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I   will  put   your   phone   into   your   bag.

Today is six degrees higher than yesterday.

He  traveled  around  the  world  long  ago.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑊𝑒𝑖𝑔ℎ𝑡

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑊𝑒𝑖𝑔ℎ𝑡

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑊𝑒𝑖𝑔ℎ𝑡

Fig. 1. ACT2G takes text as input and outputs realistic gestures. Text is encoded based on the Attention
Weight, which represents the likelihood that the gesture will appear, and gesture is generated from the text
feature.

Recent increase of remote-work, online meeting and tele-operation task makes people find that gesture for
avatars and communication robots is more important than we have thought. It is one of the key factors
to achieve smooth and natural communication between humans and AI systems and has been intensively
researched. Current gesture generation methods are mostly based on deep neural network using text, audio
and other information as the input, however, they generate gestures mainly based on audio, which is called
a beat gesture. Although the ratio of the beat gesture is more than 70% of actual human gestures, content
based gestures sometimes play an important role to make avatars more realistic and human-like. In this paper,
we propose a attention-based contrastive learning for text-to-gesture (ACT2G), where generated gestures
represent content of the text by estimating attention weight for each word from the input text. In the method,
since text and gesture features calculated by the attention weight are mapped to the same latent space by
contrastive learning, once text is given as input, the network outputs a feature vector which can be used to
generate gestures related to the content. User study confirmed that the gestures generated by ACT2G were
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better than existing methods. In addition, it was demonstrated that wide variation of gestures were generated
from the same text by changing attention weights by creators.

CCS Concepts: • Interaction→ Multimodal Interaction; Human-Computer Interfaces.

Additional Key Words and Phrases: gesture generation, multimodal interaction, contrastive learning

ACM Reference Format:
Hitoshi Teshima, Naoki Wake, Diego Thomas, Yuta Nakashima, Hiroshi Kawasaki, and Katsushi Ikeuchi. 2023.
ACT2G: Attention-based Contrastive Learning for Text-to-Gesture Generation. Proc. ACM Comput. Graph.
Interact. Tech. 6, 3, Article 35 (August 2023), 17 pages. https://doi.org/10.1145/3606940

1 INTRODUCTION
In recent years, communication in virtual space has becomemore active and avatars are increasingly
used. In addition tele-operation robots and communication robots become popular and widely
developed. Past psychological research has shown that gestures play an important role in conveying
information [Birdwhistell 2010; Mcneill 1994], but gesturing avatars and robots is one big challenge.
Since manual design of gesture is time-consuming, gesture generation methods have been actively
studied for long time. However, it has been extremely difficult to properly reflect the meaning of the
content of speech by previous rule based method because the relationship between the semantic
information in the speech and the gesture has not been considered.
To solve the problem, learning based approaches have been proposed [Ginosar et al. 2019;

Kucherenko et al. 2021a; Li et al. 2021; Qian et al. 2021; Yoon et al. 2019], where gestures are
generated from audio or text information trained by using real gesture databases, expecting semantic
information being implicitly considered. However, most existing methods generate gestures mainly
based on audio, which is called a beat gesture, because the ratio of the beat gesture is more than
70% of actual human gestures [Mcneill 1994]. It should be noticed that text/content based gesture
sometimes plays an important role to make gestures more realistic and more human-like.
In the paper, we propose Attention-based Contrastive Learning for Text-to-Gesture (ACT2G),

which is a pipeline to generate gestures only from text and explicitly represents the semantic
information as shown in Fig. 2. In our technique, to generate the large variation of gestures from
arbitrary text, VAE is applied to encode the sequence of gestures into small dimension, and then,
texts encoded by a Transformer network are mapped to the same latent space by contrastive
learning, by which semantic information is effectively correlated to gestures.
In our method, to generate wide variety of gestures from the same text, but different context,

we propose an attention based encoding technique, where the attention weights are estimated
from the input word features embedded by BERT and multiplying them by each word feature. The
attention weight network is trained by using manually annotated ground truth information of
TED Gesture-Type Dataset [Teshima et al. 2022], which is expanded by us and make it publicly
available after acceptance. In addition, ACT2G can also generate arbitrary gestures by manually
setting attention weight to specific word, where users want to emphasize by the gesture.

The main contributions of our work are the following:
• Contrastive learning for constructing the multi-modal space between gestures and text to
achieve semantic gesture generation is proposed

• Attention-based text encoder to focus on specific words which represent gestures is proposed
• Attention-based gesture generating tool based on manual selection of keyword for content
creators is developed.

• New gesture database including attention information is created and free for public use.
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Fig. 2. Pipeline for training. Encoded text feature f𝑡 and gesture feature f𝑔 are mapped into a multimodal
space by contrastive learning. The figure on the right shows an attention-based text encoder.

2 RELATEDWORK
Gestures can be divided intomainly four categories, such as beat, deictic, iconic, andmetaphoric [Mc-
neill 1994]. Beat is a gesture that has nothing to do with the content of the utterance; it is a gesture
like shaking arms in time with the inflection of the voice. The other three types of gestures are,
respectively, pointing gestures, gestures for concrete objects or actions, and gestures for abstract
concepts; these are called representational, which express the content of speech. Absaliev et al.
denote representational gestures as expressive gestures and analyze the connections between
language and expressive gestures. [Abzaliev et al. 2022]. Deep Gesture Generation [Teshima et al.
2022] proposed a method for generating gestures that takes these gesture types into account,
however this paper focuses on the generation of representational gestures.
With the remarkable development of deep learning, recent research in gesture generation has

tended to be data-driven, with some methods generating gestures from audio, text, or both, or
other modalities as well. The trend in gesture generation in recent years has been probabilistic
generative models, e.g., adversarial model [Ferstl et al. 2020; Ginosar et al. 2019; Habibie et al. 2021],
normalizing flow-based model [Alexanderson et al. 2020], and VAE model [Li et al. 2021]. On the
other hand, deterministic models like RNN-based models [Kucherenko et al. 2021a; Takeuchi et al.
2017], Seq2Seq model [Yoon et al. 2019], and auto-encoder model [Lu et al. 2021] also exist. Li et al.
[Li et al. 2021] pointed out that deterministic generative models to date have been trained with a
one-to-one mapping of audio or text to gesture, but because of the diversity of gestures, they trained
to separate latent features so that text and gesture were one-to-many. Also, there is a model that
predict gesture parameters from speech and refer to appropriate gestures from a database [Ferstl
et al. 2021]. Outputting gestures directly from the database enable the generation of gestures that
are more human-like. However generating representational gestures from audio alone is difficult
because it is hard for the network to learn semantic information related to gestures.

While there are many methods for generating gestures from audio[Ao et al. 2022; Ginosar et al.
2019; Kucherenko et al. 2019; Li et al. 2021; Liu et al. 2022a; Xu et al. 2022], there are also methods for
generating gestures from text, such as Seq2Seq [Yoon et al. 2019], transformer model [Bhattacharya
et al. 2021], and GPT model [Gao et al. 2023]. A more recent trend is to generate gestures using
both text and audio [Ao et al. [n. d.]; Kucherenko et al. 2020; Liang et al. 2022], using the speaker’s
ID as input [Liu et al. 2022b; Yoon et al. 2020], and also facial expressions and emotions [Liu et al.
2022c]. Ginosar et al. focused on generating individual-specific gestures because of the diversity
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Fig. 3. Gesture-VAE Network. The network takes the key-poses of the gesture as input and predicts the
gesture feature z.

of gestures [Ginosar et al. 2019], Yoon et al. controlled the generated gestures by providing the
speaker’s ID as input [Yoon et al. 2020]. For those who actually design the gesture, the more input
modalities, the higher hurdle to generate gestures. Therefore, we propose a method to generate
gestures using only text as input. Our method can also generate a gesture by adding Attention as
an input, specifying the words that we want to appear as an representational gesture.

3 PROPOSED METHOD
ACT2G takes text as input, and output a realistic gesture. The training process is divided into three
parts: (1) Gesture-VAE, (2) attention-based text encoder, and (3) contrastive learning. The ACT2G
pipeline including (2) and (3) is shown in Fig. 2. In Sec. 3.1, we introduce the gesture clustering as a
preliminary preparation. Sec. 3.2 introduces the first half of ACT2G, attention-based text encoder,
and Sec. 3.3 describes the contrastive learning process for gesture generation.

3.1 Gesture Clustering Using Gesture-VAE
As Li et al.mentioned [Li et al. 2021], recent data driven methods take an approach where the input
(text, audio, speaker ID, etc.) and the output (gesture) are mapped in a one-to-one fashion. However
gestures are diverse, and the same gesture does not always appear in the same text. Inconsistencies
in training data can hinder learning. Therefore, in order to achieve a one-to-many correspondences
between gesture and text, we apply clustering on gestures in advance.
We use intermediate features of VAE [Kin 2014] for the clustering of gestures. The network

structure is shown in Fig. 3. One of the main problems when clustering time-series data such
as gestures is the difference in sequence length. Especially in networks using RNN as encoders,
problems such as vanishing gradient make feature extraction of too long data difficult. Therefore,
we train the network using the key poses of the gestures as input. Considering key-poses such
as labanotation plays an important role in the analysis of human motion, as shown in previous
researches [Ikeuchi et al. 2018; Manoj et al. 2009]. We extracted the key-poses p = {p1, ..., p𝑛} using
off-the-shelf algorithm [Ikeuchi et al. 2018] in advance and input them into VAE. The key poses
are input to the bi-directional LSTM, where the mean 𝜇 and standard deviation 𝜎 are estimated
and the latent feature z ∈ R32 is randomly sampled from the normal distribution corresponding
to that parameter. The number of dimensions of z, 32, was determined empirically by plotting
ellipses from the mean 𝜇 and standard deviation 𝜎 and observing the overlap. Then the gesture
is reconstructed by decoder 𝐷 from z. The number of key poses 𝑛 ranged from 5 to 12 frames,
and data were selected from the representational gestures in the TED Gesture-Type Dataset. Each
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Cluster 39

Cluster 30 Cluster 21

Cluster 12

Cluster 14Cluster 8

Fig. 4. t-SNE visualization of gesture clustering results. The number of each data point represents the cluster
number. Only clusters 30, 39, 8, 21, 12, and 14 show the 3 key-poses of four gestures.

key pose p𝑡 is represented as relative positions of the 8 upper body joints. The loss function for
Gesture-VAE is as follows:

L(𝜃, 𝜙) = Ez∼q𝜃 (z |p) (log p (p′ | z)) − 𝐷𝐾𝐿
(
q𝜃 (z | p)∥p𝜙 (z)

)
(1)

where𝐷𝐾𝐿 [.] denotes the Kulback-Leibler divergence,L refers to the likelihood of the parameters
of encoder and decoder (i.e., 𝜃 and 𝜙) and p′ denotes the result of reconstructing the key-poses.
Latent feature z are then used for gesture clustering. Gestures were clustered into 40 clusters by
K-Means algorithm.

The results of clustering the gestures are shown in Fig. 4. By extracting gesture features in VAE,
each gesture was mapped and clustered in continuous space. For example, cluster 39 and cluster 12
are in opposite positions in Fig. 4, with the gesture of cluster 39 facing left, but the gesture of cluster
12 facing right. In addition, the gesture in cluster 21 has the left hand down, while the gestures in
clusters 8 and 14 have the arm up gesture.

Gesture and text in the same cluster were labeled Positive, while data in different clusters were
labeled Negative. These positive and negative labels are used during contrastive learning in Sec. 3.3.

3.2 Attention-based Text Encoder
Designing gestures manually requires specialized knowledge and is very labor intensive. Gesture
generation using AI simplifies this task. However these approaches cannot represent the gesture as
the user would like to design it. Therefore, we propose a method to generate gestures by focusing on
words that are likely to be expressed in gestures. Representational gestures in the TED Gesture-Type
Dataset are annotated with the corresponding words in the utterance correspond to that gesture.
We use this data to estimate attention weight A that represents the weight of the word to focus on.

Our proposed network structure is shown in the right side of Fig. 2, which is the 𝐸𝑡 portion of
Fig. 2. First, each word is converted to a word embedding set w = {w1, ...,w𝑇 | w𝑖 ∈ R768} by using
pre-trained BERT [Devlin et al. 2019].𝑇 is the number of input words, set to 32. Then, the attention
weight A = {𝐴1, ...𝐴𝑇 } is estimated by encoder 𝐸𝑡1 from w, which consists of a fully connected
layer:

A = 𝑓 (𝐸𝑡1 (w)) , (2)
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where 𝑓 is the following normalization function to ensure that text features are not affected by
word count:

𝑓𝑖 (𝑥) =
𝑥𝑖∑
𝑗 𝑥 𝑗

. (3)

Another word feature w′ is estimated from w by using encoder 𝐸𝑡2 and by multiplying with A.
During training, w is always the same value for the same word because BERT is frozen, but w′ is
fine-tuned by 𝐸𝑡2.
Each word feature is then concatenated and the encoder 𝐸𝑡3 outputs a text feature f𝑡 as in the

following equations:

w′ = 𝐸𝑡2 (w) (4)

ft = 𝐸𝑡3

(
∥𝑇𝑖=1 (A ⊙ w′)

)
, (5)

where ∥𝑇𝑖=1 represents the vector concatenation from 1 to T and ⊙ represents the Hadamard
product. Attention weight A is regularized by binary cross entropy loss:

L𝑎𝑡𝑡𝑛 = − 1
𝑇

𝑇∑︁
𝑖=1

𝐴𝑖 · log𝐴𝑖 +
(
1 −𝐴𝑖

)
· log (1 −𝐴𝑖 ) , (6)

where 𝐴𝑖 is a ground truth with label 1 for the word corresponding to the gesture and 0 for
the others. The part on the right side of Fig. 2, illustrate estimation process of A. This part was
pre-trained with data from all representational gestures in the TED Gesture-Type Dataset. When
training contrastive learning, which is discussed in Sec. 3.3, A is fine-tuned by using text features f𝑡
to reconstruct the gesture. During inference, gestures are generated from text features f𝑡 , where A
can be explicitly given. In Sec. 4.5, we describe an experiment in which A is also input to generate
a gesture.

3.3 Contrastive Learning for Multimodal Space Construction
Many recent gesture generation methods output sequences of poses directly from the network,
but they are often overly slow or jerky. We assume that the slow movement problem is due to the
generator’s RNN and autoregressive model. Therefore, we propose a method to create a gesture
library and search for the appropriate gesture from the library. ACT2G generates gestures using
contrastive learning, which is often used to improve text embedding [Kiros et al. 2014] or image
and video retrieval [Bain et al. 2021; Miech et al. 2018].
The overview of the network structure is shown at Fig. 2. Key-poses are extracted from the

gesture and input to encoder 𝐸𝑔, which consists of a bi-directional LSTM or FCN. 𝐸𝑔 outputs
the gesture features f𝑔 ∈ R32, and the gesture is reconstructed through the decoder similar to
Gesture-VAE, described in Sec. 3.1. Contrastive loss is as follows:

L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 =
1
𝐵

∑︁
𝐵

[
1
2
(P ⊙ D)2 + 1

2
max(0,m − (1 − P) ⊙ D)2

]
(7)

where 𝐵 is the batch size, and P ∈ R𝐵×𝐵 is the positive matrix between each data defined by
the gesture clustering described in Sec. 3.1, and is a square matrix of 1 if each data is positive and
0 if negative. D ∈ R𝐵×𝐵 is the L2 distance matrix between text feature f𝑡 and gesture feature f𝑔.
And m ∈ R𝐵×𝐵 is the margin, which is a square matrix with all elements𝑚. We set𝑚 = 20 in
practice. This contrastive loss means, in the multimodal space, the distance between gesture-text
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●: Gesture
●: Text

Fig. 5. t-SNE visualization of multimodal space. The blue dots represent text features f𝑡 , the orange dots
represent gesture features f𝑔 , and the red dash lines are mutually Positive gesture data pairs.

pairs, defined as positive in Sec. 3.1, is small, while the distance between pairs, defined as negative,
is large. The loss to reconstruct the key-poses is:

L𝑟𝑒𝑐𝑜𝑛𝑠𝑡 =
1
𝐵

𝐵∑︁
𝑖

(
𝑝′𝑖 − 𝑝𝑖

)2
. (8)

The loss function for the entire framework is as follows:

L = L𝑎𝑡𝑡𝑛 + 𝛼 · L𝑟𝑒𝑐𝑜𝑛𝑠𝑡 + 𝛽 · L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 . (9)
Two parameters 𝛼 and 𝛽 controls the weights of the loss terms, and they were empirically

determined to 10 and 2, respectively. The multimodal space constructed by the contrastive loss is
shown in Fig. 5. The blue dots, orange dots, and red lines represent text features f𝑡 , gesture features
f𝑔 , and pairs of mutually Positive gestures, respectively. Even though all positive data are connected
with each other by a red line, fewer of them are visible as a line compared to the number of dots,
indicating that the data that are positive with each other are clustered together.
During inference, using reconstructed key-poses is difficult to humanize the gesture by simply

interpolating between the key-poses. Therefore, we propose a method that uses the multimodal
space to retrieve appropriate gestures from a gesture library. The gesture library contains the
gestures in the training data and their corresponding positions in the multimodal space as shown
in Fig. 5. When text is input, the text feature is extracted by the encoder introduced in Sec. 3.2, and
the gesture is randomly sampled from nearby that text feature in the multimodal space. Long input
text is empirically divided into 8 word and entered into the network. Gesture speed is adjusted to
match the length of the human voice, if present, or the synthesized voice, if absent. The gestures
generated for each segmented text were combined by spline interpolation.

4 EXPERIMENTS
In this section, we first introduce the dataset we used for training and evaluation in Sec. 4.1. Then,
in Sec. 4.2, we describe a ablation study, and in Sec. 4.3, we discuss the evaluation of gestures
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generated by our method and state-of-the-art methods. Finally, a gesture generation tool with user
specific attention mechanism is demonstrated in Sec. 4.5.

4.1 Dataset
Training ACT2G. The purpose of contrastive learning in ACT2G is to find correlation between

texts and gestures and map them into a multimodal space. Therefore, it is necessary to train the
network using representational gestures by excluding gestures that are unrelated to text, such
as beat gestures. We, therefore used the TED Gesture-Type Dataset [Teshima et al. 2022]. TED
Gesture-Type Dataset contains 13,714 gestures divided from TED videos, each annotated with three
gesture types: beat, representational, or non-gesture. We used 4097 of these gestures, annotated
as representational, for training. When pre-training the attention-based text encoder described in
Sec. 3.2, we used all 4097 gestures. And when training the entire ACT2G, we manually annotated
most appropriate word representing the gesture for each text of 1000 gestures. For example, an
representational gesture which has text of "something that made me very happy" and then pulling
the arms back toward one’s chest was annotated as "me." Then, we used all the representational
gestures for the attention-based text encoder pre-training, and used our original annotated data for
the contrastive learning.

Evaluation. Gesture evaluation methods, such as avatars to visualize gestures, question items,
and the user interface used for evaluation, vary from method to method. In evaluating gestures, the
user study, in which the evaluation is based on human perception, is the most important experiment
to focus on, and it is important to evaluate the gestures in the same environment.
Therefore, we used the widely used TED Gesture Dataset [Liu et al. 2022b; Teshima et al. 2022;

Yoon et al. 2019] for the user study. We also used the Trinity Speech-Gesture Dataset [Ferstl and Mc-
Donnell 2018] for a verification of generalization, according to the GENEA Challenge [Kucherenko
et al. 2021b]. The TED Gesture Dataset is data from various people speaking, whereas the Trinity
Speech-Gesture Dataset is data of a single speaker speaking on a variety of topics.
The TED Gesture Dataset is used for 2D pose estimation from video by OpenPose [Cao et al.

2019], followed by lifting to 3D [Martinez et al. 2017], or 3D pose estimation by Expose [Choutas
et al. 2020]. On the other hand, Trinity Speech-Gesture Dataset uses marker-based motion capture
to collect pose information. We divided each dataset into 5 to 15-second sequences, separated by
sentence units. Of these, 30 sequences were used for evaluation and 2 sequences were used as
attention checks.

4.2 Ablation Study
We first conducted an ablation study to gain more insights into our framework. We used Diversity
score [Li et al. 2021] and FGD score [Yoon et al. 2020] as metrics for quantitative evaluation and
perceptual scores from the user study for qualitative evaluation. The Diversity proposed by Li et al.
is not suitable for computation with gesture data of different length, since the distance between
gestures is computed with L1 distance of each joint in the same frame. We therefore used the
distance between latent features trained in the Gesture-VAE introduced in Section 3.1 as the distance
between gestures:

Diversity =
1

𝑁 × ⌈𝑁 /2⌉

𝑁∑︁
𝑎1=1

𝑁∑︁
𝑎2=𝑎1+1

𝜇𝑎1 − 𝜇𝑎2


1 ,

where 𝜇 refers to the latent vector of the VAE and 𝑁 is the number of motion clips.
The FGD proposed by Yoon et al. [Yoon et al. 2020] could only handle short gestures of 34 frames.

Therefore we extracted key poses from the gestures and used them as input to the Gesture-VAE (Fig.
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Table 1. Results of ablation study. ± means 95% confidence interval, and ∗ means statistical differences from
full model (𝑝 < 0.01)

Diversity ↑ FGD ↓ User Score ↑
w/o contrastive 34.99 155.91 55.65 ± 1.11∗
w/o attention 36.64 159.85 61.31 ± 1.21∗
full model 37.43 163.30 65.97 ± 1.41

3), allowing us to evaluate gestures with an average length of 233 frames and a maximum length
of 1795 frames. Key poses were extracted using the method of Ikeuchi et al. [Ikeuchi et al. 2018]
method, which summarizes the entire motion. The gestures, the input to the VAE, were padded
to 64 frames and the dimension of the latent space was set to 256 dimensions empirically. During
the ablation study, we trained the VAE on the Trinity Gesture Dataset, and tested with 972 motion
clips from TED Gesture Dataset.

In the user study, 50 participants in the Amazon Mechanical Turk rated 3 kind of gestures on a
scale of 1-100 for the question "How appropriate are the gestures for the speech?". The requirements
for participants in Amazon Mechanical Turk and the gestures used in the evaluation are the same
as those described in Sec. 4.3 Comparison with Previous Methods below.

Table 1 shows the results of the ablation study. W/o contrastive is the case of no contrast learning,
i.e., multimodal space is not created. After text features were extracted by BERT, gestures were
selected by nearest neighbor method with the features from TED Gesture-Type Dataset. W/o
attention means the way the gesture is generated without encoder 𝐸𝑡1 in the right side of Fig. 2.
The result between w/o contrastive and full model in Diversity shows that it is possible to generate
a variety of gestures by a multimodal space of text and gestures, rather than a simple nearest
neighbor method with only text. The user study results show a statistically significant difference
for the full model over the other two ways. The results with w/o contrastive were particularly
significant, showing that the multimodal space created by contrastive learning allows for better
gesture selection. Although the result of the full model was inferior to the other two methods in
terms of the FGD, since FGD just means how similar the gesture is to the original gesture and it is
not necessarily an appropriate gesture for speech, we prefer the user score and use the full model
in subsequent evaluation.

4.3 Comparison with Previous Methods
We conducted two user studies to compare gestures generated by ACT2G with existing methods
and original gestures. The existing methods are compared with (1) Trimodal [Yoon et al. 2020], (2)
HA2G [Liu et al. 2022b], (3) Deep Gesture Generation [Teshima et al. 2022] that serve as a baseline,
since they are also considering semantic information for gesture generation. (1) Trimodal is a
method that takes text, audio, and speaker identity as input and generates gestures using bidirec-
tional GRU model. This model is trained with TED Gesture Dataset [Yoon et al. 2019]. (2) HA2G is
also a method that takes text, audio, and speaker identity as input and generates gestures using
decoders that are hierarchically divided into body parts. When inferring, gestures are generated by
only the audio and speaker identity as input without text. In both methods Trimodal and HA2G,
speaker identities were chosen randomly from the training data, TED Gesture Dataset [Yoon et al.
2019]. (3) Baseline takes text as input and uses a gesture library to generate gestures. This model
generates gestures by each gesture-type generator after predicting the probability of gesture type
(beat, representational, non-gesture) from each word. These methods were evaluated using test
data in the TED Gesture Dataset.
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∗∗

∗
∗

Original Ours Baseline HA2G Gesticulator

Fig. 6. User study results with Trinity Gesture Dataset. (∗ : 𝑝 < 0.01, ∗∗ : 𝑝 < 0.05)

∗

(a) Appropriateness (b) Human-likeness

∗
∗

∗
∗

∗

Original Ours Baseline HA2G Trimodal Original Ours Baseline HA2G Trimodal

Fig. 7. User study results with TED Gesture Dataset. (∗ : 𝑝 < 0.01) The orange line represents the median,
and the green triangle represents the mean. Box edges are at 25 and 75 percentiles, while whiskers cover 95%
of all ratings for each.

Webuilt an evaluation environment similar to the GENEAChallenge [Kucherenko et al. 2021b]. As
the user interface for evaluating gesture videos, we used HEMVIP [Jonell et al. 2021], which displays
multiple videos in parallel and is intuitive and easy to use. Also, the BVH Visualizer [Kucherenko
et al. 2021b] was used to visualize the gestures. Since gestures generated by ACT2G, Baseline and
HA2G had to be converted to BVH format to use this Visualizer, each joint position was converted
to Euler angle. The two questions we prepared for the gesture evaluation items are also the same
as in GENEA Challenge, as follows:

(𝑎) Appropriateness How appropriate are the gestures for the speech?
(𝑏) Human-likeness How human-like does the gesture motion appear?
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When evaluating human-likeness, gestures were evaluated only on the basis of movement,
with no audio. Study participants were recruited through the crowdsourcing platform Amazon
Mechanical Turk instead of Prolific used in GENEA Challenge. The participants were selected if
they satisfied the following three requirements: 1) they had completed more than 500 tasks, 2) their
approval rate of task is over 90%, and 3) they had passed the attention check. The attention checks
are a way to check the quality of the worker, such as by displaying text such as "Attention! Please
rate this video 35" in the some video or replacing the audio. 108 participants met the requirements in
the Appropriateness and 115 in the Human-likeness. Participants rated each gesture on a 100-point
scale labeled (from best to worst) "Excellent," "Good," "Fair" "Poor" and "Bad" in 20-point intervals.
We randomly selected 28 gestures from those annotated as representational gestures in the TED
Gesture-Type Dataset with an average original gesture’s arm speed above a threshold.

Fig. 7 (a) shows the results of the "Appropriateness", Fig. 7 (b) shows the results of the "Human-
likeness". The orange line represents the median value, and the green triangle represents the mean
value. The results of ANOVA showed ACT2G was significantly higher than Baseline, HA2G and
Trimodal with 𝑝 < 0.01 in both Apprppriateness and Human-likeness indicators. Examples of a
generated gesture are shown in Fig. 8. In this figure, the parts where representational gestures might
appear are indicated by colored texts and boxes. We can find that Ours has a higher frequency of
representational gestures than the other methods. In the example in the upper row, original shows
a gesture of spreading his right hand twice, which may represent "chair" or "turn on". On the other
hand, our method makes a gesture corresponding to "tie me on the chair" by rotating the left hand,
and a gesture corresponding to "loud" by spreading the arms wide. Baseline shows a movement like
putting something down, while HA2G and Trimodal show a movement like spreading the right
hand and raising both hands to shoulder level when saying "turn on," respectively. In the example
in the middle row, original shows the movement of opening both hands when saying "most". Our
gesture shows the movement of both arms spread wide when saying "a lot of" and the movement of
the right hand to the center when saying "very little". Baseline generates a non-gesture, almost no
hand movement. HA2G is gently tightening and opening the elbows, while Trimodal is spreading
the left hand down at the "little" part and then opening both arms at the "most" part. In the example
in the bottom row, the original gesture is a beat-like gesture with "here", "us", and "all" each with
the arms swinging down. In ours, the right hand spreads when saying "right here" and the right
elbow rises when saying "all". Baseline and HA2G are both very slow beat gestures. Trimodal is
also slow motion and raises the right hand at the "all". The slow movement of previous methods is
considered that GRUs and autoregressive models may have caused excessively smooth movements.
As for HA2G and Trimodal, there may be some influence of randomly selected speaker identities.

One major issue in gesture generation research is how to establish evaluation criteria. We focused
on user scores to evaluate gestures according to the GENEA Challenge [Kucherenko et al. 2021b,c;
Yoon et al. 2022], but it is very labor intensive to evaluate each generated gesture with a user
study each time. Therefore, many previous studies have quantitatively evaluated gestures, and
sought better evaluation metrics. In this study, we report on the better metric in this experiment by
comparing how close the previously proposed metrics are to the distribution of user scores. We
investigated three metrics used in previous studies: L1 norm [Ginosar et al. 2019; Li et al. 2021], FGD
[Liang et al. 2022; Liu et al. 2022b; Yoon et al. 2020], and Jerk [Kucherenko et al. 2019, 2021b]. When
calculating L1 norm, the speed of the generated gestures were normalized to make the duration as
same as the original gestures. Fig. 9 shows the relationship between user score and each metric,
where the user score means the result of the Appropriateness described in Sec. 4.3. X-axes of 9(a)
and (b) are the L1 norm and the FGD, respectively, and the smaller the better. The correlation
coefficients between L1 norm, FGD and user score are -0.0305 and 0.0055, respectively, indicating
little correlation. On the other hand, the correlation coefficient for jerk is 0.4459, indicating the
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𝑡𝑖𝑒 𝑚𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑐ℎ𝑎𝑖𝑟 𝑎𝑛𝑑 ℎ𝑒 𝑤𝑜𝑢𝑙𝑑 𝑡𝑢𝑟𝑛 𝑜𝑛 𝑡ℎ𝑒 𝑚𝑢𝑠𝑖𝑐 𝑙𝑜𝑢𝑑

Ours

Baseline

Original

HA2G

Trimodal

𝑠𝑜𝑚𝑒 𝑚𝑜𝑡ℎ𝑒𝑟𝑠 𝑑𝑜 𝑎 𝑙𝑜𝑡 𝑜𝑓 𝑡ℎ𝑎𝑡 𝑠𝑜𝑚𝑒 𝑚𝑜𝑡ℎ𝑒𝑟𝑠 𝑑𝑜 𝑣𝑒𝑟𝑦 𝑙𝑖𝑡𝑡𝑙𝑒 𝑎𝑛𝑑 𝑚𝑜𝑠𝑡 𝑎𝑟𝑒 𝑖𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛

Ours

Baseline

Original

HA2G

Trimodal

𝑝ℎ𝑦𝑠𝑖𝑐𝑠 𝑖𝑠 𝑟𝑖𝑔ℎ𝑡 ℎ𝑒𝑟𝑒 𝑖𝑡𝑠 𝑓𝑜𝑟 𝑢𝑠 𝑎𝑛𝑑 𝑤𝑒 𝑐𝑎𝑛 𝑎𝑙𝑙 𝑝𝑙𝑎𝑦 𝑤𝑖𝑡ℎ 𝑖𝑡.

Ours

Baseline

Original

HA2G

Trimodal

Fig. 8. Qualitative results in TED Gesture Dataset. 3 sequences of input text and 5 kind of gesture pairs. Parts
where the representational gestures seem to appear are marked with colored boxes and the corresponding
text is also underlined in the same color.

certain correlation between them. We thought that the reason for the trend toward higher ratings
with larger jerks might be explained by simple fact that meaningful texts are usually spoken by
large movement of human.
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(a) User Score vs. L1 Norm (b) User Score vs. FGD (c) User Score vs. Jerk

Fig. 9. Relationship between user score and each metric. (a) User score vs. L1 norm. Correlation coefficient is
-0.0305. (b) User score vs. FGD. Correlation coefficient is -0.0055. (c) User score vs. Jerk. Correlation coefficient
is 0.4459.

4.4 Verification of Generalization
In Section 4.3 we evaluated four different models trained on the TED Gesture dataset on test data
from the same dataset. While the TED Gesture Dataset contains data from a variety of speakers
speaking on a variety of topics, the situation in which they are speaking in front of an audience is
the same for all data. In addition, the test data did not include anything other than representational
gestures such as beat gesture and non-gesture. Therefore, we conducted an additional user study to
confirm the generalization performance.

For the test data, we used the Trinity Speech-Gesture Dataset [Ferstl and McDonnell 2018], which
is mo-cap data from a single speaker speaking on a variety of topics in the experimental room.
The comparison methods include ours, baseline, and HA2G trained with the TED Gesture Dataset,
plus Gesticulator [Kucherenko et al. 2020] trained with the Trinity Speech-Gesture Dataset. The
experimental environment, including the interface for evaluation and the gesture visualization
method, was the same as in the user study in Sec. 4.3, and only human-likeness was used as a
question item for participants. We randomly sampled 30 gestures from test data, and 115 participants
rate the gestures.
Fig. 6 shows the results for the user study with Trinity Speech-Gesture Dataset. Statistical

tests showed Original gesture was significantly best for any other gesture at 𝑝 < 0.01. Ours was
significantly superior to Baseline at 𝑝 < 0.05, and to HA2G and Gesticulator at 𝑝 < 0.01. As can be
seen from Fig. 9, users tend to prefer the fast-moving (larger movement) gestures when they see five
different gestures in parallel. Our method tends to generate fast-moving representational gestures,
which is why it was rated higher than the baseline and other methods. Gesticulator outperformed
HA2G by p<0.01, possibly because HA2G is a model that is trained on the TED Gesture Dataset,
while Gesticulator is a model trained on the Trinity Speech-Gesture Dataset.

4.5 Attention-controlled gesture generation
The attention-based text encoder described in Sec. 3.2 predicts attention, the likelihood that a
gesture will appear, for each word. We assumed that by pre-defining the attention corresponding
to each word and inputting it into the network, the gesture corresponding to the word with the
highest attention weight would appear. Attention weights were set to 0.5 for specified words and
0.1 for other words.
Fig. 10 shows the results with the text "there are a lot of little children there. Fig. 10 (a) shows

the result of attention weight A estimated by the network with only text input, and (b), (c), and
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𝑨 0.042 0.038 0.028 0.088 0.055 0.1 0.11 0.1

𝑨 0.043 0.043 0.22 0.22 0.22 0.043 0.043 0.043

𝑨 0.053 0.053 0.053 0.053 0.053 0.26 0.26 0.053

𝑨 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.33

(a)

(b)

(c)

(d)

𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑎 𝑙𝑜𝑡 𝑜𝑓 𝑙𝑖𝑡𝑡𝑙𝑒 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑡ℎ𝑒𝑟𝑒

𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑎 𝑙𝑜𝑡 𝑜𝑓 𝑙𝑖𝑡𝑡𝑙𝑒 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑡ℎ𝑒𝑟𝑒

𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑎 𝑙𝑜𝑡 𝑜𝑓 𝑙𝑖𝑡𝑡𝑙𝑒 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑡ℎ𝑒𝑟𝑒

𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑎 𝑙𝑜𝑡 𝑜𝑓 𝑙𝑖𝑡𝑡𝑙𝑒 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑡ℎ𝑒𝑟𝑒

Fig. 10. Qualitative results of gestures generated by inputting attention. (a) Case in which the network
predicts A. (b) Case with high weight for "a lot of". (c) Case with high weight for "little children". (d) Case
with high weight for the second "there".

(d) are the results of generated gestures with higher weights for A corresponding to "a lot of",
"little children", and second "there", respectively. The each value of A is normalized by Equation
3, including the CLS token and padding tokens. In (a) gesture, the right hand is first rotated in a
small motion, then both hands are brought forward. This appears to represent a "little" or a second
"there". Also, (b), (c), and (d) gestures appear to represent "a lot of" with both arms outstretched,
"little children" with arms down, and "there" with right arm extended, respectively. Because of
random sampling from the gesture library, it may be generated slightly different gestures even for
the same text and attention weight. Although a variety of gestures can be generated by entering
text alone, even more diverse gestures can be generated by changing the attention weight.

5 CONCLUSIONS
Gesture generation recently becomes important research topic and many audio based techniques
have been proposed, however, few on semantic information based. In this paper, we proposed
ACT2G, generating gestures from text, which includes three techniques: (1) gesture clustering
based on latent space created by VAE; (2) an attention-based text encoder which explicitly considers
words representing representational gestures, and (3) contrastive learning to retrieve content
related gestures from the library. In the experiments, user studies were conducted confirming that
our method outperformed existing methods in terms of "Appropriateness" and "Human-likeness."
Another feature of the attention-based text encoder is that by manually setting the attention weight
for each word, it is possible to generate gestures suitable for that word.
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Limitations. ACT2G is primarily limited to three aspects. (i) This framework is trained on the
TED Gesture-Type Dataset, therefore finger motion is not considered. (ii) Since ACT2G has only
been trained on videos of a dozen seconds, a better interpolation method is needed to generate
gestures for long sentence input. (iii) The TED Gesture-Type Dataset used for training only contains
English videos, therefore gesture-type annotation is needed again for other languages.
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