangles

— Dynamically select LOD based on view
» How to measure error?
» How to allocate rendering time?
» How to avoid artifacts?

Do I need training to use 3D?

Why should you? Your kids got none..

Few designers/many users
— Scientists, doctors

— Non technical professionals
— Home shoppers

— Game players

How do I control the view?

You don’t want a HMD

You can’t afford a CAVE

The track ball will break your... enthusiasm
The mouse is not intuitive

Use a virtual camera!

What is a virtual camera?

3D model

(Large) screen

Table with drawing or global view
Move small camera over the table

See in 3D what you are pointing at

Outline of the presentation

Geometric and topological compression
— Taubin&Rossignac

Grid-based vertex coalescence
— Rossignac&Borrel

Edge-collapse vertex coalescence
— Ronfard&Rossignac

Real icon for a virtual camera
— Rossignac& Wolf

How do I measure the error?

Geometric 3D deviation
— View-independent
— Allowed by model tolerance

Image space error

— View-dependent
» Silhouettes, color/shading variation

— Bounded by projection of 3D error

Color error

— View dependent

— Error on color reflected by surface point
— Depends on surface orientation

— Not important for most applications

Hausdorff error

H(A,B)=max(d(a,B),d(b,A))
—forallain Aandbin B

Radius of largest ball
— that has its center on one surface and
— that is disjoint from the other surface

Expensive to compute
— Need not happen at vertex or edge

3D Compression

Geometric Compression through
Topological Surgery

— Gabriel Taubin and Jarek Rossignac
— IBM Research Report RC 20340,

— Revised 7/1/97

Mesh representations and storage

vertex 1 vertex 2 vertex 3

Triangle | XIY|ZX|Y|Z Independent triangles: 36 B/T

Triangle 2 XIYIZ(X|Y|Z -9x4 B/T
Triangle 3 X y Z X y Z

Triangle 1 i Vertex and mesh tables: 18 B/T
Triangle 2 vertex 2 - 3x4B/V + 3x4B/T

Triangle 3 vertex 3

vertex 1

vertex 2 Triangle strips: 13.4 B/T
vertex 3 - 1.1x3x4B/T + 1B/S + 1b/T

Constructing and encoding corridors

Given the boundary and
the starting point, we need
1 bit/triangle to encode a strip

Connecting vertices in a spiral
cut defines the boundary of a
corridor (both sides).

Store vertices in their order along the spiral
Store one L/R bit per triangle (except first)

Wait a minute!

The corridor may have warts!
The spiral may cut itself or split!
The corridor may bifurcate!

Compression details

Compress trees using runs
— Cut = Vertex spanning tree (zipper)
— Corridors = Dual binary tree

Encode interior triangulation of corridor
— 1 bit per triangle

Lossy geometric compression

Quantize all vertex coordinates
— Desired precision
— Consistent with modeling tolerance

Use tree ancestors to predict next vertex
— Optimal linear combination of ancestors
— Store corrective vectors (error)

Use variable length coordinates
— Coordinates of correction are small integers
— Lots of values repeated for complex models

— Use short codes to frequently used values
— Need between 3 and 10 B/T

» depending on tolerance

Implementation

VRML-2 compression/decompression
— G. Taubin, P. Horn, F. Lazarus (IBM)

— Compressed models: average of 1 B/T
» Depends on complexity, smoothness, tolerance
» Example: 160K triangle model

Tolerance: 0.0005 of model size (11 bit quantization)
Incidence: 1.2 b/T
Geometry: 5.4 b/T

— Decompression speed: 60K T/sec

Other compression techniques

Deering (Siggraph’95)
— Extend triangle strip
» Maintain buffer of 16 vertices for reuse

» Op-code for building next triangle: 4-6 b/T

» Vertex quantization and variable length coding
Local coordinate system

— Good for graphics:

» In-line fast decoding and small local storage

Hoppe (Siggraph’96)
— Store vertex-split operations
» Index to vertex

» Index to 2 adjacent edges

» Displacement(s) from common vertex to new pair
Short vectors (variable length coding)

Model simplification

Multi-resolution 3D approximations for
rendering complex scenes

— Jarek Rossignac and Paul Borrel

— Geometric Modeling in Computer Graphics’93

Full-range approximations of triangulated
polyhedra

— Remi Ronfard and Jarek Rossignac

— Eurographics’96 (Computer Graphics Forum)

Multi-resolution models

Show distant features at lower resolution

Split the model into small features
— Use design entities (solids or groups)
— Split large and complex solids

Precompute several levels of detail per feature
— Logarithmic reduction of triangle count
— Guaranty error bound

Select appropriate resolution for each feature
— Perspective projection of error estimate
— Position on screen, velocity

Merge groups of small distant features
— Preserve overall volume and color?

Vertex merge (Rossignac&Borrel)

Cluster vertices using grid
— Compute truncated coordinates for each vertex
— Use them as a cluster identifier

Coalesce vertex clusters
— Compute location of representative vertex
— Associate each vertex with its new location

Remove degenerate triangles
— Those with 2 or 3 vertices in the same cluster

Build display lists for each LOD

— New/old normals and textures
— Triangle strips

Pros and cons for Rossignac&Borrel

Advantages

— Much faster than any other method

— Very robust (no restriction on input data)
— Simple code (implement in hours)

— Guaranteed error bound (cell diagonal)

— Reduces topological complexity (holes...)
— Very effective for complicated details

— Does not create holes of gaps in surface

Drawbacks

— Suboptimal for simplifying smooth flat surfaces
» A vertex cannot travel more than the cell size
— Simplified surface may self intersect

— Hard to achieve precise triangle count

Extensions and variations

Low&Tan, Interactive 3D Graphics’97

— Sort vertices by importance in each cell
— Attract vertices from neighboring cells

Luebke&Erikson, Siggraph’97

— Octree or other vertex clustering technique
— Hierarchy of clusters

— View defines which clusters are active

— List of active triangles

— Temporal coherence for adaptive LOD

— Bad for T-strips and display lists

— Use only for large, complex solids

Popovic&Hoppe, Siggraph’97

— Combine PM with Rossignac-Borrel’s proximity
5-5

Edge collapse (Ronfard&Rossignac)

Coalescence vertices
— that are further apart than the tolerance
— as long as they slide close to the surface

Efficient error estimate for a cluster

— Max distance between representative vertex and
all the planes supporting the incident triangles
upon the vertices of the cluster

Approach
— Evaluate error associated with edge collapses
— Maintain sorted list of candidate edges

— Keep collapsing edges until reach
» tolerance or
» desired triangle count

Pros/cons for Ronfard&Rossignac

Advantages
— Better simplification ratios for same tolerance
— Can control error or triangle count
— Can choose whether to preserve topology or not

Drawbacks

— Requires maintaining incidence graph
— Imposes topological restrictions on data
— Slower than grid-based coalescence

— Hard to achieve precise triangle count

Extensions and variations

Garland&Heckbert, Siggraph’97

— Use least square distance to supporting planes
— Propagate only 4x4 matrix instead of all planes
— Not a bound on the error!

Hoppe, Siggraph’96

— Store sequence of edge collapse operations
— Use it’s inverse as a progressive mesh (PM)
— Each split is defined by

» 2 adjacent edges in the previous model
» The relative position of the 2 new vertices

Conclusion

Increasingly complex triangular 3D models
Compress, simplify within tolerance
Bit-efficient coding: 1 Byte/triangle
Simplification for fast graphics:

— Grid-based vertex coalescence
» Fast, robust, effective, suboptimal

— Edge-collapse
» Slower, more precise, better results
Need extractable encoding for
— view-dependent multi-res transmission

