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Preface
Over the years, tutorials have built a strong reputation of being an important part of the Eurographics con-
ference. In these tutorials, conceptual and implementation aspects of recent techniques are analyzed in
depth by leading experts in the field.

This year the tutorial program is composed of 12 half-day tutorials, which span a wide range of topics
including: shape modeling, physically-based modeling and simulation, haptic interfaces, virtual crowds,
3D video, reflectance acquisition, computational photography, rendering, high-performance parallel com-
puting, and visual data mining. While the selected topics are very broad, several tutorials are provided
in the context of virtual human modeling. Another group of tutorials present new trends in imaging and
rendering. Thus, we informally split the tutorial program into three tracks: Virtual Humanoid, Imaging and
Rendering, and Miscellaneous.

We are grateful to everyone who has submitted a tutorial proposal to EG’07. We also would like to
thank all reviewers for their valuable comments and expertise, which greatly helped in the tutorial selection
process. We want to express our gratitude to the members of the technical team Stefanie Behnke and René
Berndt for their continuous support with the on-line submission system. Finally, we are indebted to Jiřı́
Žára, EG’07 co-chair, for his continuous support and advice.

Karol Myszkowski and Vlastimil Havran

August 2007
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Čadı́k, Martin
Cheung, German
Chrysanthou, Yiorgos
Decoret, Xavier
Gagalowicz, Andre
Goesele, Michael
Gumhold, Stefan
HO, Edmond S. L.
Klatzky, Roberta
Klı́ma, Martin

Kordı́k, Pavel
Lensch, Hendrik
Magnor, Marcus
Matusik, Wojciech
Mikovec, Zdenek
Orkisz, Maciej
Otaduy, Miguel A.
Reiterer, Harald
Scholz, Volker
Slater, Mel
Smolic, Aljoscha
Tecchia, Franco
Teschner, Matthias
Theisel, Holger
Ward, Greg
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Abstract 

This tutorial addresses haptic simulation, perception and manipulation of complex deformable objects in virtual 
environments (VE). We first introduce HAPTEX, a research project dealing with haptic simulation and 
perception of textiles in VEs. Then, we present state-of-the-art techniques concerning haptic simulation and 
rendering, ranging from physically based modelling to control issues of tactile arrays and force-feedback 
devices. In the section on cloth simulation for haptic systems we describe techniques for simulating textiles 
adapted to the specific context of haptic applications. The section concerning tactile aspects of virtual objects 
shows how arrays of contactors on the skin can be used to provide appropriate spatiotemporal patterns of 
mechanical excitation to the underlying mechanoreceptors. Finally, the last section addresses the problem of 
developing suitable force feedback technologies for the realistic haptic rendering of the physical interaction 
with deformable objects, addressing the design of novel force feedback systems, innovative concepts for 
curvature simulation and control algorithms for accuracy improvement.  

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Virtual Reality 
 

1. Introduction 

Research on multimodal simulation in virtual 
environments faces the challenge of reproducing the aspect 
and behaviour of real objects. The simulation should be as 
realistic as possible and take place within a virtual reality 
(VR) system which provides the user with multiple 
interfacing modes (such as vision, audio, and interaction 
devices). Multimodality typically addresses the stimulation 
of different channels of perception. In this context, some 
perceptual channels have been more exploited than others. 
The achievement of a high degree of visual realism is 
increasingly becoming more popular in the entertainment 
industry, where video games are offering an always 
improved experience to the user. This is particularly 
supported by the establishment of dedicated Graphics 
Processing Units (GPUs) included in high-end graphics 
cards featuring programmable shaders. Also 3D spatialised 
sound has become common in the last years, and audio 
surround facilities in CAVE systems and even in home 
theatres are widely used. The ability to touch virtual 
objects, however, has not been fully exploited so far. The 
integration of realistic force-feedback and tactile 
stimulation within virtual reality applications is far less 
satisfying than audio-visual integration, and still at the 
beginning.  

This tutorial deals with the reproduction of the sense of 
touch within virtual reality environments. In this context, 
we will present how to simulate, perceive and manipulate 
complex deformable objects such as virtual textiles both 
from the visual and the haptic viewpoint. 

1.1 Reproducing the sense of touch 

The discipline dealing with technology interfacing the 
user via the sense of touch is called haptics. A main 
obstacle to the widespread adoption of haptic devices within 
ordinary VR systems is currently represented by the 
unavailability of efficient-and-affordable haptic devices. 
But there are also other factors which preclude the 
application development in this domain, such as the high 
complexity and computational costs linked to haptic 
simulation. 

In order to be performed accurately, multimodal 
simulation addressing vision and touch involves a high load 
on the computer’s processing units. It is therefore important 
to find the best trade-off between the simulation’s realism 
(in terms of visual and physical accuracy) and performance 
(in terms of response latency). To optimize the resource 
management, the visual and the haptic sensory channels can 
be processed in separate layers, since they have different 
requirements in terms of update rates or relevant physical 
properties to be simulated. However, this practice requires a 
robust and stable coupling between the two modalities 
[AH98]. The synchronization between layers must occur in 
real time, because delays or asynchronous behaviour can 
strongly affect the believability of the user experience.  

1.2 Rendering complex deformable objects 

The research concerning new ways of rendering virtual 
objects both visually and haptically in a fast and stable way 
represents a particular challenge when dealing with 
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physically based, complex deformable objects. In this field, 
researchers need to reproduce the object’s aspect and 
behaviour in a physically accurate way and provide a 
simulation model able to calculate the deformations of the 
object occurring during interaction. Typically, the simulated 
interaction is tool-based, i.e. the user interacts with the 
object indirectly, feeling the forces arising during 
manipulation only at one specific point. 

Complexity increases in the case of multipoint 
interactions, as collisions and deformations must be 
computed for each contact point. Direct haptic interaction, 
e.g. the simulation of the real contact between the human 
hand and a deformable object, is very demanding not only 
because of the number of deformations arising all over the 
contact surface and affecting each other, but also because of 
the technical difficulties in rendering the contact forces over 
a distributed area. 

The haptic response rendered to the user of a multimodal 
simulation system can be of different nature. In this tutorial, 
we deal mainly with tactile and kinaesthetic feedback. 
Tactile arrays can reproduce the properties and small scale 
details of the object properties by selectively stimulating the 
mechanoreceptors under the skin of the fingertips. Tactile 
arrays give a feedback to the user, but do not allow him to 
exert actively forces. Force-feedback devices, in contrast, 
allow the user to add energy to the multimodal simulation 
system and actively manipulate virtual objects. Moreover, 
force-feedback devices reflect forces acting on the 
simulated object and allow the user to obtain kinaesthetic 
feedback about the performed operations. 

2. Touching virtual textiles 

Textile is an ideal deformable object to render in the 
context of haptic simulation. Humans are inherently 
familiar with clothes, and used to handle clothing materials 
since prehistoric ages. However, while cloth simulation is a 
popular topic in computer graphics, there have been very 
little attempts to render textiles haptically [GPU*03] 
[Hua02]. In these cases, only static cloth has been taken into 
consideration. Animated textiles were not taken into 
account because of the high requirements posed by the real 
time animation of cloth. 

Interestingly, these early attempts have tried to combine 
the results of studies on physical properties of fabrics done 
in the textile industry with garment simulation. However, 
only a very limited amount of fabric parameters was taken 
into consideration. This can be easily ascribed to one of the 
limitations we face today in the field of computer graphics 
and haptics: the high number of physical properties we are 
able to feel and discriminate with our sensorial system can't 
be realistically and exhaustively reproduced by a 
multimodal simulation system today. These limitations 
concern both the visual and the haptic aspect of the 
simulation, and affect not only textiles but all kinds of 
physically based deformable objects. It is therefore 
necessary to simplify the usage of physical parameters by 
identifying a finite number of properties that can be 
considered the most relevant for an approximate but 
realistic simulation of the handling of a specific deformable 
object. Moreover, this simplification is necessary for each 
channel of perception, since the description of an object’s 
behaviour from the visual, tactile or kinaesthetic aspect has 
different requirements. 

2.1 The HAPTEX Project 

The European research project HAPTEX (HAPtic sensing 
of virtual TEXtiles) tackles several of the above mentioned 

challenges. The goal of HAPTEX is to provide a 
multimodal system able to simulate virtual textiles in real 
time, allowing multipoint haptic interaction with a piece of 
virtual fabric [SFR*05]. In the HAPTEX system, haptic 
manipulation takes place through a novel haptic interface, 
which provides both force- and tactile feedback and aims to 
reproduce the feeling of touching a cloth surface with two 
fingertips. 

The system simulates the large-scale motion of a square 
of fabric hanging from a stand in virtual space, accurately 
described by its mechanical properties (such as stiffness or 
elasticity). These large-scale forces are returned by a force 
feedback device which allows for haptic manipulation. 
Moreover, tactile stimuli are derived from the fabric’s small 
scale properties (texture and roughness) and rendered by 
piezoelectric tactile arrays integrated in the force-feedback 
device. 

Users of the HAPTEX System can perform actions such 
as touching, stroking and stretching the virtual garment, 
selecting the simulated textile from a range of samples and 
feeling the different physical characteristics between them. 
The HAPTEX System allows to perform different textile 
handling actions, depicted in the following figure. 

Figure 2: Envisaged handling actions 

Figure 1: The HAPTEX showcase 
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2.2 Design of the haptic system 

In the HAPTEX System, both the visual simulation and 
the haptic rendering are based on the physical properties of 
real textiles. Modelling the behaviour of textiles is a 
complex task because of its dependency on several 
parameters such as flexibility, compressibility, elasticity, 
resilience, density, surface contour (roughness, 
smoothness), surface friction and thermal character 
[MMLMT05]. The process of handling fabrics to 
understand their properties and structure is called “fabric 
hand”. Understanding the way people are used to handle the 
objects to simulate (in this case, textiles) is of crucial 
relevance for designing and developing a haptic system. 
The HAPTEX approach is to analyze all perceptual and 
practical implications of fabric hand, in order to derive a set 
of requirements to the system. From these ideal 
requirements, the system is realized according to the 
possibilities offered by today’s technology [Hap06a]. The 
research and developments done in the context of the 
HAPTEX project cover textile measurements, real-time 
cloth simulation, tactile interfaces, force-feedback devices, 
haptic rendering (both tactile and force-feedback) and the 
integration of the complete haptic system. 

2.3 Components of the HAPTEX System 

The HAPTEX System is mainly composed by the 
following components [MTB06] [Hap05a]: 

Measured physical parameters: The “Kawabata 
Evaluation System for Fabrics” (KES-F) is one of the main 
standards in the field of objective measurements of fabric 
hand [Kaw80]. The KES-F equipment is able to test for 
textile properties and extract physical parameters of textiles. 
These vary depending on the fibre type or fabric type and 
dimension [Hap05b]. Alternatively, other equipments such 
as tensile testers can be used to obtain specific physical 
parameters of fabric samples [MMLMT05]. The physical 
parameters are used by the cloth simulation, the tactile 
renderer and the force-feedback renderer. 

Cloth simulation: The HAPTEX textile simulation is 
driven by a mechanical model which takes as input part of 
the mechanical parameters obtained from measurements on 
fabrics [VDB*07]. See Section 3 for more details. 

Tactile component: The tactile array generates impulses 
of mechanical excitation for the mechanoreceptors 
underlying the skin of the user’s fingertip. These 
spatiotemporal stimuli evoke the sensation of stroking the 
finger over a surface and feeling its patterns and edges. A 
tactile renderer returns drive signals for the array on the 
basis of the user's movements and a model of the 
finger/object interaction [Hap06a] [Hap06b]. See Section 4 
for more details. 

Force-feedback component: The force-feedback device 
returns to the user the forces acting on the manipulated 
piece of textile. A force-feedback renderer takes care of the 
computation of forces to be returned on the basis of the 
mechanical model of the cloth simulation. The force-
feedback device also hosts the tactile component. Different 
configurations of the force-feedback component have been 
realized in the context of the HAPTEX Project [Hap06a] 
[Hap06b]. See Section 5 for more details. 

3. Cloth Simulation in Haptic Systems 

As any simulation system, cloth simulation requires 
significant computational resources for being performed 
accurately. Its integration in real-time simulation systems 

requires the implementation of state-of-the-art techniques, 
for mechanical models as well as for numerical integration. 
Furthermore, haptic applications require high robustness for 
dealing with approximate tracking and highly variable 
frame rates inherent to the performance and artefacts of 
current motion tracking devices. In this section, we describe 
some techniques for cloth simulation adapted to the specific 
context of haptic applications.  

3.1 Overview 

Garment simulation for interactive applications still 
remains a challenge, and the challenge is mainly to combine 
state-of-the-art simulation techniques that offer the best 
trade-off between computational speed, accuracy and 
robustness. 

The particular challenges are described in the following 
sections. These are mainly: 

* The design of a fast simulation system for simulating 
the tensile and bending elastic properties of cloth materials, 
which may possibly be anisotropic and nonlinear. 

* The implementation of an efficient numerical integrator 
that offers robust simulation ensuring stability despite 
possible irregular frame rates and other artefacts related to 
motion tracking techniques. 

3.2 Simulating the Mechanics of Cloth 

3.2.1 Mechanical Properties of Cloth 

The mechanical properties of deformable surfaces can be 
grouped into four main families: 

* Elasticity, which characterizes the internal forces 
resulting from a given geometrical deformation. 

* Viscosity, which includes the internal forces resulting 
from a given deformation speed. 

* Plasticity, which describes how the properties evolve 
according to the deformation history. 

Most important are the elastic properties that are the main 
contributor of mechanical effects in the usual contexts 
where cloth objects are used. In the context of haptic 
applications, the motion of the cloth also depends on 

Figure 3:  Piece of textile simulated in real-time 
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dissipative effects related to viscosity and plasticity, which 
therefore have to be taken into account up to some degree 
of approximation by the simulation system. 

Depending on the amplitude of the mechanical 
phenomena under study, the curves expressing mechanical 
properties exhibit shapes of varying complexity. If the 
amplitude is small enough, these shapes may be 
approximated by straight lines. This linearity hypothesis is 
a common way to simplify the characterization and 
modelling of mechanical phenomena. 

It is common in elasticity theory to consider that the 
orientation of the material has no effect on its mechanical 
properties (isotropy). This however is inappropriate for 
cloth, as its properties depend considerably on their 
orientation relative to the fabric thread. 

Elastic effects can be divided into several contributions: 

* Metric elasticity, deformations along the surface plane. 

* Bending elasticity, deformations orthogonally to the 
surface plane. 

Metric elasticity is the most important and best studied 
aspect of fabric elasticity. It is usually described in terms of 
strain-stress relations. For linear elasticity, the main laws 
relating the strain e to the stress s involve three parameters, 
which are: 

* The Young modulus E, summarizing the material's 
reaction along the deformation direction. 

* The Poisson coefficient νννν, characterizing the 
material's reaction orthogonal to the deformation direction. 

* The Rigidity modulus G, pertaining to oblique 
reactions. 

Along the two orthogonal directions i and j, these 
relations, named Hook's Law, Poisson Law and Simple 
Shear Law relating the stress εεεε to the strain σσσσ are 
respectively expressed as follows: 
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Cloth materials are two-dimensional surfaces for which 
two-dimensional variants of the elasticity laws are suitable. 
They are not isotropic, but the two orthogonal directions 
defined by the thread orientations can be considered as the 
main orientations for any deformation properties. In these 
orthorhombic cloth surfaces, the two directions are called 
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respectively. The elasticity law can be rewritten in terms of 
these directions as follows: 
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Energetic considerations imply the above matrix to be 
symmetric, and therefore the products Eu ννννv and Ev ννννu are 
equal. Considering isotropic materials, we also have the 
following relations: 
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A similar formulation can be obtained for bending 
elasticity. However the equivalent of the Poisson coefficient 
for bending is usually taken as null. The relation between 
the curvature strain τ τ τ τ and stress γ γ γ γ is expressed using the 
flexion modulus B and the flexion rigidity K (often taken as 
null) as follows: 
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While elasticity expresses the relation between the force 
and the deformation, viscosity expresses the relation 
between the force and the deformation speed in a very 
similar manner. To any of the elasticity parameters can be 
defined a corresponding viscosity parameter obtained by 
substitution of the stresses εεεε and γ γ γ γ by their derivatives along 
time εεεε’ and γγγγ’. 

While the described linear laws are valid for small 
deformations of the cloth, large deformations usually enter 
the nonlinear behaviour of cloth, where there is no more 
proportionality between strain and stress. This is practically 
observed by observing a “limit” in the cloth deformation as 
the forces increases, often preceding rupture (resilience), or 
remnant deformations observed as the constraints are 
released (plasticity). A common way to deal with such 
nonlinear models is to assume weft and warp deformation 
modes as still being independent, and replace each linear 
parameter Eu, Ev, G, Bu, Bv by nonlinear strain-stress 
behaviour curves. 

3.2.2 Measuring the Mechanical Properties of Cloth 

The garment industry needs the measurement of major 
fabric mechanical properties through normalized procedures 
that guarantee consistent information exchange between 
garment industry and cloth manufacturers. The Kawabata 
Evaluation System for Fabric (KES) is a reference 
methodology for the experimental observation of the elastic 
properties of the fabric material. Using five experiments, 
fifteen curves are obtained, which then allow the 
determination of twenty-one parameters for the fabric, 
among them all the linear elastic parameters described 
above, except for the Poisson coefficient. 

Figure 4: Measuring cloth properties using KES. 
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Five standard tests are part of KES for determining the 
mechanical properties of cloth, using normalized 
measurement equipment. The tensile test measures the 
force/deformation curve of extension for a piece of fabric of 
normalized size along weft and warp directions and allows 
the measurement of Eu and Ev along with other parameters 
assessing nonlinearity and hysteresis. The shearing test is 
the same experiment using shear deformations, which 
allows the measurement of G. The bending test measures 
the curves for bending deformation in a similar way, and 
allows the measurement of Bu and Bv. Finally, the 
compression test and the friction test allow the 
measurement of parameters related to the compressibility 
and the friction coefficients. 

While the KES measurements allow determination of 
parameters assessing the nonlinearity of the behaviour 
curves and some evaluation of the plasticity, other 
methodologies, such as the FAST method, use simpler 
procedures to determine the linear parameters only. 

While the Kawabata measurements and similar systems 
summarize the basic mechanical behaviours of fabric 
material, the visual deformations of cloth, such as buckling 
and wrinkling, are a complex combination of these 
parameters with other subtle behaviours that cannot be 
characterized and measured directly. 

In order to take these effects into account, other tests 
focus on more complex deformations. Among them, the 
draping test considers a cloth disk of given diameter draped 
onto a smaller horizontal disc surface. The edge of the cloth 
will fall around the support, and produce wrinkling. The 
wrinkle pattern can be measured (number and depth of the 
wrinkles) and used as a validation test for simulation 
models. 

Tests have also been devised for measuring other complex 
deformation of fabric material, mostly related to bending, 
creasing and wrinkling. 

3.3 Cloth Simulation Systems 

Cloth being approximated as a thin surface, its 
mechanical behaviour is decomposed in in-plane 
deformations (the 2D deformations along the cloth surface 
plane) and bending deformation (the 3D surface curvature). 

The in-plane behaviour of cloth is described by 
relationships relating, for any cloth element, the stress σσσσ to 
the strain εεεε (for elasticity) and its speed εεεε' (for viscosity) 
according the laws of viscoelasticity. For cloth materials, 
strain and stress are described relatively to the weave 
directions weft and warp following three components: weft 
and warp elongation (uu and vv), and shear (uv). Thus, the 
general viscoelastic behaviour of a cloth element is 
described by strain-stress relationships as follows: 

 

σuu (εuu ,εvv ,εuv ,εuu
′ ,εvv

′ ,εuv
′ )

σ vv(εuu ,εvv ,εuv ,εuu
′ ,εvv

′ ,εuv
′ )

σuv (εuu ,εvv ,εuv ,εuu
′ ,εvv

′ ,εuv
′ )

 (5) 

Assuming to deal with an orthotropic material (usually 
resulting from the symmetry of the cloth weave structure 
relatively to the weave directions), there is no dependency 
between the elongation components (uu and vv) and the 
shear component (uv). Assuming null Poisson coefficient as 
well (a rough approximation), all components are 
independent, and the fabric elasticity is simply described by 

three independent elastic strain-stress curves (weft, warp, 
shear), along with their possible viscosity counterparts. 

In the same manner, viscoelastic strain-stress 
relationships relate the bending momentum to the surface 
curvature for weft, warp and shear. With the typical 
approximations used with cloth materials, the elastic laws 
are only two independent curves along weft and warp 
directions (shear is neglected), with their possible viscosity 
counterparts. 

The issue is now to define a model for representing these 
mechanical properties on geometrical surfaces representing 
the cloth. These curved surfaces are typically represented 
by polygonal meshes, being either triangular or 
quadrangular, and regular or irregular. 

Continuum mechanics are one of the schemes used for 
accurate representation of the cloth mechanics. Mechanical 
equations are expressed along the curved surface, and then 
discretised for their numerical resolution. Such accurate 
schemes are however slow and not sufficiently versatile for 
handling large deformations and complex geometrical 
constraints (collisions) properly. Finite Element methods 
express the mechanical equations according to the 
deformation state the surface within well-defined elements 
(usually triangular or quadrangular). Their resolution also 
involves large computational charges. Another option is to 
construct a model based on the interaction of neighbouring 
discrete points of the surface. Such particle systems allow 
the implementation of simple and versatile models adapted 
for efficient computation of highly deformable objects such 
as cloth. 

3.3.1 Spring-Mass Models 

The simplest particle system one can think of is spring-
mass systems. In this scheme, the only interactions are 
forces exerted between neighbouring particle couples, 
similarly as if they were attached by springs (described by a 
force/elongation law along its direction, which is actually a 
rigidity coefficient and a rest length in the case of linear 
springs). Spring-mass schemes are very popular methods, as 
they allow simple implementation and fast simulation of 
cloth objects. There has also been recent interest in this 
method as it allows quite a simple computation of the 
Jacobian of the spring forces, which is needed for 
implementing semi-implicit integration methods (see 
Section 3.4). 

The simplest approach is to construct the springs along 
the edges of a triangular mesh describing the surface. This 
however leads to a very inaccurate model that cannot model 
accurately the anisotropic strain-stress behaviour of the 
cloth material, and also not the bending. More accurate 
models are constructed on regular square particle grids 
describing the surface. While elongation stiffness is 
modelled by springs along the edges of the grid, shear 
stiffness is modelled by diagonal springs and bending 
stiffness is modelled by leapfrog spring along the edges. 
This model is still fairly inaccurate because of the 
unavoidable cross-dependencies between the various 
deformation modes relatively to the corresponding springs. 
It is also inappropriate for nonlinear elastic models and 
large deformations. More accurate variations of the model 
consider angular springs rather than straight springs for 
representing shear and bending stiffness, but the simplicity 
of the original spring-mass scheme is then lost. 
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Figure 5:  Using length or angle springs for simulating 
cloth with a square particle system grid. 

3.3.2 Accurate Particle System for Tensile 
Viscoelasticity 

Because of the real need of representing accurately the 
anisotropic nonlinear mechanical behaviour of cloth in 
garment prototyping applications, spring-mass models are 
inadequate, and we need to find out a scheme that really 
simulates the viscoelastic behaviour of actual surfaces. For 
this, we have defined a particle system model that relates 
this accurately over any arbitrary cloth triangle through 
simultaneous interaction between the three particles which 
are the triangle vertices. Such a model integrates directly 
and accurately the strain-stress model defined in Part 2.1 
using polynomial spline approximations of the strain-stress 
curves, and remains accurate for large deformations. 

In this model, a triangle element of cloth is described by 3 
2D coordinates (ua, va), (ub, vb), (uc, vc) describing the 
location of its vertices A, B, C on the weft-warp coordinate 
system defined by the directions U and V with an arbitrary 
origin. They are orthonormal on the undeformed cloth 
(Figure M4). Out of them, a precomputation process 
evaluates the following values: 

 

Rua = d
−1

vb − vc( ) Rva = −d
−1

ub − uc( )

Rub = −d
−1

va − vc( ) Rvb = d
−1

ua − uc( )

Ruc = d
−1

va − vb( ) Rvc = −d
−1

ua − ub( )

 

 with 

 d = ua vb − vc( )+ ub vc − va( )+ uc va − vb( ) (6) 

During the computation process, the current deformation 
state of the cloth triangle is evaluated using the current 3D 
direction and length of the deformed weft and warp 
direction vectors U and V. They are computed from the 
current positions Pa, Pb, Pc of its supporting vertices as 
follows: 

 U = Rua Pa + Rub Pb + Ruc Pc

V = Rva Pa + Rvb Pb + Rvc Pc
 (7) 

The current in-plane strains εεεε of the cloth triangle is then 
computed with the following formula: 

 
εuu = U − 1 εvv = V − 1

εuv =
U + V

2
−

U − V

2

 (8) 

We have chosen to replace the traditional shear 
deformation evaluation based on the angle measurement 
between the thread directions by an evaluation based on the 
length of the diagonal directions. The main advantage of 
this is a better accuracy for large deformations (the 
computation of the behaviour of an isotropic material under 
large deformations remains more axis-independent). 

 

U

V

Weft

Warp

Pa

Pb

Pc
(ua,va)

(ub,vb)

(uc,vc)

 

Figure 6: A triangle of cloth element defined on the 2D 

cloth surface (left) is deformed in 3D space (right) and its 

deformation state is computed from the deformation of its 

weft-warp coordinate system. 

For applications that model internal in-plane viscosity of 
the material, the "evolution speeds" of the weave direction 
vectors are needed as well. They are computed from the 
current triangle vertex speeds Pa', Pb', Pc' as follows: 

 ′U = Rua P ′a + Rub P ′b + Ruc P ′c

′V = Rva P ′a + Rvb P ′b + Rvc P ′c
 (9) 

Then, the current in-plane strain speeds εεεε' of the triangle 
is computed: 

 
εuu

′ =
U ⋅ ′U

U
εvv

′ =
V ⋅ ′V

V

εuv
′ =

U + V( )⋅ ′U + ′V( )
U + V 2

−
U − V( )⋅ ′U − ′V( )

U − V 2

 (10) 

At this point, the in-plane mechanical behaviour of the 
material can be expressed for computing the stresses σσσσ out 
of the strains εεεε (elasticity) and the strain speeds εεεε' 
(viscosity) using the curves discussed in Part 2.2. Finally, 
the force contributions of the cloth triangle to its support 
vertices computed from the stresses σσσσ as follows: 

 Fa = −
d

2
Rua σuu + Rva σuv( )

U

U
+ Rua σuv + Rva σ vv( )

V

V








Fb = −
d

2
Rub σuu + Rvb σuv( )

U

U
+ Rub σuv + Rvb σ vv( )

V

V








Fc = −
d

2
Ruc σuu + Rvc σuv( )

U

U
+ Ruc σuv + Rvc σvv( )

V

V








 (11) 

It is important to note that when using semi-implicit 
integration schemes (see Section 3), the contribution of 
these forces in the Jacobian ∂F/∂P and ∂F/∂P' can easily be 
computed out of the curve derivatives ∂σσσσ/∂εεεε and the 
orientation of the vectors U and V. 
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 Figure 7:  Drape accuracy between a simple spring-mass 

system along the edges of the triangle mesh (left) and the 

proposed accurate particle system model (centre). Colour 

scale shows deformation. The spring-mass model exhibits 

inaccurate local deformations, along with an excessive 

"Poisson" behaviour. This is not the case with the accurate 

model, which may still model the "Poisson" effect if needed 

(right, with a Poisson coefficient 0.5). The spring-mass 

model is also unable to simulate anisotropic or nonlinear 

models accurately. 

3.3.3 Linear Particle System for Bending Elasticity 

Unlike tensile stiffness, bending stiffness necessitates the 
action of out-of-plane forces that are usually more 
expensive to compute than in-plane forces. 

Several solutions have been proposed in the literature, 
representing two main approaches. The first is to use 
crossover springs that extend the surface, opposing 
transversal bending. This approach, which integrates nicely 
in any simulation system based on spring-mass, is however 
very inaccurate. The second is to evaluate precisely the 
angle between adjacent mesh elements and to create 
between them normal forces that oppose this angle through 
opposite bending momentum. This approach can reach 
similar accuracy as grid continuum-mechanics and grid 
particle system derivatives which are fairly complex to 
evaluate. The third is to obtain a completely linear 
formulation of bending forces by computing it directly as a 
weighted sum of particle positions, without any 
consideration of the surface normals or any other complex 
geometric computation. 

 

Figure 8: Three ways for creating bending stiffness in a 

triangle mesh: Using tensile crossover springs over mesh 

edges (top), using forces along triangle normals (bottom), 

and, as we propose, using forces evaluated from a weighted 

sum of vertex positions (right). 

The idea of the linear model is the following: First, a 
“bending vector” that represents the bending of the surface 
is computed through a simple linear combination of particle 
positions. Then, it is redistributed as particle forces 
according to the bending stiffness of the surface. This 
scheme preserves total translational and rotational 
momentum conservation without the need of recomputing 
the distribution coefficients according to the current 
position of the particles. This leads to a very simple 
computation process which is perfectly linear, and thus very 
well adapted to implicit numerical integration. 

We start from two adjacent triangles (PA,PC,PD) and 
(PB,PD,PC). Their common edge has a length noted l and 
their respective heights relatively to vertices PA and PB are 
noted hA and hB. 

The two adjacent triangles approximate a curved surface 
that contains the four vertices of the two triangles, and we 
assume that the surface is only curved orthogonally to the 
edge (PC,PD) (Figure M2 left). This is indeed not an 
obvious assumption, since any kind of surface curvature 
may produce some bending around the edge. However, this 
choice can be assumed as being the best, as the direction of 
the edge bending matches the curvature of the surface. 

PC
PB

PA

PD

N

R

  

PB

PA

PC

PD

l

hA

hB

hA hB

r

N

 
Figure 9: The curved surface equivalent to two adjacent 

triangles (left), and the computation of its curvature (right). 

Our goal is now to estimate this curvature from the height 
difference noted r between the edges (PA,PB) and (PC,PD). 
As we restrict ourselves to linear bending, we assume that 
the bending stiffness remains constant whatever the amount 
of curvature, and therefore we evaluate it assuming the edge 
angle between the adjacent triangles remain small. In these 
conditions, we can evaluate the curvature γγγγ of the surface as 
follows: 

 

BA hh

r2
=γ

 (12) 

Now, we need to compute the height difference r from the 
current position of the triangles. Again in the context of 
small edge angle, this is approximated through the projected 
length of a bending vector R on the approximate normal of 
the surface N (normalized to unit length) so as: 

 NRr ⋅=  (13) 

The bending vector R indeed represents a kind of 
“second-order deformation difference” between the two 
elements, and its normal component represents the actual 
surface bending. It can be computed as a simple linear 
combination of vertex positions, as follows: 
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DDCCBBAA PPPPR αααα +++=  (14) 

With: 

 

DC

C

D

BA

A

BA

A

B

DC

D

C

BA

B

BA

B

A

NN

N

hh

h

NN

N

NN

N

hh

h

NN

N

+
−=

+
=

+
=

+
−=

+
=

+
=

αα

αα  (15) 

Using the normals: 

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

BDADDCBDBB

ACBCCDACAA

PPPPNPPPPN

PPPPNPPPPN

−∧−=−∧−=

−∧−=−∧−=  (16) 

The main idea of our linear bending stiffness scheme is to 
apply forces on the particles that directly oppose the 
bending vector R of the current deformation, without 
projection along N, or any other intermediate computations 
that would explicitly evaluate the actual values of the 
bending strain and stress. 

Thus, we consider that the bending forces FA, FB, FC, FD 
are applied on the vertices PA, PB, PC, PD respectively along 
the vector R. That can be done as follows, with a stiffness 
coefficient λλλλ that would bring adequate scaling: 

 

RFRF

RFRF

DDBB

CCAA

αλαλ

αλαλ

−=−=

−=−=  (17) 

This distribution, which uses the same coefficients as 
(14), has been chosen for satisfying total mechanical 
momentum conservation in the system. 

Finally, we need to compute the value of the stiffness 
coefficient λλλλ according to the linear bending stiffness 
modulus µµµµ of the surface and the geometry of the triangles. 

The bending momentum created by the forces FA and FB 
applied on respectively PA and PB around the edge (PC,PD) 
can be expressed from the height difference r, through (17), 
(15) and (13) as follows: 

 
r

hh

hh
NR

hh

hh
NFhNFh

BA

BA

BA

BA

BBAA
+

=⋅
+

=⋅−=⋅ λλ
 (18) 

The bending momentum also results from the bending 
stiffness modulus µµµµ of the bent surface of curvature γγγγ 
applied over the length l of the edge (PC,PD). From this, 
using (2): 

 

BA hh

rl
l

µ
γµ

2
=

 (19) 

A non-obvious issue is to take into account how adjacent 
edge bends combine together for describing the actual 
surface curvature. Energetic considerations, mainly detailed 
by [GHDS03] suggest that λλλλ should be evaluated by 
equating (18) with one third of (19). Therefore: 

 

( )
µλ l

hh

hh

BA

BA

23

2 +
=

 (20) 

It can be demonstrated that Only (14) and (17) are 
required for having exactly total mechanical momentum 
conservation, both translational and rotational, whatever the 
current position of the particles and whatever the actual 
way of computing coefficients, provided that their sum is 
null. Thus, momentum conservation is not broken by having 
the coefficients ααααA, ααααB, ααααC, ααααD computed independently 

from the current position of the particles. Therefore, these 
should be precomputed using the initial shape of the mesh, 
or the parametric coordinates of the vertices on the cloth. In 
these conditions, the Jacobian of the bending stiffness 
forces is simple and straightforward to compute from (14) 
and (17) without any approximation. This is done as 
follows, with I denoting the identity matrix, and with any J 
and K among (A,B,C,D): 

 
I

P

F
KJ

K

J ααλ−=
∂

∂  (21) 

Thanks to a perfectly linear bending model, the Jacobian 
of all bending forces is constant and totally independent 
from the current particle positions. This allows efficient 
numerical resolution through usual implicit numerical 
resolution methods with good convergence properties, 
along with possible algorithmic optimizations for 
performing the computation quickly. 

3.4 Numerical Integration 

The equations resulting from the mechanical formulation 
of particle systems do usually express particle forces F 
depending on the state of the system (particle positions P 
and speeds P'). In turn, particle accelerations P" is related 
to particle forces F and masses M by Newton's 2nd law of 
dynamics. This leads to a second-order ordinary differential 
equation system, which is turned to first-order by 
concatenation of particle position P and speed P' into a state 
vector Q. A vast range of numerical methods has been 
studied for solving this kind of equations. 

We have conducted extensive tests for benchmarking 
numerous integration methods, using performance, 
accuracy, stability and robustness as criteria. We have 
selected three candidates, each of which performs best in its 
own context: 

* 1st-order semi-implicit Backward Euler, which seems to 
be the best robust general-purpose method for any 
relaxation task (garment assembly and draping) 
[BHW94] [MDDB00]. 

* 2nd-order semi-implicit Backward Differential Formula, 
which offers increased dynamic accuracy along time 
(garment simulation on animated characters), at the 
expense of robustness (unsuited for draping during 
interactive design) [EDC96]. 

* 5th-order explicit Runge-Kutta with timestep control, 
which offers very high non-dissipative dynamic accuracy 
(accurate simulation of viscous and dissipative 
parameters in animated garments), at the expense of 
computation time (requires small time steps depending on 
the numerical stiffness, unsuited for stiff materials and 
refined discretisations) [BWH*06]. 

Our implementation integrates these three methods, and 
dynamically switches between them depending on the 
simulation context. 

3.4.1 Discussing Integration Methods 

3.4.1.1. Implicit Integration Methods 

The most widely-used method for cloth simulation is 
currently the semi-implicit Backward Euler method, which 
was first used by Baraff et al in the context of cloth 
simulation. As any implicit method, it alleviates the need of 
high accuracy for the simulation of stiff differential 
equations, offering convergence for large timesteps rather 
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than numerical instability (a step of the semi-implicit Euler 
method with "infinite" timestep is actually equivalent to an 
iteration of the Newton resolution method) . 

The formulation of a generalized implicit Euler 
integration is the following: 

 Q(t+dt ) − Q(t ) = ′Q(t+α dt ) dt  (22) 

The derivative value is not known at a moment after t, 
and is then extrapolated from the value at moment t using 
the Jacobian, leading to the semi-implicit expression which 
requires the resolution of a linear system: 

 Q(t+dt ) − Q(t ) = I − α
∂ ′Q

∂Q (t )

dt










−1

′Q(t ) dt  (23) 

We have introduced the coefficient αααα so as to modulate 
the "impliciticy" of the formula. Hence, αααα = 1 is the regular 
implicit Backward Euler step (stable), whereas αααα = 0 is the 
explicit Forward Euler step (unstable), and αααα = 1/2 is the 
2nd-order implicit Midpoint step (most accurate, at the 
threshold of stability). 

The αααα parameter is a good handle for adjusting the 
compromise between stability and accuracy. While 
maximum robustness is obviously observed for large 
values, reducing its value increases accuracy (reduces 
numerical damping) at the expense of stability, and speeds 
up the computation as well (better conditioning of the linear 
system to be resolved). 

Better accuracy can also be obtained through the use of 
the 2nd-order Backward Differential Formula (BDF-2), as 
described by Hauth et al. This uses the previous state of the 
system for enhancing accuracy up to 2nd-order, with a 
minimal impact on the computation charge. Its generalized 
implicit expression is: 

 Q(t+dt) − Q(t ) = β Q(t) − Q(t−dt)( )+ ′Q(t+α dt ) δt  

with        
β =

2 α − 1

2 α + 1

        and        
δt =

2

2 α + 1
dt

 (24) 

And its semi-implicit expression is: 

 
Q(t+dt) − Q(t ) = I − α

∂ ′Q

∂Q (t )

δt










−1

β Q(t ) − Q(t−dt )( )+ ′Q(t ) δt( )
 (25) 

While αααα = 1 is the regular implicit BDF-2 step, αααα = 0 is 
the explicit Leapfrog method, and αααα = 1/2 is again the 
implicit Midpoint method. Best accuracy is offered for 
αααα = 1/√3, where the method is 3rd-order (moderately 
stable). 

Compared to Backward Euler, the main interest of the 
BDF-2 method is that it exhibits better accuracy for 
dynamic simulation over time (less numerical damping) for 
moderately stiff numerical contexts (at the expense of 
reduced robustness for nonlinear situations). For very stiff 
contexts however, this benefit disappears. While it is 
possible to implement higher-order BDF methods, their 
interest is reduced by their lack of stability, and high 
accuracy could be more efficiently reached using high-order 
explicit methods. Stability of implicit methods is also 
affected by the nonlinearities of the mechanical model. 

 

Figure 10: Stability test: A square of cloth is initially 

deformed with large random perturbations, and then 

simulated using various timesteps. 

3.4.1.2. Explicit Integration Methods 

Unlike implicit methods, explicit methods do not offer 
convergence to equilibrium if the timestep is too large 
compared to the numerical stiffness of the equations. On the 
other hand, they are very simple to implement, and much 
compute much faster than their implicit counterpart for 
reaching a given accuracy. This is particularly true for high-
order methods, which offer very high accuracy if the 
timestep is small enough, but diverge abruptly if it exceeds 
a threshold (related to the stiffness of the equations). This is 
why an efficient timestep control scheme is essential for the 
implementation of these methods. 

While the explicit 1st-order Euler and 2nd-order Midpoint 
methods should be restricted to simple applications (beside 
their simplicity, they have no benefits compared to their 
implicit counterparts), a popular choice is the 5th-order 
Runge-Kutta scheme with embedded error evaluation. It is a 
six-stage iteration process where the computed error 
magnitude can be used for controlling the adequate timestep 
very accurately, depending on accuracy and stability 
requirements. Unlike implicit methods, this method yields a 
very good guaranteed accuracy (resulting from the high-
order, but which may require very small timesteps), which 
is particularly important for problems where energy 
conservation is a key issue (for example, evaluating the 
effect of viscous parameters in the motion of fabrics). On 
the other hand, explicit methods are quite unsuited for the 
fast relaxation of the static cloth draping applications. 
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Figure 11: Evaluation of numerical damping of various 

integration methods using energy dissipation plots along 

time(50cm x 50cm square cloth, initially horizontal, 

attached along one edge, linear isotropic 100N/m, 100g/m2, 

2cm2 elements, no dissipative parameters). 5th-order 

Runge-Kutta (up) accurately preserves the total energy 

along time, a good amount of it being transferred to elastic 

energy through small-scale mesh jittering (timesteps 

between 0.0001s and 0.00001s). Implicit methods such as 

Inverse Euler (down) damp small-scale motion. 
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Figure 12: The 3rd-order BDF2 variation (down) preserves 

energy significantly better than Inverse Euler (up). 

3.4.2 Implementation Issues 

While there are no particular issues related to the 
implementation of explicit integration methods, semi-
implicit methods require the resolution of large sparse linear 
equations systems, which are mainly constructed from the 
Jacobian of the mechanical law ∂F/∂P and ∂F/∂P' (their 
sparse structure relates the mechanical dependency between 
the particles). Among possible speed-up approximations, 
the Jacobian terms generated by the non-stiff forces can be 
neglected (they are then explicitly integrated). 

A choice candidate for resolving this linear system is the 
Conjugate Gradient method, which is iterative and thus 
offers compromise between computation charge and 
symmetric accuracy, and which also allows efficient 
implementation for sparse systems. 

Among possible optimizations are linearization schemes 
aimed at performing the computation using a constant 
approximation of the Jacobian, so as to implement pre-
processing optimizations in the resolution. While giving 
reasonable benefits for draping applications, these 
approximations however generate large "numerical 
damping" that slow down convergence and alter highly the 
motion of the cloth along time. 

The only solution for simulating the accurate motion of 
cloth was indeed to use real value of the Jacobian 
corresponding to the current state of the system. We have 
taken advantage of the Conjugate Gradient method which 
only needs the Jacobian matrix products with given vectors 
to compute these products "on the fly" directly from the 
system state, skipping the sparse explicit storage of the 
matrix for each frame. Our system actually allows 
performing partial linearization of the Jacobian, so as to use 
the linearization ratio offering the best trade-off between 
motion accuracy and stability, depending on the simulation 
context. 

3.5 Collision Processing 

Collision detection is indeed one of the most time-
consuming tasks when it comes to simulate virtual 
characters wearing complete garments. In high-performance 
systems, this task is usually performed through an adapted 
bounding-volume hierarchy algorithm, which uses a 
constant Discrete-Orientation-Polytope hierarchy 
constructed on the mesh, and optimization for self-collision 
detection using curvature evaluation on the surface 
hierarchy. This algorithm is fast enough for allowing full 
collision and self-collision detection between all objects of 
the scene with acceptable impact on the processing time 
(rarely exceeds 20% of the total time). Thus, body and cloth 
meshes are handled totally symmetrically by the collision 
detection process, ensuring perfect versatility of the 
collision handling between the body and the several layers 
of garments. 

 

Figure 13: Discrete-Orientation-Polytopes are a 

generalisation of axis-aligned Bounding Boxes. 
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Figure 14: Bounding-volume hierarchy for collision 

detection on a cloth mesh. 

Collision response is handled robustly using a geometrical 
scheme based on correction of mesh position, speed and 
acceleration. This scheme ensures good accuracy and 
stability without the need of large nonlinear forces that alter 
the numerical resolution of the mechanical model. 

4. Tactile perception of Synthetic Surfaces 

Tactile aspects of a virtual object can be represented as a 
spatial distribution of synthetic touch sensations over the 
fingertips. An array of contactors on the skin may be used 
to provide appropriate spatiotemporal patterns of 
mechanical excitation to the underlying mechanoreceptors. 
Tactile rendering software can generate drive signals for the 
array on the basis of the user's movements and a model of 
the finger/object interaction. 

4.1 Overview 

This section is concerned with the tactile aspects of a 
virtual object, represented as a spatial distribution of 
synthetic touch sensations over the fingertips. These 
sensations can provide information about the surface texture 
of the virtual object and about the contact between object 
and skin (contact area and position of edges/ corners).  

To excite the skin mechanoreceptors, an array of 
contactors on the skin may be used to provide 
spatiotemporal patterns of mechanical input to the skin 
surface. In practice, such an array is one component of a 
haptic interface, integrated with a force-feedback 
component which represents the gross mechanical 
properties of the virtual object. Encounters with virtual 
objects, during active exploration of the workspace by the 

user, produce appropriate patterns of tactile stimulation on 
the fingertips. This is illustrated schematically in Figure 15. 

Figure 15: Schematic diagram of  a compound haptic 
interface. The upper picture shows a virtual scenario (from 
the HAPTEX project) in which a fabric sample is evaluated 
in terms of overall mechanical properties and surface 
properties; the lower picture indicates how the overall 
mechanical properties are represented by force-feedback 
and the surface properties are represented by tactile 
stimulation from actuators on the fingertips. 

When presenting the tactile aspects of a virtual object, 
the intention is not to reproduce the significant features of 
the small-scale surface topology of the object in terms of a 
virtual surface – that would require micron-scale resolution 
and is probably beyond the scope of current technology. 
Instead, the intention is to reproduce the perceptual 
consequences of small-scale features of the surface 
topology, i.e., appropriate excitation patterns over the 
various populations of touch receptors in the skin. (Shape 
displays have been developed to reproduce larger-scale 
features of an object’s surface topology [WLH02, WLH04], 
at millimetre-scale resolution, but these are not the subject 
of the present discussion.) 

4.2 Design of a stimulator array 

As outlined above, an array of contactors on the skin may 
be used to provide spatiotemporal patterns of mechanical 
excitation to the underlying mechanoreceptors. The design 
requirements for such a stimulator array – contactor 
spacing, working bandwidth and output amplitude – are 
largely determined by the response of the 
mechanoreceptors. 

The hairless skin which is found on the fingertips and the 
palms of the hands contains four populations of 
mechanoreceptors: pacinian receptors and three types of 
non-pacinian receptor [JYV00]. These populations differ in 
terms of their frequency response and their temporal 
response [GBH01]. Figure 16 indicates the distribution of 
pacinian receptors in the fingertip of a young adult. 
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 Figure 16: Pacinian receptors in the fingertip. The left 
panel shows a 2D projection of receptor locations (140 µm 
units), identified from a set of MRI slices, one of which is 
shown in the right panel. For further details, see [CSB*06]. 

The optimal spacing of contactors in a simulator array is 
determined by the spatial acuity of the sense of touch – 
around 1 mm on the fingertip [JYV00]. However, a 
contactor spacing of 1 mm equates to around 100 contactors 
over the fingertip, each of which requires independent 
control. This is realistic for a passive (non-moving) device 
[SC02, KBD*07] but is difficult to implement in an active 
device, for which a spacing of around 2 mm (i.e., around 25 
contactors on the fingertip) may be a better choice. (There 
is some evidence [SCS*01] that perceptions available from 
an array with 2 mm spacing are not very different than 
those from an array with 1 mm spacing.) 

In order to produce “realistic” touch sensations, a 
working bandwidth of around 10 to 500 Hz is required for 
the drive mechanism of each contactor, corresponding to 
the frequency range over which the various 
mechanoreceptors are sensitive [GBH01]. Pacinian 
receptors are expected to respond most strongly to 
frequencies in the upper part of this frequency range (100 to 
500 Hz, say); stimulation at lower frequencies is expected 
to stimulate mainly non-pacinian receptors.  

It is difficult to closely specify the amplitudes of 
contactor movement which are required to produce 
particular levels of touch sensation, because sensation level 
varies with the extent of the area stimulated, particularly 
when pacinian receptors are involved [Ver63]. However, it 
is possible to give approximate figures: “comfortable” 
sensation levels are produced by amplitudes of a few 
microns at frequencies around 300 Hz and a few tens of 
microns at frequencies around 50 Hz. (In one of very few 
studies on this topic, Verrillo et al. [VFS69] determined 
equal-sensation contours for a fixed area of stimulation on 
the palm of the hand,. It is not clear how well these data 
may be applied to the case of a variable area of stimulation 
on the fingertip.) 

A further consideration is the direction of movement of 
the contactors in a stimulator array. In “real” touch 
perception, the interaction between skin and object 
produces normal and tangential forces on the skin surface 
(with two orthogonal components for the latter). However, 
stimulator arrays are constrained by present technologies to 
produce input forces in only a single direction (i.e., normal 
to the skin surface, or tangential in only one of the two 
available directions). It is difficult to assess the significance 
of this constraint. Since the aim is to produce appropriate 
excitation patterns over the various populations of touch 
receptors, the question is whether receptors that typically 
respond to forces in a particular direction in the “real” 
situation (e.g., receptors which respond to skin stretch 
caused by tangential forces) can be excited by forces in a 

different direction in the virtual situation. It is difficult to 
answer this question with certainty because the existing 
literature on mechanoreceptor transduction is very limited. 
In practice, it seems that the direction of contactor 
movement dose not make a great difference to the nature of 
the available tactile sensation, and so an acceptable 
stimulator can be designed on the basis of either tangential 
or normal movement. 

Design requirements for contactor spacing, working 
bandwidth and output amplitude may be satisfied by a 
variety of electromechanical drive mechanisms. Hafez and 
colleagues [BHA*03, HB04] have developed arrays of 
drivers, based on shape-memory alloy or moving-coil 
technology, which apply normal forces to the skin. 
Hayward and colleagues [PH03, LPH07] have used 
piezoelectric-bimorph actuators to apply tangential forces. 
Summers et al. [SBS*05] have used similar actuators to 
apply normal forces, as have Kyung et al. [KAK*06].  

 Figure 17: Stimulator array developed for the HAPTEX 
project. The contactor surface lies under the finger – 
contactors are driven by piezoelectric bimorphs (appearing 
as black rectangles). The inset shows the arrangement of 24 
moving contactors, interspersed between fixed contactors. 

Looking at one design of drive mechanism in more 
detail: the stimulator array developed for the HAPTEX 
project is shown in Figure 17. Piezoelectric bimorphs are 
used to drive 24 contactors in a 6 × 4 array on the fingertip, 
with a spacing of 2 mm between contactor centres. It can be 
seen that the drive mechanism is placed to the side of the 
finger and ahead of the finger, rather than below the 
contactor surface (which, at first sight, appears to be the 
mot convenient location). With one such array on the index 
finger and one on the thumb, this positioning of the drive 
mechanism allows the finger to move close to the thumb so 
that a virtual textile can be manipulated between the tips of 
finger and thumb. 

The contactor surface delivers to the fingertip the small 
forces associated with touch stimuli, but it must also deliver 
the larger forces associated with the overall mechanical 
properties of the virtual object, represented by the output of 
the force-feedback system (see Figure 15). However, the 
moving contactors which provide touch stimuli are driven 
by delicate piezoelectric mechanisms and so they are 
unsuitable for delivering the force-feedback output, which 
may involve forces of considerable magnitude. 
Consequently, the contactor surface includes an additional 
set of contactors (“fixed” contactors – see inset to Figure 
17) which deliver the force-feedback output, in parallel with 
the tactile stimulation from the moving contactors. This 
parallel delivery is shown schematically in Figure 18. 
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Figure 18: Schematic diagram of the integration of the 
stimulator array and the force-feedback system. The finger 
rests on the contactor surface, composed of moving 
contactors (shown in black) which deliver tactile stimuli 
and “fixed” contactors (shown in white) which connect to 
the force-feedback system via a 3D force transducer. 

4.3 Drive signals for a stimulator array 

During active exploration of a virtual tactile environment 
it is necessary to generate in real time a drive waveform for 
each contactor of the stimulator array(s) which are in 
contact with the user’s fingertip(s). The amount of data 
which must be generated “on the fly” is thus considerable. 
For example, the HAPTEX system has 24-contactor arrays 
on finger and thumb, requiring 48 analogue drive signals, in 
principle each with a bandwidth of around 500 Hz. 
However, because of the limited temporal resolution, 
frequency resolution and phase sensitivity of human touch 
perception [She85, RHD*87, VGV90, FMF*92, SWM*05], 
there are possibilities for a significant reduction in the data 
flow. For example, each drive signal may be reduced to the 
sum of a limited number of sinusoidal components, 
distributed across the working bandwidth (10 to 500 Hz – 
see above). The drive signal may then be simply specified 
in terms of the amplitudes of these components, which 
require an update every 20 ms or so.  

In the HAPTEX project, a cut-down version of this 
scheme has been used, in which the drive signal to each 
contactor is the sum of components at only two frequencies:  
40 Hz and 320 Hz. Following the suggestion of Bernstein 
[BED89], the higher frequency was selected (at 320 Hz) to 
target pacinian receptors and the lower frequency was 
selected (at 40 Hz) to target non-pacinian receptors. Each 
drive signal is specified by the amplitudes A40 and A320 of 
the two signal components. These are updated every 25 ms. 
A virtual tactile surface is specified in terms of an 
amplitude map for each of the two frequency components 
that make up the stimulus. 

The spatial resolution available from pacinian receptors 
is expected to be worse than that available from non-
pacinian receptors, i.e., spatial discrimination for 320 Hz 
stimuli is expected to be worse than spatial discrimination 
for 40 Hz stimuli. In fact, results from psychophysics 
experiments on this type of array [SCS*01, SC02] suggest 
the converse: spatial discrimination is better for perception 
of stimuli at 320 Hz than at 40 Hz. Thus, although it seems 
likely that different receptor mechanisms are targeted by the 
different stimulation frequencies, there is some doubt about 
which receptor populations are involved. 

4.4 Tactile rendering 

As outlined above, during exploration of a virtual tactile 
environment a drive waveform is specified for each 
contactor of the stimulator array(s). The intention is to 
produce time-varying excitation patterns in the various 
populations of mechanoreceptors in the skin, so as to 

reproduce the touch sensations which are experienced 
during “real” tactile exploration.  

A significant problem is the current lack of knowledge on 
the origin and nature of excitation patterns in real situations 
of tactile exploration of an object. The mechanical 
stimulation of a given receptor has a complicated relation to 
the mechanical properties and topology of the object’s 
surface, to the mechanical properties of the skin and its 
local topology (especially skin ridges, i.e., fingerprints), and 
to the precise nature of the exploratory movement (speed, 
contact pressure and direction).  Although it may be 
possible to produce an accurate software model of an 
object’s surface, it is not at present possible to augment this 
with an accurate model of the skin/surface interaction. This 
situation may change in the near future: research is 
currently underway to develop an “artificial finger” with 
embedded transducers to mimic mechanoreceptors; 
improved finite-element models may also provide useful 
data.  

For the particular case of the manipulation of textiles, the 
situation is more promising: Information on the nature of 
the mechanical input to the skin’s mechanoreceptors is 
available from the Kawabata system for evaluation of 
textiles [Kaw80]. This provides a range of data on the 
textile sample under test, including surface roughness and 
surface friction profiles which are direct measures of the 
mechanical excitations produced when a probe is moved 
over the textile surface. The probe and associated 
instrumentation are designed so that the measured quantities 
correlate well with subjective assessment of the textile 
surface. Hence the Kawabata surface measurements provide 
an approximation to the “perceived surface”, i.e., the 
surface after it has been “filtered” through the surface/skin 
interface. They thus provide a good basis for specifying 
drive signals for a stimulator array, in order to provide the 
tactile component for a virtual textile. Kawabata 
measurements have been used in this way by Govindaraj et 
al. [GGR*03]; they have also been used to provide source 
data for the tactile rendering developed within the HAPTEX 
project. 

Figure 19: A simple scheme for tactile rendering. 

 

Figure 19 outlines a simple scheme for tactile rendering, 
by which the drive signal to each point in the stimulator 
array is specified in terms of amplitude A40 at 40 Hz and an 
amplitude A320 at 320 Hz, and these amplitudes are in turn 
specified by the interaction between the virtual object and 
the exploratory movements of the user. The rendering is 
based on a pseudo-topology (i.e., an estimate of the surface 
after it has been filtered through the surface/skin interface), 
described in terms of amplitude distributions at length 
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scales L1, L2, etc.. These may be considered as amplitude 
distributions in frequency ranges c/L1, c/L2, etc., where c is 
the speed of exploration. [For a stimulator array with 2 mm 
spacing, the amplitude distributions might be specified at a 
resolution (“pixel size”) of 1 mm, with effective feature 
widths of ≥ 2 mm.] For each point in the array, e.g., the 
point indicated by a white dot in Figure 19, the amplitudes 
in the different frequency ranges are combined by 
appropriate filter functions to produce the drive amplitudes 
A40 and A320. 

A similar rendering scheme developed within the 
HAPTEX project is summarised in Figure 20. For each 
digit, the tactile renderer generates 24 drive signals for the 
24 contactors of the stimulator array. Input and output data 
specified in 25 ms timesteps. The input data are: 

o a small-scale description of the object surface, 
represented as 2D k-space, derived from a 
pseudo-topology at 0.1 mm resolution over an 
area of a few mm2; 

o a large-scale description of the object surface: a 
representation of the non-uniformity of the 
surface, specified as pseudo-amplitudes at 1 mm 
resolution over an area of several tens of cm2; 

o position and orientation of the finger pad on the 
virtual surface; 

o speed and direction of the movement of the finger 
pad over the virtual surface. 

The operation of the renderer is as follows:  

Taking account of the direction of movement, a spatial-
frequency spectrum is calculated from the 2D k-space of the 
small-scale description of the virtual surface. Information 
about the speed of movement of the finger pad is used to 
convert spatial-frequency components into temporal-
frequency components. The resulting temporal-frequency 
spectrum is reduced to only two amplitudes, A40 and A320, 
by application of appropriate bandpass filter functions, 
corresponding to the 40-Hz and 320-Hz channels. (It should 
be noted that the signal-processing operations to this point 
may be performed only once per 25-ms timestep, i.e., they 
may be common to all 24 output channels.) Amplitudes for 
the 40-Hz component in the drive signals for each of the 24 
channels are obtained from A40 by weighting according to 
data from the large-scale description of the virtual surface, 
for the 24 locations on the finger at which the contactors of 
the tactile stimulator are positioned. Similarly, amplitudes 
for the 320-Hz component in the drive signals for each of 
the 24 channels are obtained from A320 by weighting 
according to data from the large-scale description of the 
virtual surface. (Note that, in principle, different large-scale 
descriptions of the virtual surface may be used in the 40-Hz 
and 320-Hz channels, to allow for the observed difference 
in spatial resolution on the fingertip at the two frequencies.) 

 

4.5 Discussion 

When using stimulator arrays and rendering schemes as 
described above, the intention is to present time-varying 
spatial patterns of tactile stimuli which have two perceptual 
dimensions: one relating to intensity and one relating to 
spectral distribution.  In order to establish the potential for 
such a system, it is necessary to determine whether a two-
dimensional perceptual space can  indeed be created in this 
way – it is very likely that the intensity dimension is 
available to the user, but less obvious that the spectral 
dimension is available. (A spectral dimension is available in 

the case of passive perception via a single contactor [She85, 
BED89], but this observation is not necessarily transferable 
to the case of active perception via an array of contactors.) 
However, recent results from Kyung et al. [KK07] 
demonstrate that test subjects can detect changes of 
frequency when stimuli are presented via a stimulator array 
in an active task, so it seems that spectral information is 
indeed available in such a scenario. 

Initial evaluations of the HAPTEX system (Figure 20) 
also suggest that a 2D perceptual space can be  achieved. 
For uniform stimuli (i.e., stimuli with no spatial variation 
over the skin), the spectral dimension appears relatively 
weak – changes in spectral balance at constant subjective 
intensity tend to be less noticeable than changes in 
subjective intensity at constant spectral balance. (There are 
perhaps 4 to 5 discriminable steps of spectral balance along 
an equal-intensity contour.) 

Perhaps the most interesting observation when using the 
HAPTEX system is a strong interaction between the 
perceived spatial aspects of the texture and the stimulation 
frequency. If the stimulation frequency is changed from 40 
Hz to 320 Hz, the perceived sensation during active 
exploration changes much more if the texture is spatially 
non-uniform than if it is spatially uniform. It is clear that the 
spectral dimension provides a significant enhancement to 
the available range of tactile sensations. 

Using data from the Kawabata system for a selection of 
real fabrics, the HAPTEX system has been used to simulate 
the tactile aspects of those fabrics. Given the apparent 
mismatch between the real situation (fingertip touching a 
textile) and the virtual situation (fingertip touching the 
metallic contactors of a stimulator array), results are 
surprisingly good – in some cases test subjects are able to 
match real and virtual textiles in terms of their tactile 
qualities. Prospects appear encouraging for the development 
of virtual textiles with acceptable tactile properties and it 

Figure 20: The tactile renderer. Input and output data 

are specified in 25 ms timesteps. 
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seems likely that similar techniques can be successfully 
applied to other types of virtual object. 

5. Force Feedback Technologies for the Rendering of the 
Direct Interaction with Deformable Objects 

When addressing the problem of developing suitable 
force feedback technologies for the realistic haptic 
rendering of the physical interaction with deformable 
objects, a major distinction has to be recognized among the 
cases of "indirect interactions", i.e. interactions mediated by 
tools held by the user (for example in the case of the 
simulation of surgical operations) and the cases of "direct 
interactions", in which the limbs and the skin of the user 
come directly in contact with the surface of the deformable 
object, for example in the case of rubbing a textile. The 
latter case poses technical challenges that are dramatically 
more demanding than the former from both the qualitative 
and quantitative points of view. In this section we illustrate 
three examples of research works that aim at the 
improvement of the quality of direct contact simulation. 
These themes deal with the three important aspects of 
design of novel force feedback systems, innovative 
concepts for curvature simulation and control algorithms for 
accuracy improvement. 

5.1 Introduction 

While the simulation of the indirect interaction can 
satisfactory be addressed using an accurately force 
controlled robotic manipulator, having an end-effector 
shaped like the tool used in the simulation (for example a 
cutter, see Figure 21), the realistic simulation of the direct 
interaction implies the development of suitable 
technologies, able to comply with the extremely sensitive 
and sophisticated human haptic sensorial system that can 
perceive a large number of features characterizing the local 
contact with the object, like for example the global 
location/orientation with respect to the skin of the contact 
area(s) and its (their) extension, the local mechanical 
impedance(s) of the object (i.e. the relationship between the 
local displacement, speed, acceleration and the 
corresponding reaction force), the local large scale (e.g. the 
curvature), medium scale (e.g. bumps and edge) and small 
scale (e.g. the roughness) geometry, the local temperature, 
etc. (see Figure 22). 

Tool 

 

Figure 21: Picture of a force feedback device for the 

simulation of indirect interactions. 

 

The mechanisms underling the perception of these 
features are currently not well understood and large 
research efforts are still required for identifying the stimuli 

that have to be generated in order to elicit the perception of 
a specific contact feature. The exploitation of haptic 
illusions seems a promising approach for the simplification 
of the stimuli to be generated, but also in this case in depth 
researches are needed for clarifying the quantitative 
dependencies of the equivalent stimuli with the intended 
perception to be elicited. 

 

Figure 22: Elements characterizing the local direct 

contact with a deformable object. 

 

As a broad result of the psychophysics researches carried on 
up today on the human haptic sensorial system, it can be 
said that there is a clear evidence of the major role  of the 
mechanoreceptors located in the skin in the perception of 
the contact features, even if the proprioceptive sensors 
located in the physiological joints and in the tendons are 
used by the brain for the reconstruction of the global 
geometry and characteristics of the object, by space 
integration of the local perceptions. 

From the technical point of view, the most accepted 
conceptual scheme for an haptic interface, able to render the 
direct interaction with virtual deformable objects, envisages 
the integration of a number of tactile arrays, i.e. a relatively 
high spatial resolution array of pins movable normally to a 
specified fixed surface in a relatively small range of motion, 
mounted on the end effectors of a force feedback device, i.e. 
an actuated and sensed mechanism able to move its end-
effector(s) in a relatively large workspace and to generate 
controlled forces on it (them). 

The first step in the definition of the requirements of the 
two different devices is the attribution of their roles in the 
generation of the required stimuli.  

The most straightforward approach is to ascribe to the force 
feedback device the role of providing the means for the 
perception of the global characteristics of the local contacts, 
such as the locations/orientations of the contact areas with 
respect to the skin and their mechanical impedances, while 
the tactile actuator should be in charge of generating the 
stimuli that can change inside the contact area, like for 
example the small and medium scale geometry and the 
temperature. This approach live undefined the attribution of 
the generation of some border features like for example the 
global curvature and the extension of the contact area (that 
in fact in some way are each other dependent). In principle 
the global curvature of the local contact could be 
reproduced by the tactile array, but due to possible 
limitations to the maximum available displacement of the 
pins the alternative solution envisaging a global 
deformation of the surface where the pins are located 
should be also considered (see Figure 23). 
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Movable Pins 
(Tactile Actuators)

Parametric Surface 
(Curvature can be Actuated)

 

Figure 23: Scheme of a the tactile array with deformable 

backing surface for the simulation of different local 

curvature 

Focusing on the basic functional requirements of the force 
feedback device, on the basis of what discussed above they 
can defined as the followings: 

1. allow the modification of both the global 
location and the orientation of the contact areas 
(and therefore of the tactile arrays) with respect 
to the user’s skin; 

2. allow the modification of the global mechanical 
impedances of the contact areas. This implies 
the generation of global reaction forces in 
function of the global displacement of the 
contact area 

It is worth to add some additional considerations and 
requirements in order to better understand the terms of the 
challenge and identify the major technological components 
that have to be developed. 

The first point is to define how many independent contact 
areas should be managed at the same time by the device. In 
the general case, during an interaction with a deformable 
object a virtually infinite number of independent contact 
areas can be simultaneously generated (let’s think for 
example to the case of the manipulation of a textile with the 
whole hand). This is clearly very far from being concretely 
achievable with the present technology and a reasonable 
simplification is required. Considering that the hand is the 
most important organ of human haptic exploration of the 
external word and that the fingertips are the most sensitive 
portions of the hand’s skin, a reasonable simplification is to 
require that the device could manage simultaneously at least 
five independent contact areas, one for each fingertip. 
Furthermore, in order to exploit at best the sensitivity of the 
mechanoreceptors, the device should be able of reproducing 
the transition from the non-contact to the contact phases, i.e. 
the stimuli have to be generated only when a contact with 
the virtual object is detected. 

The second point is to define the level of accuracy required 
for the generation of the controlled forces. Considering the 
high sensitivity and resolution capability of the 
mechanoreceptors in the skin and that many of the potential 
applications of the envisaged visual-haptic VR system, like 
for example the on line marketing of newly produced 
textiles/garments, would require the possibility of 
discerning very fine differences of the rendered features, the 
device should be able to accurately control global 
interaction forces that can be of the order of few centi-
newtons (1 gf).  

 

 

 

Figure 24: Conceptual scheme of a force feedback device 

intended for the simulation of the direct interaction with the 

5 fingertips of the hand. 

Finally, the device should allow as much as possible a 
natural interaction with the virtual object, posing minor 
limitations and constraints to the dexterity of the human 
hand and arm movements. This strongly suggests the 
adoption of an anthropomorphic configuration for the 
device structure that could be worn on the user’s hand. All 
these requirements could be attained by the device whose 
conceptual scheme is sketched in Figure 24.  

The device would be composed by 5 independent 
exoskeletons, each having 5 Degree of Freedoms (DoFs), 3 
DoFs for positioning and 2 DoFs for orientating the end 
plate supporting the tactile actuator. Furthermore each 
exoskeleton would be equipped with a contactless position 
sensor for the tracking of the fingertip during the non 
contact phase and by a an accurate explicit force control 
that makes use of a 3 component force sensor providing the 
exact measure of the global resultant force delivered to the 
fingertips through the contact area. 

In short the envisaged device would have a total of 25 
actuated a position sensorised degrees of freedom, 5 force 
sensors each having at least 3 component measure 
capability and 5 contactless position sensors with at least 3 
component measure capability. This huge number of 
components should be integrated in a compact device that 
can be easily worn by the user, without limiting the natural 
motion capability of the hand. This sets clearly the terms of 
the technological challenge. 

With respect to the state of art, in order to attain the 
envisaged device three main technological areas have to be 
investigated: 

1. The development of a compact anthropomorphic 
hand exoskeleton able to track the fingertip 
movements; 

2. The development of an encountered haptic interface 
for the fingertip able of changing the position and 
orientation of a plate end effector with respect to the 
fingertip skin according to the local geometry of the 
virtual object and able to render the transition from 
the non-contact to contact phases; 
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3. The development of an accurate explicit force 
control and related force sensor. 

 

All these major technological areas are under investigation 
at PERCRO. The attained results are described in the 
following paragraphs.   

 

5.2 Development of the hand exoskeleton 

A Hand Exoskeleton (HE) is a device able to exert forces 
on the phalanxes of the fingers. Several works (for example 
[VT99] and [BPBB02]) have addressed the development of 
different kinds of HEs.  

Basically two types of HE can be identified in literature:  

- Multi-phalanx: are multipoint devices where the 
force are exerted on each phalanx of the finger; 
each exerted force is directed along a fixed 
direction (normal to the phalanx) 

- Single Phalanx: the device exchange forces only 
on the distal phalanx (the fingertip) of the finger; 
in this case the force has 3DoF and can be exerted 
in any wanted direction. 

In our application, since the attention is focused on the 
fingertip area, a Single Phalanx 3DoF device has been 
realized.  

The device uses quasi-anthropomorphic kinematics. This 
solution allows exploiting the benefits of anthropomorphic 
kinematics like maximum ratio of the available over the 
needed workspace and minimum encumbrance of the 
linkages. At the same time it is not perfectly 
anthropomorphic in order to avoid the singularity that 
would occurs when the finger is all extended. In Figure 25 a 
CAD model of the HE is shown. It can be noticed that the 
encumbrance of the device has been located in the dorsal 
side of the hand (except for the fingertip indeed) with the 
aim of allowing the complete closing of the hand. This has 
been achieved through the use of Remote Centre of 
Rotation mechanisms. These mechanisms are able to 
implement a rotational joint having an axis located outside 
the linkages.  

The whole mechanism has 4DoF but it is actuated with only 
three motors thanks to the coupling of the last DoF (end-
effector Joint) with the previous one. The coupling is 
acceptable because also in the human hand the last phalanx 
can be rarely moved independently from the middle phalanx 
during natural movements.  

The HE is equipped with three electrical motors with low 
speed reduction ratios (1:14). The actuators are placed at the 
base of the mechanism in proximity of the dorsal side of the 
palm. The joints are actuated through in tension steel cable 
transmissions.   

The position sensing is achieved with common encoders 
located on the axis of the motors and the force sensing is 
achieved with a purposely developed 3DoF force sensor 
placed at the end effector.   

A purposely developed electronics for the sensor 
acquisition and the driving of the motors has been located 
inside the motor box at the base of the mechanism.  

 

 

Figure 25: CAD model of the Hand Exoskeleton 

This activity has been performed in the framework of 
the EU funded RTD Project HAPTEX (HAPtic rendering of 
virtual TEXtiles) 

5.3 Development of an encountered haptic interface 

Haptic interaction allows to naturally perform both haptic 
exploration of shapes/surfaces and active manipulation of 
objects. Nevertheless shape recognition isn’t efficient if 
only kinaesthetic cues are provided. The restriction imposed 
on the fingertip contact region can blunt the haptic 
perception of shape and so local haptic cues play an 
important role in haptic perception of shape [JM06]. 

In [DH05] it is demonstrated how curvature discrimination 
can be carried out through a device providing only 
directional cues at the level of the fingertip, without any 
kinaesthetic information and moreover with a planar motion 
of the finger. This concept is also exploited to build robotic 
systems that can orient mobile surfaces on the tangent 
planes to the virtual object that is simulated, only at the 
contact points with the finger [DH05]. 

The system developed at PERCRO is composed of an 
encountered haptic interface. The basic concept for this type 
of devices was introduced in [SYYM04]. Our device is 
mounted on a kinaesthetic haptic interface, according to the 
overall configuration shown in Figure 26.  

In order to describe the working principle of the device, 
let’s consider the case in witch the user is interacting with 
the virtual object: when the finger is far from the surface of 
the object, the plate of the fingertip haptic interface is kept 
far apart from the fingertip. When the finger touches the 
virtual surface, the plate comes into contact with the 
fingertip with an orientation determined by the geometric 

Figure 26: Conceptual scheme of the developed 

encountered haptic interface 
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normal of the explored surface. Simultaneously a reaction 
force, proportional to the penetration, is exerted by the 
supporting kinaesthetic haptic interface. 

The supporting haptic interface is a pure translational 
parallel manipulator with three degrees of freedom (DoF). 

The end-effector is connected to the fixed base via three 
serial kinematics chains (legs), consisting of two links 
connected by an actuated revolute joint and two universal 
joints at the leg end. The design of the device was 
optimized in order to minimize the friction forces and the 
inertia of the moving parts, obtaining the required 
transparency of the mechanism during the haptic 
exploration. 

The actuation is realized by three brushed DC motor 
through a in tension steel cable transmission, characterized 
by low friction and zero backlash. 

The encountered haptic interface was devised to bring the 
final plate into contact with the fingertip with different 
orientations and positioning with respect to the fingertip 
skin, according to the local geometry of the surface of the 
virtual object in correspondence of the contact point. These 
requirements have been met using a 5 DoFs kinematics, 
three of them (translational) devoted to the positioning in 
space of the end plate and the two others (rotational) for its 
orientation. A hybrid kinematics, consisting of a first 
parallel translational stage and a second parallel rotational 
stage, resulted the most suitable solution (Figure 27). 

The translational stage has the same kinematics of the 
supporting haptic interface, with 3-UPU legs. In each leg 
the cable connected to the motor and a compression spring 
are mounted aligned to the centres of the universal joints. 
The spring works in opposition with the motor, in order to 
generate the required actuation force and to guarantee a pre-
load on the cable. 

 

Figure 27: Detail of the fingertip haptic interface 

The kinematics of the rotational stage allows the platform to 
rotate about two axis fixed to the translational stage. 

Preliminary psychophysical tests have been carried on using 
the described system.  

The method of constant stimuli for absolute threshold was 
employed for the discrimination of curvature by means of 
haptic cues. Four participants were recruited for this 
experiment. Each participant was informed about the 
procedure and did not present any dysfunction of the finger. 

They were experts on haptic interfaces but novices on this 
device. The test consisted in exploring a virtual surface with 
curvature varying from 0 m−1 (plane surface) to 6.67 m−1 
(a sphere of radius equal to 150 mm). The observers were 
asked to answer to the question “is it a curved or a plane 
surface?”. The curvature values were 0, 1.82, 2.22, 2.86, 
3.33, 4, 5, 6.67 m−1, and 100 stimuli were presented to 
each participant. The stimulus with a percentage of 50% of 
affirmative responses was considered as the threshold for 
detection of curvature. In Figure 28 is shown the device and 
a planar scheme of the haptic cues displayed to the users. 

   

Figure 28: Experimental set-up 

The test was carried out in two different modalities, A and 
B. In condition A both the kinaesthetic and the local 
geometry haptic cues were provided to the observers: the 
mobile platform of the fingertip device was kept in contact 
with the fingertip when the user was in contact with the 
surface, with an orientation tangent to the displayed virtual 
surface. In condition B only the kinaesthetic feedback was 
provided by the supporting haptic interface. In both 
modalities the haptic exploration was carried out in a 
restricted workspace, limited by a vertical cylinder with 
diameter of 25 mm. 

The sigmoid curves for the two modalities are represented 
in Figure 29 for all the subjects, where the thresholds are 
pointed out, resulted using the fingertip haptic device (red 
line) and with the only kinaesthetic cues (blue line). 

  

Figure 29: Sigmoid curves for curvature threshold 

The average values of curvature threshold for the two 
conditions resulted respectively in 2.35±0.35 and 3.02±0.58 
m−1, with an improvement of 22.2% in the performance for 
modality A. 

Although the ANOVA between the two conditions do not 
reach a significant level (p=0.069), we can however 
presume that further investigations employing more 
accurate schemes and conditions, e.g. method of limits and 
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TSD, and carried out on a larger sample of subjects/points, 
may statistically point out this difference. The data are 
consistent with what has been already found in literature for 
discrimination of curvature, either using haptic interfaces or 
real objects. 

This activity has been performed in the framework of 
the EU funded RTD Network of Excellence ENACTIVE. 

5.4 Development of accurate explicit force control  

The simulation of fine interaction, in which the exchanged 
forces are of the order of few grams, requires the 
implementation of highly accurate force feedback devices.  

This could be achieved through a careful design of the 
mechanical component of the device. However, when the 
required workspace is large and the performances are 
demanding, it is necessary to introduce advanced control 
technique in order to compensate the unwanted resistant 
forces. 

In this work we implemented a motion-based explicit force 
control algorithm using a force sensor located at the end-
effector of a haptic device. The general architecture of this 
algorithm was introduced in [VK93]. The control is 
implemented on a device that was originally designed for 
open loop control, i.e. without force sensing. 

The haptic device taken as reference for this work is the 
GRAB system (described in [AMA*03]) developed by 
PERCRO Laboratory in the framework of the homonymous 
European RTD Project. GRAB is a 6 DoFs desktop force-
feedback device with a serial kinematics. The first 3 DoFs 
(RRP) are required to track the position of the fingertip in 
3D space and the remaining 3 (RRR) are required to track 
its orientation. The first 3 DoFs are actuated in order to 
exert forces of arbitrary orientation at the fingertip, whereas 
the last 3 DoFs are passive and are realized by a gimbal. On 
the last DoF of the gimbal a thimble is mounted for the 
connection to the user’s fingertip. The 3 motors are 
remotely located: the first 2 actuators are mounted on the 
fixed link (base), while the third actuator is mounted on the 
second moving link. Forces are transmitted from the 
actuators to the joints by in tension metallic tendons routed 
on idle pulleys. There are no geared reducers and the 
motors are sensorised by optical encoders. For 
implementing explicit force-feedback control, a commercial 
6-components force sensor from ATI (NANO17) has been 
placed at the base of the gimbal. 
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Figure 30: Scheme of the force control 

The 1 DoF scheme of the controller is represented in Figure 
30: it consists of an inner velocity loop-outer force loop 
scheme. This one-dimensional scheme can be simply 
generalized for implementing a three dimensional force 
control: it’s sufficient to transform the velocity reference, 

obtained as output of gain
v

K , in a joint speed reference by 
simply multiplying it for the inverse of Jacobian matrix, 
which describe the inverse differential kinematics of device. 
This solution allows general control architecture to be safe 
and simplify the interface procedure with user. 
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Figure 31: Mechanical model  

The proper dimensioning of such controller required the 
following step:   

- Building of a dynamic model of the mechanical 
system: the 1 DoF model (Figure 31) has been taken as 
reference; this model was experimentally validated.  

- Estimation of the user impedance. The impedance of 
the finger in a thimble has been experimentally measured 
since it has a strong influence on the stability of the loop. 

The design of the controller was carried on focusing on the 
inner velocity loop first. Two filters were introduced for the 
velocity loop: 

 1) a third order Chebyshev Type I for guaranteeing the 
stability of the velocity loop  

 2) a filter for velocity signal (velocity signal generated 
by digital encoders) 

The outer force loop was then designed.   

A Butterworth filter was introduced to guarantee the 
stability. 
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Figure 32: Plot of the resistant force versus time during 

finger tracking at constant velocity  

A field test investigating the system capability to track the 
finger motion has been carried on. The subjects were asked 
to move their fingers at constant velocity and the system 
was set to display no forces. The maximum module of the 
acquired resistant force was about one tenth of Newton (10 
grams force), as it can be observed in Figure 32. 
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This activity has been carried on in the framework of 
the EU funded RTD Project HAPTEX (HAPtic rendering of 
virtual TEXtiles) 

5.5 Conclusion and future works 

The development of force feedback technologies suitable 
for the rendering of the direct interaction with deformable 
objects is a tremendously challenging activity due to the 
very sophisticated capability of the human haptic sensorial 
system.  

A reference configuration for the device addressing the case 
of direct interaction with the five fingertips of the hand has 
been identified. The three main technological areas required 
for attaining the envisaged device, namely the development 
of a compact anthropomorphic hand exoskeleton, the 
encountered haptic interface techniques, the accurate 
explicit force control and the compact 3 component force 
sensor, are now under investigation at PERCRO and the 
preliminary results are encouraging.  The next research goal 
will be the integration of all the developed technologies in a 
single compact device. 
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games, VR systems for training and simulation and crowds in Augmented Reality applications. Autonomy is the
only way to create believable crowds reacting to events in real-time. This course will present state-of-the-art
techniques and methods.
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Necessary background and potential target audience for
the  tutorial: experience  with  computer  animation  is
recommended but  not  mandatory.  The course is  intended
for animators, designers, and students in computer science.

     
Detailed outline of the tutorial

The necessity to model virtual populations occurs in many
applications  of  computer  animation  and simulation.  Such
applications  encompass  several  different  domains  –
representative  or  autonomous  agents  in  virtual
environments,  perceptual  metrics  and  human  factors,
training,  education,  simulation-based  design,  and
entertainment. Realistically reproducing dynamic life in the

real-time simulation of virtual environments is also a great
challenge. 

In this course, we will first present in detail  the different
approaches  to  creating  virtual  crowds,  including  particle
systems  with  flocking  techniques  using  attraction  and
repulsion forces,  copy and pasting techniques,  and agent-
based methods. 

We  will  survey  methods  for  animating  the  individual
members that make up a crowd, encompassing a variety of
approaches,  with  particular  focus  on  how example-based
synthesis  methods  can  be  adapted  for  crowds.  Agent
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architectures  for  scalable  crowd  simulation  will  also  be
presented.

The  course  will  cover  the  topics  of  real-time  crowd
rendering,  including image-based/impostor,  polygonal and
point-based techniques. The topic of Level of Detail (LOD)
crowd  animation  will  also  be  covered,  not  only  for
rendering,  but  also  for  animation.  Perceptual  issues  with
respect  to  the  appearance  and  movement  of  crowds  of
characters will be addressed.

New challenges in the production of real-time crowds for
games,  VR  systems  for  training  and  simulation  will  be
presented and analysed, with an emphasis on techniques for
highly  scalable  crowd  rendering.  The  course  will  be
illustrated  with  many  examples  from  recent  movies  and
real-time applications in Emergency Scenarios and Cultural
Heritage  (such  as  adding  virtual  audiences  in  Roman  or
Greek theaters).
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Daniel Thalmann is Professor and Director of The Virtual
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in  research  on  Virtual  Humans.  His  current  research
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Federal  Institute  of  Technology  in  Lausanne  (EPFL).  In
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Abstract

Crowds are part of our everyday experience; nevertheless, in virtual worlds they are still relatively rare. In the

past, main reasons hindering a wider use of virtual crowds in the real-time domain were their high demands on

both general and graphics performance coupled with high costs of content production. The situation is, though,

changing fast; market forces are pushing performance of the consumer hardware up, reaching and surpassing per-

formance of professional graphics workstations from just few years ago. With current consumer-grade personal

computers it is possible to display 3D virtual scenes with thousands of animated individual entities at interactive

framerates. In this report, we present the related works on the subject of groups and crowd simulation discussing

several areas such as behavioral simulation, crowd motion control, crowd rendering and crowd scenario author-

ing.

Keywords: Autonomous agents, behavioral animation, computer graphics, crowd simulations, flocking, image-
based rendering, multi-agent systems, impostors, virtual reality.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Animation I.3.3 [Picture/Image Generation]: Display algorithms I.2.11 [Distributed Artificial Intelligence]: Mul-
tiagent systems

1. Introduction to crowd simulations

Although collective behavior has been studied since as early
as the end of the nineteenth century [LeB95], attempts to
simulate it by computer models are quite recent, with most
of the works done only in the mid and late nineties. In the
past years researchers from a broad range of fields such as
architecture [SOHTG99, PT01, TP02], computer graphics
[BG96, HB94, MT01, Rey87, TLC02b, UT02, BMdOB03],
physics [HM95, HFV00, FHV02], robotics [MS01],
safety science [Sim04, Sti00, TM95a], training sys-
tems [Bot95, VSMA98, Wil95], and sociology
[JPvdS01, MPT92, TSM99] have been creating simu-

lations involving collections of individuals. Nevertheless,
despite apparent breadth of the crowd simulation research
basis, it can be noted that interdisciplinary exchange of
ideas is rare; researchers in one field are usually not very
aware of works done in the other fields.

Most approaches were application-specific, focusing on
different aspects of the collective behavior, using differ-
ent modeling techniques. Employed techniques range from
those that do not distinguish individuals such as flow and
network models in some of the evacuation simulations
[TT92], to those that represent each individual as being con-
trolled by more or less complex rules based on physical laws
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[HFV00, HIK96], chaos equations [SKN98] or behavioral
models in training systems [Wil95] or sociological simula-
tions [JPvdS01].

We can distinguish two broader areas of crowd simula-
tions. The first one is focusing on a realism of behavioral
aspects with usually simple 2D visualizations like evacu-
ation simulators, sociological crowd models, or crowd dy-
namics models. In this area, a simulated behavior is usu-
ally from a very narrow, controlled range (for example, peo-
ple just flying to exit or people forming ring crowd struc-
tures) with efforts to quantitatively validate correspondence
of results to real world observations of particular situations
[TM95b]. Ideally, a simulation’s results would be then con-
sistent with data sets collected from field observations or
video footage of real crowds either by human observers
[SM99] or by some automated image processing method
[CYC99, MVCL98]. Visualization is used to help to under-
stand simulation results, but it is not crucial. In most cases, a
schematic representation, with crowd members represented
by colored dots, or sticky figures, is enough, sometimes even
preferable as it allows highlighting important information.

In the second area, a main goal is high quality visual-
ization (for example, in movie productions and computer
games), but usually the realism of the behavior model is not
the priority. What is important is a convincing visual result,
which is achieved partly by behavior models, partly by hu-
man intervention in the production process. A virtual crowd
should both look well and be animated in a believable man-
ner, the emphasis of the research being mostly on render-
ing and animation methods. Crowd members are visualized
as fully animated three dimensional figures that are textured
and lit to fit into the environment [TLC02b]. Here, behavior
models do not necessarily aim to match quantitatively the
real world, their purpose is more in alleviating of human an-
imators work, and to be able to respond to inputs in case of
interactive applications.

Nevertheless, a recent trend seems to be a convergence
of both areas, where visualization oriented systems are try-
ing to incorporate better behaviors models to ease creation
of convincing animations [Ant98, Cha04] and behavior ori-
ented models are trying to achieve better visualization, espe-
cially in the domain of evacuation simulators [Exo04, STE].
We can expect that the most demanding applications would
be training systems, where both valid replication of the be-
haviors and high quality visualization is necessary for a
training to be effective.

1.1. Requirements and constrains for crowd modeling

Real-time crowds bring different challenges compared to the
systems either involving small number of interacting char-
acters (for example, the majority of contemporary computer
games), or non-real-time applications (as crowds in movies,
or visualizations of crowd evacuations after off-line model

computations). In comparison with single-agent simulations,
the main conceptual difference is the need for efficient va-
riety management at every level, whether it is visualization,
motion control, animation or sound rendering. As everyday
experiences hint, virtual humans composing a crowd should
look different, move different, react different, sound differ-
ent and so forth. Even if assuming perfect simulation of a
single virtual human would be possible, still creating a sim-
ulation involving multiple such humans would be a difficult
and tedious task. Methods easing control of many charac-
ters are needed; however such methods should still preserve
ability to control individual agents.

In comparison with non-real-time simulations, the main
technical challenge is increased demand on computational
resources whether it is general processing power, graphics
performance or memory space. One of the foremost con-
straining factors for real-time crowd simulations is crowd
rendering. Fast and scalable methods both to compute be-
havior, able to take into account inputs not known in ad-
vance, and to render large and varied crowds, are needed.
While non-real-time simulations are able to take advantage
of knowing a full run of the simulated scenario (and there-
fore, for example, can run iteratively over several possible
options selecting the globally best solution), real-time simu-
lations have to react to the situation as it unfolds in the mo-
ment.

2. Crowd simulation areas

In order to create a full simulation of the crowd in the vir-
tual environment, many issues have to be solved. The areas
of relevance for crowd simulation and some associated ques-
tions include:

Crowd behavior generation: How should a virtual crowd
respond to changes in their surroundings? How should
agents respond to behaviors of other agents? What is an
appropriate way of modeling perception for many agents?
[Rey87, TT94, HB94, BCN97, BH97, Rey99, Mus00]
[UT02, NG03]

Crowd motion control: How should virtual entities move
around and avoid collisions with both a static environment
and dynamic objects? How can a group move in a coordi-
nated manner? [ALA∗01, GKM∗01, AMC03, LD04]

Integration of crowds in virtual environments:

Which aspects of the environment need to be mod-
eled? Which representation of environmental ob-
jects is best suited for fast behavior computation?
[FBT99, BLA02, KBT03, LMA03]

Virtual crowd rendering and animation: How to display
many animated characters fast? How to display a wide va-
riety of appearances? How to generate varied animations?
[ABT00, LCT01, TLC02a, WS02]

Interaction with virtual crowds: How and which infor-
mation should be exchanged between real and virtual
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humans? What is the most efficient metaphor to direct
crowds of virtual extras? [FRMS∗99, UdHCT04]

Generation of virtual individuals: How to generate a het-
erogeneous crowd? How to create a population with de-
sired distribution of features? [GKMT01, SYCGMT02]

Authoring of scenarios: How to author complex crowd
scenes in an efficient way? How to distribute crowd mem-
bers in designated areas? How to distribute features over
a population? [Che04, UdHCT04]

Many of these aspects are to a greater or lesser extent in-
tertwined. For example, efficiency of rendering constrains
the possible variety of behaviors and appearances; higher-
level behavior generation controls lower-level motion sys-
tems, but the behavior should also respond appropriately to
collisions encountered while moving; the behavior model
affects interaction possibilities; the environment representa-
tion affects possible behaviors; authoring tools allow han-
dling of more complex behavior and environment represen-
tations and so on.

3. Overview of crowd simulations

3.1. Crowd evacuation simulators

One of the largest areas where crowd behaviors have been
modeled is the domain of safety science and architecture
with the dominant application of crowd evacuation simu-
lators. Such systems model movements of a large number
of people in usually closed and well-defined spaces like
inner areas of buildings [TM95a], subways [Har00], ships
[KMKWS00] or airplanes [OGLF98]. Their goal is to help
designers to understand the relation between the organiza-
tion of space and human behavior [OM93].

The most common use of evacuation simulators is the
modeling of crowd behavior in case of forced evacuation
from a confined environment due to some threat like fire
or smoke. In such a situation, a number of people have to
evacuate the given area, usually through a relatively small
number of fixed exits. Simulations are trying to help with
answering questions like: Can the area be evacuated within
a prescribed time? Where do the hold-ups in the flow of peo-
ple occur? Where are the likely areas for a crowd surge to
produce unacceptable crushing pressure? [Rob99] The most
common modeling approach in this area is the use of cellular
automata serving both as a representation of individuals and
a representation of the environment.

Simulex [TM95a, Sim04] is a computer model simulating
the escape movement of persons through large, geometri-
cally complex building spaces defined by 2D floor plans and
connecting staircases. Each individual has attributes such as
position, body size, angle of orientation and walking speed.
Various algorithms as distance mapping, way finding, over-
taking, route deviation and adjustment of individual speeds
due to proximity of crowd members are used to compute

egress simulation, where individual building occupants walk
towards and through the exits.

K. Still developed a collection of programs named Legion
for simulation and analysis of the crowd dynamics in evacu-
ation from constrained and complex environments like stadi-
ums [Sti00]. Dynamics of crowd motion is modeled by mo-
bile cellular automata. Every person in the crowd is treated
as an individual, calculating its position by scanning its local
environment and choosing an appropriate action.

3.2. Crowd management training systems

The modeling of crowds has also been essential in police and
military simulator systems used for training in how to deal
with mass gatherings of people.

CACTUS [Wil95] is a system developed to assist in plan-
ning and training for public order incidents such as large
demonstrations and marches. The software designs are based
on a world model in which crowd groups and police units
are placed on a digitized map and have probabilistic rules
for their interactive behavior. The simulation model repre-
sents small groups of people as discrete objects. The be-
havioral descriptions are in the form of a directed graph
where the nodes describe behavioral states (to which corre-
spond actions and exhibited emotions) and transitions rep-
resent plausible changes between these states. The transi-
tions depend on environmental conditions and probability
weightings. The simulation runs as a decision making ex-
ercise that can include pre-event logistic planning, incident
management and debriefing evaluation.

Small Unit Leader Non-Lethal Training System

[VSMA98] is a simulator for training US Marines Corps
in decision making with respect to the use of non-lethal
munitions in peacekeeping and crowd control operations.
Trainees learn rules of engagement, the procedures for
dealing with crowds and mobs and ability to make decisions
about the appropriate level of force needed to control,
contain, or disperse crowds and mobs. Crowds move within
a simulated urban environment along instructor-predefined
pathways and respond both to actions of a trainee and to
actions of other simulated crowds. Each crowd is character-
ized by a crowd profile - series of attributes like fanaticism,
arousal state, prior experience with non-lethal munitions,
or attitude toward Marines. During an exercise, the crowd
behavior computer model operates in real time and responds
to trainee actions (and inactions) with appropriate simulated
behaviors such as loitering, celebrating, demonstrating, riot-
ing and dispersing according to set of Boolean relationships
defined by experts.

3.3. Sociological models of crowds

Despite being a field primary interested in studying collec-
tive behavior, only a relatively small number of works on
crowd simulations have been done in sociology.
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McPhail et al. [MPT92] studied individual and collective
actions in temporary gatherings. Their model of the crowd
is based on perception control theory [Pow73] where each
separate individual is trying to control his or her experience
in order to maintain a particular relationship to others: in this
case it is a spatial relationship with others in a group. The
simulation program called GATHERING graphically shows
movement, milling, and structural emergence in crowds. The
same simulation system was later used by Schweingruber
[Sch95] to study the effects of reference signals common
to coordination of collective behavior and by Tucker et al.
[TSM99] to study formation of arcs and rings in temporary
gatherings.

Jager et al. [JPvdS01] modeled clustering and fighting in
two-party crowds. Crowd is modeled by a multi-agent simu-
lation using cellular automata with rules defining approach-
avoidance conflict. The simulation consists of two groups of
agents of three different kinds: hardcore, hangers-on and by-
standers, the difference between them consisting in the fre-
quency with which they scan their surroundings. The goal of
the simulation was to study effects of group size, size sym-
metry and group composition on clustering, and ’fights’.

3.4. Group behavior in robotics and artificial life

Researchers working in the field of artifical life are interested
in exploring how group behavior emerges from local behav-
ioral rules [Gil95]. Software models and groups of robots
were designed and experimented with in order to understand
how complex behaviors can arise in systems guided by sim-
ple rules. The main source of inspiration is nature, where,
for example, social insects efficiently solve problems such
as finding food, building nests, or division of labor among
nestmates by simple interacting individuals without an over-
seeing global controller. One of the important mechanisms
contributing to a distributed control of the behavior is stig-
mergy, indirect interactions among individuals through mod-
ifications of the environment [BDT99].

Dorigo introduced ant systems inspired by behaviors of
real ant colonies [Dor92]. Ant algorithms have been success-
fuly used to solve a variety of discrete optimization problems
including travelling salesman problem, sequential ordering,
graph colouring or network routing [BDT00]. Besides in-
sects, also groups of more complex organisms such as flocks
of birds, herds of animals and schools of fish have been stud-
ied in order to understand principles of their organization.
Recently, Couzin et al. presented a model how animals that
forage or travel in groups can make decisions even with a
small number of informed individuals [CKFL05].

Principles from biological systems were also used to de-
sign behavior controllers for autonomous groups of robots.
Mataric studied behavior-based control for a group of robots,
experimenting with a herd of 20 robots whose behavior
repertoire included safe wandering, following, aggregation,

dispersion and homing [Mat97]. Molnar and Starke have
been working on assignment of robotic units to targets
in a manufacturing environments using a pattern forma-
tion inspired by pedestrian behavior [MS01]. Martinoli ap-
plied swarm intelligence principles to autonomous collec-
tive robotics, performing experiments with robots that were
gathering scattered objects and cooperating to pull sticks out
of the ground [Mar99]. Holland and Melhuish experimented
with a group of robots doing sorting of objects based on ant
behaviors where ants sort larvae and cocoons [HM99]. In an
interesting work a robot was used to control animal behav-
ior, Vaughan et al. developed a mobile robot that gathers a
flock of real ducks and manoeuvres them safely to a specied
goal position [VSH∗00].

3.5. Crowds in virtual worlds

In order to have a persuasive application using crowds in vir-
tual environments, various aspects of the simulation have to
be addressed, including behavioral animation, environment
modeling and crowd rendering. If there is no satisfactory
rendering, even the best behavior model will not be very
convincing. If there is no good model of a behavior, even a
simulation using the best rendering method will look dumb
after only few seconds. If there is no appropriate model of
the environment, characters will not behave believably, as
they will perform actions at wrong places, or not perform at
all.

The goal of behavioral animation is to ease the work
of designers by letting virtual characters perform au-
tonomously or semi-autonomously complicated motions
which otherwise would require large amounts of human an-
imators’ work; or, in case of interactive applications, the be-
havioral models allow characters to respond to user initi-
ated actions.

In order for a behavior to make sense, besides characters,
also their surrounding environment has to be modeled, not
just graphically but also semantically. Indeed, a repertoire of
possible behaviors is very dependent on what is and what is
not included in a model of the environment. It happens very
often that the environment is visually rich, but the interaction
of characters with it is minimal.

Finally, for interactive applications, it is necessary to dis-
play a varied ensemble of virtual characters in an efficient
manner. Rendered characters should visually ’fit’ into the en-
vironment, they should be affected by light and other effects
in the same manner as their surroundings.

Next, we will present representative works for each of
these topics grouped according to their main focus.

Behavioral animation of groups and crowds

Human beings are arguably the most complex known crea-
tures, therefore they are also the most complex creatures
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to simulate. A behavioral animation of human (and hu-
manoid) crowds is based on foundations of group simula-
tions of much more simple entities, notably flocks of birds
[Rey87, GA90] and schools of fish [TT94]. The first pro-
cedural animation of flocks of virtual birds was shown in
the movie by Amkraut, Girard and Karl called Eurhythmy,
for which the first concept [AGK85] was presented at The
Electronic Theater at SIGGRAPH in 1985 (final version was
later presented at Ars Electronica in 1989). The flock motion
was achieved by a global vector force field guiding a flow of
flocks [GA90].

In his pioneer work, Reynolds [Rey87] described a dis-
tributed behavioral model for simulating aggregate motion
of a flock of birds. The technical paper was accompanied
by an animated short movie called “Stanley and Stella in:
Breaking the Ice” shown at the Electronic Theater at SIG-
GRAPH ’87. The revolutionary idea was that a complex be-
havior of the group of actors can be obtained by simple lo-
cal rules for members of the group instead of some enforced
global condition. The flock is simulated as a complex par-
ticle system, with the simulated birds (called boids) being
the particles. Each boid is implemented as an independent
agent that navigates according to its local perception of the
environment, the laws of simulated physics, and the set of
behaviors. The boids try to avoid collisions with one another
and with other objects in their environment, match velocities
with nearby flock mates and move towards a center of the
flock. The aggregate motion of the simulated flock is the re-
sult of the interaction of these relatively simple behaviors of
the individual simulated birds. Reynolds later extended his
work by including various steering behaviors as goal seek-
ing, obstacle avoidance, path following or fleeing [Rey99],
and introduced a simple finite-state machines behavior con-
troller and spatial queries optimizations for real-time inter-
action with groups of characters [Rey00].

Tu and Terzopoulos proposed a framework for anima-
tion of artificial fishes [TT94]. Besides complex individual
behaviors based on perception of the environment, virtual
fishes have been exhibiting unscripted collective motions
as schooling and predator evading behaviors analogous to
flocking of boids.

An approach similar to boids was used by Bouvier et
al. [BG96, BCN97] to simulate human crowds. They used
a combination of particle systems and transition networks
to model crowds for the visualization of urban spaces. At
the lower level, attraction and repulsion forces, analogous
to physical electric forces, enable people to move around
the environment. Goals generate attraction forces, obstacles
generate repulsive force fields. Higher level behavior is mod-
eled by transition networks with transitions depending on
time, visiting of certain points, changes of local population
densities and global events.

Brogan and Hodgins [BH97, HB94] simulated group be-
haviors for systems with significant dynamics. Compared

to the boids, a more realistic motion is achieved by tak-
ing into account physical properties of the motion, such as
momentum or balance. Their algorithm for controlling the
movements of creatures proceeds in two steps: first, a per-
ception model determines the creatures and obstacles visible
to each individual, and then a placement algorithm deter-
mines the desired position for each individual given the lo-
cations and velocities of perceived creatures and obstacles.
Simulated systems included groups of one-legged robots, bi-
cycle riders and point-mass systems.

Musse and Thalmann [Mus00, MT01] presented a hier-
archical model for real-time simulation of virtual human
crowds. Their model is based on groups, instead of individu-
als: groups are more intelligent structures, individuals follow
the groups specification. Groups can be controlled with dif-
ferent levels of autonomy: guided crowds follow orders (as
go to certain place or play a particular animation) given by
the user in run-time; programmed crowds follow a scripted
behavior; and autonomous crowds use events and reactions
to create more complex behaviors. The environment com-
prises a set of interest points, which signify goals and way-
points; and a set of action points, which are goals that have
associated some actions. Agents move between waypoints
following Bezier curves.

Recently, another work was exploring group model-
ing based on hierarchies. Niederberger and Gross [NG03]
proposed an architecture of hierarchical and heteroge-
neous agents for real-time applications. Behaviors are de-
fined through specialization of existing behavior types and
weighted multiple inheritance for creation of new types.
Groups are defined through recursive and modulo based pat-
terns. The behavior engine allows for the specification of a
maximal amount of time per run in order to guarantee a min-
imal and constant framerates.

Ulicny and Thalmann [UT01, UT02] presented a crowd
behavior simulation with a modular architecture for multi-
agent system allowing autonomous and scripted behavior of
agents supporting variety. In their system, the behavior is
computed in layers, where decisions are made by behavioral
rules and execution is handled by hierarchical finite-state
machines.

Perceived complexity of the crowd simulation can be in-
creased by using level of details (LOD). O’Sullivan et al.
[OCV∗02] described a simulation of crowds and groups
with level of details for geometry, motion and behavior.
At the geometrical level, subdivision techniques are used
to achieve smooth rendering LOD changes. At the motion
level, the movements are simulated using adaptive levels of
detail. Animation subsystems with different complexities,
as a keyframe player or a real-time reaching module, are
activated and deactivated based on heuristics. For the be-
havior, LOD is employed to reduce the computational costs
of updating the behavior of characters that are less impor-
tant. More complex characters behave according to their
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motivations and roles, less complex ones just play random
keyframes.

Environment modeling for crowds

Environment modeling is closely related to the behavioral
animation. The purpose of the models of the environment
is to facilitate simulation of entities dwelling in their sur-
rounding environments. Believability of virtual creatures can
be greatly enhanced if they behave in accordance with their
surroundings. On the contrary, the suspense of disbelief can
be immediately destroyed if they perform something not ex-
pected or not permitted in the real world, such as passing
through the wall or walking on the water. The greatest ef-
forts have been therefore directed to representations and al-
gorithms preventing ’forbidden’ behaviors to occur: till quite
recently the two major artificial intelligence issues concern-
ing game development industry were collision avoidance
and path-planning [Woo99, DeL00].

Majority of the population in the developed world lives in
cities; it is there where most of the human activities take
place nowadays. Accordingly, most of the research have
been done for modelling of virtual cities. Farenc et al.
[FBT99] introduced an informed environment dedicated to
the simulation of virtual humans in the urban context. The
informed environment is a database integrating semantic and
geometrical information about a virtual city. It is based on a
hierarchical decomposition of a urban scene into environ-
ment entities, like quarters, blocks, junctions, streets and so
on. Entities can contain a description of the behaviors that
are appropriate for agents located on them; for example,
sidewalk tells that it should be walked on, or bench tells that
it should be sit on. Furthermore, the environment database
can be used for a path-finding that is customized according
to the type of the client requesting the path, so that, for ex-
ample, a pedestrian will get paths using sidewalks, but a car
will get paths going through roads.

Another model of a virtual city for a behavioral anima-
tion was presented by Thomas and Donikian [TD00]. Their
model is designed with the main emphasis on a traffic simu-
lation of vehicles and pedestrians. The environment database
is split into two parts - a hierarchical structure containing a
tree of polygonal regions, similar to the informed environ-
ment database; and a topological structure with a graph of
a road network. Regions contain information on directions
of circulation, including possible route changes at intersec-
tions. The agents then use the database to navigate through
the city.

In a recent work, Sung et al. [SGC04] presented a new
approach to control the behavior of a crowd by storing be-
havioral information into the environment using structures
called situations. Compared to previous approaches, envi-
ronmental structures (situations) can overlap; behaviors cor-
responding to such overlapping situations are then composed
using probability distributions. Behavior functions define

probabilities of state transitions (triggering motion clips) de-
pending on the state of the environment features or on the
past state of the agent.

On the side focused on more generic path-planning
issues, several works have been done. Kallmann et al.
[KBT03] proposed a fast path-planning algorithm based on
a fully dynamic constrained Delaunay triangulation. Bayazit
et al. [BLA02] used global roadmaps to improve group be-
haviors in geometrically complex environments. Groups of
creatures exhibited behaviors such as homing, goal search-
ing, covering or shepherding, by using rules embedded
both in individual flock members and in roadmaps. Tang
et al. [TWP03] used a modified A* algorithm working on
grid overlayed over a hight-map generated terrain. Recently,
Lamarche and Donikian [LD04] presented a topological
structure of the geometric environment for a fast hierarchical
path-planning and a reactive navigation algorithm for virtual
crowds.

Crowd rendering

Real-time rendering of a large number of 3D characters is a
considerable challenge; it is able to exhaust system resources
quickly even for state of the art systems with extensive mem-
ory resources, fast processors and powerful graphic cards.
’Brute-force’ approaches that are feasible for a few charac-
ters do not scale up for hundreds, thousands or more of them.
Several works have been trying to circumvent such limita-
tions by clever use of graphics accelerator capabilities, and
by employing methods profiting from the fact that our per-
ception of the scene as a whole is limited.

We can perceive in full details only a relatively small
part of a large collection of characters. A simple calculation
shows that to treat every crowd member as equal is rather
wasteful. Modern screens can display around two millions
of pixels at the same time, where fairly complex character
can contain approximately ten thousand triangles. Even if
assuming that every triangle would be projected to a single
pixel, and that there would be no overlap of characters, the
screen fully covered by a crowd would contain only around
two hundred simultaneously visible characters. Of course, in
reality the number would be much smaller, a more reason-
able estimate is around a few dozen of fully visible char-
acters, with the rest of the crowd being either hidden behind
these prominent characters or taking significantly less screen
space. Therefore it makes sense to take full care only of the
foremost agents, and to replace the others with some less
complex approximations. Level of details techniques then
switch visualizations according to position and orientation
of the observer.

Billboarded impostors are one of the methods used to
speed up crowd rendering. Impostors are partially trans-
parent textured polygons that contain a snapshot of a full
3D character and are always facing the camera. Aubel et
al. [ABT00] introduced dynamically generated impostors to
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render animated virtual humans. In their approach, an im-
postor creating process is running in parallel to full 3D sim-
ulations, taking snapshots of rendered 3D characters. These
cached snapshots are then used over several frames instead
of the full geometry until a sufficient movement of either
camera or a character will trigger another snapshot, refresh-
ing the impostor texture.

In another major work using impostors, Tecchia et al.
[TLC02a] proposed a method for real-time rendering of an-
imated crowd in a virtual city. Compared to the previous
method, impostors are not computed dynamically, but are
created in a preprocessing step. Snapshots are sampled from
viewpoints distributed in the sphere around the character.
This process is repeated for every frame of the animation.
In run-time, images taken from viewpoints closest to the
actual camera position are then used for texturing of the
billboard. Additionally, the silhouettes of the impostors are
used as shadows projected to a ground surface. Multitextur-
ing is used to add variety by modulating colors of the im-
postors. In a later work they added lighting using normal
maps [TLC02b]. Their method using precomputed impos-
tors is faster than dynamical impostors, however it is very
demanding on texture memory, which leads to lower image
quality as size of textures per character and per animation
frame have to be kept small.

A different possibility for a fast crowd display is to
use point-based rendering techniques. Wand and Strasser
[WS02] presented a multi-resolution rendering approach
which unifies image based and polygonal rendering. They
create a view dependant octree representations of every
keyframe of animation, where nodes store either a polygon
or a point. These representations are also able to interpolate
linearly from one tree to another so that in-between frames
can be calculated. When the viewer is at a long distance, the
human is rendered using point rendering; when zoomed in,
using polygonal techniques; and when in between, a mix of
the two.

An approach that has been getting new life is the one of
geometry baking. By taking snapshots of vertex positions
and normals, complete mesh descriptions are stored for each
frame of animation. Since current desktop PCs have large
memories many such frames can be stored and re-played. A
hybrid approach of both baked geometry and billboarding
is to be presented at I3d, where only a few actors are fully
geometrical while the vast number of actors are made up of
billboards [DHOO05].

What is common to all approaches is instancing of tem-
plate humans, by changing the texture or color, size, orien-
tation, animation, animation style and position. This is care-
fully taken care of to smoothly transition from one represen-
tation to another so as not to create pops in representation
styles. In the billboarding scenario this is done by applying
different colors on entire zones such as torso, head, legs and
arms. This way the texture memory is used more efficiently

as the templates are more flexible. For the geometrical ap-
proaches these kind of differences are usually represented
using entirely different textures as the humans are too close
just to change basic colour for an entire zone [UdHCT04].

Crowds in non-real time productions

One of the domains with a fastest growth of crowd simu-
lations in recent years are special effects. While only ten
years ago, there were no digital crowds at all, nowadays al-
most every blockbuster has some, with music videos, tele-
vision series and advertisements starting to follow. In com-
parison with crowds of real extras, virtual crowds allow to
significantly reduce costs of production of massively popu-
lated scenes and allow for bigger creative freedom because
of their flexibility. Different techniques, as replications of
real crowd video footage, particle systems or behavioral an-
imation, have been employed to add crowds of virtual ex-
tras to shots in a broad range of movies, from historical
dramas [Tit97, Gla00, Tro04], through fantasy and science
fiction stories [Sta02, The03, Mat03], to animated cartoons
[The94, Ant98, A b98, Shr04].

The main factors determining the choice of techniques are
the required visual quality and the production costs allowed
for the project [Leh02]. It is common to use different tech-
niques even in a single shot in order to achieve the best vi-
suals - for example, characters in the front plane are usually
real actors, with 3D characters taking secondary roles in the
background.

Although a considerable amount of work was done on
crowds in movies, only relatively little information is avail-
able, especially concerning more technical details. Most
knowledge comes from disparate sources, for example, from
“making-of” documentary features, interviews with special
effect crew or industry journalist accounts. For big budget
productions, the most common approach is in-house devel-
opment of custom tools or suites of tools which are used
for a particular movie. As the quality of the animation is
paramount, large libraries of motion clips are usually used,
produced mainly by motion capture of live performers. All
production is centered around shots, most of the times only
few seconds long. In contrast to real-time simulations, there
is little need for continuity of the simulation over longer pe-
riods of the time. It is common that different teams of peo-
ple work on parts of the shots which are then composited in
post-processing.

The most advanced crowd animation system for non real-
time productions is Massive; used to create battle scenes for
The Lord of the Ringsmovie trilogy [Mas04]. InMassive, ev-
ery agent makes decisions about its actions depending on its
sensory inputs using a brain composed of thousands of logic
nodes [Koe02]. According to brain’s decision, the motion is
selected from extensive library of motion captured clips with
precomputed transitions. For example, in the second part
of the trilogy over 12 millions of motion captured frames
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(equivalent to 55 hours of animation) was used. Massive also
uses rigid body dynamics, a physics-based approach to facil-
itating realistic stunt motion such as falling, or animation of
accessories. For example, a combination of physics-based
simulation and custom motion capture clips was used to cre-
ate the scene of “The Flooding of Isengard” where orcs are
fleeing from a wall of water and falling down the precipice
[Sco03].

In comparison with real-time application, the quality of
motion and visuals in non real-time productions is far supe-
rior, however it comes at a great cost. For example for The
Lord of the Rings: The Two Towers, rendering of all digi-
tal characters took ten months of computations on thousands
computer strong render farm [Doy03].

Crowds in games

In current computer games virtual crowds are still relatively
rare. The main reason is that crowds are inherently costly,
both in terms of real-time resources requirements and for
costs of a production. Nevertheless, the situations is starting
to change, with real-time strategy genre leading the way as
increase of sizes of involved armies has direct effect on a
gameplay [Rom04, The04a].

The main concern for games is the speed of both ren-
dering and behavior computation. In comparison with non
real-time productions, the quality of both motion and ren-
dering is often sacrificed in a trade-off for fluidity. Similarly
to movies production, computer games often inject into vir-
tual world realism coming from real world by using large
libraries of animation, which are mostly motion captured.
The rendering uses level-of-details techniques, with some ti-
tles employing animated impostors [Med02].

To improve costs of behavior computations for games
that involve a large number of simulated entities, sim-
ulation level-of-detail techniques have been employed
[Bro02, Rep03]. In such techniques, behavior is computed
only for a characters that are visible or near to be visible to
a player. Characters are created in a space around the player
with parameters set according to some expected statistical
distributions, the player lives in a “simulation bubble”. How-
ever, handling simulation LOD is much more complex as
handling of rendering LOD. It is perfectly correct not to
compute visualization for agents that are not visible, but not
computing behaviors for hidden agents can lead to an inco-
herent world. In some games it is common that the player
causes some significant situation (for example, traffic jam),
looks away, and then after looking back, the situation is
changed in an unexpected way (a traffic jam is “magically”
resolved).

In case the scenario deals with hundreds or thousands of
entities, many times the selectable unit with distinct behav-
ior is a formation of troops, not individual soldiers. What
appears to be many entities on the screen is indeed only

one unit being rendered as several visually separated parts
[Sho00, Med02, Pra03].

A special case are sport titles such as various football,
basketball or hockey simulations, where there is a large
spectator crowd, however only of very low details. In the
most cases there is not even a single polygon for every
crowd member (compared to individual impostors in strat-
egy games). Majority of the crowd is just texture with trans-
parency applied to stadium rows, or to a collection of rows,
and only few crowd members, close to the camera can be
very low polygon count 3D models.

Crowd scenario authoring

No matter how good is a crowd rendering or a behavior
model, a virtual crowd simulation is not very useful, if it
is too difficult to produce a content for it. The authoring pos-
sibilities are an important factor influencing the usability of
crowd simulation system, especially when going beyond a
limited number of "proof-of-concept" scenarios. When in-
creasing the number of involved individuals it becomes more
difficult to create unique and varied content of scenarios with
large numbers of entities. Solving one set of problems for
crowd simulation (such as fast rendering and behavior com-
putation for large crowds) creates a new problem of how to
create content for crowd scenarios in an efficient manner.

Only recently, researchers started to explore the ways how
to author crowd scenes. Anderson et al. [AMC03] achieved
interesting results for a particular case of flocking animation
following constrains. Their method can be used, for instance,
to create and animate flocks moving in shapes. Their algo-
rithm generates a constrained flocking motion by iterating
simulation forwards and backwards. Nevertheless, their al-
gorithm can get very costly when increasing the number of
entities and simulation time.

Ulicny et al. [UdHCT04] proposed a method to create
complex crowd scenes in an intuitive way using a Crowd-
Brush tool. By employing a brush metaphor, analogous to
the tools used in image manipulation programs, the user can
distribute, modify and control crowd members in real-time
with immediate visual feedback. This approach works well
for creation and modification of spatial features, however the
authoring of temporal aspects of the scenario is limited.

Sung et al. [SGC04] used a situation-based distributed
control mechanism that gives each agent in a crowd specific
details about how to react at any given moment based on
its local environment. A painting interface allows to spec-
ify situations easily by drawing their regions on the envi-
ronment directly like drawing a picture on the canvas. Com-
pared to previous work where the user adds, modifies and
deletes crowd members, here the interface operates on the
environment.

Chenney [Che04] presented a novel technique for repre-
senting and designing velocity fields using flow tiles. He ap-
plied his method on a city model with tiles defining the flow

c© The Eurographics Association 2007.

EG:37



B. Ulicny, P. de Heras Ciechomski, S. R. Musse & D. Thalmann / State-of-the-Art: Real-time crowd simulations

of people through the city streets. Flow tiles drive the crowd
using the velocity to define the direction of travel for each
member. The use of divergence free flows to define crowd
motion ensures that, under reasonable conditions, the agents
do not require any form of collision detection.

4. Discussion

We presented an overview of the works on crowd simula-
tions done in different fields such as sociology, safety sci-
ence, training systems, computer graphics or entertainment
industry. Based on the analysis of published research works
and data available on industry applications, we made follow-
ing observations.

Domain specificity: While some of the know-how is
transferable across the fields, each of the domains dealing
with crowds poses unique challenges and requires different
solutions. It is indeed the targeted application that drives
most of the design choices while creating a simulation of
the crowd. There is no "silver bullet" solution, the ultimate
crowd simulation that would be fitting all purposes. Fea-
tures that are advantageous for one purpose are disadvan-
tages in the other and trade-offs have to be resolved in a
different manner. For example, most of the crowd evacua-
tion simulators use discrete 2D grid representation of the
world as it is easier to handle, to analyze and to validate.
However, such representation is too coarse for crowd simu-
lations with 3D articulated bodies. The controller that drives
a virtual humanoid in a movie or a computer game has to
be more complex than the behavior model that drives 2D
dots. It is not enough to decide global position and orien-
tation of the entity; features like type of the motion, its dy-
namics and transition, or biomechanical constrains have to
be taken into account. A simple re-application of evacua-
tion models to 3D visualizations leads to awkward, unreal-
istic looking animations. Humans can get easily enchanted
by seeing artificial objects performing behaviors that are not
expected from them (such as geometrical primitives fleeing
in 2D labyrinth), but are very critical at evaluating of (what
are expected to be) the other people. Motions that look rea-
sonable for 2D dots can look very artificial when applied
to virtual humans. Even a relatively straightforward tran-
sition from segmented skeletons to fully skinned bodies in
many cases reveals disturbing imperfections in the motion.
For applications where the visual quality is the most impor-
tant (as in movies or games), the behavior has to be con-
strained by availability of motions and transitions among the
motions (for example, when using physically based simula-
tion [HB94] or motion graphs [SGC04]).

Application focus: The consequence of the crowd mod-
els being domain specific is that in the majority of cases the
applications are focusing either on the realism of behavioral
aspects, or on the quality of the visualization. The most rep-
resentative examples of the former category are evacuation
simulations, which are usually validated on a large scale sta-

tistical parameters such as the number of the people passing
through a particular exit in a defined time interval. Behaviors
of individuals are not detailed and not defined beyond the
narrow scope of the simulation; for example, before or after
the incident people are either static or have random Brown-
ian motion. The examples of the latter category are crowds in
movies and games, where the goal of the behavior model is
to alleviate designers from the tedious tasks of orchestration
of animation for large number of entities or to respond to the
actions of the user. The repertoire of behaviors is larger; for
example, as the most common use of virtual crowds are bat-
tles scenes, virtual armies have to be able to navigate around
the environment, to attack using different weapons and to
defend themselves against various enemies. The most chal-
lenging area for crowd simulation are training simulations
as there is a need for both behavior realism and persuasive
visualization. Present crowd management training systems
have been focusing on training strategical skills therefore
giving more emphasis on behavioral simulation with visu-
alization being only schematic. Tactical on-site training of
crowd management with the trainee immersed in the virtual
world is not yet explored.

Crowd models: It is difficult to transfer current knowl-
edge about real crowds from social sciences into crowd sim-
ulations. Most of the sociology work on crowds is about
macroscopic behavior, not directly dealing with actions of a
particular person in particular situation in particular time in-
stance. Methodological observations about microscopic be-
haviors are sparse: sociological models based on collected
real data have a limited scope. The quality of the crowd
behavior model is prominent in safety science applications;
however, despites calls for including more knowledge about
psychology into evacuation models [Sim95], most of the cur-
rent applications still model behavior of the crowd based
more on physical than on psychological principles. Demands
on crowd models are different for entertainment industry ap-
plications. For production purposes it is preferable to be able
to control the crowd instead of just observing the results of
the model. Emergent behavior has sense as far as it alleviates
designers from tedious tasks. The crowd can be controlled
"top-down" where the group behavior is imposed by design,
or "bottom-up", where the collective behavior emerges from
the behavior of individuals. Group based approaches have
the advantage of easier handling when group membership
does not need to change, however they bring the disadvan-
tage of overhead when group membership changes often.

Trends: Virtual crowds are a relatively new topic, with
majority of the research and commercial applications done
in the past few years, especially concerning real-time
crowds. The most visible trend is the increase of the number
of simulated entities; new techniques together with rapidly
evolving hardware allows to handle bigger crowds. Another
recently appearing trend is about going beyond simple quan-
titative improvements towards increasing of complexity of
entities at all levels - whether it is visualization, anima-
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tion, or behaviors. Both quantitative and qualitative improve-
ments require novel methods, as in the most cases it is not
straightforward to apply the method that work for small
number of entities to a large crowd. Similarly to other ar-
eas in computer graphics and virtual reality simulations, the
major driving force of the innovation starts to be the enter-
tainment industry resulting from the large investments due to
increasing revenues from entertainment applications. For ex-
ample, many movies with virtual crowds were blockbusters
with revenues in order of hundreds of millions of the dollars
and more [Sta02, Mat03, The03, Shr04] allowing to finance
large internal research and development (R&D) teams. Even
the military, which used to be one of the largest traditional
sponsors of the simulation research, starts to use in some
cases commercial entertainment technologies for its training
instead of costly own R&D [Mac01, ZHM∗03].

5. Future challenges and conclusions

We see several possible directions for future research in the
area of interactive crowd simulations:

Heterogeneity: In current crowd simulation systems, the
whole crowd is constituted by the same type of agents.
Even while creating the individuality of the agents by
varying parameters, the principle of the behavior compu-
tation is the same for every entity. It is possible to create
a heterogeneous crowd simulation, where different agents
can have completely different behavior computation en-
gines. Such architecture could, for example, lead to an in-
crease of the behavioral variety, while keeping individuals
simpler compared to a homogeneous simulation with the
same variety.

Scalability: In order to increase the number of simu-
lated entities, the crowd simulation should be scalable
[SGC04]. This can be achieved, for example, by using
behavior and animation level-of-details[ACF01, AW04],
where there are a different computational demands for
agents, depending on their relative position to the ob-
server. The behavior model should then allow to work
with different fidelity, for example, by using iterative al-
gorithms, or also heterogeneous crowds could be em-
ployed.

Variety: The variety of the virtual crowd can be enhanced
by adapting methods, capable of producing higher levels
of the variety, for the crowd simulations. The natural can-
didates are methods, which deal with variety sources in
the real people, such as parametric generation of bodies
[Seo03] or faces [BV99].

Parallelization: The computation of the crowd simulation
can be speeded up by using parallelization [QMHZ03].
However, the parallelization of the agents becomes practi-
cal only for the hardware that supports a parallel execution
of more threads than there are potentially parallelizable
application components. For example, recently US mili-
tary experimented with a combat simulation running on

128 node Linux cluster handling 100.000 entities (which
means that each sequential node took care of on average
780 entities) [The04b].

The rapid adoption of the crowd simulation in movies and
other non real-time productions in recent years shows that
there is a great demand for virtual crowds. It is not so diffi-
cult to imagine why - humans are social creatures and real
world reflects this fact, most of the people are surrounded
by other people. It is therefore expected to see crowds in the
works of both fact and fiction.

A similar reasoning holds also for interactive virtual en-
vironments such as computer games, training systems or ed-
ucational applications - we expect to see them populated.
However, while in movies it can be still possible, even if
not practical, to use crowd of real extras, interactive appli-
cations have to rely fully on the virtual crowds. As already
current generation personal computers are capable of han-
dling thousands of real-time virtual characters, we believe
that in coming years there will be more and more interactive
virtual crowds.

We can expect to see a convergence between non real-
time and real-time domains, in a manner similar to other ar-
eas in computer graphics. The convergence will be fueled
both by increases in the power of both general purpose and
graphics processors and by the development of novel meth-
ods and algorithms. In non real-time applications, the real-
time methods can be used to improve the productivity for
creating crowd scenes because of shorter production cycles
and immediacy of the changes allowing new ways of author-
ing. On the other hand, in real-time applications, there will
be improvements in quality of both rendering and behaviors
moving towards the results possible before only by lengthy
computations in non-real time productions.
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Abstract
Interactive systems, games, VR and multimedia systems require more and more flexible Virtual Humans
with individualities. There are mainly two approaches: 
1) Recording the motion using motion capture systems, then to try to alterate such a motion to create this
individuality. This process is tedious and there is no reliable method at this stage.
2) Creating computational models which are controlled by a few parameters. One of the major problem is
to  find  such models  and to  compose them to  create  complex  motion.  Such models  can be  created  for
walking, grasping, but also for groups and crowds.

___________________________________________________________________________________________________

1. Introduction
     

Virtual  humans simulations are  becoming each time
more popular.  Nowadays many systems are available to
animate virtual humans. Such systems encompass several
different  domains,  as:  autonomous  agents  in  virtual
environments, human factors analysis, training, education,
virtual  prototyping,  simulation-based  design,  and
entertainment. In the context of Virtual Humans, a Motion
Control Method (MCM) specifies how the Virtual Human
is  animated  and  may  be  characterized  according  to  the
type of information it privileged in animating this Virtual
Human.  For  example,  in  a  keyframe  system  for  an
articulated  body,  the  privileged  information  to  be  The
problem is basically to be able to generate variety among a
finite set of motion requests and then to apply it to either
an  individual  or  a  member  of  a  crowd.  A  single
autonomous agent and a member of the crowd present the
same kind of 'individuality'. The only difference is at the
level of the modules that control the main set of actions.
With this formulation, one can also see that the personality
of an agent (i.e. the set of noisy actions) can be preserved
whenever it is in a crowd, alone. Figure 1 shows a group
of Virtual Humans in a room and Figure 2 Virtual Humans
in city.

The problem is basically to be able to generate variety
among a finite set of motion requests and then to apply it
to either an individual or a member of a crowd. A single
autonomous agent and a member of the crowd present the
same kind of 'individuality'. The only difference is at the
level of the modules that control the main set of actions.
With this formulation, one can also see that the personality
of an agent (i.e. the set of noisy actions) can be preserved
whenever it is in a crowd, alone.

Figure 1. A group of Virtual Humans

Figure 2. Virtual Humans in a city 

To  create  this  flexible  Virtual  Humans  with
individualities, there are mainly two approaches:

• Recording  the  motion  using  motion  capture
systems  (magnetic  or  optical),  then  to  try  to
alterate  such  a  motion  to  create  this
individuality. This process is tedious and there is
no reliable method at this stage. 
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• Creating  computational  models  which  are
controlled  by  a  few  parameters.  One  of  the
major  problem is  to  find  such  models  and  to
compose them to create complex motion. Such
models  can  be  created  for  walking,  running,
grasping,  but  also  for  interaction,  groups,  and
crowds.

2. Motion Capture and Retargeting

The first approach consists in recording the motion (Fig.
3)  using  motion  capture  systems  (magnetic  or  optical),
then  to  try  to  alterate  such  a  motion  to  create  this
individuality.  This  process  is  tedious  and  there  is  no
reliable method at this stage. Even if it  is fairly easy to
correct one posture by modifying its angular parameters
(with  an  Inverse  Kinematics  engine,  for  instance),  it
becomes a difficult  task to perform this  over the whole
motion  sequence  while  ensuring  that  some  spatial
constraints  are  respected over  a  certain  time range,  and
that  no  discontinuities  arise.  When one  tries  to  adapt  a
captured motion to  a  different  character,  the  constraints
are usually violated, leading to problems such as the feet
going into the ground or a hand unable to reach an object
that the character should grab. The problem of adaptation
and  adjustment  is  usually  referred  to  as  the  Motion
Retargeting Problem. 

Figure 3. Motion capture

Witkin and Popovic [WP95] proposed a technique for
editing motions, by modifying the motion curves through
warping  functions  and  produced  some  of  the  first
interesting results.  In a more recent paper [PW99],  they
have extended their method to handle physical elements,
such as mass and gravity, and also described how to use
characters with different numbers of degrees of freedom.
Their algorithm is based on the reduction of the character
to an abstract character which is much simpler and only
contains  the  degrees  of  freedom  that  are  useful  for  a
particular  animation.  The  edition  and  modification  are
then computed on this  simplified character  and mapped
again onto the end user skeleton. Bruderlin and Williams
[BW95] have described some basic facilities to change the
animation,  by  modifying  the  motion  parameter  curves.
The user can define a particular posture at time t, and the
system  is  then  responsible  for  smoothly  blending  the
motion  around  t  .  They  also  introduced  the  notion  of
motion  displacement  map,  which  is  an  offset  added  to
each motion curve. The Motion Retargeting Problem term

was brought up by Michael Gleicher [G98]. He designed a
space-time constraints solver, into which every constraint
is added, leading to a big optimisation problem. He mainly
focused  on  optimising  his  solver,  to  avoid  enormous
computation  time,  and  achieved  very  good  results.
Bindiganavale  and  Badler  [BB98]  also  addressed  the
motion  retargeting  problem,  introducing  new  elements:
using the zero-crossing of the second derivative to detect
significant changes in the motion, visual attention tracking
(and the way to handle the gaze direction) and applying
Inverse Kinematics to enforce constraints, by defining six
sub-chains (the two arms and legs, the spine and the neck).
Finally, Lee and Shin [JS99] used in their system a coarse-
to-fine hierarchy of B-splines to interpolate the solutions
computed by their Inverse Kinematics solver.  They also
reduced the complexity of the IK problem by analytically
handling the degrees of freedom for the four human limbs

Lim and Thalmann [LT00] have addressed an issue of
solving customers’ problems when applying evolutionary
computation. Rather than the seemingly more impressive
approach  of  wow-it-all-evolved-  from-nothing,  tinkering
with existing models can be a more pragmatic approach in
doing so. Using interactive evolution, they experimentally
validate this point on setting parameters of a human walk
model for computer animation while previous applications
are  mostly  about  evolving  motion  controllers  of  far
simpler creatures from scratch. 

Given a captured motion associated to its Performer
Skeleton,  we decompose  the  problem of  retargeting  the
motion to the End User Skeleton into two steps

• First,  computing  the  Intermediate  Skeleton
matrices by orienting the Intermediate Skeleton
bones to reflect the Performer Skeleton posture
(Motion Converter).  

• Second, setting the End User Skeleton matrices
to  the  local  values  of  the  corresponding
Intermediate Skeleton matrices.

The first task is to convert the motion from one hierarchy
to  a  completely  different  one.  We  introduce  the
Intermediate Skeleton model to solve this, implying three
more  subtasks:  manually  set  at  the  beginning  the
correspondences between the two hierarchies,  create  the
Intermediate Skeleton and convert the movement. We are
then  able  to  correct  the  resulting  motion  and  make  it
enforce Cartesian constraints by using Inverse Kinematics.
When  considering  motion  conversion  between  different
skeletons,  one quickly notices that it  is very difficult  to
directly map the Performer Skeleton values onto the End
User  Skeleton,  due  to  their  different  proportions,
hierarchies  and  axis  systems.  This  raised  the  idea  of
having  an  Intermediate  Skeleton:  depending  on  the
Performer Skeleton posture, we reorient its bones to match
the same directions. We have then an easy mapping of the
Intermediate Skeleton values onto the End User Skeleton.
The  first  step  is  to  compute  the  Intermediate  Skeleton
(Anatomic  Binding  module).  During  the  animation,
motion conversion takes two passes, through the Motion
Converter  and  the  Motion  Composer  (which  has  a
graphical user interface).

3. Creating Computational Models
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The second approach consists  in  creating computational
models which are controlled by a few parameters. One of
the major problem is to find such models and to compose
them  to  create  complex  motion.  Such  models  can  be
created for example for walking.

Walking has global and specific characteristics. From
a  global  point  of  view,  every  human-walking  has
comparable joint angle variations. However, at a close-up,
we notice that individual walk characteristics are overlaid
to the global walking gait.

We  use  the  walking  engine  described  in  [BMT90]
which  has  been  extended  in  the  context  of  a  european
project  on  virtual  human  modeling  [BCH95].  Our
contribution consists in integrating the walking engine as a
specialized action in the animation framework. Walking is
defined  as  a  motion  where  the  center  of  gravity
alternatively balances from the right to the left side. It has
the following characteristics

• at any time, at least one foot is in contact with
the floor, the ‘single support’ duration (ds).

• there exists a short instant during the walk cycle,
where both feet are in contact with the floor, the
‘double support’ duration (dds).

• it  is  a  periodic  motion  which  has  to  be
normalized  in  order  to  adapt  to  different
anatomies.

The  joint  angle  variations  are  synthesized  by  a  set  of
periodic motions which we briefly mention here:

• sinus functions with varying amplitudes and
frequencies for the humanoid’s global
translations (vertical, lateral and frontal) and the
humanoid’s pelvic motions (forward/backward,
left/right and torsion) 

• periodic functions based on control points and
interpolating hermite splines.They are applied to
the hip flexion, knee flexion, ankle flexion, chest
torsion, shoulder flexion and elbow flexion. 

The  parameters  of  the  joint  angle  functions  can  be
modified  in  a  configuration  file  in  order  to  generate
personalized  walking  gaits,  ranging  from  tired  to
energetic, sad to happy, smart to silly. The algorithm also
integrates  an  automatic  speed  tuning  mechanism which
prevents  sliding  on  the  supporting  surface.  Many  high
level  parameters  can  be  adjusted  dynamically,  such  as
linear  and  angular  velocity,  foot  step  locations  and  the
global  walk  trajectory.  The  walk  engine  has  been
augmented by a specialized action interface  and its  full
capacity  is  therefore  available  within  the  animation
framework. The specialized action directly exports most
common high level  parameter adjustment functions.  For
fine-tuning,  it  is  still  possible  to  explicitly  access  the
underlying motion generator. The walk animation engine
has  been  developed  in  the  early  nineties.  However  it
suffered  from  not  being  easily  combined  with  other
motions, for example a walking human giving a phone call
with a wireless phone was hardly possible. Now, that the
walking  engine  is  integrated  as  a  specialized  action,  a
walking  and  phoning  human  is  easily  done,  simply  by
performing the walk together with a ‘phone’-keyframe for

example.  In  Figure  4,  we  show  an  example  of
parameterized. 

Figure 4. Individualized walking

More recently, Glardon et al. [GBT04] have proposed
a novel approach to generate new generic human walking
patterns using motion-captured data, leading to a real-time
engine intended for virtual humans animation. The method
applies  the  PCA  (Principal  Component  Analysis)
technique on motion data acquired by an optical system to
yield  a  reduced  dimension  space  where  not  only
interpolation,  but  also  extrapolation  are  possible,
controlled  by  quantitative  speed  parameter  values.
Moreover,  with  proper  normalization  and  time  warping
methods,  the  generic  presented  engine  can  produce
walking motions with continuously varying human height
and  speed  with  real-time  reactivity.  Figure  5  shows
examples.

Figure 5. Examples of PCA-based walking humans

4. Crowds and Groups

Animating  crowds  [MT01]  is challenging  both  in
character animation and a virtual city modeling.  Though
different textures and colors may be used, the similarity of
the virtual people would be soon detected by even non-
experts,  say,  “everybody  walks  the  same  in  this  virtual
city!”. It is, hence, useful to have a fast and intuitive way
of  generating  motions  with  different  personalities
depending  on  gender,  age,  emotions,  etc.,  from  an
example  motion,  say,  a  genuine  walking  motion.  The
problem is basically to be able to generate variety among a
finite set of motion requests and then to apply it to either
an individual or a member of a crowd. It also needs very
good tools to tune the motion [EBM00].

EG:46



Daniel Thalmann - Computerized Models

The proposed solution addresses two main issues: i)
crowd  structure  and  ii)  crowd  behavior.  Considering
crowd  structure,  our  approach  deals  with  a  hierarchy
composed of crowd, groups and agents, where the groups
are the most complex structure containing the information
to be distributed among the individuals. Concerning crowd
behavior,  our  virtual  agents  are  endowed with  different
levels of autonomy. They can either act according to an
innate  and  scripted  crowd  behavior  (programmed
behavior), react as a function of triggered events (reactive
or autonomous behavior) or be guided by an interactive
process  during  simulation  (guided  behavior).  We
introduced the term <guided crowds> to define the groups
of virtual agents that can be externally controlled in real
time  [MBC98].  Figure  6  shows  a  crowd  guided  by  a
leader.

Figure 6. Crowd guided by a leader

In our  case,  the  intelligence,  memory,  intention and
perception are focalized in the group structure. Also, each
group can obtain one leader.  This leader can be chosen
randomly by the crowd system, defined by the user or can
emerge from the sociological rules. Concerning the crowd
control  features,  The  crowd  aims  at  providing
autonomous,  guided  and  programmed  crowds.  Varying
degrees  of  autonomy  can  be  applied  depending  on  the
complexity of the problem. Externally controlled groups,
<guided groups>, no longer obey their scripted behavior,
but act according to the external specification. At a lower
level, the individuals have a repertoire of basic behaviors
that  we  call  innate  behaviors.  An  innate  behavior  is
defined  as  an  “inborn”  way  to  behave.  Examples  of
individual innate behaviors are goal seeking behavior, the
ability  to follow scripted or guided events/reactions,  the
way  trajectories  are  processed  and  collision  avoided.
While the innate behaviors are included in the model, the
specification of scripted behaviors is done by means of a
script  language.  The groups  of  virtual  agents  whom we
call  <programmed groups> apply  the  scripted behaviors
and do not need user intervention during simulation. Using
the script language, the user can directly specify the crowd
or  group  behaviors.  In  the  first  case,  the  system
automatically distributes the crowd behaviors among the
existing groups. Events and reactions have been used to
represent behavioral rules. This reactive character of the
simulation  can  be  programmed  in  the  script  language
(scripted  control)  or  directly  given  by  an  external
controller. We call the groups of virtual agents who apply
the behavioral rules <autonomous groups>.

The train station simulation (Figure 7) includes many
different  actions  and  places,  where  several  people  are

present and doing different things. Possible actions include
“buying a ticket”,  “going to shop“,  ”meeting someone”,
“waiting  for  someone”,  “making  a  telephone  call”,
“checking  the  timetable”,  etc.  This  simulation  uses
external  control  to  guide  some crowd behaviors  in  real
time. 

Figure 7. Train station simulation.

More  recently,  we  developed  a  new  crowd  engine
allowing to display up to 50'000 thousands virtual humans
in real-time. This makes Computational models even more
important. Figure 8 shows two examples.

Figure 8. Examples of large crowds.

5. Perception

Let’s now consider the simulation of a referee during a
tennis match. He has to decide if the ball is out or in. One
solution is to calculate the intersection between the impact
point  of  the ball  and the court  lines. Such an analytical
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calculation will lead to the decision that the ball is out for
0.01 millimeters. Ridiculous, nobody in reality could take
such  an  objective  decision,  this  is  not  believable.  The
decision should be based on the evaluation of the visual
aspect of the scene as perceived by the referee. 

In a  more general context, it is tempting to simulate
perception  by  directly  retrieving  the  location  of  each
perceived object straight from the environment. This is of
course the fastest solution (and has been extensively used
in video-games until the mid-nineties) but no one can ever
pretend that it is realistic at all (although it can be useful,
as we will  see later  on). Consequently, various ways of
simulating  visual  perception  have  been  proposed,
depending on whether geometric or semantic information
(or both) are considered. Renault et al. introduced first the
concept  of  synthetic  vision  [RMT90]  then  extended  by
Noser  et  al..[NRT95].  Tu  and  Terzopoulos  [TT94]
implemented  a  realistic  simulation  of  artificial  fishes.
Other  authors  [KL99]  [BG95]  [PO02]  also  provided
synthetic  vision approaches.  In the next  section, we are
going to compare now rendering-based vision, geometric
vision and database access.

5.1 Synthetic Vision

Rendering-based vision from Noser  and Renault  et  al.
[NRT95] is achieved by rendering of-screen the scene as
viewed by the agent. During the process, each individual
object in the scene is assigned a different colour, so that
once the 2D image has been computed, objects can still be
identified: it is then easy to know which object is in sight
by  maintaining  a  table  of  correspondences  between
colours  and  objects’  IDs.  Furthermore,  highly  detailed
depth  information  is  retrieved  from  the  view  z-buffer,
giving  a  precise  location  for  each  object.  An  other
application  of  synthetic  vision  is  real-time  collision
avoidance for multiple agents: in this case, each agent is
perceiving the others, and dynamically creates local goals
so that it avoids others while trying to reach its original
global goal.

Rendering-based  vision  is  the  most  elegant  method,
because it  is the more realistic  simulation of vision and
addresses  correctly  vision  issues  such  as  occlusion  for
instance.  However,  rendering  the  whole  scene  for  each
agent  is  very  costly  and  for  real-time  applications,  one
tend to favour geometric vision. 

One problem is how to decide that an object is in the
field of view of the Virtual  Human and that he/she can
identify it. We can imagine for example that the Virtual
Human’s  wife  is  in  front  of  the  VH  but  hidden  by  a
wardrobe and on the computed 2D image contains only
one pixel for the wife, can he recognize his wife based on
such a detail ?

Bordeux  et  al.  [BBT99]  has  proposed  a  perception
pipeline architecture into which filters can be combined to
extract  the  required  information.  The  perception  filter
represents the basic entity of the perception mechanism.
Such a filter receives a perceptible entity from the scene as
input,  extracts  specific  information about  it,  and finally
decides to let it pass through or not. 

The criteria used in the decision process depends on
the  perception  requirements.  For  virtual  objects,  they

usually involve considerations about the distance and the
relative direction of the object, but can also be based on
shape, size, colour, or generic semantic aspects, and more
generally on whatever the agent might need to distinguish
objects. Filters are built with an object oriented approach:
the very basic filter for virtual objects only considers the
distance to the object,  and its descendants refine further
the selection.

Actually, the structure transmitted to a filter contains,
along with the object to perceive, a reference to the agent
itself and previously computed data about the object. The
filter can extend the structure with the results of its own
computation, for example the relative position and speed
of  the  object,  a  probable  time to  impact  or  the  angular
extension of the object from the  agent s  point of  view.
Since a perception filter does not store data concerning the
objects that passed through it, it is fully reentrant and can
be used by several agents at the same time. This allows the
creation of  a  common pool  of  filters  at  the  application,
each  agent  then  referencing  the  filters  it  needs,  thus
avoiding useless duplication.

 
However, the major problem with Geometric vision is

to find the proper formulas when intersecting volumes (for
instance, intersecting the view frustum of the agent with a
volume  in  the  scene).  One  can  use  bounding  boxes  to
reduce the  computation time,  but  it  will  always be less
accurate  than  Synthetic  vision.  Nevertheless,  it  can  be
sufficient  for  many  applications  and,  as  opposed  to
rendering-based  vision,  the  computation  time  can  be
adjusted  precisely  by  refining  the  bounding volumes of
objects. 

Database  access  makes  maximum  use  of  the  scene
data available in the application, which can be distributed
in  several  modules.  For  instance,  the  objects  position,
dimensions  and  shape  are  maintained  by  the  rendering
engine  whereas  semantic  data  about  objects  can  be
maintained  by  a  completely  separate  part  of  the
application.  Due  to  scalability  constraints  as  well  as
plausibility  considerations,  the  agents  generally  restrain
their perception to a local area around them instead of the
whole scene. This method is generally chosen when the
number  of  agents  is  high.  In  Musse’s  [MT01]  crowd
simulation,  human agents  directly  know the  position  of
their neighbours and compute coherent collision avoidance
trajectory.  As  said  before,  the  main  problem  with  the
method is the lack of realism, which can only be alleviated
by using one of the other methods. 

These  various  approaches  to  visual  perception  have
their advantages and disadvantages dependent essentially
of  the  complexity  and  the  context  of  the  scenes.  But,
finally no approach can solve common problematics as the
following  one:  What  makes  a  little  girl  to  be  lost  in  a
crowd ? The child will be lost if she just does not know
where is her family. Now imagine a virtual crowd where
each individual  is indexed. It  will  be extremely easy fo
find where is the girl (index 345) and the parents (index
748).  At  this  stage,  we  could  just  activate  a  function
making  the  girl  walking  towards  his  parents.  This  is
completely unrealistic from a behavioural point of view.

5.2 Memory
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Noser et al.  [NRT95] made a few years ago a character
trying  to  find  the  exit  from  a  maze.  To  simulate  the
memory process, they used an octree structure to store the
information see by the character. The results were that the
second time,  it  was  straightforward  for  the  character  to
find the  exit.  Again,  this  is  not  so convincing as never
somebody  could  remember  all  the  paths  inside  a  maze.
This  kind  of  memory  can  then  easily  be  linked  to  the
synthetic vision: the 2D rendering and the corresponding
z-buffer data are combined in order to determine whether
the corresponding voxel  of  the  scene is  occupied by an
object or not. By navigating through the environment, the
agent  will  progressively  construct  a  voxel-based
representation of it. Of course, a rough implementation of
this  method  would  suffer  from  dramatic  memory  cost,
because of the high volume required to store all voxels.
Noser proposed to use octrees instead which successfully
reduces the amount of data. Once enough information has
been gathered through exploration, the agent is then able
to locate things and find its way.

Peters  and  O’Sullivan  [PO02]  propose  a  system  of
memory based on what is referred to a “stage theory” by
Atkinson  and  Shiffrin  [AS68].  They  propose  a  model
where  information  is  processed  and  stored  in  3  stages:
sensory  memory,  short-term  memory,  and  long-term
memory. 

Although these approaches are quite interesting, they
do not solve the following simple problematics. Imagine
now  a  Virtual  Human  inside  a  room  containing  100
different  objects.  Which  objects  can  we  consider  as
memorized by the Virtual Human ? Can we decide that
when an object is seen by the actor, it should be stored in
his  memory.  To  answer  this  question,  we  have  just  to
consider the popular family game consisting in showing
20 objects during 2 minutes to people and asking them to
list  the  objects.  Generally  nobody is  able  to  list  the 20
objects. Now, how to model this inability to remember all
objects ?

5.3 Integration of Virtual Sensors

The modelling of an AVA gaining its independence with
regard to its  virtual  representation remains an important
theme  in  research  and  is  very  close  to  autonomous
robotics.  It  helps  also  to  understand  and  model  human
behaviour. 

The AVA collects information only through the virtual
sensors  described  earlier  (Figure  9).   We  assume  that
vision is the main canal of information between the AVA
and its environment as indicated by the standard theory in
neuroscience for multi-sensorial integration [E98].

Figure 9: A schematic representation of our  ALifeE.
Virtual  Vision  discovers  the  VE,  constructs  the
different types of Perception and updates the AVA’s
Cognitive Map to obtain a multi-perceptive mapping.
Then  the  Control  Architecture  uses  both  the
“cognitive  maps“  and  the  “memory  model“  to
interact with the learning, development, and control
processes of the AVA (Virtual Human Controller).

The sensorial modalities update the AVA’s cognitive
map  to  obtain  a  multi-sensorial  mapping.  For  example,
visual memory in the AVA's internal memory is used for a
global move from point A to point B. Should obstacles be
present, it would have to be replaced for a local move by
direct vision of the environment.

In our  approach,  we tried to  integrate all  the multi-
sensorial information from the AVA's virtual sensors. In
fact,  an  AVA  in  a  VE  may  have  different  degrees  of
autonomy and different sensorial canals depending on the
environment.  For  instance,  an  AVA  moving  in  a  VE
represented  by  a  well-lit  room  will  use  primarily  the
sensorial  information  of  vision.  However  if  the  light  is
turned off, the AVA will appeal to the acoustic or tactile
sensorial  information  in  the  same  way  a  human  would
move around in a dark room [SKA02].

From  this  observation  we  derive  the  hypotheses
underlying  our  ALifeE  framework  approach.  They  are
backed up by the  latest  research in  neuroscience  [P02],
which describes  a  partial  re-mapping at  the  behavioural
level of the human including:

Assignment: the prediction of the acoustic position of
an  object  from  its  visual  positions  requires  a
transformation  from its  eye-centred (vision  sensor)
coordinates  to  its  head-centred ones  (auditory
sensor). The comparison of these two types of results
can be used to  determine whether  the acoustic and
visual  signals  are  directly  connected  to  the  same
object.
Recoding:  the  choice  of  the  reference  frame  to
integrate the sensorial signals.
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6. Conclusion

In order to develop truly interactive multimedia systems
with Virtual Humans, games, and interactive movies, we
need a flexible way of animating these Virtual Humans.
Altering motion obtained from a motion capture system is
not  the  best  solution.  Only   computational  models  can
offer  this  flexibility  unless  powerful  motion  retargeting
methods  are  developed,  but  in  this  case  they  will  look
similar to computational models. 
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Abstract

To simulate realistic virtual crowds in real time, three main requirements need satisfaction. First of all, quantity,

i.e., the ability to simulate thousands of characters in real time. Secondly, quality, because each virtual human

composing a crowd needs to look unique in its appearance and animation. Finally, realism in terms of crowd

motion and navigation. In this tutorial, we explain how all objectives can be reached together. We first detail an

efficient and versatile architecture able to simulate thousands of characters in real time. Then, state-of-the-art

techniques to transform similar instances of a crowd into unique individuals are introduced. Finally, a hybrid

motion planning approach, able to manage navigation and obstacle avoidance in real time, is presented. Overall,

we show that it is possible to combine these three aspects to simulate large, realistic, and visually appealing

crowds in real time.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism - Animation

1. Introduction

In these turorial notes, we focus on technical aspects for cre-
ating an architecture sustaining real-time crowd simulation
composed of several thousand of varied individuals planning
for their path and avoiding collision. We begin the tutorial
with a description of the different virtual human representa-
tions commonly used in crowd simulation in Section 2 and
how each of them can cast shadows. Then, in Section 3, we
introduce our crowd architecture, and the pipeline developed
to process crowds in real time. In Section 4, we detail several
techniques that can be efficiently used to vary the appear-
ance of similar characters, instantiated from a same human
template. Finally, we also present in Section 5 a hybrid and
scalable motion planning architecture able to manage thou-
sands of characters in complex environments in real time.
Our conclusion is presented in Section 6.

2. Virtual Human Representations

In an ideal world, graphic cards would be able, at each frame,
to render an infinite number of triangles with an arbitrary
complex shading on them. To visualize crowds of virtual
humans, we would simply use thousands of very detailed

meshes, e.g., capable of hand and facial animation. Unfor-
tunately, in spite of the recent programmable graphics hard-
ware advances, we are still compelled to stick to a limited
triangle budget per frame. This budget is spent wisely to be
able to display dense crowds without too much perceptible
degradations. The concept of levels of detail (LOD), exten-
sively treated in the literature (see Luebke et al. [LWC∗02])
is exploited to meet our real-time constraints. For a crowd
of virtual humans specifically, and depending on the loca-
tion of the camera, a character is rendered with a particular
representation, resulting from the compromise of rendering
cost and quality. In this Section, we first introduce the data
structure we use to create and simulate virtual humans: the
human template. Then, we describe the three levels of de-
tail a human template uses: the deformable mesh, the rigid
mesh, and finally the impostor.

2.1. Human Template

A type of human such as a woman, man, or child is described
as a human template, which consists of :

• A skeleton, composed of joints, representing articulations,
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• A set of meshes, all respresenting the same virtual human,
but with a decreasing number of triangles,

• Several appearance sets, used to vary its appearance,
• A set of animation sequences which it can play.

Each rendered virtual human is derived from a human
template, i.e., it is an instance of a human template. In or-
der for all the instances of a same human template to look
different, we use several appearance sets, that allow to vary
the texture applied to the instances, as well as modulate the
colors of the texture (see Section 4).

2.2. Deformable Mesh

A deformable mesh is a representation of a human tem-
plate composed of triangles. It is enveloping a skeleton of
78 joints, used for animation: when the skeleton moves, the
vertices of the mesh follow smoothly its joint movements,
similarly to our skin. We call such an animation a skeletal
animation. Each vertex of the mesh is influenced by one or
a few joints. Thus, at every keyframe of an animation se-
quence, a vertex is deformed by the weighted transformation
of the joints influencing it. The corresponding equation is:

v(t) =
n

∑
i=1

χtiχ
−re f
i v

re f (1)

where v(t) is the deformed vertex at time t, χti is the global

transform of joint i at time t, χ
−re f
i is the inverse global

transform of the joint in the reference position, and vre f is
the vertex in its reference position. This technique is known
as skeletal subspace deformation, or skinning.

The skinning can be efficiently performed by the GPU:
the deformable mesh sends the joint transformations of its
skeleton to the GPU, that takes care of moving each vertex
according to its joint influences. However, it is important to
take into account the limitations of graphic cards (Shader
Model 2 & 3 [nvi06]), that can store only up to 256 atomic
values, i.e., 256 vectors of four floating points. The joint
transformations of a skeleton can be sent to the GPU as 4x4
matrices, i.e., four atomic values. This way, the maximum
number of joints a skeleton can have reaches:

256
4

= 64 (2)

When wishing to perform hand and facial animation, 64
joints are not sufficient. Our solution is to send each joint
transformation to the GPU as a unit quaternion and a transla-
tion, i.e., two atomic values. This allows to double the num-
ber of joints possible to send. Note that one usually does not
wish to use all the atomic structures of a GPU exclusively
for the joints of a skeleton, since it is usually exploited to
process other data.

Rendering deformable meshes is very costly, due primar-
ily to a pipeline flush occuring each time a new virtual hu-
man is rendered, and also to the expensive vertex skinning

and joint transmission. Nevertheless, it would be a great
quality drop to do without them, indeed :

• They are the most flexible representation to animate, al-
lowing even for facial and hand animation (if using a suf-
ficiently detailed skeleton),

• Such animation sequences, called skeletal animations, are
cheap to store: for each keyframe, only the transforma-
tion of deforming joints, i.e., those moved in the anima-
tion, need to be kept. Thus, a tremendous quantity of those
animations can be exploited in the simulation, increasing
crowd movement variety,

• Procedural and composited animations are suited for this
representation, e.g., idle motions can be generated on-the-
fly (see for example Egges et al. [EGMT06]),

• Blending is also possible for smooth transitions between
different skeletal animations.

Unfortunately, the cost of using deformable meshes as the
sole representation of virtual humans in a crowd is too pro-
hibitive. We therefore use them in a limited number and only
at the fore-front of the camera. Note that before switching to
rigid meshes, we use several deformable meshes, keeping
the same animation algorithm, but with a mesh of a decreas-
ing number of triangles.

Skinned and textured deformable meshes require skilled
designers. But once finished, they are automatically used as
the raw material to derive all subsequent representations: the
rigid meshes and the impostors.

2.3. Rigid Meshes

A rigid mesh is a precomputed geometric posture of a de-
formable mesh, thus sharing the very same appearance. A
rigid animation sequence is always inspired from an original
skeletal animation, and from an external point of view, both
look alike. However, the process to create them is different.
To compute a keyframe of a rigid animation, the correspond-
ing keyframe for the skeletal animation is retrieved. It pro-
vides a skeleton posture (or joint transformations). Then, as
a preprocess, each vertex is deformed on the CPU, in opposi-
tion to a skeletal animation, where the vertex deformation is
achieved online, and on the GPU. Once the rigid mesh is de-
formed, it is stored as a keyframe, in a table of vertices, nor-
mals (3D points), and texture coordinates (2D points). This
process is repeated for each keyframe of a rigid animation.
At runtime, a rigid animation is simply played as the suc-
cession of several postures or keyframes. There are several
advantages in using such a rigid mesh representation:

• It is much faster to display, because the skeleton defor-
mation and vertex skinning stages are already done and
stored in keyframes. The communication between the
CPU and the GPU is kept to a minimum, since no joint
transformation needs to be sent, and pipeline flushing is
significantly reduced.
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• It looks exactly the same as the skeletal animation used to
generate it.

The gain in speed brought by this new representation is con-
siderable. It is possible to display about 10 times more rigid
meshes than deformable meshes (see Section 3.5 for detailed
results). However, the rigid meshes need to be displayed far-
ther from the camera than deformable meshes, because they
allow for neither procedural animations, nor blending, and
no composited, facial, or hand animation is possible.

2.4. Impostor

An impostor is the less detailed representation, and exten-
sively exploited in the domain of crowd rendering [TLC02,
DHOO05,MR06]. An impostor represents a virtual human
with only two textured triangles, forming a quad, which is
enough to give the wanted illusion at long range from the
camera. Similarly to a rigid animation, an impostor anima-
tion is a succession of postures, or keyframes, inspired from
an original skeletal animation. The main difference with a
rigid animation is that it is only a 2D image of the posture
that is kept for each keyframe, instead of the whole geom-
etry. Creating an impostor animation is complex and time
consuming. Thus, its construction is achieved in a prepro-
cess, and the result is then stored into a database in a binary
format (see Section 3.4), similarly to a rigid animation. We
detail here how each keyframe of an impostor animation is
developed. The first step when generating such a keyframe
for a human template is to create two textures, or atlas:

• A normal map, storing in its texels the 3D normals as
RGB components. This normal map is necessary to ap-
ply the correct shading to the virtual humans rendered as
impostors. Indeed, if the normals were not saved, a terri-
ble shading would be applied to the virtual human, since
it is represented with only two triangles. Switching from
a rigid mesh to an impostor would thus lead to awful pop-
ping artefacts.

• A UVmap, storing in its texels the 2D texture coordinates
as RG components. This information is also very impor-
tant, because it allows to apply correctly a texture to each
texel of an impostor. Otherwise, we would need to gener-
ate an atlas for every texture of a human template.

Since impostors are only 2D quads, we need to store nor-
mals and texture coordinates from several points of view,
so that, at runtime, when the camera moves, we can display
the correct keyframe from the correct camera view point. In
summary, each texture described above holds a single mesh
posture for several points of view. This is why we also call
such textures atlas. We illustrate in Figure 1 a 1024x1024 at-
las for a particular keyframe. The top of the atlas is used to
store the UV map, and its bottom the normal map. The main
advantage of impostors is that they are very efficient, since
only two triangles per virtual human are displayed. Thus,
they constitute the biggest part of the crowd. However, their

Figure 1: A 1024x1024 atlas storing the UV map (above)

and the normal map (below) of a virtual human performing

a keyframe of an animation from several points of view.

rendering quality is poor, and thus they cannot be exploited
close to the camera. Moreover, the storage of an impostor
animation is very costly, due to the high number of textures
that need to be saved. We summarize in Table 2 the perfor-

Figure 2: Storage space in [Mb] for one second of an ani-
mation clip of (a) a deformable mesh, (b) a rigid mesh, and

(c) an impostor.

mance and animation storage for each virtual human repre-
sentation. We observe that each step down the representa-
tion hierarchy allows to increase by an order of magnitude
the number of displayable characters. We also note that the
faster the display of a representation the bigger the anima-
tion storage. Finally, rigid meshes and impostors are stored
in GPU memory, which is usually much smaller than CPU
memory. Figure 3 summarizes the shared resources inside a
human template.
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Figure 3: shared resources between representations inside a

human template.

2.5. Shadows

In our architecture, illumination ambiances are set from four
directional lights, whose direction and diffuse and ambient
colors are prealably (or interactively) defined by the de-
signer. The light coming from the sun is the only one pro-
voking shadows. As we lack a real-time global illumination
system, the three other lights are present to provide enough
freedom for the designer to give a realistic look to the scene.
This configuration has given us satisfaction as we mainly
work on outdoor scenes. See Figure 6 (left) and 7 for results.

Virtual humans cast shadows on the environment and, re-
ciprocally, the environment casts shadows on them. This is
achieved using a shadow mapping algorithm [Wil78] imple-
mented on the GPU. At each frame, virtual humans are ren-
dered twice:

• The first pass is from the directional light view perspec-
tive, i.e., the sun. The resulting z-buffer values are stored
in the shadow map.

• The second pass is from the camera view perspective.
Each pixel is transformed into light perspective space and
its z value is compared with the one stored in the shadow
map. Thus, it is possible to know if the current pixel is in
shadow or not.

So, we need to render twice the number of virtual humans

Figure 4: Shadowed scene with apparent directional light

frustum.

really present. Though with modern graphics hardware, ren-
dering to a z-only framebuffer is twice as fast as render-
ing to a complete framebuffer, one expects a certain drop in
the frame rate. Moreover, standard shadow mapping suffers
from important aliasing artefacts located at shadow borders.
Indeed, the resolution of the shadow map is finite, and the
bigger the scene, the more aliasing artefacts appear. To alle-
viate this limitation, several strategies are used:

• Dynamically constrain the shadow map resolution to vis-
ible characters, and

• Combine percentage closer filtering [RSC87] with
stochastic sampling [Coo86], to obtain fake soft shad-
ows [Ura05].

We now further describe how to dynamically constrain the
shadow map resolution to visible characters. A directional
light, as its name indicates, is defined only by a direction.
Rendering from a directional light implies using an ortho-
graphic projection, i.e., its frustum is a box, as depicted
in Figure 4. An axis-aligned bounding box (AABB) is a
box whose faces have normals that coincide with the basis
axes [MH99]. They are very compact to store; only its two
extreme points are necessary to determine the whole box.
AABB are often used as bounding volumes, e.g., in a first
pass of a collision detection algorithm, to efficiently elimi-
nate simple cases.

A directional light necessarily has an orthographic frus-
tum aligned along its own axes. So, we can consider this
frustum as an AABB. The idea is, at each frame, to compute
the box englobing all the visible virtual humans, so that it is
as tight as possible. Indeed, using an AABB as small as pos-
sible allows to have a less stretched shadow map. At each
frame, we compute this AABB in a four-step algorithm:

1. The crowd AABB is computed in world coordinates,
using visible navigation graph vertices. By default, the
AABB height is set to two meters, in order to bound the
characters at their full height.

2. The light space axes are defined, based on the light nor-
malized direction Lz:
Lx = normalize( (0,1,0)T ˆ Lz ).
Ly = normalize( Lz ˆ Lx ).
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3. The directional light coordinate system is defined as the
3x3 matrixMl = [Lx,Ly,Lz].

4. The eight points composing the AABB (in world coordi-
nates) are multiplied by M−1

l
, i.e., the transpose of Ml.

This operation expresses these points in our light coordi-
nate system.

Note that remultiplying the obtained points by Ml would
express the crowd AABB back into world coordinates. In
Figure 4 are illustrated the shadows obtained with this algo-
rithm. Practically, to be able to choose an adequate resolu-
tion given the situation, e.g., detailed shadows for characters
close to the camera, we use three different shadowmaps: one
for the shadows cast by the environment, one for the people
(deformable and rigid meshes) near the camera, and one for
people far from it (impostors).

3. Architecture

The main problem when dealing with thousands of char-
acters is the quantity of information that needs to be pro-
cessed for each one of them. Such a task is very demand-
ing, even for modern processors. Simple approaches, where
virtual humans are processed one after another, in no spe-
cific order, provokes costly state switches for both the CPU
and GPU. For an efficient use of the available computing
power, and to approach hardware peak performance, data
flowing through the same path need to be grouped. In this
Section, we present an architecture able to handle, early in
its pipeline, the sorting of virtual human related data into
grouped slots, allowing the simulation of thousands of char-
acters. Moreover, it is versatile enough to be stressed in very
different scenarii, e.g., in confined environments like an au-
ditorium or a classroom, as well as in large-scale environ-
ments like a crowded fun fair or city.

The Section is divided as follows: first, in Section 3.1,we
briefly introduce the human data structure our architecture
employs. Then, we delve into each of the pipeline stages
in Section 3.2. In Section 3.3, motion kits, a data structure
specifically developed for managing the different levels of
detail at the animation stage are described. Concerning effi-
ciency of storage and data management, we mainly employ
a database to store all the virtual human related data, as de-
tailed in Section 3.4. Finally, in Section 3.5, we show the
overall performance of our architecture.

3.1. Human Data Structures

Virtual human instances are shared in several data structures,
and a unique identifier is associated to each one of them.
Our crowd data structure is mainly composed of two arrays.
An array of body entities, and an array of brain entities. The
unique identifier of each virtual human is used to index these
arrays and retrieve specific data, which is distributed in a

Figure 5: Crowd architecture pipeline.

body and brain entity. Body data consists in all the param-
eters used at every frame, like the position and orientation
of the virtual human. Brain data is more related to behav-
ior parameters, and is less regularly exploited. By separating
these parameters from the body entity, we tighten the storage
of very often used data. Indeed, such a regrouping improves
performance: in a recent work [PdHCM∗06], while experi-
menting different steering methods, we observed that with
a varying number of characters in a very large scale (tens
of thousands), the performance of the different methods re-
mained about the same. Memory latency to jump from an
instance to the other was the bottleneck when dealing with
big crowds.

3.2. Pipeline Stages

In this Section, we first provide a short reminder on the navi-
gation graph structure, which is used for crowd motion plan-
ning (see Section 5), but also provides a very convenient
structure to process the virtual humans hierarchically instead
of individually. Then, we detail the stages of the pipeline il-
lustrated in Figure 5.

For a given scene, a navigation graph is provided and used
to steer virtual humans along predefined paths. The graph is
composed of a set of vertices, represented in the scene as
vertical cylinders where no collision with the environment
can occur. Two vertices can be connected by an edge, rep-
resented as a gate between two overlapping cylinders (see
Figure 8). When several cylinders overlap, their consecutive
gates delimit a corridor. In a scene, a path to follow is de-
fined as a sequence of gates to reach one after the other,
i.e., simple sub-goals for the chosen steering method (See
Section 5 for more details). During simulation, each vertex
keeps a list of the ids of virtual human currently travelling
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Figure 6: (left) Virtual humans navigating in a complex en-

vironment. (right) Similar image with apparent levels of de-

tail; in red: the rigid meshes, in green: the impostors.

Figure 7: Dense crowd in a large environment.

Figure 8: Virtual humans steering along a path sustained by

a navigation graph structure (in green and white). Overlap-

ping vertices form gates (in red). Consecutive gates on the

path form corridors (in black).

through it. Pettre et al. [PdHCM∗06,PGT07] fully detail the
necessary steps to construct navigation graph from an arbi-
trary 3D scene. Here follows the detailed description of each
pipeline stage.

The LOD Selector is the first stage of the pipeline. It
receives as input a navigation graph filled with virtual hu-

man ids and the camera view frustum. The role of the LOD
Selector entity is to categorize graph vertices, i.e., to score
each one of them for further processing. We have two dif-
ferent scores to attribute to each vertex. Firstly, a level of
detail (LOD), determined by finding the distance from the
vertex to the camera and its eccentricity from the middle of
the screen. This LOD score is then used to choose the appro-
priate virtual human representation inside the vertex. Sec-
ondly, the LOD Selector associates with each vertex a score
of interest, resulting in an environment divided into regions
of different interest (ROI). For each region, we choose a dif-
ferent motion planning algorithm. Regions of high interest
use accurate, but more costly techniques, while regions of
lower interest may exploit simpler methods (See Section 5
for more details).

The LOD Selector uses the navigation graph as a hierar-
chical structure to avoid testing individually each character.
The processing of data is achieved as follows: firstly, each
vertex of the graph is tested against the camera view frus-
tum, i.e., frustum culled. Empty vertices are not even scored,
nor further held in the process for the current frame; indeed,
there is no interest to keep them in the subsequent stages
of the pipeline. On the other hand, vertices filled with at
least one character and outside the camera view are kept,
but they are not assigned any LOD score, since they are out-
side the view frustum, and thus, their virtual humans are not
displayed. As for their ROI score, they get the lowest one:
no dynamic collision avoidance between pedestrians need be
achieved. However, even if they are not in the camera field,
virtual humans contained in these vertices need a minimal
simulation to sporadically move along their path. Without
care, when they quit the camera field, they immediately stop
moving, and thus, when the camera changes its point of view,
packages of stagnant characters suddenly move again, caus-
ing a disturbing effect for the user. Finally, the vertices that
are filled and visible are assigned a higher ROI score, and
then are further investigated to sort their embedded virtual
humans by human template, LOD, and appearance set.

At the end of this first stage, we obtain two lists. The first
one contains all virtual human ids, sorted by human tem-
plate, by LOD, and finally by appearance set. The second list
contains occupied vertices, sorted by ROI. Obtaining such
lists takes some time. However, it is very useful to group
data and process through the next stages of the pipeline. We
illustrate in the following pseudo-code how the first list is
typically used in the next stages of the pipeline:
For each human template:

apply human template common data

operations, e.g., get its skeleton,

For each LOD:

apply LOD common data operations,

e.g., enable LOD specific shader program,

For each appearance set:

apply appearance set common data

operations, e.g., bind textures,

For each virtual human id:

get body or brain structure from the id,

apply specific operations on it.

The second stage is the Simulator, which uses the second
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list to iterate through all ROI slots and obtain the correspond-
ing filled vertices. At this stage, virtual humans are consid-
ered as individual 3D points, and depending on the ROI, the
proper motion planning method is applied. Please, refer to
Section 5 for more details on the techniques used for each
ROI.

The Animator is responsible for the animation of the
characters, whichever the representation they are using. The
slots of visible virtual humans, sorted by human template,
LOD, and appearance set in the LOD Selection phase,
are the main data structure used in this stage. Below is
described the specific tasks that are achieved for the de-
formable meshes:

For each human template:

get its skeleton,

For each deformable mesh LOD:

For each appearance set:

For each virtual human id:

get the corresponding body,

update the animation time (between 0.0 and 1.0),

perform general skeletal animation,

perform facial skeletal animation,

perform hand skeletal animation.

Since the virtual humans are also sorted by LOD, we can it-
erate over the deformable meshes without having to check
that they actually are deformable. Performing a skeletal ani-
mation, whether it is for the face, the hands or all the joints
of a virtual human, can be summarized in four steps. First,
the correct keyframe, depending on the animation time, is
retrieved. Note that at this step, it is possible to perform
a blending operation between two animations. The final
keyframe used is then the interpolation of the ones retrieved
from each animation. The second step is to duplicate the
original skeleton relative joint matrices in a cache. Then,
in the cache, the matrices of the joints modified by the
keyframe are overwritten. Finally, all the relative matrices
(including those not overwritten) are multiplied to obtain
global matrices, and each of them is post-multiplied by the
inversed global matrices of the skeleton. Note that optional
animations, like facial animation, are usually performed only
for the best deformable mesh LOD, i.e., the most detailed
mesh, at the fore-front.

For the rigid meshes, the role of the Animator is much
reduced, since all the deformations are pre-computed (see
Section 2):

For each human template:

For each rigid mesh LOD:

For each appearance set:

For each virtual human id:

get the corresponding body,

update the animation time (between 0.0 and 1.0).

Note that we do not iterate over all LOD slots, since we
are only concerned with the rigid meshes. Once again, the
sorting achieved in the LOD Selection stage ensures that we
are exclusively iterating over rigid meshes, without costly
tests.

Finally, for the impostors, since a keyframe of an impos-
tor animation is only represented by two texture atlases, no

specific deformation needs to be achieved. However, we as-
sign the animator a special job: to update a new list of vir-
tual human ids, specifically sorted to allow a fast rendering
of impostors. Indeed, at initialization, and for each human
template, a special list of virtual human ids is created, sorted
by appearance set, impostor animation, and keyframe. The
first task achieved by the Animator is to reset the impos-
tor specific list in order to refill it accordingly to the current
state of the simulation. Then, to refill this list, an iteration is
performed over the current up-to-date list, the one sorted by
human template, LOD, and appearance set (updated in the
LOD Selection stage):

For each human template:

get its impostor animations,

For the only impostor LOD:

For each appearance set AS:

For each virtual human id:

get the corresponding body,

update the animation time (between 0.0 and 1.0),

get body’s current impostor animation id a,

get body’s current impostor keyframe id k,

put virtual human id in special list[AS][a][k].

This way, the impostor specific list is updated every time the
data passes through the Animator stage, and is thus ready to
be exploited at the next stage, the Renderer.

The Renderer represents the phase where draw calls are
issued to the GPU to display the crowd. As detailed in Sec-
tion 2.5, rendering shadows is a two-pass algorithm, and
achieved in this stage: first, deformable and rigid meshes,
and impostors are sequentially rendered from the point of
view of the sun, i.e., the main directional light. Then, they are
consecutively rendered from the point of view of the camera.
To diminish state change overhead, the number of draw calls
are minimized, thanks to our slots of visible humans sorted
by human template, LOD and appearance set. In the follow-
ing pseudo-code, we show the second pass in the deformable
mesh rendering process:

For each human template:

For each deformable mesh LOD:

bind vertex, normal, index, and texture buffer,

send to the GPU the joint ids influencing each vertex,

send to the GPU their corresponding weights,

For each appearance set:

send to the GPU texture specular parameters,

bind texture and segmentation maps,

For each virtual human id:

get the corresponding body,

send the joint orientations from cache,

send the joint translations from cache.

This second pass is preceded by another pass, used to com-
pute the shadows. Note that in this first pass, the process is
quite similar, although data useless for shadow computation
is not sent, e.g., normal and texture parameters. In this ren-
dering phase, one can see the full power of the sorted lists:
all the instances of a same deformable mesh have the same
vertices, normals and texture coordinates, Thus, these co-
ordinates need to be binded only once per deformable mesh
LOD. The same applies for the appearance sets: even though
they are used by several virtual humans, each needs to be
sent only once to the GPU. Note that each joint transforma-
tion is sent to the GPU as two vectors of four floating points
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(see Section 2.2), retrieved from the cache filled in the Ani-
mation phase.

For the rigid meshes, the process is quite different, since
all the vertex deformations have been achieved in a prepro-
cess. We develop here the second pass in pseudo-code:

For each human template:

For each rigid mesh LOD:

bind texture coordinate buffer,

bind indices buffer,

For each appearance set:

send to the GPU texture specular parameters,

bind texture and segmentation maps,

For each virtual human id:

get the corresponding body,

get the correct rigid animation keyframe,

bind its vertex and normal buffer.

In the rendering phase of the rigid meshes, only the texture
coordinates and indices can be binded at the LOD level, in
opposition to the deformable meshes, where all mesh data is
binded at this level. The reason is obvious: for a deformable
mesh, all the components representing its mesh information
(vertices, normals, etc.) are the same for all instances. It
is only later, on the GPU, that the mesh is deformed to fit
the skeleton posture of each individual. For a rigid mesh,
its texture coordinates, along with its indices (to access the
buffers), remain the same for all of their instances. How-
ever, since the vertices and normals are displaced in a pre-
process and stored in the keyframes of a rigid animation, it
is only at the individual level, where we know the animation
played, that their binding can be achieved. Note that since
the vertices sent to the GPU are already deformed, there is
no specific work to be achieved in the vertex shader. Con-
cerning the shadow computation phase, i.e., the first pass, the
pseudo-code is the same, but without sending useless data,
like normal and texture information.

Rendering impostors is fast, thanks to the virtual human
id list sorted by human template, appearance set, animation,
and keyframe, that is updated at the Animation phase. Here
follows the corresponding pseudo-code:

For each human template:

get its impostor animations,

For each appearance set:

bind texture and segmentation maps,

For each impostor animation:

For each keyframe:

bind normal map,

bind UV map,

For each virtual human id:

get the corresponding body,

get the correct point of view,

send to GPU texture coordinates where

to get the correct virtual human posture

and point of view.

The Path Planner is performing the collision avoidance
between virtual humans. It is at the Simulator stage that sub-
goals are set several frames ahead, and that the followed di-
rections are interpolated by steering methods. The Path Plan-
ner cares only for collision avoidance, and runs at a lower
frequency than the other presented stages. Note that we put
this stage and the next one, the Behavior, after the Renderer,
because the GPU is paralelly rendering. So, instead of wait-
ing for the frame to finish being rendered, we concurrently

use the CPU. The different algorithms used by the Path Plan-
ner are detailed in Section 5.

The Behavior is the phase exploiting the slots of virtual
humans reaching new navigation graph vertices. All along
the entire pipeline, virtual humans cannot change their cur-
rent animation or steering, because it would invalidate our
various sorted slots. This last stage is thus the only one which
is allowed to change the steering and current animation se-
quence of virtual humans. It is always achieved at the end of
the pipeline, one frame ahead. Basically, each time a charac-
ter is entering a new graph vertex (detected at the Simulator
phase), we apply a probability to change the steering and /
or animation. For instance, a character entering a new vertex
with a walk animation clip has a probability to start playing
another animation sequence, e.g., an idle one.

3.3. Motion Kits

We have developed three levels of representation for the
virtual humans: the deformable meshes, the rigid meshes,
and the impostors (see Section 2). When playing an anima-
tion sequence, a virtual human is treated differently depend-
ing on its current distance and eccentricity to the camera,
i.e., the current level of detail it uses. For clarity purpose, we
recall giving an animation clip a different name depending
on which level of detail it applies to. An animation clip in-
tended for a deformable mesh is a skeletal animation, one for
a rigid mesh is a rigid animation, and finally, an animation
clip for an impostor is an impostor animation.

We have already shown that the main advantage of us-
ing less detailed representations is the speed of rendering.
However, for the memory, the cost of storing an animation
sequence for a deformable, a rigid mesh, or an impostor is
impressively growing (see Figure 2). From this, it is obvious
that the number of animation sequences stored must be lim-
ited for the less detailed representations. It is also true that
we want to keep as many skeletal animation clips as possi-
ble for the deformable meshes, firstly, because their storage
requirement is cheap, and secondly, for variety purpose. In-
deed, deformable meshes are at the forefront, close to the
camera, and several virtual humans playing the same anima-
tion clip are immediately noticed.

The issue arising is then the switching from a level of rep-
resentation to another. For instance, what should happen if a
deformable mesh performing a walk cycle reaches the limit
at which it switches to the rigid mesh representation? If a
rigid animation with the same walk cycle (same speed) has
been precomputed, switching is done smoothly. However, if
the only rigid animation available is a fast run cycle, the vir-
tual human will “pop” from a representation to the other,
greatly disturbing the user. We therefore need each skeletal
animation to be linked to a ressembling rigid animation, and
similarly to an impostor animation. For this reason, we have
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developed the motion kit data structure. We first describe the
motion kit data structure in Section 3.3.1 and then its imple-
mentation in Section 3.3.2

3.3.1. Data Structure

A motion kit holds several items:

• A name, identifying what sort of animation it represents,
e.g., walk_1.5ms,

• Its type, determined by four identifiers: action, subaction,
left arm action, and right arm action,

• A link to a skeletal animation,
• A link to a rigid animation,
• A link to an impostor animation.

Each virtual human knows only the current motion kit it
uses. Then, at the Animator stage, depending on the distance
of the virtual human to the camera, the correct animation
clip is used. Note that there is always a 1:1 relation between
the motion kits and the skeletal animations, i.e., a motion
kit is useless if there is no corresponding skeletal animation.
As for the rigid and impostor animations, their number is
much smaller than for skeletal animations, and thus, several
motion kits may point to the same rigid or impostor anima-
tion. For instance, imagine a virtual human using a motion
kit representing a walk cycle at 1.7 m/s. The motion kit has
the exact skeletal animation needed for a deformable mesh
(same speed). If the virtual human is a rigid mesh, the mo-
tion kit may point to a rigid animation at 1.5 m/s, which
is the closest one available. And finally, the motion kit also
points to the impostor animation with the closest speed. The
presented data structure is very useful to easily switch from
a representation to another. In Figure 9, we show a schema
representing a motion kit and its links to different animation
clips. All the motion kits and the animations are stored in a
database, along with the links joining them (see Section 3.4).
One may wonder what the four identifiers are for. They are
used as categories to sort the motion kits. With such a clas-
sification, it is easy to randomly choose a motion kit for a
virtual human, given certain constraints. Firstly, the action
type describes the general kind of movement represented by
the motion kit. It is defined as either:

• stand: for all animations where the virtual human is stand-
ing on its feet,

• sit : for all animations where the virtual human is sitting,
• walk : for all walk cycles, or
• run : for all run cycles.

The second identifier is the subaction type, which more re-
strains the kind of activity of the motion kit. Its list is nonex-
haustive, but it contains descriptors such as talk, dance, idle,
etc. We have also added a special subaction called none,
which is used when a motion kit does not fit in any of the
other subaction types. Let us note that some action / subac-
tion couples are likely to contain no motion kit at all. For
instance, a motion kit categorized as a sit action and a dance

subaction is not likely to exist. The third and fourth identi-
fiers: left and right arm actions are used to add some specific
animation to the arms of the virtual humans. For instance, a
virtual human can walk with the left hand in its pocket and
the right hand holding a cellphone. For now, we have three
categories that are common to both identifiers: none, pocket,
and cellphone. However, this list can be extended to other
possible arm actions. For instance, holding an umbrella, pull
a caster suitcase, or scratch one’s head.

Figure 9: Example of motion kit structure. On the left, a vir-

tual human instantiated from a human template point to the

motion kit it currently uses. In the center, a motion kit with

its links identifying the corresponding animations to use for

all human templates.

When one creates a varied crowd, it is simple for each
virtual human to ask randomly for one of all the motion kits
available. If the need is more specific, like a crowd follow-
ing a path, it is easy to choose only the adequate walk / run
motion kits, thanks to the identifiers.

3.3.2. Implementation

In our architecture, the motion kits are stored in a four-
dimensional table:

Table[ action id][ subaction id]

[left arm action id][right arm action id].

For each combination of the four identifiers, a list of motion
kits corresponding to the given criteria is stored. As pre-
viously mentioned, not all combinations are possible, and
thus, some lists are empty. In Figure 10, a virtual human is
playing a skeletal animation, linked to a motion kit with the
following identifiers: walk, none, cellphone, pocket. In our
architecture, an animation (whatever its level of detail) is de-
pendent on the human template playing it : for a deformable
mesh, a skeletal animation sequence specifies how its skele-
ton is moved, which causes the vertices of the mesh to get
deformed on the GPU. Since each human template has its
own skeleton, it is impossible to share such an animation
with other human templates. Indeed, it is easy to imagine
the difference there is between a child and an adult skeleton.
For a rigid animation, it is the already deformed vertices and
normals that are sent to the GPU, thus such an animation is
specific to a mesh, and can only be performed by a virtual
human having this particular set of vertices, i.e., issued from
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Figure 10: A virtual human using a motion kit with identi-

fiers: walk, none, cellphone, pocket.

the same human template. Finally, an impostor animation
clip is stored as a sequence of pictures of the virtual human.
It is possible to modify the texture and color used for the
instances of the same human template, but it seems obvious
that such animation pictures cannot be shared by different
human templates. This specificity is reflected in our imple-
mentation, where three lists of skeletal, rigid, and impostor
animations are stored for each human template.

It follows that each motion kit should also be human
template-dependent, since it has a physical link to the cor-
responding animation triplet. However, this way of manag-
ing the data is far from optimal, because usually, an anima-
tion (whatever its level of detail) is always available for all
the existing human templates. It means that, for instance, if
a template possesses an animation imitating a monkey, all
other human templates are likely to have it. Thus, making
the information contained in a motion kit human template-
dependent would be redundant. We introduce 2 simple rules
that allow us to keep a motion kit independent from a human
template:

1. For any motion kit, all human templates have the corre-
sponding animations.

2. For all animations of all human templates, there is a cor-
responding motion kit.

We now explain how, thanks to these assertions, we can keep
a motion kit independent from the human templates and still
know to which animation triplet it should link. First, note
that each human template contains amongst other things:

• A list of skeletal animations,
• A list of rigid animations,
• A list of impostor animations.

Now, following the two rules mentioned above, all human
templates contain the same number of skeletal animations,
the same number of rigid animations, and the same number
of impostor animations. If we manage to sort similarly these

animation lists for all human templates, we can link the mo-
tion kits with them by using their index in the lists. We show
a simple example in Figure 9, where a structure representing
the human templates is depicted: each human template con-
tains a list of skeletal, rigid, and impostor animations. On
the left of the image, a motion kit is represented, with all its
parameters. Particularly, it possesses three links that indicate
where the corresponding animations can be found for all hu-
man templates. These links are represented with arrows in
the figure, but in reality, they are simply indices that can be
used to index each of the three animation lists for all human
templates.

With this technique, we are able to treat all motion kits
independently from the human templates using them. The
only constraint is to respect the rules (1) and (2).

3.4. Database Management

We use the locomotion engine of Glardon et al. [GBT04b,
GBT04a] to generate various locomotion cycles. Although
this engine is fast enough to generate a walk or run cycle
in real-time, it cannot keep up that rythm with thousands of
virtual humans. When this problem first occured, the idea of
precomputing a series of locomotion cycles and store them
in a database came up. Since then, this system has proved
very useful for storing other unchanging data. The main ta-
bles that can be found in the database are the following:

• Skeletal animations,
• Rigid animations,
• Impostor animations,
• Motion kits,
• Human templates, and
• Accessories.

In this Section, we detail what advantages and drawbacks we
meet by using such a database, and what kind of information
we can safely store there.

As previously mentioned, all the skeletal, rigid and im-
postor animations can neither be generated online, nor at
the initialization phase of the application, because the user
would have to wait during an important amount of time be-
fore the simulation launch. This is why the database is used.
With it, the only work that needs to be done at initialization
is to load the animation sequences, so that they are ready
when needed at runtime. Although this loading phase may
look time consuming, it is quite fast, since all the animation
data is serialized into a binary format. Within the database,
the animation tables have four important fields †: unique id,
motion kit id, template id and serialized data. For each an-
imation entry A, its motion kit id is later used to create the

† By field, understand a column in the database that allows for
queries.
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necessary links (see previous Section), while its template id
is needed to find to which human template A belongs. It also
allows to restrain the number of animations to load to the
strict minimum, i.e., only those needed for the human tem-
plates used in the application. It is mainly the serialized data
that allows to distinguish a skeletal from a rigid or a impostor
animation. For a skeletal animation, we mainly serialize all
the information concerning the orientation of each joint for
each keyframe. With a rigid animation, for each keyframe, a
set of already deformed vertices and normals are saved. Fi-
nally, for a impostor animation, two series of images of the
human template are kept (the normal and the UV map) for
several keyframes and points of view.

Another table in the database is used to store the motion
kits. It is important to note that since they are mainly com-
posed of simple data, like integers and strings (see previous
Section), they are not serialized in the database. Instead, each
of their elements is introduced as a specific field: unique id,
name, speed, four identifiers (action id, subaction id, left arm
action id, right arm action id), and two special motion kit ids
(rigid motion kit id, impostor motion kit id). When loading
a motion kit M from the database, its basic information, i.e.,
speed, name, etc., are directly extracted to be saved in our ap-
plication. Each of the two special motion kit ids is an index
referring to another motion kit. This reference is necessary to
complete the linking between M and its corresponding rigid
and impostor animations.

We have introduced in the database a table in order to
store the unchanging data of the human templates. Indeed,
we have some human templates already designed and ready
to be used in the crowd simulation. This table has the follow-
ing fields: unique id, name, skeleton hierarchy, and skeleton
posture. The skeleton hierarchy is a string summarizing the
skeleton features, i.e., all the joint names, ids, and parent.
When loading a human template, this string is used to create
its skeleton hierarchy. The skeleton posture is a string giving
the default posture of a skeleton : with the previous field, the
joints and their parents are identified, but they are not placed.
In this specific field, we get for each joint its default position
and orientation, relatively to its parent. As one can notice,
for now the human template table is incomplete, e.g., the ap-
pearance sets are missing, and no information is serialized,
similarly to the motion kits. This is mainly due to a lack of
time (indeed, as of today, our crowd simulator is still being
developed). But it certainly is an advantage to further fill this
table with more data in a binary format, so that the loading
of human templates is faster at initilization.

Finally, the database possesses two tables dedicated to ac-
cessories. An accessory is a mesh used to add variety and
believability to the appearance of the virtual humans. For
instance, it can be a hat, a pair of glasses, a bag, etc. (see
Section 4.3 for more details). In a first table, we store the el-
ements specific to an accessory, independently from the hu-
man template wearing it : unique id, name, type, serialized

data. In the serialized data is stored all the vertex, normal
and texture information to make an accessory displayable.
The second table is necessary to share information between
the accessories and the human templates. As specified in
Section 4.3, the displacement of a specific accessory rela-
tively to a joint is different for each human template. This
displacement is stored as a matrix. So, in this second table,
we employ a field template id and a field accessory id to
know exactly where the field matrix must be used. Thus, for
each accessory / human template couple, corresponds an en-
try within this table. Note that we also store there the joint
to which the accessory needs to be attached. This is because
in some special cases, they may differ from a skeleton to an-
other. For instance, when we attach a back pack to a child
template, the joint used is a vertebra that is different from
the one for an adult template.

Using a database to store serialized information has
proven to be very useful, because it greatly accelerates the
initialization time of the application. The main problem is
its size, which increases each time a new element is intro-
duced into it. However, with real-time constraints, we allow
ourselves to have a sufficiently large database within reason-
able limits to obtain varied crowds.

3.5. Performance

We have just detailed the different necessary steps to cre-
ate and exploit a fast architecture for simulating crowds. We
first showed the interest of using several representations, i.e.,
deformable meshes, rigid meshes, and impostors. Then, we
fully detailed each step of our pipeline for fast animation and
rendering of thousands of virtual humans. Through the use
of motion kits, we allowed for switching smoothly from a
representation to another, limiting animation popping arte-
facts. We exposed how a database can be exploited to store
all unchanging data, and finally, we introduced a shadow
map algorithm adapted to crowds.

We now expose the performance obtained with this archi-
tecture. In Figure 2, the various storage requirements, de-
pending on the animation types are exposed. In Figure 11,
we compare the frame rates obtained in two cases. Firstly,
when sorted virtual human lists are exploited, as detailed
in Section 3.1. Secondly, when the Animator and Renderer
stages do not use sorted lists, but directly each virtual human,
one after another, in no spescific order. With such a process,
all the information needed by the GPU has to be sent for
each virtual human, independently from the data that may be
shared by several of them. As one can observe in Figure 11,
when using highly detailed deformable meshes, the results
obtained with or without sorted lists are almost similar. This
can be explained by the communications sent from the CPU
to the GPU (joint transmission): such transmissions imply a
pipeline flush for each rendered virtual human, thus becom-
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Figure 11: Frames per second obtained for (a) highly de-

tailed deformable meshes, (b) simple deformable meshes,

(c) rigid meshes, and (d) impostors. The red lines show the

results obtained when working with sorted lists, the green

ones with a naive approach. The stars indicate the results

for 30 frames per second. (e) Conditions in which the tests

have been achieved: five human templates, steering and an-

imation enabled, no shadows, no accessories, no collision

avoidance.

ing the bottleneck of the application. However, when less de-
tailed representations are exploited, the advantage of sorting
the lists becomes clear. A few images directly obtained from
our running architecture are shown in Figure 6(left) and 7(c).
In Figure 6(right), one can observe the distance at which the
virtual humans switch to lower representations: in red are the
rigid meshes, and in green the impostors.

4. Crowd Variety

When simulating a small group of virtual humans, it is easy
to make them look singularly different: one can use several
human templates and textures for each virtual human present
in the scene, and assign them different animations. However,
when the group extends to a crowd of thousands of people,
this solution becomes unfeasible. First, in terms of design,
it is unimaginable to create one mesh and series of anima-
tions per individual. Moreover, the memory space required
to store all the data would be far too demanding. There is
no direct solution to this problem, but it is however possi-
ble to achieve good results by multiplying the levels where
variety can be introduced. First of all, several human tem-
plates can be used. Secondly, for each template, several tex-
tures can be designed. Thirdly, the color of each part of a
texture can be varied so that two virtual humans issued from
the same template and sharing the same texture have not the
same clothes / skin / hair color. Finally, we also develop the
idea of accessories, which allows a human mesh to be "aug-
mented" with various objects such as a hat, a watch, a back
pack, glasses, etc. Variety can also be achieved through an-
imation. We mainly concentrate on the locomotion domain,
where we vary the movements of the virtual humans in two
ways. Firstly, by generating in a preprocess several locomo-
tion cycles (walk and run) at different speeds, that are then
played by the virtual humans online. Secondly, we use of-
fline inverse kinematics to enhance the animation sequences
with particular movements, like having a hand in the pocket,
or at the ear as if making a phone call. In the following Sec-
tion, we further develop each necessary step to vary a crowd
in appearance: in Section 4.1, we show the three levels where
variety can be achieved. Then, in Section 4.2, we detail how
we segment the texture of a virtual human in order to apply
varied colors to each identified body part. Moreover, acces-
sories are fully explained in Section 4.3. We also describe
animation variety in Section 4.4.

4.1. Variety at Three Levels

When referring to appearance variety, we mean how we
modulate the rendering aspect of each individual of a crowd.
This term is completely independent from the animation se-
quences played, the motion planning or the behavior of the
virtual humans. First of all, let us remind that a human tem-
plate is a data structure containing:

• A skeleton, defining what and where are its joints,
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• A set of meshes, representing its different levels of detail,
• Several appearance sets, i.e., textures and their corre-
sponding segmentation maps,

• A set of animation sequences that can only be played by
this human template.

For further indications on the human template structure, the
reader is invited to refer to Section 2. We apply appearance
variety at three different levels. The first, coarsest level is
simply the number of human templates used. It seems ob-
vious that the more human templates, the more variety. In
Figure 12, we show five different human templates to illus-
trate this. The main issue when designing many human tem-
plates is the time required to design them and the memory
requirements to store them. Their number needs thus to be
limited. In order to mitigate this problem, we further vary the
human templates by creating several textures and segmenta-
tion map sets for each one of them. For simplification, we
designate a texture and its associated segmentation maps as
an appearance set. The second level of variety is represented
by the texture of an appearance set. Indeed, once an instance
of a human template is provided with an appearance set, it
automatically assumes the appearance of the corresponding
texture. Of course, changing appearance set, and thus, tex-
ture, does not change the shape of the human template. For
instance, if its mesh contains a pony tail, it will remain what-
ever the texture applied. However, it can impressively mod-
ify the appearance of the human template. In Figure 13, we
show five different textures applied to the same human tem-
plate. Finally, at the third level, we can play with color vari-
ety on each body part of the texture, thanks to the segmenta-
tion maps of the appearance set. We fully dedicate the next
Section to this particular level. In Figure 14, we show several
color modulated instances of a single mesh and appearance
set.

Figure 12: Five different human templates.

4.2. Color Variety

Human templates possess several textures, improving the
sense of variety. But too often, characters sharing the same

Figure 13: Five different textures of a single human tem-

plate.

Figure 14: Several color varied instances of a single mesh

and texture.

texture, i.e., looking exactly the same, appear in the vicin-
ity of the camera, breaking the feeling of uniqueness of the
spectator. Differentiating character body parts and then ap-
plying a unique combination of colors to each of them is a
way to obtain variation inside a single texture.

4.2.1. Principles of the Method

Previous work on increasing the variety in color appearance
for the characters composing a crowd share the common idea
of storing the segmentation of body parts in a single alpha
layer, i.e., each body part is represented by a defined level
of intensity of the alpha channel. Tecchia et al. [TLC02] use
multi-pass rendering and the alpha channel to select parts
to render for impostors. Dobbyn et al. [DHOO05] and De
Heras et al. [dHCSM∗05] avoid multi-pass rendering by us-
ing programmable graphics hardware. They also extend the
method for being usable by 3D virtual humans too. Figure 15
depicts a typical texture and its associated alpha zone map.
The method is based on texture color modulation: the final
colorCb of each body part is a modulation of its texture color
Ct by a random color Cr:

Cb =CtCr. (3)
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Colors Cb, Ct , and Cr can take values between 0.0 and 1.0.
In order to have a large panel of reachable colors, Ct should
be as light as possible, i.e., near to 1.0. Indeed, if Ct is too
dark, the modulation by Cr will give only dark colors. On
the other hand, if Ct is a light color, the modulation by Cr
will provide not only light colors, but also dark ones. This
explains why part of the texture has to be reduced to a light
luminance, i.e., the shading information and the roughness
of the material. The drawback of passing the main parts of
the texture to luminance is that funky colors can be gener-
ated, i.e., characters are dressed in colors that do not match.
Some constraints have to be added when modulating colors
randomly.

Figure 15: Typical RGBA image used for color variety. The

RGB part composes the texture and the alpha the segmenta-

tion map.

4.2.2. HSB Color Spaces

The standard RGB color model representing additive color
primaries of red, green, and blue is mainly used for specify-
ing color on computer screens. With this system, it is hard to
constrain colors effectively (see Figure 16). In order to quan-
tify and control the color parameters applied to the crowd, a
user-friendly color is used. Smith [Smi78] proposed a model
that deals with everyday life color concepts, i.e., hue, satu-
ration and brightness, which are more linked to the human
color perception than the RGB system. This system is called
the HSB (or HSV ) color model (see Figure 17):

• the hue defines the specific shade of color, as a value be-
tween 0 and 360 degrees,

• the saturation denotes the purity of the color, i.e., highly
saturated colors are vivid while low saturated colors are
washed-out, like pastels. Saturation can take values be-
tween 0 and 100, and

• the brightness measures how light or dark a color is, as a
value between 0 and 100.

In the process of designing virtual human color variety, lo-
calized constraints are dealt with: some body parts need very
specific colors. For instance, skin colors are taken from a
specific range of unsaturated shades with red and yellow

Figure 16: Random color system (a) versus HSB control (b).

Figure 17: HSB color space. Hue is represented by a circu-

lar region. A separate square region may be used to repre-

sent saturation and brightness, i.e., the vertical axis of the

square indicates brightness, while the horizontal axis corre-

sponds to saturation.

dominance, almost deprived of blue and green. Eyes are de-
scribed as a range from brown to green and blue with differ-
ent levels of brightness. These simple examples show that
one cannot use a random color generator as is. The HSB
color model enables control of color variety in an intuitive
an flexible manner. Indeed, as shown in Figure 18, by spec-
ifying a range for each of the three parameters, it is possible
to define a 3D color space, called the HSB map.

Figure 18: The HSB space is constrained to a three dimen-

sional color space with the following parameters (a): hue

from 20 to 250, saturation from 30 to 80 and brightness from
40 to 100. Colors are then randomly chosen inside this space
to add variety on the eyes texture of a character (b).
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4.2.3. Segmentation Maps

The method presented in Section 4.2.1 is perfectly adequate
when viewing crowds at far distances. However, when some
individuals are close to the camera, the method tends to
have too sharp transitions between body parts. There is no
smooth blending between different parts, e.g., the transition
between skin and hair, as depicted in Figure 19. Also, char-
acter closeups bring the need for a new method capable of
handling detailed color variety, for instance, subtle make-up
effects for female characters. Moreover, at short distances,
materials should be illuminated differently to obtain realis-
tic characters at the forefront. To obtain a detailed color va-
riety method, we propose, for each appearance set, to use
segmentation maps.

Figure 19: Closeup of the transition between skin and hair:

artifacts in previous methods when segmenting body parts in

a single alpha layer (left), smooth transitions between parts

with our method (right).

A segmentation map is a four channel image, delimit-
ing four body parts (one per channel) and sharing the same
parameterization as the texture of the appearance set. The
intensity of each body part is thus defined throughout the
whole body of each character, i.e., 256 levels of intensity are
possible for each part, 0 meaning it is not present at this lo-
cation, and 255 meaning it is fully present. For our virtual
humans, we have made experiments with eight body parts,
i.e., two RGBA segmentation maps per appearance set. The
results are satisfying for our specific needs, but the method
can be used with more segmentation maps if more parts are
needed. For instance, it would be possible to use the method
for adding color variety to a city by creating segmentation
maps for buildings. Using segmentation maps to efficiently
distinguish body parts also provides two advantages over
previous methods:

• Possibility to apply different illumination models to each
body part. With previous methods, achieving such effects
requires costly fragment shader branching.

Figure 20: Bilinear filtering artifacts in the alpha layer can

be seen in the right zoomed-in version, near the borders of

the orange shirt, the green tie and the red vest [Mau05].

• Possible mipmapping activation and use of linear filter-
ing, which greatly reduce aliasing. Since previous meth-
ods use the alpha channel of the texture to segment their
body parts, they cannot benefit from this algorithm, which
causes the appearance of artefacts at body part seams (see
Figure 20).

Figure 21 depicts the different effects achievable with our
color variety method: make-up, cloth patterns, freckles, etc,
and localised specular parameters. The segmentation maps
are designed manually. Ideally, for a given pixel, we wish the
sum of the intensity of each body part to reach 255. When
designing the segmentation maps with a software like Adobe
Photoshop, unwanted artefacts may later appear within the
smooth transitions between body parts. Indeed, some pixel
sums of intensity levels may not reach 255. For instance,
imagine the transition between the hair and the skin of a vir-
tual human. A pixel of the segmentation map may reach a
contribution of 100 for the skin part, while the hair part con-
tribution is of 120. Their sum amounts to 220. Although this
is not an issue while designing the segmented body parts
in Photoshop, it leads to problems when trying to normal-
ize the contributions in the application. Indeed, with sim-
ple normalization, such pixels compensate the uncomplete
sum with a black contribution, thus producing a final color
much darker than expected. This is illustrated in Figure 22.
The proposed solution is to compensate this lack with white
instead of black, to get a real smooth transition without un-
wanted dark zones. The results obtained with our three levels
of appearance variety are illustrated in Figure 23, where sev-
eral instances of a single human template are displayed, tak-
ing full advantage of all available appearance sets and color
variety.

4.2.4. Color Variety Storage

Each segmentation map of a human template is divided
into four different body parts. Each of these parts has
a specific color range, and specularity parameters. The
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Figure 21: Examples of achievable effects through appear-

ance sets (make-up, freckles, clothes design, etc), and per

body part specular parameters (shiny shoes, glossy lips, etc).

Figure 22: A blue to red gradient. (a) The sum of the red

and blue contributions does not reach 255 in some pixels,

causing the gradient to suffer from an unwanted black con-

tribution, (b) A white contribution is added so that the sum

of contributions is always 255.

Figure 23: Several instances of a single human template,

exploiting all its appearance sets and color variety.

eight body parts we need are designed in two different
segmentation maps, i.e., two RGBA images, each con-
taining four channels and thus four body parts. At its
birth, each character is assigned a unique set of eight ran-
dom colors from the constrained color spaces, similarly to
De Heras et al [dHCSM∗05]. These eight colors are stored
in eight contiguous RGB texels, starting at the top-left of a
1024× 1024 image, called Color Look Up Table (CLUT).
We show an illustration of a CLUT in Figure 24. Therefore,
if a 1024× 1024 image is used for storing the CLUT, it is
possible to store a set of up to:

1024 ·1024
8

= 131,072 (4)

unique combinations of colors. Note that illumination pa-
rameters are set per body part and thus not saved within the
CLUT, but directly sent to the GPU.

4.3. Accessories

We have already described how to obtain varied clothes and
skin colors by using several appearance sets. Unfortunately,
even with these techniques, the feeling of watching the same
person is not completely overcome. The main reason is the
lack of variety in the human templates used. Indeed, it is
very often the same human template (or a small number of
them) that is used for the whole crowd, resulting in large
groups of similarly shaped humans. We cannot increase too
much the number of human templates, because it requires
a lot of work for a designer: create the human template, its
textures, its skinning, its different levels of detail, etc. Note
that the number of human templates is also limited by The
storage. However, in real life, people have different haircuts,
they wear hats or glasses, carry bags, etc. These particulari-
ties may look like details, but it is with the sum of those de-
tails that we are able to distinguish anyone. In this Section,
we first explain what exactly are accessories. Then, we show
from a technical point of view the different kinds of acces-
sories we have identified, and how to develop each of them
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Figure 24: A CLUT image used to store the color of each

virtual human body parts and accessories.

in a crowd application. An accessory is a simple mesh rep-
resenting any element that can be added to the original mesh
of a virtual human. It can be a hat as well as a handbag, or
glasses, a clown nose, a wig, an umbrella, a cellphone, etc.
Accessories have two main purposes: firstly, they allow to
easily add appearance variety to virtual humans. Secondly,
they make characters look more believable: even without in-
telligent behavior, a virtual human walking around with a
shopping bag or a cellphone looks more realistic than the
one just walking around. The addition of accessories allows
a spectator to identify himself to a virtual human, because
it performs actions that the spectator himself does everyday.
We basically distinguish two different kinds of accessories
that are incrementally complex to develop. The first group
is composed of accessories that do not influence the move-
ments of a virtual human. For instance, whether someone
wears a hat or not will not influence the way he walks. The
second group gathers the accessories requiring a small varia-
tion in the animation clip played, e.g., a virtual human mov-
ing with an umbrella or with a bag still walks the same way,
but the arm in contact with the accessory needs an adapted
animation sequence.

4.3.1. Simple Accessories

The first group of accessories does not necessitate any partic-
ular modification of the animation clips played. They simply
need to be correctly "placed" on a virtual human. Each ac-
cessory can be represented as a simple mesh, independent
from any virtual human. First, let us lay the problem for a
single character. The issue is to render the accessory at the

correct position and orientation, accordingly to the move-
ments of the character. To achieve this, we can "attach" the
accessory to a specific joint of the virtual human. Let us take
a real example to illustrate our idea : imagine a walking per-
son wearing a hat. Supposing that the hat has the correct size
and does not slide, it basically has the same movement as
the head of the person as he walks. Technically, this means
that the series of matrices representing the head movement
are the same for the hat movement. However, the hat is not
placed at the exact position of the head. It usually is on top
of the head and can be oriented in different ways, as shown
in Figure 25. Thus, we also need the correct displacement
between the head joint position and the ideal hat position on
top of it. In summary, to create a simple accessory, our needs
are the following:

• For each accessory:

– A mesh (vertices, normals, texture coordinates),
– A texture,

• For each human template / accessory couple:

– The joint to which it must be attached,
– A matrix representing the displacement of the acces-
sory, relatively to the joint.

Note that the matrix representing the displacement of the ac-
cessory is not only specific to one accessory, but specific to
each human template / accessory couple. This allows us to
vary the position, the size, and the orientation of the hat de-
pending on which virtual human mesh we are working with.
This is depicted in Figure 25, where the same hat is worn dif-
ferently by two human templates. It is also important to note
that the joint to which the accessory is attached is also depen-
dent on the human template. This was not the case at first : a
single joint was specified for each accessory, independently
from the human templates. However, we have noticed that
depending on the size of a virtual human, some accessories
may have to be attached to different joints. For instance, a
backpack is not attached to the same vertebra if it is for a
child or a grown up template. Finally, with this information,
we are able to assign each human template a different set of
accessories, increasing greatly the feeling of variety.

4.3.2. Complex Accessories

The second group of accessories we have identified is the
one that requires slight modifications of the animation se-
quences played. Concerning the rendering of the accessory,
we still keep the idea of attaching it to a specific joint of
the virtual human. The additional difficulty is the modifica-
tion of the animation clips to make the action realistic. For
instance, if we want to add a cellphone accessory, we also
need the animation clips allowing the virtual human to make
a phone call. We focus only on locomotion animation se-
quences. Our raw material is a database of motion captured
walk and run cycles that can be applied to the virtual hu-
mans. From each animation clip, an adjustment of the arm
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Figure 25: Two human templates wearing the same hat, in

their default posture. The pink, yellow and blue points rep-

resent the position and orientation of the root, the head joint

(m1), and the hat accessory (m2), respectively.

motion is performed in order to obtain a new animation clip
integrating the wanted movement, e.g., hand close to the ear.
These animation modifications can be generalized to other
movements that are independent from any accessory, for in-
stance, hands in the pockets. This is why we fully detail the
animation adaptation process in Section 4.4.2.

4.3.3. Loading and Initialization

In this Section, we focus on the architectural aspect of acces-
sories, and how to assign them to all virtual humans. First of
all, each accessory has a type, e.g., "hat" or "back pack".
We differentiate seven different types, but this number is ar-
bitrary. In order to avoid the attribution of, for instance, a
cowboy hat and a cap on the same head, we never allow a
character to wear more than one accessory of each type. To
distribute accessories to the whole crowd, we need to extend
the following data structures (introduced in Section 2):

• Human template: each human template is provided with
a list of accessory ids, sorted by type. This way, we know
which template can wear which accessory. This process is
necessary, since all human templates cannot wear all ac-
cessories. For instance, a school bag would suit the tem-
plate of a child, but for an adult template, it would look
much less believable,

• Body entity: each body entity possesses one accessory
slot per existing type. This allows to later add up to seven
accessories (one of each type) to the same virtual human.

We also create two data structures to make the accessory dis-
tribution process efficient:

• Accessory entity: each accessory itself possesses a list of
body ids, representing the virtual humans wearing it. They
are sorted by human template.

• Accessory repository: an empty repository is created to
receive all accessories loaded from the database. They are
sorted by type.

At initialization, the above data structures are filled. We de-
tail this process in the following pseudo-code:

For each accessory in database:

load its data contained in the database,

create its vertex buffer (for later rendering),

insert it into the accessory repository (sorted by type).

For each human template h:

For each accessory a suitable to h :

insert a’s id into h’s list l (sorted by type).

For each body b:

get human template h of b,

get accessory id list l of h,

For each accessory type t in l:

choose randomly an accessory a of type t,

assign a to the correct accessory slot of b,

push b’s id in a’s body id list (sorted by hu-

man template).

The process of filling these data structures is done only once
at initialization, because we assume that once specific ac-
cessories have been assigned to a virtual human, they never
change. However, it would be easy to change online the ac-
cessories worn, through a call to the last loop. Note that a
single vertex buffer is created for each loaded accessory, in-
dependently from the number virtual humans wearing it.

4.3.4. Rendering

Since the lists introduced in the previous Section are all
sorted accordingly to our needs, the rendering of accessories
is much facilitated. We show in the following pseudo-code
our pipeline:

1 For each accessory type t of the repository:

2 For each accessory a of type t:

3 bind vertex buffer of a,

4 send a’s appearance parameters to the GPU,

5 get a’s list l of body ids (sorted by human template).

6 For each human template h in l:

7 get the joint j of h to which a is attached,

8 get the original position matrix m1 of j,

9 get the displacement matrix m2 of couple [a,h],

10 For each body b of h:

11 get matrix m3 of b’s current position,

12 get matrix m4 of j’s current deformation for b,

13 multiply current modelview matrix by mi (i=1..4),

14 call to vertex buffer rendering.

Although this pseudo-code may seem complex at first sight,
it is quite simple and well optimized to minimize state
switches. First of all, at line (3), each accessory has its vertex
buffer binded. We can process this way, independently from
the bodies, because an accessory never changes its shape or
texture. Then, we process through each accessory’s body id
list (5). This list is sorted by human template (6), allow-
ing us to retrieve information common to all its instances,
i.e., the joint j to which is attached the accessory (7), along
with its original position matrix m1 in the skeleton (8), and
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the original displacement matrix m2 between m1 and the de-
sired position of the accessory (9). An example with a hat at-
tached to the head joint of two human templates is illustrated
in Figure 25. Once the human template data is retrieved, we
iterate over each body wearing the accessory (10). A body
entity also has specific data that is required: its position for
the current frame (11), and the displacement of its joint, rel-
atively to its original position, depending on the animation
played (12). Figure 26 illustrates the transformation repre-
sented by these matrices. Finally, by multiplying the matri-
ces extracted from the human template and body data, we are
able to define the exact position and orientation of the acces-
sory (13). The rendering of the vertex buffer is then called
and the accessory is displayed correctly (14).

Figure 26: Left: a human template in default posture. Right:

the same human template playing an animation clip. The dis-

placement of the body, relatively to the origin (m3) is de-
picted in pink, the displacement of the head joint due to the

animation clip (m4) in yellow.

4.3.5. Empty Accessories

We have identified seven different accessory types. And,
through the accessory attribution pipeline, we assign seven
accessories per virtual human. This number is important and
the results obtained can be unsatisfying: indeed, if all char-
acters wear a hat, glasses, jewelry, a back pack, etc, they
look more like christmas trees than believable people. We
need the possibility to have people without accessories too.
To allow for this, we could simply randomly choose for each
body accessory slot, whether it is used or not. This solution
works, but a more efficient one can be considered. Indeed,
at the rendering phase of a large crowd, testing each slot of
each body to know whether it is used or not implies useless
code branching, i.e., precious computation time. We there-
fore propose a faster solution to this problem by creating
empty accessories. An empty accessory is a fake one, pos-
sessing no geometry nor vertex buffer. It only possesses a

unique id, similarly to all other accessories. At initialization,
before loading the real accessories from the database, the
following pseudo-code is executed:

For each accessory type $t$:

create one empty accessory e of type $t$,

put $e$ in the accessory repository (sorted by type),

For each human template $h$:

put $e$’s id in $h$’s accessory id list.

The second loop over the human templates is necessary
in order to make all empty accessories compatible with
all human templates. Once this preprocess done, the load-
ing and attribution of accessories is achieved as detailed in
Section 4.3.3. This fore introduction of empty accessories
causes later their possible insertion in some of the accessory
slots of the bodies. Note that if, for instance, a body entity
gets an empty accessory for hat, reciprocally, the id of this
body will be added to the empty accessory’s body id list.
This is illustrated with an example in Figure 27. One may
wonder how the rendering is achieved. If keeping the same
pipeline as detailed in Section 4.3.4, we meet troubles when
attempting to render an empty accessory. Moreover, some
useless matrix computation would be done. Our solution is
simple. Since the empty accessories are the first ones to be
inserted into the accessory repository (sorted by type), we
only need to skip the first element of each type to avoid their
computation and rendering. The pseudo code given in Sec-
tion 3.4 only needs a supplementary line, which is:

1b skip first element of t.

With this solution, we take full advantage of accessories, ob-
taining varied people, not only through the vast choice of
accessories, but also through the possibility of not wearing
them. And there is no need for expensive tests within the
rendering loop. In Figure 28, we show the results obtained
when using accessories in addition to the appearance variety
detailed in Section 2.

Figure 27: Left: a representation of the accessory reposi-

tory, sorted by type. Each accessory possesses its own list

of body ids. Reciprocally, all bodies possess slots filled with

their assigned accessories. Right: illustrated example of the

accessory slots for body with id 1.
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Figure 28: Several instances of a single human template,

varied through the appearance sets, color variety, and ac-

cessories.

4.3.6. Color Variety Storage

In Section 4.2.4, we detail how to apply color variety to the
different body parts of a texture. The same method can be
applied to the accessories. A human texture is segmented
in eight body parts, each having its specific color range. At
initialization, for each instantiated virtual human and each
body part, a color is randomly chosen in a range to modu-
late the original color of the texture. Since accessories are
smaller and less complex than virtual humans, we only use
four different parts, i.e., one segmentation map per appear-
ance set. Then, similarly to the characters, each instance of
each accessory is randomly assigned four colors within the
HSB ranges defined for each part. These four random colors
have also to be stored. We reemploy the CLUT used for stor-
ing the virtual humans color variety to save the colors of the
accessories. In order not to confuse the color variety of the
body parts and those of the accessories, we store the latter
contiguously from the bottom-right of the CLUT (see Fig-
ure 24). Each character thus needs eight texels for its own
color variety and 7∗4 other texels for all its potential acces-
sories. This sums up to 36 texels per character. A 1024x1024
CLUT is therefore able to roughly store more than 29000
unique color variety sets.

4.3.7. scalability

We can simulate a high number of virtual humans, thanks
to our different representations. It is important to note that
the above description of accessories solves only the case
of dynamically animated virtual characters, i.e., deformable
meshes. However, if we want to ensure continuity when
switching from a representation to another, it is important
to also find a solution for the other LOD : a hat on the head
of a virtual human walking away from the camera cannot
suddenly disappear when the virtual human is switching to
a lower representation. We develop here how to make ac-
cessories scalable. First, let us detail how accessories can be
scaled to fit rigid meshes. An accessory has an animation clip
of its own, similar to the animation of a particular joint of a

virtual human. If we wanted to simply apply the rigid mesh
principle to accessories, we would have to store an important
quantity of information:
For each rigid animation:

For each keyframe:

For each vertex of the accessory:

save its new position which is found through

the animation matrices,

save its corresponding normal, which is found

through the animation matrices.

As one can see, this pipeline corresponds to the one used
to store the vertices and normals of a rigid mesh at each
keyframe of a defined animation clip. If we analyze this
pipeline, we can observe that there is a clear redundancy
in the information stored: firstly, an accessory is never de-
formed, which means that its vertices do not move, rela-
tively to each other. They can be considered as a single group
transformed by the animation matrices. The same applies to
the normals of the accessory. Secondly, as detailed in Sec-
tion 3.3, it is impossible to store in a database a rigid and an
impostor animation clip for each existing skeletal animation.
It follows that creating all the rigid / impostor versions of an
animation clip for each possible accessory cannot be consid-
ered. In order to drastically diminish the information to store
for an accessory in a rigid animation, we propose a solution
in two steps: Firstly, as previously detailed, there is no need
to store all the vertices and all the normals at each keyframe
of an animation sequence, since the mesh is not deformed. It
is sufficient to keep a single animation matrix per keyframe,
valid for all vertices. Then, at runtime, the original mesh rep-
resenting the accessory is transformed by the stored anima-
tion matrices. Secondly, we can regroup all accessories de-
pending on the joint they are attached to. For instance, all
hats and all glasses are attached to the head. So, basically,
they all have the same animation. The only difference be-
tween a pair of glasses and a hat is the position where they
are rendered, relatively to the head position (the hat is above
the head, the glasses in front of it). So, we only need to keep
this specific displacement for each accessory relatively to its
joint. This corresponds to a single matrix per human tem-
plate / accessory couple, which is completely independent
from the animation clip played (see Section 4.3.1 and 4.3.4).
In summary, with this solution, we only need:
For each rigid animation:

For each keyframe:

For each joint using an accessory:

a single matrix representing

the transformation of the joint at this keyframe,

and
For each human template / accessory couple (indepen-

dent of the animation):

a matrix representing the accessory’s displacement,

relatively to the joint.

Scaling the accessory principle to impostors proves to be
complicated. Once again, a naive approach would be as fol-
lows:
For each original impostor animation (without accessories):

For all possible combinations of accessories:

create a similar impostor animation directly

containing these accessories.
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One can quickly imagine the explosion the memory would
endure, even when starting with only a few original im-
postor animations. We cannot afford to generate one im-
postor animation for each possible combination of acces-
sories. The first possible simplification is to let the unno-
ticeable accessories disappear. Indeed, impostors are usually
employed when the virtual humans are far from the camera,
and thus, small details, taking only a few pixels can be ig-
nored. Such accessories would be watches, jewelry, and oth-
ers. Of course, it is also dependent on the distance from the
camera where the impostors are used, and whether such dis-
appearances are noticeable or not. As for larger accessories,
like hats or bags, we are still working to find the best solu-
tion, but this work is in progress, and as of today, we have
no finite solution to expose.

4.4. Animation Variety

As explained in previous Sections, it is possible to vary the
appearance of individuals, even when issued from the same
human template. However, we introduced in Section 3.3 the
necessity to also provide a large variety of animation clips to
the simulation. Virtual humans can be visually as different
as possible, if they all perform the same animation, the re-
sult is not realistic at all. In this Section, we detail two tech-
niques we employ to vary the animation of characters, while
remaining in the domain of navigating crowds, i.e., working
with locomotion animations.

4.4.1. Locomotion

First of all, in order to obtain variety in animation, there is
a great need for a huge set of raw animation cycles that can
then be further varied. We recall here the locomotion engine
of Glardon et al. that we have used to generate our original
set of walk and run cycles. Glardon et al. have introduced
a PCA-based walk engine capable of animating on the fly
human-like characters of any size and proportions by gener-
ating complete locomotion cycles [GBT04b,GBT04a]. They
have captured walk and run motions from several people,
from which they have created a normalized model. There are
mainly three high-level parameters which allow to modulate
these motions:

• Personification weights: five people, different in height
and gait have been captured while walking and running.
This variable allows the user to choose how he wishes to
parametrize these different styles.

• Speed: the five subjects have been captured at many dif-
ferent speeds. This parameter allows to choose at which
velocity the walk/run cycle should be generated.

• Locomotion weights: this parameter defines whether the
cycle is a walk or a run animation.

Thus, the engine is able to generate a whole range of varied
locomotion cycles for a given character. To efficiently ani-
mate the locomotion of each individual, we generate in a pre-

process a certain number of locomotion cycles for each hu-
man template. We have used this engine to generate over 100
different locomotion cycles per human template: for each
one of them, we sample walk cycles at speeds varying from
0.5m/s up to 2m/s and similarly for the run cycles between
1.5 m/s and 3 m/s. Each human template is also assigned a
particular personification weight so that it has its own style.
With such a high number of animations, we are already able
to perceive a sense of variety in the way the crowd is mov-
ing. Virtual humans walking together with different locomo-
tion styles and speeds add to the realism of the simulation.
Once provided with a large set of animation clips, the issue
becomes to store and use them in an efficient way. In Sec-
tion 3.4, we fully detail how the whole data is managed.

4.4.2. Accessory Movements

Variety in movement is one necessary condition for achiev-
ing believable synthetic crowds as individuals are seldom
unrolling the sole locomotion cycle while moving from one
place to another. The upper limb movements being not com-
pulsory in locomotion, hands are most of the time exploited
for accessory activities such as holding an object (cell phone,
bag, umbrella, etc.) or are simply protected by remaining
in the pocket of some cloth (see Figure 29). These activ-
ities constitute alternate coordinated movements that have
to match the continuously changing constraints issued from
the primary locomotion movement. Indeed, constantly re-
using the same arm posture through the locomotion cycle
leads to a loss a believability; for example a hand "in-the-
pocket" should follow the pelvis forward-backward move-
ment when large steps are performed. For these reasons, a
specific animation cycle has to be defined also for an ac-
cessory movement that is to be exploited with locomotion.
We achieve the accessory movement design stage after the
design of the individual locomotion cycles for a set of dis-
cretized speeds. We exploit a Prioritized Inverse Kinemat-
ics solver [BB04] that allows combining various constraints
with a priority level if necessary. The required input is:

• The set of locomotion cycles,
• One "first guess" posture of the hand and arm, possibly
with the clavicle, designed with the skinned target charac-
ter,

• The set of "effector" points to be constrained on the hand
or arm, (see Figure 30, the three coloured cubes on the
hand),

• For each effector, its corresponding target goal location
expressed in other local frames of the body; for example
relative to the head for a cell-phone conversation, or to the
pelvis and thigh for a hand in a trousers’ pocket (see Fig-
ure 30, the three corresponding coloured cubes attached
to the pelvis),

• If an effector is more important than the others, the user
can associate it with a greater priority level. Our solver
ensures that the achievement of other effectors goals does
not perturb the high priority one.
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All the additional elements to the original locomotion cycles
can be specified by an animator by locating them on the tar-
get character mesh in a standard animation software. The re-
sulting set of parameters can be saved in a configuration file
for the second stage of running the Inverse Kinematics ad-
justment of the posture for all frames of the locomotion cy-
cles (Figure 31). The resulting accessorized locomotion cy-
cles are saved in files for a further storage optimization stage.
Figure 32 shows successive postures from such a movement.

Figure 29: Examples of accessory movements (hands in the

pocket, phone call, hand on hip, ...).

Figure 30: Set of controlled effectors attached to the hand

and corresponding goal positions attached to the pelvis.

5. Motion Planning

Realistic real-time motion planning for crowds has become
a fundamental research field in the Computer Graphics com-
munity. The simulation of urban scenes, epic battles, or other

Figure 31: Overview of the two-stage process for producing

accessorized locomotion cycles.

Figure 32: Example of posture from an accessorized loco-

motion cycle.

environments that show thousands of people in real time re-
quire fast and realistic crowd motion. Domains of applica-
tion are vast: video games, psychological studies, architec-
ture, and many others. We present a novel architecture offer-
ing a hybrid, scalable solution for real-time motion planning
of thousands of characters in complex environments.

Real crowds are formed by thousands of individuals that
move in a bounded environment. Each pedestrian has in-
dividual goals in space that he wants to reach, avoiding
obstacles. People perceive their environment, and use this
information to choose the shortest path in time and space
that leads to their goal. Emergent behaviors can also be ob-
served in crowds. For example, in places where the space
is small and very crowded, people form lanes to maximize
their speed. Also, when dangerous events such as fires occur,
pedestrians tend to react in very chaotic ways to escape.

Planning crowd motion in real time is a very expensive
task, which is often decoupled into two distinct parts: path
planning and obstacle avoidance. Path planning consists in
finding the best way to reach a goal. Obstacles can either be
other pedestrians or objects that compose the environment.
The path selection criteria are the avoidance of congested
zones, and minimization of distance and travel time. Path
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planning must also offer a variety of paths to spread pedes-
trians in the whole scene. Avoidance, on the other hand, must
inhibit collisions of pedestrians with obstacles. For real-time
simulations, such methods need to be efficient as well as be-
lievable.

Figure 33: Pedestrians using our hybrid motion planning

architecture to reach their goal and avoid each other.

Multiple motion planning approaches for crowds have
been introduced. As of today, several fast path planning so-
lutions exist. Avoidance however, remains a very expensive
task. Agent-based methods offer realistic pedestrian motion
planning, especially when coupled with global navigation.
This approach gives the possibility to add individual and
cognitive behaviors for each agent, but becomes too expen-
sive for a large number of pedestrians. Potential field ap-
proaches handle long and short-term avoidance. Long term
avoidance predicts possible collisions and inhibits them.
Short term avoidance intervenes when long-term avoidance
alone cannot prevent collisions. These methods offer less be-
lievable results than agent-based approaches, because they
do not provide the possibility to individualize each pedes-
trian. However, this characteristic also implies much lower
computational costs.

We present a hybrid architecture to handle realistic crowd
motion planning in real time. In order to obtain high per-
formance, our approach is scalable. As briefly introduced
in Section 3.2, we divide the scene into multiple regions
of varying interest, defined at initialization and modifiable
at runtime. According to its level of interest, each region is
ruled by a different motion planning algorithm. Zones that
attract the attention of the user exploit accurate methods,
while computation time is saved by applying less expensive
algorithms in other regions. Our architecture also ensures
that no visible disturbance is generated when switching from
an algorithm to another.

Our results shows that it is possible to simulate up to
ten thousand pedestrians in real time with a large variety
of goals. Moreover, the possibility to introduce and inter-
actively modify the regions of interest in a scene offers a

way for the user to select the desired performance and to
distribute the computation time accordingly. A simulation of
pedestrians taking advantage of our architecture to plan their
motion in a city environment is illustrated in Figure 33.

The remainder of this Section is organized as follows:
first, in Section 5.1, we introduce previous work in crowd
motion planning. Then, in Section 5.2, we describe at a high-
level our motion planning architecture, and how we exploit
it to distribute regions of three different levels of interest. In
Section 5.3, the integration of the various approaches em-
ployed and the optimizations applied to keep high frame
rates are detailed. Finally, in Section 5.4, we run several tests
in different conditions and environments to assess our archi-
tecture. Finally, limitations are discussed in Section 5.5.

5.1. Crowd Motion Planning Background

Crowd behavior and motion planning are two topics that
have long been studied in fields such as Robotics and So-
ciology. More recently however, and due to the technology
improvements, these domains have aroused the interest of
the Computer Graphics community as well.

The first studied approach, i.e., agent-based, represents a
natural way to simulate crowds as independent individuals
interacting with each other. Such algorithms usually han-
dle short distance avoidance, and navigation remains local.
Reynolds [Rey99] proposed to use simple rules to model
crowds of interacting agents. Heïgeas et al. [HLTC03] in-
troduced a model based on cellular automata and the physi-
cal properties of the environment, while Kirchner and Shad-
schneider [KS01] used static potential fields to rule a cellu-
lar automaton. Metoyer and Hodgins [MH03] proposed an
avoidance algorithm based on a bayesian decision process.
Nevertheless, the main problem with agent-based algorithms
is their low performance. With these methods, simulating
thousands of pedestrians in real time requires the use of par-
ticular machines supporting heavy parallelizations [Rey06].
Moreover, such approaches forbid the construction of au-
tonomous adaptable behaviors, and can only manage crowds
of pedestrians with local objectives.

To solve the problems inherent in local navigation, some
behavioral approaches have been extended with global nav-
igation. Bayazit et al. [BLA03] stored global information
in nodes of a probabilistic roadmap to handle navigation.
Sung et al. [SKG05] combined probabilistic roadmaps with
motion graphs to find paths and animations to steer charac-
ters to a goal, while Lau and Kuffner [LK06] used precom-
puted search trees of motion clips to accelerate the search for
the best paths and motion sequences to reach an objective.
Lamarche and Donikian [LD04] used automatic topological
model extraction of the environment for navigation. Another
method, introduced by Kamphuis and Overmars [KO04], al-
lows a group of agents to stay together while trying to reach
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a goal. Although these approaches offer appealing results,
they are not fast enough to simulate thousands of pedestrians
in real time. Loscos et al. [LMM03] presented a behavioral
model based on a 2D map of the environment. Their method
is suited for simulating wandering crowds, but does not pro-
vide high level control on pedestrian goals. As introduced
in Section 3.2 Pettré et al. [PdHCM∗06, PGT07] presented
a novel approach to automatically extract a topology from a
scene geometry and handle path planning using a navigation
graph (see Figure 34). The main advantage of this technique
is that it handles uneven and multi-layered terrains. Never-
theless, it does not treat inter-pedestrian collision avoidance.
Finally, Helbing et al. [HMS94, HFV00] used agent-based
approaches to handle motion planning, but mainly focused
on emergent crowd behaviors in particular scenarii.

Another approach for motion planning is inspired from
fluid dynamics. Such techniques use a grid to discretize
the environment into cells. Hughes [Hug02, Hug03] inter-
preted crowds as density fields to rule the motion planning
of pedestrians. The resulting potential fields are dynamic,
guiding pedestrians to their objective, while avoiding ob-
stacles. Chenney [Che04] developed a model of flow tiles
that ensures, under reasonable conditions, that agents do
not require any form of collision detection at the expense
of precluding any interaction between them. More recently,
Treuille et al. [TCP06] proposed realistic motion planning
for crowds. Their method produces a potential field that pro-
vides, for each pedestrian, the next suitable position in space
(a waypoint) to avoid all obstacles. Compared to agent-based
approaches, these techniques allow to simulate thousands of
pedestrians in real time, and are also able to show emer-
gent behaviors. However, they produce less believable re-
sults, because they require assumptions that prevent treating
each pedestrian with individual characteristics. For instance,
only a limited number of goals can be defined and assigned
to groups of pedestrians. The resulting performance depends
on the size of the grid cells and the number of groups.

The work presented in this Section introduces a new hy-
brid architecture offering a realistic and scalable solution
for real-time crowd motion planning. Based on a navigation
graph, we divide the environment into regions of varying
interest. In regions of high interest, we exploit a potential
field-based approach. Since we only use it locally, we can
plan motion for many more groups and with finer grid cells
than with an algorithm purely based on it. In other regions,
motion planning is ruled by the navigation graph and short-
term collision avoidance algorithms. Our local use of poten-
tial field-based approach allows us to plan motion for many
more groups and with finer grid cells than with a purely po-
tential field algorithm.

5.2. Motion Planning Architecture

The foundation of our motion planning architecture is

Figure 34: A navigation graph composed of a single naviga-

tion flow (in blue) connecting two distant vertices (in green).

The navigation flow is composed of three different paths that

can be followed in either direction (red arrows). Two edges

are also represented as gates (in yellow).

based on navigation graphs, automatically extracted from the
mesh of an arbitrary environment. This approach has the ad-
vantage of robustly handling path planning. Vertices repre-
sent cylindrical zones of the walkable space, while edges are
the gates where pedestrians can cross the space from one ver-
tex to another. To connect two distant vertices, it is possible
to generate a navigation flow, composed of a set of varied
paths. We show an example of such a flow in Figure 34.
Thanks to this approach, pedestrian spreading is ensured.
During simulation, pedestrians are assigned one navigation
flow, and one direction. When they reach an extremity of
the flow, they reverse their direction, and choose a new path,
minimizing their travel time, e.g., avoiding congested areas.
Vertices offer a suitable structure of the walkable space. In-
deed, they can be exploited to classify different regions of
the scene. For instance, Pettré et al. [PdHCM∗06, PGT07]
used them to define several levels of simulation, each up-
dated at different frequencies.

The goal of our architecture is to handle thousands of
pedestrians in real time. To achieve this result, we exploit the
above mentioned vertex structure to divide the environment
into regions ruled by different motion planning techniques.
We classify these regions with a level of interest. The most
interesting zones are ruled by realistic but expensive tech-
niques, while others use simpler and faster solutions. Re-
gions of interest (ROI) can be defined in any number and
anywhere in the walkable space with high-level parameters.
Moreover, it is possible to dynamically modify these param-
eters at runtime. Such flexibility is indeed desirable, because
it allows the user to first choose the desired performance, and
then distribute ROI, i.e., computation time, as wished.

We observe that by defining only three different ROI, we
obtain a simple and flexible architecture for realistic results:

• ROI 0 is composed of vertices of high interest.
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• ROI 1 regroups vertices of low interest.
• ROI 2 contains all other vertices, of no interest.

Practically, we position the ROI with respect to the camera
position and field of view. ROI 0 is directly in front of it,
and/or in zones where important visible events occur. ROI 1
covers the remaining visible space, while ROI 2 includes all
vertices outside the view frustum. Note that this choice is
arbitrary, and our architecture is versatile enough to satisfy
any other environment decomposition.

For regions of no interest (ROI 2), path planning is ruled
by the navigation graph. Pedestrians use linear steering to
follow the list of waypoints on their path edges. To use the
minimal computation resources, obstacle avoidance is not
handled.

Path planning in regions of low interest (ROI 1) is
also ruled by the navigation graph. To steer pedestrians
to their waypoints, an approach similar to Reynolds’ is
used [Rey99]. In these regions, for obstacle avoidance, an
agent-based short-term algorithm (detailed in Section 5.3.4)
is exploited. Although agent-based, this algorithm works at
a low level, and thus stays simple and efficient.

In the regions of high interest (ROI 0), path planning and
obstacle avoidance are both ruled by a potential field-based
algorithm, similarly to Treuille et al. [TCP06]. Compared
to agent-based approaches, potential fields are less expen-
sive, and still offer results more realistic than the ones of
ROI 1 and 2, because collision avoidance is planned in the
long-term. Nevertheless, in certain situations, this approach
fails to avoid collisions. To overcome this problem, the same
short-term algorithm as in ROI 1 is also activated in ROI 0.

An important concern when dealing with regions ruled by
different motion planning algorithms is to keep smooth and
unnoticeable transitions at their borders. The way we place
ROI implicitely solves this issue. Firstly, ROI 2 is always
outside the view frustum, and thus does not require any spe-
cific attention. Secondly, passing the borders between ROI 0
and ROI 1 is always smooth, because they both use the same
short-term avoidance algorithm.

5.3. Implementation

In this Section, the details of our hybrid architecture im-
plementation are presented. We mainly focus on the initial-
ization and runtime operations to construct and manage the
scalable crowd motion planning. Firstly, in Section 5.3.1, the
initialization phase is detailed, i.e., the grid construction over
the graph space, the initialization of the structure of neigh-
bor cells and of the ROI. Then, we describe each step of the
runtime pipeline, composed of five stages:

• Classification of graph vertices in correct ROI (Sec-
tion 5.3.2).

• Potential field computation (Section 5.3.3).

• Short-term avoidance algorithm computation (Sec-
tion 5.3.4).

• Pedestrian steering (Section 5.3.5).
• Continuity maintenance between grid and navigation
graph (Section 5.3.6).

5.3.1. Initialization

First of all, for the given environment, a navigation graph is
created, and navigation flows generated. We maintain a list
of all active vertices, i.e., of all vertices belonging to at least
one path. The others are simply discarded, since no pedes-
trian will ever pass on them during simulation. Then, a grid is
disposed on the scene, its size limited by the bounding rect-
angle containing all graph vertices. This grid is composed
of an array of cells, each containing the link to its neighbor
cells, and intrisic parameters used to compute the potential.

Many of the cells that compose the grid are not needed
in the simulation, because they represent zones that are not
covered by graph vertices, and thus indicate static obstacles.
Moreover, some vertices are not used by any navigation flow,
and thus are not exploited by pedestrians, as illustrated in
Figure 35. Thus, we test whether each cell center is inside
a vertex that composes a path. If not, the cell is deactivated.
The main advantage of this preprocess is the reduction of
the number of cells in which the potential field computation
is necessary. Finally, each cell is linked only to its active
neighbors.

Figure 35: The grid is placed on top of the graph, and only

cells within a vertex that is part of a path stay active (in

green).

5.3.2. Classification of Graph Vertices in ROI

To define a ROI, the user specifies three parameters: a posi-
tion, a radius, and a level of interest. All vertices whose cen-
ter is contained whithin this region are assigned the specified
level. These parameters can be modified at any moment, im-
plying a re-classification of vertices.

In our practical use of ROI, we create three lists corre-
sponding to our three levels of interest. At runtime, we first
automatically detect vertices that are outside the view frus-
tum, and insert them into the list with the lowest level of
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interest (ROI 2). We then iterate over the remaining vertices,
testing whether they are inside a ROI 0. If it is the case, the
vertex is classified as of high interest and put in the corre-
sponding list. Otherwise, it is put in the remaining list, of
low interest (ROI 1). In the next two sections, we detail how
pedestrian motions are planned in ROI 0 and 1.

5.3.3. Potential Field Computation

To accelerate the potential field computation, it is possible to
group pedestrians, as suggested by Treuille et al. [TCP06].
In our case, pedestrians in ROI 0 having the same navigation
flow and direction, i.e., having the same goal, are grouped
together. Thus, for each of these navigation flows, there are
two groups. Groups are recomputed at each time step, to cor-
rectly classify pedestrians that change ROI.

Once this is achieved, for each group, a potential field is
computed. At the goal, the potential is set to 0, and increased
while spreading over the grid. Given the potential gradient,
each pedestrian is assigned a new waypoint, corresponding
to the center of a neighbor cell. The potential field computa-
tion itself is not further discussed (for details, see [TCP06]),
but, taking advantage of our architecture, we introduce two
techniques to reduce its computation time. First of all, we
have observed no visual alteration when lowering the poten-
tial computation frequency to a reasonable value, as opposed
to every time step. We thus have empirically set it to 5 Hz.
Secondly, with our approach, the potential computation is
only required in regions of high interest (ROI 0). These re-
gions only cover part of the scene, and thus part of the grid.
By computing the potential only for the cells located in-
side ROI 0, it is possible to drastically decrease computa-
tion time. However, goals are often outside these regions,
and thus, it is impossible to initiate the potential computa-
tion. For each group, we therefore create subgoals, situated
just outside ROI 0, as illustrated in Figure 36. We use the
navigation flow structure to identify them: for every path of
every flow leaving ROI 0, the first vertex met in the direction
of the goal, is a subgoal. The potential computation is initi-
ated in the central cell of every subgoal, and spread over all
cells inside ROI 0 vertices. To obtain the same behavior as if
the potential was computed all over the grid, we do not ini-
tiate the potential of the subgoal cells to 0, but approximate
it. For each subgoal cell c inside vertex vc, the potential φc is
computed as:

φc =C · ∑
v ∈P(vc)

(v.density+1) · v.radius (5)

Where v is a vertex of path P(vc), starting at vc and leading
to the final goal. The density of v is given by the number
of pedestrians inside it per square meter. With Equation 5,
the contribution to the potential of each vertex v is defined
as its radius, weighted by its degree of occupation. To avoid
having a null contribution from an empty vertex, we always
add 1 to the computed density. Constant C is used to weight
the sum so that values for φc are in the same range as if the

potential was computed from the goal. Note that vertex vc
may be part of several paths at the same time. In this case,
we compute Equation 5 for each path, and assign the lowest
result to φc.

Figure 36: Potential is computed for vertices in ROI 0 (in

red) and vertices that have been identified as subgoals (in

yellow). The final goal is displayed in green. Potential starts

in the central cells of the subgoals with an approximated

value.

5.3.4. Short-Term Avoidance Algorithm

In this Section, we detail our short-term avoidance algo-
rithm, which is a simplified low-level agent-based approach.
It is used to efficiently avoid local inter-pedestrian collisions
in both ROI 0 and 1. Particularly, in ROI 0, it complements
the potential field approach, which may fail when the avail-
able space is too small and too crowded.

Algorithm 1 details step by step how we manage short-
term avoidance. First of all, we need to find pedestrians that
can potentially collide. To avoid an exhaustive search, we
take advantage of the grid structure covering the whole envi-
ronment: at runtime, every pedestrian in ROI 0 or 1 is regis-
tered in its current grid cell (line 3). This way, we can reduce
the search for possible collisions to a small set of neighbor
cells. Although this simplification does not cut down the or-
der of complexity in O(n2), it significantly decreases n, as
compared to a brute force approach [Rey87]. To keep the al-
gorithm fast, the two steps mentioned above are alternated
during simulation (line 1) : we first register the pedestrians
to their cell at one time step, while the search for potential
collisions and their avoidance is achieved at the next step
(line 4). Given the low distance covered by a pedestrian in
such a short time lapse, the algorithm robustness is guaran-
teed.

The avoidance itself is based on two values: a distance
of security α, fixed at 2 m, and a distance of emergency β,
at 0.5 m. For each pedestrian p in ROI 0 or 1, we start by
searching for its neighbor cells in an area of radius α (line 6).
Then, for each pedestrian pneighbor contained in a neighbor
cell, we test the angle between the heading direction of p
and its distance vector to pneighbor . If this angle is too small,
the current waypoint of p is rotated away from its neighbor
(line 11). An illustration of this situation is shown in Fig-
ure 37. To make sure the pedestrian still reaches its goal,
note that the waypoint is set back to its original position at
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the next time step. There are still some cases when this ap-
proach fails, e.g., in overcrowded places. If p and pneighbor
are at an emergency distance (line 8), p is gently slided aside
its neighbor.

Data: set of pedestrians in {ROI 0∪ROI 1}, set of grid
cells, security distance α, emergency distance β

Result: updated set of pedestrians in {ROI 0∪ROI 1}
if isEven(frameNumber) then

for each pedestrian p ∈ {ROI 0∪ ROI 1} do
register p in its current cell cp

end

end

else

for each pedestrian p in cell cp do
Setneighbors = f indNeighbors(cp,α)
for each pedestrian pneighbor in Setneighbors do

if distance(p, pneighbor) < β then
slide p away from pneighbor

end

else if angle(p, pneighbor) ∈ [− π
4 ,

π
4 ] then

rotateWaypoint(p, pneighbor)
end

end

end

end

Algorithm 1: Short-term avoidance algorithm.

Figure 37: Two pedestrians are closer than the security dis-

tance. An angle γ is computed between the first pedestrian’s

heading vector (in blue) and the two characters distance vec-

tor (in red). (left) The angle γ is in the range [− π
4 ,

π
4 ] (green

zone) and a collision avoidance is attempted by rotating the

first pedestrian’s waypoint. (right) The second character is

outside the green zone, and no avoidance procedure is yet

required.

5.3.5. Steering

Both navigation graph and potential field approaches pro-
vide waypoints toward which pedestrians have to move.
A smooth steering algorithm is necessary to obtain a
fluid movement toward these points. The seek behavior of
Reynolds [Rey99] has the advantage of producing a believ-
able steering toward a target point in space. We use this steer-
ing model for pedestrians of both ROI 0 and 1. For ROI 2, a
linear steering is employed.

5.3.6. Continuity Maintenance

In our motion planning architecture, we work with two ap-
proaches based on different spaces: a navigation graph de-
fined by its vertices and edges, and a grid composed of cells.
This duality brings up two issues when switching from one
space to the other. More precisely, when a pedestrian passes
from ROI 0 to ROI 1.

The first issue arises when a pedestrian enters the active
grid space (ROI 0). Its position is then only updated in the
grid, but no longer in the graph. It implies that this character
stays registered in the same vertex while progressing in the
grid. Thus, its next waypoint on the graph also remains the
same. When the pedestrian eventually exits ROI 0, it turns
back to meet the graph waypoint it has long since passed. To
avoid this problem, we keep updating the pedestrian position
in the graph, even in ROI 0: if a pedestrian enters this re-
gion, we keep track of its distance to its next graph waypoint.
When the distance is under a given threshold, the pedestrian
is registered in the next vertex.

The second issue occurs when two or more paths of the
same navigation flow are present in ROI 0. Since path plan-
ning in that area is ruled by the potential field, a pedes-
trian chooses the path where the potential is the lowest, as
in Figure 38 (right). However, this path does not necessarily
correspond to the one it is registered to in the graph (Fig-
ure 38 (left)). In the worst case, the pedestrian becomes com-
pletely lost when exiting ROI 0: it is within a vertex that does
not belong to the path it should follow. To solve this problem,
when any pedestrian exits ROI 0, we test whether it still is
on the same graph path. If not, we look for a new path using
this vertex and register the pedestrian to it.

Figure 38: (left) In graph space, the path followed by the

pedestrian is the right one. (right) In grid space, the poten-

tial field is lower on the left path. High potential is repre-

sented in light green and low potential in dark blue.

5.4. Performance Tests

We have run several tests in different crowded environ-
ments with an Athlon64 4000+, with 2 GB of memory and
two NVidia 6800 ultra in SLI mode. For all tests, pedestri-
ans are represented with two human templates using several
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textures, and exploiting color variety techniques. They are
rendered as impostors, and use a walk animation, sampled
at a frequency of 20 Hz. Note that in all the following tests,
we observe interesting emergent behaviors, e.g., lane forma-
tions or panic effects, that make the crowd motion planning
more realistic.

We use a first environment, representing a city pedestrian
area, to test the performance of our motion planning archi-
tecture, compared with our implementation of the purely po-
tential field-based approach of Treuille et al. [TCP06]. In
this scene, the camera position is fixed at a predefined po-
sition. For our tests, we define three regions in the environ-
ment. The one with the highest level of interest (ROI 0) has
a radius of 15 m, and is static, positioned at the center of
the scene. Note that we have voluntarily set this region in
the center of the scene, where the eye is naturally attracted,
rather than in front of the camera. The remaining space in-
side the view frustum is of low interest (ROI 1), and the other
zones are classified in ROI 2. We have tested the efficiency
of both approaches with cells of 3×3 m2, and an increasing
number of pedestrians and groups, starting from 2 groups
and 200 pedestrians up to 12 groups, totaling 1,200 charac-
ters. Figure 39 shows the results of this comparison. We can
see that the performance of our approach logically decreases
with the increasing number of groups, but much more slowly
than with the purely potential field-based approach. There
are two reasons. Firstly, our technique only computes the
potential field in a limited region of high interest (ROI 0).
Secondly, only a subset of the total number of groups passes
in this region, minimizing the number of potential fields to
compute. This test has also been performed with the ROI 0
dynamically moving on the city place. Even so, the obtained
results remain similar to those illustrated in Figure 39.

Figure 39: Comparison between our approach and our im-

plementation of the purely potential field-based approach of

Treuille et al. [TCP06] for a varying number of groups. Each

group is composed of a hundred pedestrians.

Our second test is achieved with a crowd of 10,000 pedes-
trians in a large scene with 12 navigation flows, i.e., 24
groups, spread over the whole environment, as demonstrated

in Figure 40. For this scenario, the different regions of inter-
est are placed according to the camera position. If the camera
moves, the regions are also displaced. The cell size is set to
4×4 m2, and the obtained performance is of about 20 f ps.

For our third scenario, we use the same city pedestrian
area as in the first test, but extend it with several surrounding
streets and buildings. There are 5,000 pedestrians and some
cars navigate on the roads. We illustrate this scenario in Fig-
ure 41. Each cell of the grid covers a 3×3m2 area. Since the
user attention is mainly drawn by the cars, which threaten
to hit pedestrians at every moment, a region of high inter-
est (ROI 0) is set around each of them. Moreover, to make
pedestrians flee the potential collision, a high discomfort and
speed increase are set in front of the cars, as in [TCP06]. As
a result, pedestrians close to a car are always in a region
of high interest, and thus ruled by a potential field. In front
of cars particularly, the pedestrians flee the zone of danger,
demonstrating an emergent panic behavior. The remaining
visible environment is classified as a region of low interest
(ROI 1), so that pedestrians still take care to avoid each other.
Finally, the zone outside the view frustum is set as of no in-
terest (ROI 2). The resulting f ps varies between 15 and 30,
depending on the number of visible cars (1 to 3), and the size
of their surrounding ROI 0, (10 to 15 m radius).

Figure 40: 10,000 pedestrians planning their motion in a
large landscape of fields. There are 12 navigation flows and
the cell size is set to 4×4 m2.

Finally, we have tested the evolution of the frame rate
with a fixed number of groups and an increasing number
of pedestrians. The test has been achieved in a large scene
with 24 groups, a cell size of 3×3 m2, and 1 to 5 regions of
high interest, distributed over the scene. Each of them has a
fixed radius of 15 m. For the remaining of the scene, ROI 2
is not exploited; all vertices are classified as ROI 1. Dur-
ing the test, the rendering of the scene and pedestrians was
deactivated to analyze the sole motion planning cost. The re-
sults, in Figure 42, show that even with 5 different regions of
interest, our architecture still manages the motion planning
of 10,000 pedestrians at interactive frame-rates (between 10
and 15 f ps). Note that the increasing number of pedestrians
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does not as much influence the potential computation, which
is more sensible to the number of groups, than the short-term
avoidance, which has a complexity in O(n2).

Figure 41: A city scene where pedestrians avoid a car sur-

rounded by a ROI 0.

All tests show that our motion planning architecture offers
high performance for large crowd motion planning. The pos-
sibility to select and distribute regions of interest as wished
gives the opportunity to easily tune the simulation for the de-
sired frame rate, and to define many groups, i.e., many differ-
ent goals. Additionally, compared to a purely potential-field
based technique, much smaller cells can be used for obtain-
ing better visual results in long-term avoidance cases.

Figure 42: Performance obtained for a number of groups

fixed to 24 and an increasing number of pedestrians, without
rendering. 1 to 5 ROI 0 with a radius of 15m each are placed
in the scene, while the remaining space is entirely in ROI 1.

5.5. Limitations

There are some limitations to our motion planning archi-
tecture. Firstly, in too crowded narrow environments, severe
bottlenecks may appear, making the use of our potential
field-based approach a waste of computational time. How-
ever, it is possible to force such regions to always keep a

predefined lower level of interest, e.g., ruled by a short-
term avoidance algorithm. Another limitation is the use of
a group-based approach. Indeed, we are constrained to as-
sign general goals for groups of pedestrians. Assigning one
different goal to each pedestrian would be too prohibitive
for real-time applications. Yet, we note that our architecture
is able to handle many more groups than previous potential
field-based methods. This is mainly due to our massive re-
duction of the number of cells in which the potential actually
needs to be computed, and implies the possibility to refine
the grid for more accurate results.

6. Conclusion

In this tutorial, we have detailed the numerous aspects that
need to be taken into account when simulating crowds in real
time. We have shown how to efficiently exploit the compu-
tational time with a complete description of our architecture
and pipeline. In order to obtain a large variety of charac-
ters, we have described several techniques, fast and robust,
based on the use of a limited number of human templates.
Means to obtain variety in animation have also been intro-
duced, while our hybrid scalable motion planning algorithm
has been thoroughly detailed. Tests and results have also
been presented to estimate the achieved performance for dif-
ferent parts of the complete architecture.
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Abstract

Computer generated crowds have become increasingly popular in films. However, their presence in the real-time

domain, such as computer games, is still quite rare. Even though there has been extensive research conducted on

human modelling and rendering, the majority of it is concerned with realistic approximations using complex and

expensive geometric representations. When dealing with the visualisation of large-scale crowds, these approaches

are too computationally expensive, and different approaches are needed in order to achieve an interactive frame

rate.

1. Introduction

This part of the tutorial describes the main research related
to the real-time visualisation and animation of virtual crowds
in the following manner:

• We first introduce general character visualisation tech-
niques using the fixed function graphics pipeline, and
show how recent improvements in graphics hardware has
greatly improving the realism of characters in computer
games. Furthermore, we describe acceleration tech-

niques for the rendering of large crowds which can be
subdivided into three categories: visibility culling meth-
ods, geometrical level of detail (LOD) and sample-based
rendering techniques such as using image-based and
point-based representations.

• Then, we describe character animation techniques,
including how a character’s model is animated using
the layered approach, and the various techniques for
generating character animations such as kinematics,
physically-based animation and procedural animation.
We also describe how animation and simulation level of

detail provides a computationally efficient solution for the
simulation of crowds.

2. Character Visualisation

2.1. Character Model

The most common model used for representing characters
in 3-D computer graphics is the mesh model. A mesh is de-

fined as a collection of polygons, where each polygon’s sur-
face is made up of three or more connected vertices, and
is typically used to represent an object’s surface such as a
character’s skin. Since 3-D graphics hardware is optimised
to handle triangles, meshes are typically made up of this type
of polygon in 3-D applications. A simple model, consisting
of a low number of triangles (i.e., several hundred), can be
used to model a character’s general shape. However, as the
need for realism increases, more detailed models are nec-
essary and require a high number of triangles (i.e., several
thousand) to model the character’s hands, eyes and other
body-parts. This extra detail comes at a greater rendering
cost and a balance between realism and interactivity is nec-
essary, especially when rendering large crowds of charac-
ters. While current graphics cards can render over several
hundred million unlit triangles per second (e.g. ATI’s and
NVIDIA’s current cards), a static scene such as an urban en-
vironment populated with multiple characters could require
rendering several hundred thousand triangles. Therefore, de-
pending on the scene complexity, the number of triangles in
the character’s mesh or any other scene object is limited in
order to maintain a real-time frame rate.

Real-time lighting of these meshes is necessary to pro-
vide depth cues and thus enhance the scene’s realism. Oth-
erwise, the triangles are rendered with a single colour creat-
ing a flat unrealistic look. Typically, the lighting of the char-
acter’s mesh in games is implemented with basic Gouraud
shading [Gou71]. Gouraud shading is a method for linearly
interpolating a colour across a polygon’s surface and is used
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to achieve smooth lighting, giving a mesh a more realis-
tic appearance. As a result of its smooth visual quality and
its modest computational demands, since lighting calcula-
tions are performed per-vertex and not per-pixel, it is by far
the predominant shading method used in 3-D graphics hard-
ware. Additionally, texture-mapping [Cat74], which allows
the attaching of a two-dimensional image onto the poly-
gon’s surface, can greatly improve the realism of a humans’s
mesh. These textures are usually artist-drawn or scanned
photographs and are typically used to capture the detail of
areas such as human’s hair, clothes and skin (as shown in
Figure 1). The image is loaded into memory as a rectangular
array of data where each piece of data is called a texel and
each of the polygon’s vertices are assigned texture coordi-
nates to specify which texels are mapped to the surface.

Figure 1: Simple Texturing-Mapping: (a) Mesh without

texture-mapping, (b) Texture Map (c) Texture-mapped mesh.

2.2. Character Rendering

Until a few years ago, the only option for hardware-
accelerated graphics was to use the fixed function pipeline.
This is where texture addressing, texture blending and final
fragment colouring are fixed to perform in set ways. The
introduction of the mulitexture extension [Ope04], allowed
lighting effects involving several different types of texture
maps to be performed in a single rendering pass. This exten-
sion provides the capability to specify multiple sets of tex-
ture coordinates that address multiple textures, which means
that the previous and slower method of multi-pass rendering
can be avoided. More recently, hardware vendors have ex-
posed general programmable pipeline functionality, allow-
ing for more versatile ways of performing these operations
through programmable customisation of vertex and fragment
operations [Ope04]. With the introduction of multi-texturing
and programmable graphics hardware, coupled with the im-
provements in hardware capability such as the increase in
triangle fill-rates, texture memory size and memory band-
width, we are seeing an exciting era of realistic character
rendering and animation techniques which were previously
unfeasible to employ at interactive rates.

There has been extensive research on enhancing the
realism of a character’s mesh by applying various per-
pixel lighting effects (see Figure 2). Environment map-
ping [BN76] can be used to simulate an object reflecting its
environment. For characters such as soldiers wearing shiny

Figure 2: Per-pixel lighting effects such as environment

mapping in (a) Ruby Demo (( c© ATI Technologies) and (b)

Halo 2 ( c© 2004 Microsoft Corporation), and (c) Normal

mapping in Unreal Engine 2003 ( c© 2005 Epic Games Inc).

armour, environment mapping can greatly improve their re-
alism. Per-pixel bump mapping [Kil00] can be used to per-
turb the surface’s normal vector in the lighting equation to
simulate wrinkles or bumps. This is used to increase the vi-
sual detail of the character’s clothing and appearance with-
out increasing geometry. More recently, this approach has
been extended by using a normal map image, generated from
a highly detailed character’s mesh, in conjunction with a low
detailed mesh to improve its visual detail [COM98, Map].
Displacement mapping is another method which adds sur-
face detail to a model by using a height map to translate ver-
tices along their normals [Don05]. In order to speed up the
lighting calculations for a static object, the lighting can be
pre-computed and stored for each polygon in a texture called
a light map [SKvW∗92] and this method was made famous
by iD Software’s “Quake” games. In addition to the speed
increase, this method allows complex and more realistic il-
lumination models to be used in generating the map. With
dynamic objects, the light map needs to be calculated on a
per-frame basis, as otherwise shading artefacts will mani-
fest. Sander et al. [SGM04] recalculate the light map using
graphics hardware for each frame in order to correctly shade
the character’s skin as it moves within its environment. How-
ever, generating real-time light maps for a large number of
characters is unfeasible at interactive frame-rates.

More recently, more realistic character effects borrowed
from the film industry have been implemented in real-time.
Based on the technique used to light the face of digi-
tal characters in the film The Matrix Reloaded, Sander et
al. [SGM04] produced realistic looking skin in real-time.
Scheuermann et al. [Sch04] improved the rendering of real-
time hair using a polygonal model, where the hair shading
is based on the work on light scattering of human hair fibers
by Marschner et al. [MJC∗03] and on Kayiya et al.’s fur ren-
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Figure 3: Real-time hair rendering based on the light scat-

tering of human hair fibres [MJC∗03] and a fur rendering

model [KK89] using a (a) polygonal model [Sch04] (b) a

particle system [Wlo04]. (c) Real-time skin rendering based

on subsurface scattering [SGM04]. (d) Hair and skin ren-

dered with simple texturing.

dering model [KK89]. While this technique has greatly im-
proved the realism of real-time hair, in addition to using low
geometric complexity, it assumes little or no hair animation
and is not suitable for all hair styles. Wloka [Wlo04] uses a
similiar rendering approach for underwater hair which is ani-
mated by treating it as a particle system. Unfortunately, these
techniques can only be used for a limited number of charac-
ters, since they are computationally intensive, and therefore
simple texture-mapped triangles are typically used for an in-
dividual’s skin and hair detail within large crowds (Figure 3).

2.3. Acceleration Techniques for Rendering Large-Scale

Crowds

The requirement in interactive systems for real-time frame
rates means that only a limited number of polygons can be
displayed by the graphics engine in each frame of a simu-
lation. Visibility culling techniques provide the first step to
avoid rendering off-screen characters, and therefore reduc-
ing the number of triangles displayed per frame. However,
other rendering techniques are needed since a large portion
of the crowd could potentially be on-screen.

2.3.1. Visibility Culling

Culling provides a mechanism to reduce the number of tri-
angles rendered per frame by not drawing what the viewer
cannot see. The basic idea behind culling is to discard as
many triangles as possible that are not visible in the final
rendered image. The two main types are visibility and oc-
clusion culling.

Visibility culling discards any triangles that are not within
the camera’s view-frustum. In the case of a large scenes

containing several thousand characters, it would be com-
putationally expensive to view-frustum cull each charac-
ter’s triangles. However, it can be used to avoid rendering
potentially off-screen characters by testing their bounding-

volumes with respect to the view-frustum. For further details
on various optimized view-frustum culling techniques utiliz-
ing bounding-volumes see [AM00].

The aim of occlusion culling is to quickly discard any
objects that are hidden by other parts of the scene. Vari-
ous research has been conducted on effective ways of estab-
lishing occluding objects utilizing software methods or 3-D
graphics hardware. For a detailed survey of these techniques
see [COCSD03]. For crowds populating a virtual city envi-
ronment, occlusion culling is a method that can greatly im-
prove the frame rate, since a large portion of the crowd will
be occluded by buildings, especially when the viewpoint is
at ground level.

2.3.2. Geometric-Based Rendering and Level of Detail

Level of detail (LOD) is an area of research that has grown
out of the long-standing trade-off between complexity and
performance. LOD stems from the work done by James
Clark where the basic principles are defined [Cla76]. The
fundamental idea behind LOD, is that when a scene is be-
ing simulated, it uses an approximate simulation model for
small, distant, or important objects in the scene. The main
area of LOD research has focussed on geometric LOD,
which attempts to reduce the number of rendered polygons
by using several representations of decreasing complexity
of an object. For each frame, the appropriate model or res-
olution is selected, usually based on the object’s distance
to the camera. In addition to distance, other LOD selec-
tion factors that can be used are screen space size, prior-
ity, hysteresis, and perceptual factors. Since the work done
by Clark [Cla76], the literature on geometric LOD has be-
come quite extensive. Geometric LOD has been used since
the early days of flight simulators, and has more recently
been incorporated in walkthrough systems for complex en-
vironments by Funkhouser et al. [FST92, FS93], and Maciel
et al. [Mac93].

Figure 4: Five discreet mesh models containing (a) 2,170

(b) 1,258 (c) 937 (d) 612 and (e) 298 triangles.

One approach for managing the geometric LOD of virtual
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humans is using a discrete LOD framework. A discrete LOD
framework involves creating multiple versions of an object’s
mesh, each at a different LOD, during an offline process (see
Figure 4). Typically, a highly detailed (also known as a high
resolution) mesh, is simplified by hand or using automatic
tools to create multiple low resolution meshes varying in de-
tail. At run-time, depending on the LOD selection criteria,
the appropriate resolution mesh is chosen in order to main-
tain an interactive frame rate.

Another good solution for altering the geometric detail
of a character in games is through the use of subdivision
surfaces [Lee02]. In the beginning, one of the main prob-
lems with geometric LOD was the generation of the dif-
ferent levels of detail for each object, which was a time-
consuming process as it was all done by hand. Since then,
several LOD algorithms have been published in order to au-
tomatically generate the different levels of detail for an ob-
ject [EDD∗95, Hop96]. Subdivision surfaces is one method,
based on a continuous LOD framework, where a desired
level of detail is extracted at run-time by performing a se-
ries of edge collapsing/vertex splitting on the model. Start-
ing with a low-resolution mesh, a subdivision scheme can
be used to produce a more detailed version of the surface
by using masks to define a set of vertices and correspond-
ing weights, which are in turn used to create new vertices or
modify existing ones. By applying these masks to the mesh’s
vertices, a new mesh can be generated. An advantage of us-
ing masks is that different type of masks can be used in or-
der to deal with boundary vertices and crease generation.
In [OCV∗02], O’Sullivan et al. describe a framework that
uses subdivision surfaces as a means to increase or decrease
the appearance of a human’s mesh within groups and crowds
depending on their importance to the viewer.

In order to solve the problem of rendering large numbers
of humans, De Heras Ciechomski et al. [dHCUCT04] avoid
computing the deformation of a character’s mesh by storing
pre-computed deformed meshes for each key-frame of ani-
mation, and then carefully sorting these meshes to take cache
coherency into account. Ulicny et al. [UdHCT04] improve
on their performance by using 4 LOD meshes consisting of
1038, 662, 151 and 76 triangles and disabling lighting for
the lowest LOD, thereby achieving a frame rate several times
higher. To introduce crowd variety, they use several template
meshes for the humans, and clone and modify these meshes
at run-time by applying different textures, colors, and scaling
factors to create the illusion of variety. They succeed in sim-
ulating several hundred humans populating an ancient Ro-
man theatre and a virtual city at interactive frame-rates.

Gosselin et al. [GSM05] present an efficient technique for
rendering large crowds while taking variety into account.
Their approach involves reducing the number of API calls
need to draw a character’s geometry by rendering multiple
characters per draw call, each with their own unique anima-
tion. This is achieved by packing a number of instances of

Figure 5: Rendering crowds using a discrete LOD ap-

proach [dHCUCT04].

character vertex data into a single vertex buffer and imple-
menting the skinning of these instances in a vertex shader.
As vertex shading is generally the bottleneck of such scenes
containing a large number of deformable meshes, they mini-
mize the number of vertex shader operations that need to be
performed.

In their simulation, they use one directional light to sim-
ulate the sun, and three local diffuse lights. The shading of
each character’s mesh is performed by per-pixel shading and
a normal map generated from a high resolution model is
used. Specular lighting is calculated for the sun and is at-
tenuated using a gloss map to allow for parts of the character
to have differing shininess. Realism is further increased by
using an ambient occlusion map generated from the high res-
olution model. This map approximates the amount of light
that could reach the model from the external lighting en-
vironment and provides a realistic soft look to the charac-
ter’s illumination. Finally, using a ground occlusion texture
which represents the amount of light a character should re-
ceive from the sun based on their position in the world, the il-
lusion that the terrain is shading the characters as they move
within the environment is created. So that the characters are
not a carbon copy of each other, they use a colour lookup tex-
ture, which specifies 16 pairs of colours that can be used to
modulate the character, with a mask texture to specify which
portions should be modulated. In addition to this, decal tex-
tures to add other various details to the character’s model,
such as badges, are applied (see Figure 6).

Figure 6: Geometric-based representations rendered with

various per-pixel shading effects [GSM05] ( c© 2005 ATI

Technologies).

While Gosselin et al. provide techniques to improve the
rendering performance of multiple character meshes, the
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crowd is homogeneous in nature since it is made of indi-
viduals that are using the same template model and are an-
imated with the same running motion. Recently, Dudash et
al. [Dud07] has extended this work and provided an efficient
way of adding variation to the crowd’s animation and ap-
pearance. Their approach involves using instancing through
the DirectX 10 API in an attempt to reduce the number of
draw calls, state changes and buffer updates.

They achieve mesh variation by breaking a character into
a collection of mesh sub-sections. For each character, each
sub-section is initialised with an alternate mesh randomly
selected from multiple template meshes at load time. At run-
time, they make a list for each sub-mesh containing the per-
instance data of the characters that are using that particular
piece and then draw each instance. To provide for a more het-
erogeneous crowd animation, they avoid the usual technique
of using the limited number of shader constants for the ani-
mation data. Instead, they encode all the animations’ frame
data into a texture, from which the vertex shader looks up
the bone matrices for each character’s current frame of ani-
mation. In this way, their characters can perform any frame
of any animation defined in the texture. Additionally, they
implement a discrete LOD system where characters in the
distance use mesh sub-sections of lower resolution.

2.3.3. Image-Based Crowd Rendering

Image-based rendering (IBR), stems from the research by
Maciel et al. [MS95] on using texture mapped quadrilaterals,
referred to as planar impostors, to represent objects in order
to maintain an interactive frame rate for the visual naviga-
tion of large environments. Consequently, due to this planar
impostor providing a good visual approximation to complex
objects at a fraction of the rendering cost, a large amount of
research has introduced different types of impostors such as
layered impostors [DSSD99], billboard clouds [DDSD03],
and texture depth images [JW02] for rendering acceleration
of various applications. A survey of these different types,
including their application and their advantages and disad-
vantages, can be found in [JWP05]. To represent a virtual
human, Tecchia et al. [TC00] and Aubel et al. [ABT00] both
use planar impostors. However, they differ in how the im-
postor image is generated. The two main approaches to the
generation of the impostor images are: dynamic generation
and static generation (also referred to as pre-generated im-
postors).

Aubel et al. use a dynamically generated impostor ap-
proach to render a crowd of 200 humans performing a ‘Mex-
ican wave’ [ABT00]. With dynamically generated impos-
tors, the impostor image is updated at run-time by rendering
the object’s mesh model to an off-screen buffer and storing
this data in the image. This image is displayed on a quadrilat-
eral, which is dynamically orientated towards the viewpoint.
This uses less memory, since no storage space is devoted to
any impostor image that is not actively in use. Unlike dy-
namically generated impostors for static objects, where the

Figure 7: Image-based crowds: (a) Dynamically gener-

ated image-based crowds [ABT00] (b) Pre-generated image-

based crowds [TC00].

generation of a new object impostor image depends solely
on the camera motion, animated objects such as a virtual
human’s mesh also have to take self-deformation into ac-
count. Aubel et al.’s solution to this problem is based on the
sub-sampling of motion. By simply testing distance varia-
tions between some pre-selected joints in the virtual human’s
skeleton, the virtual human is re-rendered if the posture has
significantly changed.

The planar nature of the impostor can cause visibility
problems as a result of it interpenetrating other objects in
the environment. To solve this problem, Aubel et al. propose
using a multi-plane impostor which involves splitting the
virtual human’s mesh into separate body parts, where each
body part has its own impostor representation. However, this
approach can cause problems similar to those mentioned in
Section 3, resulting in gaps appearing. Unfortunately, dy-
namically generated impostors rely heavily on reusing the
current impostor image over several frames in order to be
efficient, as animating and rendering the human’s mesh off-
screen is too costly to perform regularly. Therefore, this ap-
proach does not lend itself well to scenes containing large
dynamic crowds, as this would require a coarse discretiza-
tion of time, resulting in jerky motion.

Tecchia et al. [TC00] use pre-generated impostors for ren-
dering several thousand virtual humans walking around a
virtual city at an interactive frame rate. Pre-generated im-
postors involve the pre-rendering of an impostor image of an
object for a collection of viewpoints (called reference view-
points) around the object. Unfortunately, since virtual hu-
mans are animated objects, they present a trickier problem
in comparison to static objects. As well as rendering the vir-
tual human from multiple viewpoints, multiple key-frames
of animation for each viewpoint need to be rendered, which
greatly increases the amount of texture memory used. In or-
der to reduce the amount of texture memory consumed, Tec-
chia et al. reduce the number of reference viewpoints needed
for each frame by using a symmetrical mesh representation
animated with a symmetrical walk animation, so that already
generated reference viewpoints can be mirrored to gener-
ate new viewpoints. At run-time, depending on the view-
point with respect to the human, the most appropriate refer-
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ence viewpoint is selected and displayed on a quadrilateral,
which is dynamically orientated towards the viewer. To al-
low for the dynamic lighting of the impostor representation,
Techia et al. [TLC02] pre-generate normal map images for
each viewpoint by encoding the surface normals of the hu-
man’s mesh as a RGB colour value. By using a per-pixel dot
product between the light vector and a normal map image,
they compute the final value of a pixel through multi-pass
rendering and require a minimum of five rendering passes.

The main advantage of this approach is that it is possi-
ble to deal with the geometric complexity of an object in a
pre-processing step. However, with pre-generated impostors,
since the object’s representation is fixed, ‘popping’ artefacts
are introduced as a result of being forced to approximate the
representation for the current viewpoint with the reference
viewpoint. To avoid these artefacts, the number of view-
points around the object for the pre-generation of the impos-
tor images can be increased. However this can later cause
problems with the consumption of texture memory. Image
warping is another technique of reducing the popping effect,
but this method can also introduce its own artefacts. Since a
pre-generated approach requires a large number of reference
viewpoints for several frames of animation, this makes it un-
suitable for scenes containing a variety of human models that
each needs to perform a range of different motions.

Dobbyn et al. [DHOO05] developed the Geopostor sys-
tem, which provides for a hybrid combination of pre-
generated impostor and detailed geometric rendering tech-
niques for virtual humans. By switching between the two
representations, based on a “pixel to texel” ratio, their sys-
tem allows visual quality and performance to be balanced.
They improved on existing impostor rendering techniques
and developed a programmable hardware based method for
adjusting the lighting and colouring of the virtual humans’
skin and clothes (see Figure 8).

Figure 8: Geopostor system.

Recently, Millán et al. [MR06b] described a LOD system
which takes advantage of existing programmable graphics
hardware in order to improve the simulation and rendering
performance of their crowd system. They simulate several
hundred thousand characters in real-time by storing each
character’s position and orientation in a pixel buffer which
is updated by a fragment program. Once the pixel buffer is
updated, this data is subsequently used by graphics hardware

to render the characters using a particular representation se-
lected based on a LOD map. The LOD map is a 2D grid
rendered on a per-frame basis, where each pixel represents a
position in the world and stores a specific encoded value rep-
resenting its distance from the camera. Once the LOD map is
generated, it is stored in a pixel buffer which is looked up by
the vertex processor to select a LOD representation for each
character instance. Similar to Dobbyn et al. [DHOO05], they
use a geometry/impostor based LOD system. However, they
use the vertex processor to rotate each impostor’s billboard
towards the camera view and calculate the texture coordi-
nates of the most suitable viewpoint to be mapped.

2.3.4. Point Sample Rendering

Another sampled-based approach for the visualisation of vir-
tual humans is point sample rendering, which involves re-
placing a mesh with a cloud of points, approximately pixel-
sized [LW85]. Wand et al. [WS02] use a pre-computed hier-
archy of triangles and sample points to represent a scene.
This involves converting key-frame animations of meshes
into a hierarchy of point samples and triangles at different
resolutions. They partition the scene’s triangles using an oc-
tree structure and choose sample points which are distributed
uniformly on the surface area of the triangles in each node.
Using this multi-resolution data structure, they are able to
render large crowds of animated characters.

Figure 9: Point-based crowds: (a) Stadium populated with

animated 16,000 fans and (b) Crowd of 90,000 humans

walking on the spot.

For smaller crowds, consisting of several thousands of ob-
jects, each object is represented by a separate point sample
and its behaviour is individually simulated. Larger crowds
are handled differently, with a hierarchical instantiation
scheme, which involves constructing multi-resolution hier-
archies (e.g., a crowd of objects) out of a set of multi-
resolution sub-hierarchies (e.g., different animated models
of single objects). While this allows them to render arbitrar-
ily complex scenes, such as 90,000 humans walking on the
spot and a football stadium inhabited by 16,000 fans (see
Figure 9), less flexibility is provided for the motion of the
objects, since the hierarchies are pre-computed and therefore
cannot be used in simulating a large crowd moving within its
environment. For a comparison between point-based models
and impostors see [MR06a].
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3. Character Animation

The problem with using a mesh to represent a dynamic ob-
ject, such as human character, is that a way of animating the
mesh is needed to reflect the motion of the character. In older
generation games, the character consisted of a hierarchy of
meshes, where each mesh represented a particular body part
and was animated in some way (e.g., Lara Croft in Tomb
Raider). However, the main problem with this approach is
that holes can appear where two or more meshes meet. These
gaps can be hidden either by clever modelling using cloth-
ing or armour, at the cost of requiring extra polygonal detail,
or by constraining the movement of the bones. However, de-
pending on the type of character being modelled, this is not
always possible. Nowadays, a character’s mesh is typically
animated by using a layered animation approach.

3.1. Layered Animation

The layered animation approach works by layering a char-
acter’s mesh on top of a skeleton structure and deforming
the mesh based on the animation of the underlying skeletal
layer. The skeleton consists of a hierarchy of joints inter-
connected by bones, where each joint defines where a bone
begins and is used as its pivot point. Except for the bone at
the root of the hierarchy (know as the root bone), each bone
is linked to a parent bone and has either one, multiple, or no
child bones. To easily transform a bone from one coordinate
space to another, each bone’s position and rotation is stored
in a transformation matrix. The global transformation matrix
of each bone is dependent on the matrices of all of its par-
ents, and can be calculated as a function of both its local and
parent’s global transformation matrices.

In order to deform the mesh, the mesh and the skele-
ton first need to be setup in a reference pose, typically
using DaVinci’s Vitruvian man pose, to facilitate their re-
spective alignment. Each vertex in the mesh is assigned
either one or more influencing bones with a correspond-
ing weight to specify the amount of influence each bone
has on it. Linear blend skinning (LBS) is used for deform-
ing the mesh [Lan98, Lan99], where the deformation of
each vertex’s position (V’) and normal (N’) is calculated
as a function of the vertex’s original position relative to
each deforming bone (Vi), its normal (N), each deforming
bone’s global transformation matrix (TMi) and its influenc-
ing weight (wi) (Equation 1). When calculating the deforma-
tion of the normals, only the rotational component is used
by getting the inverse transpose of the global transformation
matrix ((TMi

−1)T ).

V
′ = ∑wi×T Mi×Vi

N
′ = ∑wi× (T M

−1
i )T ×N (1)

Linear blend skinning can be implemented through pro-
grammable graphics hardware by using a vertex program

and this greatly improves its performance [Dom, GSM05].
This technique is fast to compute and therefore has become
widespread in recent games. While problems can arise for
large bone rotations, causing the mesh to collapse to a single
point, this can be solved by adding extra bones [Web00], or
using spherical blend skinning [KZ05].

3.2. Animation of a Character’s Skeleton

Traditionally, an articulated structure, such as a skeleton,
is animated using computer animation data stored as key-
frames. A key-frame allows the transformation of a bone
(i.e., its position and rotation) to be specified as a function
of time. This allows complicated animations to be simply
stored as a set of key-frames for each bone. While the most
simple method of generating key-frame animations for artic-
ulated structures is through kinematics, extensive research
on providing other ways of generating animation data has
been carried out, focusing on physical simulation and proce-
dural animation.

3.2.1. Kinematics

A common method for animating an articulated structure in
real-time is with kinematics, which is based on properties of
motion such as position and velocity over time. A charac-
ter’s key-frame animation is typically generated from data
that has been created manually through kinematics by an an-
imation artist using a key-frame editor.

Forward kinematics specifies joint rotations as a function
of time and is useful in pre-generating character animations
in modeling/animation packages, such as 3D Studio Max.
Once the animation has been created, it can be subsequently
exported as key-frame data to be used within an application.
Motion capture systems allow the movements of a real actor
to be captured or stored as animation data by using differ-
ent types of capture hardware and this was the predominant
method for animating characters in The Lord of the Rings

Trilogy [Sco03]. While the quality and realism of manually
created animations depends on the skill of the artist, motion
captured animations are extremely realistic as a result of us-
ing a real human actor. With regards to animating crowds,
the main limitation of forward kinematics is that a large
database of pre-generated or pre-captured motions is nec-
essary in order to achieve some type of variation amongst
the crowd. Otherwise, a crowd consisting of individuals per-
forming the same animation can significantly reduce real-
ism.

Inverse kinematics can resolve the skeleton’s joint angles
and the corresponding key-frame data so that an end-effector
(e.g., the hand bone) is animated towards a target position.
The main advantage of this is that it can be used for the
real-time generation of various character animations (e.g.,
pointing in a particular direction, looking at an object and
opening a door). Several algorithms exist to resolve the joint
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angles with varying computational accuracy of the results,
the majority of which can be used with groups of characters
in real-time. The main limitation of this technique is that,
even though it generates a correct solution, it might not be a
high-fidelity human motion.

3.2.2. Physically-Based Animation

Physically-based animation provides a good approach to
generating unique and context-sensitive motion and in the-
ory can produce an unlimited number of motion types. How-
ever, the problem with using the approach is that it is can
involve computationally intensive algorithms and the gen-
erated animation is somewhat dependent on various charac-
ter properties. Therefore, this type of animation is not eas-
ily reusable and thus not well-suited for the real-time an-
imation of a large number of characters of various shapes
and sizes. Dynamic simulations use Newtonian force-based
methods to generate animations utilizing forces that occur in
articulated structures (e.g., velocities, mass, collision), in ad-
dition to kinematic properties. Physically-based animations
have been used for animating virtual athletes in realistic
sport simulations [HWBO95], generating physically correct
swimming motion for fish [TT94], and characters walking
on an uneven terrain [SM01].

3.2.3. Procedural Animation

Procedural algorithms reuse animation data from a library
of motions to generate new animations. The two main ap-
proaches are combining, and altering animation data. Com-
bining animations involves reusing animations with vari-
ous techniques such as fading functions, overlapping and
blending techniques. Various research has been conducted
on providing smooth transitions between motions, such as
the simple use of fade-in and fade-out functions [PG96,
RCB98] and the more complex weighting and summing
techniques [SBMTT99]. Perlin et al. [PG96] reuse and over-
lap animations by considering human motions as a “com-
bination of temporarily overlapping gestures and stances”.
In general, combining animation data provides a good and
fast approach for animating characters in real-time applica-
tions. However, to allow for some variation, it is important
that there is a large library of pre-generated motions that can
produce plausible combinations. Motion graphs can be com-
piled, which are directed graphs that describe how motion
may be recombined, to automatically generate transitions to
connect motions. The motion graph is generated from the
library by identifying similar frames between each pair of
motions and using these to form the nodes of the graph.
These nodes provide plausible transitions between motions
and allow the character to perform more complicated perfor-
mances [KGP02].

The second approach to procedural animation involves
altering the style of animation data based on various tech-
niques such as noise functions [PG96], and emotional trans-
forms based on character-based properties [ABC96]. Even

though more realistic and less repetitious animations are pro-
duced by altering the data, these techniques can be compu-
tationally intensive and should only be considered for the
real-time animation of a limited number of characters.

3.3. Animation Level of Detail

LOD research has recently extended from the area of geom-
etry into areas such as motion and simulation, thus provid-
ing a computationally efficient solution for the simulation of
crowds. In [GMPO00], Giang et al. propose a LOD frame-
work for animating and rendering virtual humans in real-
time. In order to achieve a scalable system, they use a LOD
resolver that controls the switching between levels of detail
and specifies parameters for controlling the geometric and
motion controller. Through these parameters, the LOD re-
solver has the ability to request different animation levels of
detail. The different levels of detail used relate to how the
motion is simulated (e.g., pre-defined forward kinematics,
inverse kinematics, or dynamics), and its update frequency.
This results in smooth realistic animations being applied to
virtual humans rated with high importance, while lower level
animation techniques are applied to virtual humans in the
background, taking minimal perceptual degradation into ac-
count.

In [dHCUCT04], the deformation of a character’s mesh
was pre-computed and stored to avoid these computations
at run-time. However, these characters were limited to the
number of animations they could perform due to the size
limit of memory. To improve on their previous system,
in [dHCSMT05] they propose rendering crowds animated
using the layered animation approach (see Section 2.3.2) to
reduce the consumption of memory and accelerate the an-
imation of the skeleton and the subsequent mesh deforma-
tion using a level of detail caching scheme for animations
and geometry. They update a character’s animation at a spe-
cific frequency dependent on its level of detail instead of on
a per-frame basis. For example, characters are updated at a
minimum of 4Hz at the lowest LOD and at a maximum of
50Hz at the highest LOD, where the LOD selection criteria
is based on the character’s distance from the camera. The
animation of the skeleton and the subsequent mesh defor-
mation are done in software so that they can be reused in a
caching scheme.

Ahn et al. [AOW06] detail a motion simplification frame-
work for articulated characters which attempts to speed
up animation performance through posture simplification
whilst conserving the features of the original motion. The
framework involves extracting key postures from a motion
and then automatically generating the priority of joint re-
ductions in order to guide the posture simplification process.
The experimental results shows that the proposed motion
simplification can be successfully applied to a crowd of a
thousand articulated characters in real-time.
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3.4. Simulation Level of Detail

In [CH97], Carlson and Hodgins use less accurate anima-
tion models for selected one-legged creatures in order to re-
duce the computational cost of simulating groups of these
creatures. Three simulation LODs are used for the motion
of these creatures: rigid-body dynamics, point mass simula-
tion with kinematic joints and point mass simulation with no
kinematic motion of the leg. Their selection of an individ-
ual’s simulation LOD is based on a individual’s importance
to the viewer or action in the virtual world.

Ulicny et al. [UT02] discuss the challenges of real-time
crowd simulations, focussing on the need to efficiently man-
age variety, and propose the idea of levels of variety. They
define a system’s variety based on the following levels: level
of variety zero (LV0) if a task uses a single solution, level of
variety one (LV1) if it has a choice from a finite number of
solutions, and level of variety two (LV2) if it is able to use an
infinite number of possible solutions. For example, a crowd
composed of a single human model would be LV0, several
pre-defined model types would be LV1, and finally an infi-
nite number of automatically generated model types would
be LV2. Using this concept, they define a modular behav-
ioural architecture based on rules and finite state machines,
to provide simple yet sufficiently variable behaviours for in-
dividuals in a crowd.
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[LW85] LEVOY M., WHITTED T.: The Use of Points as

a Display Primitive. Tech. rep., University of North Car-
olina at Chapel Hill, 1985.

[Mac93] MACIEL P.: Visual Navigation of largely unoc-

cluded environments using textured clusters. PhD thesis,
Indian University, Bloomington, January 1993.

[Map] MAPPER A. N.:. http://www.ati.com.

[MJC∗03] MARSCHNER S. R., JENSEN H. W., CAM-
MARANO M., WORLEY S., HANRAHAN P.: Light scat-
tering from human hair fibers. ACM Transactions on

Graphics (TOG) 22, 3 (2003), 780–791.

[MR06a] MILLÁN E., RUDOMÍN I.: A comparison be-
tween impostors and point-based models for interactive
rendering of animated models. In In Proceedings Inter-

national Conference in Computer Animation and Social

Agents (CASA) 2006 (2006).

[MR06b] MILLÁN E., RUDOMÍN I.: Impostors and
pseudo-instancing for gpu crowd rendering. In
GRAPHITE ’06: Proceedings of the 4th international

conference on Computer graphics and interactive tech-

niques in Australasia and Southeast Asia (2006), pp. 49–
55.

[MS95] MACIEL P., SHIRLEY P.: Visual navigation of
large environments using textured cluster. SI3D ’95:

Proceedings of the 1995 Symposium on Interactive 3D

Graphics (1995), 95–102.

[OCV∗02] O’SULLIVAN C., CASSELL J., VILHJÁLMS-
SON H., DINGLIANA J., DOBBYN S., MCNAMEE B.,
PETERS C., GIANG T.: Levels of detail for crowds and
groups. Computer Graphics Forum 21, 4 (2002), 733–
742.

[Ope04] OPENGL S. G. I.: The OpenGL Graph-
ics System: A Specification. http://www.opengl.org

/documentation/specs/version2.0/glspec20.pdf (October
2004).

[PG96] PERLIN K., GOLDBERG A.: Improv: a system for
scripting interactive actors in virtual worlds. SIGGRAPH

’96: Proceedings of the 23rd Annual Conference on Com-

puter Graphics and Interactive Techniques (1996), 205–
216.

[RCB98] ROSE C., COHEN M. F., BODENHEIMER B.:
Verbs and adverbs: Multidimensional motion interpola-
tion. IEEE Computer Graphics Applications 18, 5 (1998),
32–40.

[SBMTT99] SANNIER G., BALCISOY S., MAGNENAT-
THALMANN N., THALMANN D.: Vhd:a system for di-
recting real-time virtual actors. The Visual Computer 15,
7/8 (1999), 320–329.

[Sch04] SCHEUERMANN T.: Practical real-time hair ren-
dering and shading. SIGGRAPH 2004 Sketch (2004).

[Sco03] SCOTT R.: Sparking life: notes on the perfor-
mance capture sessions for the Lord of the Rings: the Two

c© The Eurographics Association 2007.

EG:91



C. O’Sullivan & S. Dobbyn / Level of Detail for Real-Time Crowds

Towers. SIGGRAPH Computer Graphics 37, 4 (2003),
17–21.

[SGM04] SANDER P., GOSSELIN D., MITCHEL J.: Real-
time skin rendering on graphics hardware. SIGGRAPH

2004 Sketch (2004).

[SKvW∗92] SEGAL M., KOROBKIN C., VAN WIDEN-
FELT R., FORAN J., HAEBERLI P.: Fast shadows and
lighting effects using texture mapping. SIGGRAPH ’92:

Proceedings of the 19th Annual Conference on Computer

Graphics and Interactive Techniques 26, 2 (1992), 249–
252.

[SM01] SUN H. C., METAXAS D. N.: Automating gait
generation. SIGGRAPH ’01: Proceedings of the 28th An-

nual Conference on Computer Graphics and Interactive

Techniques (2001), 261–270.

[TC00] TECCHIA F., CHRYSANTHOU Y.: Real-time ren-
dering of densely populated urban environments. Pro-

ceedings of the Eurographics Workshop on Rendering

Techniques (2000), 83–88.

[TLC02] TECCHIA F., LOSCOS C., CHRYSANTHOU Y.:
Visualizing crowds in real-time. Computer Graphics Fo-

rum 21, 4 (2002), 753–765.

[TT94] TU X., TERZOPOULOS D.: Artificial fishes:
Physics, locomotion, perception, behavior. SIGGRAPH

’94: Proceedings of the 21st Annual Conference on Com-

puter Graphics and Interactive Techniques (1994), 43–50.

[UdHCT04] ULICNY B., DE HERAS CIECHOMSKI P.,
THALMANN D.: Crowdbrush: Interactive authoring of
real-time crowd scenes. SCA ’04: Proceedings of the

2004 ACM SIGGRAPH/EUROGRAPHICS Symposium on

Computer Animation (2004), 243–252.

[UT02] ULICNY B., THALMANN D.: Towards interactive
real-time crowd behaviour simulation. Computer Graph-

ics Forum 21, 4 (2002), 767–775.

[Web00] WEBER J.: Run-time skin deformation. In Pro-

ceedings of Game Developers Conference (2000).

[Wlo04] WLOKA M.: Advanced rendering techniques.
EUROGRAPHICS 2004 Tutorial (2004). http://developer.
nvidia.com/object/eg_2004_presentations.html.

[WS02] WAND M., STRASSER W.: Multi-resolution ren-
dering of complex animated scenes. Computer Graphics

Forum 21, 3 (2002), 483–491.

c© The Eurographics Association 2007.

EG:92



EUROGRAPHICS 2007 Tutorial

Optimising and Evaluating the Realism of Virtual Crowds:

Perceptual Experiments and Metrics

R. McDonnell, S. Dobbyn, and C. O’Sullivan

Graphics, Vision & Visualisation Lab (GV2), Trinity College Dublin, Ireland

Abstract

Usually developers of real-time crowd systems decide on the virtual human representation they will use based

on three factors: the size of the crowd being rendered, each representation’s rendering cost and its visual appeal.

While there has been extensive research on the numerous ways of graphically representing virtual humans (includ-

ing their associated rendering cost), only recently have researchers become interested in perceptually evaluating

them. Evaluating these representations based on the plausibility of visual appearance and motion would provide

a useful metric to help developers of LOD-based crowd systems to improve visual realism while maintaining real-

time frame rates. With regards to improving our crowd system, we carried out perceptual evaluation experiments

on various virtual human representations using experimental procedures from the area of psychophysics.

Introduction

While there has been little previous work related to the
perception of virtual human representations [HMDO05,
MDO05], research has been conducted on perception of
human motion in the context of computer graphics and
has mainly been focused on the effect of animation qual-
ity on user perception. Wang et al. [WB03] conducted a
set of experiments to evaluate a cost function proposed by
Lee et al. [LCR02] for determining the transition quality
between motion clips. Other recent work by Harrison et
al. [HRvdP04] examined the perceptual impact of dynamic
anomalies in human animation. Reitsma and Pollard [RP03]
conducted a study, developing a metric to evaluate the per-
ceived error introduced during motion editing. Harrison et
al. [HBF02] focused on higher-level techniques for specify-
ing and modifying human motions. Oesker et al. [OHJ00] in-
vestigated the extent to which observers perceptually process
the LOD in naturalistic character animation. The study most
related to our work is by Hodgins et al. [HOT98]. They
performed a series of perceptual experiments, the results of
which indicated that a viewer’s perception of motion char-
acteristics is affected by the geometric model used for ren-
dering. Participants were shown a series of paired motion
sequences and asked if the two motions in each pair were
the “same” or “different”. The motion sequences in each pair
were rendered using the same geometric model. For the three
types of motion variation tested, sensitivity scores indicated

that subjects were better able to observe changes when view-
ing the polygonal model than they were with a stick figure
model.
With the goal of improving the realism of our crowd system,
we carried out the following four sets of perceptual experi-
ments:
1. Perception of Human Appearance

Experiment 1: Impostor Vs. Mesh Detection

At what distance can experiment participants detect
that a virtual human is using an impostor or mesh
representation?
Experiment 2: Low Vs. High-Resolution Mesh Discrimi-

nation

At what distance and at what resolution can experiment
participants discriminate between a high resolution and
low resolution mesh representation?
Experiment 3: Impostor/Mesh Switching Discrimination

At what distance can experiment participants detect an
impostor switching to a mesh?

2. Perception of Motion

Experiment 4: Perception of Human Motion

How well do different virtual human representations
replicate motion?
Experiment 5: Perception of Cloth Motion

How well do different representations replicate de-
formable clothing?
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Experiment 6: Applying Motion Capture

Is the sex of a motion captured actor important when
applying his/her motion to virtual characters?

3. Perceptual Metrics for Smooth Animation

Experiment 7: Impostor Update Frequency

What is the optimal sampling rate (i.e, the number of
viewpoints) for impostors?
Experiment 8: Animation Update Frequency

How many pose changes per second are needed for
smooth animation?
Experiment 9: Simulation Level of Detail

Can we save memory by displaying foreground charac-
ters at higher update rates than background characters,
with no loss of visual fidelity?

4. Evaluation of Metrics

Experiment 10: Impostor Update and Mesh Detection

Metric Evaluation

To evaluate the effectiveness of the metrics discovered
in Experiment 1, 3 and 7 by placing the characters in
crowds of different sizes.

Psychophysics

We will begin with a broad overview of some psychophysi-
cal techniques that were used for gathering information for
the experiments that we performed.
Psychophysics is the science of human sensory perception
and is used to explore two general perceptual problems in-
volving the measurement of sensory thresholds: discrimina-
tion and detection [LHEJ01]. Discrimination is the ability to
tell two stimuli apart, where each differ by a small amount,
usually along a single dimension. Detection is a special case
of the discrimination problem, where the reference stimu-
lus is a null stimulus. Typically, both perceptual problems
can be investigated using either a classical yes-no or a forced

choice experiment design [Tre95]. A yes-no design involves
experiment participants deciding on whether the stimuli are
the “same” (no response) or “different” (yes response) while
forced choice designs consist of the participant identifying
a specific target stimulus given a number of choices. Us-
ing these designs, the participants responses for each stimu-
lus level can be collected and analysed to estimate discrim-
ination or detection thresholds. In order to measure these
thresholds, the participant’s cumulative responses are plotted
as a graph of percentage yes responses (using a yes-no de-
sign) or percentage correct responses (using a forced choice
design) for each stimulus level. An S-shaped curve termed a
Psychometric Function is fitted to the cumulative responses,
where the percentage yes or percentage correct is plotted as
a function of stimulus.
For a yes-no design, the sensitivity threshold is specified by
the stimulus intensity required for a person to reach a 50%
yes point i.e., the point where same and different responses
are equally likely. This threshold is known as the Point of

Figure 1: An Ogive function fitted to a participant’s data for

a yes-no design.

Subjective Equality (PSE). For this design, a simple Ogive
inverse normal distribution function (see Equation 1) can be
use to plot a curve that fits the participant’s data (shown in
Figure 1) and, from this curve, the PSE can be estimated as
the 50% point and calculated using Equation 2. The inverse
normal distribution function computes the stimulus intensity
(x) for a given probability (P).

P Ogive(x) =
1

σ
√

2Π
exp

−(x−µ)2

2σ2
(1)

where : σ is the mean,
µ is the standard deviation, and
µ2 is the variance.

PSE Ogive = P Ogive(0.5) (2)

For forced choice designs, the threshold is often chosen as
a halfway point between chance and 100% correct [Tre95].
For example, for a two alternative forced choice (2AFC) par-
adigm, the target stimulus is one of two choices. Therefore,
the sensitivity threshold is the midpoint between chance
(50% point in the case of 2 choices) and 100% correct, which
is the 75% point. For experimental data using a 2AFC para-
digm, a logistical function is normally used to fit a suitable
curve to the participant’s data and estimate the PSE using
the 75% point. In our experiments we use a slightly modi-
fied version of the logistical function (given in Equation 3).
The PSE for an experiment using a 2AFC design can be cal-
culated using Equation 4.

P Logistic(x) = 1− γ(
1

1+( x
α )−β

) (3)

where : α is the stimulus at the halfway point,
β is the steepness of the curve, and
γ is the probability of being correct by chance.

PSE Logistic = PLogistic(0.75) (4)
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Another interesting threshold that can be estimated from
these curves is the difference threshold or the just notice-

able difference (JND). The JND is the smallest difference in
intensity required for a person to distinguish two stimuli and
this can be estimated as the amount of additional stimulus
needed to increase a participant’s detection rate from 50%
to 75% (for a yes-no design) or from 75% to 87.5% (for
a 2AFC design) on the fitted psychometric function. Equa-
tion 5 and Equation 6 are used to calculate the JND for an ex-
periment using a yes-no and 2AFC experiment, respectively.
Finally, ANalysis of Variance (ANOVA) is used to test the
null hypothesis that two means are equal. The null hypothe-
sis is rejected if there are significant differences between the
means.

JNDOgive = POgive(0.75)−POgive(0.5) (5)

JNDLogistic = PLogistic(0.875)−PLogistic(0.75) (6)

The main problem with measuring thresholds of perception
is that participants do not always respond in the same way
when presented with identical stimuli in an ideal, noise-free
experimental setup. This is mainly due to the fact that the
neurosensory system is somewhat noisy, but other reasons
such as attentional differences, learning, and adaptation to
the experimental setup can also have an effect. To reduce
some of these problems, many psychophysical techniques
for collecting data have been developed [Tre95]. With re-
gards to our experiments, we use a staircase experimental
procedure.
A simple up-down staircase procedure involves setting the
stimulus level to a pre-defined intensity and presenting the
stimulus to the participant [Cor62,Lev71]. Depending on the
participant’s response, the stimulus level is decreased (for a
positive response) or increased (for a negative response) by
a fixed amount or step-size and the altered stimulus is pre-
sented to the participant again. The experiment is terminated
once the participant’s response changes from positive to neg-
ative and vice versa (called a reversal) a certain number of
times. Figure 2 illustrates the stepping procedure for an up-
down staircase terminated after four reversals. It should be
noted that care is needed when selecting the step-size. Too
large a step-size results in inaccurate threshold estimates and
the possibility of outliers in the data. Alternatively, too small
a step-size may result in an accurate threshold estimate but
the risk of participants becoming bored, tired or losing their
attention is high. Normally, the appropriate step-size is se-
lected based on the results from preliminary experiments
testing several different step-sizes.
To eliminate response bias caused by participants learning
how the experimental procedure works, a pair of randomly
interleaved staircases can be used [ODGK03]. This involves
setting up ascending and descending staircases, where their
respective stimulus level is initialised to a maximum and
minimum intensity. These two staircases are then presented

Figure 2: Example of the stepping procedure for an up-down

staircase terminated after four reversals.

to the participant in a randomly interleaved manner to elim-
inate the participant guessing the direction of change of the
stimulus intensity. To avoid data being sampled at too high
or too low stimulus levels, adaptive procedures can be used
to specify how to adapt the stimulus level depending on the
participant’s response. As a result of this, data sampling is
concentrated around the participant’s threshold on the psy-
chometric function. Levitt provides an overview of adaptive
staircase procedures [Lev71] such as the transformed up-

down method and the weighted up-down method. With trans-
formed up-down methods (used in [MAEH04]), the stimulus
is altered depending on the outcome of two or more preced-
ing trials. For example, a three-up one-down (3U-1D) step-
ping procedure involving the stimulus level is increased only
after three successive incorrect responses and decreased with
each correct response. With weighted up-down methods, dif-
ferent step-sizes for upward and downward steps are used.

1. Perception of Human Appearance

The main aim of this experiment is to establish if and
when various virtual human representations are perceptu-
ally equivalent. This is especially important in LOD crowd
systems displaying different representations simultaneously.
Using a psychophysical approach, we attempt to derive a
perceptual metric to aid in deciding when to use a particu-
lar representation based on the virtual human’s appearance.
Hamill et al. [HMDO05] and McDonnell et al. [MDO05]
detail these experiments in full.

1.1. Experiment 1: Impostor Vs. Mesh Detection

This experiment aimed to establish the distance at which
participants were able to discriminate between a virtual hu-
man’s high resolution mesh and an impostor. In [DHOO05],
it was hypothesised that humans should be able to detect the
impostor once the size of a texel is bigger than the size of
the impostor image’s pixel, as aliasing artifacts then start to
occur as a result of stretching the impostor’s image onto the
quadrilateral. Based on this hypothesis, the system switched
between a virtual human’s impostor and mesh representa-
tion when the impostor image pixel size to impostor texel
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size was a ratio of 1:1. In this experiment, we try to find the
exact pixel to texel ratio at which the participants are able to
discriminate between these representations.

1.1.1. Visual Content and Procedure

Participants were shown the virtual human’s geometric and
impostor representations at different distances for 5 sec-
onds (Figure 3). Each representation was animated with a 1-
second cyclical walk animation. The participants were asked
to indicate on which side the virtual human “looked bet-
ter” by pressing the corresponding trigger button on a USB
gamepad. Because applications containing virtual humans
would typically involve displaying them from multiple view-
points, both representations were rotated at 5.625 degrees
every 100 milliseconds in a randomised direction around the
y-axis, so that the participant was not comparing the repre-
sentations based on a single viewpoint.

Figure 3: Test application environment with mesh on left and

impostor on right.

1.1.2. Results

We recorded the participant’s response at each distance and
calculated the percentage of correct responses for each ratio
at which the representations were displayed. We then plotted
this as a function of the ratio and fitted a psychometric curve
to the data.
Subsequently the PSE was calculated for each participant.
The mean PSE value for all participants was 1.164 ± 0.064.
At this PSE level, the participant will judge the representa-
tions with equal likelihood as “looking better”. The mean
PSE is close to the hypothesised value of 1. This means that
when an impostor is directly beside its mesh counterpart,
users should not notice the difference between them when
the impostor is displayed at a pixel to texel ratio of 1 to 1.

Pixel : TexelRatio(distance) =
distance×PixelSize

TexelSize
(7)

1.2. Experiment 2: Low Vs. High-Resolution Mesh

Discrimination

A common LOD approach for reducing the computational
cost associated with rendering a high detailed mesh is to

Figure 4: (left) high resolution model, (right) blocky shaped

low resolution version.

replace it with a simpler, lower resolution mesh containing
fewer triangles, where the loss of detail should be impercep-
tible to the viewer of the system (see [dHCUCT04]). How-
ever, care has to be taken when generating these low res-
olution meshes, as removing too much detail can produce
blocky shaped results, along with animation artifacts due to
the loss of joint vertices, and the overall visual realism of the
virtual human is reduced (Figure 4). The second experiment
was aimed at establishing the resolution, in terms of percent-
age of vertices, at which participants were able to discrimi-
nate between a virtual human’s high resolution mesh and a
selection of simplified low resolution meshes for three dif-
ferent distances.

Figure 5: Illustration of some of the simplified models used

for Experiment 2.

1.2.1. Visual Content and Procedure

In these experiments, a female model of 2170 polygons was
used. Using the 3D Studio Max Multires modifier, a selec-
tion of low resolution meshes were generated in this manner,
ranging from a reduced vertex percentage of 60% to 15%
(2170 polygons to 262 polygons) at intervals of 2.5% (see
Figure 5).
A high resolution mesh and a low resolution mesh were
displayed alongside each other for comparison. The partic-
ipants were asked to indicate whether the representations
looked the “same” or “different” by pressing the respective
left or right trigger button on a USB gamepad (Figure 6).
Each time the participant indicated a “same” response, the
resolution of the low LOD mesh was decreased, otherwise a
“different” response increased the resolution.
As mentioned previously, three distances at which to dis-
play the representations from the viewer were chosen. The
first distance was 5 metres, the second distance was 8 metres
and the third distance was 16 metres, which corresponded to
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Figure 6: Participant taking part in Experiment 2.

66.6% and 33.3% of the representation’s initial screen space
size.

1.2.2. Results

We recorded the participant’s response for each mesh res-
olution displayed and calculated the percentage of correct
responses for each resolution at which the representations
were displayed, and plotted this as a function of the resolu-
tion.
It was found that distance affected perception of the low
resolution mesh’s visual appearance, with participants be-
ing able to discriminate better between different resolution
meshes at closer distances.
The mean PSE values give us a good indication as to the
percentage of vertices necessary for a low resolution mesh
to be considered the same as its higher counterpart 50% of
the time. However, this value is not very practical for de-
velopers, so we also included a further analysis. After much
consideration, we chose the 80% probability of acceptance
as the level to explore further as a practical level for develop-
ers. The 80% probability of acceptance is the percentage of
vertices necessary for an observer to say that they found the
low resolution mesh equivalent to the high resolution 80%
of the time. We felt that this level was high enough to en-
sure that the difference between the low and high resolution
meshes would not be noticed in most situations, such as in
a game. Also, this level was considered low enough to be of
practical use in real-time, as a 90% probability would result
in a mesh almost as detailed as the high resolution mesh, and
would not represent a significant saving.
The mean 80% probability of acceptance values are pre-
sented in Figure 7, along with the mean PSE values. The
corresponding number of vertices and polygons for the 80%
probability of acceptance are shown in Table 1.
From these results, a low resolution mesh generated at
42.2% is acceptable to use as a replacement for the high res-
olution, at the closest distance, as observers will consider
them to be same 80% of the time. This suggests that we are
using a mesh that is too detailed for the highest LOD in our
crowd system, and a less detailed model could be used with-
out the user noticing, while improving the system’s perfor-
mance.

Figure 7: (left) Mean PSE values, (right) Mean 80% proba-

bility of acceptance.

Distance 5.0 8.0 16.0
Vertex % 42.2±1.0 37.6±1.0 26.2±1.0
Vertices 487 434 302

Triangles 871 770 524

Table 1: Developer guidelines from 80% probability of ac-

ceptance results.

LODGeometry Distance CostLOD Crowd Size
(metres) (ms) @ 30FPS

High Res 100% < 5.0 0.0645 517
Low Res 42.2% > 5.0 0.0241 1,385
Low Res 37.6% > 8.0 0.0221 1,507
Low Res 31.9% > 12.416 0.0198 1,686
Low Res 26.2% > 16.0 0.0135 1,961
Impostor 12.416 0.00697 4,777

Table 2: The distance at which LODGeometry models are per-

ceptually equivalent (using 80% probability of acceptance

values) and their associated rendering cost.

Figure 8: Summary of distances at which to display repre-

sentations. In this example 12 metres is equivalent to the dis-

tance at which an impostor achieves the acceptable pixel to

texel ratio.

1.2.3. Developer Guidelines for Experiment 1 and 2

The results from Experiment 1 showed that participants
could not discriminate between impostors and their high res-
olution model at a pixel to texel ratio of approximately 1.16,
which corresponds to a distance of 12.416 metres. However,
low resolution meshes can be perceptually equivalent to their
high resolution mesh at a closer distance. By using the re-
sults from Experiment 1, we can estimate the percentage of
vertices at which to generate a low resolution mesh that is in-
distinguishable from the high resolution model at the same
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Figure 9: Summary of distances at which to display repre-

sentations, where representations are shown at the actual

distance used.

distance as the impostor. This corresponds to a low resolu-
tion mesh of approximately 31.9%, or 621 triangles. Due to
the rendering cost of each model (Table 2), we suggest that it
would be advantageous to use the impostor instead of a low
resolution mesh for virtual humans being displayed at a ratio
greater than 1.16. To summarise, Figures 8 and 9 illustrate
the distances at which low resolution meshes and impostors
are perceptually equivalent to a high resolution mesh.

1.3. Experiment 3: Impostor/Mesh Switching

Discrimination

Typically, developers use the LOD approach of switching
between a detailed mesh representation and a lower detailed
model based on some selection criteria, to help maintain the
interactivity of their system. It is important that the switch-
ing between models is imperceptible to the viewer, other-
wise the overall believability of the system is reduced. While
the selection of the model’s resolution can be based on sev-
eral switching criteria, usually this is based on some distance
threshold from the viewer of the system. With respect to our
system, we achieve interactive frame rates by using a high
resolution mesh only for humans in the front, and impostor
representation that can be displayed at a fraction of the ren-
dering cost of the mesh. We switch between these represen-
tations in order to maintain the realism of the crowd. While
having thresholds for the believability of an impostor is use-
ful when it is displayed beside its equivalent mesh represen-
tation, popping artifacts often manifest during the transition
from impostor to geometry. These sudden popping artefacts
during this transition may be caused either by differences in
aliasing, depth information, or using a fixed number of pre-
generated viewpoint images which can also cause shading
differences.
In Experiment 3, we aimed to establish the distance at which
the transition from a pre-generated impostor to a mesh is no-
ticeable. The goal in establishing such a threshold was to
provide us with a guide to the distance at which the switch-
ing between our impostor and mesh representation should
occur in order to reduce any noticeable popping artefacts
and therefore maintain the realism of our crowd. This dis-
tance can be calculated in terms of a pixel to texel ratio (see
Experiment 2), and it was hypothesised that beyond the point
of one-to-one pixel to texel ratio, the participants would be
unable to detect the transition.

1.3.1. Visual Content and Procedure

For each trial, the same model used in the first experiment
was displayed, starting at a specific distance from the viewer,
then moving at a constant speed towards the camera, and fi-
nally stopping at a specific distance. At some point during
the interval the model switched from an initial impostor rep-
resentation to a mesh representation.
The participants were asked to indicate whether they noticed
a “definite change” in the model, by pressing the left or right
trigger buttons of the gamepad to indicate their respective
yes/no response. Each time the participant indicated a “yes”
response, the distance at which the switch occurred was in-
creased, otherwise a “no” response decreased the distance.
Two separate experiments were carried out, with the model
either facing the user or spinning on the spot. The virtual
human switched from its impostor to its geometric represen-
tation at a switching distance ranging from 6 to 31 units.
It was found that, when the virtual human approached the
camera too quickly, the resulting rate of change in the texture
detail of the geometric representation (since mipmapping
was not employed for its texture), caused the participants
to perceive a switch where there was none. While the effect
of popping artifacts may be reduced by blending, such as in
Ebbesmeyer [Ebb98], we aimed to establish baseline thresh-
olds were this would not be necessary. For urban simulations
(which generally are constrained to the ground plane), tran-
sitions typically occur at the distance where the change in
depth information is small due to perspective, and for virtual
humans the overall change of depth information is similarly
small. A further investigation of the effect of blending on
transition detection is desirable.

Figure 10: Results of the popping detection experiments

(showing the PSE in terms of pixel to texel ratio) for humans

facing viewer (1) and spinning (2).

1.3.2. Results

We recorded the participants’ responses for each trial’s
switching distance. A psychometric curve was fitted to each
participant’s experimental data. The mean PSE calculated
(shown as PSE1 in Figure 10), was approximately the pre-
dicted one-to-one value. The mean PSE calculated for the
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second experiment (shown as PSE2), was less than for PSE1,
suggesting that the spinning was a distracting factor.
It should be noted that the results from this experiment are
predicated on the texel size the impostor was pre-generated
at. The texel size of the impostor used in this experiment
was selected to ensure that all 17 × 8 pre-generated view-
points fitted into a 1024 × 1024 image which is an image
size commonly used in these types of applications. While
the switching was not detected at a ratio of one-to-one for
this texel size, it is hypothesised that this ratio will no longer
be valid for impostors generated at a larger texel size due to
aliasing artefacts being more noticeable. In order to establish
at what texel size the switching is detectable at a one-to-one
ratio, this would involve pre-generating impostors at various
texel sizes, presenting a virtual human switching from each
impostor to the mesh at the one-to-one distance, and evalu-
ating at what texel size the participant is capable of detecting
any popping artefacts.

2. Perception of Motion

In a LOD crowd system that simultaneously displays differ-
ent model representations, as described in [DHOO05], it is
important that the quality of the motion of the lower LODs
is not significantly different from that of the high resolu-
tion. Hodgins et al. [HOT98] showed that model type af-
fected user perception of human motion, when a stick figure
model’s motion was compared to a polygonal model. Here,
we test whether or not the lower detail representations repli-
cate the motion of the high resolution mesh, and we also test
their ability to replicate deformable cloth motion. Finally, we
look at how motion capture data is perceived when applied
to different models. More detailed descriptions of these ex-
periments can be found in [MDO05, MDCO06, MJH∗07].

2.1. Experiment 4: Perception of Human Motion

The first experiment in this section aims to analyse the ability
of low resolution geometry and impostors to replicate the
motion of the higher resolution human mesh that they were
generated from.

2.1.1. Visual Content and Procedure

Three different representations of a male model were used.
Two of the models were polygonal models with deformable
meshes which were manipulated by an underlying skeleton;
the high resolution polygon model had a deformable mesh of
2022 polygons, while the low resolution polygon model had
only 808 polygons for a deformable mesh. We automatically
simplified the mesh as much as possible, without making the
simplified version look different from the original. Impostors
were the third type evaluated and the same pre-generated ap-
proach was used as in the other experiments.
A reference motion R was created which consisted of 10
frames of a key-framed walk motion. The 10 frames of R

were modified a number of times to create the arm, leg, and
torso motion variation sequences.
Firstly, the performance of the participants in distinguishing

smaller and larger dynamic arm motions was examined. As-
sessing the arm motion variation involved comparing R to
a set of motions which altered the distance of the arm from
the body at certain keyframes. The modifications were made
by rotating the upper left arm joint in kAl at the shoulder
along the positive horizontal axis by a fixed number of de-
grees (Figure 12 (left)). The right arm was altered by the
same amount in the reverse direction.
A similar test was conducted to test the ability of the par-
ticipants in distinguishing larger and smaller leg motions for
all representations. The leg was altered by iterative trans-
lations along the longitudinal and vertical axes (Figure 12
(middle)). Finally, the ability of the participants to distin-
guish modifications to the torso was tested. In this instance,
the alterations were made by iteratively rotating the lower
spine of the skeleton by a fixed number of degrees around
the longitudinal axis (Figure 12 (right)).

Figure 12: (left) Top view of min and max arm variation,

(middle) Perspective view of min and max leg variation,

(right) Top view of min and max torso variation.

2.1.2. Experiment Procedure

Participants viewed pairs of movies, and were asked to spec-
ify whether they thought that the motion of the character in
the movies was the “same” or “different” (Figure 13). After
the first 4-second movie was viewed, the participant pressed
a “view next” button on the screen using the mouse. The next
movie was then presented for 4 seconds and the participant
had to decide whether they thought that the motions were
the same or different and press the corresponding on-screen
button.

Figure 13: Participant taking part in the Experiment 4.
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Figure 11: Eight different materials used in order of increasing stiffness

Figure 14: Mean JND values for all motion variations col-

lapsed over model type.

2.1.3. Results

For each participant, the number of times that they viewed
a pair of motions at each stimulus level was recorded, along
with the number of correct responses that they gave at that
level. The percentages of correct responses were then plot-
ted against the stimulus level values. As we are interested in
sensitivities to differences in motion for the different model
representations, and not actual threshold values we exam-
ined the JND values rather than the PSE values in this exper-
iment. Psychometric curves were then fitted to the datasets
and, for each participant, the JND were calculated from these
curves. The JND was then found by calculating the differ-
ence between the PSE and the stimulus level value that cor-
responded to 75% correct responses on the psychometric
curve.

An ANOVA was used to compare mean JND values across
all of the participants and showed that there was a significant
difference in their sensitivities with respect to the changes
viewed. The significances for the differences between model
types indicate that the motion of the impostor was closer to
that of the high resolution polygon model than that of the
low resolution model (Figure 14).

We suggest that this is due to the fact that, even though the
impostor appears perceptually different to the high resolu-
tion model at the distance shown in the experiments, it repli-
cated the motion of the high resolution model accurately.
The low resolution model may not replicate this motion as
effectively because there are fewer vertices on the mesh, and
even though it is the same skeleton used to deform this mesh,
the deformation loses subtle motion information.

2.2. Experiment 5: Perception of Cloth Motion

Displaying large crowds of high quality virtual characters
with deformable clothing is not possible in real-time at
present because of the cost of rendering the thousands of
polygons necessary to depict the subtle motion of the cloth.
Current real-time crowd systems are capable of displaying
thousands of skinned characters by using lower quality rep-
resentations instead of high quality to achieve their goal.
Hybrid systems that switch between high and lower qual-
ity models depending on the distance from the camera, are
also a solution to this problem.

Our aim was to extend the hybrid crowd system described
in [DHOO05] to include clothed characters. However, we
were not certain at the outset which representation (i.e., low
detail geometry or impostor) would be most suited to dis-
playing the deformations of simulated cloth, although we
hypothesised that low geometry would not be sufficient to
reproduce the required deformations. We address the ques-
tions: Can impostors and low resolution geometry display a
range of different cloth materials? How well can they repro-
duce individual material types? If compared directly, which
representation would resemble a higher quality representa-
tion more closely?

2.2.1. Stiffness Sorting Condition

This condition aimed to establish whether the real-time
lower detail cloth representations could produce distinguish-
able levels of cloth stiffness. After some experimentation,
we found eight cloth motions which ranged from very soft
to very stiff (Figure 11). Eight movies, each showing one
of the representations, were placed randomly on a 21-inch
widescreen monitor, each playing in a loop. Participants
were asked to place the 8 movies in order of stiffness, with
the least stiff on the left and the most stiff on the right.
The order in which the participants placed the movies was
recorded and compared to the actual sequence.

Figure 15 shows us that overall the participants found the
low detail geometry cloth more difficult to sort than the high
detail, and the impostor representation. There was no statis-
tical significance between sorting the impostor and sorting
the high resolution movies. These results indicate that the
perception of subtle differences in cloth motions using the
impostor is closer to that of the high detail geometry cloth
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Figure 15: Results of Stiffness Sorting Condition.

simulation than the low geometry simulation. This also sup-
ports the findings in Experiment 4 that impostors are better
at depicting small differences in human motion.

2.2.2. Stiffness Forced Choice Condition

The next condition we tested was to determine how well
the high and low detail geometry and impostor reproduced
the stiffness levels of a gold standard cloth (rendered offline
with non-realtime rendering and lighting). Participants were
shown 2 gold standard movies (that of the stiff and that of the
soft skirts) beside each other. They were asked after every
trial to indicate which of the two gold standard animations
(stiff or soft) was more similar to the current target anima-
tion, playing on an adjacent monitor.

Figure 16: Perceived stiffness for different LOD cloths.

Standard error bars are shown.

The interpretation of these results is evident from Figure 16.
Participants found that the perceived stiffness of the cloth
motion for the impostor was closer to that of the high resolu-
tion than the low resolution for low stiffness levels (i.e., soft
materials). This suggests that the impostor better matches the
high detail geometry motion at low stiffness levels. There is
a divergence at the middle stiffness levels, where most par-
ticipants rated the impostors to be soft, and few found the

Figure 17: Results for LOD Comparison Condition.

low detail to be soft. At the high stiffness levels, more par-
ticipants’ perception of the low resolution cloth motion was
closer to the high detail geometry than the impostor. Overall,
there seems to be a tendency for the participants to perceive
the low detail geometry cloth motion to be stiffer than the
high geometry, and the impostor to be less stiff than the high
geometry.

2.2.3. LOD Comparison Condition

A third condition was tested in order to see how well each
representation matched the gold standard. Participants were
first shown pairs of the most rigid cloth and were asked
which cloth animation was most similar to the gold stan-
dard rigid cloth. Participants pressed left or right buttons on
the gamepad to choose the most similar simulation. They
were then shown pairs of the cloth with stiffness approx-
imately halfway on our estimated scale (i.e., the fifth im-
age in Figure 11), and were asked to compare them with
the corresponding gold standard cloth. Finally, the partici-
pants viewed pairs of the most soft cloth and were asked to
compare them to the gold standard as before. The number of
times that a participant preferred each LOD representation
over each of the others was recorded.
Our results (Figure 17) suggested that, when viewing these
representations in a hybrid system that simultaneously dis-
plays virtual humans using two types of representation,
switching intermittently between them, the low resolution
will not resemble the high resolution as closely as the im-
postor does, thus resulting in significant artifacts.

2.3. Experiment 6: Applying Motion Capture

Crowds simulated with synthetic walking motions can lack
personality, so motion captured data can be used to add real-
ism. In this experiment, we investigate some factors that af-
fect the perceived sex of walking virtual humans, with a view
to increasing the realism of pedestrians in real-time crowd
simulations. We cannot simulate everyone in a crowd with
their own personal motion captured walk, as the more mo-
tions we use, the greater the demands on potentially limited
computational and memory resources (e.g., a games console
or hand-held device). Therefore, the challenge is to optimise
quality and variety with the resources available. Specifically,
we ask the question whether, if there is a clear visual indi-
cator of sex (i.e., a highly realistic, unambiguously female
or male model, as shown in Figure 18), will motion or form
information dominate our perception of the sex of the char-
acter? If motion information alone always determines per-
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ceived sex, then we would always need to create templates
of every different motion for both males and females. How-
ever, if we find that form dominates, or that simulated neu-
tral motions are as good as captured natural motions under
some circumstances, then such duplication may not always
be necessary. Perhaps some actors’ walks can be equally ef-
fectively applied to both male and female models. Any of
these results would allow us to create “canonical” motions
to which variety could later be added, irrespective of sex.

2.3.1. Visual Content and Procedure

Six undergraduate students (3M, 3F) volunteered to be mo-
tion captured, each in a separate session per actor. We cap-
tured some of the walks without their knowledge to ensure
they were walking naturally, then applied the motion cap-
ture data to characters in 3D Studio Max and kept one nat-
ural walk per actor. We also generated three different neutral
walk motions, with neither male nor female characteristics
(such as hip sway or shoulder movement).

Four different models were used to display the different mo-
tions (Figure 18): highly detailed woman and man models of
approximately 35000 polygons each, an androgynous char-
acter, and a point light walker. The woman and man were
chosen as typical characters that would be used in a com-
puter simulation of natural crowds. The androgynous figure
was chosen as it did not appear particularly male or female
and so could serve as a control. The point light walker was
generated from a generic neutral skeleton and so contained
minimal shape information.

Figure 18: Four model representations were animated with

real female, real male or synthetic neutral motions. From left

to right: Woman model, Man model, Androgynous figure and

Point light walker.

Each of the different motion types (3) from each of the ac-
tors (3) were applied to each of the model types (4), with
two repetitions for each condition, resulting in a total of 72
movies. Participants viewed the movies and were were told
to take both motion and form/shape into account and they
marked their selections on an answer sheet. Participants cat-
egorised the character they just saw on a five-point scale of
1: very male, 2: male, 3: ambiguous, 4: female or 5: very

female.

Figure 19: The interacting effects of model and walk type.

2.3.2. Results

Results show that male walks on the woman are rated as am-
biguous, as are female walks on the man (Figure 19). This
implies that applying motion captured from actors of the op-
posite sex to the character will produce confusing or unsat-
isfactory results in general. Interestingly, neutral walks were
considered male when viewed on the man and female when
viewed on the woman. This implies that for neutral walks,
the appearance of the character takes precedence over the
motion in determining the sex of the character. This result
has implications for computer graphics applications where
resources are limited, as re-using the same neutral walks on
male and female characters would appear to produce the de-
sired effect.
Also, for a character with androgynous appearance, the mo-
tion information is most important when determining the sex
(as without motion, the androgynous figure was consistently
rated to be ambiguous).

3. Perceptual metrics for smooth animation

In this section, we describe a series of experiments designed
to provide metrics to developers for smooth animations. The
first experiment in this section finds the optimal number
of viewpoint images necessary for smooth impostor anima-
tions. The next experiment aims to find the optimal pose
update rate for characters performing different animations.
Finally, we look at simulation LOD and establish whether
different pose updates would be acceptable if displayed to-
gether in one scene. These experiments are described in full
in [MDCO06, MNO07].

3.1. Experiment 7: Impostor Update Frequency

From the results recorded in previous experiments, we can
see that impostors are good at representing the deforming
folds of cloth and are a good substitute for high resolution
geometry clothed models at a 1:1 pixel to texel ratio dis-
tance from the camera. As mentioned above, impostors are
generated by rendering multiple images of the human from
different viewpoints for every frame of animation. The ap-
propriate viewpoint is selected with respect to the camera
in the real-time system. Typically, these viewpoints are gen-
erated at regular intervals around a sphere, so the sampling
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Figure 20: Generating impostor images from a camera po-

sitioned on the circumference of a circle every 45◦.

density can be described by the number of degrees difference
between each segment of the sampled sphere (e.g., Figure 20
shows impostor images generated every 45◦).
Ideally, impostors would be generated at very small intervals
around a sphere, the same number of times that a polygonal
model would be updated, which would allow seamless tran-
sitions between the images. However, as we are using pre-
generated textures, texture memory consumption prevents
choosing such a dense sampling, so there is a need to pick
an optimal number of viewpoint images to generate. Dobbyn
et al. [DHOO05] and Tecchia et al. [TLC02] report render-
ing 17 and 16 viewpoints of their impostors from one side of
the human and mirroring the impostors for the reverse angle.
This corresponds to an update rate of 10.58◦ (180◦ divided
by 17) and 11.25◦ respectively. However, they do not spec-
ify their reasons for choosing these numbers of viewpoints.
With the addition of cloth to the impostors, mirroring is no
longer possible due to the non-symmetric nature of cloth (the
cloth on one side is usually not identical to the other side,
due to the folds occurring in different places). Also, it was
not clear that this directional sampling density would be ap-
propriate when clothing was added to the impostors. As in
Tecchia et al. and Dobbyn et al., interpolation was not used
between different views, as it would be computationally in-
tensive and could introduce visual artifacts.

Figure 21: Six different characters used in impostor update

frequency test

3.1.1. Visual Content and Procedure

We chose 6 characters as stimuli for this experiment (Fig-
ure 21). We pre-generated 256 impostors for every frame of
the 10-frame animation, which corresponded to an optimal

sampling density of 1.4◦ (i.e., 360◦ divided by 256). The

Figure 22: (a) Mean PSE values for all models, (b) Mean

values for 80% probability of acceptance

characters moved on a circular path at a normal walk pace,
with the closest point to the viewer on the circle being the
pixel to texel ratio distance reported in Experiment 1, as im-
postors would not be viewed any closer than this in a crowd
system. The character was placed at a random point on this
path, and walked for 3 seconds, in either a clockwise or an
anticlockwise direction. Participants were asked to specify,
using the gamepad, whether they perceived the change in
orientation of the character as jerky or smooth. The next trial
they saw depended on their previous response.
For each participant, a psychometric curve was fitted to their
dataset as described previously. This allowed us to find the
Point of Subjective Equality (PSE). The PSE is the point
at which participants were equally likely to find an anima-
tion smooth or jerky, i.e., where they have a 50% chance of
considering that motion smooth (Figure 22). A psychomet-
ric probability curve for each of the characters, derived from
all of the data, was then created, using the average of all par-
ticipants’ PSE and standard deviations (Figure 23).

Figure 23: Probability of acceptance curve derived from

psychometric data. This shows the number of degrees nec-

essary for each of the characters to be considered smooth

for a range of different probability of acceptance values. For

example, at 10 degrees, 80% of the time participants found

Edith, a typical pedestrian, to be smooth.

3.1.2. Developer Guidelines

For normal walking characters, with either stiff or soft cloth-
ing, a viewpoint update rate of 17◦ is necessary to guaran-
tee with 80% likelihood that users will not notice viewpoint
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Figure 24: Character 1, character 2 and character 2 with

deformable clothing.

changes of the impostors. This corresponds to 21 images that
need to be generated at equal spacing around the character.
We suggest rounding to the nearest even number of images
(22) in order to include the direct front and the direct back
view images, particularly in applications where a front-on
view would be most noticeable. For other characters whose
width to depth ratios are large, a viewpoint update rate of
9◦ is advised. This corresponds to 40 images around the
character. In [DHOO05] and [TLC02], updates of 10.58◦

and 11.25◦ were used. We can now see that these rates were
underestimates for complex characters but overestimates for
normal walking characters.

3.2. Experiment 8: Animation Update Frequency

Pose update rate can be defined as the frequency of individ-
ual simulation steps displayed when animating a character.
For most real-time crowd simulation, the pose update rate
is largely constrained by the available hardware and over-
all scene complexity. Individual mesh or image-based (im-
postor) keyframes can be “pre-baked” for background char-
acters, which reduces rendering and simulation costs but
increases memory consumption (thus the pps must remain
low).
In this experiment, we identify some factors and thresholds
for the perceived smoothness of animated virtual characters.
In a Baseline Condition, we first determined whether differ-
ent pose update rates are in fact needed for human motions
with different character and motion properties. Our detailed
Movement Condition examined the impact and interactions
of various motion properties.

3.2.1. Baseline Condition

We first tried to identify baseline factors that affected the
perceived smoothness of animated human motion. The goal
was to find the threshold among 15 update rates (ranging
from 4pps to 63pps) at which the participants found the dif-
ferent animations smooth, for each of the conditions tested.
The conditions were character type (a male ‘character 1’ and
a female ‘character 2’ shown in Figure 24) and motion type

(motion captured kungfu kick, jumping jack, walking and
jogging), and character cloth type (i.e., character 2 as de-
picted in Block 1 with simple skinned clothing, and charac-
ter 2 with physically simulated deformable clothing). Each
condition was shown at each update rate a number of times

Figure 25: Mean 50% threshold values for different anima-

tion types. Error bars show the standard error of the mean.

and the participant pressed the left or right mouse button on
the laptop to indicate “smooth” or “jerky” for each movie.

3.2.2. Analysis

We found that character type did not affect update rate in our
experiments. Surprisingly, deformable clothing did not have
an effect. However, motion type did have a significant effect,
with motions moving further across the screen needing more
updates than other motions (Figure 25).
We felt that the distance that the character moved across the
screen must have been a factor, as the walk and jog motion
moved much more across the screen than the other two mo-
tions. Furthermore, the amount of activity in the motion clip
seemed to have an effect. Therefore we designed our next
experiment condition to focus on these two factors in partic-
ular.

3.2.3. Movement Condition

The second condition examined more formally the effect of
different motion types and their interactions.

3.2.4. Visual Content and Procedure

Two motion complexities were chosen: Normal walk with
arms by the side, and Complex walk, the same walk motion
with added activity in the arms, torso and head, each mov-
ing in time with the legs of the walk cycle. Three different
cycle rates were chosen: Lo (1.5 cycles/sec), Med (2.72 cy-
cles/sec) and Hi (3.75 cycles/sec). Four different linear ve-
locities were chosen: V0 (walking on the spot), V1 (walking
1/3rd of the distance across the screen, i.e., 7.75screen cen-
timetres/sec), V2 (walking 4/6ths of the distance across the
screen, 15.5cm/sec) and V3 (walking the full distance across
the screen, 23cm/sec).
We split the 4 linear velocities into four separate experi-
ment blocks. Participants viewed all four blocks, with a one
minute break in between each block. As before, they were
asked to indicate whether the animation looked “smooth” or
“jerky” at each trial.

3.2.5. Analysis

As in the baseline experiment, we fitted psychometric curves
to participants’ data for each of the conditions, and were thus
able to calculate their 50% threshold values.
To summarize our findings for the Movement experiment, in
Figure 27 we show a chart of the 80% acceptance thresholds
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Figure 26: System Setup for Movement Condition.

(i.e., the level at which observers will say ‘smooth’ 80% of
the time). We felt that these values could be of practical use
to developers since the thresholds at this level were reason-
able for real-time performance. Figure 28 depicts these val-
ues in a more useful way for developers to choose the correct
update rates for their particular animations.

Figure 27: (l) Thresholds for 80% probability of acceptance

for normal walk. (r) Thresholds for 80% probability of ac-

ceptance for complex walk. Error bars show the standard

error of the mean. CR=Cycle Rate.

Figure 28: Summary of Movement Experiment results. For

the familiar motion, the legs were the fastest moving body

parts. We calculated that the fastest pixel was moving at 7

screen cm/sec (Lo CR), 12cm/sec (Med CR), and 15cm/sec

(Hi CR). For the unfamiliar motion, the arms were the fastest

and we calculated that the fastest moving pixel was moving

at 13cm/sec, 23cm/sec and 32cm/sec for Lo, Med and Hi CR.

These results will perhaps be of most use (and immedi-
ately applicable) for real-time character simulation, partic-
ularly when the characters have cyclical motions. In a pre-

processing step, each motion could be labeled with an opti-
mal update rate, based on the cyclical update rate and com-
plexity of the motion. At run-time, this rate for all characters
could change priority when the camera is moving fast, to ac-
count for the added jerkiness which occurs with fast camera
motion.

3.3. Experiment 9: Simulation Level of Detail

For memory critical systems such as real-time crowds using
impostors, the fewer poses required to make an animation
appear smooth the better. In Experiment 8, we have provided
thresholds of acceptability for different characters, depend-
ing on their cycle rate, complexity and the amount of camera
motion in the scene. However, we have not yet established
whether different pose updates would be acceptable if dis-
played together in one scene, as our previous experiments
showed one image at a time. Therefore, in this experiment,
we consider simulation level of detail by examining the ef-
fect of its implementation on perceived motion smoothness.
We give participants a discrimination task, in which they can
view two pose update rates simultaneously and make their
decisions based on a comparison of the two.

3.3.1. Visual Content and Procedure

We used the same character as in the previous experiments
(character 2). Each movie displayed one character in the
front and a group of characters in the back (Figure 29). The
characters in the background were updated at 5 different
rates, ranging from 5 to 30pps, and this was the stimulus
level - again, we wished to determine the thresholds among
the 5 update rates at which all characters appeared smooth,
for each set of conditions.

Figure 29: Crowd in experiment setup.

Figure 30: Crowd in game setting used in SLOD experiment

2. Characters have different form and colour from one an-

other and background is not white.
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This experiment had a 3-way design. The first condition was
walk type: in step (i.e., all characters started at the same
pose, and moved like an army) or out of step (i.e., all char-
acters started at different poses which represented a more
natural setting for a crowd of pedestrians.); the second condi-
tion was background group size: small (1 character), medium

(6 characters) or large (12 characters); and the third condi-
tion was foreground character update rate: update1 (30pps,
which from our previous experiment we know to be the
threshold at which 99% of participants perceived the mo-
tion presented in this experiment to be smooth) or update2

(20pps, the threshold with a 75% probability of being per-
ceived smooth).

We also wished to examine how a more natural scenario,
such as that found in games, would affect our results. There-
fore, we compared the ‘out of step’ large group to a new ‘out
of step’ large crowd where all characters were different and
appeared in a more complex background scene (Figure 30).

3.3.2. Analysis

In order for our SLOD experiment results to be of use to
developers, we analysed the 80% probability of acceptance
values, estimated from participants’ psychometric curves.
We found that 16pps was considered sufficient for all back-
ground characters that we tested (at 80% probability of ac-
ceptance there was no significant main effect of crowd size,
walk type, or foreground character update rate). This re-
sult could be of great benefit to LOD crowd systems in
particular. At present, in hybrid geometry/impostor crowds
(e.g., [DHOO05]), 10pps are used for both foreground and
background characters due to the memory consumption of
impostors. However, this rate results in jerky looking anima-
tion. Using 30pps for the geometry and 10pps for the im-
postors resulted in noticeable differences, and using 30pps
for the impostors is too costly in terms of memory. If, as our
results suggest, it is possible to display geometry at 30pps
and impostors at 16pps without observers noticing the differ-
ence, this will result in the ability to store double the num-
ber of characters in memory than would be possible if the
impostors were being displayed at 30pps.

In order to evaluate our SLOD metrics, we plugged the value
of 16pps for background characters into a simple geome-
try/impostor crowd scenario and found the differences in
SLOD to be imperceptible. Although the differences were
imperceptible in the example we tested, all of the characters
were walking on the spot, so switching between update rates
as the characters moved from foreground to background was
not present.

4. Evaluation of Metrics

In this section, we evaluate the effectiveness of the previ-
ous perceptual metrics. This experiment is described in de-
tail in [MDCO06].

4.1. Experiment 10: Impostor Update and Mesh

Detection Metric Evaluation

This experiment aimed to test the validity of the results of the
previous experiments in a real crowd scenario. The crowd
scene was populated with the female jumping model used in
the previous cloth experiments. The characters in the scene
were either all wearing the most stiff skirt from the experi-
ments, or the most soft skirt.
The experiment included three typical crowd systems: full
geometry, hybrid high polygon/impostor and hybrid high
polygon/low polygon. In the full geometry crowd system, all
characters were high resolution polygonal models of 8983
polygons each (6172 for the human model and 2811 for the
skirt). The hybrid high polygon/impostor system contained
the high resolution polygon models nearest to the camera,
and the impostor representations at the back (Figure 31 bot-
tom). The latter were displayed at the pixel-to-texel ratio
at which they are perceptually equivalent to high resolution
meshes. This pixel-to-texel ratio was found for individual
characters, but was never tested on a large crowd. We used
the results of the previous experiment to choose the number
of viewpoint images necessary for the two models.
The hybrid high/low resolution polygon system contained
high resolution characters at the front, and low resolution at
the back (Figure 31 middle). Five hundred and thirty poly-
gons were chosen for the low resolution skirt.
In a typical hybrid crowd system, the LOD choice depends
on the distance of a character from the camera. As the cam-
era moves through the scene, switching between represen-
tations will occur, due to the camera distance changing. To
examine this effect in our experiments, the camera zoomed
up and down through a corridor between the characters at
a speed of 4m/s, in order to ensure that LOD switching
occurred. Switching between impostor viewpoints also oc-
curred in this case.
The effect of switching between impostor viewpoints was
then examined independently by allowing the camera to only
pan from left to right at a speed of 2m/s, where the impos-
tor distance was fixed. In this case, the impostor viewpoints
were changing but no switching back and forth to high reso-
lution geometry occurred.
One hundred and eight 4-second movies were created in to-
tal: Three types of system: All Hi, Hi/Lo, Hi/Imp × 2 skirt
types: most stiff and least stiff × 3 crowd sizes: small (50
humans), medium (100 humans) and large (1000 humans)
× 2 conditions: camera panning from left to right, camera
moving up and down a fixed corridor × 3 random placings:
3 different random placings of characters in the scene.
Each participant viewed the sequence, and was asked for
every trial, whether all of the characters in the scene were
the same or if they noticed that some of the characters looked
different in any way.
We first analysed the effect of camera panning or zooming
to determine how effective or metrics for impostor viewpoint
switching (Experiment 7) and LOD switching (Experiment
3) were in a crowd scenario. An ANOVA was performed
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Figure 31: (top) Small crowd of All Hi with stiff cloth. (mid-

dle) Medium crowd of Hi/Lo with stiff cloth. (bottom) Large

crowd of Hi/Imp with soft cloth.

on the dataset and it was found that there was no signifi-
cant main effect of camera motion on the ability of partici-
pants to tell the differences between the representations. This
implied that participants were unaware of the switching be-
tween representations or switching between impostor view-
points, which is very good news for hybrid systems.
We then analysed the effect of stiffness (Figure 32). For the
stiff cloth, participants noticed the difference between the
hybrid Hi/Lo and All Hi movies significantly more times.
Also, they noticed the difference between Hi/Lo more times
than the Hi/Imp. There was no statistical significance be-
tween the number of times that they noticed a difference in
All Hi compared to Hi/Imp.
For the soft cloth, there was a difference between All Hi

and Hi/Lo, and between Hi/Lo and Hi/Imp. Again, there was
no difference between All Hi and Hi/Imp. This implied that
having a hybrid crowd using impostors and high resolution
geometry will introduce less artifacts than a hybrid crowd
with low resolution geometry.
As expected, there was a statistically significant difference

between Hi/Lo stiff and soft, with the soft cloth low geome-
try being noticed more times than the stiff cloth. There was
also a difference between impostor stiff and soft - with dif-
ferences in the soft being noticed fewer times than differ-
ences in the stiff cloth. Similar differences in stiffness were
present for All Hi.

Figure 32: Experiment 10: LOD vs Stiffness

The previous experiments all depicted scenes with only 1
or 2 characters. This represents the worst-case scenario, as
the character was being analysed directly, with no surround-
ing distractions. Surprisingly, it was found that there was no
overall effect of crowd size, implying that differences could
be noticed just as easily in small crowds as large crowds.

5. Conclusions and Future Work

We have gained new insights into the effects of different
level of detail representations with respect to human motion,
appearance and secondary motion. Although these results
are useful in terms of helping to improve real-time crowd
systems, this is still an area of research that would benefit
from more perceptual studies. The ultimate goal is to create
a framework for highly detailed crowds, driven by percep-
tual metrics.
In Experiment 10 we found that the size of the crowd did
not affect perception of background character LOD. While
this was a surprising result, the participants only had the
task of trying to perceive differences between the foreground
and background characters. We feel that if the viewer was
asked to perform a different task, these background differ-
ences might not be perceived as often, and the crowd size
may have an effect in this case. We base this assumption on
the fact that previous research by Cater et al. [CCW03] has
shown that humans fail to notice degradations in image qual-
ity in parts of the scene unrelated to their assigned task. Also,
Harrison et al. [HRvdP04] noticed that expectation about the
task affected perception of motion. Varying the task is cer-
tainly something we would like to examine in the future, as
it is likely that viewers of crowd scenes will be involved
in game-play in the foreground of the scene, or navigating
through a city.
We presented guidelines for developers on the number of im-
postor viewpoints needed in order to produce imperceptible
switching, for one elevation of impostors (i.e., those on the
ground plane). Using the same number for higher elevations

c© The Eurographics Association 2007.

EG:107



R. McDonnell, S. Dobbyn, & C. O’Sullivan / Perceptual Experiments and Metrics

might be wasteful, so it would be interesting to determine
the number of updates needed for all elevations, using simi-
lar psychophysical methods.
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Abstract

Although many new games are released each year, it is very unusual to find large-scale crowds populating the

environments depicted. Such applications need to deal with having limited resources available at each frame. With

many hundreds or thousands of potential virtual humans in a crowd, traditional techniques rapidly become over-

whelmed and are not able to sustain an interactive frame-rate. Therefore, simpler approaches to the rendering of

the crowds are needed. Additionally, these new approaches must provide for variety, as environments inhabited by

carbon-copy clones can be disconcerting and unrealistic. This part of the tutorial describes the impostor repre-

sentation used in our crowd rendering system, detailing our programmable hardware based method for lighting

and adding variation.

1. Introduction

This part of the tutorial describes the impostor represen-
tation used in our Geopostor system, a real-time geome-
try/impostor crowd rendering system (Figure 1). The Geo-
postor system has been developed to solve the challenging
problem of large-scale crowds by simulating virtual humans
as scene extras, equivalent to those found in films. Since
these agents are in the background, they are not the focus
of the user’s attention and therefore simpler animation, ren-
dering and behavioural techniques can be applied to them in
order to reduce the computational load of crowded scenes.

Our main contribution is that our system provides for a hy-
brid combination of image-based (i.e., impostor) and de-
tailed geometric rendering techniques for virtual humans. By
switching between the two representations, based on a pixel
to texel ratio [DHOO05], our system allows visual quality
and performance to be balanced. We improve on existing
impostor rendering techniques and present a programmable
hardware based method for the lighting of impostors. Fur-
thermore, we improve the realism of the crowd by adding
variation to an individual’s motion and appearance.

2. Real-Time Crowd Rendering with Pre-Generated

Impostors

While a deformable mesh was the obvious choice for the
virtual human’s highest LOD in our crowd system, there are

a number of reasons why we chose an impostor approach
for the lowest LOD over a continuous and a discrete LOD
framework. Firstly, impostors involve replacing a 3D object
with an image of the object mapped onto a quadrilateral.
This is advantageous mainly because it avoids the cost asso-
ciated with rendering the object’s full geometry. Secondly,
automatic tools used to pre-generate low-resolution meshes
required for a discrete LOD framework sometimes do not
give the required results, thus necessitating a lot of time-
consuming editing by hand. Finally, switching between two
meshes of different resolutions can be quite noticeable as a
result of the silhouettes not matching. A continuous LOD
framework utilizing subdivision surfaces offers a good solu-
tion to this problem, since the detail of a character can be in-
creased and reduced at run-time, as demonstrated recently by
Leeson [Lee02]. While subdivision surfaces provide a means
of improving the appearance of virtual humans [OCV∗02],
they are not suitable for a crowd’s lowest geometric LOD
representation, since the surface’s original polygonal model,
used as its starting point, consists of several hundred poly-
gons.

With regards to our impostor model, we decided on a pre-
generated approach, since dynamically generating impostors
would involve reusing the current dynamically generated im-
age over several frames in order to be efficient. For dynami-
cally generated impostors, the generation of a new impostor
image for a virtual human depends on both camera motion
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Figure 1: Screenshots of the Geopostor system.

and the amount the virtual human’s posture has changed.
This methods works well with small groups of humans but as
the number of virtual humans dramatically increases, numer-
ous new impostor images need to be generated and this pro-
duces a bottleneck. Therefore, this method is not well suited
for rendering large crowds of dynamic humans.

3. Generation of the Impostor Images

For our virtual human’s lowest LOD representation, we use
pre-generated impostors based on the work of Tecchia et
al. [TC00]. A set of template mesh models were used in the
pre-generation of the necessary impostor images in 3D Stu-
dio MAX. To facilitate the introduction of colour and anima-
tion variation and to ensure that the pre-generated impostor
matches its mesh counterpart, these models required addi-
tional setup steps to be implemented in 3D Studio MAX.
The mesh’s triangles were organised into groups where each
group represented a particular body part (as shown in Fig-
ure 2(b) and (c)) and was assigned a specific pre-defined ma-
terial. It should be noted that the diffuse colour of each mate-
rial is set to white (as shown in Figure 2(a)) to allow colour
modulation of the pre-generated impostors, which will be
discussed later. The meshes in our system use a single im-
age for the detail of the character and this was grey-scaled in
3D Studio MAX to allow colour modulation without losing
detail.

Figure 2: (a) High LOD mesh representation in 3D Studio

MAX. (b) The grouping of triangles based on material used

(shown by the different colours). (c) The grouping of trian-

gles based on the body part it represents (shown by the dif-

ferent colours).

Once these additional steps were carried out, the mesh was
skinned and a walk animation was created for the underly-
ing skeleton. This key-framed animation was created using
Character Studio’s footstep creation tool and consisted of a
one second, cyclical animation with a key-frame occurring
every 100 milliseconds (10Hz). While animations are typical
sampled at a minimum of 30Hz, 10Hz was used in the sys-
tem to reduce the virtual human’s memory footprint. With
regards to the default walk animation, it is important that
both the mesh model and the motion are symmetrical in or-
der to minimize the amount of texture memory the impostor
images consume. This halves the number of viewpoints from
which the model needs to be rendered, since a viewpoint im-
age for a particular key-frame can be mirrored to obtain the
opposite viewpoint for the corresponding symmetrical key-
frame. Figure 3 illustrates a walk animation, where there is a
difference of five key-frames between each pair of symmet-
rical key-frames. In the case of asymmetric animation, such
as a side-step left or right motion, impostor images need to
be generated around both sides of the model, doubling the
amount of memory consumed. However, the impostor im-
ages only need to be generated for a side-step left motion
since it can be mirrored to obtain a side-step right motion.
Additionally, a side-step motion is typically short in duration
(e.g., 0.5 seconds) and therefore less key-frames are needed.

Figure 3: Precalculating and storing the deformation of a

mesh performing a walk animation for 10 key-frames.

A MaxScript plug-in was written to render the images
needed by the impostor representation in 3D Studio Max.
The process used is illustrated in Figure 4. The plug-in posi-
tions the virtual human mesh model at the center of a sphere
consisting of 32 segments and a radius equal to the distance
from which we wish to render the impostor images. For 10
frames of animation, a detail map image and a normal map

c© The Eurographics Association 2007.

EG:110



S. Dobbyn, R. McDonnell & C. O’Sullivan / Real-Time Crowd Rendering with Pre-Generated Impostors

image are rendered from 17 viewpoints around one side of
the model and from 8 elevations:

• Impostor detail map

This image is used to store the detail of the mesh’s decal
texture for each viewpoint. It is generated by rendering the
mesh, with shading and anti-aliasing disabled, into an im-
age of 256×256 pixels. To allow for variation, each pixel
in the image’s alpha channel needs to be encoded with a
specific alpha value associated with the material at that
particular pixel. In order to do this, the plug-in utilizes 3D
Studio Max’s Graphics buffer or G-buffer which allows
data such as object ID, material ID, and UV coordinates
to be stored in a number of separate channels. The plug-
in stores the material ID at each pixel in the G-buffer and
these values are used to lookup and store the associated
alpha value in the alpha-channel. Background pixels are
assigned an alpha value of 255 to distinguish which pix-
els need to be transparent when displaying the impostor at
run-time.

• Impostor normal map

This image is used to store the mesh’s surface normals
in eye-space for each pixel in the detail map. The normal
maps in [DHOO05] took a considerable time to generate,
as per-pixel look ups and operations were needed, so we
improved the algorithm by using a less computationally
intensive technique. A copy of the character’s mesh at the
current frame was first needed. Each vertex normal was
first converted into eye-space coordinates, to find the nor-
mal with respect to the camera, and then converted into an
RGB colour (using Equation 1). Per-vertex colouring was
then used to paint the RGB colours onto the vertices of
the copied meshes (3D Studio Max’s VertexPaint modifier
was used to do this). These vertex colours were interpo-
lated over the polygons, creating a character mesh with
normal map colours. The normal map image was then
generated by rendering an image of this mesh, from the
current viewpoint. Per-vertex colouring and interpolation
are operations that are performed very quickly, as they are
supported by graphics hardware. This meant that the im-
age could be produced almost immediately, without the
need for slow per-pixel operations.

PixelR = ((0.5∗Nx)+0.5)∗255

PixelG = ((0.5∗Ny)+0.5)∗255

PixelB = ((0.5∗Nz)+0.5)∗255

(1)

Once these images have been generated, the plug-in removes
any unused space and combines them into a single detail
and normal map image of 1024*1024 pixels for a particu-
lar frame of animation. For each frame of animation impos-
tor image, the data needed to render each viewpoint at run-
time is stored in a text-based Impostor Data File (IDF). This
file includes each viewpoint’s row and column ID, position,

width, height, and position of the parent bone of the model’s
skeleton within the image.

4. Rendering of the Impostor Model

The main problem with using a pre-generated impostor ap-
proach is the consumption of texture memory. In order to
render a dynamically lit impostor, an impostor detail im-
age and a normal map image are required for each frame
of animation. The RGBA impostor detail image contains
four channels (1024*1024*4 bytes) and the RGB normal
map image contains three channels (1024*1024*3 bytes),
resulting in 7MB of texture memory being required for a
single frame of animation. By using DXT3 texture com-
pression, the memory requirements are reduced by a fac-
tor of four for RGBA images and by a factor of six for
RGB images, resulting in only 1.5MB (1024*1024*4*1/4 +
1024*1024*3*1/6 bytes) of texture memory for each frame.
Unfortunately, DXT3 texture compression is not particularly
effective at compressing normal maps, as it results in notice-
able block artefacts. These artefacts can be avoided by us-
ing 3Dc, which is ATI’s new compression technology, and
provides 4:1 compression of normal maps with image qual-
ity that is virtually indistinguishable from the uncompressed
version [3Dc]. Another way of reducing these artefacts is to
store one of the components in the alpha channel and then
use DXT5 compression, which compresses the alpha values
independently at a higher accuracy [ATI].

Our impostor representation is capable of using mipmap-

ping techniques [Wil83]. Mipmapping avoids visual arte-
facts that occur when textures are mapped onto smaller dy-
namic objects, causing them to shimmer. OpenGL allows
the generation of a series of pre-filtered texture maps of
decreasing resolutions, called mipmaps, which are selected
based on the size (in pixels) of the object being mapped.
Although mipmapping requires some extra computation and
texture storage (which is increased by a third), this is nec-
essary to maintain the impostor’s realism when displayed at
a distance. However, care has to be taken not to generate
mipmaps at too low a resolution, as this causes other arte-
facts due to the averaging of several viewpoint images within
the mipmap.

Given the amount of texture memory required by the sys-
tem, we need a method of improving the variety and visual
interest of large crowds of impostors, while keeping mem-
ory usage to a minimum and ensuring that rendering speed
is uncompromised. Our contribution in this area is that we
improve upon existing impostor techniques for adding vari-
ety by taking advantage of recent improvements in program-
mable graphics hardware in order to perform an arbitrary
number of colour changes in one pass. Since the colouring
regions are encoded in the alpha channel (as described in
Section 3), this number is limited only by that channel’s pre-
cision. Our further contribution is the real-time shading of
the impostors implemented in programmable hardware.
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Figure 4: A MaxScript plug-in removes unused space from each viewpoint image and combines 17*8 viewpoint images into a

single 1024x1024 image for a particular frame.

To render the impostors, we need to calculate which view-
point image needs to be displayed and rotate its quadrilateral
so that it always faces the viewer. Using the position of the
virtual human’s root bone −→H and the camera’s position

−→
C ,

the quadrilateral’s normal vector −→N can be calculated using
Equation 2.

−→
N =

−→
H −

−→
C

|
−→
H −

−→
C |

(2)

The vector from the camera to the human projected onto the
ground plane

−→
CH can be calculated (Equation 3) using −→

N .
It should be noted that in Equation 2, it is assumed that the
ground is the XZ plane and that the camera’s position cannot
be lower than the ground. Therefore, it is not necessary to
pre-generate any viewpoint images from these elevations.

−→
CH =

(Nx,0,Nz)

|(Nx,0,Nz)|

(3)

The amount by which to rotate the quadrilateral around the
x-axis θx and y-axis θy is calculated using Equation 4. The
viewpoint’s row and column ID (VRow and VColumn) can be
used to lookup which viewpoint to render using Equation 5,
where Nx and Ny are the number of viewpoint images pre-
generated around the x- and y-axis.

θx = cos−1(Ny)

θy = cos−1(CHz)

(4)
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VRow = θx ×
Nx

90

VColumn = θy×
Ny

180
(5)

For improving realism, interactive lighting of impostors is
highly desirable. Additionally, since we are presenting a hy-
brid system that switches between two representations, it is
crucial that there is no difference in the shading of each rep-
resentation for the interchange to be imperceptible to the
viewer. By using a per-pixel dot product between the light
vector and a normal map image, Tecchia et al. [TLC02]
computed the final shaded value of a pixel through multi-
pass rendering, which required a minimum of five rendering
passes. However, multi-pass rendering can have a detrimen-
tal effect on rendering time, which limits the number of im-
postors that can be shaded in real-time.

We improve upon this technique by taking advantage of pro-
grammable graphics hardware and shade the impostors in a
single pass. The impostors are rendered with the same light-
ing and material properties as the mesh representation, and
thus the shading of the impostor is based on Equation 6.

PixelColour = DetailTextureRGB ∗

(AmbientLightModel ∗AmbientMaterial +

(MAX(VectorLight ·NormalVertex),0)∗

(Di f f useLight ∗Di f f useMaterial))

(6)

Similar to the mesh representation, the lighting of the impos-
tor representation has been implemented in hardware using
both texture shaders and register combiners [NVR99], and
vertex and fragment programs [Ver02, Fra02]. This involves
implementing Equation 7 in hardware, whereby the per-pixel
dot products of the light vector and the pre-generated normal
map is multiplied with each pixel in the coloured region map
(which will be discussed in the next section) to produce a
shaded coloured region map. This result is added to an am-
bient term, and multiplied with the detail map to yield the
final lit, coloured pixels. The overall shading and colouring
sequence is illustrated in Figure 5.

PixelColour = DetailMapRGB ∗

(AmbientLightModel ∗AmbientMaterial +

(MAX((VectorLight ·NormalMapRGB,0)∗

(ColourMap [DetailMap α])∗Di f f useLight))

(7)

Similar to the mesh model, we optimise the rendering of
the impostors by precalculating and storing each of the key-
frame’s viewpoint data in a single VBO object. Since dy-
namically orientating the quad involves the computationally

expensive cos−1 function (see Equation 2), we use a lookup-
table (LUT) of cos−1 values instead. A LUT is typically an
array used to replace a run-time computation with a simpler
lookup operation and can provide a significant speed gain.

5. Variation LOD: Adding Variety to the Impostor

Model’s Appearance

At the lowest level of variety (VariationLOD), individuals in
a crowd use the same model and are a carbon copy of each
other. While this level (or lack) of variety reduces the load on
the limited computational resources per frame, this is only
suitable for a specific type of crowd without having a dis-
concerting effect on the viewer e.g., the army of droids in
Star Wars: Attack of the Clones. To increase a model’s level
of variety regarding its appearance, changing the colours of
a virtual human’s clothing and skin is a method that is simple
and yet has high visual impact when viewed in a crowd.

In order to do this, we use a set of different template hu-
man meshes and change their appearance by using different
“outfits”. Outfits define a set of colours for the virtual hu-
man’s skin and clothes, where each colour is associated with
a specific body part material. The production of these out-
fits is controlled entirely by artist-drawn textures produced
in an ‘Outfit Editor’ application, allowing a quick and easy
method of producing many different colour maps that are re-
alistic and suitable to the model being rendered. The outfit
editor is a 3D Studio MAX plug-in that allows the artist to
select particular colors for each body material from a colour
palette (see Figure 6). The impostor can be rendered in 3D
Studio MAX’s viewport in real-time using a shader written
in HLSL to give the artist immediate feedback.

A multi-pass method, as described in [TLC02], achieves
this goal by performing a rendering pass for every differ-
ent region of colour that needs to be changed. We exploit
the programmability of graphics hardware to efficiently in-
crease the variety and interest of each impostor. In order to
match the virtual human’s geometric representation, the im-
postors must also be able to change colour, depending on the
human model and outfit materials. We achieve this by stor-
ing distinct material IDs in the alpha channel of the impostor
detail image upon generation, and use these IDs to address
a changeable colour map at run-time. We perform a lookup
on the detail map, using the alpha-encoded material IDs to
address a colour map texture that can be altered to match the
outfit of the virtual human currently being rendered (Fig-
ure 7). It should be noted that, since the alpha channel of
the impostor’s detail map contains alpha encoded regions,
nearest filtering needs to be used. Otherwise, linear filter-
ing results in the linear interpolation of these values when
the impostor representation is at a distance, causing shading
artefacts due to the wrong outfit colour being looked up. This
problem can be solved by using a high-level shader written
in the OpenGL shading language to linear filter the looked
up color values [Gui05].
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Figure 5: Impostor shading and colouring sequence.

Figure 6: (a)Example of an artist in progress of generating an outfit for a model using the ‘Outfit Editor’ plug-in. (b) Nine

outfits for three template meshes.
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Figure 7: Using programmable texture addressing to add

variety to the impostor representation.

6. Real-time Clothed Crowds with Pattern Variation

In the past, skinned meshes for the clothing of individuals in
a simulated crowd were used, often resulting in rigid and un-

natural motion. While there have been advances in the area
of cloth simulation, both offline and in real-time, interac-
tive cloth simulation for hundreds or thousands of clothed
characters would not be possible with current methods. In
[DMK∗06], we addressed this problem and devised a sys-
tem for animating large numbers of clothed characters.

The majority of games that implement cloth dynamics on
current generation hardware do so in a highly constrained
manner, often ignoring the issues of collision detection by al-
lowing the cloth surface to penetrate nearby surfaces. Game
developers favour cloth that is highly controllable and tend
to use more traditional methods of bone based skinning and
pre-simulated vertex mesh animations if the performance of
the cloth is critical to the game. In simulated crowd scenes
for games, cloth is rarely if ever used due to the large num-
bers of polygons required to accurately capture the deforma-
tion of the cloth. However, deformable clothing adds greatly
to the realism of the characters.
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We have added realism to our crowd simulations by dressing
the individuals in realistically simulated clothing, using an
offline commercial cloth simulator, and integrating this into
our real-time hybrid geometry/impostor rendering system.
Additionally, we developed a technique for generating cycli-
cal motion for pre-simulated cloth, which therefore moves in
a fluid, realistic manner. Furthermore, we have added variety
to our impostor representation by developing a new hard-
ware rendering technique for adding pattern variety to the
same cloth for different humans in a crowd. Our results show
a system capable of rendering large realistic clothed crowds
at interactive frame rates.

6.1. Brief overview of Cloth Simulation

Implementing realistic cloth dynamics in real-time game ap-
plications still represents a significant challenge for game
developers. Simulating cloth deformation is a complex
process both in terms of dynamics simulation and collision
detection for the changing cloth shape. Many game develop-
ers have relied on more tractable but approximate solutions
including the Verlet method [Jak01], and have restricted the
simulation’s complexity by only using a subset of the mesh
to represent the cloth. Another method to introduce complex
clothing is to generate the folds using cloth simulation and
then use skinning to attach the clothing to the character. This
method works well in some cases, but often results in the
unrealistic bending of folds in the cloth, as the folds have
to deform according to the skeleton of the character. This
can make a long flowing skirt look like trousers with folds.
Also, the important secondary motion of the cloth is lost in
this case. In the animation research community, Cordier and
Magnenat-Thalmann [CMT05] use a data-driven approach
for real-time processing of clothes. Vassilev et al. [VSC01]
developed an efficient technique for dynamic cloth simula-
tion using a mass-spring model.

6.2. Cyclical Cloth

In a real-time crowd system, the characters’ animations are
often cyclical in nature, so that they can be smoothly linked
to allow them to move in a fluid manner. Cyclical animations
are commonly obtained by manually altering the underly-
ing skeletal motion so that they loop in a realistic looking
manner. However, making looping animations using char-
acters with pre-simulated clothing is a more difficult task,
as manual cleanup of the cloth to make it cyclical is very
time-consuming, particularly for very deformable items of
clothing like skirts, and can result in unrealistic effects.

We wanted a more automatic way of generating cyclical
cloth and began by creating a very long animated sequence,
repeating the animation of the human many times and simu-
lating the cloth in response to the repeating animation, in the
expectation that it would at some point become periodic. On
viewing these long sequences, it was found that the cloth did
not always settle to a periodic state, particularly for highly

deformable clothing such as long flowing skirts. A more ro-
bust method was needed in order to obtain a good cycle in
the cloth. In a good cloth cycle, the cloth at the start frame
Fs and at the end frame Fe of the animation cycle of length
l should be the same, and be travelling at the same velocity.
The long cloth sequence needed to be searched using a dis-
tance metric that took into account all of the vertices on the
cloth mesh between the two frames of animation, in order to
find one correctly cyclical loop.

Figure 8: Edge Images taken from 5 different viewpoints.

We used a distance metric similar to Kovar et al. [KGP02]
to compute the differences between all frames that were of
length l apart in the sequence, and chose a set of candidate
cycles whose distances were below a user set threshold. Usu-
ally, we chose the 5 cycles with the lowest distance metric
as candidate cycles. In the case of stiff clothing, where the
motion is very restricted, picking the cycle with the smallest
distance metric was often enough to produce a good cyclical
motion. For other more deformable, flowing clothing, this
metric was often insufficient, as it did not weight the impor-
tance of the folds in the cloth, but rather, weighted all points
equally.

Bhat et al. [BTH∗03] showed that the human perceptual sys-
tem is sensitive to moving edges, and used this to compare
the folds and silhouettes of simulated cloth to that of video
cloth sequences to find the difference between them. We
based the second pass of our algorithm on this idea of match-
ing folds and silhouettes, and devised a metric for compar-
ing the candidate cloth cycles at Fs and at Fe. For each of
the candidate cycles, we generated images of the cloth at Fs

and Fe from 5 different viewpoints around the skirt. The im-
ages at Fs and at Fe for each of the viewpoints were then
converted into edge images (Figure 8), using the standard
Canny edge detection algorithm [Can86]. The mean distance
between edges in the corresponding images of Fs and Fe

were then found using an edge distance estimator, and the
resulting differences in the 5 images were summed together,
to give a final difference metric for the candidate cycle. The
cloth cycle with the smallest edge difference was chosen as
the final cycle. In most cases, this final cloth cycle was good
enough for use, but in certain cases, an extra linear blend step
between Fe and Fs was needed to produce the final cycle.
We tried to avoid linear blending where possible, as it often
resulted in the cloth intersecting with the human model, and
we also felt that the results were more natural when blending
was not used.

This method produced cloth that appeared cyclical from all
viewpoints for all of the clothing that we tested. Cyclical ap-
pearance was judged by whether or not it was possible to no-
tice a discontinuity in the cloth motion at the start and end of
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Figure 9: (a) UV mapped impostor rendering sequence and (b) an example of adding variation to one character using 8 different

diffuse textures.

the cycle from all viewpoints (i.e., the looped animation did
not exhibit a flicker in the cloth). We found that tighter cloth-
ing needed few animation cycles to produce cyclical cloth
(sometimes as few as 4 cycles), as the cloth settled to a near
periodic state quickly. Whereas looser cloth needed up to 40
animation cycles to produce a nice cyclical animation. The
cyclical cloth and human animations could then be exported
into a real-time system and replayed, and impostors were
also generated as described next.

6.3. Cloth Geopostors

Our clothed crowd system builds on our Geopostor sys-
tem [DHOO05], described earlier. Furthermore, our sys-
tem includes clothed characters by using commercial soft-
ware [CloFX] to obtain our cloth simulations, but any high
quality offline simulator could be used to produce the cloth
animation. We pre-simulate the deformation of both the vir-
tual human’s skin mesh using linear blend skinning and its
cloth mesh using the physical simulator, based on the motion
of its underlying skeleton. However, while the secondary
motion of the character’s cloth greatly adds to our crowd’s
visual realism, cyclical cloth motion is necessary to avoid
any jerky motion artefacts and we present a technique to
solve this in Section 6.2.

Once the character’s meshes are pre-simulated, they are
then exported and stored in separate keyframed meshes or
“poses”. By pre-calculating and storing the deformation of
the skin and cloth mesh in poses, this avoids the cost of
deforming the character’s body and simulating its clothes
at run-time. Generating the impostor representation of our
clothed character involves capturing two types of images
from a number of viewpoints around the model: a detail map
image to capture the detail of the model’s diffuse texture and
a normal map image whereby the model’s surface normals
are encoded as an RGB value. At run-time, the clothed vir-
tual humans switch between the two level of detail (LOD)
representations depending on their position with respect to
the viewer.

Adding colour variation to an impostor representation has
already been achieved through the encoding of colouring re-
gions in the alpha channel of the detail image, as described
above. This is used at run-time to address a colour or “outfit”

map through programmable texture addressing. In the case
of a mesh, another method to add texture variation is to pro-
vide it with a set of different diffuse textures with which it
can be texture mapped. However, applying this type of vari-
ation to the impostor would require exporting a set of detail
maps for each different diffuse texture used, resulting in the
rapid consumption of texture memory. To solve this prob-
lem, we propose replacing the detail map with a UV map.

6.4. UV Mapping Technique

We improve upon existing impostor techniques for adding
variety by replacing the detail map images (described in
Section 6.3) with a texture coordinate map or UV map.
This is similar to a normal map whereby it is generated for
each viewpoint and contains the texture coordinates of the
model’s surface encoded as a RGB value. At run-time, these
values are used to lookup the same set of diffuse textures
used by the mesh, allowing texture variation for both the
human’s skin and cloth. To also allow for colour variation,
the alpha channel of the mesh’s diffuse textures is encoded
with alpha encoded regions which are used to lookup the
colour map. The overall sequence for shading and adding
both colour and texture variation to the impostor representa-
tion is shown in Figure 9. Before the impostor’s UV mapped
images are pre-generated, texture seams should be kept to a
minimum when texture mapping the associated mesh. Other-
wise, these seams result in incorrect texture coordinates be-
ing stored in the UV map, which causes rendering artefacts
to arise at run-time due to the wrong pixels in the diffuse tex-
ture being addressed. A similar type of artefact also occurs
when linear filtering is used, causing the background pix-
els and the impostor’s silhouette to be linearly interpolated
and generating incorrect texture coordinates. However, this
is only noticeable when the impostor is close to the viewer.

This new type of image allows the texture variety and in-
terest of each clothed impostor to be greatly increased. Re-
placing the detail map with the UV map image ameliorates
the problem of trying to add the same type of variation us-
ing detail maps, which results in the consumption of large
amounts of texture memory (see Section 6.5). Additionally,
these UV maps could be further utilised to enhance the im-
postor’s realism by applying various per-pixel lighting tex-
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tures as specular maps, which are commonly used by high
resolution game characters.
6.5. Results

Frame rate tests were carried out on the clothed crowd
system to investigate how many clothed humans could be
displayed using different LOD representations at 30 fps
(see Figure 10). All of our tests were performed using a
PentiumIV 3.6Ghz processor, with 2.0GB RAM and an
ATI Radeon X850 XT Platinum Edition graphics card with
256MB of video memory. In each test, all of the humans
were on the screen walking on the spot, and were dynami-
cally lit.

Figure 10: Number of humans displayed at 30 fps using dif-

ferent LOD representations.

It was found that 90 high resolution geometric models of
clothed characters (13,056 triangles each) could be dis-
played onscreen at one time. With loss of visual quality,
this number could be increased to 655 when low resolution
geometry clothed characters were displayed (1,899 triangles
each). Approximately 6,600 UV mapped impostors could be
displayed at the same frame rate, but the closer humans ap-
peared very pixellated. As expected, the number of detail
mapped impostors displayed is higher due to the new UV
map approach requiring extra texture lookups and per-pixel
operations. When we used a hybrid geometry/impostor ap-
proach as in [DHOO05], up to 6,000 humans could be dis-
played (15 high resolution, 5,985 UV mapped impostors)
which allowed visual quality and real-time performance to
be maintained. Visual fidelity was maintained as impostors
were displayed at the 1:1 pixel-to-texel ratio, where they are
perceptually equivalent to high resolution meshes [Ham05].

Furthermore, in the case of switching between a clothed
character’s mesh and impostor representation, adding vari-
ation to the cloth using the detail mapped approach requires
a substantially larger amount of texture memory in com-
parison to the UV mapped impostor (see Figure 11). These
calculations use a single clothed character and assume that
the detail mapped and UV mapped impostor consist of 10
frames of animation, each normal map being a 1024x1024
sized RBG image and both the detail map and UV map are
1024x1024 sized RGBA images. Additionally, each diffuse
texture used by the clothed character’s mesh representation

is a 1024x1024 RGBA sized image. DXT3 texture compres-
sion is used in these calculations to reduce the memory re-
quirements by 4 for all RGBA images and by 6 for all RGB
images.

Figure 11: Texture memory consumed by adding pattern

variation to the Geopostor system using UV mapped and de-

tail mapped impostors for a single clothed character.

7. Animation LOD: Adding Variety to the Impostor

Model’s Animation

Similar to the mesh model, we add variety to the anima-
tion at a lower level of detail by pre-generating the template
model’s impostor images using the same default animations,
that can reflect the age and gender of the model. To avoid
the impostors moving in step, each virtual human’s anima-
tion is offset by a particular number of frames to achieve a
more varied crowd motion. However, since each animation
key-frame is stored in a separate texture, this type of varia-
tion is limited depending on the number of textures needed
in a single frame.

Increasing an impostor representation’s sense of individual-
ism is a tricky problem, since it is limited to the animation
used in the pre-generation of its images. We solve this prob-
lem by layering head and arm gestures on top of the default
impostor animation, whereby a particular body-part in the
impostor image is replaced with a gesturing mesh represent-
ing the body-part. Since each body-part of the impostor is
represented by a particular alpha value in the detail image’s
alpha channel, the impostor can be rendered without these
body-parts by changing the alpha function accordingly. Us-
ing the corresponding mesh’s skeleton, the gesturing bones
are updated and the affected part of the mesh is deformed
and rendered (Figure 12). The main advantage of this ap-
proach is that it avoids the cost of deforming and rendering
the entire mesh by replacing it with the impostor representa-
tion. Thus, only the triangles affected by the gesturing bones
need to be rendered. While minor rendering artefacts can ap-
pear caused by the layering of the mesh on top of the impos-
tor, these can be removed through blending.

The problem with this method is that, depending on the
viewpoint being displayed, holes appear when a body part
is not rendered since the body part may sometimes be oc-
cluding other areas of the impostor. When the virtual human
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Figure 12: Adding variety to the virtual human model’s an-

imation by layering head and arm gestures on top of the de-

fault walk animation.

performs a head gesture this artefact is not as much of a prob-
lem as when they are performing an arm gesture. Currently,
virtual humans that are rendered with an impostor represen-
tation switch to a low resolution mesh representation when
they request an arm animation. As a possible solution, dy-
namically generated impostors could be used to render the
virtual human’s body without its arms and this will be inves-
tigated in future work.

8. Virtual Human LOD Shadows

Our run-time system enhances the realism of the virtual hu-
mans and the environment they inhabit by creating shadows
on the ground wherever the light is blocked. Our shadow
technique is based on the planar projected shadow algorithm
and is implemented in hardware using per-pixel stencil test-
ing. This section will describe how this technique is used to
render the virtual humans’ shadows.

The planar projected shadow algorithm is used to cast a geo-
metric model’s shadow onto a ground plane based on the
light’s position. In order to achieve this, a planar projected
shadow matrix can be constructed. Given the equation for a
ground plane G: −→N + d = 0 and the homogenous position of
the light −→L , a 4×4 planar projected shadow matrix S can be
constructed using Equation 8 (see [Bli88] [HMAM02] for
the derivation of the matrix).

S =







D−Lx ∗Nx −Lx ∗Ny Lx ∗Nz −Lx ∗d

−Ly ∗Nx D−Ly ∗Ny −Ly ∗Nz −Ly ∗d

−Lz ∗Nx −Lz ∗Ny D−Lz ∗Nz −Lz ∗d

−Lw ∗Nx −Lw ∗Ny −Lw ∗Nz D−Lw ∗d






(8)

where D = Nx ∗Lx +Ny ∗Ly +Nz ∗Lz +d ∗Lw

Stenciling works by tagging pixels in one rendering pass to
control their update in subsequent rendering passes. It is an

extra per-pixel test that uses the stencil buffer to track the
stencil value of each pixel. When the stencil test is enabled,
the frame buffer’s stencil values are used to accept or reject
rasterized fragments. When rendering the scene, the stencil
buffer is cleared at the beginning and a unique non-zero sten-
cil value is assigned to pixels belonging to the ground plane.
In the first rendering pass, the shadow cast by each virtual
human’s geometric representation is rendered. Using the ma-
trix S, the geometry is projected onto the ground plane and
rendered into the stencil buffer, where each pixel is tagged
with the ground plane’s unique stencil value. In the subse-
quent rendering pass, each virtual human’s representation is
rendered and the appropriate areas of the stencil buffer are
simultaneously cleared. This prevents an artefact whereby
shadows might overwrite real objects, damaging the realism
of the scene. Finally, a single semi-transparent quad is ren-
dered over the whole scene (where the stencil buffer pixels
have been set to the unique stencil value) resulting in realis-
tically blended shadows.

Our shadow technique uses a LOD approach, where either
the impostor or mesh representation is projected onto the
ground plane depending on which LOD representation the
virtual human is currently using (see Figure 13 (a) and (b)).
To render the virtual human’s shadow using the impostor
representation, we need to calculate which viewpoint image
needs to be displayed with respect to the light’s position and
rotate its quadrilateral so that it always faces the light. Us-
ing the virtual human’s position −→

H and the light’s position
−→
L , the quadrilateral’s normal vector −→N can be calculated
using Equation 9. The projection of the impostor onto the
ground plane with respect to the light position can be calcu-
lated using −→N and Equations 3 and 5 (previously described
in Section 4). The impostor’s shadow requires no more than
a single textured quad, and therefore is extremely fast to ren-
der.

−→
N =

−→
H −

−→
L

|
−→
H −

−→
L |

(9)

While this method is similar to that employed by Loscos et
al. [LTC01], our use of the stencil buffer instead of darkened
textures results in shadows that blend realistically with both
the underlying world and each other (see Figure 13 (d)). The
main advantage of implementing this shadow algorithm with
the stencil buffer is that it can avoid artefacts caused by dou-
ble blending and can limit the shadow to an arbitrary ground
plane surface. Unfortunately, unlike full geometric stencil
shadows, our projection shadows are restricted to the ground
plane and do not project onto nearby static objects, or other
dynamic objects. While shadow mapping could be used to
solve this problem, a LOD approach would be needed to deal
with the many hundreds or thousands of shadows. It should
be noted that shadow volumes were not considered in the
system as this technique can decrease the pixel fill rate and
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Figure 13: (a) Projected impostor shadow. (b) Projected mesh shadow. (c) Crowd and city without shadows. (d) Crowd and

city with projected LOD shadows.

the constructed shadow volume for an impostor is incorrect
as a result of being a semi-transparent quadrilateral.

9. Performance Optimisations

9.1. Virtual Human Occlusion Culling

As a first step towards improving performance, view frus-
tum culling can be used to eliminate those humans that
are not potentially on screen. However, due to the densely
occluded nature of an urban environment, large groups of
humans may be in the frustum but occluded by buildings
and therefore rendered unnecessarily. By avoiding the ren-
dering of these humans using occlusion culling techniques,
this should greatly improve the performance of the sys-
tem [CT97, BHS98, SVNB99, WS99, Zha98].

We make use of hardware accelerated occlusion culling
similar to the technique used by Saulters et al. [SF02]

to cull large sections of the crowd. We utilise the
ARB_occlusion_query extension to determine the visibility
of an object. This extension defines a mechanism whereby an
application can query the number of pixels drawn by a prim-
itive or group of primitives. Typically, the major occluders
are rendered and an occlusion query for the bounding box of
an object in the scene is performed. If a pixel is drawn for
that object’s bounding box, then the object is not occluded
and therefore should be displayed. The main performance
advantage of this extension is that it allows for parallelism
between the CPU and GPU, since many queries can be is-
sued before asking for the result of any one. This means that
more useful work, such as the rendering of other objects or
other computations on the CPU, can be carried out while
waiting for the occlusion query results to be returned.

Since the city is populated by several thousand humans,
there could potentially be a large number of humans in the

c© The Eurographics Association 2007.

EG:119



S. Dobbyn, R. McDonnell & C. O’Sullivan / Real-Time Crowd Rendering with Pre-Generated Impostors

Figure 14: Occlusion Culling: (a) Environment is divided into nodes to facilitate occlusion culling. (b) Characters that are in

unoccluded nodes (shown in yellow) are drawn while those that are in occluded nodes (shown in red) are discarded.

view frustum and therefore it would be computationally in-
efficient to perform a separate occlusion query for each hu-
man. To facilitate the occlusion culling of buildings, the vir-
tual city is divided into a grid of regular-sized nodes (see
Figure 14(a)). By re-using these nodes so that they record
which virtual humans inhabit them, this can help to avoid
performing separate occlusion culling queries for each hu-
man. Having initially rendered the static environment, we
perform occlusion queries on the bounding volume of any
nodes in the view-frustum, thus allowing us to rapidly dis-
card those nodes hidden by the environment and the humans
within them (as shown in Figure 14(b)). With regards to
the unoccluded nodes, we perform view-frustum culling on
the virtual humans within these nodes, since parts of these
nodes may not be within the view frustum. It should be noted
that the height of each node’s bounding volume is set to the
height of the tallest virtual human used in the system to allow
humans to still be displayed when they are behind an occlud-
ing object whose height is less (e.g., walls). This occlusion
culling method could be extended so that the number of pix-
els drawn for a node could be used as a metric to decide on
what level of detail the humans in the node should use, with
regards to representation, behaviour, and animation.

9.2. Virtual Human Simulation LOD

While frustum and occlusion culling decrease the rendering
workload, there are still overheads associated with updating
the positions of thousands of humans in motion. To lighten
the workload we pause humans within nodes that have not
been visible for more than a certain number of seconds. This
technique takes advantage of the fact that a large number
of humans are occluded per frame and therefore their posi-
tion in the world can remain unchanged without the viewer

noticing. By storing the time each node was last unoccluded,
the position of a human is only updated if the node it in-
habits has been unoccluded for the last five seconds. This
time delay prevents temporal artefacts becoming noticeable
amongst the nearby humans when performing rapid camera
rotation. In addition to this, checking whether a node is oc-
clusion culled is only performed every 100 milliseconds if
the camera has moved or rotated, since the same nodes will
be occluded if the camera remains stationary. Since the hu-
mans only move every 100 milliseconds, we reduce the num-
ber of times we check whether a human is within the view-
frustum by performing this test every time the humans move
instead of every frame.

However, simulation artefacts can arise when the camera’s
position remains static for a period of time and the humans
move from an unoccluded node to an occluded node. This re-
sults in the congregating of humans on the boundary of these
occluded nodes since their steering behaviour is not being
updated. A potential solution to this problem would involve
a LOD simulation approach whereby humans are updated at
a frequency dependent on the last time the node was unoc-
cluded.

9.3. Minimising OpenGL State Changes

OpenGL is a simple state machine with two operations: set-
ting a state, and rendering utilizing that state. By minimizing
the number of times a state needs to be set, this can max-
imize performance since it minimizes the amount of work
the driver and the graphics card have to do. This technique
is generally referred to as state sorting and attempts to orga-
nize rendering requests based around the types of state that
will need to be updated. Generally, the goal is to attempt to
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sort the render requests and state settings based upon the cost
of setting that particular part of the OpenGL state.

With regards to our crowd, rendering is optimized by sorting
the virtual humans in the following order based on the most
to least expensive state changes: binding a shader, binding
a texture, and setting VBO data pointers. By organising the
rendering of our crowd in this manner, our approach sorts
each virtual human by LOD representation, then by tem-
plate model, and finally by the current key-frame of ani-
mation. Sorting the virtual humans by LOD representation
minimizes the number of times that the following states have
to be changed: the setting of lighting parameters, alpha test
enabling and disabling, and vertex and fragment programs.
Next, sorting the LOD representations based on template
model minimizes texture loads and binds. Finally, sorting
virtual humans using the same template model by animation
key-frame reduces the setting of VBO data pointers, since
each VBO stores the data for a particular key-frame. In the
case of rendering virtual humans using the same model and
animated with the same key-frame, an extra step needs to be
implemented to sort them based on the viewpoint required
with respect to the camera. This is necessary, since certain
viewpoints for the current key-frame are obtained by mir-
roring the same viewpoint for the symmetrical key-frame.
By sorting impostors based on whether the viewpoint is mir-
rored, this minimizes texture loads and binds.

9.4. Minimising Texture Thrashing

Texture thrashing can become a serious problem when popu-
lating a virtual city with crowds using a number of different
pre-generated impostor models. In addition to each impos-
tor model requiring 1.5MB of texture memory every frame,
the city model will also require a certain amount of tex-
ture memory. Therefore, as the number of template models
within the virtual city increases, texture thrashing will occur
much sooner as a result of the extra texture memory being
consumed by the city model. It should be noted that, in the
case of real-time applications where the camera is fixed, say
at eye-level, only 17 viewpoint images are needed for each
frame of animation and therefore the consumption of texture
memory is less of a problem. Since we wanted to implement
a more generic system, where the camera can view the city
from any height, 17 by 8 viewpoints are needed for the im-
postor representation.

However, as only a subset of the viewpoints in the impostor
textures is being used every frame, we propose splitting the
impostor detail and the normal map images into eight sep-
arate smaller elevation images containing the set of view-
points pre-generated at each camera height. To facilitate the
creation of these elevation images, an application was writ-
ten in C to allow the positioning of viewpoint images within
a larger image. The application reads in the 17 viewpoint im-
ages for a particular camera height and, based on the sum of
these images’ area, the minimum dimensions of the eleva-
tion image are calculated. Once the viewpoints have been

loaded in, the application allows the user to organise the
viewpoints within the new elevation image. Unfortunately,
since the area of each viewpoint image varies, it is not guar-
anteed that they will all fit within the minimum dimensions
and therefore have to be increased by a factor of two along
a single dimension. Once the user has got all the 17 images
to fit, the new elevation image is exported (shown in Figure
15).

Figure 15: Normal map split into smaller elevation images.

The number of elevation images needed to render impos-
tors using a particular human model type depends on the
height of the camera and the distance of the camera from
each impostor. Since buildings in a city environment gen-
erally occlude humans in the distance, all elevation images
should never be needed simultaneously. The angle (θE ) be-
tween the impostor and the camera around the horizontal
axis, can be calculated using Equation 10, where hcam is the
camera height and dxz is the distance on the x-z plane from
the camera to the impostor. Using θE , the elevation image
needed for that impostor can be calculated. As the camera’s
height decreases, the number of elevation images needed is
reduced dramatically (see Equation 10). Taking advantage
of the occluding nature of city environments, this method of
separating impostor and normal map images for each ele-
vation permits greater variety, without texture thrashing, as
a result of each human model type consuming less texture
memory. It should be noted that in order for the transitions
between viewpoints to appear smooth, the perceptual metrics
detailed in [MDCO06] should be employed. These metrics
are dependent on character dimensions, with characters of
large width to depth ratios requiring more viewpoint images
than those with small width to depth ratios.

θE = tan
−1(

hcam

dxz
) (10)

9.5. Optimisations For Spectator Crowds

In the case of crowds that do not move within the virtual en-
vironment, such as those found in sports games, viewpoint
selection and the orienting of the billboard for each charac-
ter can be done on the vertex processor. For each individ-
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Figure 16: (a) Rendering thousands of characters in a single draw call. (b) Frame rate results.

ual, the billboard’s vertices are set to the individual’s posi-
tion and the corresponding texture coordinates are set to the
character’s directional vector. These values are subsequently
used by the vertex processor to dynamically rotate the ver-
tices towards the camera view and lookup the texture coor-
dinates for the most suitable viewpoint image. This means
that the billboards of individuals can be batched together in
a single vertex buffer object and rendered in a single draw
call. For more details see [MR06]. It should be noted that
smaller numbers of animation frames will result in bigger
batch sizes, since only individuals using the same impostor
texture can be batched together. Additionally, since the cam-
era is typically limited to the playing field in sports games,
pre-generating viewpoints from behind the character is not
necessary, thus reducing the amount of texture memory con-
sumed by the impostors.

As shown in Figure 16, rendering multiple instances in a
single draw call greatly improves performance resulting in
tens of thousands of characters drawn in real-time (see Fig-
ure 16). Two scenarios were tested to show the effect of
batch size. The first test scenario involved one template
model performing a single animation. The second scenario
involved smaller batches as a result of using 2 template mod-
els performing one of 3 different animations. In both cases
each animation was one second long and consisted of 30
key-frames. All of our tests were performed using a Pen-
tiumIV 3.6Ghz processor, with 2.0GB RAM and an NVidia
Quadro FX 4400 graphics card with 512MB of video mem-
ory.

10. Short-Comings of the Pre-Generated Impostor

Representation

While the impostor used in the Geopostor system is com-
putationally efficient to render, the following short-comings
are associated with this representation:

• Anti-Aliasing: Since the impostors are not rendered with-
out anti-aliasing, this results in the silhouette being pixel-
lated in appearance and is especially noticeable when the
impostor is close to the viewer. Future work will investi-
gate how anti-aliasing techniques would improve the im-
postor’s visual appeal.

• Models and animations need to be symmetric: To reduce
the number of viewpoint images needed, both the model
and animation have to be symmetric in the XZ plane. If
this is not possible then the impostor’s texture will con-
sume twice as much memory in order to fit the additional
viewpoint images that are needed.

• No viewpoint images generated from directly above or
below the ground-plane: No viewpoint images were gen-
erated from directly above the virtual human model or
from below the ground-plane, resulting in parallax arte-
facts when the impostor is viewed from these camera an-
gles. However, these viewpoints were not needed since the
camera is not allowed to move below the ground plane in
the city simulation system. The number of viewpoint im-
ages needed depends on what camera angles the impostors
will be viewed from and this should be considered when
generating the impostor’s textures to minimize memory
consumption.

• Pixellated shadows when the sun is low in the sky: Since
the impostor texture are used in projecting ground-plane
shadows (see Section 8), this results in the shadows being
pixellated when the sun is low in the sky and is especially
noticeable when the shadows are close to the viewer. In
this case, the virtual human’s mesh representation should
be used in the projection of the shadow.
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Course Abstract 

 

3D Video is an emerging and challenging research discipline that lives on the 

boundary between computer vision and computer graphics. The goal of researchers 

working in the field is to extract spatio-temporal models of dynamic scenes from 

multi-video footage in order to display them from user-controlled synthetic 

perspectives. 3D Video technology has the potential to lay the algorithmic 

foundations for a variety of intriguing new applications. This includes stunning novel 

visual effects for movies and computer games, as well as, facilitating the entire movie 

production pipeline by enabling virtual rearranging of cameras and lighting during 

post-processing. Furthermore, 3D Video processing will revolutionize visual media 

by enabling 3D TV and movies with interactive viewpoint control, or by enabling 

virtual fly-arounds during sports-broadcasts.  

 

To achieve this purpose, several challenging problems from vision and graphics have 

to be solved simultaneously. The speakers in this course will explain the foundations 

of dynamic scene acquisition, dynamic scene reconstruction and dynamic scene 

rendering based on their own seminal work, as well as related approaches from the 

literature. They will explain in more detail three important categories of algorithms 

for dynamic shape and appearance reconstruction, namely silhouette-based, stereo-

based, and model- based approaches. Alternative methods, such as data-driven 

approaches, will also be reviewed. The tutorial will focus on latest 3D Video 

techniques that were not yet covered in a tutorial, including algorithms for free-

viewpoint video relighting, model-based deformable mesh tracking, as well as high-

quality scene reconstruction with camera/projector setups. The course keeps a 

balance between the explanation of theoretical foundations, engineering problems 

and emerging applications of 3D Video technology. We therefore believe that the 

course will be a valuable and entertaining source of information for students, 

researchers and practitioners alike. 
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Syllabus 

1. Introduction (15 min) - Speaker: Christian Theobalt 

• 3D Video - Why bother? 

 

2. Silhouette-based Methods (25 min) - Speaker: Stephan Würmlin 

• Silhouette-based Methods - Foundations 

• Point Primitives for 3D Video 

• Real-time Applications in tele-presence systems (the blue-c) 

 

3. Stereo-based Methods (25 min) - Speaker: Stephan Würmlin 

• Stereo-based Methods - Foundations 

• Using Camera Systems and Structured Light for High-quality 3D Video 

• Postprocessing Methods 

 

4. Model-based 3D Video I (25 min) - Speaker: Christian Theobalt 

• Foundations 

• Marker-less Tracking and Dynamic Scene Reconstruction 

• Model-based 3D Video Rendering 

 

5. Break  
 

6. Model-based 3D Video II (25 min) - Speaker: Edilson de Aguiar 

• Alternative Model-based Approaches 

• Deformable Mesh Tracking for 3D Video 

 

7. Free-Viewpoint Video Relighting (25 min) - Speaker: Christian Theobalt 

• Data-driven Dynamic Scene Relighting 

• Model-based Free-Viewpoint Video Relighting 

•  

8. Applications (30 min) - Speaker: Christoph Niederberger 

• Authoring and Editing 3D Video 

• Applications of 3D Video in Movie and TV Production 

•  

9. Outlook And Discussion (10 min) - Speaker: Stephan Würmlin 
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Development of Visual MediaDevelopment of Visual Media

• Images

• Video

• 3D Video

– 3D perception or 

viewpoint change

Laterna MagicaPhantasmagoria

Phenakistiscope Panavision Camera Cinema

3D VIdeo
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Vision is one of the most powerful senses that humans possess as it is  one of the richest 

sources of psychological and physical stimuli. Visual media such as video or television 

capitalize on this fact and allow viewers to immerse with their imagination into scenes 

and events displayed to them.

In history, the ever ongoing technical improvement has caused several major changes in 

the way how visual media are produced and perceived. However, the most important 

change so far was due to the introduction of time as an additional dimension. While 

humans have been and are still fascinated to look at photographs, the first devices that 

were able to reproduce and capture moving images caused a major revolution that still 

dominates the type of visual media that we mostly use today, namely video (in its most 

general sense).

The availability of ever more powerful acquisition, computation and display hardware, 

has spawned a new field of research that aims at adding one more dimension to visual 

media, namely the third spatial dimension. This young and challenging field is still in its 

early days but, as we will show in this course, bears great potential to revolutionize 

visual media once more. 
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3D Video

Techniques differ in range of possible (virtual) viewpoints, ability 

to change viewpoint interactively, and complexity/completeness of 
employed scene representation

3D Video is a multi-facetted Field3D Video is a multi-facetted Field

The field of 3D video is multi-facetted as there exist several ways how the third 

dimension can be added. Here “3D” can, for instance, mean that the viewer is given the 

possibility to interact with a video and change his viewing direction on the fly while 

playing the content.
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3D Video

Panoramic

Video

Techniques differ in range of possible (virtual) viewpoints, ability 

to change viewpoint interactively, and complexity/completeness of 

employed scene representation 

Free panning – predetermined viewpoints – no explicit 3D model 

Omnidirectional Video

3D Video is a multi-facetted Field3D Video is a multi-facetted Field

This type of immersive experience is, for example, generated by a technique known as 

omni-directional or panoramic video. Typically, this type of footage is recorded with an 

omni-directional camera. Such a camera either comprises of several synchronized 

cameras that simultaneously record all spherical directions (as the one in the image 

above), or of a normal camera and an attached panoramic mirror that also enables 

multidirectional recording. During display the captured footage is typically mapped onto 

a spherical or cylindrical surface such that the viewer can perform arbitrary rotations 

while traveling along a fixed path of camera positions.

Please refer to [1] for a detailed study of panoramic imaging techniques.
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3D Video

Panoramic

Video

Depth-enhanced

2D Video

Techniques differ in range of possible (virtual) viewpoints, ability 

to change viewpoint interactively, and complexity/completeness of 

employed scene representation 

Micro-Lens Display

Depth-image-based Video3D Cinema

Polarized Glasses

Left eye video Right eye video Color video Depth video

3D Video is a multi-facetted Field3D Video is a multi-facetted Field

A different type of 3D video is provided by 3D Cinema or related depth-image based 

methods. Here, the main goal is to generate a true 3D depth perception while displaying 

video streams. However, the viewer cannot change a virtual camera viewpoint 

interactively, but can merely move his head in a very confined space to experience 

parallax effects.

While capturing a movie for 3D cinema, a stereo camera records independent video 

streams for the left and the right eye. During display, both streams are simultaneously 

rendered. Typically, some kind of stereo splitter technology is used to separate the left 

and the right signals from the displayed footage. A common method is to use two 

projectors with different polarizations and a pair of glasses with appropriate polarization 

filters for each eye.

Depth-image-based rendering [2] uses hybrid video streams comprising of a color stream 

and a synchronized depth map stream. During display, virtual images for the left and the 

right eye can be reconstructed on-the-fly thereby creating a similar depth-enhanced 

viewing experience as 3D cinema, for instance on an auto-stereoscopic micro-lens 

display. 
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3D Video

Panoramic

Video

Depth-enhanced

2D Video

Free-viewpoint 

Video

Techniques differ in range of possible (virtual) viewpoints, ability 

to change viewpoint interactively, and complexity/completeness of 

employed scene representation 

3D Video is a multi-facetted Field3D Video is a multi-facetted Field

The previous two categories were mainly representative examples. A sea of other 

techniques exists that combines ideas from the two to perform, for instance,  panoramic 

stereo to name just one example.

The techniques we will talk about in this course reconstruct and render the most general 

type of 3D videos, so-called free-viewpoint videos. This type of dynamic scene 

representation enables the display of captured real-world footage from arbitrary novel 

viewing positions and directions. As such, a free-viewpoint video representation is the 

most general type of 3D video as all other types of 3D video that we talked about before 

can be derived from it. 
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Free-viewpoint VideoFree-viewpoint Video

• Reproduce Arbitrary Virtual Viewpoints

• Explicit Reconstruction Approaches

• Data-driven Approaches

Dynamic Shape Model Dynamic Appearance Model

texture reflectance

Most 3D video approaches capture a full dynamic 3D representation of real-world scenes 

that comprises, for instance, of a dynamic shape model as well as a dynamic appearance 

model. As we will see later in the course, the dynamic shape models are typically 

dynamic 3D meshes or point primitive presentations. Multi-view appearance is normally 

represented by a set of multi-view textures. Recently, even dynamic surface reflectance 

could be reconstructed which we will also show in this course.

Instead of representing scene geometry and appearance explicitly, data-driven 

approaches sample the space of capturing viewpoints densely and reconstruct novel 

views by appropriately combining the captured raw image data. In the remainder of this 

course, we will see examples for either of these category of approaches.

Some images on this slide were kindly provided by Larry Zitnick from Microsoft 

Research and Paul Debevec from the University of Southern California.
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3D Video -
An Algorithmic Challenge 

3D Video -
An Algorithmic Challenge 

• 2D Video

• 3D Video

Acquisition Display

Film camera Reproduction
of image stream

2D Image Stream

Acquisition Display

Multiple cameras

+
additional sensors

Rendering from novel 

viewpoints and under 
novel lighting conditions

Reconstruction

Derive representations 

for shape and appearance

from input video/sensor

footage

The generation of 3D Video requires the solution to hard algorithmic problems that live 

on the boundary between the fields of Computer Vision and Computer Graphics.

The standard 2D video production pipeline shown above is fairly well understood an 

comprises of an acquisition and a display step. Acquisition is performed using standard 

camera systems and display, for the most part, is a replay of the captured streams on a 

display device.

The production of 3D video requires a fundamental rethinking of this pipeline. While 

still there is an acquisition and a display step involved, they have to be redesigned from 

scratch in terms of both the required engineering (sensors etc. ) and the employed 

algorithms. Additionally,  there is a reconstruction step involved which infers from the 

captured footage the underlying dynamic scene descriptions. It is this step which poses 

the hardest challenges as it requires the proper solution to several computer vision 

problems known to be notoriously hard.

In the remainder of this course, we will explain in more detail several possible solutions 

to each of the three steps.
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Why bother ? - ApplicationsWhy bother ? - Applications

3D Video will revolutionize Visual Media

• 3D Digital Cinema

• 3D Enhancement of Live Broadcasts

• Interactive 3D Video

• Visual Effects in Movies and Games

• 3D City Mapping

• …

Apart from the fact that 3D Video raises challenging algorithmic problems, the authors 

of this course believe that the technology has the potential to revolutionize the way How 

visual media are produced and presented.

There is a variety of intriguing applications of 3D video technology in movie, TV and 

game productions that are currently developed. The list above just names of few of them. 

In the remainder of the course, we will have a closer look at some of these applications.
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ScheduleSchedule

• Introduction – Theobalt (15 min)

• Silhouette-based Methods – Würmlin (25 min)

• Stereo-based Methods - Würmlin (25 min)

• Model-based 3D Video I – Theobalt (25 min)

• Break

• Model-based 3D Video II – de Aguiar (25 min)

• Free-Viewpoint Video Relighting – Theobalt  (25 min)

• Applications – Niederberger (30 min)

• Outlook and Discussion - Würmlin (10 min)

This slide illustrates the further schedule of the course. Please also refer to the beginning

of the course notes for a more detailed schedule.
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Course WebpageCourse Webpage

http://www.mpi-inf.mpg.de/departments/d4/

3dvideo_EG_course/

Many links, test sequences, tools, additional 

background information on camera 

systems…

The webpage accompanying this course lists some interesting links and also some test 

data set that the people who attended the course may want to use in their own work. The 

web page also features a detailed list of references to related work from the literature.

References

•[1] O. Faugeras, R. Benosman, S. B. Kang, Panoramic Vision, Springer, 2001.

•[2] C. Fehn. 3D-TV Using Depth-Image-Based Rendering (DIBR). In Proceedings of 

Picture Coding Symposium, San Francisco, CA, USA, December 2004. 
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Silhouette-based Methods
(25 min)

Silhouette-based Methods
(25 min)
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Key to View Interpolation: 
Geometry

Key to View Interpolation: 
Geometry

Camera 1 Camera 2

Image 1 Image 2

Virtual Camera

3D video is mainly about how to generate or interpolate arbitrary views from a set of 

multiple camera images. There are many different methods that can achieve that, 

however, purely image-based approaches such as the Lightfield or the Lumigraph need a 

huge amount of different input images to smoothly interpolate novel views. Most 

researchers intend to design more practical systems, and for them it is key to include 

some sort of geometry or 3D information in the data. 
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Image AcquisitionImage Acquisition

From images acquired by cameras…
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Geometry: 3D 
Reconstruction

Geometry: 3D 
Reconstruction

• Different computer vision algorithms out there

• Mostly used:

– Depth-from-Stereo or 

– Shape-from-Silhouettes

?

… we want to know where each 3D scene point is that is image by the camera. In 

other words we want to compute the distance from the camera (or more precise 

the image plane of the camera) to the scene point.

There are basically two classes of algorithms that can compute this information 

from the images alone: (1) depth-from-stereo and (2) shape-from-silhouettes. 

We will explain the fundamentals of both classes of algorithms and show some 

example methods and systems for 3D video.
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Pinhole Camera ModelPinhole Camera Model

Albrecht Dürer, Man Drawing a Lute (The Draughtsman of the Lute), woodcut, 1525

Before we can do that we need to know how we model the camera. The most used model 

is the ideal pinhole camera model which is a sufficiently close approximation of a real 

camera. The geometric process for image formation in a pinhole camera has been nicely 

illustrated by Dürer. The process is completely determined by choosing a perspective

projection center and a retinal plane. The projection of a scene point is then obtained as 

the intersection of a line passing through this point and the center of projection C with 

the retinal plane P. 

Most cameras are described relatively well by this model. In some cases additional 

effects (e.g. radial distortion) have to be taken into account 
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Pinhole Camera Model (2)Pinhole Camera Model (2)

v

u

d

x

y

z

pinhole “lens”image plane

Olivier Faugeras
Three-dimensional Computer Vision

MIT Press 1993

Here is a more schematic overview. 

There is a perspective transformation that transforms points in 3-space X, Y, Z to image 

plane pixels u, v. 
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Frontal Pinhole Camera 
Model

Frontal Pinhole Camera 
Model

v

u

d

x
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z

image

plane
center of

projection

Olivier Faugeras
Three-dimensional Computer Vision

MIT Press 1993
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The frontal pinhole camera model is more easy to understand if one thinks about this. 

There all viewing rays converge in the pinhole which is now called the center of 

projection.

The projection of a camera (transforming 3D points into the camera’s image plane) is 

defined by this equation.

Where: 

P is the matrix projecting viewing rays to image coordinates. The inverse of P would be 

the matrix transforming image coordinates to rays in 3D world space. 

O represents the center of projection of the pinhole camera.
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Frontal Pinhole Camera 
Model (2)

Frontal Pinhole Camera 
Model (2)
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The mapping between a point in 3D space and the corresponding camera pixel can also 

be rewritten as…

Where: 

K is an upper is an upper triangular 3x3 matrix containing the camera intrinsic 

parameters and R and t denote the rotation and translation between a world coordinate 

system W and the camera coordinate system C. 

fcx and fcy are the focal lengths in effective horizontal and vertical pixel size units, and 

[ccx, ccy]^T represents the image center coordinates, i.e. the principal point. 

The center of projection can easily be determined by…
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The Visual HullThe Visual Hull

• Shape-from-Silhouettes

– Intersection of silhouette volumes 
seen from multiple points of view

– Reconstructs the Visual Hull

• Voxel representation

– Volume carving

• Image-based representation

– Silhouette image with 
occupancy intervals at 
every pixel

Aldo Laurentini
The Visual Hull Concept for Silhouette-Based Image Understanding

IEEE Transactions on Pattern Analysis and Machine Intelligence 1994

First we will tackle shape-from-silhouettes methods. Starting from the silhouettes 

extracted from the camera pictures, a conservative shell enveloping the true 

geometry of the object is computed. This generated shell is called the visual hull 

[Laurentini, 1994]. For 2D scenes, the visual hull is equal to the convex hull of the 

object, and for 3D scenes the visual hull is contained in the convex hull, where 

concavities are not removed but hyperbolic regions are. Even convex or 

hyperbolic points that are below the rim of a concavity (e.g. a marble inside a 

bowl) cannot be reconstructed. While the visual hull algorithms are efficient, the 

geometry they reconstruct is not very accurate. When observed by only a few 

cameras, the scene’s visual hull is often much larger than the true scene. When 

rendering new views, one can partially compensate for such geometric 

inaccuracies by view-dependent texture-mapping [Debevec et al., 1996, Debevec 

et al., 1998]

Strictly, the visual hull is the maximal volume constructed from all possible 

silhouettes. In almost any practical setting, the visual hull of an object is computed 

with respect to a finite number of silhouettes. We call this type of visual hull the 

inferred visual hull.

There exist two classes of methods to compute the visual hull, (1) voxel carving 

methods, which carve away all voxels that are not contained in the silhouettes of 

the acquisition cameras and (2) image-based methods, that exploit epipolar

geometry and store so-called occupancy intervals at every pixel.
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What is a Visual Hull?What is a Visual Hull?

Here is an animated illustration of how a visual hull is carved…
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Image–based Visual HullsImage–based Visual Hulls

• Given k silhouettes, their associated viewpoints and 
the desired viewpoint:

1. Cast a ray into space for each pixel in desired view

2. Intersect this ray with the k silhouette cones and record 
intersection intervals

3. Intersect the k lists of intervals

• Doing this in 3D is too expensive 
(projection of silhouettes into 3-space)

→ In 2D: Epipolar Geometry, projects 3D rays into 
2D space of the silhouettes

Matusik et al.
Image-based Visual Hulls

SIGGRAPH 2000

We explain a particularly fast shape-from-silhouettes algorithm – which is able to 

perform in real-time - the image-based visual hulls method as presented by 

[Matusik et al., 2000]. 

The IBVH method takes advantage of epipolar geometry to accelerate calculation 

of depth values and to achieve real-time performance. As opposed to volumetric 

reconstruction techniques, e.g. voxel carving, the IBVH algorithm does not suffer 

from limited resolution, or quantization artifacts due to the underlying explicit 

voxel representation.
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Epipolar GeometryEpipolar Geometry

An epipole lies at the intersection of the baseline of the two cameras with the image 

plane of one of the cameras. Therefore, the epipole is the projection of the center of 

projection of one camera into the image plane of another camera.

An epipolar plane is defined by both centers of projection and a 3D point . Each plane 

containing the baseline is an epipolar plane, and intersects the image planes in 

corresponding epipolar lines, which also represent the projection of the ray from the 

center of projection of the other camera to the point . As the position of the 3D point 

varies, the epipolar planes “rotate” around the baseline. This one-parameter

family of planes is known as an epipolar pencil. The respective epipolar lines intersect at 

the epipole.

The benefit of epipolar geometry in terms of a 3D reconstruction algorithm is that the 

search for a point corresponding to a point in another image plane need not cover the 

entire image plane, but can be restricted to an epipolar line.
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Epipolar Lines in Reference 

Views

Epipolar Lines in Reference 

Views

Here’s an illustration of the epipolar lines of some points in one reference image, 

projected into the other images.
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IBVH: Exploiting Epipolar

Geometry

IBVH: Exploiting Epipolar

Geometry

Creating Image-based Visual Hulls:

1. Projection of the desired 3D viewing ray 

onto a reference image (epipolar line)

2. Determination of the intervals where the projected 

ray crosses the silhouette

3. Intersect with intervals from other reference 

images

4. Reconstruct texture by projecting the IBVH to the 
k reference images and sample the color values

For estimation depth for a given pixel or fragment a ray has to be cast into space 

from that pixel. By making use of epipolar geometry this ray is projected to line 

segments in all other reference images (1). 

There, the intersection/intervals is calculated with the binary silhouette (2). The 

resulting intersection points are lifted back onto the original ray where intersection 

intervals are built. They are represented as pairs of enter/exit points. 

The intervals can be intersected with intervals from all other reference images (3). 

Finally, texture is reconstructed in the desired view by projecting the IBVH data to 

all reference images and blending the color values together.

The result is basically a LDI representation of the geometry as seen from a 

specific camera. The key aspect

of the IBVH algorithm is that all intersection calculations can be done in two 

dimensions rather than three.
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IBVH: Algorithm IllustrationIBVH: Algorithm Illustration

And here’s an illustration of the IBVH process for the notes.
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Image-Based ComputationImage-Based Computation

Reference 1

Reference 2
Desired

And here’s an animated illustration of the IBVH process.
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Shading AlgorithmShading Algorithm

• A view-dependent strategy

Finally, texture is reconstructed in the desired view by projecting the IBVH data 

to all reference images and blending the color values together.

Different techniques exist to blend the textures together, mostly applied is the 

Unstructured Lumigraph Rendering framework.

Care has to be taken for visibility.
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IBVH: VisibilityIBVH: Visibility

• Visibility determination

– Project all pixels’ depth ranges into reference image

– Built z-buffer in reference image plane

– Desired pixel location on top?

• Implicit depth

In order to compute the visibility of an IBVH sample with respect to a given 

reference image, a series of IBVH intervals are projected back onto the reference 

image in an occlusion-compatible order. The front-most point of the interval is 

visible if it lies outside of the unions of all preceding intervals.

Once more we can take advantage of the epipolar geometry in order to 

incrementally determine the visibility of points on the visual hull.
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Upper: depth maps of the computed visual hulls

Lower: shaded renderings from the same viewpoint

4 segmented 

reference images

IBVH: Original ResultsIBVH: Original Results

Input:

And here are some results for the notes.
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IBVH: Original Results VideoIBVH: Original Results Video
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The blue-cThe blue-c

Gross et al.
The blue-c

SIGGRAPH 2003

Such techniques can now be exploited for telepresence applications since they provide

360 degree viewing of persons. ETH Zurich conducted a huge project in 1999-2004 

which is called the blue-c. It exploited shape-from-silhouettes algorithms to connect two

spatially immersive environments to be able to have telecollaboration sessions – seeing

the remote participant in full 3D.

Here is example of how blue-c works. It connects a 3 sided CAVE enviironment located

inthe ETH computer center downtown Zurich with a second site on our campus outside

Zurich. This second site consists of a signle stereo projection panel only. As a central

feature of our system, both sites are equipped with 16 video cameras capturing 3D video

of the blue-c users. This allows for immersive 3D telepresence applications as the one

you can see in the video clips.
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blue-c: Ideablue-c: Idea

ETH 
Hönggerberg

ETH 

Center

The blue-c connects the two physically remote ETH campuses in Zurich, a distance of 

approx. 10 miles. The basic idea was to connect both campuses with a next-generation 

telepresence system.

EG:164



35
© The Eurographics Association 2007 New Trends in 3D Video

blue-c: System Overviewblue-c: System Overview

This picture displays an overview of the system architecture. We can clearly see that our

setup is asymmetric. Besides costs, the major reason for this asymmetric design was to 

demonstrate scalability.

On the left we see the core hardware components being involved to accomplish

simulaneous immersive projection and acquisition. This includes multiple cameras, 

shuttered projection screens, shutter glasses, an active lighting system, and an actively

shuttered projection system. All hardware components are synchronized using a specially

designed sync hardware. The cameras transfer 2D video frames to a PC cluster which

computes a 3D video inlay of the user in realtime. This inlay is streamed over the

network to the partner site and is composited into the synthetic scene by the graphics

engine. We use both PCs and SGI Onyx 3200.
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blue-c: Switchable
Projection Walls

blue-c: Switchable
Projection Walls

One of the core technical challenges when combining video acquisition and 

immersive projection is the placement of the cameras. As a central part of our

design we place most of the cameras outside the projection space, which are, 

hence, not visible to the user. 5 remaining cameras are attached to the upper

corners and to the ceiling to facilitate color calibration and texture acquisition.

It is easy to see that the projection screens occlude the user from the outside

cameras. We solve this problem by using phase dispersed liquid crystal panels. 

These panels are switched from an opaque state during projection to an 

transparent state during acquisition. We do this at 62.5 Hz which is well above

the fusion frequency of the human visual system.
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blue-c: Timingblue-c: Timing

The following video illustrates the timing and synchronization of the involved

hardware components. 

We first project the image for the left eye then the image for the right eye. 

During a small time window of about 4 ms between the projection cycles, we

open the walls and acquire the video frame. Due to hardware limitations the

system currently graps frames in every 7th window resulting in 9 Hz update rate. 

To improve the quality of the texture acquisition, we built an active lighting

system which is synchronized with the video acquisition.
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Dynamic Point SamplesDynamic Point Samples

Würmlin et al.
3D video fragments

Computers and Graphics 2004

The basic primitives of the pipeline are 3D video fragments, which are dynamic point 

samples with attributes like, e.g., a position, a surface normal vector, and a color. 3D 

Video Fragments are a generalization of 2D video pixels towards 3D irregular point 

samples and we can therefore benefit from earlier work on point-based graphics. 
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Dynamic Point Samples: 
Advantages

Dynamic Point Samples: 
Advantages

• Unified geometry and appearance

– Amenable to topological changes of the scene’s 

geometry

• Needs less acquisition cameras for even 

broader viewing ranges 

– Compared to purely image-based approaches

• Efficient coding 

– e.g. by using conventional video coding algorithms

Dynamic points have some advantages over other primitives.

(1) It is a unified representation, holding geometry and appearance as one, and are 

amenable to topological changes of the scene’s geometry

(2) It needs less acquisition cameras for even broader viewing ranges compared to 

purely image-based approaches because it explicitly encodes the scene’s geometry 

information.

(3) It has potential for efficient coding schemes due to its simplicity, e.g. by using 

conventional video coding algorithms when stored in an image-space representation.
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blue-c: 3D Mirrorblue-c: 3D Mirror

The following example shows a 3D mirror application we built to demonstrate

the concept. The user can experience herself in full 3D. She can freely move the

camera and fly around herself. The cameras are now looking through the

projection screens. This video gives a good feeling of the projection quality. It

was recorded in realtime using a conventional unsynchronized camcorder. 
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Results – blue-c VideoResults – blue-c Video

And here’s a video with results. 

Acquisition was done at ETH Hoenggerberg outside of Zurich as illustrated in the video 

inlay in the bottom-left corner. 

The 3D video inlay is then streamed to the blue-c installation at ETH Computing Center 

in real-time and composited with the virtual scene.
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Stereo-based Methods
(25 min)

Stereo-based Methods
(25 min)

Stephan Würmlin

LiberoVision AG and 

ETH Zürich
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OverviewOverview

• Stereo Fundamentals

• Stereo-based 3D video 

– Dense camera setup

– Sparse camera setup
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Stereo-based 3D video 
(Dense)

Stereo-based 3D video 
(Dense)

• Video-View Interpolation

• Working volume?

– Walls of a room: 

Virtualized Reality

– 2D “window”: 

Light Field Array

– 1D “rail”:

Video-View Interpolation Zitnick et al.
High-quality Video View Interpolation

SIGGRAPH 2004

Stereo-based 3D video is able to not only capture one or two objects – due to the 

constraint of separable silhouettes for the employed shape-from-silhouettes algorithm –

but can handle entire scenes. Techniques vary depending on the amount of freedom in 

navigation that a system wants to achieve. As an example, the Virtualized Reality project 

at CMU tried to enable full 360 degree freedom while a light field array only gives the 

possibility to give the user a 2D window into the world. 

An interesting approach where I want to go in a little more detail is the video-view 

interpolation project at MSR where they tried to come up with a production-quality 3D 

video system but give the viewer only the ability to navigate on a 1D “rail”. For that they 

employed depth-from-stereo algorithms and the camera’s were placed rather dense as 

you can see in the image.
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3D Reconstruction3D Reconstruction

?

Again we have to know where the 3D points are that we image by the camera.
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Depth MapDepth Map

• Gray value encodes distance from camera

This means that we should calculate a depth map, indicating the distance from each pixel 

to the 3D surface point. On the right you see gray-coded the distance from the camera, 

with darker regions indicating farther away surface points and brighter regions indicate 

closer surfaces.
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Depth From StereoDepth From Stereo

• Basic Principle: Triangulation

• Requires:

– Calibration

– Point correspondence
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The basic principle of depth-from-stereo is triangulation. When you know where a 

surface point is projected in two camera images you can – with an appropriate calibration 

of the cameras triangulate the distance that point has from the image. But to be able to do 

that you need point correspondences.
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Stereo VisionStereo Vision

• Search for corresponding pixels

• Use windows to help you

– But can still fail due to lack of texture!

Here is an example of what an algorithm should do. Instead of only calculating color 

similarities on single pixels, many methods employ a window-based approach. However, 

this can still lead to ambiguities and false depths in regions where there is not enough 

texture detail.
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Stereo CorrespondenceStereo Correspondence

• Determine Pixel Correspondence

– Pairs of points that correspond to same scene point

• Epipolar Constraint

– Reduces correspondence problem to 1D search along conjugate 
epipolar lines

epipolar plane
epipolar lineepipolar line

To determine pixel correspondences you need to search for pairs of points that 

correspond to the same scene point. This can be arbitrarily difficult to find in 

general – and hence arbitrarily time consuming because you need to do an 

exhaustive search. By employing again an epipolar constraint we can reduce the 

correspondence problem to a 1D search along conjugate epipolar lines as 

indicated in the picture.
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Stereo Image RectificationStereo Image Rectification

• Image Reprojection

– Reproject image planes onto common 
plane parallel to line between optical centers

– A homography (3x3 transform)
applied to both input images

– Pixel motion is horizontal after this transformation Loop and Zhang
Computing Rectifying Homographies for Stereo Vision

IEEE Conf. Computer Vision and Pattern Recognition 1999

For that we need to rectify the image pair which means that we reproject the 

image planes onto a common plane parallel to the line between the optical 

centers. This can be performed by applying a homography – a 3x3 transform –

applied to both images. After rectification pixel motion is horizontal and we can 

search the correspondence on the same horizontal lines in the other image.
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Stereo RectificationStereo Rectification

This is an example of a stereo rectification where you clearly see that the features 

are afterwards located on horizontal lines.
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Different Stereo Methods 
Exist...

Different Stereo Methods 
Exist...

State of the art method:

Boykov et al.
Fast Approximate Energy Minimization via Graph Cuts

International Conference on Computer Vision, 1999.

Ground truth
State of the artWindow-based

matching

Middlebury Stereo Vision Page:
http://cat.middlebury.edu/stereo/

Based on this basic principle researchers developed a multitude of different stereo 

methods, some of it using the already mentioned window-based correlation 

methods for better robustness or by applying graph cut based optimization 

shemes. 

The Middlebury Stereo Vision Page contains material for taxonomy and 

experimental comparison of stereo correspondence algorithms. It contains stereo 

data sets with ground truth, the overall comparison of algorithms, instructions on 

how to evaluate stereo algorithms, and stereo correspondence software.
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Segmentation-based Depth-
from-Stereo

Segmentation-based Depth-
from-Stereo

• Don’t match Pixels – Match Segments 

• Segments contain more information, 
so they’re easier to match.

Zitnick et al.
High-quality Video View Interpolation

SIGGRAPH 2004

Now the approach  by Zitnick et al. was probably one of the first really high quality 3D 

video systems out there. It combined a novel segmentation-based stereo algorithm with a 

multi-layered representation which could then interpolate views along a 1D-rail.

Segmentation-based approaches to stereo try to overcome some of the limitations of the 

pixel-based algorithms. Pixels are inherently hard to match and by correlating entire 

segments the algorithm produces much better depth maps. However, it relies on the 

assumption that all pixels of a segment belong to the same surface – so no discontinuities 

are allowed in the segments. Hence, a over-segmentation has to be produced during a 

pre-process step.
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Iteratively Update DepthsIteratively Update Depths

Here is an example of that work and how they can iteratively update the depths by taking 

into account all camera pairs of their system (for course notes).
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Depth Through TimeDepth Through Time

Here is an example of that work and how they can iteratively update the depths by taking 

into account all camera pairs of their system.
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Matting for High-quality 
Rendering

Matting for High-quality 
Rendering

Some pixels 
get influence 

from multiple 

surfaces.

Background Surface

Foreground Surface

Image

Camera

Close up of real image:

Multiple colors and 
depths at 
boundary pixels…

To be able to achieve high-quality re-renderings they apply a novel alpha matting 

technique. This helps significantly to reduce the artifacts around the depth 

discontinuities. There, some pixels get influence from multiple surfaces, they are called 

mixed pixels.
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Finding Matting InformationFinding Matting Information

1. Find boundary 
strips using depth.

2.  Within boundary strips compute the colors and 
depths of the foreground and background object.

Background

Foreground
Strip
Width

The algorithm first extracts a thin boundary strip around these surfaces which can be 

easily extracted using the depth information. 

Then, within the boundary strips they compute colors and depth for both the foreground 

and the background object. In other words they try to separate this mixed pixel. 
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Why Matting is ImportantWhy Matting is Important

MattingNo Matting

And here you see why matting is so important for high-quality renderings. On the left –

without matting – the image has artifacts around the depth discontinuities which is 

visible as ghosting artifacts.

On the right you see how matting can improve the final image quality.

EG:188



59
© The Eurographics Association 2007 New Trends in 3D Video

Layered-depth 
Representation

Layered-depth 
Representation

Color Depth

MAIN LAYER

Color Depth

Matting informationBOUNDARY 
LAYER

All this information – color, depth, matting information – is put into a layered-depth 

representation, one layer holds the main data, and another layer holds the boundary strip 

information.
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Rendering Pipeline (on GPU)Rendering Pipeline (on GPU)

Render

Main Layer

Render
Boundary Layer

Composite

Render

Main Layer

Render
Boundary Layer

This can then be rendered efficiently on the GPU by a multi-pass approach and final 

composite on the fragment level.
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Interactive Session VideoInteractive Session Video

Here is an interactive session of this system…
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Free-Viewpoint VideoFree-Viewpoint Video

And here is a final result where the system was applied for a commercial music 

video (for course notes).
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1D-Rail “3D” Video1D-Rail “3D” Video

And here is a final result where the system was applied for a commercial music video.
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?

Stereo-based 3D video 
(Sparse): Hard to Produce!

Stereo-based 3D video 
(Sparse): Hard to Produce!

multi-view video 3D video

Now if we want to capture scenes not with a dense setup of cameras but instead 

with a sparse setup, this is even harder to do. Why? The re-rendering has to 

interpolate even broader views and much more occlusions can occur.
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3D Extraction Error Prone3D Extraction Error Prone

multi-view video 3D video

“3D” extraction

Moreover, the 3D extraction – whether silhouette or depth based – is highly error 

prone. You see an example in the bottom left and the resulting 3D video in the 

top right.
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3D Video Studio at ETH 
Zurich

3D Video Studio at ETH 
Zurich

Here you see a snapshot of the 3D video studio we built at ETH Zurich. The main idea 

here was to overcome these 3D extraction problems by adding projectors to the studio 

that help to extract higher quality depth maps. The concept is based on so-called 3D 

video bricks.
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Scalable 3D Video BricksScalable 3D Video Bricks

Stereo cameras

Texture camera

Structured light 
projector

Waschbüsch et al.
Scalable 3D video of dynamic scenes

Pacific Graphics 2005

Here you see an image of one such 3D video brick.

Each brick is equipped with one calibrated color camera for acquiring textures.

Two calibrated grayscale cameras together with a projector acquire stereo structured-

light images used for depth extraction.

The projector additionally serves as an illumination source for the texture camera.

Furthermore, each brick is equipped with one PC for doing the acquisition and depth 

extraction.
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Stereo VisionStereo Vision

• Structured illumination resolves ambiguities

Discontinuity-preserving stereo on structured light

Waschbüsch et al.
Point-Sampled 3D Video of Real-World Scenes
Signal Processing: Image Communication 2007

Why do we want to use projectors in the studio? They can project structured light onto 

the scene which helps us to resolve ambiguities in regions where there is no texture.
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System ConfigurationSystem Configuration

• Multiple bricks

• Overlapping

projections

• Common

synchronization

clock

Here you see a system configuration schematic of the 3D video studio with three 

bricks and overlapping projections. Note that since the structured light is only 

used to improve the stereo computation, this is no problem. 
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Simultaneous Texture & Depth 
Acquisition

Simultaneous Texture & Depth 
Acquisition

• Project random vertical stripe patterns

– Multiple projectors prevent shadows

– Stereo insensitive to projection overlaps

• Synchronize cameras shutters with different exposures

– Invisible for texture cameras

– Interchangeably project inverse patterns

To simultaneously acquire texture and depth maps, the structured light patterns should 

only be visible to the stereo but not to the texture cameras.

We achieve this by interchangeably projecting a pattern and its inverse while exposing 

the texture cameras to both projections. Thus they acquire the integral image of both 

patterns which has a uniform white color.

The stereo cameras, in contrast, are only exposed to the first structured light projection.
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Structured Light & Texture 
Acquisition

Structured Light & Texture 
Acquisition

Grayscale camera Color camera

Stereo

Grayscale camera

Textures

Here you see the result of the acquisition.

Notice that the texture camera does not see the projected pattern.

However, the white projector lights are still clearly visible. This was mainly causes by 

space restrictions of our laboratory which forced us to put the projectors quite close to 

the scene. Moving the projectors further away or equipping them with wide-angle lenses 

would cover the whole scene in uniform white light which would be less disturbing.
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Depth ExtractionDepth Extraction

This video shows the final depth maps of the sequence acquired by all three bricks.

We still have some outliers at discontinuities. They are reduced during reconstruction of 

the 3d model of the scene.
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Depth Extraction – ResultsDepth Extraction – Results

And here are the colors and depths of all three bricks used in our original setup.
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3d video

billboard clouds

Sparse setups: Need for post-
processing!

Sparse setups: Need for post-
processing!

multi-view video

“3D” extraction

3D video

post-processingrepresentation filtering

framework

We will now explain a novel representation which is also introduced here at 

Eurographics in a talk by Michael Waschbuesch – the 3D video billboard clouds 

– and how you can exploit this for post-processing the data to achieve high-

quality re-renderings.
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3D Video Billboard Cloud

• One billboard from each

input viewpoint

• Planar geometric proxy

• Displacement map
Mantler et al., Displacement-mapped Billboard Clouds, 

TR Vienna Uni. Of Technology, 2007

Waschbüsch et al.
3D video billboard clouds

Eurographics 2007

A 3D video billboard represents the 3D structure and texture of an object at a specific 

point in time as observed from a single viewpoint. 

It consists of an arbitrarily placed and oriented texture-mapped rectangle or proxy 

approximating the real geometry of the object. Its associated textures are a displacement 

map for adding fine scale geometric detail, a color map modeling the surface appearance, 

and an alpha map holding a smooth alpha matte representing the object’s boundary. 

The latter is employed for seamless blending with the background of the scene.
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Requirements

1. Simple geometric proxy

→ texture parameterization

2. Regular sampling

→ signal processing 

3. Uniform error model

→ geometry filtering

4. Minimal displacements

→ compression, level of detail

We impose a set of requirements for an optimal 3D video billboard clouds 

representation:

1) Simple geometric proxy. The geometric proxy should be as simple as possible, i.e. a 

rectangle. This permits an easy parameterization for texture mapping.

2) Regular sampling. By ensuring a regular sampling we can exploit standard signal 

processing methods for easy post-processing of the geometry without the need of 

resampling.

In particular, we would like to directly exploit the existing regular sampling from the 

acquisition cameras.

3) Uniform error model. 3D reconstruction introduces noise which is usually not uniform 

in world coordinates. The uncertainty of depth values reconstructed by triangulation 

increases with their absolute value. Our billboard representation should be defined in a 

space where the reconstruction error can be assumed to be uniform, independent from the 

distance of a surface from the camera. This allows for easy reconstruction of filters using 

a uniform, linear kernel for smoothing the acquired geometry.

4) Minimal displacements. A minimal displacement of the proxy to the real surface 

ensures a good approximation of the geometry and can improve future compression and 

level-of-detail algorithms.
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Billboard SpaceBillboard Space

• Requirement 2: regular sampling

• Requirement 3: uniform error model

→ Define billboards in disparity space!

– Proxy plane in disparity space

– Displacement map      stereo disparities≡

0),( bvbubvuB vu ++=

Requirement (1) can be guaranteed by definition. 

To fulfill requirements (2) and (3) the billboards are not defined in conventional 

3D space of the scene but in the so-called disparity space of the acquisition 

camera. There, the displacements are simply the stereo disparities.

EG:207



78
© The Eurographics Association 2007 New Trends in 3D Video

Sampling Spaces

z z

u u x

d

camera spaceray spacedisparity space

The transformation from camera to ray space is nonlinear, i.e. linear functions in camera 

space are not linear in ray space anymore. Hence, if we would define the billboard plane 

in ray space and use the depth values as displacements, it would not be planar in world 

coordinates and thus it would be difficult to use it as an approximation for the real 

geometry. On the other hand, if we would place it in camera space, the sampling would 

become irregular.

Instead, we define a disparity space of a camera as coordinates (ui, vi, zi’) with zi’ = 1/zi 

. If we use this representation and store the reciprocal of the z-coordinate from ray space, 

we can observe that planes in disparity space stay planar in

camera space.

Moreover, sampling in disparity space is identical to the regular sampling of the 

acquisition cameras. Thus, requirement (2) is fulfilled if we define the billboard planes in 

these coordinates.

In camera space it can be observed that the resulting uncertainty of the geometry is not 

constant anymore but depending on the absolute value of the disparity.
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Billboard PlacementBillboard Placement

• How to place the billboard plane?

– Noise in displacement map should result in small errors in 
camera space

– Useful for compression, level of detail, …

• Wrong position in disparity space can lead to large 
displacements in camera space!

• Minimize sum of displacements in camera space

– Non-linear least-squares problem

– Solve with Levenberg-Marquardt

We are still free to choose the position and orientation of the billboard plane. A 

bad choice of these values can lead to arbitrarily large displacements in world 

coordinates. This becomes an important issue as soon as the values of the 

displacement map should be processed, e.g. for compression, level of detail, …

Hence, noise in displacement map should result in small errors in camera space

We minimize the sum of displacements in camera space – non-linear least-

squares problem – and solve it with Levenberg-Marquardt algorithm.
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Geometry Filtering

• Input displacements are noisy

• Regular sampling and uniform 

error model allow for easy 

signal processing tools

• Spatio-temporal bilateral filter 

for smoothing the geometry

The displacement values generated by the acquisition system are subject to quantization 

errors, noise, and calibration inaccuracies, resulting in several kinds of artifacts in the re-

rendered image: The object surfaces do not appear smooth and their geometry is very 

noisy, which is especially visible as flickering over time. Moreover, overlapping parts of 

surfaces from different scanning directions do not necessarily fit to each other.

To improve this, we apply a four-dimensional smoothing filter yielding better spatial 

coherence within surfaces and between overlapping surfaces, and better coherence over 

time.
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Filtering over Multiple ViewsFiltering over Multiple Views

• Problem

– Billboards from multiple views are filtered 

independently

– Overall geometry may diverge

• Solution

– Filter over all billboards at the same time

However, when filtering each acquisition view independently, corresponding surfaces 

reconstructed from different views would not fit to each other. Thus, we extend the filter 

by an additional domain by accumulating the data from all acquisition views.
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Bilateral Disparity Filter

δξξξξ ⋅⋅⋅⋅= ∫∫∫ ))(),((),()(
1
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~

xxx ddscd
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d

over displacement 

map & over time

input 

disparities

domain 

filter kernel

range filter 

kernel

Normalization

term

output 

disparities

All this is now put together into this formula, where you see how a bilateral filter is 

applied over the displacement map and over time. 

Bilateral filter: The domain filter kernel c smoothes the disparities over space and time 

while the range filter kernel s tries to retain geometric discontinuities
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Filter KernelsFilter Kernels

• Domain filter kernel

– Cubic B-spline weighted by alpha matte

– Low-pass filter

– Lower weight at more inaccurate boundaries

• Range filter kernel

– Step function

– Preserve depth discontinuities

)()(),( xx −⋅= ξξαξ Bc

For c we use a cubic b-spline low-pass filter kernel B weighted by the alpha 

values of the current billboard.

The range filter kernel s does not only maintain discontinuities in the disparity 

maps but also ensures a correct handling of occlusions that occur during warping. 

We use a simple step function.
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Filter ImplementationFilter Implementation

• For filtering view i

– Warp domain filter kernel to all views j

– Convolve all views j with warped kernel

– Accumulate in view i, using range filter kernel

• Splatting
Zwicker et al., Surface Splatting, SIGGRAPH 2002

view i-1 view i view i+1

Intuitively, for computing a disparity d˜i, this filter does not only compute a 

convolution in the current view i but it convolves all views with warped versions 

of the domain filter kernel c and accumulates all values weighted by the range 

filter kernel s.

[Image: For computing the value of the yellow pixel in view i, the values all 

pixels in all views weighted by the warped domain filter kernel (blue) are 

accumulated.]

The implementation of the filter process is done via splatting. For filtering a view 

i, instead of projecting the filter kernel into all other views, we do the inverse and 

splat all views into view i. This has the advantage that we can use a uniform 

splatting kernel. Splatting can be performed efficiently in the GPU.
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Filtering ComparisonFiltering Comparison

views filtered
independently

views filtered
together

no disparities,
only planes

raw
disparities

Here is a comparison of different filtering techniques where you clearly see the 

difference.

EG:215



86
© The Eurographics Association 2007 New Trends in 3D Video

View-dependent RenderingView-dependent Rendering

• Unstructured Lumigraph (UL) framework
Buehler et al., Unstructured Lumigraph Rendering, SIGGRAPH 2001

• Render consistent depths

– Render views into separate depth buffers

– Resolve occlusions via fuzzy z-buffer

– Blend remaining depths using UL

• Render consistent colors

– Projective texturing

– Blend colors using UL

We render the billboard clouds using the Unstructured Lumigraph Rendering 

framework. 

In contrast to the original UL algorithm, our method does not only blend the 

colors but first reconstructs a consistent, view-dependent geometry of thescene, 

where each pixel has a uniquely assigned depth value. This results in much 

crisper renderings. If multiple fragments are rendered at the same pixel, its depth 

buffer value d is computed in a fragment program by blending all fragment 

depths di.
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Rendering ComparisonRendering Comparison

color blending only color & depth blending

Here is a comparison of rendering with only color blending and with color & 

depth blending.
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Results – No DisparitiesResults – No Disparities
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Results – Raw DisparitiesResults – Raw Disparities
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Results – Filtered DisparitiesResults – Filtered Disparities
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Handling ScenesHandling Scenes

• Segment scene using semi-automatic video 

cutout techniques
Li et al. Video Object Cut and Paste SIGGRAPH 2005

Wang et al., Interactive Video Cutout, SIGGRAPH 2005

To represent scenes and not only stand-alone objects, each view has to be 

decomposed into multiple billboards. We use a semi-automatic video cutout 

technique to segment the input videos into distinct objects. After the user has 

marked the objects in a single input frame of each view by applying a few brush 

strokes, a graph-cut optimization automatically computes the segments over time. 

The segment boundaries are refined by a Bayesian matting algorithm [Chuang et 

al., A bayesian approach to digital matting. CVPR 2001] yielding alpha mattes 

for the billboards.
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Graph Cut Segmentation Graph Cut Segmentation 

• Graph cut on color and depth maps

– Colors for accurate boundaries

– Depths for increased stability

input colors only colors & depths

As well we include the depths in this process which yields significantly higher 

stability.
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Results with Complete 
Scenes

Results with Complete 
Scenes

Final result.
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Model-based 3D Video I
(25 min)

Model-based 3D Video I
(25 min)

Christian Theobalt 

Stanford University
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MotivationMotivation

• Previous methods in course

– General scenes

• Problem

– Multi-view correspondence problem

– Remaining artifacts

• Model-based approaches

– Exploit prior knowledge about type of scene 

The approaches presented so far in the course did either not at all or just to a small 

extend exploit prior knowledge about the type of scene during reconstruction. This has 

the great benefit that arbitrary types of scenes can be processed. However, the multi-view 

reconstruction (and thus the multi-view correspondence problem) in this case is 

particularly hard and thus there may be noticeable artifacts.

For certain types of scenes it may therefore be beneficial to exploit prior knowledge 

about the type of subjects in the scene being reconstructed. Although by this means 

generality may be sacrificed, it may still be beneficial in terms of reconstruction quality.

The approaches in this part of the course utilize prior shape and motion models for 3D 

video reconstruction. While the approaches in the first part of this section mainly deal 

with human actors, towards the end some more recent approaches are shown that can 

handle arbitrarily dressed people and even a broader category of subjects. 
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OverviewOverview

• 3D Video using a kinematic template model

• Alternative model-based approaches

• Mesh-based dynamic scene capture and 

3D Video

The section on model-based 3D Video is subdivided into three main parts summarized 

above.
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Model-based 
Free-Viewpoint Video

Model-based 
Free-Viewpoint Video

MultiMulti--view video recordingview video recording Silhouette extractionSilhouette extraction
Generic modelGeneric model

adaptationadaptation

SilhouetteSilhouette--based modelbased model--fittingfittingMultiMulti--view texturing view texturing 

Interactive renderingInteractive rendering

[Carranza et al., [Carranza et al., SiggraphSiggraph 2003]2003]

In free-viewpoint video the viewer is given the possibility to freely change his viewpoint 

onto a 3D rendition of a dynamic real-world scene. In order to generate a free-viewpoint 

video, the problems of acquisition of input data, reconstruction of a dynamic scene 

descriptions, and rendering in real-time have to be solved simultaneously.

This slide illustrates the workflow between algorithmic components of a model-based 

system to reconstruct and render free-viewpoint videos of human actors [3]. Inputs to our 

system are multiple frame-synchronized video streams showing a moving person that 

have been captured with calibrated video cameras. Image silhouettes of the person in the 

foreground are extracted from each video frame. A generic human body model consisting 

of 16 segments, a triangle mesh surface geometry with roughly 21000 triangles, and a 

kinematic skeleton made of 17 joints is employed to represent the time-varying 

appearance of the human. An analysis-by-synthesis approach based on silhouette-overlap 

is used to adapt the model in shape and proportions to the actor, and to determine pose 

parameters for each time step of video. Real-time renditions of the captured scene are 

generated by projectively texturing the moving body model from the input video frames 

that are appropriately blended.  
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AcquisitionAcquisition

• 8 synced CCD cameras;

currently: 

– Currently: 1004x1004,25fps,

12 bit

– old: 320x240, 15 fps

• Calibrated

• Controlled lighting

Multi-view video footage is recorded in a 3D video acquisition studio. This studio 

features 8 synchronized calibrated video cameras. Currently, we employ a system with 

eight CameraLink 1-Megapixel video cameras. In a previous version of the studio, we

used 8 IEEE1394 video cameras with VGA resolution. Some of the older footage 

presented in this course has been recorded with our old setup. 

In the remainder of the course, we will also show important hardware and software 

extensions to the studio in case they are relevant for a specific topic.
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Silhouette MatchingSilhouette Matching

•Model Initialization & Marker-free Motion Capture

– Non-linear minimization of pose/scaling parameters

– Criterion: overlap between image 
silhouettes and body model projection

• Area of intersection

• Robust against silhouette inaccuracies

– Graphics hardware acceleration

• Pixel-wise XOR (stencil buffer)

• 8 camera views / frame buffer read-write

• 105 pose evaluations / sec. (GeForce 3)
Silhouette XOR

Besides 35 parameters to specify the pose, our body model features for each segment a 

uniform scaling parameter, as well as 16 Bézier parameters for fine-tuning the 

appearance of the surface. Our analysis-by-synthesis approach employs the overlap 

between the projected model silhouettes and the image silhouettes in all camera views 

for two purposes:

1) Initialization: The geometry of the model is adapted to optimally represent the 

appearance of the real-world equivalent. 

2) Marker-free Motion Capture: after the model has been customized, its pose is matched 

to the pose of the actor at each time step of the input video footage.

Both tasks require non-linear optimizations in the model parameters, the first one being 

performed in the pose and scaling parameters simultaneously, the second one being 

performed in the pose parameters only. The error function to be minimized computes the 

non-intersecting areas between the projected model and input silhouettes in all camera 

views. Conveniently, an estimate for this is obtained via the binary XOR between image 

and model silhouettes in all views. It can be efficiently evaluated on state-of-the-art 

graphics hardware using the stencil buffer. On a PC featuring an Intel Xeon 1.8 GHz 

CPU and an Nvidia GeForce3 GPU, we can perform 105 energy function evaluations 

using 8 cameras and a frame size of 320x240 pixels.
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InitializationInitialization

Initial model positioning

Scale local vertex 

coordinates using 4 
1D Bézier curves curves => 

16 control values per 

segment

Non-uniform segment scaling

Body Pose Estimation

ite
ra

te

Uniform skeleton rescaling

Initialization 
pose

The shape and proportions of the body model are adapted to the shape of the 

actor in an iterative optimization procedure. Inputs are silhouette images of the 

actor striking a dedicated initialization pose. In a first step the position and 

orientation of the torso segment in 3D space is determined. The space of pose 

parameters for the torso is sampled regularly to find an optimal starting point for 

a subsequent downhill optimization that determines the final torso pose.

Thereafter, the method iterates between determining a new set of pose parameters 

for the whole model (explained on the next slide), and determining a new set of 

uniform scaling parameters for each segment. 

Finally, optimal parameters for the 1D Bézier scaling functions are found that 

bring the segment outlines into optimal accordance with the multi-view 

silhouettes. On the hands and feet no Bézier scaling is performed.

The estimation of the optimal scaling parameters is performed hierarchically. It 

starts with the root of the skeleton (located in the torso) and proceeds layer-by-

layer further down the skeleton hierarchy until the terminating nodes (head, 

hands and feet are reached).

For numerical minimization we employ a standard downhill direction set method 

such as Powell’s method. The shape parameters of the model remain fixed for the

duration of a free-viewpoint video.
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Body Pose EstimationBody Pose Estimation

– Challenges
• Many local minima

• Fast limb motion 

• Constraint: no inter-penetrations

– Hierarchical decomposition

– Grid search

PosePose

ParametersParameters

at at tt--11

PosePose

ParametersParameters

at at tt

Grid Grid 

searchsearch

Only with a completely passive marker-free motion capture approach the same video 
material can be used for motion and texture estimation. Determining the 35 pose 
parameters for each time step of video is a challenging problem since the non-convex 
energy-functional exhibits many local minima. Potentially rapid limb motion and 
constraints on allowable body poses require the parameter search space itself to be 
constrained. Only this way robust convergence to the correct solution can be assured.

We initialize the optimization search for one time step t with the parameters found at t-1. 
The problem’s search space is constrained by performing a hierarchical optimization that 
exploits structural knowledge about the body. The poses of individual kinematic sub-
chains in the skeleton are determined separately. Body segments are considered in 
descending order with respect to the skeleton hierarchy and their respective influence on 
the silhouette appearance. In consequence, we first determine the torso pose, thereafter 
the poses of arms, legs, and head, and finally the parameters for the hands and feet. 

For arms and legs we employ a custom 4-degree-of-freedom parameterization. 

In order to handle rapid body motion the pose determination for each limb is preceded 
with a regular grid search in the 4D pose space. The best grid point found is used as 
starting point for the subsequent downhill optimization. Interpenetrating limb poses are 
also discarded during grid sampling.

Optionally, the complete pose estimation scheme is iterated.
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Silhouette-based 
Motion Capture

Silhouette-based 
Motion Capture

The video shows three of the input camera views and the body model correctly following 

the motion of the dancer.
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Model Fitting AccelerationModel Fitting Acceleration

•Performance bottlenecks

– Energy function

• Transfer bandwidth (frame buffer read/write)

• Rendering model geometry

– Optimization

•Improvements

– Modified XOR evaluation

– Distributed Model Fitting

[Theobalt et al., VMV 2003][Theobalt et al., VMV 2003]

The performance of the model fitting method is limited by two factors: the time needed 

to evaluate the XOR energy function and the runtime of the numerical minimizer itself.

The performance of the energy function evaluation on the GPU is constrained by the 

overhead inflicted by the necessary frame-buffer read/write operations, as well as the 

overhead to render the model geometry.

The performance of the pose determination procedure is constrained by the fact that on a 

single PC one can only optimize the pose for one body segment at a time. Given more 

CPUs, however, the parameters for independent segments on the same level of the 

skeleton hierarchy could be efficiently estimated in parallel.

Thus, we have enhanced the GPU-based XOR computation in order to capitalize on the 

compartmentalized nature of the pose determination problem [1]. The implicit parallel 

structure of the problem also suggests a distributed implementation of the motion capture 

sub-system as a whole. 
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Accelerated Energy Function
Evaluation

Accelerated Energy Function
Evaluation

– XOR evaluation in 

sub-window

– Pre-rendering of non-moving body parts

Mask of Mask of 

unchanging body partsunchanging body parts
Output stencilOutput stencil

with errorswith errors
Corrected Corrected 

energy functionenergy function

[Theobalt et al., VMV 2003][Theobalt et al., VMV 2003]

We modify the error function evaluation in two ways in order to exploit the 

compartmentalized nature of the pose determination problem:

1) Instead of rendering the frames in full size, the rendering window for each camera 

views is confined to a limited area around the image plane location of that kinematic 

sub-chain which is currently optimized. By this means the amount of data that has to 

be transferred during frame-buffer read/write is significantly reduced.

2) The rendering overhead for the body model can be reduced if only the geometry of 

those body parts is displayed whose pose is currently optimized. The additional error 

in the XOR value in each camera view that is inflicted by not showing large parts of 

the model has to be compensated. We do this by applying an image-mask of 

unchanging body parts that is generated prior to the optimization.  The bottom figure 

illustrates the process for one camera view.
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Distributed ImplementationDistributed Implementation

– Client-server setup

– 5 PCs – 5 CPUs and 5 GPUs

– Fitting procedure

• Server : torso 

• Clients/server in parallel: arms, 

legs, head

• Clients in parallel: feet, hands

[Theobalt et al., VMV 2003][Theobalt et al., VMV 2003]

Our distributed pose determination system is a client-server setup using 5 PCs, i.e. 5 

CPUs and 5 GPUs. The hierarchical pose estimation procedure first determines the 

parameters of the torso on the server. The result is transferred to all clients. Now, the 

server and the clients determine the parameters of legs, arms and head in parallel. The 

results are broadcasted via the server before, in a final step, the poses of hands and feet 

are determined. 
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ResultsResults

•Average pose estimation time (s)

1.761.16Sub-window, pre-render, 

5 computers

10.103.30Sub-window, pre-render, 

single computer

14.107.98XOR single computer

Seq. BSeq. AMethod

Xeon 1.8 Xeon 1.8 GhzGhz , 512 MB RAM, GeForce3, 512 MB RAM, GeForce3

The table shows average times needed for determining the pose of the body model at a 

single time step with the different algorithmic alternatives for silhouette fitting. The 

results we obtained with two test sequences are shown. Seq.A exhibits mostly slow body 

motion, whereas Seq.B shows an expressive jazz dance performance. Motion capture 

with the non-accelerated XOR computation on a single computer takes between 8s and 

14s. A significant speed-up is obtained if we apply the enhanced energy function 

evaluation with sub-window constraint and body-part pre-rendering. By employing our 

distributed implementation we achieve average fitting times close to 1s. 
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Refined Model FittingRefined Model Fitting

•Silhouettes

– Robustly detectable

– Sensitive to large-scale motion

•Object texture

– Highly detailed

– Sensitive to small movements

⇒ Exploit texture for fine-tuning model parameters

The silhouette-based analysis-by-synthesis approach described on the previous slides 

enables us to reconstruct a dynamic scene description without having to modify the input 

video footage in any form, e.g. with optical markings in the scene. This is a necessary 

precondition if texture information is taken from the video streams as well. 

Image silhouettes can be computed robustly and our motion capture approach is fairly 

insensitive to measurement noise in the image data. However, although a silhouette-

based approach robustly captures poses on a large scale, the exact pose of some body 

parts is hard to infer exactly. Slight pose inaccuracies can often be observed for those 

segments whose shape exhibits very few features on the silhouette outline that guide the 

optimization towards the correct parameters, such as the head.

We thus propose to enhance the original motion capture method into a hybrid approach 

that jointly uses silhouettes and texture information from the video frames for pose 

determination. The texture information enables the correction of slight pose inaccuracies 

that exist in the silhouette fit.
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Texture-enhanced Motion 
Capture

Texture-enhanced Motion 
Capture

• 2D Optical Flow ui

– projection of 3D point motion dx/dt

into 2D image plane i

• Optical Flow vs. Scene Flow

– Jacobian matrix

• Known from camera model

– Optical Flow, Jacobian & Geometry

• Solve for 3D motion dx/dt

zyx

i
i

,,∂

∂
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J
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d
ii

x
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[Theobalt et al., PG 2003][Theobalt et al., PG 2003]

Our texture-enhanced motion capture method employs the scene flow, the 3D 

equivalent of the 2D optical flow in the image plane, to compute corrective pose 

updates.

The 2D optical flow is the projection of the 3D motion field of a dynamic scene 

into the image plane of a recording camera.

A sea of algorithms has been proposed in the computer vision literature to 

compute this 2D flow field between two subsequent depictions of the scene. In 

our implementation we employ the method by Lukas and Kanade (see [2] for 

references to the original literature).

The scene flow corresponding to a set of optical flows in multiple camera views 

is the set of 3D motion vectors, one for each point in the scene, whose projections 

are the 2D optical flows. The differential relationship between the optical flow 

and the scene flow is described by a Jacobian matrix whose entries can be 

determined from the matrix of a calibrated camera.

Given a set of optical flows from multiple calibrated camera views, and full 

knowledge about the 3D geometry, it is possible to infer the scene flow vector for 

each point on the geometry by solving a linear equation system.
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Motion Field-guided
Model Fitting Algorithm

Motion Field-guided
Model Fitting Algorithm

• Estimate model pose for t+1

– Silhouette fitting

• Render image estimates I’j,t+1

– Texture model with images Ij,t

• For each model vertex

– Determine projection coordinates and visibility 
in each image

– Compute optical flow between Ij,t+1 and I’j,t+1

– Calculate 3D vertex motion from motion field

• Update model to conform with motion field

In a predictor-corrector-scheme, we employ the scene flow determination method for 

computing differential pose updates that correct inaccuracies in the silhouette-fit.

In a first step, an estimate of the pose parameters at time t+1 is computed using the 

original silhouette-based motion capture technique.

Using this first pose estimate, we predict the appearance of the model by rendering and 

projectively texturing it with the camera images from the previous time step Ij,t. This 

way, we generate novel images I’j,t+1 showing the predicted model appearance at time 

t+1 in each camera view j. 

For each vertex it is determined in which cameras it is visible. For each camera that sees 

the vertex, the optical flow between its projection into I’j,t+1 and Ij,t+1, is computed. 

Using all the 2D flow vectors found for this vertex, the corresponding 3D scene flow 

vector is computed using the method outlined on the previous slide. 

This way, a scene flow field is generated which describes for each vertex a position 

update that brings the model into a pose that is photo-consistent with all camera images. 

The corrective flow field is translated into a set of corrective pose parameters for the 

model by means of a shape registration method originally proposed by Horn (see [2]).
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Differential Pose UpdateDifferential Pose Update

Before sceneBefore scene--flowflow--basedbased

pose updatepose update
After registering torso, After registering torso, 

head, and upper arm and upper leghead, and upper arm and upper leg

3D flow vectors purposefully exaggerated

The figure on the left shows the body model in the pose that was found via silhouette–

fitting.

The green arrows are corrective scene flow vectors that have been computed for all 

vertices in the body model using the predictor-corrector scheme described on the 

previous slide. The length of the flow vectors has been purposefully exaggerated in order 

to better visualize the flow field.

The figure on the right shows the pose of the model after the corrective pose update 

parameters for the torso, the head, the upper arms and the upper legs have been applied 

to the skeleton. 
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ResultsResults

• Purely 

silhouette-based

pose 

determination

• Pose 

determination

with differential

update

The four figures illustrate the visual improvements achievable with the texture-enhanced 

motion capture method. The top row shows screen-shots of free-viewpoint videos that 

have been reconstructed with pure silhouette-fitting.

The bottom row shows renditions from the same virtual camera views but with the scene-

flow-based pose correction applied. Improvements are mainly visible in the face and on 

the torso. Block artifacts in the images are due to the limited camera resolution of 

320x240 pixels.
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RenderingRendering

– Render model geometry in captured pose

– Dynamic projective texturing with camera images

• Per-vertex blending and interpolation in fragments

– Texture information (camera image)

– Visibility

– View-independent spatial blending weights

– Optional: view-dependent weights
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The reconstructed 3D videos are rendered by displaying the body model in the sequence 

of captured poses, and projectively texturing it with the video frames at each time step of 

video. 

For vertex i in the model we compute the final color ci by appropriately weighting and 

summing the color contributions from each input camera view texj(i) .Visj(i) is the 

visibility of vertex i in camera view j, ωj(i) is a spatial blending weight depending on the 

relative orientation of the vertex with respect to the input camera. We can assume that 

the reflectance of most garments is close to lambertian. It is thus valid to compute the 

spatial texture blending weights only based on the orientation of a vertex with respect to 

the input cameras. The camera which sees a surface element most head-on is assigned the 

highest blending weight. 

However, in order to model view-dependent reflectance effects appearing in some 

garments, an optional view-dependent rescaling factor ρj(i) can be included into the color 

computation. It weights the camera contributions depending on the relation between 

outgoing viewing direction and camera viewing direction. The per-vertex blending 

weights are interpolated in the fragment stage of the GPU.
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Video TexturingVideo Texturing

•Time-varying texture

– Cloth folds

– Local shadows

– Facial expressions

•Detail preservation

– Small inaccuracies between 
geometry and silhouettes

– Soft shadow visibility

– Camera image dilation

– Controllable spatial blending 
weights

By generating a novel texture for each time step of video, subtle dynamic details in 

surface appearance, such as wrinkles in clothing, local shadows and facial expressions 

are faithfully reproduced (see three Figs. In top row, block artifacts are due to the limited 

camera resolution of 320x240).

Although our automatic model initialization approach generates a body geometry that 

matches the appearance of the actor very well, small geometry misalignments between 

the virtual and the real human may still exist. In These mismatches may lead to 

erroneous projections of parts of the texture belonging to occluding geometry onto 

actually more distant parts of the body (bottom left Fig.). Furthermore, seams originating 

from projected silhouette boundaries may appear on the body.

We employ three techniques to counter these effects. Firstly, we compute the visibility of 

each vertex from a set of slightly displaced camera views (soft shadow visibility). This 

way, projection artifacts at occlusion boundaries are prevented (bottom right Fig.). 

Secondly, we dilate the segmented video frames at the silhouette boundaries to prevent 

the seams. Thirdly, we apply a special method to compute controllable spatial texture 

blending weights which is illustrated on the next slide.
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Controllable View-independent 
Spatial Texture Blending

Controllable View-independent 
Spatial Texture Blending
– dependent on surface-to-camera

orientation
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The easiest way to compute a view-independent spatial blending weight for vertex i and 

camera j, ωj(i), is to apply the reciprocal of the angle θj(i) between the vertex normal and 

the viewing vector towards the camera.

We propose alternative spatial blending weights, ω’j(i), that give a better control over the 

influence of each camera on the appearance of the final texture. The alternative weight 

computation assigns a proportionally high weight to the camera which sees the vertex 

most head-on. The sharpness value α controls the amount by which the influence of the 

best camera is exaggerated. In the limit, α →∞, only the best camera is contributing to 

the color of the vertex. The three figures on the bottom of the slide illustrate the 

influence of the sharpness value on the final renditions.
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View-dependent 
Rescaling Weights

View-dependent 
Rescaling Weights

– Dependent on orientation with

respect to output viewpoint       
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Optionally, a weight ρj(i) can be computed that view-dependently rescales the view-

independent blending weights.

The weight ρj(i) for vertex i and camera j is the reciprocal of the angle Θj(i)  between 

the viewing direction towards the camera and the current outgoing viewing direction.
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Free-Viewpoint Video ViewerFree-Viewpoint Video Viewer

– Rendering: 30 fps (GeForce3)

The top right image shows a screen-shot of our renderer which displays free-viewpoint 

videos at 30 fps on an Nvidia GeForce3 GPU.

The bottom row shows screen-shots of free-viewpoint videos that have been rendered 

from virtual camera views different from any input camera view.

The input video footage for these sequences (as well as all the other sequences shown on 

previous slides) has been captured with 8 video cameras that provide an image resolution 

of 320x240 pixels each.
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ResultResult

A free-viewpoint video of ballet dancer that we have reconstructed with our method.
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Spatio-temporal Shape
Adaptation

Spatio-temporal Shape
Adaptation

Multi-view

Video

Human 

Model

Spatial-

Temporally

Consistent Model 

Reconstruction

Estimating time-

varying details Dynamic Scene
Representation

Average shape 
and pose

Shape details

Correct pose and 
time-dependent 

shape

[de Aguiar et al. CVMP 2005]

In our original pipeline, we adapted the kinematic template model to the shape of the 

actor in one reference pose only. A natural extension to this approach  is to try to recover 

spatio-temporally varying scene geometry in order to handle at least the coarsest per-

time-step deformations.

This has been explored in [4] 

Our algorithm consists of two main steps. In the first step, a spatio-temporally consistent 

shape model  is reconstructed by adapting the scaling parameters of the template to all 

video frames instead of just the reference one.

In a second step, per-time step multi-view photo-inconsistent regions are identified and 

their shape adjusted to recover per-time step deformations on isolated surface parts. 

These two main steps of the deformation method are detailed on the following slides. 
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STEP1: 
STC Model Reconstruction

STEP1: 
STC Model Reconstruction

• Find spline/scaling parameters that

match the shape of the person

„on average“ over several frames

• Iterate fitting and shape refinement over

whole sequence several times

• Spatio-temporally consistent model

As briefly outlined earlier, the idea is to first reconstruct a spatio-temporally consistent 

shape model. This model is still a model with static shape parameters. The main 

difference to the original pipeline is that these parameters are now  reconstructed by 

fitting the model to several time steps  instead of just one time step. In consequence, pose 

estimation and shape refinement are iterated several times to yield the shape-adapted 

geometry.
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STEP 2: Per-time Step 
Shape Refinement

STEP 2: Per-time Step 
Shape Refinement

• Diffuse surface � Identify photo-inconsistent regions 

[Fua and Leclerc, 1995]

• Deform vertices to

– Increase photo-consistency

– Preserve silhouette-consistency

– Preserve model quality

• Find vertex displacements rJ for each vertex vJ minimizing

In step2, the spatio-temporally consistent model is deformed to recover per-time-step 

shape variations. To do so, for a set of seed vertices, optimal displacements are computed 

such that a multi-view consistency criterion is optimized. After multi-view consistency is 

optimized, the non-multi-view-consistent regions are smoothly deformed. For details on 

this deformation, please refer to [4]. The multi-view consistency criterion is represented 

by an energy functional comprising of 4 different error terms illustrated on the following 

slide.
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STEP 2: Per-time Step 
Shape Refinement

STEP 2: Per-time Step 
Shape Refinement
• Energy terms

Photo-consistency

Silhouette distance

Triangle distortion

Change of visible camera set

The four error terms being minimized while solving for the optimal displacements for the 

seed vertices are shown here.

The first one measures the multi-view color consistency across all cameras in which a 

vertex is visible. Silhouette consistency is measured in terms of the distance (inner and 

outer distance field) to the silhouette boundary. Displacements that move a vertex closer 

to the silhouette boundary are favored.. Triangle distortion is taken into account as well 

to preserve shape integrity. Finally, strong displacements leading to changes in the set of 

cameras that see a vertex are also penalized.
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Results – ComparisonResults – Comparison

The video on this slide shows a side-by-side comparison between the captured human 

shape using the original pipeline, i.e. without spatio-temporal shape adaptation and the

new spatio-temporally adapted human model. 

The per-time step shape adaptation helps prevent certain texturing artifacts that are due

to starkly incorrect shape. These inaccuracies may not be fully corrected by texture-

based means only.

However, the underlying template geometry still imposes limits on how well per-time-

step deformations can be captured. In the following, we will discuss novel directions in 

3D video which allow us to capture more detailed dynamic model representations from

input footage. 
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DiscussionDiscussion

• A priori model simplifies geometry + texture 

reconstruction

• Convincing free-viewpoint renderings

• Simple capture of time-varying geometry 

feasible

• Model general but limited accuracy

� alternative approaches (after break)

References
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[2] C. Theobalt, J. Carranza, M. Magnor, H.P. Seidel, Enhancing Silhouette-based 

Human Motion Capture with 3D Motion Fields, Proc. of Pacific Graphics 2003,p.185-

193, Canmore, Canada. 

[3] J. Carranza, C. Theobalt. M. Magnor, H.P. Seidel, Free-Viewpoint Video of Human 

Actors. in Proc. of ACM SIGGRAPH 2003, p.569-577, San Diego, CA.

[4] E. de Aguiar, C. Theobalt, M. Magnor, H.-P. Seidel, Reconstructing Human Shape 

and Motion from Multi-view video. 2nd European Conference on Visual Media 
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Model-based 3D Video II
(25 min)

Model-based 3D Video II
(25 min)

Edilson de Aguiar

MPI Informatik
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Alternative Model-based
Approaches

Alternative Model-based
Approaches
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MotivationMotivation

• Human Models for 3D Video

– Coarse approximation (3K-10K∆)

– Lack of important details

• Clothing

• Surface deformations

• Improving realism

– Better models

• Ideally the true geometry

– Need to capture 

• Time-varying surface detail, cloth motion 

• Skinning deformation

The previously presented template model for 3D video, even after reconstruction of some 

pert-time step deformation,  was only a coarse approximation of the true geometry of the 

subject performing.  Important details, like the appearance of the apparel that the actor is 

wearing or the way the skin deforms over time are not easily reproduced.  To improve 

realism, a better representation for the subject is needed.  Ideally, one would want to use 

the true shape of the subject as a model, since it contains all important details.  In the 

following we will show some algorithmic ways to come closer to such a better model.
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Improving 3D Video ApplicationsImproving 3D Video Applications

• Problem:

– Models are coarse (3K-10K∆)

• Goal:

– Use better models ( true shape )

• Solution

– Laser-scanned models

– Technology is more available

– True geometry – more details

• How to integrate a human scan?

Since current models used in 3D Video applications are relatively coarse, in order to 

improve realism a better representation for the subject is needed.  Recently, laser 

scanning technology is becoming cheaper and easier available.  The main advantage is 

that a laser scanner can easily capture the true shape of the subject, including most of the 

important surface detail at fine resolution.  By incorporating such better input models in 

current 3D Video systems one would expect a considerable amount of improvement in 

terms of quality and realism.
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How to integrate human scans? How to integrate human scans? 

• Using traditional methods

– Kinematic structure

– Skinning weights

• Time-consuming and expensive process

• Need to do it for each model

• Alternative 

– Guided mesh-based deformation interpolation method

• Fast approach

• No need for underlying skeleton

Traditional 3D Video systems are mostly built around models with an underlying 

kinematic structure.  If we want to replace the model with the coarse surface geometry by 

a laser-scanned model, we need to fit a kinematic structure to it and thereafter determine 

the skinning weights for the vertices in order to correctly deform it during tracking or 

animation.  This process is time-consuming and expensive being at best a semi-automatic 

procedure. Another limitation is that the same procedure should be applied to each new 

scanned model.  An alternative to this expensive process is a mesh-based deformation 

scheme, which is efficient and does not require the specification of any underlying 

skeleton structure for each particular subject.
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Captured Motion

OverviewOverview

Scan

Correspondences
Animated 

Human Scan

Deformation Transfer
Method

[de Aguiar et al. VR 2007]

A simple and easy way to integrate a laser-scanned human in the traditional pipeline of a 

model-based 3D Video system can be achieved through a mesh-based Laplacian

deformation scheme [1]. Having as inputs a scanned model of the subject and a 

description of her motion (for instance captured with the original marker-free approach 

described in part I of the model-based section), the main goal is to transfer the input 

motion to the scanned model. By formulating the motion transfer problem as a 

deformation transfer problem and by setting a small amount of corresponding marked 

vertices between both models (template and scan), an automatic guided deformation 

interpolation technique can be used to animate the scanned human model efficiently.

Reference:

[1] E. de Aguiar, C. Theobalt, C. Stoll and H.-P. Seidel, Rapid Animation of Laser-

scanned Humans. In Proc. of IEEE Virtual Reality 2007, pp. 223-226, Charlotte, USA.
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PrinciplePrinciple

template scan deformed template 

Local rotations q

?

After first automatically aligning both models (template and scan) in a given reference 

pose, the user marks a set of vertices on the template and assigns to each of them a 

corresponding vertex in the scanned model. Through placement of markers the 

characteristics of the motion and the surface skinning are defined, but also retargeting 

constraints can be set.  For each time instant of the input motion sequence, represented 

by a deformed template, it is our goal to transfer this relative deformation to the human 

scan, bringing it to the same pose as the deformed template.  A good solution is to use a 

Laplacian mesh deformation scheme that jointly employs rotational and positional 

constraints on the markers to compute the new sequence of poses for the human scan. 

This method is divided in three steps and it is performed for each time step of the input 

motion sequence.  In the first step, local rotations for all markers belonging to the scan 

are estimated from the rotations of the corresponding markers on the template between 

its reference pose and its pose at the current time step.
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PrinciplePrinciple

• Estimating rotations

– Graph-based method

– Local frames – Minimum Spanning Tree

• Minimal Rotation -- Jacobian

Local Rotation

A local rotation for each marker belonging to the scan can be calculated from the rotation 

of the corresponding markers on the template between its reference pose and its pose at a 

different time by means of a graph-based method. Template markers can be considered 

as nodes in a graph and edges between them can be determined by constructing the 

minimal spanning tree. For each marker, the minimal rotation that makes its outgoing 

edges at the reference time matches its outgoing edges at time t can be found. Thereafter, 

local rotations are converted to quaternions and assigned to the corresponding partners in 

the human scan.
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PrinciplePrinciple

template scan deformed template 

Rotation interpolation via Harmonic fields: L * q = 0

Position constraints jj px =

In the second step, rotations are interpolated over the scanned mesh. Regarding each 

component of a quaternion as a scalar field defined over the entire mesh, a smooth 

interpolation is guaranteed by regarding these scalar fields as harmonic fields. The 

interpolation is performed efficiently by solving the Laplace equation (Lq = 0) over the 

whole mesh with constraints at the marked vertices.  In the equation, L is the discrete 

Laplace operator based on the cotangent-weights.  Position constraints for the Laplacian

deformation scheme are calculated from the displacements of the corresponding markers 

on the template between its reference pose and its pose at the current time step.
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PrinciplePrinciple

Rotated Differential 

Coordinates
d ′

Reconstruct 
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template scan deformed template deformed scan 

Differential coordinates (d) 
= details of scan

d = L * x

The differential coordinates d are computed once at the beginning of the sequence by 

solving the given linear system.  In the last step, the vertex positions of the scanned 

model are reconstructed such that it best approximates the rotated differential 

coordinates, as well as the positional constraints. This can be formulated as a least-

squares problem and transformed into a linear system.  During the whole process the 

Laplacian matrix L does not change, which allows a sparse matrix decomposition and 

execution of only back substitution for each frame.
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Marker-less Motion Capture ResultsMarker-less Motion Capture Results

• Skinning + implicit deformation

5 FPS

Using the silhouette-based marker-free motion capture system described in part I and [2] 

that employs a coarse template body model, only eight video cameras are needed to 

capture the subject’s motion.  Since the template is already used for tracking, the 

proposed algorithm is straightforwardly applied to map the captured motion to scanned 

models. The video shows that this method can accurately transfer poses captured on 

video to scanned models of even different subjects.

Reference:

[2] J. Carranza, C. Theobalt. M. Magnor, H.P. Seidel, Free-Viewpoint Video of Human 

Actors. In Proc. of ACM SIGGRAPH 2003, p.569-577, San Diego, CA 

EG:264



135
© The Eurographics Association 2007 New Trends in 3D Video

Also useful for Character Animation Also useful for Character Animation 

[MoCap data from the Eyes Japan Co. Ltd. database]

There are also many applications for the proposed method in fields related to 3D video, 

such as computer animation. Nowadays, optical motion capture data is presumably 

amongst the most widely-used motion descriptions in animation production. By using the 

presented method, MoCap data can be easily used to animate high-quality surface models 

while bypassing the drawbacks of the traditional animation pipeline. After transforming 

the MoCap data into a moving template model (straightforwardly done by transforming 

the actual bone skeleton into a triangle mesh using any standard animation software), the 

guided deformation interpolation method can be applied to produce the animation.  Note 

that even raw marker-trajectories can be used as input to this method. The video shows 

that the scanned model realistically performs the motion while exhibiting lifelike non-

rigid surface deformations. Motion retargeting is feasible by appropriately placing 

constraints.
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Guided Mesh-based Deformation 
Interpolation method

Guided Mesh-based Deformation 
Interpolation method

• Simple and efficient

– Fits into into original model-based 3D Video system

– Can be used with many acquisition systems

– Easy and intuitive to control

– Flexible method

• Different subjects and even animals

• Main drawbacks

– Only transfer input motion to scanned models

– Improve realism in 3D Video even further 

• Capture cloth motion 

• Capture skinning deformation

The guided mesh-based deformation interpolation approach is a flexible, simple and fast 

scheme that allows the integration of high-quality scanned models into the pipeline of 

conventional 3D Video systems and consequently a considerable amount of improvement 

in terms of quality and realism. The method requires a minimum of manual interaction, it 

is flexible, easy and intuitive to use, and simultaneously solves the animation, the surface 

deformation, and the motion retargeting problems. Although this method allows the 

integration of the true shape into the pipeline, it is not able to correctly reproduce the 

temporal behavior of the garments and the deformation of the skin while the subject is 

performing, in case the input motion description does not have this information.  In order 

to achieve this, new methods will be presented.
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Garment Motion Capture using Color-Coded Patterns

V. Scholz, T. Stich, M. Keckeisen, M. Wacker and M. Magnor. 

In Eurographics 2005

Marker-based Cloth CaptureMarker-based Cloth Capture

• Simulation methods

– Parameter tweaking

– Non-homogeneous textiles

• Marker-based Capturing

– Motion from real subject

– Cloth = initial triangle mesh

– Color-coded markers 

• Recent improvements

– Better results by filling occluded regions

Capturing and Animating Occluded Cloth R. White, K. Crane, 

D. Forsyth. ACM Transaction on Graphics (SIGGRAPH), 2007

As pointed out earlier, capturing the motion of garment is a big challenge in 3D video 

reconstruction. In computer graphics, the behavior of the garments while the subject is 

moving is usually simulated. However, tweaking the parameters to achieve a particular 

look is fairly difficult and numerical instabilities may frequently happen. In order to 

reproduce garment motion more faithtfully, marker-based capturing techniques [3] were 

developed that use color-coded markers and a video camera acquisition setup to capture 

true cloth deformation, thereby allowing for a higher animation quality.  While this 

allows for very detailed reconstruction, traditional multi-view acquisition problems, like 

occlusion, make the reconstruction still a hard problem. Recently, a new approach 

explicitly addressed the latter problem and fills in occluded regions of the tracked 

garment [4]. 

References:

[3] V. Scholz, T. Stich, M. Keckeisen, M. Wacker and M. Magnor, Garment Motion 

Capture Using Color-Coded Patterns, Computer Graphics Forum (special issue 

Eurographics 2005), vol. 24, no. 3, pp. 439-448, August 2005. 

[4] R. White, K. Crane, D. Forsyth, Capturing and Animating Occluded Cloth, ACM 

Transaction on Graphics (SIGGRAPH), 2007. 
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Marker-less Cloth CaptureMarker-less Cloth Capture

• Marker-based methods

– Inappropriate for 3D Video

• Marker-less Capturing

– No markers

– Two models

• Human model

• Cloth model

– Jointly optimizing for the human pose and cloth dynamics.

• Main disadvantage of cloth motion capture

– One model for each component of the scene � more complex

A system for articulated tracking incorporating a clothing 

model. B. Rosenhahn, U. Kersting, K. Powell, R. Klette, G. Klette

and H.-P. Seidel. In Machine Vision and Applications (MVA)

While marker-based cloth motion capture methods are able to generate good results for 

animation purposes, the use of the color-coded markers make them inappropriate for 3D 

Video applications.  Instead, marker-less methods have been developed [5] where no 

intrusion in the scene is necessary.  The behavior of the cloth while the subject is moving 

can be captured by using a template human model (with underlying kinematics structure) 

and a template cloth model.  By jointly optimizing both models at each frame of the 

video footage, these methods are able to capture the deformation of the cloth, e.g. 

wrinkles.  After that, simulation methods  [6] or mesh deformation methods [1] can also 

be used for transferring the motion to different clothing styles. 

Despite some very good capturing results on specific types of scenes, cloth motion 

capture approaches bear the disadvantage that a separate type of model and often a 

separate type of tracking method has to be used in combination with the already difficult 

body motion tracking itself. This greatly reduces the flexibility of the method. 

References:

[5] B. Rosenhahn, U. Kersting, K. Powell, R. Klette, G. Klette and H.-P. Seidel. A 

system for articulated tracking incorporating a clothing model Machine Vision and 

Applications (MVA) Vol. 18, No. 1, pp. 25-40

[6] N. Hasler, B. Rosenhahn, H.-P. Seidel: Reverse Engingeering Garments, Mirage 

2007, pages 200-211, Rocquencourt, France, 2007. 
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Capturing Skinning deformationCapturing Skinning deformation

• Skinning deformation

– Skeleton- or muscle-induced non-rigid surface deformation

• Motion capture approaches don’t capture these

• Possible solutions

– Hundreds of optical markers [Park and Hodgins 2006]

– Combine a MoCap system with a shape-from-silhouette 

approach [Sand et al. 2003]

– Combine a MoCap system with a laser-scanner    
[Allen et al. 2002] [Anguelov et al. 2005]

• Markers � Inappropriate 3D Video applications

Another category of related approaches tries to infer geometry deformation at a slightly 

reduced level of complexity, however for the whole body. Skinning is a technique used 

in computer animation to correctly reproduce non-rigid surface deformation around 

joints or in the vicinity of bulging muscles.

Traditional motion capture systems are not able to measure such time-varying body 

shape deformations and therefore their acquisition principle has to be augmented. Some 

methods use hundreds of optical markings for deformation capture [7], or combine a 

motion capture system with a range scanner [8,9] or a shape-from-silhouette approach 

[10] to measure a model of skinning deformation in dependence on skeletal pose 

parameters. Although achieving good results, most of these marker-based methods 

require active interference with the scene which makes them inappropriate for 3D Video 

applications. Also, skinning is a very reduced form to describe surface deformations and 

it is again inappropriate to model the surface deformation of people wearing wide 

apparel. 

References:

[7] S. I. Park and J. K. Hodgins: Capturing and Animating Skin Deformation in Human 

Motion, ACM Transactions on Graphics, 25(3): 881-889 (2006)

[8] B. Allen, B. Curless, and Z. Popovic. Articulated body deformation from range scan 

data. ACM Transactions on Graphics (ACM SIGGRAPH 2002), 21, 3, 612-619. 

[9] D. Anguelov, P.Srinivasan, D.Koller, S.Thrun, J. Rodgers, J.Davis. SCAPE: Shape 

Completion and Animation of People. Proceedings of the SIGGRAPH Conference, 2005. 

[10] P. Sand, L. McMillan, and J. Popovic. Continuous Capture of Skin Deformation. 

ACM Transactions on Graphics (TOG) 22, 3, 578-586. 
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Jointly Capturing Motion, Cloth
Deformation and Surface Deformation

Jointly Capturing Motion, Cloth
Deformation and Surface Deformation

• Specific method for each subpart of scene

– Capture cloth motion 

– Capture surface deformations 

� Difficult

• Recently, new approaches

– Jointly capture motion and time-varying surface 

deformation (cloth or skin) 

– Data-driven approach [Starck and Hilton 2007]

– Marker-less deformable mesh tracking [de Aguiar et al. 2007]

Capturing the time-varying shape of a scene featuring all components for which we 

previously showed individual capturing methods is a difficult task. It would be one 

option to jointly use all of the given methods in a single scene. However, this may be 

difficult in practice and not very easy to implement. 

Recently new approaches have been developed that aim at jointly capturing motion and 

time-varying surface deformations even for subjects wearing wide apparel with complex 

shape.  Most of these methods use a fairly general scene representation,  for instance only 

a 3D triangle mesh instead of dedicated models for each component. By this means, the 

reconstruction principle remains the same, regardless of the complexity and assembly of 

the scene.

In the following, we will briefly look at two of these approaches.
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Surface Motion CaptureSurface Motion Capture

• Data-driven approach

– Jointly capture motion, varying 
deformation and appearance

– No a priori model: VH mesh + stereo

• Pros

– Marker-less system

– Cloth motion

• Cons

– Relatively coarse models

– Topology changes

Surface Capture for Performance-based Animation

J. Starck and A. Hilton. To appear IEEE CG&A, 2007.

The Surface Motion Capture system [11] is a data-driven approach aiming at jointly 

capturing motion, time-varying deformation and appearance of a moving subject.  Using 

this system no intrusion into the scene is necessary, which makes it appropriate for 3D 

Video applications.  After reconstructing a triangle mesh from the visual hull (VH) and 

stereo information for each time step separately, additional time-consuming procedures 

(spherical parameterization and remapping) are used to construct a spatio-temporally 

coherent model. Although the system is able to nicely capture the motion and temporal 

cloth deformations for a relatively coarse reconstructed model, its main limitation comes 

from the topology changes in the model over time.  This is an important issue to be 

considered when developing more advance applications, like 3D Video relighting.

Reference:

[11] Surface Capture for Performance-Based Animation, J. Starck and A. Hilton. to 

appear IEEE Computer Graphics and Applications (CG&A), 2007.
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Marker-less Deformable 
Mesh Tracking

Marker-less Deformable 
Mesh Tracking

• Model-based approach

– Jointly captures motion and surface deformations 

– Mesh only - No kinematic skeleton

• Pros

– High-quality a priori model: human scan 

– Spatio-temporal coherence implicit

• Cons

– Range of motions

– Low-frequency surface details

Marker-less Deformable Mesh Tracking for Human Shape 

and Motion Capture E. de Aguiar, C. Theobalt, C. Stoll and 

H.-P. Seidel,. In Proc. of IEEE CVPR 2007

The marker-less deformable mesh tracking system [12] is a novel algorithm to jointly 

capture the motion and the dynamic shape of humans from multiple video streams 

without using optical markers. Instead of relying on kinematic skeletons, as traditional 

motion capture methods, it uses a deformable high-quality mesh of a human as scene 

representation. As opposed to many related methods, it can track people wearing wide 

apparel, it can straightforwardly be applied to any type of subject, e.g. animals, and it 

straightforwardly preserves the connectivity of the mesh over time. The main limitations 

are still the range of motions that can be correctly captured, since only eight cameras are 

used for recording the multi-view video sequences, and that the system cannot capture 

the true shape variation of low-frequency surface details, such as wrinkles in clothing. 

While the cloth and skin globally deform with the model, they seem to be ‘baked in’ to 

the surface.  However, a combination of this method with a per-time-step stereo 

algorithm would overcome this limitation.

Reference:

[12] E. de Aguiar, C. Theobalt, C. Stoll and H.-P. Seidel, Marker-less Deformable Mesh 

Tracking for Human Shape and Motion Capture. In Proc. of IEEE CVPR 2007, 

Minneapolis, USA. 
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Deformable Mesh Tracking 
for 3D Video 

Deformable Mesh Tracking 
for 3D Video 

Since it is more suitable for model-based 3D Video applications, the second algorithm 

will be described in more details.
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IntroductionIntroduction

• Input

– Static scanned model

– Multi-view video

• Output

– Animated scan (motion + non-rigid
deformation)

• Problems to be solved:

– Align scan and recorded images

– Track vertex positions over time

[de Aguiar et al. CVPR 2007]

The input to the system comprises of a static laser-scanned triangle mesh of the moving 

subject and a multi-view video sequence that shows her moving arbitrarily. As a result it 

outputs an animated mesh sequence where the model correctly follow the motion of the 

actor in all video frames.  In order to accomplish that, first the laser scan should be 

aligned to the pose of the subject in the first time step of video and, thereafter, the 

vertices should be robustly tracked over time.
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Algorithm pipelineAlgorithm pipeline

• Major steps:

– Align scan and recorded images

– Track vertex positions over time

– Select best set of tracked vertices

– Use reliable vertices to drive the tracking procedure

The method is composed of four steps. First, the scanned mesh is registered to the pose 

of the person in the first time step of video.  Then, an iterative 3D flow-based 

deformation scheme is used to extract the motion information of each vertex over time 

from the images. Thereafter, N marker vertices that are tracked reliably over time are 

automatically identified. At the end, a more robust method that implicitly enforces 

structural integrity of the underlying mesh is used to track all vertices correctly.
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Data acquisitionData acquisition

• Human scan:

– Vitus SmartTM full body laser scanner

– Fast reconstruction (less than 10s)

– Resolution of 1-2 mm

• Multi-View Video sequences

– Post-processing: Silhoeutte images

For each test subject, the scanned model and several multi-view video sequences are 

acquired. The triangle mesh is captured with a Vitus Smart full body laser scanner. After 

scanning, the subject immediately moves to the nearby area where she is recorded with 

eight synchronized video cameras that run at 25 fps and provide 1004x1004 pixels frame 

resolution. The calibrated cameras are placed in an approximately circular arrangement 

around the center of the scene. After acquiring the multi-view sequences, silhouette 

images are calculated via color-based background subtraction. 

EG:276



147
© The Eurographics Association 2007 New Trends in 3D Video

AlignmentAlignment

• Goal:

– Align scan with actor‘s pose in the first frame

• Coarse alignment:

– ICP-like registration

– SFS reconstruction of the subject

• Fine alignment

– Flow-based Laplacian deformation scheme

– Subtle pose differences are corrected

In an initial alignment we register the scanned mesh with the pose of the person in the 

first time step of video. To this end, she initially strikes the same pose that she was 

scanned in. By means of an ICP-like registration the mesh is first coarsely aligned to a 

shape-from-silhouette reconstruction of the person. Thereafter, the flow-based Laplacian

deformation scheme is applied to correct for subtle pose differences.
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Tracking vertex positions (I)Tracking vertex positions (I)

– Texture model

– Temporary images: project model back into camera views

– Optical flow between original and temporary images

After initial alignment, each individual vertex of the mesh is iteratively deformed based 

on the 3D optical flow fields that have been reconstructed from the multi-view images. 

Using subsequent time steps t and t + 1, the purely flow-driven mesh tracking approach 

consists of the following steps: first, the model is projectively textured using the images 

recorded with the K cameras at time step t. Then, K temporary images are generated by 

projecting the textured model back into all K camera views.  After that, K 2D optical 

flow fields are calculated between temporary and original images.
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Tracking vertex positions (I)Tracking vertex positions (I)

– Scene flow

– Filter scene flow:

• Silhouettes

• Gaussian low-pass filter

Given the model, calibrated cameras and the optical flow fields for all camera views, the 

scene flow can be computed by solving a linear system for each vertex that is visible 

from at least two camera views. The generated 3D flow field is parameterized over the 

mesh's surface and it describes the displacement by which the vertex should move from 

its current position.  Thereafter, the 3D motion field is filtered in order to remove noise 

and outliers according to a silhouette-consistency criterion, and a Gaussian low-pass 

kernel is applied over the entire flow field. 
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Tracking vertex positions (I)Tracking vertex positions (I)

– Deform scan using scene flow

– Iterate steps:

• Overlap between silhouettes and rendered model silhouettes

Using the filtered scene flow the model is updated by moving its vertices according to 

the computed displacements and the iterative process starts again until the overlap error 

between the rendered model silhouettes and the video-image silhouettes at time t + 1 in 

all camera views is below a threshold. 
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Tracking vertex positions (I)Tracking vertex positions (I)

• Scanned model is tracked over time!

• However:

– Quality of animated scan deteriorates over time

At the end, after applying the previously described steps to all pairs of subsequent time 

steps the model is tracked over the whole sequence. However, since this scheme 

calculates 3D displacements without taking into account a priori information about the 

shape of the scanned model, deformation errors accumulate over time. 
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Tracking vertex positions (I)Tracking vertex positions (I)

• Quality deteriorates over time

– Accumulation of correspondence estimation errors

• No a priori information about the scan

• Two-step procedure:

– Initial 3D motion field

• Do not deform the model

• Identify reliable vertices

– Improved 3D motion field

• Selected tracked vertices

• Laplacian deformation scheme

The results of this simple tracking scheme quickly deteriorate due to accumulation of 

correspondence estimation errors.  Since 3D displacements are calculated without taking 

into account a priori information about the shape of the model, the overall mesh quality 

is limited. Nonetheless, using this scheme it is possible to automatically identify N 

marker vertices that can be tracked reliably. Thereafter, an improved tracking scheme, 

more robust against flow errors, can be used which implicitly enforces structural integrity 

of the underlying model. This improved method uses the moving marked vertices as 

deformation constraints to drive a Laplacian deformation framework that makes all 

vertices correctly follow the motion of the actor.
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Selecting best tracked verticesSelecting best tracked vertices

• Objective:

– Identify N reliably tracked vertices

• Procedure:

– Initial 3D motion field

– 1) Seed points

– 2) Test seed

• Silhouette-consistent

• Motion-consistent

– 3) Accept if seed passes both tests

Based on the initial deformation results, this scheme selects N marked vertices of the 

model that were accurately tracked over time. To this end, first L candidate vertices are 

chosen that are regularly distributed over the model's surface. A candidate vertex is 

considered a marked vertex if it has a low error according to two spatio-temporal 

selection criteria based on silhouette-consistency and motion-consistency measures.
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Tracking vertex positions (II)Tracking vertex positions (II)

• Laplacian scheme

– Differential coordinates (d = Lv)

– Structural details of scan

• Laplacian deformation scheme

– Constraints from marked vertices

– Interpolate remaining vertices

• Pipeline:

– Similar to previous one

– Deformation step

In the final step, the algorithm uses a Laplacian scheme to encode the knowledge about 

the structural details of the scanned model in terms of the mesh's differential coordinates 

d. They are computed by solving a linear system of the form d = Lv, where L is the 

discrete Laplace operator based on the cotangent-weights and v is the vector of vertex 

coordinates. 

The main idea is to extract rotation and translation constraints from the motion of the N 

marked vertices to drive the Laplacian mesh deformation approach.  By this means we 

can extract novel motion fields for each vertex that make the model correctly move and 

deform like the recorded subject. The individual steps of the Laplacian tracking scheme 

are very similar to the steps of the previous approach, differing however, in how the 

deformations are applied.
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Tracking vertex positions (II)Tracking vertex positions (II)

• Difference

– Do not deform all vertices

– Deform only marked vertices

– Interpolate other vertices

• Interpolating vertices

– Rotation and translation
constraints for the markers

– Interpolate rotations

– Reconstruct pose by
solving the Laplace equation

The main difference between the first and second tracking schemes is the way the 

calculated deformations are applied. In the first scheme, deformations are directly 

applied to all vertices.  In the second scheme, the deformations for the marked vertices 

are used to guide our Laplacian deformation interpolation method: from the motion of 

each marked vertex a set of rotation and translation constraints is computed. Then, 

rotations for all markers are interpolated over the model by regarding the quaternion 

components as harmonic fields. At the end the model in its new target pose is 

reconstructed by solving the Laplace equation, subject to the constraints derived from the 

motion of the markers.
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Tracking vertex positions (II)Tracking vertex positions (II)

• Tracking result

– Mesh reconstructed in all poses

– Differential surface properties preserved

• Features and details

– Mesh connectivity preserved

– Tracking robust against flow estimate errors

• Output

– Human scan deforms according with its real-world
counterpart

By applying these steps to all subsequent time steps the mesh is tracked over the whole 

video sequence. The Laplacian scheme reconstructs the mesh in its new pose in a way 

that preserves the differential surface properties of the original scan. Due to this implicit 

shape regularization, this improved tracking approach is robust against inaccurate flow 

estimates and deforms the mesh in accordance to its real-world counterpart in the video 

streams.
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ResultsResults

• Synthetic sequences

– Evaluate the performance

• Accuracy

• Efficiency

– Realible deformable mesh
tracking

• Captured real-world sequences

The algorithm was tested on several synthetic and captured real-world data sets.  The 

synthetic sequences allow us to compare the results against the ground truth and evaluate 

the performance of the algorithm in terms of efficiency and accuracy. Different 

deformation alternatives were also compared, namely deformation along the unfiltered 

flow (RAWFL), deformation according to the first tracking method (ST-A), and 

deformation with our complete pipeline (ST-AB).  Using RAWFL, the measurement error 

grows almost exponentially. Tracking with the first scheme leads to significantly better 

results, but the absolute inaccuracy is still comparably high. In contrast, the complete 

pipeline leads to satisfactory results. These experiments confirm that the complete 

tracking pipeline in combination with a high-quality dense flow method can reliably 

track human motion from raw unmodified video streams, as seen for the captured real-

world sequence results.
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ResultsResults

For captured real-world results, the captured video sequences are between 300 and 600 

frames long and show a variety of different clothing styles, including normal everyday 

apparel and a traditional Japanese kimono. Many different motions have been captured 

ranging from simple walking to gymnastic moves.  The algorithm reliably recovers the 

pose and surface deformation for the subjects wearing comparably wide apparel, e.g. it 

can capture the motion and the cloth deformation for a woman wearing a kimono. The 

results show that this purely passive mesh-based tracking approach can automatically 

capture both pose and surface deformation of human actors. The combination of an a 

priori model, a fast Laplacian mesh deformation scheme, and a 3D flow-based 

correspondence estimation method enables us to capture complex shape deformations 

from only a few cameras.
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Deformable Mesh Tracking 
for 3D Video

Deformable Mesh Tracking 
for 3D Video

• Automatic marker-less system

– Scan deforms as the subject

– Robust method

• 3D scene flow method 

• Laplacian scheme

– Large range of motions and clothing styles

– Preserve mesh connectivity

– Flexible: human, animals

• Limitations

– Reconstructing fast motion

– Capturing low-frequency surface details (e.g. wrinkles)

The deformable mesh tracking algorithm is a new solution for automatic marker-less 

tracking of deformable human models from a handful of video streams. The combination 

of a 3D scene flow-based correspondence estimation approach with a Laplacian mesh 

deformation scheme enables this method to make a laser scan of a subject move and 

deform in the same way as its real-world counterpart in video. The algorithm is easy to 

implement, preserve the mesh's connectivity and can handle a large range of human 

motions and clothing styles. 

Nonetheless, this algorithm is subject to a few limitations.  Problems may arise if the 

subject in the scene moves very quickly. In these situations, optical flow tracking may 

fail. However, this can be solved by using a high-speed camera that is available today for 

capturing fast scenes. Also, the algorithm cannot capture the true shape variation of low-

frequency surface details, such as wrinkles in clothing. While they globally deform with 

the model, they seem to be ‘baked in’ to the surface.  Although in typical 3D video 

applications, this inaccuracy does not play a major role, the authors are planning to 

extend the method in the future to capture these small details by means of a multi-view 

stereo algorithm. Despite these limitations this method is a flexible, easy to implement 

and reliable purely passive method to capture the time-varying shape of subjects from 

video. 
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DiscussionDiscussion

• Improving 3D Video realism

– Laser-scanned models

– Time-vaying deformations (skin/cloth)

• Presented methods

– Hybrid approach: coarse template + scan

– Capture time-varying deformations (skin/cloth)

– Jointly capture motion and time-varying deformations

• Open Challenges

– Multiple objects in the scene

– Combination of model-based and non-model-based
approaches

To conclude, we presented some algorithmic alternatives that can improve the quality 

and realism of dynamic geometry in model-based 3D Video applications.  As seen in this 

part of the course, by using a more detailed shape representation of the subject and by 

properly capturing time-varying deformations (cloth or skin), the realism of model-based 

3D video can be increased.  We first presented a hybrid method that can be used to 

incorporate a laser-scanned shape prior into the original 3D Video system.  Thereafter, 

we showed model-based methods that are able to capture different types of non-trivially 

deforming complex surface geometry, such as the motion of cloth or non-rigid skinning. 

Finally, we presented a model-based marker-less mesh tracking approach that enables 

faithful reconstruction of the motion and time-varying geometry of even people wearing 

complex apparel. 

However, many challenges remain open, two of them are named on the slide above.
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Free-viewpoint Video Relighting
(25 min)

Free-viewpoint Video Relighting
(25 min)

Christian Theobalt 

Stanford University
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Relightable 
Free-Viewpoint Video

Relightable 
Free-Viewpoint Video

• So far …

• Arbitrary viewpoint

• Fixed lighting 

conditions

All approaches so far are able to reconstruct the dynamic and sometimes even view-

dependent appearance of real-world scenes under the lighting conditions that prevailed at 

the time of recording.

Although this is one big step forward already, in many applications (e.g. 3D video 

compositing and postproduction, as well as many applications in games) one would like 

to be able to implant the captured 3D video footage into novel virtual scenes in which 

completely different lighting conditions exist.
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Relightable 
Free-Viewpoint Video

Relightable 
Free-Viewpoint Video

• New Lighting Conditions

– Dynamic Reflectance Capture

To achieve this goal, one has to reconstruct more than only the dynamic surface 

appearance from the captured footage, namely information on the actual dynamic surface 

reflectance. This means one needs to know how the scene’s appearance varies under 

changing incident lighting and outgoing viewing directions.

Only recently has acquisition and computation hardware become powerful enough to 

enable researchers to attack this even more challenging reconstruction problem. Just few 

approaches attacking this problem have therefore been published so far, and we will 

review the most important ones in this part of the course. The videos on this slide show 

exemplary results obtained with methods whose working principles we will detail in the 

following.
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OverviewOverview

• Model-based Methods

– Surfel-based Dynamic Scene Capture

– Model-based 3D Video Relighting

• Data-driven Methods

– Image-based Dynamic Scene Relighting

Two major categories of approaches have been proposed to attack the challenging 

problem of reconstructing dynamic relightable scene representations,. The first category 

of approaches is an extension of  the original model-based 3D video pipeline. This will 

be the subject of the first part of this section.

An alternative way of attacking the problem is to take a data-driven or image-based 

approach. Instead of explicitly reconstructing shape and appearance models, these 

algorithms densely sample the space of camera viewpoints and lighting conditions and 

reconstruct novel views by appropriately combining the recorded input image streams. 

Data-driven methods will be the subject of the second part of this section.
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Surfel-based Non-rigid 
Dynamic Scene Capture

Surfel-based Non-rigid 
Dynamic Scene Capture

• Input: Multi-view video, calibrated camera + lighting

• Output: Moving surfel set approximating surface

Courtesy of K. Kutulakos – taken from [Carceroni et al. ICCV 2001]

Video footage  with overlayed surfel motion Reconstructed moving surfels

One of the first approaches that lays the path for model-based dynamic scene relighting 

is presented in [1]

The goal of their algorithm is the reconstruction of non-rigidly deforming dynamic scene 

geometry from multi-view video footage that was recorded under calibrated lighting. 

Although the focus of this paper is not relighting itself, the proposed reconstruction 

algorithm also infers reflectance properties for discrete surface elements in order to 

recover the dynamic scene geometry as accurately as possible. Therefore, the ideas 

proposed in this paper can be regarded as a motivation for many of the concepts 

employed in the 3D video relighting approach discussed in the last part of this section.

This slide and the two following slides contain material that was kindly provided to the 

authors by Kyriakos Kutulakos from the University of Toronto. The videos shown on this 

slide can also be found here: http://homepages.dcc.ufmg.br/~carceron/surfels/
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Surfel-based Non-rigid 
Motion Capture

Surfel-based Non-rigid 
Motion Capture

• Dynamic Surfel has associated 

shape, motion and 

reflectance (Phong)

• Multi-Step optimization – Find optimal surfel alignment

Courtesy of K. Kutulakos – taken from [Carceroni et al. 2001]

The method tries to find the motion and orientation of so-called dynamic surfels relative 

to a discretized voxel grid in space. The mathematical description of each surfel features: 

A 3D shape component, more specifically position, normal orientation and curvature 

information, a reflectance component modeled by the Phong reflectance model [2], a 

description of the surfel’s motion in terms of an instantaneous 3D velocity vector.

The approach now explores the space of possible surfel orientations and motions to 

reconstruct for each time step a complete hole-free approximation to the moving surface. 

This exploration, i.e. the search for optimal surfel parameters, is performed in the 

specific manner illustrated on the bottom of the slide.

The details of the method are described in [1]. Although scene relighting is not the 

primary goal in their work, many of the proposed ideas motivated the development of the 

model-based dynamic scene relighting approach shown in the following.
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Model-based 
3D Video Relighting

Model-based 
3D Video Relighting
• Extension of the model-based Free-viewpoint Video approach 

described earlier

• Dynamic Reflectance instead of Dynamic Surface Textures 

New: Single-skin model

[Theobalt et al. TVCG 2007]

Inspired by ideas from the paper by Carceroni et al. and recent progress in model-based 

reflectance reconstruction for static scenes we extended our original model-based 3D 

video pipeline in order to capture relightable scene representations [3].

Dynamic scene geometry is still reconstructed by capturing the motion of a kinematic 

template model. However, instead of using a segmented surface representation, we now 

use a single-skin model to represent the surface. This model is created from the shape-

adapted segmented template model in a semi-automatic procedure.
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Dynamic ReflectometryDynamic Reflectometry

• Per-texel parametric BRDF model

Phong, Lafortune

• Dynamic normal map

Cameras=

reflectance sensors

Known lighting 

conditions

Moving geometry

Dynamic
reflectance model

per texel
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From the marker-based motion capture step we know how the human shape model 
moves with respect to the recording cameras. If we now record the input sequences under 
calibrated lighting, the cameras are not only texture sensors but turn into reflectance 
sensors. As the person moves with respect to the acquisition setup, each point on the 
surface is seen under different incoming lighting and outgoing viewing directions. 
Therefore, each pixel value in combination with the information on light and viewing 
directions represents a reflectance sample. Many of such samples are acquired in 
subsequent video frames as the person moves.

Using a process called dynamic reflectometry we fit to each texel on the model’s surface 
a time-varying reflectance model which comprises of two main components. 
The first component is a static parametric representation of the bidirectional reflectance 
distribution function (BRDF). The BRDF at a surface point is defined as the quotient of 
the outgoing radiance in a particular direction to the irradiance incoming from a specific 
direction. It is usually represented as a 6D function of incoming and outgoing directions 
as well as location on the surface. By computing an integral over the hemisphere of 
incoming light directions, the BRDF can be used to compute the outgoing radiance for 
any novel viewing direction. Due to their compactness and modeling power, we employ 
in our work parametric BRDF models that enable us to represent surface reflectance in 
terms of a few tunable parameters only [2,4].
The second component of our model is a time-varying normal direction for each texel. 
By this means, dynamic changes in surface geometry, such as folds in the apparel, can 
also be represented and realistically relit.
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AcquisitionAcquisition

• 8 video cameras + calibrated lighting

Input footage was recorded in the 3D Video recording studio at MPI. Eight 1-Megapixel 

video cameras running at 25 fps are arranged in a approximately circular setup around 

the center of the scene. All scenes are recorded under a calibrated lighting setup. We 

employ two light sources that are placed at opposite corners of the setup to illuminate the 

scene. The positions of cameras and light sources are calibrated. In addition to geometric 

calibration, we also perform photometric and color calibration prior to recording.
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AcquisitionAcquisition

• Reflectance Estimation Sequence (RES)

– one for each type of apparel

� BRDF model

We record two types of multi-view video sequence to reconstruct relightable 3D videos. 

The first type of sequence, called reflectance estimation sequence (RES), is later used to 

estimate the per-texel BRDF parameters. We record one RES for each person and each 

type of apparel. In the RES, the person slowly rotates in front of the acquisition setup 

while trying to maintain a static upper body pose. By this means, we can capture many 

reflectance samples and prevent unwanted changes in local surface detail during 

acquisition. The pose of the body model in each frame is captured using our silhouette-

based approach.
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AcquisitionAcquisition

• Dynamic Scene Sequence (DSS)

– Arbitrary motion

�Motion sequence to be relit 

�Dynamic normal map

The second type of sequence is the so-called dynamic scene sequence (DSS). One DSS is 

captured for each performance of the actor that shall be reconstructed. Besides the actual 

motion, we also reconstruct the dynamic normal map from the DSS.
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Multi-view Video Texture 
Generation

Multi-view Video Texture 
Generation

• Transform each input 

video frame into texture 

domain to obtain a

Multi-view video (MVV) 

texture

To facilitate reconstruction and rendering, we are transforming each captured video 

frame into the texture domain and are thereby creating so-called multi-view video 

textures. One multi-view video texture is created for each frame and each camera.
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Image-based Warp-CorrectionImage-based Warp-Correction

• Problem: approximate 

geometry causes texture 

registration errors

• One solution: 

deform geometry

• Our solution: 

warp correction of input 

video frames

[Ahmed et al. ICIP 2007]

Before we reconstruct reflectance information from the input data, we have to solve a 

couple of registration problems. The first problem that we are facing is the fact that, due 

to approximate body geometry, there might be artifacts when projecting the textures back 

onto the model.

One solution would be to deform the geometry until the body model’s shape best 

matches the input footage. Instead of doing the adjustment on the geometry level, we do 

the adjustment in image space. The idea is to warp the input images such that they 

optimally correspond to the multi-view image material captured. The warping of input 

images is performed as part of the multi-view texture generation process. It is described 

on the following slides and in [5].
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Image-based Warp CorrectionImage-based Warp Correction

MVV texture generation

for camera 0

Trivial case:

Camera 0 sees 
surface point best

Warp correction happens during multi-view video texture assembly. In the following, the 

warp correction steps are illustrated using a single surface point of the model as an 

example.

Let’s assume we would like to assemble a multi-view video texture for camera 0. In case 

it is camera 0 that sees a surface point best, which in this case means most head-on,  we 

look up the appropriate color in the image captured by camera 0. This is the trivial case 

and no warp correction step is required.
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Image-based Warp CorrectionImage-based Warp Correction

MVV texture generation

for camera 0

Warping case:
Camera 1 sees 

surface point best

• Texture model from camera 0

• Reproject into camera 1

• Warp reprojected

textured model 
to match camera 1

• Lookup in warped image

The warping case occurs if it is not camera 0 that sees a point best, but (without loss of 

generality) for instance camera 1 (red circle in image above).

In this case, the warping procedure is applied. To this end, the model is textured with the 

image from camera 0 and the so-textured model is projected back into the image of 

camera 1. The textured back-projected image is warped such that it optimally overlaps 

with the image actually captured from camera 1. The texel color is now looked up from 

the warped re-projected image. By this means, we make sure that the texture information 

always comes from camera 0 although we warp it into multiple camera views.
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Warp-ComputationWarp-Computation

• Warp of a camera image 

into the reference view

• Regular mesh over image

• Dense optical flow field

• Warping –

Mesh deformation

• GPU:

– Textured rendition �Warped 

image

The image warping procedure itself, i.e. the procedure used to align the re-projected and 

captured images from camera 1, is based on optical flow computation and a subsequent 

image warping step. The working principle of the warping algorithm is illustrated in the 

flow diagram on this slide. To produce the final warped images, we make use of the 

texturing and filtering capabilities of the GPU and render image-aligned textured triangle 

meshes. Image-warping itself is implemented as a 2D smooth deformation of textured 

meshes.

EG:306



177
© The Eurographics Association 2007 New Trends in 3D Video

Image-based Warp-CorrectionImage-based Warp-Correction

• Improvements

before after

As one can see in the image above the “ghosting artifact” seen on the pants of the actor, 

which are due to shape misalignments, are corrected if our warping method is applied.
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Cloth Shift DetectionCloth Shift Detection

• Detect cloth motion in texture domain

• Store time-varying texture coordinates
t

t+1

Optical

Flow

Motion of each texel 

between t and t+1

[Ahmed et al. ICIP 2007]

The second spatio-temporal registration problem we are confronted with is due to the fact 

that when the person is moving his apparel shifts across the body surface. This 

contradicts our assumption that we can assign a constant set of BRDF parameters to each 

location on the model’s surface. In order to extract this cloth shifting information and in 

order to make it accessible to both our reflectance estimation framework and our 

renderer, we employ the cloth shift detection procedure illustrated in the slide above.

We identify the motion of apparel by means of a dense optical flow field between the 

complete surface texture images of the person in subsequent time steps. The complete 

surface texture is computed by weightedly blending all input images. An example of 

such a flow field is visualized in the image above. The 2D sections marked in red are 

areas in which motion has been detected. These areas correspond to specific surface 

areas on the model which are illustrated in the image to the right.
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Cloth Shift DetectionCloth Shift Detection

• Detect cloth motion in texture domain

• Store time-varying texture coordinates
t

t+1

Optical

Flow

Motion of each texel 

between t and t+1

Warped texture

coordinates

[Ahmed et al. ICIP 2007]

Flow fields are computed between all successive frame pairs. In the end, we make the 

information on cloth motion available to our renderer by warping the texture coordinates 

according to the recovered flow fields. The stream of warped texture coordinates is our 

final representation for cloth motion that enables us to do proper sample lookups during 

reconstruction and to render moving apparel despite a static assignment of material 

properties to the model surface. In both cases, i.e. reconstruction and rendering, texture 

information is looked up using the appropriately warped texture coordinates.
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Cloth Shift DetectionCloth Shift Detection

• Improvement

Input Rendering without 
shift detection

Rendering with 

shift detection

This set of images shows a close-up view of the waist area of a reconstructed relightable 

3D video. The images illustrate the usefulness of our cloth motion detection method. The 

leftmost image is a ground truth image in which the boundary of the t-shirt shifted 

upwards in comparison to the first frame of the sequence. The image in the middle shows 

a reconstruction without cloth shift correction where the boundary of the shirt is 

improperly reproduced. The image to the right shows the correct assignment of the t-shirt 

color to the boundary location when cloth shift detection is applied during reconstruction 

and rendering.
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Dynamic ReflectometryDynamic Reflectometry

firstx)(
r

ρ

finalx)(
r

ρ

After all pre-processing steps are completed and the spatio-temporal reconstruction 

problems are solved, the actual reflectance estimation commences. In a process called 

dynamic reflectometry a separate set of BRDF parameters is estimated for each texel on 

the model’s surface. The input to the dynamic reflectometry procedure is the reflectance 

estimation sequence. 

The first step in the dynamic reflectometry process is the clustering of texels into groups 

of similar surface material according to the average diffuse color. After clustering,  a first 

set of BRDF parameters is estimated via an energy minimization procedure. Given the 

first BRDF estimates, the default normal field of the template model is refined to better 

reproduce the true surface geometry in the RES. In a final estimation step, a new set of 

BRDF parameters is estimated using the now refined geometry description.
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Dynamic Reflectometry -
BRDF Estimation

Dynamic Reflectometry -
BRDF Estimation
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ρρMinimize

BRDF 

params

Reflectance

sample 

Predicted

appearance

BRDF estimation is formulated as an energy minimization problem as it was proposed in 

a similar way in [6]. For each texel,  the functional shown above is minimized in the 

BRDF parameters. The functional measures the quadratic error between the measured 

samples for that texel and the prediction according to the current BRDF parameters 

across all time steps of video and all camera views. Visibility from light sources and 

cameras is taken into account.
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Dynamic Reflectometry -
BRDF Estimation

Dynamic Reflectometry -
BRDF Estimation

• In practice: Average BRDF per material

• Subtract specular component from samples

• Re-estimate diffuse � per-texel diffuse 

Our BRDF models [2,4] treat specular and diffuse reflectance as separate terms. Specular 

reflectance is a high frequency signal and one has to make sure that a sufficient number 

of samples is available in order to properly reconstruct it. To obtain a sufficient sampling 

density of the space of reflectance samples we therefore estimate an average specular 

BRDF for each material cluster, but an individual diffuse component for each texel. In 

practice, BRDF estimation itself therefore comprises of two sub-steps. The first sub-step 

is the estimation of an average BRDF for each material. Using this average BRDF, 

purely diffuse reflectance samples are created by subtracting the estimated average 

specular components. Finally, a separate diffuse component for each texel is estimated 

using the purely diffuse samples.   
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Dynamic ReflectometryDynamic Reflectometry

firstx)(
r

ρ

finalx)(
r

ρ
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Dynamic Reflectometry –
Normal Estimation

Dynamic Reflectometry –
Normal Estimation

γβρα )ˆ())(,()ˆ,( nxxEnxE firstBRDFnormal ∆+=
rrr

Minimize

Penalize deviation

from default normal
Normal direction

The normal estimation step capitalizes on the first set of estimated reflectance parameters 

to create a refined estimate of 3D shape. To this end, a new energy functional is 

employed which is shown in the slide above. The new functional is a weighted sum of 

original BRDF error functional and a second term which is used for regularization. The 

regularization term penalizes strong deviations of the estimated normal direction (the 

delta term) from the template normal. As before, the energy functional is minimized 

separately for each texel.
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Dynamic Normal MapsDynamic Normal Maps

– Input: DSS

– Per-texel:

Minimize energy

Once the BRDF parameters for each surface point are estimated and a refined estimate of 

surface geometry is available, we can reconstruct the time-varying normal field from the 

dynamic scene sequence in order to complete our reflectance description. 

The procedure applied to recover the per-time step normal direction is again the energy 

minimization described on the previous slides. In contrast to the normal estimation which 

was part of the dynamic reflectometry process, however, we are now facing the problem 

of reconstructing a dynamic normal field. 
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Photometric StereoPhotometric Stereo

• Assumption: Local normal direction constant 

in short time interval

Fit constant local normal

to each chunk

Spherically interpolate

In order to reconstruct a temporally smooth normal field, we employ the following 

procedure. First, we assume that the local normal direction of a texel does not change 

within a short window in time. By this means, we can combine reflectance samples from 

several subsequent time steps to estimate a single normal direction. Once the normal 

directions have been estimated on this coarser scale, we employ spherical linear 

interpolation to obtain normals that smoothly change their orientation. Please refer to [3] 

for details on this reconstruction procedure.
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ResultsResults

• Lighting

– Spot lights

– Environment 

map

• On Pentium 4 

3 GHz, 

GeForce 6800

– 16 fps (4 lights)

– 6 fps (16 lights)

[Environment maps courtesy of Paul Debevec]

This and the following slides show several examples of relightable 3D videos rendered in 

real-time and lit from simulated and captured real-world illumination.

EG:318



189
© The Eurographics Association 2007 New Trends in 3D Video

ResultsResults

• Estimation times

– BRDF estimation

~2h

– Input Warping

~10s/image pair

– Cloth shift

~35s/time step
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DiscussionDiscussion

• Model + calibrated lighting

� Relighting with Sparse Set of Cameras

• High-frequency relighting

• Compact representation 

(330 frames = 528 MB)

• Local illumination effects only

• Difficult for general scenes

The model-based approach to dynamic scene relighting bears a couple of important 

advantages. First, 3D videos can be reconstructed using a moderately complex 

acquisition setup comprising of only a handful of cameras. Furthermore, the captured 

reflectance descriptions enable us to reproduce all-frequency lighting effects. An 

additional benefit is the fairly compact scene representation in terms of a dynamic 

geometry model, a static set of BRDF textures, and dynamic normal field and texture 

coordinate textures. The dancing sequence shown before that comprises of 330 frames of 

video has a total size of 528 MB. Our specific scene representation is very well suited for 

rendering on state-of-the-art graphics hardware.

Nonetheless, the model-based approaches also has several disadvantages. First, we can 

currently only reproduce local illumination effects. Secondly, for each type of subject in 

the scene a dedicated a priori model has to be available. Some of these limitations can be 

overcome by a data-driven approach to dynamic scene relighting.
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Data-driven Dynamic Scene 
Relighting

Data-driven Dynamic Scene 
Relighting
• Capture 7D reflectance field  (motion, image location, viewpoints, 

lighting conditions)

• Relighting + Interpolation � new viewing and lighting conditions

Courtesy of Paul Debevec (www.debevec.org) [Einarsson et al. EGSR 2006]

A data-driven approach to do dynamic scene relighting was developed in the lab of Paul 
Debevec at USC Los Angeles and is described in [7].

They built a device called Lightstage 6 that enables them to capture a 7-dimensional full 
dynamic reflectance field. This means they capture a complete set of images for dynamic 
scenes that spans 2dimensions for the images themselves, 2 dimensions (hemispherical 
directions) for the incident lighting, 2 dimensions for the viewpoints (hemispherical 
directions)  and 1 dimension for time.

When rendering a novel viewpoint of a particular captured moment under novel lighting 
conditions, the novel lighting conditions are projected into the employed lighting basis 
and the images in the 7D data set are appropriately combined to generate the output 
view. 

This and the following slides on this project were kindly provided by Paul Debevec.
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Acquisition - Light Stage 6Acquisition - Light Stage 6

2/3 of a 8m geodesic dome

931 dome lights
140 floor lights

2 meter wide working volume

3 high-speed cameras

The acquisition setup, called Light stage 6, features 931 LED dome lights that can be 

switched on and off very rapidly. The lights are all mounted in a 2/3 full geodesic dome, 

140 floor light simulate light bouncing from Lambertian ground plane.

For video recording, three high-speed cameras are used that are running at roughly 1000 

frames per second. The light sources are triggered in synchronization with the cameras. 

Due to the high frame rate of the cameras,  each pose of the actor can be illuminated and 

recorded under a full set of 26 different basis lighting conditions. The frame rate of the 

cameras is enough to capture 30 complete lighting cycles per second.

As high-speed cameras are still very expensive, the authors restrict their setup and only 

use 3 cameras instead of a full dome of imaging sensors. They also use a treadmill which 

can be rotated in the setup and restrict captured scenes to cyclic human motion like 

walking. This way, the authors can simulate Nx3 virtual recording cameras although only 

3 cameras are physically available. However, this simplification also comes at the cost of 

restrictions in motion generality.
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AcquisitionAcquisition

• 4D reflectance field for each pose and each “virtual”

camera view

• 3x36 reflectance fields for each moment in a walk-cycle

For each pose of the walking cycle, i.e. each 1/30 of a second, a full 4D reflectance field 

is captured. A reflectance field is a function that transforms an incident light field hitting 

a surface to an outgoing light field exiting the surface [8,9]. Therefore, in its most 

general form, it is an 8-dimensional function (position + direction incomig; position + 

direction outgoing). If the light can be assumed to arrive from infinity and if the output 

viewpoint is fixed, as in this case, the dimensionality of the reflectance field reduces to 4.

In this particular case, the reflectance field is simply parameterized as a set of images, 

each one being illuminated by one of the basis conditions.

In other words, the light stage enables capturing a 3x36 array of 4D light fields for each 

moment of a walking cycle.
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Relighting from 
Reflectance Field

Relighting from 
Reflectance Field

Grace Cathedral 26-element projection

Sum of weighted basis frames Relit frame

=

Projection

Light Stage 6 � Reflectance field for each pose

As mentioned before, a reflectance field transforms incident light fields to exitant light 

fields (see [9] for a definition of light field). Before the person is rendered under a novel 

illumination condition, the new illumination is projected into the lighting basis and the 

basis images in all 4D reflectance fields are accordingly scaled. A novel view of the actor 

is obtained by weightedly summing up the scaled basis images. By this means the flowed 

reflectance fields originally captured turn into a flowed light field, i.e. a set of relit 

images showing the person from each possible camera view and at each possible moment 

of the walking cycle. Please refer to [8] for details.
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RegistrationRegistration

• Person moves and turntable rotates

• Spatio-temporal registration of images in 4D reflectance 

fields via optical flow warping

Reflectance field

=

Aligned

Track + MatteBasis Basis Basis BasisTrack + Matte Track + Matte
Track + 

Matte

Basis Basis Basis BasisTrack + 

Matte

Track + 

Matte

Since the turntable is rotating all the time, and the person is permanently moving a 

couple of registration problems have to be solved. For each complete lighting cycle 

(1/30s), a complete 4D reflectance field is acquired. However, as the person is 

permanently moving and the turntable is permanently rotating, the acquired images in the 

reflectance field are not properly aligned. Therefore, in a post-processing step all images 

captured during one lighting cycle (i.e. for each pose and each rotational increment) are 

aligned with the center frame by using an optical flow based warp correction. By this 

means, a so-called flowed reflectance field is obtained.
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Flowed Reflectance FieldsFlowed Reflectance Fields

• Bidirectional flow fields between 36x3 recorded viewpoints

During recording, new viewpoints are captured at 10 degree rotational increments of the 

turntable. Therefore, 36x3 virtual viewpoints of the scene are obtained. In order to be 

able to later generate arbitrary viewpoints in-between recording cameras, optical flow 

fields between adjacent 4D reflectance fields in the set of 108 viewpoints are generated. 

By this means a so-called flowed reflectance field is obtained.
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Rendering 
Flowed Light Field Interpolation

Rendering 
Flowed Light Field Interpolation

• Image-based relighting

• Flowed light field interpolation

= current camera

pp0 p1

Finally, a novel viewpoint of a person in-between a recording camera viewpoint and 

under novel lighting conditions is obtained by using a process termed flowed light field 

interpolation:

First, the set of captured data is relit according to the new synthetic lighting conditions 

using the image-based relighting approach presented before [8] which yields a flowed 

light field.

Second, to generate any arbitrary viewpoint in-between true recording cameras, a 

warping-based approach is used to combine pixel information from the closest nearby 

relit images in the flowed light field. The pixel information from the closest nearby true 

cameras is combined using a light field rendering process similar to [9, 10]. To this end, 

geometric relations between the virtual camera and the four surrounding recording 

cameras are used to determine how much influence the pixels from each camera get in 

the final output view. Proper pixel locations for blending are looked up in the true 

camera views by following the previously computed bidirectional flow fields in a 

backward direction.
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DiscussionDiscussion

• Pros

– High visual quality

– Arbitrary global illumination effects

• Cons

– Low-frequency relighting

– Periodic motions

– Huge amount of data (24 GB for a walk cycle, 

320x448 pixels)

The data-driven relighting approach has a couple of advantages. First, the quality of the 

rendered and relit views is fairly high if the array of recording cameras is sufficiently 

dense. In addition to that, being based on the captured images themselves, the data-

driven representation can inherently reproduce both local and global lighting effects 

under any novel incident illumination.

On the other hand, the proposed method also has a couple of disadvantages. First, only 

low frequency lighting effects can be reproduced as the employed lighting basis is very 

coarse. Furthermore, the huge amount of data even at low image resolutions, the high 

engineering overhead and the current limitation to very short cyclic motion may make 

the approach infeasible for many applications.
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DiscussionDiscussion

• Pros

– High visual quality

– Arbitrary global illumination effects

• Cons

– Low-frequency relighting

– Periodic motions

– Huge amount of data (24 GB for a walk cycle, 

320x448 pixels)
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Applications (30 min)Applications (30 min)

Christoph Niederberger

LiberoVision AG

EG:330



201
© The Eurographics Association 2007 New Trends in 3D Video

OverviewOverview

• Authoring & editing 3D video

• Commercial applications

– Early: The matrix

– Digital Air’s camera systems

– LiberoVision: 3D video in sports broadcasts
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Need for Authoring Tools!Need for Authoring Tools!

multi-view video

“3D” extraction

3D video

spatio-temporal

editing

“4D” point samples post-processingrepresentation

If we have captured a scene from multiple viewpoints, authorign tools are 

necessary to edit this content. In this slide, an overview of the processing pipeline 

is shown.

Based on a multi-view video acquisition of a scene, a 4D representation is 

generated based on the extraction of the three-dimensional data. Usually, this 

relies on the extracted depth information.

To edit and author such 3D video data, we need a new type of authoring tools. 

Such a tool must be able to extract objects or parts of a scene over a certain time 

and place it into another 3D video environment. Thus, such a tool can be 

envisioned as a cross-over between a video editor and a 3D modeling tool. 

Finally, the edited scene can be previewed such that the final trajectory of the 

camera can be set up.
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Point Cloud RepresentationPoint Cloud Representation

• Irregularly point-sampled object surfaces

– Generalization of pixels

– Unified storage of diverse

attributes (normals, colors, …)

– Arbitrary complex topology

– Adaptive resolution

– Easy streaming

– Multi-resolution & compression

To represent the scene geometry, we are not using triangle meshes but we suggest to use points 

where each point is a sample of a surface in the scene.

Such a point cloud can be generated quite easily from depth maps by back-projecting all depth 

pixels into a common 3D world coordinate system. As such, points can be considered as a 

generalization of 2D image pixels.

If the acquisition system does not produce depth maps but uses another approach to for example 

directly construct a mesh, this can be also converted quite easily into a point cloud by re-

sampling.

Unlike meshes, points provide a unified storage container for all the data you need. Apart from 

geometry, they can carry information like surface normals, colors, or other material properties. 

You do not need an additional data structure like a texture to represent such attributes.

Points cannot represent the topology of a scene. This is a clear advantage in our case because this 

allows us for handling arbitrary complex topologies. More specifically, we can even represent 

dynamically changing topologies in the 3D video without much effort.

Unlike for example voxel grids, points only represent object surfaces and not their interior or the 

free air. As a consequence, we are not limited in scene resolution. But we can locally adapt the 

resolution to the scene complexity by irregular sampling.
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4D Point Samples4D Point Samples

• 4D Surfel [Pfister 00]: Gaussian ellipsoid

– Position

– Spanning vectors:

(surface tangents)

→ Covariance matrix

T),,,( tzyx=p
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We extend those Surfels to our 4D setting by adding a temporal coordinate t.

For the computation of the covariance matrix we introduce a fourth vector 

parallel to the time axis. Its length corresponds to the distance of two successive 

frames. This gives us smooth renderings if we want to visualize the temporal 

domain of the video hypervolume.

Alternatively, the covariance matrix can provide a probabilistic model of the 

geometric uncertainty, as has been introduced in our previous paper. This allows 

to model inaccuracies in the scanning due to noise or calibration errors.
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The Video HypervolumeThe Video Hypervolume

• Unification of space and time

• Irregular 4D data

• Similar to video cube

Waschbüsch et al.
Interactive 3D video editing

Pacific Graphics 2006

The 3D video hypervolume is a representation unifying point clouds over time. For each 

moment in time t-1, t, t+1, …, we have a complete 3D space irregularly filled with point 

samples representing the objects in the scene. Thus, the hypervolume becomes a four-

dimensional representation of the scene.
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Editing PipelineEditing Pipeline

When interactively editing a video hypervolume, three different operators help the user 

to edit a scene with many degrees of freendom. 

First, slicing the hypervolume results in a 3D volume not necessarily representing a 3D 

space but rather a 2D plane over time. 

Then, the user can select a subvolume of the sliced part of the hypervolume. This 

intuitive approach is known from many editing programs for 2D images or 3D models.

Finally, the editing operators allow the user to cut and paste, resize or reposition a 

previously selected part of the scene.
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SlicingSlicing

• Visualize the

hypervolume

• Navigate in

space-time

• Intersect hypervolume

with hyperplane

Via slicing, the user can define a part of the four-dimensional hypervolume

which should be visualized on the screen.

The slicing process basically intersects the hypervolume with a hyperplane, 

reducing the dimensionality by one from 4D to 3D.

The resulting 3D point cloud is displayed on the screen and can be viewed from 

all sides using a trackball navigation interface.

By freely choosing the slice orientation, the user can visualize both spatial and 

temporal aspects of the 3D video.
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Different Types of SlicesDifferent Types of Slices

• Display conventional frame

• Visualize time domain

• General slice

The simplest slice is oriented orthogonal to the time axis. This corresponds to 

viewing a conventional frame of the 3D video.

By orienting the slice parallel to the time axis, the user can define views which 

visualize the temporal domain of the video. This can be used for example to 

select a moving object over multiple frames.

In general, the user can define arbitrary slice orientations which can be used for 

example to follow object trajectories.
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SelectionSelection

• Select points in

current slice

• Selection tools

– Bounding box

– 3D paintbrush

– Graph cut

segmentation

graph cut selection

In order to select parts of the current slice, the user can use different simple 

approaches. Each of these tools results in a partition of the points in the current 

slice.

For example, a simple bounding box selects all points inside the volume.

With the 3D paintbrush, the user can select points by simply drawing onto the 

current 2D projection of the slice. Then, the paintbrush follows the surface of the 

scene.

Finally, a graph cut segmentation can be used to simply create a partition of the 

scene.
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Graph ConstructionGraph Construction

Boykov and Kolmogorov
An experimental comparison of mincut/max-flow 

algorithms for energy minimization in vision
IEEE Transactions on Pattern Analysis and 

Machine Intelligence 2004

The underlying graph not only connects the points in each frame but also over time. This 

yields to smooth segmentation/selection results both spatially as well as temporally.

E(d) stores the so-called data energy which gives an indicator of how similar a point’s 

information is to either the foreground or background (x=0 and x=1).

E(i) and E(t) are the so-called link energy (as in the cited literature).

E(i) are the intra-frame connections and calculate the likelihood that two spatially close 

points belong to the same cluster (foreground or background). A k-nearest neighbor 

search yields the closest points.

E(t) are the inter-frame connections and calculate the likelihood that two spatially close 

points in different frames belong to the same cluster (foreground or background). A k-

nearest neighbor search in the frames i-1 and i+1 starting from the reference point of 

frame i yields the closest points.

Besides color we can also exploit geometry information such as the normal similarity of 

two 3D points for 3D video editing.
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Editing OperatorsEditing Operators

• Cut, copy & paste

– Object removal

– Insertion into

other scenes

– Actor cloning

• Translate, rotate, scale

– Translation in temporal 

domain → time shift

For editing, our system supports basic operations like copy & paste, translation, or 

scaling and rotaton.

Although those operations are quite simple, they become very powerful in 3D video.

For example, with cut & paste together with our selection tools, you can generate 

complex effects like object removal or insertion of people into other scenes. After object 

removal, there are no remaining holes in the background, because we have the complete 

information of the scene available. Note how difficult such tasks would be with 

conventional 2D video.

The translation operator benefits from the generality of our hypervolume representation: 

a time shift operator is identical to the translation operator in the temporal domain.
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More Editing ToolsMore Editing Tools

• Shadow mapping 

• Insertion of 3D

meshes

• Insertion of 2D

images and videos shadow mapping

We implemented some further tools to insert 2D images or videos, which are just 

converted into point samples, and to generate artificial shadows.

The latter is important if novel objects get inserted into the scene because shadows 

provide important hints to the scene geometry.
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3D Video Editing is Fun!3D Video Editing is Fun!

As a final result, let me show you a demo video which we generated with our editor…

You can clearly observe that we still have artifacts at object boundaries. This is a 

common weakness of the depth from stereo reconstruction algorithm which has 

difficulties to cope with depth discontinuities. We are continuously working on 

improving this issue. Let me mention that those artifacts are not an issue of an inaccurate 

graph cut segmentation, because you can observe them at the whole silhouette both in the 

source and the edited material. Graph cut has been only applied where the actor was 

connected to the floor.
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“Bullet-time Photography”“Bullet-time Photography”

• Application of “Campanile” research project
Debevec et al., Modeling and Rendering Architecture from Photographs, SIGGRAPH 1996

– photo-grammetric modeling

– projective texture-mapping 

• Array of still-image cameras

• Keyframe interpolation of still images to 

create continuous motion

A 3D video application called “Bullet-time Photography” is well known under a 

differet term: The “Matrix effect”.

The underlying application is a result of Paul Devebec’s 1996 SIGGRAPH Paper.

An array of still image cameras simultaneously takes pictures of a scene from 

different viewpoints. The location and orientation of each of the cameras has to be 

determined before the actual shot since the images can’t be changed afterwards.

Using a keyframe interpolation of all these images, the editor can finally create a 

continuous motion around an object while it is freezed.
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Bullet-time Photography in 

“The Matrix”

Bullet-time Photography in 

“The Matrix”

The Matrix
© Warner Bros. Pictures 1999

Here, we see how the matrix special effects were created.

The top row shows how many cameras were necessary and how precisely aligned 

the array of cameras must have been.

The bottom row shows two intermediate results
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Scene form “The Matrix”Scene form “The Matrix”

The Matrix
© Warner Bros. Pictures 1999

And this is the final scene. The captured person is placed into a synthetic 

environment.
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“Bullet-time Photography”
Revisited

“Bullet-time Photography”
Revisited

Movia® camera systems, www.movia.com
Digital Air (Dayton Taylor), www.digitalair.com

Geneva, Switzerland

The bullet-time approach of the matrix has been adapted to video cameras by

Digital Air in Switzerland. Using an array of many well-aligned video cameras, it 

is not only possible to fly around a freezed object but also to change the speed 

and direction of time.

These special effects are used in cinematography, commercial advertisements or 

trailers as eye-catchers.
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Digital Air Camera SystemsDigital Air Camera Systems

• Movia®: digital camera array imaging

– Digital cameras, original “Bullet-time” equipment

• Timetrack®: virtual camera movements

– Film camera systems, 25-160 lens cameras

Digital Air offers two different products.

Movia relies on normal still image cameras aligned in an array as we have seen

before.

Timetrack replaces the still image cameras with film camera systems where each

camera records the scene through 25-160 lenses aligned in an array.
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Effects (www.timetrack.com)Effects (www.timetrack.com)

• Frozen Moment • Stop-Start

As mentioned before, using the timetrack system allows to change the timely 

behavior of the result, too. The diagrams below the movies depict the editing of 

the input imagery.

On the left, we see the classic approach where the camera moves in space and 

over time and the frozen moment where the camera moves in space in a freezed

frame.

On the right, two combinations of these approaches are shown. The camera 

stands still and shows a moving scene, then freezes abruptly or smoothly and 

rotates around the scene before finally standing still again and showing the 

remaining sequence from a different location.
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Effects (2)Effects (2)

• Time Ramp • Multiple Exposure

Another possible special effect is the „time ramp“ where a continuous motion of 

the camera shows a scene deccelerating, stopping, and reverse accelerating again.

The „multiple exposure“ effect overlays multiple shots of the same scene and 

creates a stronger feeling of the motion.
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A scene of a soccer game with an really tight offside situation. None of the existing

cameras can resolve the situation
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3D Sports Visualization3D Sports Visualization

Orad VirtualLive

LifeInMedia LifeInSports

PVI EyeVision Red Bee Media Piero

BBC R&D iviewSwiss Timing tvVAT[3D]

Different approaches have been developed to visualize sports scenes from novel views

not covered by a camera.

VirtualLive and LifeInSports are based on a 3D model which is syntheticaly rendered, 

thus, allowing a total freedom of possible viewpoints but a non-realistic looking result.

EyeVision captures a scene with over 30 cameras positioned around the pitch. These 

cameras are controlled by an operator and are always focused on one spot on the pitch. 

The final result is a blending through the camera views resulting in a fly-around of the

scene.

Piero and iview generate a model of the players based on the original camera feeds. 

These representations are then placed into a synthetic environment offering more

freedom in terms of possible viewpoints.
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LiberoVision is one step beyond the previously seen examples by offering a full freedom

of viewpoints resulting in a realistic virtual view of the scene.

The video shows the same scene as before. In the moment of the offside decision, the 

playback stops and the virtual camera moves onto the offside line and shows the view of 

the referee on the side-line.

EG:353



224
© The Eurographics Association 2007 New Trends in 3D Video

LiberoVision Inc.LiberoVision Inc.

• Spinoff of ETH Zurich, technology based on the 3D 
video technology developed at ETH Zurich

• Provides virtual replay functionality to sports
broadcasts

• Requires isolated camera feeds

– 8 or more cameras in the stadium

– Half of them are on a „high“ position providing an overview

– Synchronized

– Arbitrary position, orientation and zoom

The technology of LiberoVision is based on the developments at ETH Zurich, 

Switzerland.

It requires the isolated feeds of the cameras positioned in the stadium and does not 

require any additional infrastructure inside the stadium. Usually, more than 8 cameras are 

used to produce a sports event such as a soccer game, approximately half of them are on 

a high position and provide an onverview of the game. Synchronization of the cameras is 

a requirement of the broadcast production and makes it easier to recreate a scene. 

However, the cameras are not fixed but can change their position, orientation and zoom.
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Based on existing camera
feeds only

Based on existing camera
feeds only

Penalty box camera
(left)

LiberoVision
(virtual camera)

Lead camera
(middle line)

On the left, we see a shot of the penalty box camera and on the right, a shot from the lead 

camera in the middle of the pitch. Based only on both these images, we can create the 

virtual image inbetween showing the scene from a viewpoint not covered by the physical 

cameras.
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Another example of the LiberoVision technology. A goal situation is shown and the 

virtual camera provides a birds-eye view to tactically analyze the scene.
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ConclusionConclusion

• Applications:

– Three-dimensional special effects for movie 

industry and commercial advertisement industry

– Analysis tools for sports broadcast industry

• High-quality vs. processing time

We have shown two different applications of 3D video.

First, the three-dimensional special effects for the movie industry such as the “Matrix 

effect” and derivatives of the same technology which is used in the commercial 

advertisement industry as eye-catchers.

A second application are tools for the analysis of sports scenes where virtual views are 

generated providing perspectives not captured by the available cameras.

Both these industries have different requirements regarding the results. While the movie 

industry can afford a rather long processing time, the result must be of a really high 

quality. In sports broadcast on the other hand, the result must be available within minutes 

or even seconds.
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Outlook and Discussion
(10 min)

Outlook and Discussion
(10 min)

Stephan Würmlin

ETH Zürich and

LiberoVision AG
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OutlookOutlook

• Major challenges

– Everyday acquisition systems

• Fully automatic 

• Mobile

• Real-time

– Production-quality 3D video

• Applications in versatile environments (e.g. movies)

• High-quality geometry extraction

Acquisition and processing of 3D video is still very time consuming, cumbersome and 

needs years of training and experience. However, for reaching the masses, acquisition 

needs to be as simple as possible, meaning fully automatic, mobile installations (such as 

on a mobile equipped with a camera and a GPS) and should at least acquire and process 

the data in real-time.

Despite the just mentioned commercial applications of 3D video, production-quality 3D 

video can only be achieved by either focusing on one application (such as soccer or 

sports in general) or by using special equipment, such as highly sophisticated camera 

systems and the like. The toughest problem is the extraction of high-quality geometry 

information out of the images alone. This is probably the biggest challenge of it all!
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Outlook (2)Outlook (2)

• Major challenges

– Authoring & Delivery

• Editing tools as simple as iMovie

• Coding and Compression (MPEG?)

– Displays & interaction

• Novel 3D displays

• Novel interaction metaphors

Major challenges also include authoring and delivery of 3D video data.

1) On the application side, 3D video gives us novel possibilities for creating special 

effects but also requires novel editing operations. It is desirable to have an editing 

software being as user-friendly as today’s 2d video editing programs, such as iMovie.

2) To bring 3d video to the masses there is also the interesting question of spatio-

temporal coding of the data stream. Those issues are currently investigated by the MPEG 

committee.

Current display technology does not fully exploit the interactive and three-dimensional 

nature of 3D video.

1) Hence, novel displays need to be developed such as autostereoscopic TVs or mobile 

projectors

2) Furthermore, interaction with the mouse is cumbersome in most daily environments, 

novel user interfaces such overcome this limitation. Microsoft Surface is one possible 

way of solving these problems.
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Questions?Questions?
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Abstract

One important problem in photorealistic or predictive rendering nowadaysis to realistically model the
light interaction with objects. Measurements can capture the reflection properties of real world surface,
i.e., they are one way of obtaining realistic reflection properties.

For arbitrary (non-fluorescent, non-phosphorescent) materials, thereflection properties can be de-
scribed by the 8D reflectance field of the surface, also called BSSRDF. Since densely sampling an 8D
function is currently not practical various acquisition methods have been proposed which reduce the
number of dimensions by restricting the viewing or relighting capabilities of the captured data sets. In
this tutorial we will mainly focus on three different approaches, the first allowing to reconstruct opaque
surfaces from a very small set of input images, the second allows for arbitrary surfaces but under the as-
sumption of distant light sources and the last which allows for relighting an arbitrary scene with arbitrary
spatially varying light patterns.

After a short introduction explaining some fundamental concepts regarding measuring and represent-
ing reflection properties, the basics of data acquisition with photographs willbe addressed. The tutorial
present the set of current state-of-the art algorithms for acquiring and modeling 3D objects. The tuto-
rial investigates the strengths and limitations of each technique and sorts them by their complexity with
regard to acquisition costs. Besides describing the theoretical contributions we will furthermore point
out the practical issues when acquiring reflectance fields in order to helpinterested users to build and
implement their own acquisition setup.

2 c©The Eurographics Association 2007.
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Syllabus

8:30 Introduction (Lensch)
material properties
classification of techniques

8:45 Acquisition Basics(Goesele)
light sources
cameras
HDR

9:15 Reflectance Sharing(Goesele)
image-based BRDF measurement
spatially varying BRDFs

9:45 BREAK

10:00 Reflectance Fields for Distant Lights(Müller)
BTFs
light stage
acquisition, compression, synthesis and rendering

10:40 Near-field Reflectance Fields(Lensch)
relighting with 4D reflectance fields
dual photography

11:15 Conclusion, Q/A (all)
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Resume of the Presenters

Michael Goeseleis a postdoctoral research associate in the computer graphics and vision group at
the University of Washington. In 1999, he joined the computer graphics group at the MPI Informatik
and received his PhD from Saarland University in 2004. His researchis focused on a broad range
of acquisition techniques for computer graphics. Among others, he recently published two papers
at ACM SIGGRAPH about the acquisition of light sources (Accurate LightSource Acquisition and
Presentation) and translucent objects (DISCO – Acquisition of Translucent Objects). He has given
several lectures and tutorials (e.g. at Eurographics 2002 and SIGGRAPH 2005) about the topics
covered in the tutorial.

Gero Mueller currently works as a research assistant and Ph.D. student in the computer graphics
group of Prof. Reinhard Klein at the University of Bonn, Germany. He received his diploma in
computer science from the University of Bonn in 2002. His main research interests are realistic material
representations, in particular BTFs. He has authored and co-authoredseveral papers about this topic.
At Eurographics 2004 he presented a state-of-the-art report covering the acquisition, compression, syn-
thesis and rendering of BTFs and gave tutorials about the topic at variousevents (e.g. at Siggraph 2005).

Hendrik P. A. Lensch is the head of an independent research group ”General Appearance Acquisition
and Computational Photography” at the MPI Informatik in Saarbrücken, Germany. The group is part
of the Max Planck Center for Visual Computing and Communication. He received his diploma in com-
puters science from the University of Erlangen in 1999 and after joining the computer graphics groupat
MPI received his PhD from Saarland University in 2003. Dr. Lensch spent two years (2005-2006)
as a visiting assistant professor at Stanford University, USA.His research interests include 3D appear-
ance acquisition, image-based rendering and computational photography. For his work on reflectance
measurement he received the Eurographics Young Researcher Award 2005. He was awarded an Emmy
Noether Fellowship by the German Research Foundation in 2007. He has given several lectures and
tutorials at various conferences including SIGGRAPH courses on realistic materials in 2002 and 2005.
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Annotated Bibliography

Introduction

The goal of this annotated bibliography is to provide an overview over the most important publications
in the areas covered by the course. Our goal was especially to help newcomers to the field to quickly
become familiar with the main papers and serve as a starting point for further literature study. This is
naturally always a subjective choice and we claim therefore by no means that the list of selected papers
is complete and apologize for any important papers we missed.

5
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General References

[1] Richard S. Hunter and Richard W. Harold.The Measurement of Appearance. Wiley, 2. ed., 5. print.
edition, 1987.

In this book, the various effects of reflections off surfaces are carefully described and
analized. The authors provide valuable and intuitive insights on how to distinguish the
appearance of two different materials. The book furthermore illustrates how the appear-
ance of real world surfaces can be measured giving examples of techniques commonly
applied in print industry. The main focus is on measuring the appearance ofplanar sur-
faces.

[2] Fred E. Nicodemus, Joseph C. Richmond, Jack J. Hsia, I. W. Ginsberg, and T. Limperis. Geometrical
Considerations and Nomenclature for Reflectance. National Bureau of Standards, 1977.

This report introduces the basic concepts of BSSRDFs, BRDFs, and related functions to
describe reflectance. It also defines the nomenclature for all of them and describes their
relationships such as the derivation of the BRDF from the BSSRDF.
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BRDFs

[1] James F. Blinn. Models of Light Reflection for Computer Synthesized Pictures. InSIGGRAPH
’77: Proceedings of the 4th annual conference on Computer graphicsand interactive techniques,
pages 192–198. ACM Press, 1977.

This paper introduces the empirical Blinn-Phong model (based on the earlier Phong
model [18]. It can model more realistic reflections using three parameters (diffuse and
specular coefficient, specular exponent). The specular lobe is computed based on the
halfway vector.

[2] Samuel Boivin and Andŕe Gagalowicz. Image-based rendering of diffuse, specular and glossy
surfaces from a single image. In Eugene Fiume, editor,Proceedings of SIGGRAPH 2001, Com-
puter Graphics Proceedings, Annual Conference Series, pages 107–116. ACM Press / ACM SIG-
GRAPH, August 2001. ISBN 1-58113-292-1.

This paper tries to solve the difficult problem of measuring BRDF in indoor scenes
from a single observation. The hope is that the global illumination and grouping of
measurements of multiple surface points provide sufficient constraints to estimate a
per-patch BRDF. At first a simple diffuse BRDF model is assumed. If the observed
error is still insufficient a specular lobe is added. In case of failure, further tests involve
anisotropic or mirroring BRDFs.

[3] R. Cook and K. Torrance. A reflection model for computer graphics. ACM Transactions On
Graphics, 1(1):7–24, 1982.

The Cook-Torrance model is a modification of earlier reflectance models. The main as-
sumption is that the surface is composed of tiny, perfectly reflective, smoothmicrofacets
oriented at different directions. The facets are assumed to be V-shaped and their distri-
bution is isotropic. The model takes into account the fact that the light might be blocked
by other microfacets (shadowing). Similarly, it also considers the fact thatthe viewer
does not see some of the microfacets since they are blocked by the other microfacets
(masking effect). The model takes into account an average Fresnel term (polarization is
not considered) when modelling the reflectance of individual microfacets. However, it
does not allow for multiple light bounces between the microfacets. The orientation of
the facets is assumed to have some distribution - Cook and Torrance use the Beckman
distribution function.

9
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[4] P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and M. Sagar. Acquiring the Re-
flectance Field of a Human Face. InProc. SIGGRAPH, pages 145–156, July 2000. ISBN 1-58113-
208-5.

While this paper actually introduced the concept of reflectance fields it alsocontains
a section where a BRDF model is fit to the measured data of each texel. The spatially
varying BRDF yields some compression compared to the full reflectance fielddata set.

[5] Paul Debevec, Chris Tchou, Andrew Gardner, Tim Hawkins, Charis Poullis, Jessi Stumpfel, An-
drew Jones, Nathaniel Yun, Per Einarsson, Therese Lundgren, Marcos Fajardo, and Philippe Mar-
tinez. Estimating Surface Reflectance Properties of a Complex Scene underCaptured Natural
Illumination. Technical Report ICT-TR-06.2004, USC ICT, December 2004.

This reports combines the idea of clustered BRDFs with global inverse illumination.
For a number of representative spots/materials the BRDF is captured using standard
image-based BRDF measurement techniques under controlled illumination conditions.
In order to capture the spatially varying BRDF of a building the incident light onto
ths building is captured by an environment map which serves as a illumination source
in a global illumination framework. Based on the differences between the synthesized
images and the captured HDR images the weight for combining the cluster BRDFsare
updated for each texel individually.

[6] A. Gardner, C. Tchou, T. Hawkins, and P. Debevec. Linear lightsource reflectometry.ACM Trans.
Graphics., 22(3):749–758, 2003.

In this paper the fully spatially varying BRDF and a transmission term is estimated for
rather flat documents. The illumination is provided by a linear light source which has to
be considered during the BRDF estimation. The same data is also used to scan the 3D
geometry of the surface.

[7] Athinodoros S. Georghiades. Recovering 3-d shape and reflectance from a small number of pho-
tographs. InEurographics Symposium on Rendering: 14th Eurographics Workshop on Rendering,
pages 230–240, June 2003.

Georghiades addresses the problem of estimating shape and reflection properties at the
same time. Given a set of images of the scene illuminated by a point light source of
unknown position the approach sets up an optimization problem that solves for the
diffuse component of the BRDF and the actual surface normal per pixelas well as a
global specular component and the light source positions in the individualimages. As
in other shape-from-shading approaches assuming a continuous surface introduces a
regularization term that allows for solving the large optimization problem.

[8] X. He, K. Torrance, F. Sillon, and D. Greenberg. A comprehensive physical model for light reflec-
tion. Computer Graphics, 25(Annual Conference Series):175–186, 1991.

This paper presents a reflectance model that accounts for the phenomena that can be ex-
plained using both geometrical optics and wave optics (diffraction, interference). The
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model supports arbitrary polarization of incident light, but the simplifications for unpo-
larized light are also presented. In general, the reflectance is modelled asa sum of three
components: specular, directional diffuse, and uniform diffuse. Thespecular compo-
nent accounts for mirror-like reflection. It depends on the Fresnel reflectivity, rough-
ness, and shadowing factors. The directional diffuse contribution of thereflectance
function is the most complex term. It accounts for diffraction and interference effects.
It depends on surface statistics (the effective roughness and the autocorrelation length).
The uniform-diffuse contribution is a result of multiple microfacet reflectionsand sub-
surface reflections. It is expressed as a simple function of wavelength.The resulting
isotropic reflectance model for unpolarized light is a function of four parameters. Each
of the parameters has some physical meaning and (at least theoretically) can be mea-
sured separately.

[9] Eric P. F. Lafortune, Sing-Choong Foo, Kenneth E. Torrance, and Donald P. Greenberg. Non-linear
Approximation of Reflectance Functions. InSIGGRAPH ’97: Proceedings of the 24th annual con-
ference on Computer graphics and interactive techniques, pages 117–126. ACM Press/Addison-
Wesley Publishing Co., 1997.

The Lafortune model presented in this paper is an extension of the Phong model [18]
with a diffuse term and multiple lobes. Each lobe consists of a weighted dot product
between viewing and lighting direction raised to some power. This empirical model
can handle off-specular peaks, backscattering and anisotropy and isfrequently used to
model the reflection properties of real, measured materials.

[10] Hendrik P. A. Lensch, Jan Kautz, Michael Goesele, Wolfgang Heidrich, and Hans-Peter Seidel.
Image-based reconstruction of spatially varying materials. InRendering Techniques 2001: 12th
Eurographics Workshop on Rendering, pages 103–114. Eurographics, June 2001. ISBN 3-211-
83709-4.

This paper introduces the concept of capturing cluster BRDFs and expressing the spa-
tially variation by per-texel weighted sums of cluster BRDFs. Making use if theidea
of image-based BRDF measurments samples from multiple surface points are com-
bined when determining the cluster BRDFs. This results in more reliable, that is,more
plausible BRDF parameters and at the same time reduces the number of requiredinput
images. Drastically different materials distributed in the same patch can be reproduced
faithfully.

[11] Hendrik P. A. Lensch, Jan Kautz, Michael Goesele, Wolfgang Heidrich, and Hans-Peter Seidel.
Image-Based Reconstruction of Spatial Appearance and Geometric Detail.ACM Transactions on
Graphics, 22(2):234–257, April 2003.

This paper extends the previous work towards estimating per-texel normals. Starting
from a scanned and smoothed 3D geometry model the per-texel BRDF is estimated. In
a photometric stereo approach the current estimate of the BRDF is used to update the
surface normal.
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[12] S. Marschner, S. Westin, E. Lafortune, and K. Torrance. Image-based measurement of the Bidi-
rectional Reflection Distribution Function.Applied Optics, 39(16):2592–2600, 2000.

Marschner et al. describe an image-based BRDF measurement system. They use a ma-
terial sample with different surface normals. Each point with a different surface normal
gives a different BRDF measurement. Their system uses a spherical sample of homoge-
nous material. A fixed camera takes images of the sample under illumination from an
orbiting light source. The system, although limited to only isotropic BRDF measure-
ments, is both fast and robust. Furthermore, they extend their method to surface geom-
etry acquired with a laser range scanner to acquire reflectance of a human face.

[13] S. Marschner, S. Westin, E. Lafortune, K. Torrance, and D. Greenberg. Image-based BRDF Mea-
surement Including Human Skin. In10th Eurographics Workshop on Rendering, pages 131–144,
June 1999.

This paper applied the idea of image-based BRDF measurement to objects of arbitrary
geometry. A 3D scan of the object provides the geometric information. Multiple images
illuminated by a flash light are combined in order to estimate a single BRDF for the
object.

[14] Wojciech Matusik, Hanspeter Pfister, Matt Brand, and Leonard McMillan. A data-driven re-
flectance model.ACM Trans. Graph., 22(3):759–769, 2003.

The authors built an automatic measurement setup to densely capture isotropic
BRDFs using spherical material samples. They analyze the data and construct a low-
dimensional data-driven BRDF model using non-linear dimensionality reduction tech-
niques.

[15] D. McAllister, A. Lastra, and W. Heidrich. Efficient rendering of spatial bi-directional reflectance
distribution functions.Graphics Hardware 2002, 2002.

The authors present the first real-time rendering framework for BTFs.They used the
Lafortune model to approximate the spatially varying BRDFs which leads to an extreme
compact representation amendable to hardware implementation. Since the Lafortune
model does not approximate meso-scale shadowing and masking effects well, it is only
suitable for materials with minor depth variation (SVBRDFs).

[16] Addy Ngan, Fŕedo Durand, and Wojciech Matusik. Experimental analysis of brdf models.In
Proceedings of the Eurographics Symposium on Rendering, pages 117–226. Eurographics Associ-
ation, 2005.

This paper extends the measurement setup of [14] to anisotropic BRDFs. It furthermore
fits the parameters of several BRDF models to the measured materials and alayzes the
fitting quality.

[17] K. Nishino, Z. Zhang, and K. Ikeuchi. ”determining reflectance parameters and illumination dis-
tribution from a sparse set of images for view-dependent image synthesis”. In in Proc. of Eighth
IEEE International Conference on Computer Vision ICCV ’01, pages 599–606, july 2001.
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Nishino et al. address the complicated problem of reconstructing BRDF andincident
illumination at the same time. Specular highlights observed in the individual images are
projected into a global environment map to estimate incident illumination. In the next
step the BRDF is estimated. Spatial variation is restricted to the diffuse component.

[18] Bui Tuong Phong. Illumination for Computer Generated Pictures.Commun. ACM, 18(6):311–317,
1975.

This paper introduces the Phong model – one of the earliest empirical lightingmodels
for computer graphics. The model consists of a diffuse term and one specular lobe.
It is neither energy conserving nor reciprocal and is only well-suited to approximate
plastic-like materials. Improvements and extensions of the model include [1, 9].

[19] Ravi Ramamoorthi and Pat Hanrahan. A signal-processing framework for inverse rendering. In
Eugene Fiume, editor,Proceedings of SIGGRAPH 2001, Computer Graphics Proceedings, Annual
Conference Series, pages 117–128. ACM Press / ACM SIGGRAPH, August 2001. ISBN 1-58113-
292-1.

This paper as well presents a solution to the problem of estimating BRDF and illumina-
tion from the same set of images for which an iterative algorithm has been developed.
The paper is mostly well-known for the use of spherical harmonics to represent environ-
ment maps as well as BRDFs. This representation allows for computing the convolution
of the BRDF with the environment map by a simple dot product.

[20] Y. Sato, M. Wheeler, and K. Ikeuchi. Object Shape and Reflectance Modeling from Observation.
In Proc. SIGGRAPH, pages 379–388, August 1997.

In this paper shape and reflectance properties are captured using the same sensor but
different illumination. There is no explicit registration step necessary to match3D ge-
ometry and 2D images. The diffuse component of the BRDF is estimated per pixel
while the specular component is constant per patch.

[21] G. Ward. Measuring and modeling anisotropic reflection.Computer Graphics, 26(Annual Confer-
ence Series):265–273, 1992.

This paper presents one of the first methods to speed up the BRDF measurement pro-
cess. Ward’s measurement device (imaging gonio-reflectometer) consistsof a hemi-
spherical mirror and a CCD camera with a fisheye lens. The main advantage of his
system is that the CCD camera can take multiple, simultaneous BRDF measurements.
Each photosite of the imaging sensor contains a separate BRDF value. Moving the
light source and material over all incident angles enables the measurementof arbitrary
BRDFs. Ward also presents a BRDF model that is based on the elliptical Gaussian dis-
tribution. The model is carefully designed to be physically plausible - it supports energy
conservation and reciprocity. It is also relatively simple and can be evaluated efficiently.
The parameters of the model have physical meaning and theoretically can bemeasured
independently.
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[22] Y. Yu, P. Debevec, J. Malik, and T. Hawkins. Inverse Global Illumination: Recovering Reflectance
Models of Real Scenes From Photographs. InProc. SIGGRAPH, pages 215–224, August 1999.

This paper considers indoor scenes. A few input images are aligned with ageometry
model of the rooom and the furniture. Given the positions of the light sources, the
light transport in the room can be simulated incorporating global illumination effects.
The estimated BRDF minimizes the error between the measured values and a global
illumination forward solution.

[23] Y. Yu and J. Malik. Recovering Photometric Properties of Architectural Scenes from Photographs.
In Proc. SIGGRAPH, pages 207–218, July 1998.

The BRDFs of buildings in outdoor scenes are estimated considering the incident illu-
mination from the sun and the sky. Only the diffuse component is allowed to vary freely
across the surface.
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BTFs

[1] Kristin J. Dana, Bram van Ginneken, Shree K. Nayar, and Jan J. Koenderink. Reflectance and
texture of real-world surfaces. InIEEE Conference on Computer Vision and Pattern Recognition,
pages 151–157, 1997.

This paper introduced Bidirectional Texture Functions to the computer graphics com-
munity. The authors present the CUReT reflectance and texture databasewhich made
BTF and BRDF measurements publicly available for the first time. The sampling den-
sity of the BTFs (205 images per material) was not yet sufficient for high-quality ren-
dering.

[2] Jefferson Y. Han and Ken Perlin. Measuring bidirectional texture reflectance with a kaleidoscope.
ACM Trans. Graph., 22(3):741–748, 2003.

A promising approach for capturing several BTF samples at once using akaleidoscope
is presented. A problem with the approach is that it is quite sensitive to imperfections
in the mirrors and their configuration because the light is reflected severaltimes within
the kaleidoscope.

[3] Xinguo Liu, Yaohua Hu, Jingdan Zhang, Xin Tong, Baining Guo, andHeung-Yeung Shum. Syn-
thesis and Rendering of Bidirectional Texture Functions on Arbitrary Surfaces.IEEE Transactions
on Visualization and Computer Graphics, 10(3):278–289, 2004.

This paper can be regarded as a follow up paper to the BTF synthesis paper of Tong et
al. from Siggraph 2002. It uses SVD to compress the BTF data and showshow the BTF
can be synthesized and rendered from this compressed representationwhile achieving
a significant speed up compared to the original method. It is also shown howthe BTF
can be rendered with graphics hardware.

[4] D. McAllister, A. Lastra, and W. Heidrich. Efficient rendering of spatial bi-directional reflectance
distribution functions.Graphics Hardware 2002, 2002.

The authors present the first real-time rendering framework for BTFs.They used the
Lafortune model to approximate the spatially varying BRDFs which leads to an extreme
compact representation amendable to hardware implementation. Since the Lafortune
model does not approximate meso-scale shadowing and masking effects well, it is only
suitable for materials with minor depth variation (SVBRDFs).
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[5] Jan Meseth, Gero M̈uller, and Reinhard Klein. Reflectance field based real-time, high-quality
rendering of bidirectional texture functions.Computers and Graphics, 28(1):103–112, February
2004.

This paper addresses the problem of using parametric functions for representing BTFs
with significant meso-structure. They propose to fit parametric functions not to the
whole per-texel apparent BRDF but to the per-view per-texel reflectance functions
which use to be relatively smooth functions.

[6] G. Müller, G. H. Bendels, and R. Klein. Rapid synchronous acquisition of geometry and btf
for cultural heritage artefacts. InThe 6th International Symposium on Virtual Reality, Archaeology
and Cultural Heritage (VAST), pages 13–20. Eurographics Association, Eurographics Association,
November 2005.

Based on a camera array of 151 of-the-shelf digital cameras a method forrapidly ac-
quiring the geometry and reflectance of objects with significant meso-scale geometry
is presented. It combines image-based 3D reconstruction and BTF compression and
rendering techniques.

[7] G. Müller, J. Meseth, M. Sattler, R. Sarlette, and R. Klein. Acquisition, synthesisand rendering of
bidirectional texture functions.Computer Graphics Forum, 24(1):83–109, March 2005.

This comprehensive overview discusses from acquisition, over synthesis to rendering
of BTFs most of the topics covered in the BTF-part of this tutorial. The relevant publi-
cations in the field of BTFs up to the year 2005 are introduced.

[8] G. Müller, R. Sarlette, and R. Klein. Data-driven local coordinate systems forimage-based ren-
dering.Computer Graphics Forum, 25(3), September 2006.

In this paper a data-driven technique for computing local coordinate systems from
image-based reflectance measurements is presented. These coordinate systems allow
to align the per-texel reflectance measurements which results in increased compression
performance with negligible run-time overhead.

[9] M. Sattler, R. Sarlette, and R. Klein. Efficient and realistic visualization of cloth. Proceedings of
the Eurographics Symposium on Rendering 2003, 2003.

In this paper the first BTF real-time rendering framework based on statistical data anal-
ysis is presented. It describes the whole pipeline from measurement usinga fully au-
tomatic setup over compression to rendering including image-based illumination and
large scale shadows. It also introduces the BTF Database Bonn which stilloffers the
most detailed publicly available BTF data.

[10] Peter-Pike Sloan, Xinguo Liu, Heung-Yeung Shum, and John Snyder. Bi-Scale Radiance Transfer.
ACM Transactions on Graphics, 22(3):370–375, 2003.
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The authors combine Precomputed Radiance Transfer with BTFs to achievestriking
real-time renderings of BTF-covered objects realistically lit by environmentmaps. They
represent the BTF by projecting the data per sampled view direction into the Spherical
Harmonics basis.

[11] Frank Suykens, Karl vom Berge, Ares Lagae, and Philip Dutré. Interactive Rendering of Bidirec-
tional Texture Functions. InEurographics 2003, pages 463–472, September 2003.

This BTF compression and rendering method approximates the BTF data per texel us-
ing a sophisticated factorization scheme called Chained Matrix Factorization. The idea
is to factorize the data with different parameterizations which are suitable forthe dif-
ferent significant features of the per-texel apparent BRDFs. Thereby the data can be
reliably represented with a much smaller number of factors compared to standard ma-
trix factorization based on SVD.

[12] M. A. O. Vasilescu and Demetri Terzopoulos. Tensortextures: Multilinear image-based rendering.
In Proceedings of SIGGRAPH, August 2004.

This work introduces tensor representations for image-based datasets.In contrast to the
classic matrix representation multi-linear tensors allow a so-called strategic dimension-
ality reduction. This means that e.g. more components can be spent for encoding the
view variation which results in perceptually more satisfying reconstructions.

[13] Hongcheng Wang, Qing Wu, Lin Shi, Yizhou Yu, and Narendra Ahuja. Out-of-core tensor ap-
proximation of multi-dimensional matrices of visual data.ACM Trans. Graph., 24(3):527–535,
2005.

This paper improves the 3D tensor representation of Vasilescu et al. by arranging the
data in higher-dimensional tensors (e.g. 5D). This allows to exploit the coherence
along other dimensions like between the rows and columns of the measured images.
The method achieves very high compression rates, generalizes to higher-dimensional
datasets like time-varying BTFs and can be implemented as an out-of-core technique.
The reconstruction costs are a disadvantage of the method.
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Near-field Reflectance Fields

[1] Billy Chen and Hendrik P. A. Lensch. Light source interpolation for sparsely sampled reflectance
fields. In G̈unther Greiner, Joachim Hornegger, Heinrich Niemann, and Marc Stamminger, ed-
itors, Vision, Modeling, and Visualization 2005 (VMV’05), pages 461–469, Erlangen, Germany,
November 2005. Aka.

Captured reflectance fields are typically sparsely sampled in the light directiondomain.
In this paper, a method is presented that allows for smoothly moving light sources in
near-field reflectance fields. The system treats high frequency illuminationeffects such
as highlights and shadows separately from slowly moving effects such as the cosine
fall-off and interreflections, for which linear blending is sufficient to reproduce the ap-
pearance of intermediate light source positions. Highlights and shadows are detected
using intrinsic images and then moved according to the detected optical flow. The tech-
nique further exploits the properties of near-field reflectance fields to perform virtual
3D scanning.

[2] Yanyun Chen, Xin Tong, Jiaping Wang, Stephen Lin, Baining Guo, and Heung-Yeung Shum. Shell
texture functions.ACM Transactions on Graphics, 23(3):343–353, August 2004.

This paper presents an appearance representation approach that is particularly suited
for heterogeneous translucent objects. The translucent object is divided into a homo-
geneous diffusely scattering core surrounded by volume of heterogeneous translucent
material. The shell texture function (STF) provides an intermediate data structure rep-
resenting the light transport and the mesostructure of the outer shell. For each voxel
in the shell volume the irradiance due to light impinging from arbitrary directionsis
precomputed and stored in a 5D data structure.

[3] Frédo Durand, Nicolas Holzschuch, Cyril Soler, Eric Chan, and François X. Sillion. A frequency
analysis of light transport.ACM Transactions on Graphics, 24(3):1115–1126, August 2005.

This paper analyzes the different effects of occluders, reflectors,or the propagation
of light in free space on the spatial and angular frequency content of the transformed
light field. The authors propose a signal-processing framework and show a large set
of instructive examples. They further show how the analysis of the frequency content
of the light field can be used to control sampling rates or the choice of reconstruction
kernels in rendering, pre-computed radiance transfer, and inverse rendering.
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[4] Gaurav Garg, Eino-Ville Talvala, Marc Levoy, and Hendrik P. A. Lensch. Symmetric photography:
Exploiting data-sparseness in reflectance fields. InRendering Techniques 2006: 17th Eurographics
Workshop on Rendering, pages 251–262, June 2006.

Capturing dense light transport matrices so far required a sequential sensing of indi-
vidual incident light rays. In this paper, two techniques are combined in order to al-
low for fast acquisition of arbitrarily complex reflectance fields. The firstis the use of
H-matrices which subdivide a matrix hierarchically until each sub-block canbe repre-
sented sufficiently well using a low-rank approximation of the block. The second in-
gredient is an symmetric acquisition system where cameras and projectors are coupled
by a beam splitter allowing for emitting light and sensing light along exactly the same
rays. This turns the captured reflectance field into a symmetric tensor whosesub-blocks
can be determined in parallel given that they are of low rank. The paper features one of
the first full 8D reflectance fields, at a rather low resolution, though.

[5] Michael Goesele, Hendrik P. A. Lensch, Jochen Lang, Christian Fuchs, and Hans-Peter Seidel.
DISCO – Acquisition of Translucent Objects.ACM Transactions on Graphics (Proceedings of
SIGGRAPH 2004), 23(3), 2004.

This is the first paper that captured the diffuse reflectanceRd of a real translucent object
with inhomogeneous material properties. The object is pointwise illuminated and its
impulse response function is captured with a HDR camera. A hierarchical model of
transfer functions is computed from a large number of input images. Rendering can be
performed in real time using an earlier approach.

[6] Akira Ishimaru.Wave Propagation and Scattering in Random Media. Academic Press, 1978.

This book describes the physical principles of single and multiple scattering invarious
types of media and derives the mathematical formulations.

[7] Henrik Wann Jensen and Juan Buhler. A Rapid Hierarchical Rendering Technique for Translucent
Materials. InSIGGRAPH 2002, pages 576–581, 2002.

The authors propose a hierarchical evaluation technique to speed up therendering of
translucent objects using the dipole model [8]. This is the first of a whole series of
papers proposing various rendering techniques to speed up evaluationof the dipole
model – see e.g. [5] for a list of such publications.

[8] Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan. A Practical Model
for Subsurface Light Transport. InSIGGRAPH 2001, pages 511–518, 2001.

This paper introduces the dipole model as an approximation for translucentobjects in
computer graphics. It describes the derivation of the model, it’s use for rendering, and
compares the results to Monte-Carlo simulations. The authors describe also ameasure-
ment setup to determine the required parameters for real materials and provide a table
of measured values. The dipole model is used in many publications including [7] as a
fast method to evaluate the effects of subsurface scattering.
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[9] Shree K. Nayar, Gurunandan Krishnan, Michael D. Grossberg, and Ramesh Raskar. Fast separation
of direct and global components of a scene using high frequency illumination. In SIGGRAPH ’06:
ACM SIGGRAPH 2006 Papers, pages 935–944, New York, NY, USA, 2006. ACM Press.

In this paper a very efficent method is presented for separating the direct and the global
compoent of the light reflected by a scene due to illumination by a projector. The key ob-
servation is that global light transport is due to multiple scattering and therefore damp-
ens high frequency in spatially varying illumination patterns. The technique makes use
of multiple shifted high frequency patterns and provides a very simple formulato per-
form the separation from the minimum and maximum intensity observed for each pixel
in the sequence of shifted patterns. The separation results to some extent depend on the
frequency of the illumination pattern.

[10] Pieter Peers, Karl vom Berge, Wojciech Matusik, Ravi Ramamoorthi,Jason Lawrence, Szymon
Rusinkiewicz, and Philip Dutré. A compact factored representation of heterogeneous subsurface
scattering.ACM Transactions on Graphics, 25(3):746–753, July 2006.

This paper presents a method for transferring the reflection properties of one hetero-
geneous translucent object onto novel geometry. In an initial acquisition the diffuse
subsurface reflectance is measured on a planar slab of material by illuminating indi-
vidual points. The effect of subsurface scattering is assumed to be localized having a
well controlled support. In order to compress the captured reflectance function the il-
lumination peaks are aligned to one column and a set of homogeneous BSSRDFs is
determined to describe the general shape. Dividing the measured samples by the homo-
geneous approximation results in a representation of the heterogeneous effects which
can be factored in a compact way. When transferring the reflectance function to novel
geometry only the light transport in a local neighborhood is considered.

[11] Steven M. Seitz, Yasuyuki Matsushita, and Kiriakos N. Kutulakos. Atheory of inverse light
transport. InICCV ’05: Proceedings of the Tenth IEEE International Conference onComputer
Vision, pages 1440–1447, Washington, DC, USA, 2005. IEEE Computer Society.

Given a captured near-field reflectance field between a projector and acamera, this
paper analyzes how the reflectance field can be inverted in order to render the scene
after the first, the second, or after multiple light indirections. The results indicate that
it is sometimes possible to remove multiple scattering effects from captured reflectance
fields. Note that the inversion of the reflectance field is possible only for a couple of
special cases.

[12] Pradeep Sen, Billy Chen, Gaurav Garg, Stephen R. Marschner,Mark Horowitz, Marc Levoy, and
Hendrik P. A. Lensch. Dual photography.ACM Transactions on Graphics, 24(3):745–755, August
2005.

This paper presents an acquisition system for capturing near-field reflectance fields,
i.e. measuring the light transport on a ray-to-ray basis. Using an adaptive algorithm, the
reflectance field between a camera and a projector is measured such that the influence of
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every projector pixel to every camera pixel is determined, yielding a 4D lighttransport
matrix. Exploiting Helmholtz reciprocity, the light transport direction can be inverted.
Instead of sending out light from the projector it is turned virtually into a sensing camera
capturing the scene as if illuminated by a virtual projector at the location of the original
camera. The adaptive and parallel capturing scheme acceleration the acquisition time
for sparse light transport matrices by three orders of magnitude.

[13] Xin Tong, Jiaping Wang, Stephen Lin, Baining Guo, and Heung-Yeung Shum. Modeling and
rendering of quasi-homogeneous materials.ACM Transactions on Graphics, 24(3):1054–1061,
August 2005.

This paper features an acquisition system and a model for capturing and rendering
quasi-homogeneous materials. The model consist of a homogeneous subsurface re-
flectance function augmented by two functions modeling the mesostructure effects lo-
cally, i.e. independently for the incident and the exitant point of the light transport. The
subsurface scattering effect is captured by sweeping a line stripe laserover the surface
from various directions. In addition, a full BTF is acquired.
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How to describe materials?How to describe materials?

• mechanical, chemical, electrical properties

• reflection properties

• surface roughness

• geometry/meso-structure

• relightable representation of appearance
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Helmholtz ReciprocityHelmholtz Reciprocity
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Helmholtz ReciprocityHelmholtz Reciprocity
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Energy ConservationEnergy Conservation

• The sum of energy reflected into all directions 
has to be smaller or equal than the incident 
energy.

1)cos()( ≤→∫
Ω

oioir df
o

ωθωω rr
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Snell’s LawSnell’s Law
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Fresnel FormulaFresnel Formula
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Material AcquisitionMaterial Acquisition

• single picture 
– no interaction

EG:395



7

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Hendrik Lensch

Material AcquisitionMaterial Acquisition

• diffuse color + geometry model 
– no relighting
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Material AcquisitionMaterial Acquisition

• BRDF + geometry model
– moving highlights
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Material AcquisitionMaterial Acquisition

• spatially-varying BRDF + geometry model
– moving highlights
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Digitizing real-world ObjectsDigitizing real-world Objects

a single photograph

scene

2D
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Light FieldsLight Fields

4D
[Gortler96], [Levoy96]

distribution of all reflected light rays
EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Hendrik Lensch

RelightingRelighting

one picture for each light direction
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RelightingRelighting

+
+

+

+

[Debevec2000]

superposition principle
EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Hendrik Lensch

[Debevec2000]

4D Reflectance Fields4D Reflectance Fields

+
+

+

+

2D

2D

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Hendrik Lensch

Far- vs. Near Field IlluminationFar- vs. Near Field Illumination
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[Masselus2003]

6D Reflectance Fields
Near Field illumination
6D Reflectance Fields
Near Field illumination

2D

4D

relighting with 4D incident light fields
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8D Reflectance Fields8D Reflectance Fields

4D

4D

arbitrary perspective + arbitrary illumination
EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Hendrik Lensch

Acquisition ApproachesAcquisition Approaches

• hard to sample an 8D function

• dimensionality reduction

• sampling density

• restricted viewing and relighting capabilities

• restriction to a specific class of 
materials/objects
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Taxonomy of 
Appearance Representations
Taxonomy of 
Appearance Representations
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Acquisition TaxonomyAcquisition Taxonomy
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Acquisition TaxonomyAcquisition Taxonomy
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Acquisition TaxonomyAcquisition Taxonomy
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Acquisition TaxonomyAcquisition Taxonomy
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Acquisition TaxonomyAcquisition Taxonomy
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Reflectance SharingReflectance Sharing
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Reflectance Fields for Distant LightsReflectance Fields for Distant Lights
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Near-Field Reflectance FieldsNear-Field Reflectance Fields
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SummarySummary

• densely sampling 8D functions almost 
impossible

• less dimensions might be sufficient for 
specific tasks / materials
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Acquisition Basics

Michael Goesele
University of Washington

Acquisition Basics

Michael Goesele
University of Washington

Capturing Reflectance
From Theory to Practice
Capturing Reflectance

From Theory to Practice

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Michael Goesele

Goal of this SectionGoal of this Section

• practical, hands-on description of acquisition 
basics

• general overview, caveats, misconceptions, 
solutions, hints, …

• biased to the techniques used in our lab

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Michael Goesele

How can we measure 
material properties?
How can we measure 
material properties?
• color

• texture

• reflection
properties

• normals

• ...

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Michael Goesele

Special Purpose ToolsSpecial Purpose Tools

• gloss meter, haze meter, …
– various appearance characteristics

• spectrophotometer
– spectral reflectance of a surface

• often used in industry where single 
parameters of one material are important

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Michael Goesele

General Purpose ToolsGeneral Purpose Tools

• setup with digital camera(s), controlled 
lighting, …

• foundation of image-based techniques

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Michael Goesele

General Purpose ToolsGeneral Purpose Tools

• digital camera as
– massively parallel 

sensor

– mostly tristimulus color

– often high quality optical 
system

– tuned to make good 
and/or correct pictures

EG:400



2

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Michael Goesele

Overview Acquisition BasicsOverview Acquisition Basics

• digital cameras
– geometric and photometric 

calibration

– high dynamic range imaging

• light sources

• lab setup

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Michael Goesele

Pinhole Camera ModelPinhole Camera Model

• “each pixel 
corresponds to one 
ray through the 
pinhole onto the 
object”

• not valid for most 
digital cameras!!!

object pinhole
image
plane
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(Pessimistic)
Digital Camera Model
(Pessimistic)
Digital Camera Model

object black
box

image
file

• digital camera as a 
black box

• take only for 
granted what you 
measured (or what 
is given in the 
manual)

0010100101
1001010010
0110101101
110...110...
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• optical lens system instead
of pinhole aperture 
(aberration, vignetting)

• CCD/CMOS chip and A/D conversion

• normally only one color per pixel (e.g. Bayer 
pattern) requires demosaicing

• camera image processing

• …

(Pessimistic)
Digital Camera Model
(Pessimistic)
Digital Camera Model

0010100101
1001010010
0110101101
110...110...
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Bayer PatternBayer Pattern

• sensor records only one color 
per pixel
– higher sampling rate in green 

channel (luminance channel)

• remaining two color values per 
pixel must be reconstructed
– artifacts possible Bayer pattern
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DemosaicingDemosaicing

Bayer pattern

• common approach
– combining an interpolation and a

pattern matching scheme

– groups pixels into regions and
makes some continuity
assumption within the regions

– “nice pictures”, but no guarantee 
that two of the R,G,B values per
pixel are correct
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(Pessimistic)
Digital Camera Model
(Pessimistic)
Digital Camera Model
• often globally correct image

• no guarantee that each pixel
contains reliable color values

• some issues can be solved using camera 
calibration

• careful choice of camera for measurements

0010100101
1001010010
0110101101
110...110...
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Overview Acquisition BasicsOverview Acquisition Basics

• digital cameras
– geometric and photometric 

calibration

– high dynamic range imaging

• light sources

• lab setup

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Michael Goesele

Geometric Camera 
Calibration
Geometric Camera 
Calibration
• get transformation between points in space 

and image coordinates

• intrinsic camera parameters
– focal length, distortion coefficients, …

• extrinsic parameters
– position, orientation
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Geometric Camera 
Calibration
Geometric Camera 
Calibration
• several methods commonly used, e.g., 

[Tsai ’87, Heikkila ’97, Zhang ’99]

• Matlab calibration toolbox by Jean-Yves 
Bouguet
– http://www.vision.caltech.edu/bouguetj/calib_doc/

– also included in the OpenCV Open Source 
Computer Vision library distributed by Intel
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Camera Model
(simplified from Bouguet)
Camera Model
(simplified from Bouguet)
• point in camera reference frame is mapped 

to normalized pinhole coordinates
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Camera Model
(simplified from Bouguet)
Camera Model
(simplified from Bouguet)
• normalized point coordinates are computed 

using distortion model
– only parameterized by distance from center
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Camera Model
(simplified from Bouguet)
Camera Model
(simplified from Bouguet)
• final pixel coordinates are computed using 

focal length and principal point
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Calibration ApproachCalibration Approach

• capture images of test target with 
known geometry
– cover space and angles with planar 

target

• solve for intrinsic and extrinsic 
parameters

• quality can be checked by 
reprojection
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Photometric CalibrationPhotometric Calibration

What do these RGB values (digital counts) mean?

(141,25,4)

(225,203,216)

(40,70,143)
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Camera Response Curve 
(OECF)
Camera Response Curve 
(OECF)
• relationship between digital counts and 

luminance is unknown (and often non-linear)
– gamma correction

– image optimizations

– ...

• can be described by response curve or 
OECF (Opto-Electronic Conversion 
Function)
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Camera Response Curve 
(OECF)
Camera Response Curve 
(OECF)
• direct measurement via test chart 

– patches with known gray levels

– uniform illumination

• patches arranged in a circle to suppress lens 
effects (e.g. vignetting)

• inversion using OECF leads to pixel values 
linearly related to luminance values
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Definition of Dynamic RangeDefinition of Dynamic Range

• dynamic range is the ratio of brightest to 
darkest (non-zero) intensity values in an 
image
– assuming linear intensity

• often given as
– ratio: 1:100.000

– orders of magnitude: 5 orders of magnitude

– in decibel: 100 dB
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Sources of  Dynamic RangeSources of  Dynamic Range
• diffuse materials reflect 0.5% – >90% of 

incoming light
– specular highlights much brighter

• lit regions vs. in shadow regions

• moonless night vs. sunny day

high dynamic range mainly caused by 
illumination effects
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Sources of  Dynamic RangeSources of  Dynamic Range

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Michael Goesele

• example: photographic camera with standard 
CCD sensor
– dynamic range of sensor 1:1000

– exposure variation 1/60th s – 1/6000th s 
(handheld camera/non-static scene) 1:100

– varying aperture f/2.0 – f/22.0 ~1:100

– exposure bias/varying “sensitivity” 1:10

– total (sequential) 1:100,000,000

– simultaneous dynamic range still only 1:1000

Dynamic Range of CamerasDynamic Range of Cameras
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High Dynamic Range (HDR) 
Imaging
High Dynamic Range (HDR) 
Imaging

500,000500,000500,000

000
555

486,000486,000486,000
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High Dynamic Range (HDR) 
Imaging
High Dynamic Range (HDR) 
Imaging
• analog false-color film with several 

emulsions of different sensitivity levels by 
Wyckoff in the 1960s
– dynamic range of about 108

• modern CMOS sensors can achieve a 
dynamic range of 106 – 108

– logarithm in analog domain

– multiple exposure techniques
EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Michael Goesele

High Dynamic Range 
Imaging
High Dynamic Range 
Imaging
• extending dynamic 

range of ordinary 
camera

• combining multiple 
images with different 
exposure
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Determining the Response 
Curve
Determining the Response 
Curve
• [Madden 1993] assumes linear response

– correct for raw CCD data

• [Debevec and Malik 1997]
– selects a small number of pixels from the images 

– performs an optimization of the response curve 
with a smoothness constraint

• [Robertson et al. 1999, 2003]
– optimization over all pixels in all images
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Algorithm of Robertson et al.Algorithm of Robertson et al.

• Principle of this approach:
– calculate a HDR image using the response curve

– find a better response curve using the HDR image

• (to be iterated until convergence)

• assume initially linear response
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• input:
– series of i images with exposure times ti
– pixel value at image position j is yij = f(tixj)

• find irradiance xj and response curve I(yij)
– tixj is proportional to collected charge/radiant energy

– f maps collected charge to intensity values

Algorithm of Robertson et al.Algorithm of Robertson et al.
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• additional input:
– a weighting function w(yij) (bell shaped curve)

– an initial camera response curve I(yij) – usually 
linear

• calculate HDR values xj from images using
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• optimizing the response curve I:
– start again with definition

• minimization of objective function O

• using Gauss-Seidel relaxation yields

• Card(Em) = number of elements in Em

Algorithm of Robertson et al.Algorithm of Robertson et al.
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Algorithm of Robertson et al.Algorithm of Robertson et al.

• both steps are iterated
– calculation of a HDR image using I

– optimization of I using the HDR image

I needs to be normalized, e.g., I(128)=1.0

• stop iteration after convergence
– criterion: decrease of O below some threshold

– usually only a couple of  iterations 
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HDR Imaging: Algorithm of 
Robertson et al.
HDR Imaging: Algorithm of 
Robertson et al.

))(log( ijyI
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HDR Example: Capturing 
Environment Maps
HDR Example: Capturing 
Environment Maps

1/2000s        1/500s           1/125s           1/30s          1/2000s        1/500s           1/125s           1/30s          1/8s  1/8s  

series of input imagesseries of input images
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series of input imagesseries of input images

HDR Example: Capturing 
Environment Maps
HDR Example: Capturing 
Environment Maps

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Michael Goesele

• choice of weighting function w(yij) for 
response recovery

– for 8 bit images

– possible correction at both ends 
(over/underexposure)

– motivated by general noise model

Algorithm of Robertson et al.Algorithm of Robertson et al.
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• choice of weighting function w(yij) for HDR 
reconstruction
– introduce certainty function c as derivative of the 

response curve with logarithmic exposure axis

– approximation of response function by cubic 
spline to compute derivative

Algorithm of Robertson et al.Algorithm of Robertson et al.
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ijyijij Icyww ==
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Input Images for Response 
Recovery
Input Images for Response 
Recovery
• my favorite:

– grey card, out of focus, smooth illumination 
gradient

• advantages
– uniform histogram of values

– no color processing or sharpening interfering with 
the result
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White BalanceWhite Balance

daylightdaylight

flashflashflourescentflourescent

tungstentungsten

capture the spectral
characteristics of
the light source to
assure correct
color reproduction

images taken with different camera settingsimages taken with different camera settings
EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Michael Goesele

White BalanceWhite Balance

• capture white surface under target 
illumination

• scale color channels to achieve uniform 
intensity values

• often built-in function
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Color CalibrationColor Calibration

• BRDF model of real 
object

• long processing 
pipeline

• which image is 
(more) correct?
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Color CalibrationColor Calibration
input deviceinput device
(e.g. camera)(e.g. camera)

input profileinput profile

profileprofile
connectionconnection

spacespace

output deviceoutput device
(e.g. printer)(e.g. printer)

output profileoutput profile

displaydisplay
devicedevice
(e.g. (e.g. 

monitor)monitor)

monitormonitor
profileprofile

• ICC color management system

• capture the properties of all 
devices
– camera and lighting

– monitor settings

– output properties

• common interchange space
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Color CalibrationColor Calibration

• profile connection spaces
– CIELAB (perceptual linear)

– linear CIEXYZ color space

• can be used to create an high 
dynamic range image in the 
profile connection space

• allows for a color calibrated 
workflow

input deviceinput device
(e.g. camera)(e.g. camera)

input profileinput profile

profileprofile
connectionconnection

spacespace

output deviceoutput device
(e.g. printer)(e.g. printer)

output profileoutput profile

……
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Color CalibrationColor Calibration

[Goesele et al. 2004]
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Limits of White Balance and 
Color Calibration
Limits of White Balance and 
Color Calibration
• fluorescence effects

– signal colors

– optical brighteners

– test targets

• color calibration impossible

• cannot be solved using white 
balance

daylight (HMI)

green LED
EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Michael Goesele

Overview Acquisition BasicsOverview Acquisition Basics

• digital cameras
– geometric and photometric 

calibration

– high dynamic range imaging

• light sources
• lab setup

• geometry acquisition
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General Measurement 
Approach
General Measurement 
Approach

?? ??

??• find relation between 
incoming and outgoing 
light at a surface point

• derive information from 
this data

• knowledge and control 
over light sources 
needed
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Lighting RequirementsLighting Requirements

• photometric properties
–uniform spatial distribution

–color constant over time

–even spectral distribution

–very bright and efficient
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Lighting RequirementsLighting Requirements

• emission pattern
• requirements depend on application, 

e.g.,
–well defined light source
– incident angle as small as possible

parallel light source (e.g. laser beam)
point light source

– lens or reflector based systems are not ideal
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Point Light Source ExamplePoint Light Source Example

• 800 W HMI light source

• very efficient
(equals 2500 W tungsten light)

• (almost) daylight spectrum

• constant colors

• point light source
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Point Light Source ExamplePoint Light Source Example

• more information about 
lighting in the individual 
sections of the course …
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Overview Acquisition BasicsOverview Acquisition Basics

• digital cameras
– geometric and photometric 

calibration

– high dynamic range imaging

• light sources

• lab setup
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Lab SetupLab Setup

• part of the lighting considerations

• often low and diffuse reflection required to 
minimize the influence of the environment 

• MPI photo studio
– walls and ceiling covered with black felt

– black needle fleece carpet
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Lab SetupLab Setup
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Lab SetupLab Setup

• tuned for efficiency and flexibility
– enough space

– enough stands, supporting materials, …

• have some lighting available in dark areas
– e.g., radio controlled light switch

• safety concerns
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Reflectance Sharing

Michael Goesele
University of Washington

Reflectance Sharing

Michael Goesele
University of Washington

Capturing Reflectance
From Theory to Practice
Capturing Reflectance

From Theory to Practice

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Michael Goesele

BRDFBRDF

(bi-directional reflectance distribution function)

ratio of reflected radiance to incident irradiance
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BRDF MeasurementBRDF Measurement

• Gonioreflectometer

light sourcelight source

samplesample

sensorsensor
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Image-Based BRDF MeasurementImage-Based BRDF Measurement

• [Marschner 1999, Lu & 
Koenderink 1998, …]

• capture lots of BRDF 
samples at one shot by 
a sensor array / camera

cameracamera

curved samplecurved sample
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Image-Based BRDF MeasurementImage-Based BRDF Measurement

• [Marschner 1999,
Lu et al. 1998, …]
– capture lots of BRDF 

samples at one shot by 
a sensor array / camera

– homogeneous, isotropic 
materials only

cameracamera

curved samplecurved sample
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Image-Based BRDF MeasurementImage-Based BRDF Measurement

• [Matusik et al. 2003, Ngan et al. 2005]
– systematic capture effort for large number of 

materials
– includes anisotropic materials

– BRDF database available online
– analysis of captured data using dimensionality 

reduction techniques
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Homogeneous BRDFHomogeneous BRDF
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Spatially Varying BRDFSpatially Varying BRDF
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Spatially Varying BRDFSpatially Varying BRDF

• heterogeneous materials

iωr

xr

);( oir xf ωω rrr →

oωr

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Michael Goesele

Spatially Varying BRDFSpatially Varying BRDF

• measurement approach by [Lensch et al. 2003]

View View 
AcquisitionAcquisition Visibility/ Visibility/ 

ShadowsShadows

RegistrationRegistration
ResamplingResampling

ClusteringClustering

BRDF BRDF 
FittingFitting
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Acquisition SetupAcquisition Setup

• Camera and light source are moved manually 
around the object.

• Positions are calibrated
with respect to the
object.

• The dark room reduces
reflections from the
environment.
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BRDF Fitting and ClusteringBRDF Fitting and Clustering

View View 
AcquisitionAcquisition Visibility/ Visibility/ 

ShadowsShadows

RegistrationRegistration
ResamplingResampling

ClusteringClustering

BRDF BRDF 
FittingFitting
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BRDF Acquisition BRDF Acquisition 

– Capture HDR-images from various viewpoints with 
different light source positions.
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BRDF Acquisition BRDF Acquisition 

– Capture HDR-images from various viewpoints with 
different light source positions.
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BRDF Fitting and ClusteringBRDF Fitting and Clustering

View View 
AcquisitionAcquisition Visibility/ Visibility/ 

ShadowsShadows

RegistrationRegistration
ResamplingResampling

ClusteringClustering

BRDF BRDF 
FittingFitting
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3D-2D Registration3D-2D Registration

– calibrated gantry

– corresponding points

– silhouette-based
method
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Light Source PositionLight Source Position

– detect highlights of ring flash reflections

– determine the position of the spheres

d d
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Light Source PositionLight Source Position

– detect highlights of light source reflections

– reconstruct light source position

d dr
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Light Source PositionLight Source Position
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BRDF Fitting and ClusteringBRDF Fitting and Clustering

View View 
AcquisitionAcquisition Visibility/ Visibility/ 

ShadowsShadows

RegistrationRegistration
ResamplingResampling

ClusteringClustering

BRDF BRDF 
FittingFitting
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ResamplingResampling

– for each point on the surface:
find all images where the point is visible and lit
take sample at corresponding pixel position

),,,( oixr ωω rrr
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BRDF Fitting and ClusteringBRDF Fitting and Clustering

View View 
AcquisitionAcquisition Visibility/ Visibility/ 

ShadowsShadows

RegistrationRegistration
ResamplingResampling

ClusteringClustering

BRDF BRDF 
FittingFitting
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Key IdeaKey Idea

• Very few radiance samples per texel
⇒ no dense sampling of the BRDF 

• Most real-world objects consist of a small set 
of distinct materials. 

⇒ fit a BRDF model for each basis material

⇒ start with the avg. BRDF of the entire surface
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The Lafortune ModelThe Lafortune Model

– physically plausible

– diffuse component plus a number of lobes

– 3*(1+ i*3) parameters (12 for a single lobe model)

– fit parameters to samples using Levenberg-
Marquardt

( ) jN

j
zozijzyoyixoxijxdoir CCf ∑ +++= ωωωωωωρωω ,, )()ˆ,ˆ(
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Fitting BRDFs to LumitexelsFitting BRDFs to Lumitexels

– define error measure between a BRDF and a 
lumitexel:

– perform non-linear least square optimization for a 
set of lumitexels using Levenberg-Marquardt 

– yields a single BRDF (i.e. its parameters) 
per set of lumitexels

( )2),(1)( ∑
∈

−=
LjR

jzioirf rf
L

LE
jjjr

ωωω rrr

= average error over = average error over 
all radiance samplesall radiance samples
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Fitting ResultFitting Result
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ClusteringClustering

• Goal: separate the different materials
– similar to Lloyd iteration

– start with a single cluster containing all lumitexels

– split cluster along direction of largest variance

– stop after n clusters have been constructed
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Split-Recluster-Fit CycleSplit-Recluster-Fit Cycle

– split into two BRDFs along direction of largest variance of 
parameters (covariance matrix)

– distribute initial lumitexels forming two new clusters

– refit new BRDFs

– repeat reclustering and fitting until clusters are stable

BRDFBRDF

clustercluster
BRDFBRDF11

BRDFBRDF22

splitsplit fitfitreclusterrecluster
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Clustering ResultsClustering Results
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Spatially Varying MaterialsSpatially Varying Materials
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ProjectionProjection

• Goal: assign a separate BRDF to 
each lumitexel

– too few radiance samples for a reliable fit

– represent the BRDF       of every lumitexel by a linear 
combination of already determined 
BRDFs of the clusters                          :

– determine linear weights

mm ftftftf +++= K2211π

mfff ,,, 21 K

πf

mttt ,,, 21 K
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ProjectionProjection

– compute the pseudo-inverse using non-negative 
SVD to get a least squares solution for

– it is a linear problem! 
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ResultsResults
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Why to do the complicated 
clustering? 
Why to do the complicated 
clustering? 

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Michael Goesele

Normal FittingNormal Fitting
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Without Normal FittingWithout Normal Fitting
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With Normal FittingWith Normal Fitting
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Bronze BusteBronze Buste
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ConclusionConclusion

• determine BRDF of a few basis materials

• spatial variation as a blend of basis BRDFs

• highly efficient acquisition

• model based 

• requires geometry model 
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Capturing Reflectance
From Theory to Practice
Capturing Reflectance

From Theory to Practice

Bidirectional Texture 
Functions

Gero Müller

University of Bonn

Bidirectional Texture 
Functions

Gero Müller

University of Bonn
EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Gero Müller

IntroductionIntroduction

• Opaque materials with complex mesogeometry
(rough textures) 
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IntroductionIntroduction

• Goal
– Capture „look-and-feel“ of those materials 

independent of a specific physical object

• Capture appearance from material samples
• Standard: single RGB-image

– Appearance captured only for one view and one 
lighting situation

– Valid only for flat and diffuse materials
(paper, cardboard,...)
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IntroductionIntroduction

• Images of rough textures with meso-structure 
contain view- and light dependent shadows, 
occlusions and local/global illumination effects

Shadowing
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IntroductionIntroduction

• Images of rough textures with meso-structure 
contain view- and light dependent shadows, 
occlusions and local/global illumination effects

Occlusions/Parallax
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IntroductionIntroduction

• Lighting distance large compared to extent of 
material sample

• Materials are applied to opaque physical objects 
(furniture, walls, car interior, cloth, ... )

Neglect near-field illumination and explicit light-
transport between surface points

Measure only far-field reflectance field of sample

Bidirectional Texture Function [Dana et al. 1997]
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IntroductionIntroduction

• BTF ⇔ 6D far-field reflectance field of 
texture 2D

2D

2D
…
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TaxonomyTaxonomy
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OverviewOverview

• Acquisition

• Compression

• Rendering

• Non-planar objects

• Synthesis not part of this talk
EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Gero Müller

AcquisitionAcquisition

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Gero Müller

• Sampling a 6D-function
–Take pictures… (spatial dimension)   

– ...under various view and light directions (angular
dimensions)

BTF AcquisitionBTF Acquisition

( , , )rgbBTF x v l
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Measurement setupsMeasurement setups

• Gonioreflectometer-like
–Advantages

• fully automatic

• flexible sampling rate

–Problems
• measurement time: ~14h

(81x81=6561 images)

• moving parts: 
camera, light, sample carrier

[Sattler et al. 2002]

[McAllister 2002]
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Measurement setupsMeasurement setups

• Using Mirrors [Han et al. 2003]

–Advantages
• parallel

• fast

• no moving parts

–Problems
• small resolution

• non-perfect mirrors
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Measurement setupsMeasurement setups

• Using a camera array [Uni Bonn 2005]
–Advantages

• fast, parallel ~1 hour
(151x151=22501 images)

• no moving parts

• high resolution

–Problems
• fixed angular sampling

• complex control apparatus
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BTF Camera ArrayBTF Camera Array

• Custom built hemi-spherical aluminium gantry (80 cm radius) 
mounted on aluminium base rack

• 151 Canon Powershot A75 digicams (3.2 mpixel)

– cheapest consumer camera with powerful SDK

– built-in light source
(supports different intensities)

• USB-controllable 160-port relay box for on/off toggling

• Custom built power supply
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TasksTasks

• Synchronized control
– One camera flashes while all cameras take picture

– High dynamic range
• 4 passes with different flash intensities and exposures

– 8 PCs (~19 cameras/PC)

– 1 Master PC for synchronization
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TasksTasks

• Calibration
– Response curve

– Color calibration

– Varying flash intensity

– Camera mapping 

• Lens distortion

• Intrinsic + extrinsic camera parameters
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Post-processingPost-processing

• Extraction of consistent ROI 
– Backprojection onto planar base geometry

• Compensation for non-directional light source and 
non-orthographic projection

• Requirements: 
– Fully automatic

– Robust

– Reduced jittering

...
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BTF Database BonnBTF Database Bonn

www.cg.cs.uni-bonn.de/btf
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CompressionCompression

…

“Some“ GBs

…

“Some“ MBs

Example (Camera array):

After postprocessing: 

22501 hdr-images (OpenEXR)

ROI-size 1024x1024

~70-90 GB
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CompressionCompression

• Preferable properties:
–fast (real-time), random access 

decompression
–preservation of visual important features
–maximum of a few MBs

• Two main approaches
–Fitting analytical functions

–Statistical data analysis
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Fitting Analytical FunctionsFitting Analytical Functions

• |p| small,  evaluation of cheap 

Good compression and fast evaluation

( )F xparameters

-5 -4 -3 -2 -1 0 1 2 3 4 5

� ( ),F x p

( ),F x p%

Feature or Noise?
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Fitting Analytical FunctionsFitting Analytical Functions

• Spatial variation (texture domain)  too complex

Fixing spatial position

( , ) : ( , , )B BTF=x v l x v l

Apply techniques from  
BRDF modeling

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Gero Müller

Fitting Analytical FunctionsFitting Analytical Functions

• How do these functions look like?

• How do typical BRDFs look like?

shiny plastic

ll

vv
Specular reflection
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Fitting Analytical FunctionsFitting Analytical Functions

• How do these functions look like?

ll

vv
Retro-reflection
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Fitting Analytical FunctionsFitting Analytical Functions

• Are these functions typical BRDFs?

ll

vv
influence from
neighborhood
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Fitting Analytical FunctionsFitting Analytical Functions

• ABRDF = Apparent 
BRDF [Wong et al.  97]
– Contains also influence from 

neighborhood:

• Self-Shadowing

• Self-Occlusion

• Sub-Surface Scattering

• Resampling artefacts

• …

ll

vv

ll

vv

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Gero Müller

Fitting BRDF-ModelsFitting BRDF-Models

• Generalized Cosine-Lobe Model [Lafortune et al. 97] :

( )
,

, , ,
1

( , , ) ( , , )
ink

T
d s i

i
BTF f ρ ρ

=

⇒ ≈ = + ⋅∑
x

x x x xx v l v l p v D l

• Non-linear least-squares fitting (Levenberg-Marquardt)
• typically around 2 lobes
• Improvement [Daubert et al. 2001]: 

view-dependent scale factor per texel to account 
for shadowing effects 

specular color specular lobe
diffuse color
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Fitting BRDF-ModelsFitting BRDF-Models

• Advantages
– High compression

– Efficient evaluation

• Problems
– loss of depth impression 

– Non-linear fitting
• expensive

• results depend on initialization
McAllister 2002
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Fitting (Hemi-) Spherical FunctionsFitting (Hemi-) Spherical Functions

• Approximate hemispherical slices (fixing e.g. view 
direction) of per-texel ABRDF separately and blend

,
( )

( , , ) ( )v v
v N

BTF w HSF
∈

⇒ ≈ ∑ v x,
v

x v l l
Hemispherical 
Function (2D)

Interpolation 
weights

• [Meseth et al. 2004] used polynomials and cosine lobes
[Sloan et al. 2003] used spherical harmonics 
(consider also [Masselus et al. EGSR04])
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Summary: Fitting Hemispherical 
Functions
Summary: Fitting Hemispherical 
Functions
• Advantages

– Better preservation of ABRDF features

• Problems
– Chosen approximation for HSF 

may introduce artifacts

– Memory consuming
(Apply clustering
⇒ quantization artifacts)

– More expensive evaluation
(view-interpolation required) Meseth et al. 2004
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Statistical Data AnalysisStatistical Data Analysis

• Motivation
– Assuming general basis functions (polynomials, 

lobes, etc…) suboptimal for a given measured BTF-
dataset 

• Idea
– Find customized basis functions adapted for the 

actual data set

– Exploit the inherent redundancy more effectively
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Statistical Data AnalysisStatistical Data Analysis

• Linear approaches
– Full BTF-matrix factorization 

[Koudelka et al. 2003] [Liu et al. 2004]

– Per-texel ABRDF factorization
[Suykens et al. 2003]

– Per-view factorization
[Sattler et al. 2003]

– Per-cluster factorization
[Mueller et al. 2003]

• Tensor approaches
– TensorTextures [Vasilescu et al. 2004]

– Out-of-Core Tensor Approximation [Wang et al. 2005]
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Full BTF-FactorizationFull BTF-Factorization

• Stack images as column vectors into large matrix

…

...

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

M

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

…=V

“Eigen-ABRDFs“

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

=U …

“Eigen-Textures“SVD

T=M USV
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Full BTF-FactorizationFull BTF-Factorization

• Write the BTF as sum of products of two 
functions

( , , ) ( ) ( , ) ( ) ( , )
N c

j j j j j j
j j

BTF t b t bσ σ⇒ = ⋅ ≈ ⋅∑ ∑x v l x v l x v l

“Eigen-Textures“ “Eigen-ABRDFs“
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Full BTF-FactorizationFull BTF-Factorization

• Number of terms

2

1

N

i
i c

ε σ
= +

= ∑

c
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RMS-Error
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Full BTF-FactorizationFull BTF-Factorization

• Advantages
– simple and straight-forward

• Problems
– complex materials require many 

terms

not suitable for real-time
reconstruction Liu et al. TVCG2004
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Per-Texel ABRDF FactorizationPer-Texel ABRDF Factorization

• Chained-Matrix Factorization [Suykens et al. 2003]
– Generalization of common BRDF-Factorization techniques 

[Kautz&McCool 1999],[McCool et al. 2001]

– Idea: 

• Apply chain of factorizations (SVD) to reparameterized data

• Each parameterization accounts for certain ABRDF-features

( ) ( )( ) ( )( ), , ,1 , , ,2, , , ,
jcd

j k j j k j
kj

BTF P Qπ π≈ ⋅∑∏ x xx v l v l v l

Different parameterizations for each factor j
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Per-Texel ABRDF FactorizationPer-Texel ABRDF Factorization

• Advantanges
– Suitable for real-time rendering:

Combination of few factors on GPU

• Problems
– Resampling artifacts

– Memory consumption
(authors propose clustering of 
factors ⇒ quantization artifacts)

Suykens et al. 2003
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Per-View FactorizationPer-View Factorization

• Apply SVD to BTF-slices with fixed view direction 
(Spatially varying Hemispherical Functions)

• Idea
– Increase quality of low-term factored approximations by 

factorizing fixed subsets of the data

, ,
( )

( , , ) ( ) ( )
c

v v j v j
v N j

BTF w r t
∈

⇒ ≈ ∑ ∑
v

x v l l x

“Eigen-Hemispherical-
Functions“

“Eigen-Textures“
(per view)
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Per-View FactorizationPer-View Factorization

• Advantages
– Low-term factorization enables high-quality interactive 

rendering on graphics hardware

• Problems
– Memory consumption

– Coherence between 
different views not exploited

Sattler et al. 2003
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Statistical Data AnalysisStatistical Data Analysis

• Per-texel or per-view factorization factorize fixed 
subsets of the BTF data

• Use clustering across spatial dimension to find 
better subsets
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Statistical Data AnalysisStatistical Data Analysis

• Clustering alone leads to quantization artifacts

• Solution: linear approximation of data in each 
cluster (Local-PCA)

3 components 8 components
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Per-Cluster FactorizationPer-Cluster Factorization

• Clustering BTF-texels (ABRDFs) leads to

( ),( , , ) ( ) ( )
c

j k j
j

BTF t b⇒ ≈∑ xx v l x v, l

“Eigen-BRDFs“
(per cluster)

“Eigen-Textures“
(segmented)

• Clustering with generalized Lloyd-algorithm and re-
construction error as distance metric
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Per-Cluster FactorizationPer-Cluster Factorization

• Advantages
– Low-term factored representation suitable for GPU 

implementation

– Good compression

– Reconstruction per cluster
reduces quantization artifacts

• Problems
– Expensive fitting 

Mueller et al. 2003
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Storage RequirementsStorage Requirements

c*(k*(|V|*|L|) + |T|)

|V|*c*(|L|+|T|)

d*(|V|+|L|)*|T|

c*(|V|*|L| + |T|)

f(k)*|V|*|T|

f(k)*|T|

|L|*|V|*|T|

Storage (|L|,|V|,|T|)

(k=32, c=8) 

6.6 MB

(c=4) 64 MB

(d=2) 63 MB

(c=40)  8.6 MB

(k=2)  95 MB

(k=2)  2.4 MB

1.2 GB

|V|=|L|=81, |T|=256²

8-Bit per channel
Model

ABRDF Factorization

Per-View Factorization

Per-Cluster 
Factorization

BTF Factorization

Hemispherical Function

Analytical BRDF-Model

Raw BTF
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Practical IssuesPractical Issues

• Factorization approaches require computing 
SVD of large matrices (up to several GBs)

• Use incremental/online SVD methods
– Arnoldi iteration

– EM-PCA [Roweis  1998]

– Online SVD [Brand 2003]

– ...
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Using geometry informationUsing geometry information

• Fitting local coordinate systems
– In-between image- and geometry-based BTF representation

• Can be done efficiently using FFT over the group of 
rotations SO(3) [Müller et al. EG2006]
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RenderingRendering
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RenderingRendering

• Determine color / visible radiance for every
point

• Determine color / visible radiance for every
point

( ) ( ) ( )*, , ,
i

ref iL L dρ
Ω

= ⋅∫ xx v v l x l l

( ) ( ) ( ), , ,r e refL L L= +x v x v x v
„Exitant Radiance = Emitted Rad. + Reflected Rad.“

„Reflected Rad. = Incoming Rad. combined with
reflection properties“

spatially varying reflectance includes 
foreshortening term
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Point- and Directional Light 
Sources
Point- and Directional Light 
Sources
• Finite number of light directions

( ) ( ) ( )*, , ,
i

ref iL L dρ
Ω

= ⋅∫ xx v v l x l l

( ) ( ) ( )*

1

ˆ, , ,
n

ref i i i
i

L Lρ
=

= ⋅∑ xx v v l x l
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Rendering with GPUsRendering with GPUs

• Measured BTFs
– Evaluation for directions 

not in the measured set
• Interpolation in angular domain

– Interpolation rather expensive
graphics hardware

Interpolation from regular samples
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Hardware Supported Angular 
Interpolation
Hardware Supported Angular 
Interpolation
• Reparameterization

– Approximately uniform sampling of hemisphere

– Suitable for hardware filtering

Parabolic Maps

Heidrich + Seidel 1998
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Hardware Supported Angular
Interpolation
Hardware Supported Angular
Interpolation
• 2D Data

–Bilinear filtering on graphics hardware

• 4D Eigen-ABRDFs
–Quadrilinear filtering
–Hardware: trilinear filtering

Trilinear filtering of sv,tv,sl

3D textures Si for fixed tl
Interpolate tl in fragment shader

vs

vt
0,ls t

0S
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Anti-AliasingAnti-Aliasing

• Mip-Mapping compressed BTFs
– No problem for Eigen-Texture based compression 

(full-matrix factorization, per-view factorization)

– Other techniques depend non-linear on 
compression parameters

– GPU supported Mip-Mapping not possible

Standard Mip-Mapping on uncompressed data

Compression of each individual Mip-Map level

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Gero Müller

Decompression on GPUDecompression on GPU

• Full-BTF Factorization/Per-Cluster Factorization
– Store 4D ABRDFs in 3D texture

– Use 4D interpolation and combine in pixel shader

– Cluster look-up

= + g1 + g2 + g3 + ...

recon. ABRDF mean

h0 h1 h2 h3
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ResultsResults
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Image-Based Lighting of BTFsImage-Based Lighting of BTFs

HDR environments wood, beach, kitchen, building and uffizi from www.debevec.org
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Software RenderingSoftware Rendering

• Global 
Illumination
– Decompression on 

CPU 
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Non-Planar ObjectsNon-Planar Objects

• BTF techniques can be applied to non-planar 
objects
– [Furukawa et al. EGRW 2002]

– [Matusik et al. SIG 2002]

– [Mueller et al. VAST 2005]

• Use 3D reconstructed base-geometry 
instead of planar base geometry
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Non-Planar ObjectsNon-Planar Objects

• Processing steps
–Image acquisition

–Image-based 3D-reconstruction

–Mesh parameterization

–BTF generation

–BTF compression
EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Gero Müller

Non-Planar ObjectsNon-Planar Objects
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ConclusionsConclusions

• BTFs capture 6D-slice of the reflectance field 
of a complex material

• Represents the “look-and feel” of a material
• Several high-quality acquisition setups
• Effective and appearance preserving 

compression algorithms available
• Real-time rendering possible with point light 

sources and image-based lighting

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Gero Müller

ChallengesChallenges

• Editing and modeling
– [Kautz et al. SIG 2007]

– [Müller et al. EGSR 2007]

• Material Perception

• Time variation (recent work only SVBRDFs)

• Spectral measurements

• Highly reflective materials

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Gero Müller
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Capturing Reflectance
From Theory to Practice
Capturing Reflectance

From Theory to Practice

Near-field Reflectance Fields

Hendrik P.A. Lensch

MPI Informatik

Near-field Reflectance Fields

Hendrik P.A. Lensch

MPI Informatik
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Digitizing Real World ObjectsDigitizing Real World Objects

relighting with arbitrary illumination patterns

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Hendrik Lensch

RelightingRelighting

i f h li ht di ti
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RelightingRelighting

+
+

+

+

[Debevec2000]

iti

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Hendrik Lensch

[Debevec2000]

di t t li ht l

Far-Field Reflectance FieldsFar-Field Reflectance Fields

+
+

+

+

2D

2D
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Far and Near Field IlluminationFar and Near Field Illumination
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[Masselus2003]

relighting with 4D incident light fields

6D Reflectance Fields6D Reflectance Fields

2D

4D
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arbitrary view point + arbitrary illumination

8D Reflectance Fields8D Reflectance Fields

4D

4D
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8D fucntion

Definition – Reflectance 
Field
Definition – Reflectance 
Field

xrix
r

ox
r

oωr

( )),(),( ooiir xxf ωω rrrr →

iωr

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Hendrik Lensch

ratio of reflected radiance to incident flux

Definition – Reflectance 
Field
Definition – Reflectance 
Field

xrix
r

ox
r

oωr

( )
),(
),(),(),(

iii

ooo
ooiir xd

xdLxxf
ωφ
ωωω rr

rr
rrrr =→

iωr
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Main ProblemMain Problem

• sampling an 8D function
– spending 100 samples/dimension

→ 1016 samples

– hi-res 3D geometry: 108 vertices

• coherence in reflectance fields

→ reduced data complexity

• no complete solution yet
EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Hendrik Lensch

ApproachesApproaches

• limited reflectance model

• limited reproduction
– viewer position

– incident illuminaton

• adaptive parallel acquisition

• advanced interpolation
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Relighting with 4D Incident Light FieldsRelighting with 4D Incident Light Fields

• goal: relighting with spatially varying 
illumination, e.g. spot lights [Masselus2003]
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Acquisition with Large BlocksAcquisition with Large Blocks
• fixed camera perspective

• rotating illumination
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Relighting ResultsRelighting Results
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Translucent ObjectsTranslucent Objects

– light transport through the object

– scattering dampens high frequencies

translucent opaque
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bidirectional scattering-surface reflectance 
distribution function [Nicodemus77]

BSSRDF – 8DBSSRDF – 8D

),( iii xL ωrr),( ooo xL ωrr

( )),(),( ooiir xxf ωω rrrr →
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neglect directional dependency [Jensen 2001]

– multiple scattering leads to diffuse light transport

Diffuse ApproximationDiffuse Approximation

)( ixE
r

)( oxB
v ),( iii xL ωrr

),( ooo xL ωrr
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4D - Diffuse Approximation4D - Diffuse Approximation

⇒ diffuse reflectance function
– four dimensions only

– dense sampling is possible

),( 0xxR id
rr

)( ixE
r

)( oxB
r
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Diffuse Reflectance Fucntion RdDiffuse Reflectance Fucntion Rd

• discretize the surface
– enumerate all surface points

– vectors for irradiance     and radiosity

• matrix
– linear point-to-point

transport
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Basic IdeaBasic Idea

• direct measurement of Rd

– illuminate individual surface points

– capture impulse response function
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• direct measurement of Rd

– illuminate individual surface points

– capture impulse response function

Basic IdeaBasic Idea
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Basic IdeaBasic Idea
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• direct measurement of Rd

– illuminate individual surface points

– capture impulse response function

jE
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Example AcquisitionExample Acquisition

HDR camera

laser projector
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Example AcquisitionExample Acquisition

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Hendrik Lensch

Matrix RepresentationMatrix Representation

• 500.000 – 1.000.000 input images

⇒ ~100.0002 entries

• fill up holes (inpainting)

• hierarchical representation

• hardware assisted rendering
– analysis

– real-time rendering
[Lensch, Goesele, Bekaert, Magnor, Lang, Seidel – PG2003]
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VideoVideo

1.000.000 images, 22 hours → model - 800MB

[Goesele, Lensch, Lang, Fuchs, Seidel - SIGGRAPH 2004] EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Hendrik Lensch

Fixed Perspective + Arbitrary IlluminationFixed Perspective + Arbitrary Illumination

2D

4D
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scene

Pixel-to-Pixel TransportPixel-to-Pixel Transport

projector

p

q n

m

camera

4D

T
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Adaptive Parallel AcquisitionAdaptive Parallel Acquisition

• assumption: sparse matrix

• radiometrically independent blocks can be 
sensed in parallel

B1

B2

EG:432
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Adaptive Parallel AcquisitionAdaptive Parallel Acquisition

parallelized acquisition of regions which do not 
overlap in the camera image

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Hendrik Lensch

Adaptive Parallel AcquisitionAdaptive Parallel Acquisition

parallelized acquisition of regions which do not 
overlap in the camera image
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Relighting with Arbitrary PatternsRelighting with Arbitrary Patterns

1.200 images, 2 hours → model - 220MB

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Hendrik Lensch

Captured Global Light TransportCaptured Global Light Transport
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primal

Helmholtz ReziprocityHelmholtz Reziprocity

dual

scene

I

αI

αI

I
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dual

Image Acquisition without a CameraImage Acquisition without a Camera

C
0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

scene

photo sensor
projector primal
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dual

Image Acquisition without a CameraImage Acquisition without a Camera

scene

C
0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

point light

camera
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Dual Photography

photograph
from camera

dual image
from projector

[Sen, Chen, Garg, Marschner, Horowitz, Levoy, Lensch - SIGGRAPH 2005]
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ExamplesExamples

primal dual
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Related TechniquesRelated Techniques

• “Flying-spot” TV camera [Baird 1926]

• scanning electron microscope

35x magnification
[museum of Science, Boston]

[Baird 1926]
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primal

scene

projector

p

q n

m

camera

4D

T

Relighting with Dual PhotographyRelighting with Dual Photography
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dual

scene

Relighting with Dual PhotographyRelighting with Dual Photography

p

q n

m

virtual projectorvirtual camera

4D

TT
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Acquisition of 6D Reflectance FieldsAcquisition of 6D Reflectance Fields

active devices

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Hendrik Lensch

Dual Acquisition ProcessDual Acquisition Process

parallel acquisition by passive devices

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Hendrik Lensch

Smooth InterpolationSmooth Interpolation

100.000 images, 26 hours → model - 4.5GB

[Chen, Lensch - VMV2005] EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Hendrik Lensch

arbitrary view point + arbitrary illumination

8D Reflectance Fields8D Reflectance Fields

4D

4D

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Hendrik Lensch

[Hackbusch2000]

efficient representation of dense but
data-sparse matrices
– subdivision hierarchy

– local low-rank approximation

– efficient evaluation

H -MatricesH -Matrices

rank = 1 ? 

R1

R1

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Hendrik Lensch

Direct vs. Indirect ReflexionsDirect vs. Indirect Reflexions
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Direct vs. Indirect ReflexionsDirect vs. Indirect Reflexions

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Hendrik Lensch

Direct vs. Indirect ReflexionsDirect vs. Indirect Reflexions
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2D Slices through a Reflectance Field2D Slices through a Reflectance Field

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Hendrik Lensch

Symmetric AcquisitionSymmetric Acquisition

• symmetric 8th order tensor

• rank-1 approximation from two images only

• parallel acquisition of dense matrices

[Garg, Talvala, Levoy, Lensch – EGSR06]
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Symmetric ExplorationSymmetric Exploration

B1

B2B3T

B3 B1

B2B3T

B3

B3 – row sums
B2 – rows+columns

B3 – column sums
B1 – rows+columns
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Symmetric ExplorationSymmetric Exploration

B1

B2B3T

B3 B1

B2B3T

B3

B3 – row sums
B2 – rows+columns

B3 – column sums
B1 – rows+columns

B3 ≈ ●rank-1 approximation?
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Hierarchical Rank-1DecompositionHierarchical Rank-1Decomposition

B1 and B2 are investigated in parallel.

parallel acquisition even for dense matrices

B1

B2R1

R1

B3T

B3 B1

B2
= + = …

already
determined

radiometrically
independent
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Dual vs. Symmetric PhotographyDual vs. Symmetric Photography

Dual
Photography

Symmetric
Photography

• increased SNR because regions are 
determined at large block sizes
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An 8D Reflectance FieldAn 8D Reflectance Field

3.300 images, 6 hours → model – 1.4 GB
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Virtual PhotographyVirtual Photography

• reflectance fields of arbitrarily complex scenes

novel illumination original acquisiton pattern

[Garg, Talvala, Levoy, Lensch – EGSR 2006]
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Application of Near-field Reflectance FieldsApplication of Near-field Reflectance Fields

• getting rid of global effects

compare [Nayar2006]
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Application to 3D ScanningApplication to 3D Scanning

photograph Minolta Vi910 w/o global effects

[Chen, Fuchs, Lensch, Seidel – CVPR 2007]
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Card ExperimentCard Experiment

book

camera

card

projector

primal
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Card ExperimentCard Experiment

book

camera

card

projector

primal

virtual camera

virtual projector
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dual

Card ExperimentCard Experiment

primal
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Near-Field Reflectance FieldsNear-Field Reflectance Fields

• Sequential Sampling

• Dual Photography

• Symmetric Photography 
based on H –matrices

• first methods for acquiring the global light 
transport in arbitrary scenes
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ChallengesChallenges

• densely sampled 8D reflectance fields

• upsampling / interpolation

• dynamic near-field reflectance fields

• interactive relighting

• global illumination with reflectance fields

• theory on the complexity of reflectance fields

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Hendrik Lensch

Thanks Thanks 

• BMBF (FKC01IMC01)

• DFG – Emmy Noether Program

http://mpi-inf.mpg.de/~lensch
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AgendaAgenda

� Architecture
� Programming Models
� Basic Programming
� Graphics Workloads
� Questions

3

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

ArchitectureArchitecture
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Cell Broadband Engine ArchitectureCell Broadband Engine Architecture

MIC BIC

Dual XDR™

I/O I/O

EIB (up to 96B/cycle)

16B/cycle

16B/cycle(2x)16B/cycle

L2

L1
PPU

32B/cycle

16B/cycle

64-bit Power Architecture w/VMX

PPE

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

16B/cycle

SPE0 SPE1 SPE2 SPE3 SPE4 SPE5 SPE6 SPE7

AUC

MFC MFC MFC MFC MFC MFC MFC MFC

AUC AUC AUC AUC AUC AUC AUC

5

IBM T.J. Watson Research Center
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Element Interconnect BusElement Interconnect Bus
� EIB data ring for internal communication
� Four 16 byte data rings, supporting multiple transfers
� 96B/cycle peak bandwidth 
� Over 100 outstanding requests

EG:443
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IBM T.J. Watson Research Center
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Power Processor ElementPower Processor Element
� PPE handles operating system and control tasks
� 64-bit Power ArchitectureTM with VMX
� In-order, 2-way hardware simultaneous multi-threading (SMT)
� Load/Store with 32KB L1 cache (I & D)  and 512KB L2

7

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Synergistic Processor ElementSynergistic Processor Element
� Dual issue, up to 16-way 128-bit SIMD
� Dedicated resources: 128 128-bit register file, 256KB Local Store
� Each can be dynamically configured to protect resources
� Dedicated DMA engine: Up to 16 outstanding requests per SPE

EG:444
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IBM T.J. Watson Research Center
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I/O and Memory InterfacesI/O and Memory Interfaces
� Two configurable interfaces 
� Up to 25.6 GB/s memory B/W
� Up to 70+ GB/s I/O B/W

– Practical ~ 50GB/s

9

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

ProgrammingProgramming
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Cell BE Features Exploited by Software

� Large register file
� Keep intermediate and control data on chip

� DMA Engine – Memory Flow Controller
� DMA between System Mem and LS
� DMA from L2 cache-> LS
� LS to LS DMA
� Scatter->Gather support

� Atomic Update Cache
� Implement synchronization commands 

� SPE Signalling Registers
� SPE <-> PPE Mailboxes

� Resource Reservation and Allocation
� PPE can be shared across logical partitions
� SPEs can be assigned to logical partitions
� SPEs independently or Group Allocated

PowerPC
(PPE)

L2 Cache
DMA with Intervention

Hardware Managed Cache Coherency

Cell BE™ Chip

System Memory I/O 

BIF/IOIF

MFC

Local Store

SPU

AUC

MFC

Local Store

SPU

AUC

MFC

Local Store

SPU

AUC

MFC

Local Store

SPU

AUC

MFC

Local Store

SPU

AUC

MFC

Local Store

SPU

AUC

Local Store to Local Store DMA

Atomic Update Cache

11
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Common Cell programming models

SPE LS

SPE LS

PPE thread

Large small

Multi-SPE

BE-level  

Effective Address
Space

Single Cell environment:
� PPE programming models
� SPE Programming models

– Small single-SPE models

– Large single-SPE models

– Multi-SPE parallel programming models

EG:446
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Small single-SPE models
� Single tasked environment
� Small enough to fit into a 256KB- local store
� Sufficient for many dedicated workloads
� Two address spaces – (SPE) LS & (SPE/PPE)  EA
� Explicit input and output of the SPE program

– DMA

– Mailboxes

– System calls

13

IBM T.J. Watson Research Center
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Small single-SPE models – tools and 
environment

� SPE compiler/linker compiles and links an SPE executable
� The SPE executable image is embedded as reference-able RO data in the PPE 

executable
� A Cell programmer controls an SPE program via a PPE controlling process and its SPE 

management library
– i.e. loads, initializes, starts/stops an SPE program 

� The PPE controlling process, OS(PPE), and runtime(PPE or SPE) together establish the 
SPE runtime environment, e.g. argument passing, memory mapping, system call 
service.

EG:447
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Small single-SPE models – PPE controlling 
program

extern spe_program_handle spe_foo;  /* the spe image handle from CESOF */

int main()
{

int rc, status;
speid_t spe_id;

/* load & start the spe_foo program on an allocated spe */
spe_id = spe_create_thread (0, &spe_foo, 0, NULL, -1, 0);

/* wait for spe prog. to complete and return final status */
rc = spe_wait (spe_id, &status, 0);

return status;
}

15

IBM T.J. Watson Research Center
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Small single-SPE models – SPE code

/* spe_foo.c: A C program to be compiled into an executable called “spe_foo” */

int main( int speid, addr64 argp, addr64 envp)
{

char i;

/* do something intelligent here */
i = func_foo (argp);

/* when the syscall is supported */
printf( “Hello world! my result is %d \n”, i);

return i;
}

EG:448
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IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Large single-SPE programming models

� Data or code working set cannot fit 
completely into a local store

� The PPE controlling process, kernel, and 
libspe runtime set up the system 
memory mapping as SPE’s secondary 
memory store

� The SPE program accesses the 
secondary memory store via its 
software-controlled SPE DMA engine -
Memory Flow Controller (MFC)

SPE 
Program

System Memory

PPE controller 
maps system 
memory for 

SPE DMA trans.

Local Store

DMA 
transactions
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Large single-SPE programming models – I/O 
data

� System memory for large size input / output data
– e.g. Streaming model

int g_ip[512*1024]

System memory

int g_op[512*1024]

int ip[32]

int op[32]

SPE program: op = func(ip)

DMA

DMA

Local store
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Large single-SPE programming models-SW 
Cache

� System memory as secondary memory store
– Manual management of data buffers

– Automatic software-managed data cache 

– Software cache framework libraries
– Compiler runtime support

Global objects

System memory

SW cache entries
SPE program

Local store
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Shared-memory Multiprocessor
� Cell BE can be programmed as a shared-memory multiprocessor

– PPE and SPE have different instruction sets and compilers
� SPEs and the PPE fully inter-operate in a cache-coherent model
� Cache-coherent DMA operations for SPEs

– DMA operations use effective address common to all PPE and SPEs

– SPE shared-memory store instructions are replaced 
– A store from the register file to the LS
– DMA operation from LS to shared memory

– SPE shared-memory load instructions are replaced
– DMA operation from shared memory to LS
– A load from LS to register file

� A compiler could manage part of the LS as a local cache for instructions and data obtained 
from shared memory.
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Large single-SPE programming models-
Overlays
� System memory as secondary memory store

– Manual loading of plug-in into code buffer
– Plug-in framework libraries

– Automatic and manual software-managed code overlay
– Compiler and Linker generated overlaying code

System memory

Local store

SPE func b or c

SPE func a, d or e

SPE func main & f

SPE func a

SPE func b

SPE func c

SPE func d

SPE func e

SPE func f

Call

Call

SPE func main

Overlay 
region 2

Overlay 
region 1

Non-overlay 
region

An overlay is SPU code 
that is dynamically 
loaded and executed by 
a running SPU 
program. It cannot be 
independently loaded 
or run on an SPE
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Parallel programming models – Streaming

� SPE initiated DMA
� Large array of data fed through a group 

of SPE programs
� A special case of job queue with regular 

data
� Each SPE program locks on the shared 

job queue to obtain next job
� For uneven jobs, workloads are self-

balanced among available SPEs

PPE

SPE1
Kernel()

SPE0
Kernel()

SPE7
Kernel()

System Memory

In

.

I7

I6

I5

I4

I3

I2

I1

I0

On

.

O7

O6

O5

O4

O3

O2

O1

O0

…..Data-parallel
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Parallel programming models – Pipeline

� Use LS to LS DMA bandwidth, not system 
memory bandwidth

� Flexibility in connecting pipeline functions
� Larger collective code size per pipeline
� Load-balance is harder

PPE

SPE1
Kernel1()

SPE0
Kernel0()

SPE7
Kernel7()

System Memory

In

.

.

I6

I5

I4

I3

I2

I1

I0

On

.

.

O6

O5

O4

O3

O2

O1

O0

…..
DMA DMA

Task-parallel
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Programming Model Final Points
� A proper programming model reduces development cost while achieving higher 

performance
� Programming frameworks and abstractions help with productivity
� Mixing programming models are common practice
� New models may be developed for particular applications.
� With the vast computational capacity, it is not hard to achieve a performance gain from 

an existing legacy base
– Top performance is harder

� Tools are critical in improving programmer productivity
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Basic Programming
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“Hello World!” – SPE Only
� SPU Program

� SPU Makefile

#include <stdio.h>

int main()

{

printf("Hello world!\n");

return 0;

}

PROGRAM_spu   := hello_spu
include $(CELL_TOP)/make.footer

PROGRAM_spu tells make 
to use SPE compiler

EG:453

c© The Eurographics Association 2007.



26

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Synergistic PPE and SPE (SPE Embedded)

� Applications use software constructs called SPE contexts to manage and 
control SPEs. 

� Linux schedules SPE contexts from all running applications onto the 
physical SPE resources in the system for execution according to the 
scheduling priorities and policies associated with the runable SPE 
contexts.

� libspe provides API for communication and data transfer between PPE 
threads and SPEs.
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How a PPE program embeds an SPE program?

4 basic steps must be done by the PPE program
1. Create an SPE context.

2. Load an SPE executable object into the SPE context local store.

3. Run the SPE context. This transfers control to the operating system, which 
requests the actual scheduling of the context onto a physical SPE in the system.

4. Destroy the SPE context.
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SPE context creation

� spe_context_create - Create and initialize a new SPE context data structure.
#include <libspe2.h>

spe_context_ptr_t spe_context_create(unsigned int flags,
spe_gang_context_ptr_t gang)

– flags - A bit-wise OR of modifiers that are applied when the SPE context is created. 

– gang - Associate the new SPE context with this gang context. If NULL is specified, the new SPE 
context is not associated with any gang.

– On success, a pointer to the newly created SPE context is returned.
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spe_program_load

� spe_program_load - Load an SPE main program.
#include <libspe2.h>

int spe_program_load (spe_context_ptr_t spe, spe_program_handle_t 
*program)

– spe - A valid pointer to the SPE context for which an SPE program should be 
loaded.

– program - A valid address of a mapped SPE program.
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spe_context_run
� spe_context_run - Request execution of an SPE context.

#include <libspe2.h>

int spe_context_run(spe_context_ptr_t spe, unsigned int *entry, unsigned int runflags, void 
*argp, void *envp, spe_stop_info_t *stopinfo)

– spe - A pointer to the SPE context that should be run.
– entry - Input: The entry point, that is, the initial value of the SPU instruction pointer, at which the SPE program should start 

executing. If the value of entry is SPE_DEFAULT_ENTRY, the entry point for the SPU main program is obtained from the 
loaded SPE image. This is usually the local store address of the initialization function crt0.

– runflags - A bit mask that can be used to request certain specific behavior for the execution of the SPE context. 0 indicates 
default behavior.

– argp - An (optional) pointer to application specific data, and is passed as the second parameter to the SPE program, 
– envp - An (optional) pointer to environment specific data, and is passed as the third parameter to the SPE program,  
– stopinfo An (optional) pointer to a structure of type  spe_stop_info_t

31

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

spe_context_destroy

� spe_context_destroy - Destroy the specified SPE context.
#include <libspe2.h>

int spe_context_destroy (spe_context_ptr_t spe)

– spe - Specifies the SPE context to be destroyed

– On success, 0 (zero) is returned, else -1 is returned
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“Hello World!” – SPE object embedded in PPE program

� SPU program
– Same as for SPE only

� SPU Makefile

PROGRAM_spu   := hello_spu

LIBRARY_embed  := hello_spu.a
include $(CELL_TOP)/make.footer
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“Hello World!” – PPU program 
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <libspe2.h>

extern spe_program_handle_t hello_spu;

int main(void)
{

spe_context_ptr_t speid;
unsigned int flags = 0;
unsigned int entry = SPE_DEFAULT_ENTRY;
void * argp = NULL;
void * envp = NULL;
spe_stop_info_t stop_info;
int rc;

// Create an SPE context
speid = spe_context_create(flags, NULL);
if (speid == NULL) {
perror("spe_context_create");
return -2;
}

// Load an SPE executable object into the SPE context 
local store
if (spe_program_load(speid, &hello_spu)) {
perror("spe_program_load");
return -3;
}

// Run the SPE context
rc = spe_context_run(speid, &entry, 0, argp, envp, 
&stop_info);
if (rc < 0)
perror("spe_context_run");

// Destroy the SPE context
spe_context_destroy(speid);
return 0;

}

DIRS = spu
PROGRAM_ppu = hello_be1

IMPORTS = spu/hello_spu.a –lspe2 -lpthread
include $(CELL_TOP)/make.footer

PPU Makefile

EG:457
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PPE and SPE Synergistic Programming
#include <errno.h>

#include <stdio.h>

#include <stdlib.h>

#include <libspe2.h>

extern spe_program_handle_t hello_spu;
int main(void)

{

. . . . . 

// Run the SPE context

rc = spe_context_run(speid, &entry, 0, argp, envp, &stop_info);

.  . . . . 
}

#include <stdio.h>

int main(unsigned long long speid, unsigned long long argp, 
unsigned long long envp)

{

printf("Hello world!\n");

return 0;

}

PPU
Code

SPU
Code
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Primary Communication Mechanisms

� DMA transfers
� Mailbox messages
� Signal-notification
� All three are implemented and 

controlled by the SPE’s MFC
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Memory Flow Controller (MFC)  Commands
� Main mechanism for SPUs to

– access main storage (DMA commands)
– maintain synchronization with other processors and devices in the system (Synchronization commands)

� Can be issued either by SPU via its MFC or by PPE or other device, as follows:
– Code running on the SPU issues an MFC command by executing a series of writes and/or reads using channel instructions -

read channel (rdch), write channel (wrch), and read channel count (rchcnt).
– Code running on the PPE or other devices issues an MFC command by performing a series of stores and/or loads to memory-

mapped I/O (MMIO) registers in the MFC
� MFC commands are queued in one of two independent MFC command queues:

– MFC SPU Command Queue — For channel-initiated commands by the associated SPU
– MFC Proxy Command Queue — For MMIO-initiated commands by the PPE or other device
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Sequences for Issuing MFC Commands

� All operations on a given channel are 
unidirectional

n only read or write operations for 
a given channel, not bidirectional

� Accesses to channel-interface 
resources through MMIO addresses 
do not stall

� Channel operations are done in 
program order

� Channel read operations to reserved 
channels return ‘0’s

� Channel write operations to reserved 
channels have no effect

� Reading of channel counts on 
reserved channels returns ‘0’

� Channel instructions use the 32-bit 
preferred slot in a 128-bit transfer
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DMA Overview
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DMA Commands

� MFC commands that transfer data are referred to as DMA 
commands

� Transfer direction for DMA commands referenced from the SPE 

n Into an SPE (from main storage to local store) � get

nOut of an SPE (from local store to main storage) � put
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DMA Commands
Channel Control

Intrinsics
spu_writech

Composite
Intrinsics

spu_dmfcdma32

MFC Commands
mfc_get

defined as macros in 
spu_mfcio.h

For details see: SPU C/C++ Language Extensions
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DMA Get and Put Command (SPU)
� DMA get from main memory into local store

(void) mfc_get( volatile void *ls, uint64_t ea, uint32_t size,
uint32_t tag, uint32_t tid, uint32_t rid)

� DMA put into main memory from local store
(void) mfc_put(volatile void *ls, uint64_t ea, uint32_t size, 

uint32_t tag, uint32_t tid, uint32_t rid)
� To ensure order of DMA request execution:

– mfc_putf : fenced (all commands executed before within the same tag group must finish first, 
later ones could be before)

– mfc_putb : barrier (the barrier command and all commands issued thereafter are not executed 
until all previously issued commands in the same tag group have been performed)

EG:461
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DMA-Command Tag Groups
� 5-bit DMA Tag for all DMA commands (except getllar, putllc, and putlluc) 
� Tag can be used to

– determine status for entire group or command
– check or wait on the completion of all queued commands in one or more tag groups

� Tagging is optional but can be useful when using barriers to control the ordering of 
MFC commands within a single command queue.

� Synchronization of DMA commands within a tag group: fence and barrier
– Execution of a fenced command option is delayed until all previously issued commands within the same 

tag group have been performed. 
– Execution of a barrier command option and all subsequent commands is delayed until all previously 

issued commands in the same tag group have been performed.
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Barriers and Fences
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DMA Characteristics
� DMA transfers

– transfer sizes can be 1, 2, 4, 8, and n*16 bytes (n integer)

– maximum is 16KB per DMA transfer

– 128B alignment is preferable (cache-line)
� DMA command queues per SPU

– 16-element queue for SPU-initiated requests

– 8-element queue for PPE-initiated requests

– SPU-initiated DMA is always preferable
� DMA tags

– each DMA command is tagged with a 5-bit identifier

– same identifier can be used for multiple commands

– tags used for polling status or waiting on completion of DMA commands
� DMA lists

– a single DMA command can cause execution of a list of transfer requests (in LS)

– lists implement scatter-gather functions

– a list can contain up to 2K transfer requests
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PPE – SPE DMA Transfer
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Transfer from PPE (Main Memory) to SPE
� DMA get from main memory

mfc_get(lsaddr, ea, size, tag_id, tid, rid);

– lsaddr = target address in SPU local store for fetched data (SPU local address)

– ea = effective address from which data is fetched (global address)

– size = transfer size in bytes

– tag_id = tag-group identifier

– tid = transfer-class id

– rid = replacement-class id
� Also available via “composite intrinsic”:

spu_mfcdma64(lsaddr, eahi, ealow, size, tag_id, cmd);
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DMA Command Status (SPE)

� DMA read and write commands are non-blocking
� Tags, tag groups, and tag masks used for:

– checking status of DMA commands

– waiting for completion of DMA commands
� Each DMA command has a 5-bit tag

– commands with same tag value form a “tag group”
� Tag mask is used to identify tag groups for status checks

– tag mask is a 32-bit word

– each bit in the tag mask corresponds to a specific tag id: 

tag_mask = (1 << tag_id)
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DMA Tag Status (SPE)

� Set tag mask
unsigned int tag_mask;

mfc_write_tag_mask(tag_mask);

– tag mask remains set until changed
� Fetch tag status

unsigned int result;

result = mfc_read_tag_status();    /* or mfc_stat_tag_status(); */

– tag status is logically ANDed with current tag mask

– tag status bit of ‘1’ indicates that no DMA requests tagged with the specific tag id 
(corresponding to the status bit location) are still either in progress or in the DMA queue
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Waiting for DMA Completion (SPE)

� Wait for any tagged DMA:
n mfc_read_tag_status_any():

n wait until any of the specified tagged DMA commands is completed
� Wait for all tagged DMA:

n mfc_read_tag_status_all():

n wait until all of the specified tagged DMA commands are completed

� Specified tagged DMA commands = command specified by current tag mask setting
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DMA Example: Read into Local Store

inline void dma_mem_to_ls(unsigned int mem_addr,
volatile void *ls_addr,unsigned int size)

{

unsigned int tag = 0;

unsigned int mask = 1;

mfc_get(ls_addr,mem_addr,size,tag,0,0);

mfc_write_tag_mask(mask);

mfc_read_tag_status_all();

}

Set tag mask

Wait for all tag 
DMA completed

Read contents 
of mem_addr
into ls_addr
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DMA Example: Write to Main Memory

inline void dma_ls_to_mem(unsigned int mem_addr,volatile 
void *ls_addr, unsigned int size)

{

unsigned int tag = 0;

unsigned int mask = 1;

mfc_put(ls_addr, mem_addr, size, tag, 0, 0);

mfc_write_tag_mask(mask);

mfc_read_tag_status_all();

}

Write contents of 
mem_addr into 

ls_addr

Set tag mask

Set tag mask
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SPE – SPE DMA Transfer
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SPE – SPE DMA

� Address in the other SPE’s local store is represented as a 32-bit effective address 
(global address)

� SPE issuing the DMA command needs a pointer to the other SPE’s local store as 
a 32-bit effective address (global address)

� PPE code can obtain effective address of an SPE’s local store:
#include <libspe2.h>

speid_t speid;

void *spe_ls_addr;

..

spe_ls_addr = spe_get_ls(speid);

� Effective address of an SPE’s local store can then be made available to other 
SPEs (e.g. via DMA or mailbox)
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DMA support for Double Buffering
#include <spu_intrinsics.h>
#include "cbe_mfc.h"
#define BUFFER_SIZE 4096
volatile unsigned char B[2][BUFFER_SIZE] __attribute__ ((aligned(128)));
void double_buffer_example (unsigned int eahi, unsigned int ealow, int buffers)
{

int next_idx, buf_idx = 0;
// Initiate first DMA transfer using first buffer
spu_mfcdma64(B[buf_idx], eahi, ealow, BUFFER_SIZE, buf_idx, MFC_GET_CMD);
ealow += BUFFER_SIZE;
while (--buffers) {

next_idx = buf_idx ^ 1;
// Initiate next DMA transfer
spu_mfcdma64(B[next_idx], eahi, ealow, BUFFER_SIZE, next_idx, MFC_GET_CMD);
ealow += BUFFER_SIZE;
// Wait for previous transfer to complete
spu_writech (MFC_WrTagMask, 1 << buf_idx);
(void) spu_mfcstat(2);
// Use the data from the previous transfer
use_data (B[buf_idx]);
buf_idx = next_idx;

}
// Wait for last transfer to complete
spu_writech (MFC_WrTagMask, 1 << buf_idx);
(void)spu_mfcstat(2);
// Use the data from the last transfer
use_data (B[buf_idx]);

}

55

IBM T.J. Watson Research Center

© 2007 IBM Corporation14 June 2007

Tips to Achieve Peak Bandwidth for DMAs

� The performance of a DMA data transfer is best when the source and 
destination addresses have the same quadword offsets within a PPE 
cache line. 

� Quadword-offset-aligned data transfers generate full cache-line bus 
requests for every unrolling, except possibly the first and last unrolling. 

� Transfers that start or end in the middle of a cache line transfer a partial 
cache line (less than 8 quadwords) in the first or last bus request, 
respectively.
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Mailboxes Overview
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Uses of Mailboxes
� To communicate messages up to 32 bits in length, such as buffer completion flags or program 

status
– e.g., When the SPE places computational results in main storage via DMA. After  requesting the DMA 

transfer, the SPE waits for the DMA transfer to complete and then writes to an outbound mailbox to notify 
the PPE that its computation is complete

� Can be used for any short-data transfer purpose, such as sending of storage addresses, 
function parameters, command parameters, and state-machine parameters

� Can also be used for communication between an SPE and other SPEs, processors, or devices
– Privileged software needs to allow one SPE to access the mailbox register in another SPE by mapping the 

target SPE’s problem-state area into the EA space of the source SPE. 
– If software does not allow this, then only atomic operations and signal notifications are available for SPE-

to-SPE communication.
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Mailboxes - Characteristics
Each MFC provides three mailbox queues of 32 bit each:
� PPE (“SPU write outbound”) mailbox queue

– SPE writes, PPE reads

– 1 entry per queue

– SPE stalls writing to full mailbox
� PPE (“SPU write outbound”) interrupt mailbox queue

– like PPE mailbox queue, but an interrupt is posted to the PPE when the mailbox is written
� SPU (“SPU read inbound”) mailbox queue

– PPE writes, SPE reads

– 4 entries per queue

– can be overwritten
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Mailboxes API – libspe2

MFC

PPE mbox

out_mbox

dataflow

spu_stat_out_mbox

spu_write_out_mbox
spe_out_mbox_status(<speid>)

spe_out_mbox_read(<speid>, &<data>))

PPE intr mbox

out_intr_mbox

spu_stat_out_intr_mbox

spu_write_out_intr_mbox
spe_out_intr_mbox_status(<speid>)

spe_get_event

dataflow

SPE mbox

in_mbox

spu_stat_in_mbox

spu_read_in_mbox

spe_in_mbox_status(<speid>)

spe_in_mbox_write(<speid>,<data>)

dataflow

PPU (libspe2.h) SPU (spu_mfcio.h)
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SPU Write Outbound Mailboxes
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SPU Write Outbound Mailbox

– The value written to the SPU Write Outbound Mailbox channel SPU_WrOutMbox is entered into the 
outbound mailbox in the MFC if the mailbox has capacity to accept the value. 

– If the mailbox can accept the value, the channel count for SPU_WrOutMbox is decremented by ‘1’.

– If the outbound mailbox is full, the channel count will read as ‘0’. 

– If SPE software writes a value to SPU_WrOutMbox when the channel count is ‘0’, the SPU will stall on 
the write. 

– The SPU remains stalled until the PPE or other device reads a message from the outbound mailbox by 
reading the MMIO address of the mailbox. 

– When the mailbox is read through the MMIO address, the channel count is incremented by ‘1’
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SPU Write Outbound Interrupt Mailbox
� The value written to the SPU Write Outbound Interrupt Mailbox channel (SPU_WrOutIntrMbox) is entered into 

the outbound interrupt mailbox if the mailbox has capacity to accept the value. 
� If the mailbox can accept the message, the channel count for SPU_WrOutIntrMbox is decremented by ‘1’, and an 

interrupt is raised in the PPE or other device, depending on interrupt enabling and routing. 
� There is no ordering of the interrupt and previously issued MFC commands.
� If the outbound interrupt mailbox is full, the channel count will read as ‘0’. 
� If SPE software writes a value to SPU_WrOutIntrMbox when the channel count is ‘0’, the SPU will stall on the 

write. 
� The SPU remains stalled until the PPE or other device reads a mailbox message from the outbound interrupt 

mailbox by reading the MMIO address of the mailbox. 
� When this is done, the channel count is incremented by ‘1’.
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Waiting to Write SPU Write Outbound Mailbox Data
� To avoid SPU stall, SPU can use the read-channel-count instruction on the SPU Write Outbound Mailbox channel to 

determine if the queue is empty before writing to the channel.
� If the read-channel-count instruction returns ‘0’, the SPU Write Outbound Mailbox Queue is full. 
� If the read channel-count instruction returns a non-zero value, the value indicates the number of free entries in the 

SPU Write Outbound Mailbox Queue. 
� When the queue has free entries, the SPU can write to this channel without stalling the SPU.
Polling SPU Write Outbound Mailbox or SPU Write Outbound Interrupt Mailbox.

/* To write the value 1 to the SPU Write Outbound Interrupt Mailbox instead 

* of the SPU Write Outbound Mailbox, simply replace SPU_WrOutMbox

* with SPU_WrOutIntrMbox in the following example.*/

unsigned int mb_value;

do {

/* Do other useful work while waiting.*/

} while (!spu_readchcnt(SPU_WrOutMbox));   // 0 � full, so something useful

spu_writech(SPU_WrOutMbox, mb_value);
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Polling for or Block on an SPU Write Outbound Mailbox 
Available Event

#define MBOX_AVAILABLE_EVENT 0x00000080
unsigned int event_status;
unsigned int mb_value;
spu_writech(SPU_WrEventMask, MBOX_AVAILABLE_EVENT);
do {

/*
* Do other useful work while waiting.
*/

} while (!spu_readchcnt(SPU_RdEventStat));
event_status = spu_readch(SPU_RdEventStat); /* read status */
spu_writech(SPU_WrEventAck, MBOX_AVAILABLE_EVENT); /* acknowledge event */
spu_writech(SPU_WrOutMbox, mb_value); /* send mailbox message */
� NOTES: To block, instead of poll, simply delete the do-loop above.
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PPU reads SPU Outbound Mailboxes

� PPU must check Mailbox Status Register first
– check that unread data is available in the SPU Outbound Mailbox or SPU Outbound Interrupt 

Mailbox

– otherwise, stale or undefined data may be returned
� To determine that unread data is available

– PPE reads the Mailbox Status register

– extracts the count value from the SPU_Out_Mbox_Count field
� count is

– non-zero � at least one unread value is present

– zero � PPE should not read  but poll the Mailbox Status register
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SPU Read Inbound Mailbox
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SPU Read Inbound Mailbox Channel
� Mailbox is FIFO queue

– If the SPU Read Inbound Mailbox channel (SPU_RdInMbox) has a message, the value read from 
the mailbox is the oldest message written to the mailbox. 

� Mailbox Status (empty: channel count =0)
– If the inbound mailbox is empty, the SPU_RdInMbox channel count will read as ‘0’.

� SPU stalls on reading empty mailbox
– If SPE software reads from SPU_RdInMbox when the channel count is ‘0’, the SPU will stall on 

the read. The SPU remains stalled until the PPE or other device writes a message to the mailbox 
by writing to the MMIO address of the mailbox.

� When the mailbox is written through the MMIO address, the channel count is 
incremented by ‘1’.

� When the mailbox is read by the SPU, the channel count is decremented by '1'.
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SPU Read Inbound Mailbox Characteristics

� The SPU Read Inbound Mailbox can be overrun by a PPE in which case, 
mailbox message data will be lost.

� A PPE writing to the SPU Read Inbound Mailbox will not stall when this mailbox 
is full. 
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PPE Access to Mailboxes
� PPE can derive “addresses” of mailboxes from spe thread id
� First, create SPU thread, e.g.:

speid_t spe_id;
spe_id = spe_create_thread(0,spu_load_image,NULL,NULL,-1,0);

– spe_id has type speid_t (normally an int)
� PPE mailbox calls use spe_id to identify desired SPE’s mailbox
� Functions are in libspe.a
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Read: PPE Mailbox Queue – PPE Calls 
(libspe.h)

� “SPU outbound” mailbox
� Check mailbox status:

unsigned int count;
count = spe_stat_out_mbox(spe_id);

– count = 0 � no data in the mailbox

– otherwise, count = number of incoming 32-bit words in the mailbox
� Get mailbox data:

unsigned int data;
data = spe_read_out_inbox(spe_id);

– data contains next 32-bit word from mailbox

– routine is non-blocking

– routine returns MFC_ERROR (0xFFFFFFFF) if no data in mailbox
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Write: PPE Mailbox Queues – SPU Calls (spu_mfcio.h)

� “SPU outbound” mailbox
� Check mailbox status:

unsigned int count;
count = spu_stat_out_mbox();

– count = 0 � mailbox is full

– otherwise, count = number of available 32-bit entries in the mailbox
� Put mailbox data:

unsigned int data;
spu_write_out_mbox(data);

– data written to mailbox

– routine blocks if mailbox contains unread data
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PPE Interrupting Mailbox Queue – PPE Calls
� “SPU outbound” interrupting mailbox
� Check mailbox status:

unsigned int count;
count = spe_stat_out_intr_mbox(spe_id);

– count = 0 � no data in the mailbox

– otherwise, count = number of incoming 32-bit words in the mailbox
� Get mailbox data:

– interrupting mailbox is a privileged register

– user PPE applications read mailbox data via spe_get_event
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PPE Interrupting Mailbox Queues – SPU Calls

� “SPU outbound” interrupting mailbox
� Put mailbox data:

unsigned int data;

spe_write_out_intr_mbox(data);

– data written to interrupting mailbox

– routine blocks if mailbox contains unread data
� defined in spu_mfcio.h
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Write: SPU Mailbox Queue – PPE Calls 
(libspe.h)

� “SPU inbound” mailbox
� Check mailbox status:

unsigned int count;
count = spe_stat_in_mbox(spe_id);

– count = 0 � mailbox is full

– otherwise, count = number of available 32-bit entries in the mailbox
� Put mailbox data:

unsigned int data, result;
result = spe_write_in_mbox(spe_id,data);

– data written to next 32-bit word in mailbox

– mailbox can overflow

– routine returns 0xFFFFFFFF on failure
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Read: SPU Mailbox Queue – SPU Calls (spu_mfcio.h)

� “SPU inbound” mailbox
� Check mailbox status:

unsigned int count;
count = spu_stat_in_mbox();

– count = 0 � no data in the mailbox
– otherwise, count = number of incoming 32-bit words in the mailbox

� Get mailbox data:
unsigned int data;
data = spu_read_in_mbox();

– data contains next 32-bit word from mailbox
– routine blocks if no data in mailbox
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Example using libspe2.x
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The PPU program
#include <stdio.h>
//#include <libspe.h>
//#include <libmisc.h>
#include <string.h>
#include <libspe2.h>

//spu program
extern spe_program_handle_t getbuf_spu;
//local buffer
unsigned char buffer[128] __attribute__ ((aligned(128)));
//spe context
spe_context_ptr_t speid;
unsigned int flags = 0;
unsigned int entry = SPE_DEFAULT_ENTRY;
spe_stop_info_t stop_info;
int rc;

int main (void)
{

strcpy (buffer, "Good morning!");
printf("Original buffer is %s\n", buffer);
speid = spe_context_create(flags, NULL);

spe_program_load(speid, &getbuf_spu);
rc = spe_context_run(speid, &entry, 0, buffer, NULL, 
&stop_info);
spe_context_destroy(speid);

printf("New modified buffer is %s\n", buffer);
return 0;

}

DIRS = spu

PROGRAM_ppu = getbuf_dma

IMPORTS = -lspe2 -lpthread -lmisc \

spu/getbuf_spu.a

include $(CELL_TOP)/make.footer
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The SPU program
#include <stdio.h>
#include <string.h>
//#include <libmisc.h>
#include <spu_mfcio.h>
unsigned char buffer[128] __attribute__ ((aligned(128)));
int main(unsigned long long speid, unsigned long long argp, unsigned long long envp)
{

int tag = 31, tag_mask = 1<<tag;
// DMA in buffer from PPE
mfc_get(buffer, (unsigned long long)argp, 128, tag, 0, 0);
mfc_write_tag_mask(tag_mask);
mfc_read_tag_status_any();
printf("SPE received buffer \"%s\"\n", buffer);
// modify buffer
strcpy (buffer, “Good Morning!");
printf("SPE sent to PPU buffer \"%s\"\n", buffer);
// DMA out buffer to PPE
mfc_put(buffer, (unsigned long long)argp, 128, tag, 0, 0);
mfc_write_tag_mask(tag_mask);
mfc_read_tag_status_any();
return 0;

}

PROGRAM_spu := getbuf_spu

LIBRARY_embed   := getbuf_spu.a

IMPORTS = -lmisc

include $(CELL_TOP)/make.footer
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DMA Example: Read into Local Store

void dma_mem_to_ls(unsigned int mem_addr,
volatile void *ls_addr,unsigned int size)

{

unsigned int tag = 0;

unsigned int mask = 1;

mfc_get(ls_addr,mem_addr,size,tag,0,0);

mfc_write_tag_mask(mask);

mfc_read_tag_status_all();

}

Set tag mask

Wait for all tag 
DMA completed

Read contents 
of mem_addr
into ls_addr
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Graphics Workloads
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Cell Servers for Online Gaming

Motivation
� Server side physics to enable next generation MMOGs 
� Current video games perform limited amount of physical simulation 

n Not enough client CPU resources
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Rigid Body Dynamics

� Objects in the game world are represented by one or more rigid bodies; a sparsely 
populated world will have about 1000 rigid bodies

– 6 degrees of freedom per rigid body

– Linear position of the body’s center of mass and linear velocity are represented by a 3 vector

– Orientation representation is a unit quaternion 

– Angular velocity is a 3 vector

� Forces and constraints define interactions between rigid bodies and allow joints, 
hinges, etc. to be implemented

� The physics engine provides real-time simulation of the interaction between the 
rigid bodies
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Sparse Matrix Data Structures on Cell

� Matrix is block-sparse with 6x6 blocks
– diagonal blocks represent bodies and 
– off-diagonal blocks represent forces between bodies

� Typical 65-body scene has ~200 nonzero blocks in a 65x65-block matrix
� Diagonal elements are assumed nonzero and are stored as a “block” vector for fast 

access
� Off-diagonal elements are stored in linked lists (one per block row) of block data and 

associated block column position
� 6x6 float block data is currently stored in column-major form in a padded 8x6 block for 

ease of access
� Vectors used in sparse matrix multiplication are similarly stored with one unused float 

per three elements
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Numerical Integration
� Game world is partitioned into non-interacting groups of 1 or more rigid bodies which can be simulated on a 

single SPU (maximum of about 120 bodies per group).
� SPU performs semi-implicit integration step for a second-order rigid body dynamics system using conjugate 

gradient squared algorithm; 
– basic operation is multiplication of a 6x6-block-sparse matrix by a vector and multiplication of the matrix transpose by a second vector

� Output of the integration step gives the change in velocity and angular velocity for each rigid body over one 
time step

� Integration algorithm:
1. Calculate the components of A and b.  v0 and W are trivial to extract.  f0 must be calculated.  df_dx and df_dv both 

require considerable computational effort to calculate. 
2. Form A and b.
3. solve A*delta_v = b by a conjugate gradient method.
4. step the system from Y0 to Y1 by delta_v.  This is nearly trivial except that integrating orientation is slightly ugly.
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SPU Implementation: Rigid Body Structures
struct Rigid_Body {

//state
Vec3 position;
Quaternion or Matrix33 orientation;
Vec3 velocity;
Vec3 angular_velocity
//mass params
float inverse_mass;
Matrix33 inverse_inertia;
//other params:
float coeffecient_friction;
float coeffecient_damping;
...

} bodies[num_bodies];
The output is logically:

struct Rigid_Body_Step {
Vec3 delta_velocity;
Vec3 delta_angular_velocity;

} delta_v[num_bodies];

The forces can be global, unary, or binary.  Here are examples of 
two common binary forces:
struct Point_To_Point_Constraint_Force {

int index_body_a;
int index_body_b;
Vec3 point_body_space_a;
Vec3 point_body_space_b;

};
struct Contact_Force {

int index_body_a;
int index_body_b;
Vec3 point_world_space;
Vec3 normal_world_space;
float penetration;

};
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Intermediate data structures
� Vec4 v0[2*num_bodies];
� Vec4 f0[2*num_bodies];
� Six component vectors are padded out to 8 components, with each one float of padding on each of the linear and angular components  

– If the SPE calculations were straightforward dense linear algebra, the padding could be dropped, but due to the sparse matrix block granularity, it is better to have the vector components aligned
� The most complicated data structure is the block sparse matrix:

struct Block_Sparse_Matrix {
struct Block {

Matrix86 m;
int column_index;
Element* pointer_next;

};
Block* rows[NUM_BODIES];

};
� The logically 6x6 blocks are padded to 8x6. The matrix is stored in a column major fashion, with padding on the 4th and 8th element to match padding in v0 and f0:

Matrix43  linear_linear,  linear_angular;
Matrix43 angular_linear, angular_angular;

� Each row has a singly linked list to the elements.  The list is maintained to be sorted by increasing column_index, so that find/insert operations can early out (given that there is never an insert without a find, 
there is no cost to maintaining this sort order):
struct Block_Sparse_Matrix2 {

struct Block {
Matrix86 m;
int column_index;
Element* pointer_next;

};
Block* rows[NUM_BODIES];

};
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Numerical Integration Steps

Steps 1-4 are performed on the SPE.  
1. Calculate the components of A and b.  v0 and W are trivial to extract.  f0 must be calculated.  df_dx and df_dv both require considerable 

computational effort to calculate. 
2. Form A and b
3. solve A*delta_v = b by a conjugate gradient method.
4. step the system from Y0 to Y1 by delta_v

The steps of the SPE implementation:
1. Initialize A and b to zero.
2. Construct A

1. By looping over each global, unary, and binary force, and calculating its force contribution and its derivatives, multiplying by
the appropriate factors and accumulating into A and b
1. Example: for a binary force we accumulate df_dv + h*df_dx into A and  f0 + h*(df_dx*v0) is accumulated into b
2. For each binary force (between bodies of index i and j):

1. Find/allocate the blocks (i,i), (j,j), (i,j) and (j,i) of A
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Numerical Integration Steps (cont)

1. Calculate the force - the exact calculation of course depends on what type of binary force is required, but generally uses auxiliary force data (such as body space 
positions) and the two rigid body's kinematic state.  

3. Calculate the derivatives.  The force is logically two 6-vectors (one for each body), and its derivative with respect to a 6-vector 
body state (position or velocity) is logically a 6x6 matrix. A and b are finalized – this involves the h*W premultiply.

A = I - h*w*A
b = h*w*b

4. Solve A=b by a conjugate gradient method. 
Why was conjugate gradient squared chosen? 

– The preferred choice is bi-conjugate gradient, but this requires multiplies by A transpose
– The sparse matrix transpose times vector can be written in a row-oriented fashion, but having the inner 6x6 logical block efficiently support both multiplication with 

a logical 6-vector and multiplication of its transpose with a logical 6-vector may be more expensive than the alternative – conjugate gradient squared.   
– Caching the transpose of the blocks would likely take too much memory
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Conjugate Gradient Squared Method
� The conjugate gradient squared method only requires A times a vector – however, it has been found in practice 

to converge more slowly. 
� Each iteration of the conjugate gradient performs two matrix vector products along with a handful of vector 

scales, adds, and inner products.  The matrix product is the only non-trivial operation.  It looks like this:
void mul(Vec8* res, const Block_Sparse_Matrix2& A, const Vec8* x)

{

for (int i = 0; i < num_bodies; ++i) {

Vec8 sum = 0;

for (Block* b=A.rows[i]; b; b = b->pointer_next)

sum += b->m * x[b->column_index];

res[i] = sum;

}

}
Where , b->m * x[b->column_index] is pseudo code for Column_Major_Matrix86 times Vec8 which is basically trivial SPE code.  
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SPU Sparse Matrix Multiply Code
void mul(vf4 d[], const SPU_Sparse_Matrix_Element* const A[], const vf4 x[])
{

PROFILER(mul);
int i;
for (i=0; i < nv/2; ++i) {

const SPU_Sparse_Matrix_Element* p = A[i];

vf3 s0 = vf3_zero;
vf3 s1 = vf3_zero;

while (p) {
int j = p->j;
s0 = spu_add(s0, xform_vf3(&p->a.a[0][0], x[2*j+0]));
s0 = spu_add(s0, xform_vf3(&p->a.a[0][1], x[2*j+1]));
s1 = spu_add(s1, xform_vf3(&p->a.a[1][0], x[2*j+0]));
s1 = spu_add(s1, xform_vf3(&p->a.a[1][1], x[2*j+1]));

p = p->Pnext;
}
d[2*i+0] = s0;
d[2*i+1] = s1;

}
}
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Memory constraints and workload size
� The number of matrix blocks required is less than num_bodies + 2*num_binary_forces
� A typical 65 rigid body scene had approximately 400 contacts and 200 matrix block elements
� SPU memory usage for integrating this example scene follows:

Input:
num_bodies*sizeof(Padded(Rigid_Body)) = 65*160B = 10400B
num_contacts*sizeof(Padded(Contact_Force)) = 400*48B = 19200B
TOTAL= 29600B

Output:
num_bodies*sizeof(Padded(Rigid_Body_Step)) = 65*32B = 2080B

Intermediate:
num_bodies*sizeof(Padded(W_Element)) = 65*64B = 4160B
num_vectors*num_bodies*sizeof(Padded(Vec6)) = 8*65*32B = 16640B
num_bodies*sizeof(Block*) = 65*4B = 260B
num_blocks*sizeof(Padded(Block)) = 200*208B = 41600B
TOTAL = 62660B

� Including double buffering the input and output areas, we use a total of 126,020B
� Maximum workload is probably less than 120 bodies
� Demo
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Ray Tracing: Quaternion Julia Sets on the GPURay Tracing: Quaternion Julia Sets on the GPU

� Keenan Crane (University of Illinois) – GPU implementation

� Based on “Ray Tracing Deterministic 3-D Fractals” Computer Graphics, 
Volume 23, Number 3, July 1989

� “This kind of algorithm is pretty much ideal for the GPU - extremely high 
arithmetic intensity and almost zero bandwidth usage” – Keenan Crane
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Optimal Data Organization: Optimal Data Organization: 
Array of Structures versus Structure of Arrays

Typedef struct _Triangle {
vector float a, b, c

} Triangles;

Triangles triangles[];

Structure data organization for single triangle

� AOS data-packing approach can produce small code sizes, but 
� Typically less than optimal for SIMD architectures
� Generally requires significant loop-unrolling to improve its efficiency
� Memory wasted

� If the vertices contain fewer components than the SIMD vector can 
hold , e.g., 3 components instead of four

wzyxVertex c

wzyxVertex b

wzyxVertex a

(1) Array of Structures
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Structure of Arrays for 4 TrianglesStructure of Arrays for 4 Triangles

Triangle 4Triangle 3Triangle 2Triangle 1c[2]: z1,z2,z3,z4

Triangle 4Triangle 3Triangle 2Triangle 1c[1]: y1,y2,y3,y4

Triangle 4Triangle 3Triangle 2Triangle 1c[0]: x1,x2,x3,x4

Triangle 4Triangle 3Triangle 2Triangle 1b[2]: z1,z2,z3,z4

Triangle 4Triangle 3Triangle 2Triangle 1b[1]: y1,y2,y3,y4

Triangle 4Triangle 3Triangle 2Triangle 1b[0]: x1,x2,x3,x4

Triangle 4Triangle 3Triangle 2Triangle 1a[2]: z1,z2,z3,z4

Triangle 4Triangle 3Triangle 2Triangle 1a[1]: y1,y2,y3,y4

Triangle 4Triangle 3Triangle 2Triangle 1a[0]: x1,x2,x3,x4

� SOA data-packing approach can be more efficient for some algorithms
� Typically executes well on SIMD architectures
� Less memory wasted
� Usually more complex code

Struct Triangles {
Vector float a[3], b[3], c[3];

}

Optimal Data Organization: Optimal Data Organization: 
Array of Structures versus Structure of Arrays

(2) Structure of Arrays for 4 Triangles
Structure data organization for 4 triangles
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PerformancePerformance

7 SPEs used for rendering + 1 SPE reserved for image compression

0 2 4 6 8 10 12 14 16 18

Frames/sec (1024x1024)

Nvidia GeForce 7800 GT OC

IBM 3.2 GHz Cell (AOS)

IBM 3.2 GHz Cell (SOA)

Julia Set Ray Tracing Performance
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Texture Mapping the Julia Set
� Texture references:

– Difficult to set up (predict) DMAs in advance

– Significant spatial & temporal locality

– Small working set size (16-32 kb)

� Texture memory organization
– Consistency with framebuffer rendering order

– Tiled framebuffer memory � Tiled texture memory
� Cache layout organization

– Use cache line size == texture tile size

* Findings from The Design and Analysis of a Cache Architecture for Texture Mapping, Ziyad S. 
Hakura, and Annop Gupta [Stanford, 1997]
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High Level API’s

� Simplify programming
– Hide details of DMA

� Common Operations
– Cached data read, write

– Pre-touch

– Flush

– Invalidate

– etc.

#include <spe_cache.h>

#define LOAD1(addr) \
* ((char *) spe_cache_rd(addr))

#define STORE1(addr, c) \
* ((char *) spe_cache_wr(addr)) = c

void memcpy_ea(uint dst, uint src, uint size)

{
while (size > 0) {

char c = LOAD1(src);
STORE1(dst, c);
size--;
src++;
dst++;

}

}
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Low level Cache API

� Depend on cache type
� Programmer directly controls

– Look up

– Branch to miss handler

– Wait for DMA completion
� Custom interfaces

– Multiple lookups

– Special data types

– Cache locking

#include <spe_cache.h>

unsigned int __spe_cache_rd(unsigned int ea) {
unsigned int ea_aligned = (ea) & ~SPE_CACHELINE_MASK;
int set, line, byte, missing;
unsigned int ret;

missing = _spe_cache_dmap_lookup_(ea_aligned, set);
line = _spe_cacheline_num_(set);
byte = _spe_cacheline_byte_offset_(ea);
ret = *((unsigned int *) &spe_cache_mem[line + byte]);
if (unlikely(missing)) {

_spe_cache_miss_(ea_aligned, set, 0, 1);
spu_writech(22, SPE_CACHE_SET_TAGMASK(set));
spu_mfcstat(MFC_TAG_UPDATE_ALL);
ret = *((unsigned int *) &spe_cache_mem[line + byte]);

}
return ret;

}
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Example: SPE Texture MappingExample: SPE Texture Mapping

� Texturing maps images onto 3-D surfaces
� Cube environment mapping reflects image 

data from 1 of 6 surrounding texture maps
� Fresnel reflection & refraction increase

realism, complexity of texture look up
� Animated 3-D Julia Set Fractal
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Interactive Ray-tracing

Renewed interest from Graphics 
Community

– Global Illumination

– Rendering time scales sub linearly with scene 
complexity

– Scales well on multi-core processors

– Mathematically elegant

– Algorithmically simple

Courtesy of Barry Minor, IBM Quasar Design Center
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IBM iRT
Interactive Ray-tracer
� Visualization of Huge Digital Models

� Powered by IBM QS20 Blades

� 720p and 1080p HDTV Output

� Seamless Scale Out
� More Blades

� More Cells 

� More performance

� Real-time Ambient Occlusion

� Server Side Rendering
� Image Encode

� IB or Network Image Delivery

� Dynamic Load Balancing 

� Across Multiple Blades, Cells, & SPEs
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� Texture Maps
� Bilinear Filtering

� Bump Maps
� Blinn Style

� Phong Lighting Model
� Phong Shading

� Multi-Sampling

� 1, 4, 16 Samples per Pixel

� Jitter Sampled

� Ambient Occlusion

� 4, 16, 64 Random Samples per Primary

� Optical Effects

� Reflection, Refraction

IBM iRT
Supported Rendering Features
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Performance Scales Across SPEs
iRT SPE Performance Scaling
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Performance Scales Across Blades
iRT Blade Performance Scaling
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Ray-Tracing + Ambient Occlusion

Primary, Shadow, Secondary, Global illumination – 288 Rays per Pixel

EG:493
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Ray-Triangle Intersection
static inline int isect_ray4_triangle (const struct ray4 *ray,

const float4 p[3], hit_rec4 * hit, uint id)
{

vec_uint4 vid = spu_splats (id);
vec_float4 p0 = p[0].v;
vec_float4 p1 = p[1].v;
vec_float4 p2 = p[2].v;
vec_float4 ro_x = ray->o.x;
vec_float4 ro_y = ray->o.y;
vec_float4 ro_z = ray->o.z;
vec_float4 rd_x = ray->d.x;
vec_float4 rd_y = ray->d.y;
vec_float4 rd_z = ray->d.z;
vec_float4 edge1 = spu_sub (p1, p0);
vec_float4 edge2 = spu_sub (p2, p0);
vec_float4 hit_t = hit->t;
vec_float4 hit_u = hit->u;
vec_float4 hit_v = hit->v;
vec_uint4 hit_id = hit->id;
vec_float4 one = spu_splats (1.0f);
vec_float4 zero = spu_splats (0.0f);
vec_float4 p0_x = spu_splats (spu_extract (p0, 0));
vec_float4 p0_y = spu_splats (spu_extract (p0, 1));
vec_float4 p0_z = spu_splats (spu_extract (p0, 2));
vec_float4 edge1_x = spu_splats (spu_extract (edge1, 0));
vec_float4 edge1_y = spu_splats (spu_extract (edge1, 1));
vec_float4 edge1_z = spu_splats (spu_extract (edge1, 2));
vec_float4 edge2_x = spu_splats (spu_extract (edge2, 0));
vec_float4 edge2_y = spu_splats (spu_extract (edge2, 1));
vec_float4 edge2_z = spu_splats (spu_extract (edge2, 2));

vec_float4 pvec_x, pvec_y, pvec_z;
vec_float4 tvec_x, tvec_y, tvec_z;
vec_float4 qvec_x, qvec_y, qvec_z;
vec_float4 u, v, t;
vec_float4 det, inv_det;
vec_uint4 u_geq_0, v_geq_0;
vec_uint4 uv_leq_1, t_lt_hit;
vec_uint4 t_geq_0, valid_hit;

_CROSS3_V (pvec, rd, edge2);
det = _DOT3_V (edge1, pvec);
_INVERSE (inv_det, det);
_SUB3_V (tvec, ro, p0);
_CROSS3_V (qvec, tvec, edge1);
u = spu_mul (_DOT3_V (tvec, pvec), inv_det);
v = spu_mul (_DOT3_V (rd, qvec), inv_det);
t = spu_mul (_DOT3_V (edge2, qvec), inv_det);
u_geq_0 = spu_cmpge (u, zero);
v_geq_0 = spu_cmpge (v, zero);
uv_leq_1 = spu_cmple (spu_add (u, v), one);
t_lt_hit = spu_cmplt (t, hit_t);
t_geq_0 = spu_cmpge (t, zero);
valid_hit = spu_and (spu_and (spu_and (u_geq_0, v_geq_0), 

spu_and(uv_leq_1, t_lt_hit)), t_geq_0);

hit->t = spu_sel (hit_t, t, valid_hit);
hit->u = spu_sel (hit_u, u, valid_hit);
hit->v = spu_sel (hit_v, v, valid_hit);
hit->id = spu_sel (hit_id, vid, valid_hit);

return _any4 (valid_hit) ? 1 : 0;
}
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Demos

City Lamborghini
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Thank you
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Questions?
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Outline

• Basic Concepts
– Background
– Performance
– Architecture
– Basic vocabulary
– Defining program objects
– Parallel programming model
– Loop conversion example

• Advanced Topics
– Accessors and copying semantics
– Applications of dynamic code generation
– Design patterns
– Acceleration strategies
– Program manipulation

• Application Examples
– Crowd simulation, FFT and convolution, raytracing

• RapidMind Development Platform
– Single-source solution for portable parallel programming
– Safe and deterministic data-parallel programming model
– Scalable to arbitrary number of cores
– Integrates with existing C++ compilers

• Can be used for programming multiple targets
– Unified programming model for both accelerators and CPUs
– Support for both GPUs and Cell BE generally available
– Prototype backend demonstrated on multi-core CPU
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• Programmability
– Just an ISO standard C++ library
– No new tools or workflow
– No need for low-level understanding of the processor(s)
– Expressive, safe, modular, and easy to learn

• Performance
– Leverages all available computational resources
– Encourages and supports scalable data parallelism

• Portability
– Application programming independent of OS or target platform
– New processors supported without change to application

Programmability

• Use existing ISO standard C++ compiler:
– Just include a header file, link to a library
– Single-source solution, can be used with existing code bases
– Does not require modification of debugging and build 

environments

• Allows specification of arbitrary computation:
– NOT just a library of canned functions
– Uses its own runtime optimizing code generator
– User can specify arbitrary computational kernels 
– Staged compilation strategy avoids overhead of C++
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Portability

• Multiple hardware targets:
– NVIDIA GPUs
– AMD/ATI GPUs
– Cell BE
– Prototype for x86 multi-core demonstrated

• Independent of number of cores
• Independent of memory model

– Shared or distributed

• If main processor does not change, can 
support new co-processor without even
recompiling program

Cell BE Performance

• QJulia application 
• Compared with IBM 

SDK implementation
• Comparable 

performance with same 
optimizations

• Additional optimizations 
possible with only a few 
lines of code that nearly 
doubled performance 
over IBM 
implementation

• Overall code size and 
complexity significantly 
lower than that of IBM 
SDK implementation
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GPU Performance

• Financial quasi Monte-
Carlo option-pricing 
benchmark done in 
“competition” with HP 

• CPU code 
independently tuned by 
HP

• GPU implementation 
over 30x faster than 
single-core CPU 
implementation

CPU Performance

• Same financial quasi 
Monte-Carlo option-
pricing benchmark as 
for GPU benchmark 

• RapidMind
implementation
basically the same as 
the GPU 
implementation

• Prototype backend 
targeting four CPU 
cores

• RapidMind over 2x 
faster on one core, 8x 
faster on four cores 
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Key Concepts

• Vocabulary for parallel programming
– Set of nouns (types) and verbs (operations)
– Added to existing standard language: ISO C++

• A language implemented as an API

API == Language

• API
– Issue a sequence of function calls
– Manipulate state
– Must issue calls in a certain order
– Store sequences of calls in buffers (display lists)
– Play back sequences of calls

• Languages
– Issue a sequence of statements
– Manipulate variables
– Must have a certain syntax
– Encapsulate sequences of statements in functions
– Call functions to execute code
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RapidMind Platform 
Interface

• A C++ API 
– for specifying data-parallel computation

• A data-parallel programming language 
– embedded inside C++

13

RapidMind Platform 
Architecture
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14

RapidMind Interface

Simple API:
– Data Types: Arrays and Values
– Program Objects: similar to C++ functions
– Operations: C++ and matrix-vector library
– Collectives: reductions, scatter, gather, etc.

To use:
– #include <rapidmind/platform.hpp>
– using namespace rapidmind;
– link to rmplatform

Nouns: Basic Types

Purpose Type

Container for fixed-length data Value

Container for variable-sized multidimensional data Array

Container for computations Program

EG:503
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Values

1 half
2 double

Value<3, float>
4 int

Tuple
size

Tuple
size

Element
type

Element
type

Values

1h
2d

Value3f
4i

Tuple
size

Tuple
size

Element
type

Element
type
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Arrays

1 Value4d
Array<2,Value3f>

3 Value2i

DimensionalityDimensionality

Item
type
Item
type

Verbs: Operators

• Operators act componentwise:
+, -, *, /, %, &, |, ^, ~, <, …

• Swizzling and writemasking:
Value4f c;
c(2,1,0)
c(0,0,0)
c(1,1,2,3)
c[3]
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Verbs: Functions

• Can declare functions in the usual way:
Value3f
reflect (Value3f v, Value3f n) {

return Value3f(2.0*dot(n,v)*n - v);
}

• Standard library
– Matrix operations
– Geometric operations
– Trigonometry
– Exponentials and logarithms
– Splines, interpolation, and polynomials
– etc.

Programs

• Immediate mode:
– Execute operations on RapidMind types on host
– Acts like a standard matrix-vector library

• Retained mode:
– Enter retained mode with BEGIN, exit with END
– Record operations on RapidMind types

• Same operations that work in immediate mode

– Store operations in Program object
– Compile captured operations for coprocessor

• Dynamic compilation

Dynamic construction of remote procedure call
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Program Definition

Program p;

p = BEGIN {
In<Value3f> a, b;
Out<Value3f> c;

Value3f d = f(a, b);
c = d + a * 2.0f;

} END;

DeclarationDeclaration DefinitionDefinition

InterfaceInterface

ComputationComputation

Program Application

• Apply programs to arrays, get new arrays

C = p(A,B);

Invokes parallel execution

EG:507
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Array Semantics

• Arrays use by-value semantics
– Can assign arrays with O(1) cost
– Strong modularity
– Simple and easy to understand
– Consistent with value tuples

• Most data copies can be optimized away
– Copies only required to complete partial updates
– Parallel assignment means partial updates can be avoided

• By-reference semantics available: 
– Via the ArrayAccessor type

SPMD Data Parallel 
Programming Model

Apply functions to arrays:
– Application: C = f(A,B)
– May have control flow (SPMD model)
– May perform random reads from other 

arrays
– Can read and write to subarrays

Apply collective operations to 
arrays:

– Reduce:  a = reduce(p,A)
– Gather:    A = B[U]
– Scatter: A[U] = B

– Others…
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Control Flow

Program p;

p = BEGIN {
In<Value3f> a, b;
Out<Value3f> c;

Value3f d = f(a, b);
IF (all(a > 0.0f)) {
c = d + a * 2.0f;

} ELSE {
c = d – a * 2.0f;

} ENDIF;
} END;

Control Flow: 
SPMD vs. SIMD

SIMD:
– Single Instruction, Multiple 

Data
– Kernels include sequences 

of simple instructions
– Take constant amount of 

time to execute

SPMD:
– Single Program, 

Multiple Data
– Kernels may include control 

flow (loops and conditionals)
– Can avoid unnecessary work

SPMD includes but is 
intrinsically more

powerful than SIMD

SIMD SPMD
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Load Balancing

SIMD scheduling
• Assumes constant time per 

kernel
SPMD scheduling
• Takes variable execution 

time into account
• Load balancing distributes 

workload evenly across 
cores

Serial SIMD Load
Balanced

SPMD Load
Balanced

Ti
m

e

Processor Core Computation

Stalls

1.67x faster

2.85x faster

Conversion Example

#include <cmath>

float f;
float a[512][512][3];
float b[512][512][3];

float func(
float r, float s

) {
return (r + s) * f;

}

void func_arrays() {
for (int x = 0; x<512; x++) {
for (int y = 0; y<512; y++) {
for (int k = 0; k<3; k++) {
a[y][x][k] = 
func(a[y][x][k],b[y][x][k]);

}
}

}
}

EG:510
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Access API

#include <rapidmind/platform.hpp>
#include <rapidmind/shortcuts.hpp>
using namespace rapidmind;

#include <cmath>

float f;
float a[512][512][3];
float b[512][512][3];

float func(
float r, float s

) {
return (r + s) * f;

}

void func_arrays() {
for (int x = 0; x<512; x++) {
for (int y = 0; y<512; y++) {
for (int k = 0; k<3; k++) {
a[y][x][k] = 
func(a[y][x][k],b[y][x][k]);

}
}

}
}

0.

Replace
Types

#include <rapidmind/platform.hpp>
#include <rapidmind/shortcuts.hpp>
using namespace rapidmind;

Value1f f;
Array<2,Value3f> a(512,512);
Array<2,Value3f> b(512,512);

Value3f func(
Value3f r, Value3f s

) {
return (r + s) * f;

}

#include <cmath>

float f;
float a[512][512][3];
float b[512][512][3];

float func(
float r, float s

) {
return (r + s) * f;

}

void func_arrays() {
for (int x = 0; x<512; x++) {
for (int y = 0; y<512; y++) {
for (int k = 0; k<3; k++) {
a[y][x][k] = 
func(a[y][x][k],b[y][x][k]);

}
}

}
}

1.
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Replace
Types

#include <rapidmind/platform.hpp>
#include <rapidmind/shortcuts.hpp>
using namespace rapidmind;

Value1f f;
Array<2,Value3f> a(512,512);
Array<2,Value3f> b(512,512);

template <typename T>
T func(
T r, T s

) {
return (r + s) * f;

}

#include <cmath>

float f;
float a[512][512][3];
float b[512][512][3];

float func(
float r, float s

) {
return (r + s) * f;

}

void func_arrays() {
for (int x = 0; x<512; x++) {
for (int y = 0; y<512; y++) {
for (int k = 0; k<3; k++) {
a[y][x][k] = 
func(a[y][x][k],b[y][x][k]);

}
}

}
}

1b.

Capture
Computations

#include <rapidmind/platform.hpp>
#include <rapidmind/shortcuts.hpp>
using namespace rapidmind;

Value1f f;
Array<2,Value3f> a(512,512);
Array<2,Value3f> b(512,512);

Value3f func(
Value3f r, Value3f s

) {
return (r + s) * f;

}

void func_arrays() {
Program func_prog = BEGIN {
In<Value3f> r, s;
Out<Value3f> q;
q = func(r,s);

} END;
. . .

}

#include <cmath>

float f;
float a[512][512][3];
float b[512][512][3];

float func(
float r, float s

) {
return (r + s) * f;

}

void func_arrays() {
for (int x = 0; x<512; x++) {
for (int y = 0; y<512; y++) {
for (int k = 0; k<3; k++) {
a[y][x][k] = 
func(a[y][x][k],b[y][x][k]);

}
}

}
}

2.
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Parallel
Execution

#include <rapidmind/platform.hpp>
#include <rapidmind/shortcuts.hpp>
using namespace rapidmind;

Value1f f;
Array<2,Value3f> a(512,512);
Array<2,Value3f> b(512,512);

Value3f func(
Value3f r, Value3f s

) {
return (r + s) * f;

}

void func_arrays() {
Program func_prog = BEGIN {
In<Value3f> r, s;
Out<Value3f> q;
q = func(r,s);

} END;
a = func_prog(a,b);

}

#include <cmath>

float f;
float a[512][512][3];
float b[512][512][3];

float func(
float r, float s

) {
return (r + s) * f;

}

void func_arrays() {
for (int x = 0; x<512; x++)
for (int y = 0; y<512; y++) {
for (int k = 0; k<3; k++) {
a[y][x][k] = 
func(a[y][x][k],b[y][x][k]);

}
}

}
}

3.

Usage Summary

#include <rapidmind/platform.hpp>
#include <rapidmind/shortcuts.hpp>
using namespace rapidmind;

Value1f f;
Array<2,Value3f> a(512,512);
Array<2,Value3f> b(512,512);

Value3f func(
Value3f r, Value3f s

) {
return (r + s) * f;

}

void func_arrays() {
Program func_prog = BEGIN {
In<Value3f> r, s;
Out<Value3f> q;
q = func(r,s);

} END;
a = func_prog(a,b);

}

• Usage:
– Include platform header
– Link to runtime library

• Data:
– Tuples
– Arrays
– Remote data abstraction

• Programs: 
– Defined dynamically
– Execute on coprocessors
– Remote procedure abstraction
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Feature Summary

• Abstractions for both code and data
• Generate and manipulate code explicitly

– C++ modularity
– FORTRAN execution efficiency

• Can target GPU as well as Cell BE
• Simple, safe programming model
• Single-source ISO standard C++ program: 

– No extensions needed
– Use your existing compiler

Advanced Topics

• Accessors
– Extracting and accessing subarrays
– Copying semantics

• Metaprogramming
– Applications of dynamic code generation

• Design patterns
– Processor pattern
– Compiler pattern

• Acceleration strategies
– Loop conversion
– Interpreter conversion
– Task conversion

• Program manipulation
– Program algebra
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Accessors

offset(A,n)
– Drop first n elements of A

shift(A,n)
– Translate index into array A by n

take(A,n)
– Drop all but first n elements of A

slice(A,i,j)
– Extract subarray from i to j, inclusive

stride(A,k)
– Extract every kth element

Return instance of ArrayAccessor type
– References subarray “view”, does not copy

Copying Semantics

• Assignment to an Array:
– by-value
– assignment replaces destination
– allocates new memory if needed

• Assignment to an ArrayAccessor:
– by-value
– assignment copies into destination

• Explicit copying can be forced with copy
function

• Memory automatically freed if no longer 
referenced
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Metaprogramming:
Dynamic Code Generation

Data-Parallel
Programming

Dynamic Code
Generation

Data-Parallel
Metaprogramming

Advantages of Data 
Parallelism

• Efficient on a variety of computer architectures
– Shared memory machines
– Distributed memory machines
– Vector/stream machines

• Predictable memory access patterns
• Scales to arbitrary number of processors
• Single thread of control

– Simple extension of existing programming practice
– No explicit synchronization needed
– No deadlocks or non-determinism
– Debugging simplified
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Advantages of 
Metaprogramming

• Object-oriented overhead of C++ avoided
– Platform only compiles operations on RapidMind types
– Structure with C++: templates, objects, namespaces, …
– Run like FORTRAN (or better)

• Metaprogramming can be used to build 
– Parameterized code, with possible automatic tuning
– Code generated algorithmically
– Code that adapts to hardware platform
– Code that adapts to or is generated based on data
– Compilers from interpreters
– Higher order functions to parameterize operations

Design Patterns

• Processor pattern
– Manage code generation and initialization
– Encapsulate parameterized code

• Compiler pattern
– Remove overhead from computation specified at runtime
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Processor Pattern

Array<2,T>
apply(

const Array<2,T>& a,
const Array<2,T>& b

) {
return m_prog(a,b);

}
};

//�USAGE

//�Initialize
Value1f g;
Processor<Value3f,Value1f> proc(g);

//�Apply
Array<2,Value3f> p(512,512);
Array<2,Value3f> q(512,512);
p = proc.apply(p,q);

template <typename T, typename S>
class Processor {
protected:
S m_f;

T m_func(
T r, T s

) {
return (r + s) * m_f;

}

Program m_prog;

public:
Processor(

S f
): m_f(f) {

m_prog = BEGIN {
In<T> r, s;
Out<T> q;
q = m_func(r,s);

} END;
}

Compiler Pattern

Problem:
– Need to evaluate some expression not known until runtime
– Example: 

• Image compositing
• User may express sequence of operations in visual language

Solution 1: Interpreter Pattern
1. Encode computation in data structure (ex: operator dag)
2. Traverse data structure, executing operations
3. Return result

Solution 2: Compiler Pattern
1. Encode computation in data structure (ex: operator dag)
2. Traverse data structure, recording operations
3. Compile operations into program object
4. Execute program object on data
5. Return result
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Accelerating
Applications

Approach 1: Loop Conversion
– Find hot spot
– Identify loop structures
– Convert loops to parallel operations

Accelerating
Applications

Approach 2: Interpreter Conversion
– Identify use of interpreter pattern
– Convert to compiler pattern
Advantages:
– Can collect a significant amount of computation together even 

when there is no obvious hot spot
– Can avoid memory and branching overhead of interpretation
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Accelerating
Applications

Approach 3: Task Conversion
– Identify use or potential for task parallelism
– Convert to SPMD model
– Use arrays to communicate between tasks
Advantages:
– Simplified debugging
– Bulk synchronous model

Program Manipulation

• Combination:
– Program “algebra” to combine programs into new programs
– Can use to modify interfaces to existing programs
– Can use to specialize existing programs

• Partial evaluation:
– Can bind inputs one at a time
– Can convert inputs to non-local variables and vice versa

• Introspection:
– Can analyze program interface and performance at runtime
– Use for self-tuning libraries
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Program Algebra

• Algebra:
– Set of objects
– Set of operators
– Closed

• Objects:
– Programs

• Operators:
– Functional composition: 

p << q

– Concatenation: 
bundle(p,q)

Applications of the 
Program Algebra

• Interface adaptation
– Reordering
– Packing/unpacking
– Input or output type conversion

• Specialization
– Discard unneeded outputs
– Eliminates unnecessary computation

• Pipelining
– Combine producer/consumer programs into one:
A = (p << q << r)(B);

– Implement pipeline as single data-parallel task
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Partial Evaluation

• Can bind only some inputs of a program, not all
• Binding gives a new program with fewer inputs

– If bind only 1 input of an n input program
– Get back program with n-1 inputs

• Partial evaluation provides 
– Flexibility
– Interface adaptation
– Optimization opportunities

• Two kinds of binding:
– Tight: uses ()
– Loose: uses <<; is invertible using >>

Tight Binding

• Tight binding:
Program q = p(A);

• Execution can be deferred
• When eventually executes:

– Uses value of A in effect at time of binding

– Compiler can use actual value of A to optimize code
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Loose Binding

• Loose binding:
Program q = p << A;

• Execution can be deferred
• When eventually executes:

– Uses value of A in effect at time of execution

– Value of A can be used to parameterize execution

• A acts like a non-local variable

Unbinding

• Convert input to non-local variable:
q = p << A;

• Convert non-local variable to input:
q = p >> A;
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Examples • Crowd simulation (GDC)
• Ray tracing (w/ RTT)
• Fast Fourier transform
• Convolution
• Quasi Monte Carlo option pricing
• Matrix-matrix multiply (SGEMM)
• Transformation and lighting
• Color and gamma correction
• Object tracking
• Sorting
• Quaternion Julia set
• Deferred shading
• Vector textures
• Others…

Applications

Crowd Simulation

EG:524
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Crowd Simulation

• Graphics on GPU
– Shaders implemented using RapidMind platform

• Behavioral Simulation on Cell BE Blade
– 16K autonomous characters (4K visible at once)

• Parallel Execution: 
– Rules to simulate social behavior and basic physics

• Global Communication: 
– Any character can interact with any other

• Requires (approximate) solution to K-nearest-neighbor problem
– Behavior depends on the environment

• Random access to environmental parameter grid
• Obstacles, ground cover and slope

Fast Fourier Transform

• Fundamental signal processing operation
– Image processing
– Pattern matching
– Solving differential equations

• Standard test case for parallel computation
• Involves both 

– Computation
– Communication

• Many varieties and ways to implement
– Will show radix-2 split-stream complex-to-complex 1D FFT
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Signal Flow Graph

Fast Fourier Transform

//�Fast�Fourier�Transform
Array<1,Value2f>
FFT (Array<1,Value2f> data, int n) {

int N = (1 << n);

//�define�program�objects
…

//�generate�and�scramble�twiddle�factors�with�gather
…

//�scramble�input�data�using�a�gather
…

//�perform�split�stream�FFT�using�lg(N)�passes
…

}
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Fast Fourier Transform

//�define�program�objects
Program butterfly_A = BEGIN {

In<Value2f> a, b;
Out<Value2f> c = a + b;

} END;

Program butterfly_B = BEGIN {
In<Value2f> a, b, w;
Value2f t = a - b;
Out<Value2f> c;
c[0] = t[0]*w[0] + t[1]*w[1];
c[1] = t[1]*w[0] - t[0]*w[1];

} END;

Fast Fourier Transform

//�generate�and�scramble�twiddle�factors�with�gather
Array<1,Value2f> w(N/2);
w = twiddle(n-1)[ bitreverse(n-1) ];

//�allocate�temporary�storage
Array<1,Value2f> x[2];
x[0] = Array<1,Value2f>(N);
x[1] = Array<1,Value2f>(N);

//�scramble�input�data�using�a�gather
x[0] = data[ bitreverse(n) ]; 

//�initialize�source�marker
int src = 0; 
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Fast Fourier Transform

//�perform�split�stream�FFT�using�log(N)�passes
for (int k=n-1; k>=0; k--) {

//�write�into�lower�half�of�output�array
take(x[!src],N/2) = butterfly_A(
stride(x[src],2),
stride(offset(x[src],1),2)

);
//�write�into�upper�half�of�output�array
offset(x[!src],N/2) = butterfly_B(
stride(x[src],2),
stride(offset(x[src],1),2),
take(w,1<<k)

);
//�swap�source�and�destination�buffers
src = !src;

}
//�return�final�transform
return x[src];

Convolution

• Fundamental signal processing operation
• For large filters, use FFT

– FFT
– Elementwise complex multiplication
– Inverse FFT

• For small filters, do directly
– Shift flipped filter to each pixel, multiply, sum
– May process many images with one filter
– Filters used in pattern matching may be sparse
– Can exploit sparsity to get more efficient execution
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Convolution

*

Confocal microscopy image 
courtesy of Peter J. Lu, Harvard

Convolution

float filter[N0][N1];
Array<2,Value1f> image(M0,M1);

Program convolve = BEGIN {
In<Value2i> u;
Out<Value1f> result = Value1f(0.0f);
for (int i = 0; i < N0; i++) {
for (int j = 0; j < N1; j++) {
if (filter[i][j] != 0.0f) {
Value2i tap = u - Value2i(i,j);
result += filter[i][j] * image[tap];

}
}

}
} END;

image = convolve << grid(M0,M1);

EG:529
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Raytracing

• Real-time raytracing
– Supports reflection and refraction
– Many recursive rays per pixel
– Incoherent memory access
– Accelerator data structure traversal

• Commercial product:
– Developed by RTT AG, Germany
– Used for automotive CAD visualization

• Hardware: 
– Released product runs on GPUs
– Demonstrated on Cell BE at SIGGRAPH
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Abstract
For more than two decades, cloth simulation has been an active research area in computer graphics. In order to
create efficient high-quality animations, techniques from many research fields have to be thoroughly combined. The
ongoing interest in this field is also due to the multidisciplinary nature of cloth simulation which spurs development
and progress in collision detection, numerical time integration, constrained dynamics, or motion control, to name
just a few areas. Beyond the very basic approaches, the complexity of the material can be daunting if no guidance
is given. It is therefore the goal of this tutorial to provide the reader with an introduction and a guideline to
the relevant matter. In order to provide a concise review, we will focus on advanced topics in cloth simulation,
shedding light on both theoretical and practical aspects. This will pave the ground for those willing to implement
a contemporaneous cloth simulation system as well as researchers who consider to start working in this area.

1. Introduction

The physical simulation of deformable objects is a central
research area in computer graphics. Problems emanating
from this field are usually complex to model and pose sig-
nificant demands on computational resources. This is par-
ticularly true for the more specific case of cloth simula-
tion. Due to the thin and flexible nature of cloth, it pro-
duces detailed folds and wrinkles, which in turn can lead to
complicated self-collisions. In order to tackle this challenge
within the requirements imposed by computer graphics, spe-
cialised methods have to be designed for concrete applica-
tions. These can roughly be divided into two categories: ap-
plications for which quality is most important and those for
which speed is the urgent demand. To clarify this distinction,
the requirement for time-critical cloth simulation could read:
given a fixed timing (e.g. 25 frames per second) optimize the
(visual) quality of the simulation. An analogous formulation
can be stated for the first case. Because every category stands
in its own right, we will address both of these fields in this
tutorial.

Since cloth simulation has been an active research field
for quite a while now, there is a broad variety of differ-
ent approaches. One objective of this course is therefore to
give the reader an introduction to thoughtfully chosen mat-
ter and a guideline towards practical applications. Another
is to introduce algorithms and tools necessary for creating

high quality animations. Finally, a further goal is to supply
the audience with techniques for accelerating computations
and eventually obtain fast simulations. The latter includes
models specifically designed for computational efficiency.
These methods can again be divided into two categories: al-
gorithms which are optimized for sequential real-time com-
putations and those which exploit the parallel potential of
current hardware.

Figure 1: The Eurographics 2007 Phlegmatic Dragon cov-
ered by a sheet of cloth.

Because physically-based modelling has become the de
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facto standard in cloth simulation, we will exclusively treat
physically based methods in this tutorial and leave alterna-
tive approaches like geometry- or heuristics-based models
aside.

1.1. Major Challenges in Cloth Simulation

Despite the comparably long history of cloth simulation this
field can by no means be considered closed. For instance,
the accurate modelling of real textile materials remains an
open issue. Even if static properties can be measured quite
accurately, textiles typically exhibit a high dynamical be-
haviour (e.g. hysteresis, damping, etc.) for which no accu-
rate models are available yet. In the field of collision han-
dling there is still room for improvement as well. Besides
requirements like speed and robustness, error recovery is a
point of particular practical relevance [VMT06a]. Further-
more, garment design and integration in CAD-like environ-
ments needs to be pushed forward if clothing simulation is
to become a widely-used tool in industrial applications (see
e.g. [CK05]). Likewise, electronic vending of clothing via
the internet requires Virtual Try-on platforms specifically
tailored to the individual needs of end customers. Finally,
since high-quality animations can still be very time consum-
ing, the need for designing faster techniques has not ceased.
One way towards more efficient methods is to design, pos-
sibly from scratch, new algorithms that result in significant
computational speed-up. Another is to develop or adapt al-
gorithms which exploit parallelism on current hardware. In
the course of this tutorial, we will address most of the afore-
mentioned topics in great detail.

1.2. Overview

This tutorial assumes that the reader is already familiar with
the basics of physically-based simulation. An overview of
the state-of-the-art in this field is given in Sec. 2. The fol-
lowing sections of the first part are intended to supply the
reader with the basics of contemporaneous cloth simulation.
The third section gives an introduction to continuum me-
chanics and an example of numerical implementation. The
way in which wrinkles and folds form depends mainly on the
bending properties of the fabric. Because of its importance,
a separate section (4) is devoted to this issue and practical
ways of integrating bending into cloth simulation are dis-
cussed. In Sec. 5 we will describe how computations can
be mapped onto parallel architectures. This includes generic
modifications and extensions to existing algorithms in order
to exploit potential parallelism. Both shared and distributed
memory architectures will be considered, and we will ad-
dress implementation related issues for both these settings.

The second part of these notes addresses the measurement
of real world fabric parameters, including multi-layered tex-
tiles and seams, and their integration into cloth simulation.
Furthermore, integrated Virtual Try-On applications are dis-

cussed, including models for parametrically deformable hu-
man bodies, body animation and motion retargeting as well
as techniques for real-time cloth simulation.

2. State-of-the-Art in Virtual Clothing

In this section we will give an overview of the current state-
of-the-art in virtual clothing. We will pay special attention
to the topics covered in this tutorial. A more comprehensive
summary of the evolution of this research can be found in
[MTVW∗05], Part 1.

2.1. Mechanical Models

For dynamically deformable surfaces, mass-spring
systems [Pro95] and the more general particle sys-
tems [BHW94, VCMT95, EWS96] continue to be the most
widely used simulation techniques in computer graphics.
The popularity of mass spring systems is due to the ease of
implementation and low computational costs. The accuracy
offered by this method is, however, rather limited. As
an example, simple homogeneous materials cannot be
simulated consistently and the results highly depend on the
specific mesh used in the simulation. If the reproduction of
authentic material behaviour is desired (as, e.g., by the tex-
tile community), approaches based on continuum mechanics
have to be used. Continuum-based approaches lead to a set
of partial differential equations (PDEs), which have to be
discretized in space and time. The spatial discretisation is
usually carried out by means of finite differences (FDM)
or finite element methods (FEM). Techniques based on
finite elements and continuum mechanics (referred to as
FE-approaches in the remainder) have not seen as much
attention in cloth simulation as particle and mass spring
systems. While we only mention the most relevant work
here an extensive list can be found in [HB00]. Most of the
existing FE-approaches are based on the geometrically exact
thin shell formulation presented by Simo et al. [SFR89a].
Departing from the fully nonlinear theory, Eischen et
al. [EDC96] proposed a cloth simulation method using
quadrilateral, curvilinear elements. Because of the buckling
behaviour of cloth, which can lead to divergence in the
algorithm, an adaptive arc-length control is used. Etzmuss
et al. [EKS03] presented a linear FE-approach based on the
plane-stress assumption. Bending is treated separately from
in-plane deformations and a co-rotational strain formulation
is used to account for arbitrary rigid body transformations.
The work presented in [TWS06] extends the concept
of Subdivision Finite-Elements by Cirak et al. [COS00]
to dynamic cloth simulation using a co-rotational strain
formulation. As a middle course between simple mass
spring systems and finite elements, Volino et al. [VMT05]
proposed an accurate particle system which draws on no-
tions from continuum mechanics but replaces the numerical
discretisation by a more direct geometric formulation.
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2.2. Numerical Time Integration

The mechanical model provides the means for computing
internal forces due to fabric deformations. The dynamical
evolution of the system (i.e., the trajectories of the nodes)
is then determined by Newton’s second law. In the discrete
setting, the time dimension is decomposed into discrete time
intervals and numerical integration methods are used to ad-
vance the system from a given state to its next state in time.
Most generally, one distinguishes between two types of inte-
gration schemes: explicit methods compute the next state in
time based on the current state derivatives, which are readily
computed according to the mechanical model. Commonly
used explicit integration methods are the second-order accu-
rate Midpoint method used e.g. by Volino et al. [VCMT95]
and the fourth-order accurate Runge-Kutta scheme used for
instance by Eberhardt et al. [EWS96]. For computer graphics
applications the numerical accuracy is usually less important
than stability and robustness. As a well known fact, explicit
schemes only provide conditional stability (see [HE01]).
Since the differential equations resulting from cloth simu-
lation are inherently stiff, explicit methods need small step
sizes to guarantee a stable simulation. Consequently, com-
putation times soon become excessive with increasing prob-
lem sizes. Implicit schemes do not suffer from this restric-
tion since, in this case, stability is independent of the step
size. Since the seminal work of Baraff et al. [BW98] implicit
methods have therefore become predominant for physically-
based simulations in computer graphics. Implicit methods
include the unknown state of the system at the end of the
time step in the update formula. Therefore, a system of
(nonlinear) equations has to be solved in every time step.
This process is one of the most time consuming parts in
cloth simulation. Widely used representatives of this class
are the first-order accurate backward Euler scheme [BW98]
and the second-order BDF-2 scheme [HE01]. Recently, the
Newmark family of integrators (including both explicit and
implicit variants) found its way into computer graphics
[BMF03, GH∗03]. For a detailed overview and comparison
of existing integration schemes and their efficiency for cloth
simulation, the reader is referred to [VMT01] and [HE01].

2.3. Collision Handling

Besides the simulation of the mechanical properties of cloth
the interaction with its environment has to be modeled as
well. This involves the detection of any collisions and an ad-
equate response to prevent the clothes from intersecting. The
proper treatment of these two components (to which we refer
as collision handling in the remainder) is a very complex task
[THM∗05]. While the physical simulation engine computes
new states at distinct intervals only, collisions can occur at
any instant in between such intervals. Algorithms based on
continuous collision detection can handle these cases in a ro-
bust way, but are often very complex and time consuming.
Therefore, the collision handling step is a major bottleneck

in the simulation pipeline. Basically, detecting interference
between two arbitrarily shaped objects breaks down to de-
termining the interference between all primitives (i.e. faces,
edges, and vertices) of one mesh with every primitive of the
mesh representing the other object. With complex objects
comprising thousands of faces, this naïve approach soon be-
comes too expensive due to its quadratic average run time
with respect to the number of faces. A common way to ac-
celerate the interference tests is to structure the objects un-
der consideration hierarchically with bounding volumes. A
bounding volume hierarchy (BVH) is then constructed for
each object in the scene (including deformable as well as
rigid objects) in a preprocessing step, using, for example,
a top-down approach. In this case, a bounding volume en-
closing the entire object is set as the root node of the tree
representing the hierarchy. This node is then subdivided re-
cursively until a leaf criterion is reached. Usually, the leaves
contain one single primitive. Common choices for bounding
volumes in cloth simulation are axis aligned bounding boxes
(AABB) [van97, LAM01] or the more general discrete ori-
ented polytopes (k-DOPs) [KHM∗98, MKE03]. For treating
self-collisions efficiently, it is necessary to adapt the gen-
eral BVH algorithms to this special case. Measures related
to the curvature of the surface can be used to quickly rule out
flat, non-intersecting parts of the surface [VMT94, Pro97].
As another useful extension for self-collisions, continuous
collision detection based on BVHs can be used, in which the
exact contact points between two successive time steps are
detected [BFA02].

Once the intersecting parts of a garment have been de-
termined, an appropriate response has to computed in order
to prevent the imminent intersections. A method well-suited
for cloth simulation is the one presented by Bridson et al.
[BFA02]. The essence of this method is to apply a stop-
ping impulse to approaching triangles (i.e., to adjust their
nodal velocities) whenever their distance falls below a cer-
tain threshold. However, even with such robust approaches
there can be situations in which intersections cannot be pre-
vented. An example for this are complicated multi-layer col-
lisions or when cloth is pinched together due to character
motion. In such cases special care is necessary in order to
restore an intersection free state and to keep the simulation
running [BWK03, VMT06a].

Despite the aforementioned acceleration techniques, col-
lision handling remains a major bottleneck of cloth simu-
lation. Recent developments aimed at further accelerating
these algorithms by migrating computations to the graph-
ics card [GKJ∗05] or by exploiting parallel architectures
[TB07, TPB07].

3. Mathematical and Physical Foundations

In this section, we will describe how a physically based
model for deformable objects can be derived. As already
pointed out in Sec. 2, mass-spring systems are still widely
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used for cloth simulation in computer graphics. However,
for authentic material mapping and hence realistic and reli-
able draping behaviour of cloth, as required e.g. by the tex-
tile community, one must necessarily resort to continuum
mechanics. We will therefore restrict our considerations to
methods based on continuum mechanics and begin with a
brief review of the relevant foundations. As we will see, the
central quantities in this theory are strain and stress which
are related to each other via material or constitutive laws.
We will only discuss some general material laws at this point
and postpone more sophisticated models especially suited
for textiles to the second part of these notes. Having estab-
lished the governing equations, we will turn to an exemplary
spatial discretisation.

3.1. Continuous Models

The structure of textiles or woven fabrics is clearly differ-
ent from continuous media. However, modelling each single
thread would certainly be an inefficient approach. We will
instead approximate the garment geometrically with a poly-
gonal mesh. If the regions of each polygon contains a suf-
ficiently large number of threads (or weave periods) we can
safely approximate the fabric as a continuous medium. De-
parting from a continuum model, we can derive a consistent
spatial discretisation. Consistency here means that with in-
creasing resolution the computed approximation converges
to the actual solution of the continuous problem. This allows
us to choose the spatial resolution in accordance to com-
putational requirements without changing the properties of
the cloth. In doing so, the dynamic motion of garments can
be simulated efficiently and independently of discretisation
throughout a broad range of resolutions. The first ingredient
for such a continuum model is introduced in the next section.

3.2. Deformation Measures

In order to describe the equations that govern the (dynamic)
behaviour of deformable objects, we consider the conditions
that must hold in an equilibrium state. Generally speaking,
a deformable object is in equilibrium if the internal forces
due to deformation exactly cancel the external forces acting
on its volume and boundary. The first step in this analysis is
to compute deformation, which requires an appropriate mea-
sure.

A conceptional description of a deformable object embed-
ded in three-dimensional is given by its configuration map-
ping

ϕ : Ω⊂ R3 → R3 , (1)

where Ω is its parameter domain. In dynamic scenes, where
the object undergoes translation, rotation, and deformation
this mapping also depends on time

ϕ : Ω× [0,∞]→ R3 .

It is common to base descriptions of state and behaviour of
deformable objects on an initial and a current configuration.
For simplicity, the initial mapping is assumed to be the iden-
tity

ϕ̄(x1,x2,x3) = ϕ(x1,x2,x3,0) = id .

The configuration mapping can be given the interpretation of
transforming positions of material points in the initial, unde-
formed state to corresponding positions in the current, de-
formed configuration (see Fig. 2).

Figure 2: Relative change of positions from undeformed to
deformed configuration.

For later derivations, it is convenient to express the current
state in terms of a displacement field u from the initial con-
figuration as

ϕ = ϕ̄+u = id +u : Ω→ R3 . (2)

The displacement field itself is not an adequate measure of
deformation, since invariance under rigid body motion such
as translation is not given. A general deformation measure
should capture the relative change between two elemental
vectors in their initial and current configuration. Besides the
obvious direct change in length, the angle formed by two
vectors can change as well. One measure that takes both
these characteristics into account is the scalar product. Con-
sider the two vector pairs in the undeformed and deformed
configuration in Fig. 2. The vectors are given by v̄i = p̄i− q̄
, respectively vi = pi−q. We can use a Taylor series expan-
sion to express the vectors in the current configuration in an
alternative form as

vi = ϕ(q̄+ v̄i)−ϕ(q̄)

= ϕ(q̄)+∇ϕ(q̄) · v̄i +O(v̄2
i )−ϕ(q̄)

≈∇ϕ(q̄)v̄i = (∇u(q̄)− id)v̄i .

For later use, we define the deformation gradient F as

F =∇ϕ , (3)

which can be given the interpretation of mapping vectors in
the initial configuration to vectors in the current configura-
tion. A general deformation measure can now be derived as
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the difference of scalar products in the rest and current state:

v1 ·v2− v̄1 · v̄2 = v̄1 · (∇ϕ
T∇ϕ− id) · v̄2. (4)

Using Eq. (2) we can identify from Eq. (4) the symmetric
Green strain tensor as

εG =
1
2
(∇ϕ

T∇ϕ− id) =
1
2
(∇uT +∇u+∇uT∇u) . (5)

An alternative expression can be obtained using the defor-
mation gradient

εG =
1
2
(FT F− id) . (6)

For practical purposes, Eq. (5) can be written in indicial no-
tation as

(εG)i j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi
+∑

k

∂uk
∂xi

∂uk
∂x j

)
. (7)

In this form, the entries of the strain tensor can be interpreted
geometrically: diagonal components εii measure the change
in length in the direction of the xi-axis and off-diagonal en-
tries εi j measure the shearing between two axes. For small
displacements, the nonlinear terms are negligible. This gives
rise to the linear Cauchy strain tensor

εC =
1
2
(∇u+∇uT ) , (8)

which is used in small strain analysis. Because of its linear-
ity, the Cauchy tensor is very common in computer graphics.
A closer look reveals that while being invariant under trans-
lations, rotational invariance is not given. In dynamic sim-
ulations, where the objects usually undergo large rotations,
this is a severe restriction. A possibility to circumvent this
problem is to extract the rotational part from the deformation
field. The key observation is that, using polar decomposition,
F can be written as

F = RU , (9)

where R is a rotation and U is a pure deformation. The ro-
tation can then be determined by finding the eigenvectors of
FT F . From this together with Eq. (6) it can also be seen that
εG is invariant under rotations since

FT F = UT RT RU = UTU (10)

due to the orthogonality of R. Once the rotation field R is
known, the rotated linear strain tensor can be computed as

εCR(ϕ) = εC(RT
ϕ). (11)

In the expressions derived so far we have implicitly as-
sumed a Cartesian reference frame. We may think of gar-
ments or more generally deformable surface as 2-manifolds
embedded in three-dimensional space. As such, a two-
dimensional parametrisation of the surface is necessary to
correctly establish differential measures like deformation.
For instance, approaches based on thin shell formulations
(see Sec. 4.4) rely on (parametrised) curvilinear systems. In

such settings, all expressions will depend on partial deriva-
tives of the parametrisation with respect to local coordinates.
Although in a different way, common deformation measures
are eventually recovered (see Sec. 4.4).

Strains in a deformable solid are accompanied by counter-
acting forces, which are the subject of the following section.

3.3. Internal Stress and Equilibrium

To describe the distribution of internal forces, we will first
consider a differential surface element with area dA on a
cross section of a deformable body as depicted in Fig. 3.
Let n denote the normal of that element and let the resultant
force acting on it be df.

Figure 3: Deformable solid in cross-sectional view. Traction
vector t resulting from forces on area dA with normal n.

Then, the traction vector t is defined as

t = lim
dA→0

df
dA

.

Generalizing this expression for every normal direction leads
to a mapping (or tensor) σ that maps every unit normal di-
rection onto its traction vector,

t(n) = σn . (12)

The tensor σ is called the Cauchy stress tensor. This sym-
metric tensor will be the subject of the next step on our way
to the equilibrium equations.

Consider now a volume element V of a deformable body
and let f be the body forces per unit volume acting on V . If
we neglect forces due to inertia, translational equilibrium †

implies that the sum of all forces acting on the volume V is

† as opposed to rotational equilibrium (see [BW97]p.103)
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zero. Using equation (12), this can be expressed in integral
form as∫

∂V
t da+

∫
V

f dv =
∫

∂V
σn da+

∫
V

f dv = 0 , (13)

where t denotes the externally applied traction forces on the
border ∂V . With the Gaussian divergence theorem, the sur-
face integral of σn can be transformed into a volume inte-
gral, ∫

∂V
σn da+

∫
V

f dv =
∫

V
(div σ+ f) dv = 0 . (14)

Since this must hold for any enclosed volume, the (point
wise) equilibrium equation of a deformable solid follows as

div σ(x)+ f(x) = 0 . (15)

For dynamic simulation this equation has to be augmented
by terms accounting for intertial forces. Furthermore, σ will
also include viscous stress contributions due to material
damping, leading to

div σ(x, ẋ)+ f(x) = ρẍ . (16)

Here, ρ is the mass density and x denotes the vector field of
positions. This continuous formulation is the starting point
for numerical treatment. In Sec. 3.6 we will look at an ex-
emplary spatial numerical discretisation. Before we continue
with constitutive laws in Sec. 3.5 we will take a look at a
hitherto neglected aspect of deformation.

3.4. Bending

As we have seen in the previous sections, the deformation
modes in general (three-dimensional) continuum mechan-
ics can be separated into stretching and shearing (cf. Eq. 7).
These two deformation modes are orthogonal to each other:
pure stretching does not lead to shear deformation and vice
versa. In the special case of thin deformable surfaces, we
intuitively identify bending as a further deformation mode.
The question arises as to whether for bending deformation
an analogous orthogonality relation holds. We will pursue
this issue in the following.

The concept of bending cannot be derived from the three-
dimensional, point wise view of continuum mechanics, since
this standpoint is indifferent of shape. If we consider for ex-
ample an elastic ball it is immediately clear that we cannot
bend such an object. The same holds for other objects that do
not exhibit a direction with significantly smaller size. If there
is, however, such a direction like in the case of a thin plate
or an elastic rod, bending deformations become possible.

As we can see from these examples, the ability to bend
an object is closely related to its shape, or more precisely,
to the proportion of its extents in the different dimensions.
The ball is perfectly isotropic and has no intrinsic orienta-
tion. Therefore, the choice of a reference frame is arbitrary.
While the geometry of the cube furnishes an intrinsic coor-
dinate system, none of the dimensions is accentuated above

Figure 4: Whether an object can be bent depends mainly on
its shape. It is not clear how to bend a sphere or a cube. For
a thin plate or a rod the notion of bending is intuitively clear.

the others. In the example of the plate however, one direction
can be distinguished, in which the lengths are clearly infe-
rior to those in the orthogonal directions. The same holds for
the case of a thin flexible rod. Note that the intuitive bending
deformation of thin objects like the plate in the example is
such that it causes as little in-plane deformation as possible.
Hence, we may assume a bending mode which is orthogo-
nal to the deformation modes of stretching and shearing. For
the moment, we can most generally identify bending defor-
mation of an embedded manifold as a change in curvature.
We will return to this issue in a more specific discussion
in the following paragraphs. In analogy to strain associated
with stretching and shearing (to which we collectively re-
fer as membrane-strains) we define the bending strain γαβ,
α,β ∈ {1,2}, where the components γαα are normal curva-
tures in the directions of surface coordinates and γαβ, α 6= β,
is the torsional component.

3.5. Constitutive Relations in Linear Elasticity

The previous section led to the formulation of equilibrium
equations involving the stress tensor σ. In general, the rela-
tionship between stress and strain can be of high complexity.
Here, we will focus on situations where stresses in a body
depend only on its current state of deformation. Materials
that fulfil this requirement are called hyperelastic. Generally,
for two different types of elastic material, the same defor-
mation will result in different stresses in terms of magnitude
and possibly direction. This relationship between stress and
strain is described by the elasticity tensor C.

In the simplest case, the relationship between stress and
strain is linear. Note that the term linear appears in two dif-
ferent contexts. First, there is a geometric relationship be-
tween displacement and strain. A linear strain-displacement
assumption results in the Cauchy strain tensor, as described
above. Second, the dependence between strain and stress it-
self can be either linear or nonlinear. We will start with a
linear material law, for which the stress tensor can be writ-
ten as

σ = C : ε , (17)

c© The Eurographics Association 2007.

EG:538



B. Thomaszewski, M.Wacker, W.Straßer / Advanced Topics in Virtual Garment Simulation - Part 1

where tensorial notation was used. This formulation ac-
counts for the fact that a component εi j can potentially have
influence on every entry σkl of the stress tensor. Using the
summation convention, the stress tensor can conviniently be
expressed as

σi j = Ci jklεkl . (18)

Therefore, the entry Ci jkl can be interpreted as linking σi j to
εkl .

As the simplest model, a linear-elastic isotropic material
is governed by only two independent constants. In this case,
the elasticity tensor‡ C reads

Ci jkl = λδi jδkl +2µδikδ jl , (19)

where λ and µ are the Lamé constants (cf. [BW97]). These
constants can be used to express the well-known Young
modulus E and the Poisson ratio ν as

E =
µ(3λ+2µ)

λ+µ
, ν =

λ

2(λ+µ)
. (20)

Fig. 5 illustrates the meaning of these constants. In this ex-
ample, a simple elastic beam is subjected to a longitudinal
loading along the x-axis. This loading leads to a deforma-
tion εxx = l−l0

l counteracted by the stress σxx in the same
direction. In linear small strain elasticity, these quantities are
related by

σxx

εxx
= E .

In addition to the extensional strain in the direction of the

Figure 5: An elastic beam is subjected to a horizontal load-
ing in x direction. Longitudinal as well as transverse defor-
mation can be observed.

loading, we can usually also observe deformations εyy =
εzz = h−h0

h in the orthogonal directions. Since this transverse
contraction can be completely attributed to the axial loading,
we can write

εyy = εzz =
ν

E
σxx ,

‡ In this context, the formulation in terms of tensors is common but
basically indicial, tensorial, and matrix notations are equivalent (see
also [Bel00]).

(see also [Hau04]). For physical realism, ν has to be such
that 0≤ ν≤ 0.5 . In the case of textiles, ν is usually smaller
than 0.3.

The material model described above corresponds to
Hooke’s law in three dimensions. Because of its linearity and
easy implementation, it is widely used in computer graphics.
In order to model the basic in-plane properties of textiles,
a more general material law is needed. In two dimensions,
stress and strain are described by 2×2 tensors and the elas-
ticity tensor consists of 16 components. Symmetry consider-
ations§ imply that

Ci jkl = Ckli j ,

as well as

Ci jkl = C jikl , Ci jkl = Ci jlk .

This results in an elasticity tensor of the form

C =


C1111 C1112 C1122

C1212 C1222
sym.

C2222

 ,

where components determined by symmetry have been
omitted. This tensor is minimal in the sense that, assuming
complete anisotropy, it cannot be further reduced. Hence, we
can identify at most six independent constants describing an
anisotropic, linear elastic material in two dimensions. For
implementation purposes, vectorial notation is more conve-
nient. As an example, the symmetric 2×2 stress tensor can
be written as a 3-vector,

σ =
[
σxx σyy σxy

]T
.

An analogous elasticity matrix can be derived from the elas-
ticity tensor (see e.g. [Bel00]) as

C =

C1111 C1122 C1112
C2222 C1222

sym. C1212

 . (21)

As an example for textile simulation, one could use four of
these constants: C1111 and C2222 are readily related to Young
moduli Eu and Ev in the fabric’s yarn directions weft and
warp, which do not necessarily coincide with the coordinate
directions x and y. Furthermore, C1212 is related to a shear
modulus G and C1122 to transverse contraction coefficients
νu and νv. With this material model, the stress-strain rela-
tionship can be written in matrix form asσu

σv
σuv

=
1

1−νuνv

 Eu νuEv 0
νvEu Ev 0

0 0 G(1−νuνv)

 . (22)

§ The elasticity tensor can mathematically be derived in terms of
second order partial derivatives of a stored strain energy function
(see [BW97]). The symmetry follows from the commutability of
the mixed partial derivatives.
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In a similar way to Eq. (22), the bending stress τ can be
related to the bending strain γ as

τ = Cbendγ , (23)

where Cbend models the bending properties of a specific ma-
terial (see e.g. [VMT05]).

Because of its linearity and easy implementation, the ma-
terial model described above is widely used for garment sim-
ulation. Beyond the small deformation range, the behaviour
of most materials cannot reasonably be approximated by a
linear model. In part 2 of the tutorial advanced constitutive
laws are discussed, which capture fabric behaviour more ac-
curately.

3.6. Spatial Discretisation with Linear Finite Elements

Having discussed constitutive models, we can now proceed
with the discretisation of the governing equilibrium equa-
tions (14), respectively (15). We will use a formulation based
on linear finite elements as an illustrative example [EKS03].

The finite element method is a procedure for the numer-
ical solution of partial differential equations. The origins of
this method can be found in structural mechanics, where the
distribution of strains and stresses throughout a body in static
equilibrium is sought. For the sake of brevity, we will not
describe in detail how the final discrete equations used for
implementation are derived. Instead, we will depart directly
from the discrete setting. The reader interested in detailed
derivations is referred to the standard text books [ZT00a]
and [Bat96].

Assuming a decomposition of the domain into disjoint el-
ements, the problem under consideration is formulated in
terms of a displacement approach. This means, that for every
node defined by the geometric decomposition, a displace-
ment vector from its initial position is to be determined, such
that the resulting final configuration is a solution to the elas-
ticity problem. This process derives from a variational prin-
ciple, the so called virtual work equation, which is mathe-
matically rooted in variational calculus. In such a principle,
an energy functional Π = Π(u) is sought to be rendered sta-
tionary, in this case with respect to nodal displacements u.
In static elasticity problems, this functional is the sum of po-
tential and strain energy¶. The functional is stationary if

δΠ(u) = 0 , for all variations δu . (24)

From this, the (dynamic) virtual work equation can be de-
rived as∫

Ω

δε : C(ε)dΩ−
∫

Ω

δu f dΩ+
∫

Ω

δu ρ ü dΩ = 0 . (25)

Here, the first term is due to the internal strain energy, the
second one accounts for body forces per volume, and the last

¶ The extension to kinetic energy is omitted here for simplicity.

term represents inertia forces. This equation forms the basis
for the subsequent finite element discretisation. An impor-
tant observation on the way towards the discrete formula-
tion is that, using further mathematical transformations, the
virtual work equation per element can be expressed alter-
natively in terms of equivalent internal and external nodal
forces. If we assume a linear relationship between displace-
ment and strain, as well as between strain and stress, the
problem can finally be expressed in the form of

Ku = f . (26)

The matrix K is called the stiffness matrix and f is the vec-
tor of external forces per node. Visually, this equation states
that in an equilibrium state the displacement of the nodes is
such that the equivalent internal nodal forces (resulting from
internal stress) exactly cancel the external forces. For dy-
namic problems, this equation has to be augmented by terms
accounting for inertia and viscous forces. This results in a
second order initial value problem which reads

Mü(t)+Du̇(t)+Ku(t)+ f = 0 , (27)

where M is the mass matrix and D is the viscosity matrix. In
this equation, the initial conditions u(0) = u0 and u̇(0) = v0
are assumed, where v0 denotes the initial velocity. Note that
the vector of nodal displacements u = u(t) now depends on
time. In the following, we will explain how to set up the
stiffness matrix for a practical example, namely the plane
stress analysis of two-dimensional elasticity. This particular
case can be used as a basis for a continuum mechanics-based
cloth simulator.

3.6.1. Plane Stress Analysis

Two of the most compelling advantages of the finite element
method are its modularity and versatility. Once a general
framework for the method has been laid out it can be ap-
plied to a broad range of problems. The specialisation on
the actual problem follows through decisions on additional
properties like material laws and, what is most important,
the choice of an actual element type. As a concrete example,
we will investigate the special case of plane stress analysis
in this section. Being the simplest candidate, the linear tri-
angular element with nodal displacement as only degrees of
freedom will be used.

Plane stress analysis can be applied to elasticity problems
that are inherently two-dimensional, i.e. where the in-plane
deformation is predominant. This restricts the range of prob-
lems to settings which are essentially flat or which can at
least be reasonably approximated with flat elements. Never-
theless, it is possible to use the plane stress assumption as a
basis for cloth simulation (see [EKS03]). In the following,
we will, for simplicity, assume that the object under consid-
eration lies in the xy-plane. As the name already indicates, in
the case of plane stress, the out-of-plane components of the
stress tensor are zero, i.e. σiz = σz j = 0 .

The geometry of the linear triangular element is given by

c© The Eurographics Association 2007.

EG:540



B. Thomaszewski, M.Wacker, W.Straßer / Advanced Topics in Virtual Garment Simulation - Part 1

the coordinates of its three points p1, p2 and p3 (cf. Fig.
6). The three linear nodal shape functions are completely

Figure 6: Geometry of a triangular element (left) and its
corresponding generic element (right).

defined by the requirement

Ni(p j) = δi j .

Further, the approximation of the displacement field over the
element is uniquely defined by the nodal in-plane displace-
ments ũx and ũy in the x and y-direction as

u = ∑
i

Niũi.

The definition of the shape functions, which are depicted in
Fig. 7, automatically ensures displacement continuity across
elements. For this simple element, an explicit expression for

Figure 7: The three linear shape functions of a triangular
element.

the shape functions in terms of the Cartesian coordinate can
readily be derived. Nevertheless, it is instructive for the gen-
eral case to take another approach. Notice that every trian-
gular element can be transformed to a generic element as
shown in Fig. 6. In this local space with coordinates ξ and η,
the shape functions are trivially given by

N1 = 1−ξ−η, N2 = ξ, N3 = η .

Likewise, it can easily be verified that the shape function
derivatives with respect to the local coordinates follow as

∂N1
∂ϑ

=
[
−1
−1

]
,

∂N2
∂ϑ

=
[

1
0

]
,

∂N3
∂ϑ

=
[

0
1

]
,

where ϑ =
[
ξ η

]T denotes the vector of local coordinates.
For the subsequent formulations, the shape function deriva-
tives with respect to the Cartesian coordinates are required.
These are obtained by use of the chain rule as

∂Ni

∂x j
=

∂Ni

∂ξ

∂ξ

∂x j
+

∂Ni

∂η

∂η

∂x j
.

In practice, the necessary computation of(
∂x
∂ϑ

)−1

can be accomplished without difficulty. As can be seen in the
following, the shape function derivatives are indeed the only
quantities actually needed in computation. Hence, there is no
need for explicitly deriving the shape function expressions.

The next stage consists in formulating strain. In the case
of moderately small deformations, a linear strain definition
in terms of the displacement field is common. Over a single
triangular element, the Cauchy strain is defined as

ε =


∂

∂x 0
0 ∂

∂y
∂

∂y
∂

∂x

u =
3

∑
i=0


∂Ni
∂x 0
0 ∂Ni

∂y
∂Ni
∂y

∂N i

∂x

 ũi =
3

∑
i=0

Biũi (28)

Once the strain is computed for an element, the stress fol-
lows by a simple linear relation (see Sec. 3.5).

Stiffness Matrix The point of departure for setting up the
stiffness matrix is the elemental virtual work equation. Using
some basic transformations, the integral term leading to the
global stiffness matrix can be written in terms of elemental
contributions as∫

Ω

BT CBu dΩ = ∑
i

∫
Ωi

BT CBui dΩi ,

provided that Ω = ∪iΩi and Ωi∩Ω j = ∅ for all i 6= j holds.
Hence, the stiffness matrix can be assembled in an element-
wise manner

Ki j = ∑
e

Ke
i j

where Ke
i j is the contribution of element e to the the entry

of the global stiffness matrix linking nodes i and j. In the
geometrically linear approach, the involved matrices Bi from
equation (28) are constant over one element. Together with
a linear elastic material law the above integral reduces to

K = ∑
i

∫
Ωi

BT
i CBi dΩ = ∑

i
BT

i CBitAi

where t is the constant material thickness and Ai is the area
of a triangular element.

Practical Considerations With the methods presented so
far only static analysis is possible. However, the extension
to dynamic simulation is not difficult as it consists mainly of
the addition of inertia and viscous forces already mentioned
in Eq. (16). The actual way in which this is accomplished
depends on the actual numerical time integration scheme. It
is worth noting that the stiffness matrix automatically sup-
plies a means of evaluating internal forces in the current
configuration. In this case a simple matrix-vector multipli-
cation is sufficient. However, if elastic forces are not inte-
grated implicitly (as in explicit schemes or certain variants
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Figure 8: Cross-sectional view of bending deformation with finite thickness. a) Bending leads to a combination of compressive
(top layer) and tensile (bottom layer) deformations. The neutral axis (shown in bold) remains unstretched. b) Linearly varying
stresses through the thickness imply the existence of a zero-stress axis, the neutral axis.

of the Newmark algorithm [BMF03]), they can be computed
directly without having to assemble the matrix itself.

4. The Importance of Bending in Cloth Simulation

Wrinkles and folds play an important role in the appear-
ance of real textiles. The way in which they form depends
mainly on the bending properties of the specific material
type. While a remarkable amount of effort has been spent
on precisely reproducing the in-plane forces, few existing
models are concerned with an accurate and consistent way
of modelling bending energy. Nevertheless, the characteris-
tic folding and buckling behaviour of cloth highly depends
on bending properties. The range of existing approaches to
modelling bending is broad and we will investigate the most
relevant methods in this section. From the field of engineer-
ing, the thin plate or thin shell equations, which will also
be introduced in the following, are known to be an ade-
quate approach to this problem. The associated minimisa-
tion problem includes fourth order derivatives with respect
to the displacements, which in most of the frameworks are
not readily computable. Therefore, a direct implementation
of such energy-based methods is often avoided. However,
many methods draw their inspiration from the theory of elas-
tic beams or plates and we will therefore start with a review
of the relevant matter.

4.1. Bending with Finite Thickness

Let us consider a thin plate and assume, for the moment, that
the plate is cylindrically bent. In this case, we can – without
loss of generality – restrict our investigations to a thin slice
of the plate. Thus, we arrive at a geometry corresponding to
the classical beam element (see e.g. [ZT00a]). In the cross-
sectional view shown in Fig. 8 it can be seen that the bottom
layer is stretched while the top layer has been compressed
(cf. [Kee99]). We can reasonably assume that the maximum
values of tension and compression occur on the boundary
layers. If we further assume that the induced stresses vary
monotonically between these maxima we arrive at an axis
with zero stress, the so called neutral axis (see Fig. 8). is the
primary parametrisation domain. In the following sections

we will see that the theory of elastic beams and plates is
essentially based on this dimension reduction.

4.2. Linear Elasticity of Beams and Plates

The simplest model corresponding to our interests is the one-
dimensional, linear elastic beam. As we will see in section
4.3, many existing approaches to bending in cloth simulation
rely on this model. In the corresponding elasticity problem,
the central unknown is the lateral deflection w of the neutral
axis. We begin the description by introducing the kinematic
constraints which lead to the common model of the Euler-
Bernoulli beam. In this model, the Kirchhoff Assumptions
are used, i.e. lines that are initially normal to the neutral axis
are supposed to remain straight (i.e. they do not bend), nor-
mal to the neutral axis, and unstretched. The deformed state
of the beam can be described by the displacements u0 and w0
of the neutral axis and a rotation θ of the normal (see Fig. 9).

Figure 9: Displacements u0 and w0 of the neutral axis and
cross-sectional rotation θ for a deformed beam element.

The horizontal and vertical displacements of any material
point in the beam are given by

u(x,z) = u0(x)− zθ(x), w(x,z) = w0(x) ,

with the strains

εx =
∂u
∂x

=
∂u0
∂x

− z
∂θ

∂x
.

Because normal lines are assumed to remain unstretched,
the strain εz in this direction can be neglected. Further, the
requirement that normal lines remain perpendicular to the
neutral axis implies

θ =
∂w0
∂x

. (29)

c© The Eurographics Association 2007.

EG:542



B. Thomaszewski, M.Wacker, W.Straßer / Advanced Topics in Virtual Garment Simulation - Part 1

Hence, we have for the transverse shear strain

εxz =
∂u
∂z

+
∂w
∂x

=−θ+
∂w0
∂x

= 0 . (30)

With the strains defined, the stresses now follow with an
appropriate constitutive law. If we assume a linear elastic
material law we have

σx =
E

1−ν2 εx , (31)

where E is Young’s modulus and ν is Poisson’s ratio. The
bending moment around the horizontal axis is obtained as

M = D
∂θ

∂x
=

Eh3

12(1−ν2)
∂

2w0
∂x2 , (32)

where the cubic thickness term h3 is due to the moment of
inertia. Note that for small deflections w0, the term ∂

2w0
∂x2

is actually the curvature κ of the beam. This allows us to
write the generalised stress-strain relationship of the Euler-
Bernoulli beam in a clearer manner as M = Dκ. The lin-
ear moment-curvature relationship is exploited by some
approaches in cloth simulation to directly model bending
forces (e.g. [VCMT95]).

In order to establish the governing equilibrium equations,
we consider the forces acting on a differential beam element.
In Fig. 10 loads and stress resultants on the beam are shown.

Figure 10: Distributed lateral forces q, transverse shear
force V , and bending moment M acting on a differential
beam element of length dx.

The beam is in equilibrium if the transverse internal force V
(or shear resultant) and the external distributed load q are in
balance. This leads to the equilibrium equation of the Euler-
Bernoulli beam

Eh3

12(1−ν2)
∂

4w
∂x4 =−q . (33)

The above formulations directly carry over to cylindri-
cally deformed plates. They can as well be translated to the
general theory of (doubly curved) thin plates (see [ZT00b]).
In engineering, thin plate elements are used to support lat-
eral loads. Because curvature now occurs in both transverse
directions, one speaks of the neutral surface, or simply mid-
surface, in analogy to the neutral plane. Again, it is assumed
that the stretch deformations of the mid-surface are negligi-
ble. Hence, the primary unknown is again the lateral deflec-
tion w. However, the deflection now varies in both x and y

direction which renders the problem two-dimensional. For
thin plates, the equilibrium equation is

Eh3

12(1−ν2)

(
∂

4w
∂x4 +2

∂
4w

∂x2∂y2 +
∂

4w
∂y4

)
=−p . (34)

This is a biharmonic equation involving fourth order partial
derivatives. Investigating the corresponding strains it can be
seen, that second order derivatives of the (lateral) displace-
ment field are required. The thin plate equations have been
used in computer graphics, too. For instance, they appear
in a common minimisation problem from variational design
(see e.g. [WW98]). Despite its demands on continuity, the
thin plate approach can be used in physically based simu-
lation. Since this theory does not take into account in-plane
deformations it has to be augmented by an appropriate mem-
brane model. This conjunction can be found in the class of
Kirchhoff-Love thin shell theories (see Sec. 4.4).

4.3. Existing Approaches: From Springs to Shells

In this section we will report on bending models used in
physically based simulation. In the seminal work of Ter-
zopoulos et al. [TPBF87] a model for the animation of elas-
tically deformable surfaces based on continuum mechan-
ics is presented. The authors derive an elastic strain energy
depending on the nonlinear metric and curvature tensors.
The associated partial differential equations are discretised
in space using finite differences on a regular quadrilateral
grid. Although this approach is based on a physically sound
theory, it was not widely adopted in the computer graphics
community, due to its significant computational complexity.
In the following years, approaches for the simulation of de-
formable surfaces like cloth mainly relied on particle and
mass-spring systems. For modelling forces due to bending
deformation, most of these methods use some kind of angu-
lar measure to approximate curvature. Breen et al. [BHW94]
were among the first to use a coupled particle system in cloth
simulation. The authors present an approach based on energy
potentials for modelling the static drape of cloth. Departing
from linear beam theory (see section 4.2), they first derive
the bending energy between two successive edges in a rect-
angular discretisation. Curvature is approximated by fitting
a circle through the three points involved in such a bend-
ing element. Using a biphasic curvature expression, Breen
et al. model bending energy by approximating the nonlin-
ear curves obtained from measurements with the Kawabata
Evaluation System [Kaw80] numerically with quadratic fits.
Once the energies are set up at the nodes, the gradients have
to be computed to obtain nodal forces. The approach pre-
sented by Eberhardt et al. [EWS96] extends this work to
the dynamic range. Computation times are greatly reduced
through the use of sophisticated integration schemes. How-
ever, Eberhardt et al. do not approximate curvature but di-
rectly use the angle as a deformation measure.

Volino et al. [VCMT95] use a mass-spring system in-
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spired by continuum mechanics. The basic bending element
is formed by two adjacent triangles from the underlying un-
structured grid (see Fig. 11). To determine curvature, a cir-
cle fitting inside the two triangles is found using the dihe-
dral angle. The curvature over an element is then obtained
as the inverse of the circle’s radius. The authors point out
that the curvature has to be limited to a certain maximum to
prevent bending forces from reaching infinity. Using linear
beam theory, the actual forces are deduced from the geome-
try of the involved triangles.

Figure 11: Different ways of modelling bending forces on
triangle meshes. Forces can be computed according to ten-
sile crossover springs (a), based on the dihedral angle (b), or
based on a weighted sum of vertex positions (c). (Fig. taken
from [VMT06b])

Baraff et al. [BW98] use the same basic bending element
as in [VCMT95]. Following their proposed computational
framework, a constraint expression for bending energy is de-
rived. This essentially corresponds to an energy term which
depends quadratically on the dihedral angle.

A different approach to cloth simulation was pro-
posed by Eischen et al [EDC96, EB00]. Their method is
based on the nonlinear shell theory derived by Simo et
al. [SFR89a, SFR89b]. A four node bilinear element with
nodal displacements and director rotations as the primary
unknowns is used for discretisation (see [SFR89a]). In
the context of shell theory, curvature is directly accessible
through bending strains and does not have to be approxi-
mated otherwise. Like in [BHW94] Eischen et al. use mea-
sured data obtained from the Kawabata Evaluation System
and use a 5th-order polynomial fit to approximate the curves.
In sum, the approach leads to highly nonlinear equilibrium
equations which have to be solved, for example, with the
Newton-Raphson procedure. This solver is coupled with an
adaptive arc length control to account for limit or bifurca-
tion points in the solution due to buckling instabilities. The
proposed method is limited to the static case and does not ac-
count for dynamic effects. For subsequent comparison, Eis-
chen et al. [EB00] present a particle-based approach inspired
from continuum mechanics. Like Breen et al. they use a
regular quadrilateral discretisation but derive forces directly
without explicit resort to energy potentials. However, their
constructions are based on linear elasticity theory. Bending
forces are derived using linear beam theory which again re-
sults in a linear moment-curvature relationship. The angle

formed by two consecutive edges is taken as a direct mea-
sure for curvature. The authors state that the outcome of the
two methods cannot be visually distinguished on the scale of
the images they produced.

More recently, Choi et al. [CK02] proposed a bending
model based on assumptions on the buckling behaviour of
fabric. Starting from a standard quadrilateral mass-spring
system, the basic bending element consists of an inter-
leaved spring. The authors advocate that compressive in-
plane forces on textiles lead to large out-of-plane deflections
once a critical loading is reached. For the notoriously insta-
ble post-buckling state the buckled shape is predicted as a
circular arc of constant length and curvature. With this as-
sumption, the curvature can be computed analytically with-
out any angle appearing. Hence, linear beam theory can be
applied to derive the bending energy. Lastly, the authors de-
rive expressions for force vectors and Jacobians at the nodes
which allows the use of an implicit time integration scheme.

Bridson et al. [BMF03] proposed another derivation of
bending forces for cloth simulation. Again, two adjacent tri-
angles form the basic bending element. With the assumption
that bending forces should neither cause in-plane deforma-
tion of the fabric nor lead to rigid body motions, they derive
the directions and relative magnitudes for the four bending
force vectors of an element. These vectors are then scaled
with a bending stiffness constant and the sine of the dihedral
angle (see Fig. 11, b). An additional scaling factor accounts
for anisotropy of the mesh. For the numerical time integra-
tion, Bridson et al. suggest to use a mixed implicit-explicit
integration scheme in which the (comparably small) bending
forces can be handled in an explicit manner while viscous
damping forces are treated implicitly. In this way computing
the complicated derivatives of the bending forces is avoided.

In the bending model used by Etzmuß et al. [EKS03]
forces are computed according to an approximation of the
surface Laplacian. This idea is motivated by the fact that dis-
crete mean curvature is closely related to the discrete surface
Laplacian (see [MDSB03]). Using linear finite elements, the
approximate Laplacian is computed for each element and
projected onto the corresponding vertex normals. As usual,
the element contributions are summed up to give the point
wise Laplacian for every vertex.

While in most of the previous approaches curvature is
approximated rather inaccurately, Grinspun et al. [GH∗03]
presented a method which is based on a sound curvature
derivation. Their work extends existing cloth simulators to
the range of objects for which the bending resistance is pre-
dominant. To this end, a discrete flexural energy potential
is established using differential geometry. Again, the basic
bending element consists of two adjacent triangles. The en-
ergy derives from an approximation to the squared difference
of mean curvature in the current and initial configuration.
The derivatives of the bending energy are intricate to com-
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pute and hence the authors suggest the use of an automatic
differentiation system.

Recently, Volino et al. [VMT06b] presented an approach
which combines fairly good accuracy for representing quan-
titative bending stiffness with a simple and efficient com-
putational procedure. In this method, a bending vector is
computed that represents the bending of the surface through
a simple linear combination of particle positions (see Fig.
11, c). This vector is then redistributed as particle forces
according to the bending stiffness of the surface. It can be
shown that this scheme preserves total translational and ro-
tational momentum without the need of recomputing the dis-
tribution coefficients according to the current position of the
particles. This leads to a very simple computation process
which is entirely linear, and thus very well adapted to im-
plicit numerical integration. In terms of computational sim-
plicity and speed, this approach competes well with simpler
spring models, since it requires only linear operations, which
can conveniently be cast into matrix form. Additionally, the
Jacobian of the bending forces is constant throughout the
simulation, which is a considerable computational advantage
when using implicit numerical integration methods. The au-
thors demonstrated that the accuracy of their model is close
to the more accurate normal-based method as used in, e.g,
[BMF03]. Nevertheless, it does not require expensive opera-
tions like trigonometric functions or square root evaluations.

Assuming an inextensible surface and, thus, isometric de-
formations, Bergou et al. [BWH∗06] derived a bending en-
ergy which depends quadratically on nodal positions. Simi-
larly to [VMT06b], this leads to a computationally economic
model with bending forces linear in positions and a constant
associated Jacobian. An extensive analysis of this and other
isometric bending models based on discrete curvature ener-
gies can be found in [WBH∗07].

4.4. SubdivisionFE

As pointed out above, the thin shell equations are a good
choice when physical accuracy is important. A correspond-
ing finite element approach requires a C1-continuous dis-
placement field (to be exact the shape functions have to be
in H2). The main problem with this requirement is guar-
anteeing continuity across elements which usually necessi-
tates the use of additional variables (e.g. nodal rotations and
slopes). An elegant and convenient way to avoid this addi-
tional complexity is to use subdivision finite elements as a
basis (see [COS00]). The following section gives a brief ac-
count of the approach presented in [TWS06], which utilizes
this type of finite elements .

4.4.1. Thin Shell Mechanics

In the Kirchhoff-Love theory of thin shells the configura-
tion mapping (2) is expressed in terms of the mid-surface

parametrisation x(θ1,θ2) (see Fig. 12) as

ϕ(θ1,θ2,θ3) = x(θ1,θ2)+θ
3a3(θ

1,θ2) , (35)

where θ
i denote curvilinear coordinates and a3 is the director

field normal to the surface. In analogy to Eq. (2) we write

Figure 12: A material point (red) on the shell’s mid-surface
with basis vector frame in the initial, reference, and current
configuration (from left to right).

x(θ1,θ2) = x̄(θ1,θ2)+u(θ1,θ2) . (36)

From this, tangential surface basis vectors can be defined as

aα = x,α , (37)

where the comma denotes partial differentiation. From
hereon, we use Greek indices to denote variables, which can
take on the values {1,2} in order to distinguish from Latin
indices, which can take on the values {1,2,3}. Moreover,
the covariant tangent base vectors are given through differ-
entiation of the configuration mapping as

gα = ϕ,α = aα +θ
3a3,α (38)

from which the surface metric tensor is derived as

gi j = gi ·g j. (39)

Following Eq. (5) this leads to the definition of the Green
strain

ε
G
i j =

1
2
(gi j − ḡi j) = αi j +θ

3
βi j , (40)

where α and β are membrane and bending strains, respec-
tively. In the Kirchhoff-Love theory (cf. Sec. 4.2), the direc-
tor a3 is assumed to stay normal to the surface, straight and
unstretched,

a3 =
a1×a2
|a1×a2|

. (41)

Consequently, we have α3β = αα3 = 0. The strains then sim-
plify to

ααβ =
1
2
(aα ·aβ− āα · āβ), βαβ = (āα,β · ā3−aα,β ·a3) .

Departing from aα = x̄,α + u,α and neglecting nonlinear
terms, this can be recast to an expression which is linear in
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displacements [COS00]. Resultant membrane and bending
stresses follow as

nαβ =
∂Ψ

∂ααβ

, mαβ =
∂Ψ

∂βαβ

, (42)

where Ψ is the strain energy density. The particular form of
Ψ depends again on the specific material law used (see Sec.
3.5). As for the plane stress case, it is possible to use the
corotational strain measure of Eq. (11), although the rotation
field is determined in a slightly different way (see [TWS06]).

4.4.2. Subdivision-Based Finite Elements

Subdivision is a process for constructing smooth limit sur-
faces through successive refinement of an initial control
mesh. As one of the most prominent examples Loop’s subdi-
vision scheme fulfils all prerequisites to serve as a basis for
the thin shell discretisation. Besides the usual C1-continuity
inherent to subdivision surfaces, an important feature of this
schemes is that the curvature of the resulting limit surface
is L2- or square integrable [RS01]. Due to this property, the
subdivision basis functions can be used as shape functions
for the FE-solution of the thin shell equations. In each step
of this subdivision method, the positions of newly inserted
nodes as well as those of old nodes are computed through a
linear combination of vertices from the coarse mesh deter-
mined by the so called subdivision mask.

Only the immediate neighbours (i.e. the 1-ring) of a ver-
tex have influence on this computation which gives rise to an
efficient implementation. The process of subdivision itself
can be considered as a linear operation and consequently be
written in matrix form. It is therefore possible to directly de-
rive properties like derivatives of the limit surface using an
Eigenanalysis of the subdivision matrix. This yields simple
expressions that can be computed efficiently. The resulting
limit surface (or more generally, the limit field) can be eval-
uated at an arbitrary point in the interior of a patch, which
is an important property for numerical integration. The key
observation is that in regular settings (i.e. when all involved
vertices have valence 6) Loop’s scheme leads to generalised
quartic box splines. In this case surface properties in one
patch are completely defined by the 12 nodal values in the
1-neighbourhood (see Fig. 14) and the associated box spline
basis functions Ni.
For instance, if we denote the local patch coordinates by θ

α,
the limit surface can be expressed as

x(θ1,θ2) =
12

∑
i=1

Ni(θ
1,θ2)xi , (43)

where xi are the nodal positions of the underlying mesh.
In the same way, the displacement field interpolation is ob-
tained from the nodal values. Additionally, differential quan-
tities can be determined as

x,α(θ1,θ2) =
12

∑
i=1

Ni,α(θ1,θ2)xi . (44)

Figure 14: 1-ring neighbourhood of a regular patch con-
sisting of 12 nodes.

If the patch has an irregular vertex, the box spline assump-
tion no longer holds and thus interior parameter points can-
not be evaluated. For the following finite element discretisa-
tion, however, only quantities at the barycenter of the trian-
gles are needed for integral evaluation. Hence, Cirak et al.
required the initial mesh to have at most one irregular vertex
per triangle. Then, after one subdivision step the barycenter
lies again inside a regular patch (see Fig. 14). This process of
subdivision and evaluation of the newly generated patch can
again be expressed as a sequence of matrix multiplications.

Spatial Discretisation With the definition of the membrane
and bending strains and assuming a linear elastic material
(Eq. (17)) the internal energy from the virtual work equation
(25) can be rewritten as∫

Ω

δε : C(ε)dΩ =
∫

Ω

(
δα

T Hmα+δβ
T Hbβ

)
dΩ , (45)

where Hm and Hb are matrices corresponding to the mem-
brane and bending part of the material law (see [COS00] for
a complete derivation). Due to the linear strain interpolation,
we have

α(θ1,θ2) =
N

∑
i

Mi(θ
1,θ2)ui, β(θ1,θ2) =

N

∑
i

Bi(θ
1,θ2)ui

for matrices Mi and Bi relating nodal displacements ui to
membrane and bending strain. This gives rise to a formula-
tion of the complete system in the classical form of

Ku = f (46)

with vectors of nodal displacement u and forces f. The stiff-
ness matrix K can be assembled in the usual element-wise
fashion

Ki j = ∑
e

∫
Ωe

(
MT

i HmM j +BT
i HbB j

)
dΩ = ∑

e
Ke

i j . (47)

The integral in this equation can be evaluated using numer-
ical quadrature. In this form, the above equations are only
valid on regular patches. However, as mentioned above, in
irregular settings one subdivision step is sufficient for eval-
uations at the barycenters. For a patch with an irregular ver-
tex of valence N let S denote the the subdivision operator
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Figure 13: A comparsion of the sparsity structures resulting from an ordinary finite element approach (left) and the subdivision
FE-based method (middle) for a regularly tesselated mesh comprised of 1448 vertices (right).

(see [COS00]). Further, let P be the projection operator ex-
tracting the 12 vertices corresponding to the central regular
subpatch (Fig. 14, right). Then we can write

Ke
i j =

∫
Ωe

[
ST PT

(
MT

i HmM j +BT
i HbB j

)
PS
]

dΩ (48)

and thus simply include the conceptual subdivision step into
the stiffness matrix.

To cover dynamic effects of moving and deforming ob-
jects inertia as well as viscous forces have to be included.
This leads to a second order ODE in time analogous to Eq.
(27). After transformation into a set of coupled first order
ODEs, standard numerical time integration schemes can be
applied (see [HE01]).

Discussion The setup process for the matrix K in Eq. (48)
is very similar to a common FE-formulation. The evalua-
tion cost for an element matrix in this approach, however, is
slightly higher than for usual methods. This is mainly due to
the increased connectivity of the elements: a regular patch
contains a neighbourhood of 12 nodes where for standard
approaches there are only three. This means that more en-
tries have to be computed and written into the system matrix
(see Fig. 13). As a consequence, the setup an resolution of
the linear system is slower than for standard approaches like
the one described in Sec. 3.6. To put this into the right con-
text, processing times for collision detection and response
can still be much larger. A striking advantage of this ap-
proach is that it alleviates the modelling of a broad range
of different materials (see Fig. 15). For example, because
the full curvature tensor is available (cf. Eq. (25)), bending
properties can directly be controlled, allowing for complex
anisotropic models. Since this approach is entirely based on
the sound mathematical foundation of continuum mechan-
ics, the simulation is largely independent of discretisation
throughout a broad range of resolutions.

5. Parallel Techniques for Cloth Simulation

Up to this point we have mostly dealt with methods that
were designed to exhibit as much visual realism as possi-
ble. Moreover, techniques for measuring and reproducing

Figure 15: Top: Different types of folds on a garment’s
sleeve generated using a typical textile material. Bottom:
Sequence taken from an animation of axial compression of a
cylinder with a metal-like material.

real world materials in an accurate way were discussed. This
realism and accuracy, however, comes at a price: the compu-
tational costs can be very high and run times for realistic sce-
narios are often excessive. Most of the computation time is
spent on two stages, time integration and collision handling.
In the following, we will therefore examine these two ma-
jor bottlenecks, which are present in every physically-based
cloth simulation system.

5.1. Implicit time integration

The ordinary differential equation resulting from the tem-
poral discretisation of Eq. (27) are notoriously stiff. Due
to stability reasons implicit schemes are widely accepted
as the method of choice for numerical time integration (cf.
[BW98]). Implicit schemes require the solution of a usually
nonlinear system at each time step. As a result of the spa-
tial discretisation, the matrix of this system is usually very
sparse. There are essentially two alternatives for the solution
of the system. One is to use an iterative method like the pop-
ular conjugate gradients (cg) algorithm [She94]. Another is
to use direct solvers based on factorization. The cg-method
is more popular in computer graphics as it offers much sim-
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pler user interaction, alleviates the integration of arbitrary
boundary conditions and allows balancing accuracy against
speed. We will therefore focus on the cg-method in the fol-
lowing.

5.2. Collision Handling

For realistic scenes, the interaction of deformable objects
with their virtual environment has to be modelled. This in-
volves the detection of proximities (collision detection) and
the reaction necessary to keep an intersection-free state (col-
lision response). In the remainder, we refer to these two com-
ponents collectively as collision handling. We usually dis-
tinguish between external collisions (with other objects in
the scene) and self-collisions. For each of these types differ-
ent variants of algorithms are usually used. Even with com-
mon acceleration structures, these algorithms are still com-
putationally expensive. For complex scenarios with compli-
cated self-collisions the collision handling can easily make
up more than half of the overall computation time. It is there-
fore a second bottleneck for the physical simulation and
hence deserves special attention.

Target Architecture The distinctive characteristic of paral-
lel platforms is their memory architecture. In the following
we will consider both distributed and shared address spaces.
As exemplary representatives we choose clusters built from
commodity components for the distributed memory setting
and multi-core, multi-processor systems for the shared mem-
ory case. Although the basic ideas remain the same, the spe-
cific form and implementation of the actual algorithms de-
pend on the target architecture. This is due to the fact that for
different platforms, optimal performance is achieved in quite
different ways as well. For example, one of the most impor-
tant objectives on distributed memory architectures (DMA)
is to minimize communication between the nodes of the
cluster. While (inter-process) communication on shared ad-
dress space architectures is not a costly aspect, care has to
be taken for synchronization (including e.g. data access by
multiple threads) as well. We will point out important differ-
ences at the appropriate places.

Programming Paradigms and Implementation Another
distinguishing property of a given architecture is how it
supports and favours different programming paradigms. On
DMA machines a widely adopted strategy is that of single
program multiple data (SPMD) where every node executes
the same code but has different data to operate on. The com-
munication in this case is usually message passing style, for
example an implementation of the message passing inter-
face (MPI). As a concrete example, the MPI-based numer-
ical toolkit PETSc offers extensive support for SPMD style
programming in scientific computation. Although it supports
other approaches and can be run on many architectures,
PETSC is especially well suited for large scale applications
on DMAs. It can also be used in the shared memory setting

although in this case, message passing is actually not nec-
essary and synchronization can often be implemented more
efficiently. Additionally, it is often desirable on these plat-
forms to use a multi-threaded programming approach which
is not supported by PETSc. However, most of the operating
systems directly support this paradigm and there are numer-
ous toolkits and frameworks offering convenient interfaces
for thread-based programming. Another interesting alterna-
tive with growing acceptance is the OpenMP interface. This
interface offers extensive support for exploiting loop-level
parallelism. It is entirely based on compiler directives and is
therefore highly portable. Moreover, the user does not have
to care about thread accounting (i.e. creation, synchroniza-
tion, termination) which makes this interface easy to use.

5.3. Parallel Solution of Sparse Linear Systems

As was stated above, one of the major computational bur-
dens is due to the solution of a sparse linear equation system
related which derives from implicit time integration. We as-
sume that a sparse linear system of the form Ax = b is to be
solved up to some residual tolerance using the cg-method.
The number of necessary iterations and therefore the speed
of convergence depends on the condition number of the ma-
trix A. Usually, this condition number is improved using a
preconditioning matrix M leading to a modified system

M−1Ax = M−1b,

where M−1A is supposed to have a better condition number
and M−1 is fairly easy to compute. The choice of an ap-
propriate preconditioner is crucial because it can reduce the
number of iterations substantially. The setup and solution of
the linear system now breaks down to a sequence of opera-
tions in which (due to their computational complexity) the
sparse matrix vector multiplication (SpMV) and the applica-
tion of the preconditioner are most important. As a basis for
the actual parallelization we will consider problem decom-
position approaches subsequently.

5.4. Problem Decomposition

In the following explanations we use the compressed row
storage (CRS) format for sparse matrices in which nonzero
entries are stored in an array along with a row pointer and
a column index array (see [Saa03]). The most intuitive (and
abstract) way to decompose the SpMV operation into a num-
ber of smaller sub-problems is to simply partition the matrix
into sets of contiguous rows. The multiplication can then be
carried out in parallel among the sets. This simple approach
has several disadvantages. First, the matrices we deal with
are always symmetric (due to the underlying PDE). Hence,
only the upper triangular part, including the diagonal, has
to be stored. This leads to smaller memory requirements for
the data as well as for the index structure. In its sequential
version, the resulting numerical kernel is more efficient (cf.
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Figure 16: The Phlegmatic Dragon model is decomposed
into 8 disjoint regions (indicated by different colours). This
partitioning serves as a basis for parallel processing.

[LVDY04]): it visits every matrix entry only once, perform-
ing both dot products and vector scalar products. However,
the access pattern to the solution vector is not as local as
for the non-symmetric case, i.e., entries from different sets
need to be written by a single processor. The required syn-
chronization would make a direct parallel implementation of
the symmetric SpMV kernel inefficient. Another reason why
the above decomposition is inadequate is that it does not take
into account two other important components of linear sys-
tem solution: matrix assembly and preconditioning. Meth-
ods based on domain decomposition are better suited for
this case. They divide the input data geometrically into dis-
joint regions. Here, we will only consider non-overlapping
vertex decompositions, which result in a partitioning P of
the domain Ω into subdomains Ωi such that Ω = ∪iΩi and
Ωi ∩Ω j = ∅, for i 6= j. Decompositions can be obtained us-
ing graph partitioning methods such as Metis [KK96] in our
case. An example of this can be seen in Fig. 16 and Fig. 17,
which also shows a special vertex classification. This will be
explained in the next section.

5.5. Parallel Sparse Matrix Vector Multiplication

Let ni,loc be the number of local vertices belonging to par-
tition i and let Vi be the set of corresponding indices. These
vertices can be decomposed into nint internal vertices and
nbnd interface or boundary vertices, which are adjacent to
next vertices from other partitions (see Fig. 17). If we re-
order the vertices globally such that vertices in one partition
are enumerated sequentially we obtain again a partitioning
of the matrix into a set of contiguous rows. The rows ai,0
to ai,n of matrix A where i ∈ Vi have the following special
structure: the block Ai,loc defined by {alm|l ∈Vi,m∈Vi} and
lying on the diagonal of A is symmetric. The nonzero en-
tries in this block describe the interaction between the local
nodes of partition i. More specifically, this means that when

Figure 17: Decomposition of a mesh into four disjoint par-
titions indicated by different colours. The associated vertex
ordering leads to a special structure of the matrices and the
source vector.

nodes l and m are connected by an edge in the mesh, there
is a nonzero entry alm in the corresponding submatrix of A.
Besides this symmetric block on the diagonal there are fur-
ther nonzero entries ale where l ∈Vi is an interface node and
e /∈Vi. These entries describe the coupling between the local
interface nodes and neighbouring external nodes. The multi-
plication can be carried out efficiently in parallel if we adopt
the following local vertex numbering scheme (cf. [Saa03]).
The local vertices are reordered such that all internal nodes
come before the interface nodes. For further performance en-
hancement, a numbering scheme that exploits locality (such
as a self avoiding walk [OBHL02]) can be used to sort the
local vertices. Then, external interface nodes from neigh-
bouring partitions are locally renumbered as well. Let Aext
be the matrix which describes the coupling between internal
and external interface nodes for a given partition. Notice that
Aext is a sparse rectangular matrix with nbnd rows. With this
setup the multiplication proceeds as follows

1. y(0,nloc) = Aloc · x(0,nloc)
2. y(nint ,nloc)+ = Aext · xext(0,next)

The first operation is a symmetric SpMV, the second one
is a non-symmetric SpMV followed by an addition. Both
these operations can be carried out in parallel among all par-
titions. This decomposition is not only used for the SpMV
kernel but also as a basis for the parallel matrix assembly,
preconditioner setup and preconditioner application. Addi-
tionally, it can be implemented efficiently on both distributed
and shared memory architectures.

5.6. Parallel Preconditioning

In order to make the cg-method fast, it is indispensable to
use an efficient preconditioner. There is a broad variety of
different preconditioners ranging from simple diagonal scal-
ing (Jacobi preconditioning) to sophisticated multilevel vari-
ants. For the actual choice one has to weigh the time saved
from the reduced iteration count against the cost for setup

c© The Eurographics Association 2007.

EG:549



B. Thomaszewski, M.Wacker, W.Straßer / Advanced Topics in Virtual Garment Simulation - Part 1

and repeated application of the preconditioner. Additionally,
one has to take into account how well a specific precondi-
tioner can be parallelized. Unfortunately, designing efficient
preconditioners is usually the most difficult part in the par-
allel cg-method [DHv93]. As an example, the Jacobi pre-
conditioner is very simple to set up and apply even in par-
allel but the reduction of necessary iterations is rather lim-
ited. Preconditioners based on (usually incomplete) factor-
ization of the matrix itself or an approximation of it are more
promising. One example from this class is the SSOR precon-
ditioner. It is fairly cheap to set up and leads to the solution of
two triangular systems. For the sequential case, this precon-
ditioner has proved to be a good choice in terms of efficiency
[HE01]. However, parallelizing the solution of the triangular
systems is very hard. Even if it is not possible to decouple the
solution of the original triangular systems into independent
problems we can devise an approximation with the desired
properties. Let Ā be the block diagonal matrix with block en-
tries Aii = Ai,loc, i.e. the external matrices Aext are dropped
from A to give Ā. Setting up the SSOR-preconditioner on
this modified matrix leads again to the solution of two trian-
gular systems. However, solving these systems breaks down
to the solution of decoupled triangular systems correspond-
ing to the Ai,loc blocks on the diagonal. This means that they
can be carried out in parallel for every partition. For rea-
sons of data locality we use n smaller SSOR preconditioners
constructed directly from the Ai,loc-blocks. Approximating A
with Ā means a comparably small loss of information which
in turn leads to a slightly increased iteration count. How-
ever, this increase is usually small compared to the speedup
obtained through parallelization.

5.7. Optimizations

Besides the topics that were treated above a further aspect
restricts the efficiency of a parallel implementation of the
cg-method. Dense matrix multiplications usually scale very
well since they have regular access patterns to memory and a
high computational intensity. This is not true for the SpMV
case. A typical SpMV algorithm using a matrix in the CRS
format looks as follows:

Algorithm 1 Symmetric Spmv
1: for i = 1 to nrows do
2: start = ptr[i],end = ptr[i+1];
3: for j = start to end do
4: y[i]+ = dat[ j]∗ x[ind[ j]];
5: end for
6: end for

It can be seen that the actual matrix data Adat as well as
the index structure ind is traversed linearly (with unit stride)
while accesses to the vector’s data xdat occur totally arbi-
trary, i.e. the locality of these data accesses cannot be as-
sumed. It can also be observed that the computational in-
tensity per data element is rather modest. The performance

of the SpMV algorithm is therefore mostly limited by mem-
ory bandwidth and cache performance. Because of this, it
is important to improve data locality and thus cache perfor-
mance. A good way to achieve this is to exploit the natural
block layout of the matrix as determined by the underlying
PDE: the coupling between two vertices is described by a
3x3 block – therefore nonzero entries in the matrix occur
always in blocks. This blocked data layout already compen-
sates for a lot of the inefficiency. An additional benefit can
be achieved using single precision floating point data instead
of double precision. This reduces the necessary matrix data
(not including index structure) transferred from memory by
a factor of two.

5.8. Parallel Collision Handling

From the parallelization point of view, the problem of colli-
sion handling differs substantially from the physical model.
Collisions can be distributed very unevenly in the scene and
their (typically changing) locations cannot be determined
statically. This is why the naive approach of letting each pro-
cessor care for the collisions of its own partition can lead
to considerable processor idling, which seriously affects the
overall parallel efficiency. Therefore, a dynamic problem de-
composition is mandatory. Because bounding volume hier-
archies (BVHs) are widely used for collision detection be-
tween deformable objects, it is reasonable to use this ap-
proach as a basis for a parallel implementation. As we have
seen in a previous section, we can generally distinguish be-
tween two different types of collisions: external collisions
and self collisions. To detect the first type we have to test our
deformable object against every other (rigid or deformable)
object in the scene. For the latter case, the deformable ob-
ject has to be tested against itself. In this section, we will
first lay down the basic algorithm for parallel collision han-
dling. Subsequently, necessary adaption for both distributed
and shared memory architectures will be addressed.

5.8.1. Basic Problem Decomposition

The recursive collision test of two BVHs can be considered
as a depth-first tree traversal. For inducing parallelism, this
procedure is implemented using a stack which holds individ-
ual tests of two BVs.

In the BVH testing procedure, expansion of a tree node
results in two additional tree nodes each representing a re-
fined BVH test. As in the sequential procedure, the first test
is carried out by starting a new recursion level. However, be-
fore entering the recursion, the second test is pushed onto
the stack. The traversal goes on downwards until a leaf is
reached. Upward traversal begins by processing elements
from the stack. In this way, all of the nodes in the tree are
visited. Fig. 18 shows a snapshot of a BVH testing process
along with the corresponding state of the stack. Note that,
although we assume a binary tree in this example, an ex-
tension to general n-ary trees is possible (see [TPB07] for
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Figure 18: Dynamic problem decomposition. The arrow indicates the current state of the BVH testing procedure. The stack on
the right stores the root of untried branches.

details). With a proper indexation of the hierarchies a single
test can be represented using only a few indices and can thus
be stored economically in appropriate data structures.

Tests which are recorded on the stack can be executed in
one of the following ways:

• A test can be removed from the top of the stack and ex-
ecuted sequentially when the recursion gets back to the
current level. Conceptually, this case is very similar to the
procedure of the original algorithm.

• One or more tests can be removed from the bottom of the
stack and executed by a newly generated (sub-)task. For
each assigned test, this task executes a BVH testing pro-
cedure for which the considered test defines the root of a
BVH testing tree.

In oder to prevent that tasks of too fine a granularity are
generated, several tests can be removed at once from the
stack and assigned to a single task. The actual decomposition
and load balancing strategy depends on the specific platform
and is discussed in subsequent paragraphs.

5.8.2. Distributed Memory

The first step for embedding the above algorithm into the
SPMD framework is to construct a BVH. The physical mod-
elling phase provides a decomposition of the input mesh into
local meshes owned by nodes of the cluster. On each node,
a BVH hierarchy is set up on this mesh using a standard
top-down approach. Once this is done, the root nodes of the
different processors can be combined to form a global hierar-
chy of the mesh. Since the structure of this hierarchy is kept
constant throughout the simulation, this global hierarchy can
safely be replicated once on every node. This replication
late enables the location-independent execution of sub-tasks.
While external collision can now be treated in the usual
way, care has to be taken for self-collisions. Two different
types of self-collisions have to be distinguished: collisions
between sub-meshes of different processors and those that
are real self-collisions on the processor-local mesh. For the
latter case, existing techniques can be used since this corre-
sponds to the usual self collision problem. For the case of
inter-processor self-collisions, the corresponding BVHs are
tested against each other, similar to the way standard colli-
sions are treated.

All discussed BVH tests form a set of top-level tasks of the
parallel collision handling method. For scenes where colli-
sions are not uniformly distributed, the number of top-level
tasks and also the amount of time to execute individual top-
level tasks can differ considerably among the processors.
Hence, a load balancing scheme which distributes the load
among the processors evenly is mandatory.

Dynamic Problem Decomposition and Load Balancing
As described above, every processor maintains a stack data
structure where dynamically generating tasks are stored. For
dynamic load balancing tasks must be transferred between
processors at run-time. In distributed memory architectures,
task transfers require explicit communication operations.
Depending on the information associated with a task, task
transfers can significantly contribute to the overall parallel
overhead, especially when the computation to communica-
tion ratio of the tasks is poor. Finding a compact descrip-
tion of tasks is therefore crucial to minimize communication
overhead. In our case, the cost for transferring a task is rather
low.

Because the global BVH is replicated on every node, indi-
vidual tests can be represented simply as an array of integers
of the form (ob j1,dop1,ob j2,dop2). The two BV hierar-
chies to be tested are identified by ob j1 and ob j2, and the
root of the test is specified by dop1 and dop2.

The additional costs for building the copies of the BV hi-
erarchies at the initialization phase are negligible since stor-
age requirements are comparably low (say, only a few mega-
bytes at max) even for complex scenes. The overhead dur-
ing the course of the simulation is also insignificant: Updat-
ing hierarchies (at the beginning of every collision handling
phase) requires one all-to-all broadcast operation to provide
all processors the complete positions vector.

The dynamic load balancing process is responsible for
triggering and coordinating task creation and task transfer
operations in order to prevent that processors run idle. In
order to achieve high scalability, a fully distributed scheme
should be used. The distributed task pool model is a specifi-
cally well-suited basis. In this scheme every processor main-
tains a local task pool. Upon creation, a task is first placed
in the local task pool. Subsequently, it can be instantiated
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and executed locally, when the processor gets idle. It also
might be transfered to a remote task pool for load balancing
purposes. As discussed subsequently, task creation and task
transfer operations are initiated autonomously by the proces-
sors.

To achieve a high degree of efficiency an (active) proces-
sor must be able to satisfy task requests from other proces-
sors immediately. Additionally, we must ensure that tasks
with sufficient granularity are generated. In our case, this
means that when a task is to be created, the stack must con-
tain a minimum number of BVH tests which can be assigned
to the task. In order to meet both requirements, we generate
tasks in a proactive fashion, i.e. independently of incoming
tasks requests. Tasks are generated (and placed in the local
task pool) when the size of the stack exceeds a threshold
value τ. Since task generation generally imposes an over-
head (even when the new task is subsequently executed on
the same processor) we increase τ linearly with the current
size of the task pool σ: τ = aσ + b. This simple heuristics
enables us on the one hand to provide in a timely fashion
tasks with a minimum granularity (determined by b) and en-
sures on the other hand that the overhead of additional task
decomposition operations is compensated by an increased
granularity of the resulting tasks. The parameter values a and
b largely depend on the parallel architecture used and should
be determined experimentally. Usually, choosing a = 2 and
b = 8 delivers the best results.

A new task gets τ/2 tests, where the tests are taken from
the bottom of the stack. Tests are taken from the bottom of
the stack for creating new tasks because such tests have a
higher potential of representing a large testing tree since they
originate closer to the root of the current testing tree.

For transferring tasks between task pools, a receiver ini-
tiated scheme is employed. When a processor runs idle and
the local task pool is empty, it tries to steal tasks from remote
pools. First, a victim node is chosen to which a request for
tasks is sent. For selecting victims we apply a round robin
scheme. If available, the victim transfers a task from its pool
to the local pool. Otherwise the request is rejected by send-
ing a corresponding message. In the latter case another vic-
tim node is chosen and a new request is issued.

For the actual implementation of the previously described
methods, tools supporting distributed multithreading are
needed. An efficient and convenient variant can be found
in the parallel system platform DOTS [BKLwW99]. DOTS
provides extensive support for the multithreading parallel
programming model (not to be confused with the shared-
memory model) which is particularly well suited for task-
parallel applications that employ fully dynamic problem de-
composition. In this way, the user does not have to care
for task transfer and thread accounting explicitly, which is
a great alleviation. Combining PETSc and DOTS, the colli-
sion handling algorithm can be implemented efficiently on

DMAs. For a thorough performance analysis the interested
reader is referred to [TB06, TB07].

5.8.3. Shared Memory

Compared to the approach for DMAs the basic paralleliza-
tion strategy remains the same. Because communication is
cheaper and thus dynamic collaboration between threads is
less expensive, the shared memory setting enables us to set
up heuristics exploiting temporal and spatial coherence. In
this way, thread creation overhead can be controlled effec-
tively.

Unlike in the distributed memory setting we do not have
to care for load balancing explicitly. As long as there are
enough threads ready for execution the scheduler will keep
all cores busy. However, for problems with high irregularity,
like parallel collision handling, it is generally impossible to
precisely adjust the amount of logical parallelism to be ex-
ploited to the amount of available parallelism (i.e., idle pro-
cessors). Especially on shared memory architectures, thread
creation overhead can considerably contribute to the overall
parallel overhead. Therefore, an over-saturation with threads
has to be avoided as well.

In [TPB07] thread creation overhead is minimized on two
levels. On the algorithmic level, a heuristics-based approach
is used which prevents threads with too fine a granularity
from being generated. On the implementation level, the pro-
cess of thread creation and thread execution is decoupled.
The next two paragraphs explain these optimizations in more
detail.

Controlling Task Granularity For effectively controlling
the granularity of a task, we need a good estimate of how
much work corresponds to a certain task. The computational
cost for carrying out a test in the collision tree is determined
by the number of nodes in its subtree. Generally, this num-
ber is not known in advance. Because of the inherent tempo-
ral locality due to the dynamic simulation we can, however,
exploit coherence between two successive time steps. After
each collision detection pass we compute the number of tests
in the respective subtree for every node in the collision tree
using back propagation. This information is then used as a
work estimate for tasks in the subsequent collision handling
phase.

In this way, creating tasks with too small an amount of
work can be avoided. Additionally, this information can be
used to determine which tests should be carried out imme-
diately. The error involved in the work estimation is usually
very small. This can also be seen in Fig. 20 which shows a
comparison of the estimated and the actual work load for 5.5
seconds of simulation for a representative test scene (see Fig.
19). The new task splitting scheme performs robustly and
always keeps track with usual approaches. In most applica-
tions, this scheme even results in a significant performance
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Figure 19: Three shots from a representative test scene. A long (00.5m x 2.00m) ribbon consisting of 4141 vertices falls on two
slightly inclined planes and slides onto the floor. Due to surface friction complex folds are formed as it slides over the planes.
This again leads to complicated self-collisions which are reliably handled by the parallel collision handling algorithm.

gain [TPB07]. This attests to the fact that temporal coher-
ence in dynamic collision detection is a valuable source for
performance improvements.

Figure 20: Work estimate error for a typical test scene. The
diagram shows the deviation from the actual amount of work
over time in percent. Even in this very dynamic scene, the
temporal coherence is high.

Implementation For an implementation of the above algo-
rithm, methods supporting the multithreaded programming
are needed. Again, DOTS is an attractive candidate for this
purpose. In order to ensure high performance on shared
memory architectures, DOTS employs lightweight mecha-
nisms for manipulating threads. Forking a thread results in
the creation of a passive object, which can later be instanti-
ated for execution. Thread objects can either be executed by
a pre-forked OS native worker thread or can be executed as
continuation of a thread which would otherwise be blocked,
e.g., a thread reaching a synchronization primitive.

The above algorithm performs good and scales well even
in challenging scenes (see Fig. 19). The actual speed-up that
can be obtained depends, of course, on the specific scene and
is in general the better the more work there is to be done in
collision handling (see [TPB07]). A further aspect to note is

the performance of the different task creation strategies. The
naive stationary approach does not scale well when com-
pared to the randomized version, which already shows quite
a good performance. The work estimate approach performs
very good and can, depending on the actual scenario, outper-
form the randomized version.
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1 Real World Fabrics (Accuracy of cloth simulations) 
Fabrics are complex visco-elastic materials. They must have sufficient strength and at the same time 

they have to be flexible, elastic and easy to pleat and shape. Their simulation is not easy, as their behaviour 
is difficult to describe and predict. Nevertheless, computation algorithms have been developed over many 
years and evolved to such a level so that today we are able to not only simulate simplified, static clothes, 
but also complex dynamically moving garments, in the time frame, expected by the clothing 
industry[VM05]. But, not only advanced computational models are responsible for precise virtual garment 
simulations. Also exact input parameters play an important role for a correct reproduction of the fabrics 
mechanical behaviour. For instance, newly-developed computation systems finally allow the simulation of 
the non-linear fabric behaviour; but in order to truly reflect these characteristics in the virtual computation, 
we have to be able first of all to measure them appropriately. Experimental values for the main mechanical 
and physical parameters can be derived from standard fabric characterization experiments such as the 
“Kawabata Evaluation System for fabrics” (KES) [KAW80] and the “Fabric Assurance by simple Testing” 
(FAST) [MIN95]. However, both characterisation methods have not been designed for the purpose of 
deriving parameters for virtual simulations.  

1.1 Mechanical properties of cloth 
The mechanical behaviour of fabric reflects the nature and molecular structure of the fiber material 

constituting the cloth. The arrangement and orientation of the fibres in the fabric structure has its influence 
as well. Fabric fibres can be organized in several ways. The main structures are: 

• Woven Fabrics: threads are orthogonally aligned and interlaced in an alternating way using 
different patterns (such as plain or twirl).  

• Knitted fabrics: threads are curled along a given pattern, and the curls are interlaced on 
successive rows. 

• Non-woven fabrics: there are no threads, and the fibres are arranged in an unstructured 
way, such as paper fibres. 

 
Woven fabrics are the most common type of fabric used in garments. They are relatively stiff though 

thin, easy to produce, and may be used in a variety of ways in clothing design. In contrast, knitted fabrics 
are loose and very elastic. They are usually employed in woollens or in underwear. This structure greatly 
influences the mechanical behavior of the fabric material, which is mainly determined by: 

• The nature of the fibre: wool, cotton, synthetic, etc. 
• The thread structure: diameter, internal fibre and yarn structure, etc. 
• The thread arrangement: woven or knitted, and particular pattern variation. 
• The pattern properties: tight or loose. 
 

These properties determine the stiffness of a material, its ability to bend, and its visual appearance. 
The mechanical properties of deformable surfaces can be grouped into four main families: 

• Elasticity, which characterises the internal forces resulting from a given geometrical 
deformation. 

• Viscosity, which includes the internal forces resulting from a given deformation rate. 
• Plasticity, which describes at which point of deformation irreversible material changes 

occur. 
• Resilience, which defines the limits at which the structure will break. 
 

Most important are the elastic properties, which are the main contributor of mechanical effects in the 
usual contexts where cloth objects are used. Deformations are often small and slow enough to make the 
effect of viscosity, plasticity and resilience insignificant. One major hypothesis is that quasistatic models in 
the domain of elastic deformations will be sufficient for models intended to simulate the rest position of the 
garment on an immobile mannequin (draping). However, when a realistic animation is needed, the 
parameters relating energy dissipation to the evolution of deformation are also needed, and complete 
dynamic models including viscosity and plasticity should be used. Depending on the amplitude of the 
mechanical phenomena under consideration, the curves expressing mechanical properties exhibit shapes of 
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varying complexity. If the amplitude is small enough, these shapes may be approximated by straight lines. 
This linearity hypothesis is a common way to simplify the characterisation and modeling of mechanical 
phenomena. 

While the linear laws described in the Section 3.5, Part 1, are valid for small deformations of the 
cloth, large deformations usually lead to nonlinear response of the cloth. In this case the dependence 
between stress and strain is no more linear. This effect is usually manifested as a stiffening of the cloth as 
the deformation increases. This can possibly be followed by rupture (resilience) or persistent deformations 
when the constraints are released (plasticity). A common way to deal with such nonlinear models is to 
assume weft and warp deformation modes as still being independent, and replace each linear parameter by 
nonlinear strain-stress functions.  

For the practical measurement of mechanical properties of fabrics there are many different standards 
and instruments.  This subject is discussed in detail in the next section. 

1.2 Measurement of fabric properties 
Each textile possesses typical characteristics, influenced by the textiles raw material (natural fibres, 

synthetics, etc.), yarn structures (degree of twist), planar structure (weave, knit) and finishing treatment, 
which are advantageous for some types of garments, but can be unfavourable for others, regarding garment 
comfort. For an optimal usage of each type of fabric, the garment and textile industry invented the concept 
of “fabric hand”, what is an assessment process, where each textile is evaluated regarding its quality and 
suitability. The fabric hand attributes can be obtained through subjective assessment or objective 
measurement. Objective fabric characterization methods measure and relate the major mechanical 
properties, in order to obtain comparable information about textiles. The applied physical tests analyse and 
reflect the sensations felt during the subjective fabric assessment, where the textile is touched, squeezed, 
rubbed or otherwise handled and describe them with a numerical value[AAT02]. Important fabric hand 
properties are flexibility, compressibility, elasticity, resilience, density, surface contour (roughness, 
smoothness), surface friction and thermal attributes, which are the result of a broad fundamental research 
on fabric properties[PIE30][LD61]. In virtual simulations, the main imitated mechanical properties are 
elasticity, shear, bending, density and friction. The KES system was developed in the 1970’s by Kawabata 
and constituted the first standardization of objective fabric assessments. Since, this method is widely used 
for the objective characterisation of fabrics, as well as for studies of fabric mechanical properties. In the 
late 1980´s the CSIRO Association in Australia realised the importance of a commercial measurement for 
wool fabrics and tried to offer a simpler and cheaper alternative to KES, the FAST method. Both, KES and 
FAST measure the same parameters; however different measurement principles are applied. The FAST 
method uses simpler procedures than KES and permits only a linear interpretation of the measured data, 
whereas KES provides a complete stress-strain profile for all measured characteristics. The measurements 
of both systems are conducted in the low force area, what corresponds to loads which a fabric is likely to 
undergo during garment manufacturing. Alternative, more flexible measurement devices exist for the 
measurement of tensile and hysteresis properties.  

Elasticity tests are designed in a way to return the correlation between applied forces and 
corresponding fabric elongations. The FAST method measures the elasticity property at one load of 100 
N/m along warp and weft direction. KES tests the tensile behaviour with an increasing force of up to 500 
N/m also along weft and warp direction. After the tensile load attains the maximum force, the recovery 
process is recorded.  

During shear tests, the required forces to change the angle between the orthogonal intersecting 
threads of textiles to certain extend are assessed.  Whereas the tensile property is more influenced by the 
fabrics fibre composition and the yarn structure, the shear characteristic is mainly influenced by the fabric 
structure. Different measurement principles can be applied. The main standard method fixes the fabric 
between two clamps and applies opposite forces until a maximum angle (KES [KAW80]) or maximum 
force is attaint. Other methods measure the fabrics extension-compression in the bias direction (FAST 
[MIN95]) [BEH61]. 
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                     Figure 1: Angle-force method                      Figure 2: Extension in bias direction  
 
 

Regarding fabric bending tests, there are two main categories. The first category measures the 
bending deformation under the fabrics own weight. The most well known method within this category is 
the Cantilever test, which uses the engineering principles of beam theory. A fabric is moved forward to 
project as a cantilever from a horizontal platform. As soon as the leading edge of the fabric reaches an 
angle of 41.5° to the horizontal platform the bending length is measured (FAST). Another method of this 
category consists in the folded loop method, where the fabric is fold back on itself and the height of the 
loop measured. The second category of bending tests is designed to return the moment-curvature 
relationship by measuring forces or moments (KES). Therefore, a fabric is fixed between two clamps and 
bent in an arc of constant curvature, where the curvature changes continuously and applied moments 
recorded. 
 
 

         
Figure 3: Cantilever method       Figure 4: Folded loop method   Figure 5: Moment-curvature method 

41.5°

 
In contrast to elasticity, shear and bending, the friction property is not an internal but external 

mechanical force, varying with each other contact material. Distinctions are made between static and 
dynamic friction. The static friction is related to the initial force, what is needed to overcome to start 
moving a material against another object or surface. The dynamic friction however occurs during the 
movement itself and is therefore generally lower than the initial static friction. There are several methods to 
assess friction. Within the standard fabric characterisation experiments (KES), the friction is measured by 
moving a piano-wire over the fabric at a constant force frequency. Friction is not measured by the FAST 
system. 

1.3 Mapping to Computational Models 
For virtual garment simulations not the calculated standard fabric hand values, but the actual 

measured empirical data is of interest, as therefrom important mechanical input parameters can be derived. 
For the actual derivation of fabric input parameters, a mathematical description of the measured data is 
needed. Depending on the complexity of the implemented computational model and the available amount 
of measured data, this mathematical interpretation can be linear (from FAST) or non-linear (from KES and 
alternative devices) derived.  
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The tensile behaviour of fabrics is strongly non-linear for most textiles. Strain-stress profiles of 
very elastic materials are particularly characterized by a curved envelope. Versatile computational models 
are able to simulate the nonlinear tensile behaviour and therefore ask for an adequate input data. Linear 
parameters derived from the measurement data from FAST, are correct in the low force area, occurring for 
example during static simulations, where the fabric is basically stressed by its own weight. However, linear 
parameters are incorrect for the simulation of higher stresses, as referring to them much lower loads are 
sufficient to achieve larger fabric elongations. Moreover, used in virtual garment fitting processes, linear 
parameters return a wrong feedback about the garment comfort. 

 

   
Figure 6: Simulation using KES tensile data   Figure 7: Simulation using FAST tensile data 

 
At a first glance, the non-linear fabric parameters derived from the KES strain-stress envelopes 

seam to be better suited for the derivation of nonlinear tensile parameters. However the KES method is 
limited as well, as it returns the strain-stress profile only up to one maximum load. Dynamic cloth 
simulation is a much more complex issue. When the garment follows the movement of the mannequin, the 
fabric undergoes not only one but many deformations and relaxations of various low and high loads in 
different temporal distances. For that reason, derived parameters from KES are accurate for the one specific 
measured force (500 N/m), but not for various loads. Hence, for dynamic simulations, multiple load/unload 
experiments with different applied forces, which reflect what actually happens during the wear of a 
garment, are needed. Also aspects which are related to the simulation history such as plasticity and 
properties which are time related such as viscosity, become important input characteristics for dynamic 
garment simulations. Until today, the viscosity of textiles is a little investigated field of research and no 
standard measurement exists for the characterisation. 

Depending on the type of fabric material, the shear behaviour varies from linear to non-linear. 
State of the art simulation systems use a nonlinear shear computation model. Therefore, depending on the 
fabric material, a linear or nonlinear mathematical description is needed (Figure).  

 

     
Figure 8: Linear shear strain-stress envelop   Figure 9: Non-linear shear-strain-stress envelope     

  

EG:561



E. Lyard, C. Luible, P. Volino, M. Kasap, V. Muggeo and N. Magnenat-Thalmann / Advanced Topics in Virtual Garment Simulation 
– Part 2. 

 
Similar to the tensile property, the nonlinearity of the shear behaviour can be more accurately 

derived from complete strain-stress envelopes, whereas the more linear shear comportment can be 
accurately interpreted from single measured forces as well. However, in contrast to the tensile property, the 
error in the comfort feedback for simplified nonlinear parameter is smaller. This is related to the fact that 
regarding shear, generally lower forces are concerned. 

 
 

      
Figure 10: Accurate nonlinear shear parameter   Figure 11: Simple linear shear parameter 

 
 
Even in versatile computation system, the complex bending property is still linear modelled. Thus, 

a simple (linear) mathematical interpretation for the bending behaviour is precise enough. The bending 
rigidity is returned by standard measurement methods as characteristic value. As this measure is a 
description of the slope between two major points of the measured data, it is suited to be directly taken as 
linear bending characteristic. The comparison of the bending rigidity obtained from the FAST and the KES 
measurement systems shows a good correlation for the bending rigidity value.  
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        Figure 12: Bending rigidity FAST and KES-f     Figure 13: Virtual drape of the flannel fabric 

1.4 Multi-Layered Fabrics and Seams 
Regarding complete garments, not only the fabric characteristics are important for a mechanical 

accuracy and a good visual appearance. Additional clothing aspects, such as seams, interlinings and fabric 
fusing become important influencing factors for virtual computations and demand a separate examination. 
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Figure 14: men suits  Figure 15: fitting men suit   Figure 16: virtual simulated men suit    

 

1.4.1 Seams 
Conventional garments are generally not composed out of only one, but many different pieces of 

fabrics. On the one hand, this is due to the complexity of the shape of the human body with its curves and 
bulges, which need to be covered by a fitted garment. On the other hand, this is related to changing 
tendencies and trends, which constantly ask for new silhouettes. Hence, as a garment is composed out of 
multiple single surfaces and they have to be somehow connected subsequently, in order to form a complete 
garment. The mechanical behaviour of a single textile and the behaviour of a tailored garment out of the 
same fabric are different as the characteristics of the junctions of the single surface pieces influence the 
general comportment as well. For the combination of two fabric pieces there several different methods: 

The traditional way of combining two fabric pieces is by applying sewing techniques, where two 
or more surfaces are linked together with threads. Hereby, distinction can be made between different types 
of seams, such as the plain seams, the welt seams, the welding seams, decorative seams, etc. Their 
mechanical characteristics vary according their amount of fabric layers and their amount stitches and 
topstitches. The plain seam consists of two fabric layers, the outer fabric and the seam allowance (Figure) 
and is mainly used for standard fabric assemblies. The welt seam is composed out of three or more fabric 
layers, the outer fabric and two times or more the folded seam allowance, completed by one or two top-
stitches (Figure). It is mainly used for parts of the garment, where a lot of abrasion is expected and also 
where additional stability is needed, as for example at the inner side of a pair of jeans. Modern high tech 
textiles, especially water proof garments are welded instead of sewed, as the stitches would impact their 
performance. Decorative seams are stitching in various patterns on top of the outer fabric. Whereas the 
decorative seams influence less the mechanical behaviour, the seams containing multiple fabric layers can 
change the fabric comportment significantly. Therefore, if we want to accurately imitate those parts of the 
garment, the seam mechanics need to be measured and accurately simulated as well. The stiffness of seams 
is an additional parameter, which can be specified inside the simulation application for each seam. Their 
characteristics can be obtained with the above described fabric measurement methods. 

 

      
Figure 17: Plain seam Figure 18: Welt seam with top-stitch 

 
Another important aspect regarding accurate seaming simulations is the problematic of seam 

pucker. Seam pucker is the occurrence of unwanted small fabric wrinkles at a garment’s seam, due to fabric 
gatherings caused by the sewing thread. Depending on the fabrics thickness and stiffness, this shrinkage 
can be up to 5% of the length of a seam. For an accurate virtual simulation, it is important to consider this 
parameter, as it influences the fit and especially the quality of the garment.  
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Figure 19: Effect of seam pucker  Figure 20: Virtual simulation of seam shrinkage 

1.4.2 Multi-layered fabrics 
In order to give to a garment more stability in some areas for functional or aesthetical reasons, a 

second fabric layers can be added. This second fabric layer is either permanently fixed to the outer fabric 
(fusing) or it is a loose additional textile (interlining). Regarding the permanently fixed fabric layer it is 
clear that the mechanical characteristics of the bonded combination of the two materials should be 
measured for their accurate virtual re-creation. However this can be easily accomplished by measuring not 
the single but the fused fabrics.  

For the non-fixed fabric layers this is however a more difficult task. On the one hand the 
combination of both characteristics is needed, but on the other hand, the fabrics are single layers and for an 
accurate prototyping they should be treated separately. A simulation of two textile layers would cause two 
main problems. The multi-layer garment simulation asks for an important feature, inevitable for those 
challenging calculations, such as a powerful collision response method with stability and robustness. 
However, the high amount of polygons is visibly slowing down the simulation. 

Today’s collision algorithms also do not allow the simulation of various layers in small distances, 
such as the thickness of interlining fabric. Thus, because of the fairly unnatural distance of multilayer 
fabrics, the simulation looks unrealistic. Because of these two aspects it is suggested to also simulate the 
non-fixed fabric layers with only one virtual surface, using mechanical characteristics which are a 
combination of materials, even the simulation of an endless amount of fabric-layers is possible with today’s 
simulation systems from a technical point of view.   

 
We’ve just seen how to efficiently measure the physical properties of a cloth in order to produce 

high fidelity virtual simulations. This allows to estimate accurately the fitting of a given outfit on 
someone’s avatar. However, if one wants to remain high fidelity, then the avatar must correspond exactly to 
the person’s dimensions, thus the need to an efficient avatar deformation techniques, which is the topic of 
the next section. 

 

2 Towards an Integrated Virtual Try On Application 

2.1 Parametrically Deformable Human Bodies 
3D human body models are the most important accessories of the computer graphics environments such as 
games, virtual modelling tools and virtual reality applications. Evolution of the computer graphic 
techniques and hardware technology let it possible to use more realistic models in those environments 
which use muscle and fat tissue deformation effects during animation. The primary characters of those 
environments, human body models, require specific techniques for real-time animation and realism. 
Because of their importance, specialized research areas focused on face, hand, skin, muscle modelling and 
skeleton attachment to generate realistic models which will improve the quality and realism of the 
environments. Human body models which are subject to all those techniques and environments are initially 
generated by 3D model designers or acquired by 3D body scanners like the ones from Human Solutions 
[HS:07]. These initial models are the template ones for the future deformation methods. 
 
In recent 3 decades, human body deformation techniques evolved under the following three main headings: 
geometric, example-based, and physics-based. The geometric deformation techniques are not only the 
fastest but also the simplest ones. On the other hand result of the geometric deformation technique is not 
satisfactory to generate realistic models. Because of their computational simplicity and less requirements, it 
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is still the most preferable technique in real time animation. Example-based approaches are the most 
challenging field after effective use of the 3D body scanners. Based on a model database, the requested 
model interpolated from the database with appropriate parameters. Main constraint of this approach is that 
it requires number of post processed complex data as an input. Lastly, physics-based deformation is 
computationally the most complex method but it generates the most realistic results. 
 
Initially, Lasseter [Las87] mentioned about the multi-layered approach for animation, which reduces the 
modelling complexity but increases the reality.  Lately, to achieve higher degree of realism, multi-layered 
approach is used with the combination of deformation techniques to generate a body model with skeleton, 
muscle and fat tissue layers. From this point of view, Chadwick [CHP89] is one of the early initiator in this 
area with modelling muscle layer for deformation during animation. Recently, realistic body modelling 
techniques are based on multi-layered approach integrated with hardware acceleration for real-time 
computation. 
 

2.1.1 Geometric Deformation 
 
History of the geometric deformation starts with Barr [Bar81], where he applied basic transformations on 
super-quadrics. Recently these super-quadric ellipsoids are used to simulate the muscle effects on body 
model. After his successive work on super-quadrics, Barr [Bar84] developed hierarchical solid modelling 
operations that simulate twisting, bending, tapering like transformations on geometric objects. Blanc 
[Bla94] proposed the procedural generic implementation of these global deformation techniques.  
 
Based on Barr’s work, Sederberg and Parry[SP86] announced the Free Form Deformation (FFD) technique 
also today which is commonly used and have lots of extensions to solve specific problems related with 
deformation. As stated by the author “A good physical analogy for FFD is to consider a parallelpiped of 
clear, flexible plastic in which is embedded an object, or several objects, which we wish to deform. The 
object is imagined to also be flexible, so that it deforms along with the plastic that surrounds it.”  
 
In the first row, a set of original geometric models enclosed with a cube and the deformation of these 
models along with the enclosed cube could be observed. In the second row just the enclosing cube and the 
transformation over it illustrated. Using this technique with its basic form, people tried to generate complex 
(for that day) models. 
 
Sederberg and Parry demonstrated a possible application of FFD method by modelling a handset from a 
stick. This approach used in many graphic applications for deforming complex models. One of the most 
interesting applications for that day is developed by Chadwick[CHP89]. Using robotics skeleton approach 
for animation of the human body model, he added muscle effect on top of the skeleton with FFD 
representation. For this animation frames, Chadwick used basic adjoining FFDs to achieve the real-time 
deformation. Parametric muscle deformation generated according to Denevit and Hartenberg parameters 
[HD55] related with the joint angles in robotics.  
 
In the same time period, Thalmanns[MTT87] developed joint-dependent local deformation (JLD) operators 
to deform body model surface for animation. Each JLD operator is affecting its uniquely defined domain 
and its value is determined as a function of angular values of the joints under the operator. 
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Figure 21: JLD based animation of body models, Thalmanns[MTT87]. 

 
Since FFDs are based on a parallel piped cubic volume covering the model, they had some limitations. 
First, it is not possible to cover a complex model without sparse sub-volumes. Second but not the least, 
deformation with more freedom is not possible. Coquillart[Coq90] come with the extended version of the 
standard FFD method that is called ExtendedFFD. This new method uses non-parallel piped 3D lattices to 
include the shape of the deformation. 
 
To have more flexibility on the deformation, Lamousin[LWN94] logically extends the FFD by mapping it 
on a non-uniform rational B_Splines(NURBS) and called this technique NurbsFFD. NFFD offers much 
more control on the model which is not achieved in the prior implementations. An interesting application of 
NFFD is demonstrated by the author with human leg model as an input.  
 
Moccozet[MT97] even extends the EFFD by presenting a generalized method with techniques of scattered 
data interpolation based on Delaunay and Dirichlet/Varonoi diagrams. This is why it is called 
DirichletFFD. One of the advantages of this technique is the control of local deformations where it is 
crucial for 3D modelling and animation. Author implemented a multi-layer deformable hand model to 
simulate the intermediate layer between the skeleton and the skin. 
 
 

 
Figure 22: DFFD applied hand model deformation, Moccozet[MT97]. 

 
Originally human body model animation is generated from the point of view as for robots. This non-
realistic motion implementation method improved with new deformation techniques. Early initiators of 
realistic motion generation, Thalmanns[MTT91], applied two methods for improving deformation during 
animation. For the body parts contacting with other objects, finite element method(FEM) is used, for the 
parts that are not contacting JLD[MTT87] used for simulating the natural behaviour of the human body 
model. 
 
One of the earlier researches about anthropometric modelling of the human body model is introduced by 
Azuola [ABH*94]. First the human body model is segmented into groups according to the synovial 
[BPW93] joints. Deformation on the corresponding joint is constrained with its degree of freedom (DOF). 
Joints with one to three DOF selected with their movement limitations. According to the anthropometric 
measurement database, anthropometrically segmented body model deformed with FFD methods. 
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Jianhua[JTT94a] used  a new approach for body model representation. Instead of polygonal representation, 
model divided into slices. Each slice is defined with parametric curves namely b-splines. Depending on the 
neighbouring joints distance and the normal vectors of the slices, collision prevented. Radius of each 
contour is scaled to achieve the muscular deformation effect. 
 
Jianhua[JTT94b] extended contour based representation of body model with metaballs[HMT*85]. Like 
cylindrical representation, metaballs are used for smooth and detailed modelling.  
 
One of the pioneering work in the anatomical modelling field is recognized by Wilhelms[WG97] work. 
Apart from body mesh, underlying muscle, skeleton and generalized tissues are also parametrically 
modelled according to the anatomical principals. Though detailed modelling of underlying layers of the 
skin, animation became more realistic compared to its preceding approaches. By his complete multi layered 
modelling work, Wilhelms make a big impact on the future body modelling techniques. 
  
Similarly Scheepers [SPCM97] developed multilayered anatomically deformable models in the same time 
period. Tubular shaped bi-cubic patch meshes capped with elliptic hemispheres attached on both end of the 
corresponding skeleton. Depending on the corresponding joint angle, underlying muscle and fat tissue 
structures deformed the skin surface. 
 
Dougles [DMS98] developed a system based on the anthropometric statistic of human face measurements 
in a population to model the face. Statistical results are used as geometric constraints on the specific part of 
the parametric surface. Because of its parametric property, variational modelling [GC95] technique is 
selected to deform the surface which satisfies the underlying constraints. 
 
Singh [SF98] introduced a new deformation technique based on free form curve. Author inspired by 
armatures used by sculptures. In this approach with a single wire, direct manipulation for deformation on 
the model is possible. Also interacting multiple wires with accumulation is possible to generate more 
complex deformations. 
 
While most of the geometric techniques inspired from FFD, Singh[SK00] in contrast proposed a surface 
oriented FFD. He implemented a control surface defined by a distance function around the surface. This 
new approach allows localization of the control lattice complexity for detailed deformation. Furthermore, 
this make the approach ideally suited to the automatic skinning. 
 
Marinov [MBK07] present an efficient technique based on multi-resolution deformation on a high 
resolution meshes. Proposed deformation process handled in the GPU with the help of pre-computed 
deformation operators and the gradient information. By this way dynamic 3D model deformation 
succeeded with several times faster computation. After the deformation, for calculation of the new normal 
field, he provided neighbouring vertex and other required information as vertex attributes. For deformation 
process, basically affine transformation operators applied on the control points. 
 
In contrast with the previous work on muscle modeling, Dong at al[DCKY02] take a further step on 
realistic muscle modelling. Using Visible Human Dataset[VH:95], horizontal human body slice images are 
post-processed to extract main muscle contours. After contour extraction, cubic B-spline surfaces are built 
to fit on the contours. Dong et al used a new deformation procedure for dynamic muscle shape forming. 
Previously generated muscle geometries attached on the skeleton, then according to the action lines and the 
joint angles new position of the muscle endpoints calculated. With the new muscle endpoints, direction of 
the tangent vectors reoriented to change the shape of the geometry. 
 
One another approach for human body deformation is applying the sweep based method on the limbs 
[HYKJ03]. In this approach each limb is approximated by swept based ellipsoid which changes its size as it 
moves through the limb. Transition from each joint, the ellipsoid changes its orientation through the new 
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one. All ellipsoids interpolated to fit in the original model. Resulting approximated model processed with 
displacement map to reflect the original shape because of its smooth behaviour. 
 
Recent geometric muscle deformation technique presented by Pratscher [PCLS05] by using multi-shell 
structured ellipsoids. Each shell has its own level of hardness for deforming the attached skin. Using 
number of heuristics, body mesh is partitioned into segments to determine the location of the muscles. User 
has the opportunity to customize the muscle connections, size etc. and those parameters saved under a 
musculoskeletal template then which can be applied on different bodies. Muscle mapping on the body with 
single or multiple pose is also considered. 
 
 
Kavan at al [KZ05] proposed a skinning approach which is alternative to the standard linear blend skinning. 
They use spherical deformation methods to improve the side effects of the previous method. Main 
advantage of the method is to spherically deform the joint parts to overcome the collapsing-joint artifacts. 
Theoretical properties of the rotational interpolation are the basics of the spherical blend skinning and 
computationally require the similar system resources as the previous method. 
 
Hyun[EHW*07] extended his previous sweep based approach for body deformation by adding GPU 
assisted collision detection for limbs during deformation. Given polygonal mesh approximated by control 
sweep surfaces and according to the joint angle changes, sweep surfaces deformed and overlapping parts 
are blended. Some anatomical features like elbow-protrusion, skin folding etc. are emulated in the GPU. 
 
Cross sectional representation of the body model used by Zhaoqi at al[ZTS06] to generate skeleton-driven 
deformations. Even this approach seems to be very similar to the one proposed by Shen [ST95], Zhaoqi at 
al generalizes the cross sectional contours to preserve the original details of the body. 
 
Park at al [PH06] developed a novel approach for skin deformation with visually realistic results. They 
attached very large number of markers (~350 markers) on a human body. With those markers they motion 
captured the body. Resulting data applied on a virtual model to reflect visual details such as muscle 
deformation. Since it requires huge number of markers it is not practical and easily repeatable but the good 
point would be that once the data captured it can be applied to other models. 
 
Li[LW07] presented an approach for automatic creation of the human body skeleton with controllable 
parametric structures. Anatomical features of the body determined according to the contour based model 
data. According to the extracted features, appropriate size skeleton model is constructed. Over the skeleton 
model, multi resolution parametric sweep based surface is generated for controllable body model. 
 
One of the earlier surveys on human body model CAESAR is also the subject to human body deformation 
field. Recently Wang [WR07] used this database for animating the static scanned data. This database is not 
only consisting of body models but also the corresponding landmarks and feature points of individual 
models. From this point of view, Wang at al attached h-anim skeleton on the models by using the landmark 
information. They developed a web based system for parametric manipulation of the models in this 
database.  
 
Recent work for body animation is proposed by Aguiar at al[dATSS07]. Using 3D human body scanner, 
they rapidly attach a skeleton on the scanned model for animation. Their system tested with markers and 
marker free scanned data. They employ a Laplacian mesh deformation schema which is based on the 
marker information to compute the poses of the model.  

 
2.1.2 Physics based deformation 
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One another approach for anatomically-based muscle modelling is coming from Nedel[NT98a]. In his 
approach muscles are attached on to the skeleton as usual but the muscles are represented by two layers 
called the action lines and the volumetric forms. Modifications on the action lines are automatically 
captured and used for further muscle deformation. Also mass spring systems are used for muscle modeling. 
 
In his latter work, Nadel[NT98b] extended his previous approach by modelling the muscles with physical 
methods. To simulate physical deformation, he used mass-spring system with new kind of springs called 
“angular springs”. By this way he achieved more control over the muscle volume to generate realistic 
visual effects. 
 
 
Aubel[AT] proposed a new automated skin deformation method based on multi-layered human model. 
Deformations applied by considering the physiological and anatomical structure of the model’s skin. 1D 
mass-spring systems used to achieve the muscle motion and deformation. Also the muscle layer covered 
with viscoelastic fat layer to generate dynamic effects during the animation. Based on this implementation 
Aubel[AT01] extended his method to let the designers have full interaction on the model by dynamically 
changing the muscle shape. 
 
Capell [CGC*02] at al implemented dynamic skeleton driven deformation by using equations of motion of 
elastic solids. Volumetric finite element mesh is used to perform the deformation with few constraints. i.e. 
line constraints for skeleton representation and the edges of the volumetric mesh coincident with the bones. 
They linearize the non-linear motion equations to be solved over volumetric regions associated with each 
bone. 
 
One another physics based muscle modelling approach presented by Teran at al [TSB*05]. It is one of the 
most detailed modelling approaches where muscle material heterogeneity also considered. Segmented 
visible human data set [VH:95] used to extract the real muscle shape format which will be the base 
envelope for the proposed model. Once the muscle shape constructed, it is filled with tetrahedrons to apply 
physical behaviour by means of FEM. Because the tendons and the muscle belly behave differently in its 
density, different parts of the model simulated with appropriate tetrahedron material properties. Result of 
the simulations became much more realistic then the previous developments. 
 
Application of physical phenomena to improve the flesh parts of the body not only constrained to the 
muscles. Larboulette[LCA05] proposed a fast and simple technique to enhance the standard character 
skinning method by adding dynamic skin effects through the underlying skeleton. Method called rigid 
skinning is applied on the existing skinning information without modifying its kinematic deformations or 
other post processed data. Efficiency of this technique is coming from its real-time applicability of visco-
elastic properties on the body parts. 
 
One of the recent attempts for realistic muscle modelling is represented by Zhou at al [ZL05]. Geometric 
and physical modelling techniques are combined to simulate real muscle effect by using NURBS based 
Galerkin method. From visible human dataset[VH:95], 3D reconstruction of the muscle shape achieved by 
fitting the result into a Nurbs form. With simple FEM properties and a few control points it is possible to 
deform the muscle model during the animation. 
 
While most of the researches are focused on the muscle modelling for realistic skin deformation, Capell at 
al [CBC*05] showed that the character rigging is possible to animate the model with high level parameters. 
Dynamic elastic bodies are subject to the application area of this method. Using force based rigging to 
deform the character, underlying collisions handled with a novel approach proposed by them. 
 

2.1.3 Example Based Deformation 
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Since the human body scanners became widely used, it is possible to generate visually realistic models. 
Recent body scanner systems have the capability of capturing high resolution data along with the texture 
information. Apart from such benefits, these systems generate static models which require post-processing 
stages to let them available for further deformation and animation. In the last decade we observe key 
attempts to solve such problems and benefit from scanner systems high resolution data generation 
capabilities. An early research on this field carried out by Seo [SMT03]. She proposed a method consisting 
of 3 main steps for parametrically synthesize visually realistic human body models: Pre-processing the 3D 
scan data, function approximation of the parameterized modeller and the runtime evaluator. Together with 
set of scanned human body data, template model with appropriate skeleton attachment designed. For 
parametric deformation, specific landmarks over the template model determined. Same landmarks also 
specified on the scanned data set. Regarding the user specified model parameters appropriate scanned data 
found from the database. Finally template body model mapped on the resulting scanned data with skeleton 
adjustment and displacement mapping. Resulting mesh processed with refinement operator to handle 
irregular deformation of the template one while mapping stage. Seo’s extended and complete version of the 
work can be found in Seo[SMT04]. 
 

 
Figure 23: Mapping template model on the scanned data, Seo[33]. 

 
Similarly Allen at al [ACP03] developed an example based approach to transfer template body model on to 
a scanned data. They used 250 scanned data to demonstrate parameterization and reconstruction. With this 
approach it becomes possible to analyze the human body modelling applications like texture transfer, 
skinning transfer, shape analyze etc. 
  
One novel extension to Seo[SMT04]’s method is attaching the real human skeleton model. Magnenat-
Thalmann[MTYCS04] extracted the skeleton information from the visible human dataset[VH:95] where 
the proceedings extracted just the muscle tissue from the same dataset. With this approach instead of 
attaching and representing chopstick like skeleton models, author achieved to attach the skeleton with real 
characteristics. For different size models, skeletons scaled with the similar operations explained in their 
previous work. 
 

 
Figure 24: Real like skeleton attachment, -Thalmann[MTYCS04]. 

 
Anguelov at al[ASK*05] presents a pose space deformation of the body model by using body scanner. 
Scanning the same person with different poses, deformation space generated. Two different body 
deformation models learned from the generated data: rigid and non-rigid. Proposed framework generates 
the desired body shape according to the parameters like angles of the joints and the eigen-coefficients of the 
shape. Different pose deformations captured from an individual is also applicable to others.  
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Since the hardware accelerated computation becomes more popular, researches shifted on the GPU based 
deformation techniques. Rhee at al[RLN06] is one of the earlier researchers who proposed  real-time 
weighted pose space deformation technique. From a sufficient set of example of an articulated model they 
interpolate the displacements. Regarding this information skinning deformations parallelized on GPU to 
take the real-time efficiency. 
 
After that section, we know how to deform a 3D character so that its dimensions match several criterions, 
for instance match someone’s sizes. It is very likely that this person, who wants to try out garments, will 
want to see his/her avatar in motion. This isn’t a trivial stage because as the avatar was deformed, its 
animation must be adapted accordingly. This problem is addressed in the next section, which focus on body 
animation and retargeting. 
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2.2 Body Animation and motion retargeting 
Before dressing up a virtual character it must first be animated appropriately. This must be done is 

such a way that makes the cloth simulation possible. For instance, time derivatives of the body motion must 
be available so that the cloth can behave accordingly. The geometry of the body must be deformed 
smoothly so that the collision detection remains consistent, and the tessellation has to be uniform in order 
to maximize performances. 

The most widely adopted way to create a virtual human goes through the modeling of a skeleton. 
This skeleton is the actual animated entity, and the character shape is deformed according to the skeleton 
pose.  
 

2.2.1 Skeleton Animation 
Skeletons that are used in character animation were conceptually borrowed from robotics. They are 

modeled through a collection of rigid links (or bones) connected together by joints (Figure 25). Each joint 
can have up to 6 degrees of freedom (DoF): 3 translations and 3 rotations, but they usually have between 1 
and 3 rotational DoF in order to mimic the human skeleton.  Skeletons are a rooted hierarchy, i.e. it starts 
from one node which has 6 DoF and goes hierarchically through the skeleton until an end effector is 
reached. This means that changing the orientation of a joint will modify the configuration of all the bones 
which are placed further down in the hierarchy. This root node is meant to place the character in the 3D 
scene, while the subsequent nodes will adapt its posture.  

Such a model makes possible to manipulate limbs by simply tweaking 1 parameter value. For 
example, modifying the orientation of the shoulder joint will move the entire arm. 
 

 
Figure 25: A virtual character in wire frame and the skeleton used to animate it. In yellow are the 

links (or bones) and in red the joints 
 

There are various ways to create a skeletal animation. The most basic one, which is still widely 
used, is hand animation [Las87][Lass94]. A skilled animator will animate the skeleton using key frames, by 
carefully tuning the poses of the skeleton over time. This is a time consuming process, but it provides a 
total control over the final result. 

Another way to generate animations is to use dynamic simulations. It works very well for motions 
without a specific goal, such as ragdolls [Kok04]. However the results are quite robot looking when 
addressing motions with a specific goal[HWBO95][YLS04]. The reason why these motions have a robotic 
look is because they all rely on finite state machine in order to convert the original goal to dynamic 
impulses, very much like the robotic community does. One way to overcome this issue is to add physics on 
top of a very basic motion. For instance, Liu and Popovic [LP02] proposed a framework which takes a 
collection of basic postures to be achieved by a character, and outputs a high quality motion by taking the 
physics into account. These methods have the advantage of relying solely on software in order to generate 
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the motion. It saves time compared to traditional animation, however such systems are very complex to 
develop, which makes their use quite limited. 

The last way of creating motions is to record it directly on a real subject. This process is called 
motion capture (mocap), and it is probably the most widely used for commercial productions. Indeed, 
because the motion comes from a real performance, it ensures the highest level of realism for the resulting 
animations. There are several class of systems, and even though the most common systems are optical 
[Vic][MoAn] (Figure 26), several other approaches exist, such as magnetic trackers [Pol][Ass], exoskeleton 
[Meta] and more recently markerless captures [Orga] became commercially available. 
 

 

Figure 26: A Vicon MX camera, with infrared emitters and filter
 

All these systems deliver different kind of data, and a post-processing stage must take place between 
the capture and character animation in order to convert the captured data to a suitable format. Optical 
mocap only records the location in 3D of reflective markers placed on the subject’s body. These markers do 
not exactly reflect the bones motion, thus it must be estimated from the markers data only. This is done via 
an optimization process which places the skeleton in the configuration that better match the markers 
positions. In order to do so, several commercial packages are available, would they be delivered with the 
mocap hardware[VIQ][MoCal] or purchased separately [MoBuild]. 
 

2.2.2 Body Animation 
Once the skeleton is animated, the actual character’s shape must be deformed accordingly. There 

exist a wide variety of approaches that address this problem with various deformation results and 
performances. The most widely used, even though quite old, remains linear blend skinning [Magn88]. It 
simply blends together the displacement of a vertex, as if it would be rigidly attached to a bone. It requires 
a bind pose, which gives the relative displacement between the character mesh and the skeleton, along with 
some attachment data that defines which bones must be taken into account to deform a vertex. It is 
formulated as follow: 

 

∑ −=′
i

iii vBMwv 1

 
 

With v the initial vertex position in bind pose, Bi the bind transformation matrix of joint i, Mi the 
current transformation matrix of joint i, and wi the weight of joint i (∑ =

i iw 1). It has the advantage of 

being very simple to formulate and implement, however it generates artifacts when the deformations 
become too large. Indeed, ∑  no longer is a rigid transform matrix, thus artifacts such as 

collapsing elbow and candy wrapper may appear. 

−
i iii BMw 1

The hardest part of this method is to define the blending weights so that the deformations are 
smooth and purposeful. Various CG packages [Max][Digi][Maya] provide interfaces to define the weights, 
which still must be tuned by an experienced designer. 

In order to address the artifacts caused by linear blend skinning, various approaches were proposed. 
Wang et al. [Wang03] puts variable weights depending on the current bones transformations, Kavan et al. 
[Kavan05] interpolate the transformations instead of the final vertex positions, and Mohr et al. [Mohr03] 
introduces pseudo joints which aim at refining the skeleton motion.  
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More recently, Kavan et al. [KCZO07] proposed to use dual quaternions [Cliff82] in order to 
represent translations, which makes possible to efficiently blend translations and rotations without creating 
a degenerated transform.  
Dual quaternions are similar to regular quaternions, i.e.  

 
zkyjxiwq ˆˆˆˆˆ +++=  

 
only the coefficients w, x, y and z are dual numbers, i.e. they’re of the form  

 

εεaaa += 0ˆ  with  02 =ε
 

A translation (t0, t1, t2) can be represented by the unit dual quaternion  
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2
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and a rigid transform by the product , q0 being a unit quaternion representing a rotation. The linear 
blending thus simply becomes:  
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iq̂  being the dual quaternion representing the transformations to be taken into account, and wi the 
corresponding blending weights. 

This method has the advantage of taking care of the artifacts usually introduced by linear blend 
skinning, while remaining fast due to the use of quaternions for the interpolation. 

 
Other trends for skin deformation exist, such as physically based [Hua06][Cap05][Guo05] or 

example based [Kry02][Sloa01][Rhe06][Jam05][Par06], however due to their complexity and 
computational cost they aren’t well suited for real-time animation, and will not be reviewed here. 
 

2.2.3 Motion retargeting 
Within the context of a virtual try on application, a given motion will probably be used in order to animate 
various sizes of body. Because each body is meant to reflect the physiological features of the user, it is 
subject to non uniform scaling of its limbs, along with a drastic change of the limbs shapes. This calls for 
the use of a motion retargeting algorithm, because one given motion can correctly be applied to only one 
body which resembles the subject onto whom it was captured. 
In most applications requiring motion retargeting, the virtual character must evolve in a surrounding 
environment, and possibly interact with it. Dedicated solutions, making use of either inverse kinematics 
[TGB00][BCHB03] or global optimization [Glei98][LS99] were proposed. All these methods make use of 
constraints, which are to be enforced while remaining as close from the original motion as possible. 
For a virtual try on application, the goal here isn’t to modify the motion so that it complies with a given set 
of constraints, but rather to change it in such a way that it remains as close as possible from the original, 
while removing ugly artifacts like foot skating. As this problem is included in the more general approaches 
cited above, they still can be used. What they do is to minimize a set of parameters while enforcing a set of 
constraints (foot planting, interaction with the environment…). This goal can be formulated as follow: 
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Minimize 
Mxxxf T

2
1)( =

 

 Subject to ei Nixc ∈= ,0)(  

                  ii Nixc ∈> ,0)(  
With M a diagonal matrix defining a weight on each parameter: the bigger the weight of a parameter, the 
harder it is to modify it. x the parameter vector, c(x) a set of constraints to be satisfied. 
All the high frequency features of a motion clip should be kept by this optimization process because they 
are what makes a motion natural looking. Thus, the vector x isn’t composed of the actual parameter values 
of the joints, but rather of spline control points which are used to defined the changes from the original 
parameter curves. Thus, the control points spacing will determine the minimal frequency that is to be added 
to the motion signal. If they’re too far apart, then the retargeting goal might not be feasible, while if they’re 
too close they may add high frequency features and degrade the quality of the animation. A good spacing 
for the control point is between 2 and 10 frames.  
Constraint optimization algorithm are quite tricky to implement, but fortunately it is possible to convert this 
problem into an unconstrained one by using the penalty method to handle the constraints. The above 
objective function thus becomes 

∑∑
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With wi constraints weight used to put more importance on such or such constraints. This can be 
minimized using a regular conjugate gradient method. 
 
Besides regular kinematics constraints, one may wish to enforce dynamic constraints as well, so that the 
resulting motion better matches the body onto which it’s being applied. Several approaches were proposed 
so far [Pop99][ALP04] which rely on global optimization for performing the adaptation. A recent work 
from Tak et al.[TK05] used a Kalman filter in order to modify the motion and enforce physical 
consideration. They used a measurement model H composed of a collection of functions taking into 
account the constraints imposed by the user: 
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With HK the kinematic constraints (e.g. specify an end effector location), HB the balance constraint (i.e. 
make the zero momentum point lie within the supporting area), HT the torque constraints (i.e. this muscle 
can exert at most this force), HM the momentum constraints (for flying phases). 
As the entire motion clip is already available, the process model simply is the value of the motion 
parameter at time tk, and it doesn’t depend on the previous state: 

[ ]kkkk qqqx &&&=−ˆ  

The prediction consist of taking a measurement calculated by taking samples around and making 
them go through the measurement model H. 

−
kẐ −

kX̂

The final update is eventually given by : 

)ˆ(ˆˆ −− −+= kkkkk ZZKXX  

With Kk the kalman gain, and . )ˆ( −= kk XHZ
This formula quite differs from the regular kalman update, and the details of the calculation can of course 
be retrieved from the original paper. 
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Such framework is quite complex to develop, and a fair amount of user interaction is required for each 
motion clip in order to clearly define the constraints. Moreover, unless the character drastically changes 
from the original captured subject, the physically related artifacts aren’t much visible. Thus, the very first 
problem that must be taken care of is foot skating because it is most visible to the casual eye. Kovar et 
al.[KSG02] used once again global optimization for addressing this issue while Glardon et al.[GBT06] used 
inverse kinematics in order to deal with it. However, these approaches only take the skeleton into account 
and with our virtual try on application in mind, it seems important to also consider the skin motion [LM07].  
The goal here isn’t to enforce the feet at a particular location, but rather to keep the motion as close from 
the original one as possible while getting rid of the foot skating. In order to do to, and assuming that the 
part of the foot sole that must remain planted is known for the entire timeline, the appropriate 

displacement of the root node of the skeleton can be calculated as follow: tR∆
 

)1,(),(),(),( +−+++−=∆ tvotvotvotvoR jjiit δδ
 

 
With o(v,t) the offset at time t of vertex v from the root, in world coordinates, vi the vertex of the 

character’s mesh that must remain static until time δ+t , and vj the one to remain planted after that time. 
 

 
Figure 27: Footprints left by a virtual character before (top, in green) and after (bottom, in blue) foot 

skate cleanup. 
 
This formula works very well for the horizontal translation of the character, as it introduces a drift 
according to the amount of foot skate that is present in the animation (Figure 27). However, in the vertical 
direction it also introduces a drift, due to the inaccuracy of the animation. In that direction, and as the 
motion of the character isn’t to be modified, we can minimize the penetration of the feet into the ground 
and if the animation of the character is correct no penetration will remain, regardless of the character 
scaling. 
Considering the heights ht of each static point throughout the animation, the offset to be applied to the root 

translation so that their mean becomes zero simply is
∑=∆

N
h

H t

, N being the total number of samples. 

Now considering H the average root height over the animation, its actual height Ht over the animation can 

be written as tt rHH +=  . 

The scaling factorα which applied to the offsets rt minimizes the variance of the static points around 
the ground floor is given by: 
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Now that the avatars are able to walk around, they must be actually dressed up. High quality 

simulations of garment are very heavy in terms of computations thus they do not perform in real time. The 
next section outline how it is possible to adapt existing algorithms for garment animation, so that they 
perform with less accuracy, but in real-time. 
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2.3 Real-time cloth simulation 

2.3.1  Introduction 
One of the most challenging areas in research is in the development of a robust methodology for simulating 
clothes in real-time. In order to define a cloth simulation system that is able to simulate complex garments 
realistically, whilst maintaining a reasonable computation time, a deeper study of the cloth model and the 
identification of its behaviour at different levels are necessary. 
This study is not intended to integrate yet another more precise physical model of garment behaviour, but 
rather focus on the real-time constraints for the simulation and the visual cloth motion features to which an 
observer is sensitive. Most of the existing approaches use a general-purpose simulation method using 
collision detection and physical simulation for the whole garment. Unfortunately, simulations that simply 
calculate all potentially colliding vertices may generate a highly realistic movement, but do not provide a 
guaranteed frame time. A new simulation model should be implemented that avoids heavy calculation of 
the collision detection and particle system wherever possible. 
Indeed, the whole cloth does not need to be simulated with a general-purpose simulation method; instead 
many optimizations can be made. For example, the trouser will never collide with the arms. Collision 
detection may be simplified by restricting the collision detection to only potentially colliding surfaces. 
Also, stretched garments do not need to be simulated with a complex physical method. It can be simply 
simulated by keeping an offset between the garment and the underlying skin surface. Indeed, the 
computation cost can be greatly reduced by making use of predetermined conditions between the cloth and 
the body model, avoiding complex collision detection and physical deformations wherever possible. 

2.3.2 Techniques for Real-Time Garment Simulation 

Fast Cloth Simulation 
The first approach of real-time garment simulation is to optimize usual cloth simulation methods for better 
performance. This is usually carried out through the use of particle systems, which allow simple 
computation of approximate mechanical models. 
Spring-mass systems are typically used in this context. When high accuracy is still needed, some particle 
systems allow the expression of viscoelastic materials with the accuracy of continuum mechanics [ETZ 03] 
[VOL 05], as described as follows. 

 Fast and Accurate Particle Systems 
The goal of this model is to simulate the nonlinear and anisotropic behavior of cloth materials, which are 
typically described as strain-stress curves measured along the weft, warp and shear deformation modes. 
The major challenge is to find the best compromise between the high requirement for mechanical accuracy 
(quantitative accuracy with anisotropic nonlinear strain-stress behavior) and the drastic performance 
requirements of real-time and interactive applications. 
One of the most efficient solutions is to take advantage of the particle system described in [VOL 05]. The 
mechanical model takes advantage is indeed based on continuum mechanics, but is still a particle system. 
Hence, it follows many of the properties initially found in finite elements [IRV 04]. Basically, the system 
evaluates the strain of each triangle element according to the position and speed of the particles, then uses 
the mechanical properties of the material for computing the stress of the elements, and converts back the 
stresses into equivalent particle forces. 
While this scheme has strong analogies to first-order finite elements, we have however carried out some 
developments aimed at vastly improving the computation speed without too many sacrifices in the 
accuracy. Among these developments, computational simplifications are obtained by avoiding the 
computations required for the linearization of the strain and stress tensors [ETZ 03]. Furthermore, an 
adapted accurate computation of the Jacobian is implemented for ensuring numerical stability even is very 
severe deformations [CHO 02]. 
The main interest of this computational process is to offer very good computational performance while 
handling materials that possibly have nonlinear and anisotropic strain-stress laws, with accuracy in par with 
finite-element models. Yet, our system offers all the performance and flexibility related to particle systems, 
particularly trough the possibility of handling directly geometrical constraints such as collisions. 
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Bending stiffness should also be considered. However, bending forces are quite low in actual cloth 
materials, and through the use of large elements, it becomes quite useless to waste computation time 
evaluating forces that have almost no effect in the simulation. Still, when stiff bending forces are to be 
considered, new fast linear bending simulation schemes [VOL 06] may offer a very good computation 
compromise. 

 
Figure 28: Accurate models of nonlinear anisotropic viscoelasticity are required to applications such 

as interactive prototyping. 

Efficient Numerical Solvers 
Numerical integration is another key issue to fast and efficient particle systems. While explicit methods 
guarantee dynamical accuracy at a very high computational time usually incompatible with real-time 
applications, implicit methods allow moving the trade line toward much higher computation performance at 
the expense of accuracy. 
High-performance solvers [EBE 00] [HAU 01] [VOL 01] now focus on implicit methods for attaining the 
performance required for interactive models [COT 99] [JAM99] [HAU 03] [MEY 01] [MUL 00] [MUL 
02]. However, their computational speed is obtained either through large compromises on the accuracy 
which, for low-order methods, affect the dynamic cloth motion realism through numerical damping, and for 
high-order methods, compromise the stability. 
Since real-time application might deal with erratic animation behaviors (noisy motion tracking, skipped 
frames, etc), the BDF-2 method [HAU 01] might not be the best candidate, as this 2nd-order method might 
exhibit stability issues under severe deformation conditions particularly when dealing with highly nonlinear 
mechanical behaviors (collisions). Instead, adaptations of the simple Backward Euler method [VOL 01] 
seem to offer the best unconditional stability that is really necessary in the context of real-time applications. 
Meanwhile, accuracy can be significantly improved through the use of the Backward Midpoint variant 
[VOL 05]. 

 
Figure 29: Stability tests on extremely deformed objects, and numerical convergence tests. 

Collision Handling 
Collision detection is usually one of the bottlenecks in real-time animation. The problem is particularly 
acute in the case of clothes because these objects are highly deformable. The most appropriate general 
solution is to use Bounding Volume Hierarchies, which take advantage of small-scale motion consistency 
of the objects during motion [MEY 00]. Specific acceleration techniques might approximate collisions and 
use graphics hardware to compute collisions on bump maps [VAS 01]. 
However, it is quite unlikely that general collision detection schemes offer adequate performance in the 
context of real-time simulation. Therefore, context-specific optimisations are usually required, for instance 
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by restricting collision detection only to the surface regions that have large probability to collide, and 
ignoring self-collision detection. 

Integrating Body and Garment Animation 
The main idea of hybrid approaches is to employ fast specific simulation techniques depending on the 
simulation context of particular regions of the cloth surface. A typical example, described in [COR 02], is 
described in the following. 

The Hybrid Approach 
When observing a garment worn on a moving character, we notice that the movement of the garment can 
be classified into several categories depending on how the garment is laid on and whether it sticks to, or 
flows on, the body surface. For instance, a tight pair of trousers will mainly follow the movement of the 
legs, whilst a skirt will float around the legs. The first part of the study is to identify all the possible 
categories: 
* Garment regions that stick to the body with a constant offset. In this case, the cloth follows exactly the 
movement of the underlying skin surface. 
* Garment regions that flow around the body. The movement of the cloth does not follow exactly the 
movement of the body. In case of a long skirt, the left side of the skirt can collide with the right legs. 
* Garment regions that move within a certain distance to the body surface are placed in another category. 
The best examples are shirtsleeves. The assumption in this case is that the cloth surface always collides 
with the same skin surface and its movement is mainly perpendicular to the body surface. 
These three categories are animated with three different cloth layers. The idea behind the proposed method 
is to avoid the heavy calculation of physical deformation and of collision detection wherever possible, i.e. 
where collision detection is not necessary. The main interest of our approach is to pre-process the target 
cloth and body model so that they are efficiently computable during runtime. The skin and the garment are 
divided into a set of segments and the associated simulation method is defined for each. For each layer, we 
propose solutions and explain why they have been chosen. 

 

Third Layer 
Second Layer 
First Layer 

 
Figure 30: Garment segmentation 

The Augmented Skinning Approach 
Another approach is to base garment animation on directly on skinning animation. Hence, the garment is 
simply considered as a skin, uniformly animated like the rest of the body. However, this animation is 
complemented by a method which animates the skin according to mechanics, using the original skinned 
position for approximate collision processing. 
In this approach, the garment has to be skinned, as would be the rest of the body surface. This is typically 
done through the use of automatic algorithms that extrapolate the skinning weights of the garment from the 
skinning weights of the underlying body surface. The automatic skinning extrapolation required an 
algorithm which tracks the relevant features of the body shape ruling the animation of any vertex of the 
garment surface. This algorithm can be designed by extending a proximity map (nearest mesh feature 
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algorithm) with additional visibility considerations for pinpointing the actual geometrical dependencies 
between the surfaces of the body and the cloth. Additional smoothness criteria should also be embedded so 
as to prevent any jaggy deformation over the garment surface. Further optimizations, such as the reduction 
of bone dependency count, are also performed for reducing the computational time of skinning animation. 
Collision data is obtained from the nearest-feature algorithm used in the skinning extrapolation scheme, and 
optimized with specific distance and visibility considerations. 
 

 
Figure 31: Extrapolating skinning information from the body surface to the garment surface. 

 

 
Figure 32: Collision data between the garment and the body extracted from proximity maps. 

 
 

Data-Driven Animation 
The main idea of this approach consists of developing a cloth simulator that can learn the cloth behavior 
through a sequence of pre-computed cloth simulation. This approach allows simulating the garment 
features such as wrinkles or gathers in real-time. 
In [COR 04] is presented a data-driven method for simulating clothes worn by 3D characters in real-time. It 
divides the problem as simulating the garments in two phases. The first phase, a rough mesh reproduces the 
dynamic behavior of the garments. Its physical properties are defined by the pre-calculated sequence. In the 
second phase, the fine mesh simulates the details of the garments. 
To effectively optimize the physics-based deformation, which is the bottleneck of the simulation, a coarse 
representation of the cloth mesh is used to drive the gross behavior in simulation. It considers that the gross 
cloth behavior is driven mainly by two separable contributions: the skeleton-driven movement of the 
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character and the mechanical properties of the cloth. This consideration is partly inspired by the hybrid 
real-time simulation method proposed in the previous section [COR 02], where a hybrid deformation 
method is used to combine dynamic surfaces with skeleton-driven deformation (SDD). Unlike that method, 
however, our method exhibits significantly more efficient and realistic behavior. This effect is achieved by 
focusing on the analysis of cloth movements in relation to its associated skin surface, and adopting a 
learning strategy. The idea is to use the analysis of the pre-simulated sequence to identify the region largely 
explained by joint movement and to replace the physics based simulation with geometric methods wherever 
possible. 
In this approach, the key ingredients of the new technique are associated with different facets of cloth 
simulation: First, our novel collision detection prunes out unnecessary collision tests by tightly localizing 
potentially colliding regions through the analysis of the cloth movement in relation to the skeleton. Second, 
we use the pre-simulated sequence to approximate the dynamic behavior of the coarse mesh geometrically 
wherever possible. Finally, fine details such as wrinkles are also simulated in a data-driven manner, by 
using the pre-simulated cloth sequence as examples.  Subsequently, real-time animation of fully dressed 
human could be generated, which would be suitable for applications such as games where visual 
plausibility is more important than accuracy. 
Due to the computational expenses of solving the full numerical system of the physics-based deformation, 
we seek simplifications by constructing a coarse mesh representation of the garment. The coarse mesh is 
used to deduce the large-scale behavior of the cloth in a data-driven manner, based on the input pre-
simulated sequence. A number of optimization strategies are adopted: The two following sections describe 
a pre-processing that constructs and segments a coarse mesh representation into different region types. We 
then describe in the next two sections the spring-mass system and collision handling of the coarse mesh at 
each frame of the simulation. Also described is the runtime process. 
 

Now we have all the pieces required for a Virtual Try On application: Cloth animation, body sizing 
and animation. Putting them together in a single, web based application can turn out to be very difficult if 
not well thought out in the first place. The next –and last- section gives guidelines on how to proceed. 

 

2.4 An integrated Virtual Try On application 
 
Internet is a field of interest which evolves perpetually, especially in the fashion industry. Its recent 
developments have made possible to distribute complex 3D data through the internet. Thus, streaming and 
3D technologies can now be combined in order to create a Virtual Try On application (VTO). The VTO is a 
window on a virtual dressing room where users can define measurements of a 3D body, put clothes on it 
and make it walk around. Due to the limitations of the real time aspect and the web constraints, the 
integration platform needs to be optimized and well designed as presented in [CLSM01] [PLAM02].  
In this section we present how to integrate all these elements in a web based application. Even though the 
web 2.0 allows for rich content and an increased bandwidth for data transfer, the existing stand alone 
applications must be redesigned in order to take into account the server-client architecture. Also, the data 
handling must be optimized so that the downloading time is reduced to a minimum. For instance, instead of 
adding many small details to the 3D models (Figure 33), state of the art rendering techniques such as CG 
shaders can be used in order to improve the visual quality of the whole application (Figure 34). 
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Figure 33: Real time dressed and animated virtual body. 
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2.4.1 A common platform 
 
 

Several components must be put together in order to create a VTO application. A body animation 
system has to be created, along with a body deformer and real-time cloth animator module. Moreover, the 
system has to be fed by cloth designers, thus it must be possible to create content with the mainstream 3D 
modellers such as 3DS Max or Maya.  

With this outlook, Collada (Collaborative Design Activity) seems to be a good candidate for data 
exchange between the content creators and run-time engine. Collada is an open file standard for interactive 
3D applications currently being promoted by several major player of the industry, such as Sony or 
Khronos. The standard covers most of the features required for our VTO application: Scene graph 
hierarchy, materials and textures, animation, skinning and shaders. It has free plugins available for most of 
the 3D creation packages which makes it usable by the designers. The current features of Collada are well 
suited for body animation and rendering, but it lacks very specific schemes for the data related to the body 
customization and cloth animation. Fortunately, it is extensible with new specialized tags, which makes it 
possible to include also the data specific to a VTO application into one single Collada file. 

Because the VTO is a web based application, it must be embedded into a web browser, so that a 
user can simply browse the internet in order to access it. This can be done through the ActiveX controls of 
internet explorer, which make possible to put any application (would it be 3D or not) into a web browser. 
Thus the core VTO application will be encapsulated into an activeX control so that no cumbersome 
installation process is required for the user. 

There exist plenty of 3D engine, onto which a VTO application could be built: OpenSceneGraph, 
OpenSG, OpenInventor, openRM, OGRE… We choose to use OpenSceneGraph for several reasons: first 
of all, it is completely open source and free of charge, that way the final application can be distributed 
freely, and the maintenance is made easier by having a full access to the source code. Second, it has an off-
the-shelve activeX control and thus the embedding into a web browser isn’t a problem any longer. Last, the 
Collada plugin that converts Collada files into OSG data structure is available so that we can still benefit 
from the fancy shader effects as they were exported from the modelling tools. 
 

 
Figure 34: Real time cloth animation (with FX shaders). 
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Interface Server Data 
Base 

 
Figure 35: Relation between each component of the VTO application. 

 
These three elements (COLLADA file format structure, Interface components (ActiveX and 

XPCOM) and OpenSceneGraph 3D engine) create our common integration web platform in term of 
structure and coding language. These elements constitute the core of our common platform (see Figure 35). 
 

2.4.2 Web data management 
 

Even though the internet bandwidth has drastically increased over the past decade, the content 
being transferred continues to become bigger and bigger. Thus, a data management strategy is essential for 
the VTO. As Collada is a text format only (i.e. no binary format was defined), these files will have to be 
compressed in some way before to be transmitted through the web. Because the text files themselves aren’t 
too big (a few megabytes, without the textures), a simple zip compression is sufficient in order to ensure a 
quick download of the 3D content. For instance, the compression ratio obtained with WinZip 8.1 is more 
than 70% for a standard Collada file. That way, a 2 Mb file will be less than 600Kb after compression and 
the download time will be divided by 3.   

In practice, the data is decompressed directly by the VTO which embeds a Zip decompression 
module. The decompression time is less than 0.5 seconds which is negligible for the whole downloading 
process. 
 On other hand, the textures employed are not easily compressible like a simple text. This 
represents the main difficulty for the web data management. The current best solution is to integrate a 
streaming module for the textures. It permits to display the 3D shape before to display the whole object. As 
COLLADA integrates the standard XML format, we could use it to stream textures from URL paths. Our 
application will stream the requested textures and according to textures ID it will subsequently process 
texturing on the object. This approach seems to be a good compromise between high resolution model and 
downloading time. 
In this tutorial, the client/server management side will not be developed. We can only say that a data base is 
the usual solution to manage data but the best interest is how to broadcast it. Currently, a solution could be 
the peer to peer broadcasting method. This method increases the data speed deployment but it is totally 
dependent on the number of connected peers.    

Web Interface 
 

The web interface of the Virtual Try On platform provides the user with all the functionalities 
needed to define his/her own avatar. The user can modify measurements of a generic virtual body to fit 
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his/her general physical aspect. Choose its garments (including size and texture) and visualize the virtual 
body walking in a fashion show room with the garments animated in real time. 

 
The web interface needs to be simple and user-friendly. All users should be able to handle it easily 

and intuitively. It follows that the main functionalities of the Virtual Try On are divided in three modules. 
In the first one, the user provides his measurements in order to get a 3D model with his profile. In the 
second one, he can choose between different cloth categories, select a garment to get information about it 
and try it on via his 3D model. Finally, in the third module the user can see his model walking around and 
can interact with it by zooming on it or changing the view angle.  
 

The interface content should be well-ordered. Indeed the web interface elements which are the 
most important of the Virtual Try On web based application should be highlighted. In our prototype we 
show up the fact that we can choose the exact measurements for the 3D model. Indeed this element is very 
important in this interface and should appear earlier. This is the reason why we put this measurements 
selection with the common sizes selection in order to create a submenu called Measurement. Naturally, this 
measurements submenu will interact directly with the web based application and with our body sizing 
module. Each slider represents a sizable body part of the virtual body (see previous paragraph on 
Parametrically Deformable Human Bodies method). Next, the users have to select the cloth itself and to be 
able to get relevant information on it. Regarding to our goal, this submenu permits to get a global view of 
the cloth data bank, to follow the user choices and to view the result on the virtual body. The third submenu 
is called Show Room and permits to show the virtual body deformed and the chosen cloth, through an 
animation. It is composed by two buttons which are used to play or to stop the walk animation. Finally, the 
proposed submenus sequence follows the natural logic proposed as to know the measurements following by 
the dressing choice and the show room. This corresponds to our modules sequence i.e. body sizing 
following by cloth sizing following by body and cloth animation. 

 
 The current interface is developed using Flash tool. The Flash Player developed and distributed by 
Adobe Systems (www.adobe.com) is a client application available for most common web browsers. It 
features support for vector and raster graphics, a scripting language called Action Script and bi-directional 
streaming of audio and video. This tool provides compatibilities with ActiveX and XPCOM components 
and can communicate through JavaScript by FScommand which are Action Script methods. 
 
 To conclude, the Virtual Try On regroups two main elements which are the web based application 
and the web interface. Our web based application is constructed on a common structure which is composed 
by the Collada file format, the OpenSceneGraph 3D engine, interface components and our in-house 
modules. Currently, this development is not finished yet, but currently follows the presented integration 
strategy above.  
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