
Compressed-Leaf Bounding Volume Hierarchies
Carsten Benthin
Intel Corporation

Ingo Wald
Intel Corporation

Sven Woop
Intel Corporation

Attila T. Áfra
Intel Corporation

ABSTRACT
We propose and evaluate what we call Compressed-Leaf Bound-
ing Volume Hierarchies (CLBVH), which strike a balance between
compressed and non-compressed BVH layouts. Our CLBVH layout
introduces dedicated compressed multi-leaf nodes where most effec-
tive at reducing memory use, and uses regular BVH nodes for inner
nodes and small, isolated leaves. We show that when implemented
within the Embree ray tracing framework, this approach achieves
roughly the same memory savings as Embree’s compressed BVH
layout, while maintaining almost the full performance of its fastest
non-compressed BVH.

CCS CONCEPTS
• Computing methodologies→ Ray tracing;

KEYWORDS
ray tracing, bounding volume hierarchy, compression
ACM Reference Format:
Carsten Benthin, IngoWald, SvenWoop, andAttila T. Áfra. 2018. Compressed-
Leaf Bounding Volume Hierarchies . In HPG ’18: High-Performance Graphics,
August 10–12, 2018, Vancouver, Canada. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3231578.3231581

1 INTRODUCTION
The key to improving fast ray tracing is the use of acceleration data
structures. Though indispensable for performance, such structures
require both time and memory to be built and stored. In particu-
lar, the memory overhead of the acceleration structure can be a
significant factor for large scenes.

One way to reduce this memory overhead is to compress the
acceleration data structure. Compressionworks particularly well for
BVHs, which naturally leads to conservative, incremental encoding.
This can significantly reduce the size of the acceleration structure,
at the cost of introducing additional overheads.

In the case of BVHs, these overheads fall into three categories:
First, there is the obvious cost of decompressing each BVH node
during traversal; second, in particular for hierarchical encoding
schemes, the need to track parent information slightly compli-
cates the traversal; and third, conservatively quantizing each node’s
bounds results in less tight bounding boxes compared to uncom-
pressed ones, resulting in a small increase in the number of nodes
and primitives that have to be traversed and intersected.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HPG ’18, August 10–12, 2018, Vancouver, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5896-5/18/08. . . $15.00
https://doi.org/10.1145/3231578.3231581

On GPUs, the savings in node bandwidth may completely offset
the additional ray traversal overhead; on CPUs some overhead
typically remains. However, for memory limited applications this
trade-off between performance and memory use can be appealing.

In this paper, we propose and evaluate an approach to BVH
compression that improves upon fully-compressed wide BVHs by
introducing a new dedicated node type for compressed multi-leaf
nodes where applicable, while using fast, uncompressed BVH nodes
for interior nodes and isolated individual leaf nodes.

Typically, wide BVHs use a data layout where all of an individual
node’s N children are stored together in a consecutive block. This
allows for addressing all of a parent’s N children with a single
pointer, but slightly confuses the terminology of what a “node”
in a wide BVH actually is. Throughout the paper we will refer
to each group of N siblings as a N-wide multi-node, with each
sibling consisting of N individual nodes. We refer to the lowest
level of individual nodes as leaf nodes, each logically containing
one bounding box and a pointer to the actual leaf data.

The fundamental insight behind our compression approach is
that almost all of the savings of BVH compression comes from
compressing the leaf nodes, which in 8-wide BVHs make up the
majority of nodes, while most of the traversal overhead comes
from traversing the interior nodes. Consequently, we focus on com-
pressing just the leaf nodes, by introducing dedicated compressed
multi-leaf nodes.
2 RELATEDWORK
Acceleration structures for ray tracing have a long history; a survey
can be found in Havran’s thesis [Havran 2000]. Today, most ray
tracers use some sort of BVH, typically with a branching factor
of 4 or 8 [Dammertz et al. 2008; Ernst and Greiner 2008; Parker
et al. 2010; Wald et al. 2008, 2014]. While in the past each ray
tracer implemented its own acceleration structures, the last few
years have seen the emergence of commonly accepted ray tracing
libraries such as Embree for CPUs [Wald et al. 2014], and OptiX for
GPUs [Parker et al. 2010], both of which use wide BVHs.

BVHs combine a hierarchical data structure with conservative
bounding volumes, and thus lend themselves naturally to hierarchi-
cal, incremental encoding. Expressing each child node’s bounding
box relative to the bounds of its parent allows to quantize these child
boxes, thereby representing them with fewer bits. During traver-
sal these boxes are then decompressed on-the-fly by dequantizing
them relative to the previous traversal step’s bounding box. This
concept of incremental encoding was first proposed by Mahovsky
et al. [Mahovsky and Wyvill 2006], and has since been extended
even to compressing the geometry itself [Segovia and Ernst 2010].

The downside to hierarchical encoding is that tracking the re-
spective decompressed parent boxes on the stack is costly, and
complicates traversal. At least for wide branching BVHs this can
be avoided by having each multi-node store not only the quan-
tized child boxes, but also the single full precision parent box that
the N quantized child boxes are relative to. This of course reduces

https://doi.org/10.1145/3231578.3231581
https://doi.org/10.1145/3231578.3231581

HPG ’18, August 10–12, 2018, Vancouver, Canada Benthin et al.

the effectiveness of compression, but makes for much simpler and
faster traversal. This approach has recently been adopted on both
CPUs [Wald et al. 2014] and GPUs [Ylitie et al. 2017], and has even
been proposed for dedicated ray tracing hardware [Keely 2014]. In
particular, while originally proposed mainly for reducing memory
footprint, the reduced memory bandwidth requirements have been
found to significantly increase performance on both GPUs [Ylitie
et al. 2017] and dedicated hardware [Keely 2014].

3 COMPRESSED-LEAF BVHS
Our method is driven by two key insights: First, that at least in the
case of wide BVHs, compressing only leaf nodes can yield most
of the benefits of compressing all nodes, while minimizing the
downsides; and second, that in wide BVHs it is often possible to
find entire groups of leaf nodes that, when considered together,
allow for even more memory savings than for interior nodes, by
defining a special multi-leaf node type and compressing this. For
the sake of brevity, throughout the rest of the paper we will only
consider 8-wide BVHs (BVH8).

With regard to the first insight, we observe that in a binary
BVH half of the nodes are leaf nodes; in a BVH8 this ratio rises to
over 80%. Furthermore, even in a shallow BVH8 a ray will typically
traverse multiple inner nodes per visited leaf node, so assuming
the overhead due to decompression and less-tight bounding boxes
is the same for inner and leaf nodes, most of the traversal overhead
will be generated by the inner nodes. Consequently, compressing
only the leaf nodes will provide most of the memory savings, yet
come with little of the traversal overhead.

The caveat to this argument is that for a BVH8 compressing only
leaf nodes is not that easy, because every “node” in such a BVH is
actually a multi-node of 8 individual nodes, each of which could
be either a leaf or an inner node. However, our second insight is
that the individual node types found in an 8-wide multi-node in
practice are not random, and it is in fact relatively easy to build
BVHs such that most (though certainly not all) leaf nodes end up
in multi-nodes that contain only leaf nodes (Section 4.3).

Our method optimizes for this case by introducing a new com-
pressed multi-leaf node type which replaces these all-leaf multi-
nodes (see Listing 1), while leaving both inner and isolated leaf
nodes unchanged. Moreover, as we know that all children of these
compressed multi-leaf nodes are leaves we can do additional opti-
mizations. In particular, we can store the data the child leaves would
have pointed to right after the node itself in memory, eliminating
the child pointers from those nodes, and providing even more po-
tential for compressing the resulting structures (see Section 4.5).

In summary, our resulting BVH—which we call a Compressed-
Leaf BVH (CLBVH)—has two multi-node types: regular BVH8 multi-
nodes containing 8 individual nodes, each of which could be a
regular inner node, or a regular individual leaf node, just as in the
original BVH8multi-nodes; and our new compressed multi-leaf node
which stores (up to) 8 individual leaves, in compressed form.

Since we will use a surface area heuristic (SAH) BVH builder, it
is theoretically possible to contrive degenerate inputs where most
leaves would end up in mixed multi-nodes, and result in very few
of our compressed multi-leaf nodes being created. In practice, it
is relatively easy to get the vast majority of leaves to end up in
compressed multi-leaf nodes (see Section 4.3).

Listing 1: Top: Embree’s regular BVH8nodes contain 8 point-
ers and float boxes (256 bytes). Middle: Embree’s quantized
QBVH8 nodes contain 8 pointers, 8 quantized bounding
boxes, and 6 floats to specify the dequantization domain
(136 bytes). Bottom: At the leaf level, our method introduces
a compressed BVH node type (72 bytes)—knowing it will
only contain leaf nodes—and omits the pointers by storing
the primitive data right after the node itself.
// BVH8 multi -node: 192+64=256 bytes

struct BVH8MultiNode {

box3f childBounds [8]; //one float box per child

uint64 childRef [8]; }; //child pointers

// QBVH8 multi -node: 24+48+64=136 bytes

struct QBVH8MultiNode {

vec3f start , extent; // shared full -prec. start/extent

box3ui8 childBounds [8]; //8-bit fixed -point child boxes

uint64 childRef [8]; }; //child pointers

// Compressed multi -leaf BVH node: 24+48=72 bytes

struct CLBVHMultiNode {

vec3f start , extent; // shared full -prec. start/extent

box3ui8 childBounds [8]; //8-bit fixed -point child boxes

LeafPrimData childPrims [0]; // implicit pointer

}; // leaf data stored right behind this node

4 IMPLEMENTATION
We implement and evaluate the previously discussed strategywithin
a modified version of Embree 3.0.

4.1 Node Compression and Decompression
In Embree’s BVH8 data layout, each multi-node contains 8 bounding
boxes and 8 (64-bit) child pointers (see Listing 1). For each individual
node in such a multi-node, the childRef value encodes whether the
node is an inner or leaf node; as well as the pointer. For inner nodes
the pointer refers to another BVH8 multi-node; for leaves it points
to the leaf’s leaf data, the list of primitive data belonging to the
leaf. Exactly what primitive data is stored in a leaf depends on the
BVH type: for triangles, it is either a list of triangle4 structures,
fully pre-gathered vertices of four triangles in SoA layout; or a list
of triangle4i with four triangles’ worth of vertex indices.

In Embree’s fully compressed QBVH8 layout, the 8 child bounding
boxes are expressed relative to the parent’s bounding box, and
quantized to 8-bit fixed-point values. Each QBVH8multi-node stores
the parent bounding box in the form of its start and extent, stored
as two 3-dimensional single precision vectors (2×12 bytes). Each
child’s bounding box is stored as 2×3 bytes, for the box’s lower and
upper bounds, requiring 48 bytes for all 8 children. Including the
8 child pointers, this sums to a total of 136 bytes, slightly more
than half an uncompressed BVH8 multi-node. Note that this layout
differs from previous approaches [Ylitie et al. 2017], as the extent is
stored in full precision; this provides tighter bounds but requires
more space.

Decompressing a QBVH8 node is done by computing the lower
(upper) bound as starti+ (f loat)loweri ∗ extenti . On a CPU this
requires 8 logical instructions per dimension and box: 2 loads (start,
extent), 2 byte-to-int load and up-conversion (for lower and upper
bounds), 2 int-to-float conversions, and 2 multiply-adds. The de-
compression is done for all 8 quantized child bounding boxes in
parallel using SIMD instructions, resulting in an overhead of around
24 instructions for a single ray-node intersection test, making it
more than twice as expensive as for an uncompressed BVH8 node.

Compressed-Leaf Bounding Volume Hierarchies HPG ’18, August 10–12, 2018, Vancouver, Canada

Table 1: Detailed memory usage (in MB), traversal statistics, and render performance (in MRays/s) for our CLBVH relative to
Embree’s regular uncompressed BVH8 and fully compressed QBVH8 variants; for two typical configurations: highest perfor-
mance (SBVH+pre-gathered triangle data), and lowest memory consumption (BVH+triangle indices).

Embree “best performance” (SBVH, triangles only) Embree “least memory” (BVH, triangles only)
(leaves store full pre-gathered primitives) (leaves store only vertex indices)

BVH8 QBVH8 CLBVH (ours) BVH8 QBVH8 CLBVH (ours)
uncompressed fully compressed (fast) uncompressed fully compressed (fast) (compact)

San Miguel (10.5M triangles)
BVH/QBVH memory 152/- -/85.3 -43.7% 53.6/30.5 -44.5% 141/- -/79.5 -43.7% 50.3/28.4 -44.3% 50.3/28.4
leaf data memory 559 559 558 239 239 239 179 -25.1%
total memory 711 645 -9.3% 643 -9.4% 380 318 -16.2% 317 -16.2% 257 -32.3%
travs/isecs per ray 16.8/5.0 17.2/5.2 16.8/5.1 20.4/5.26 20.8/5.58 20.4/5.36 20.4/5.36
MRays/s 113 100 -11.5% 110 -2.5% 88.8 79.7 -11.3% 88.4 -0.4% 79.9 -10.0%

Power Plant (12.7M triangles)
BVH/QBVH memory 178/- -/103 -41.8% 68.5/33.9 -42.3% 151/- -/84.7 -43.7% 56.9/29.2 -42.8% 56.9/29.2
leaf data memory 735 735 733 280 280 280 214 -23%
total memory 913 868 -4.9% 835 -8.5% 481 365 -24.1% 366 -23.8% 301 -37.4%
travs/isecs per ray 11.8/3.7 12.2/4.3 11.7/4.1 16.8/5.0 17.2/5.2 16.8/5.13 16.8/5.13
MRays/s 188 153 -19.0% 181 -4.0% 90.2 76.8 -14.8% 86.8 -3.7% 80.0 -11.2%

Villa (38.3M triangles)
BVH/QBVH memory 625/- -/351 -43.7% 212/133 -45.8% 542/- -/305 -43.7% 185/116 -45.8% 185/116
leaf data memory 2273 2274 2273 899 899 899 762 -15.2%
total memory 2898 2625 -9.4% 2608 -10.1% 1440 1204 -16.4% 1192 -17.3% 1063 -26.2
travs/isecs per ray 15.24/4.82 15.5/5.0 15.2/4.95 17.5/5.56 17.9/5.77 17.5/5.67 17.5/5.67
MRays/s 118 105 -10.7% 115 -2.2% 87.9 81.5 -7.3% 88.1 +.01% 82.2 -6.4%

Boeing (350M triangles)
BVH/QBVH memory 5132/- -/2887 -43.7% 1879/1013 -43.6% 4598/- -/2586 -43.8% 1661/915 -44.0% 1661/915
leaf data memory 18942 18942 18941 7640 7640 7640 6206 -18.7%
total memory 24074 21829 -9.3% 21833 -9.3% 12238 10226 -16.4% 10216 -16.5% 8782 -28.2%
travs/isecs per ray 16.0/5.6 16.3/5.9 16.0 / 5.7 25.3/7.96 26.1/8.27 25.3/8.05 25.3/8.1
MRays/s 111.4 98.5 -11.5% 108 -3.3% 68.2 60.4 -11.4% 66.7 -2.2% 63.0 -7.5%

4.2 Introducing Compressed Multi-Leaf Nodes
The main limitation of the existing QBVH8 multi-nodes is that the
eight 64-bit pointers cannot easily be compressed. We address this
by explicitly targeting multi-nodes that contain only leaves, in
which case we know all pointers refer to leaf data. We exploit this
by storing the referenced primitive data directly after the QBVH8
node itself (see Listing 1), allowing us to replace 64-bit pointers
with 8-bit offsets. In fact, in cases where the builder can guarantee
to always produce exactly one triangle4 per leaf we can remove
these 8-bit offsets, and compute each leaf’s child pointer implicitly.

We use the same QBVH8 layout and compression/decompression
scheme for storing the compressed multi-leaf node bounding boxes.
Inner nodes are almost completely unchanged; the only modifica-
tion required is that the child pointers that point to a leaf need one
more bit (e.g. the LSB of the pointer) to encode what kind of leaf it
points to, an isolated leaf node, or our compressed multi-leaf node.

By eliminating the pointers for the leaf nodes, our compressed
multi-leaf node requires only 72 bytes. Compared to an BVH8 multi-
node (256 bytes) this yields a compression factor of over 3×.
4.3 Builder Modifications
Since our scheme will only compress multi-nodes made up of only
leaf nodes, its effectiveness will depend on how common such
nodes are. Fortunately, for wide BVHs such nodes turn out to be the
common leaf node type. While it is possible to get isolated leaves
when small groups of triangles are far away from the bulk of the
scene’s triangles, in which case a SAH builder will most certainly
separate them. However, the far more common case is that at some
point the number of triangles in a sub-tree contains less triangles
than eight times the number of targeted triangles per leaf, at which
point the builder will almost invariably generate all leaf nodes.

As a result we require only a simple modification to the BVH8
build algorithm to produce our compressed multi-leaf nodes. We
take the existing top-down builder and, whenever it starts building a
newmulti-node, it checks whether the current number of primitives

is below a certain threshold. In our implementation we use N ×M
as this threshold, where N refers to the BVH branch factor, andM
to the number of target primitives within a leaf node. For example,
Embree by default targets four triangles per leaf builder, so our
threshold would be 32. Any time the builder builds a multi-node
with less than this number of triangles it enters a special code
path, in which it will continue the SAH-based splitting process.
It then takes the resulting (at most) 8 leaves and builds one of
our compressed multi-leaf nodes, which also includes copying that
node’s leaf data right behind the generated multi-node.

In all other cases (i.e., when building a multi-node with more
than 32 triangles) the builder proceeds exactly as before, first using
the SAH to split the group of triangles into at most 8 subsets, and
builds a regular BVH8 multi-node from this. Note that it is perfectly
valid for some of the nodes of this multi-node to become individual
leaves if they have less than the target of four triangles in them.

4.4 BVH Traversal
The traversal is only marginally affected by the introduction of our
CLBVH multi-nodes. For the purpose of the traversal these multi-
nodes are simply treated as leaves, and the top-down-traversal loop
traverses nodes exactly as before, until it reaches a leaf.

Only for the leaf intersection does our method require slight
modifications: If the leaf node reached is a regular isolated leaf node,
it is intersected in the same way as before; if it is a CLBVH node, we
first decompress it, test the ray against the 8 children boxes, and
then intersect the primitives in the nodes intersected by the ray.

4.5 Compressing Leaf Data
Though our method initially aimed at only compressing multi-
nodes, once we have found these nodes with 8 leaves we can do
more with them. In addition to eliminating the child pointers we can
also realize that a multi-node acts as a mini “treelet”, with a small
set of triangles that in the common case share common features like
vertices, indices, object IDs, etc. This in turn means we can apply

HPG ’18, August 10–12, 2018, Vancouver, Canada Benthin et al.

additional (lossless) compression of the leaf data, by extracting
these common features, allowing for additional compression which
was not previously possible in the original QBVH8.

Though a complete investigation is beyond the scope of this
paper, we have implemented a simple proof of concept where we
store every vertex index used in the 8-wide compressed multi-leaf
node only once, and in each leaf use only 8-bit indices into this list
of 32-bit vertex indices.

5 RESULTS
To evaluate the performance and memory impact of our method
we use a modified version of Embree 3.0, a diffuse path tracer (up to
eight bounces, shading costs account for ~15-20% of the total run-
time), and four example scenes (see Table 1). In terms of hardware,
we used a dual-socket Intel® Xeon® Platinum 8180 workstation
with 2×28 cores and 96 GB of memory.

We settled on two configurations which we believe to be repre-
sentative of common use cases. In the “best performance” case we
assume the user is not limited by memory, and chooses all options
for best performance. In this setup we enable spatial splits and use
the pre-gathered triangle4 layout. In the polar opposite “least
memory” case we assume a user that is memory constrained, and
therefore uses the triangle4i primitive layout (which only stores
vertex indices), does not enable spatial splits, etc.

For both of these configurations we report data for: Embree’s
default uncompressed BVH8; its existing QBVH8 in which both inner
and leaf nodes are equally compressed; our CLBVHwith regular inner
nodes and compressed multi-leaf nodes, but no additional compres-
sion of the primitive data (CLBVH-fast); and at least for the “least
memory” case, our CLBVH with the additional lossless compression
of the indices stored in the compressed leaves (CLBVH-compact).

5.1 Comparison to BVH8 and QBVH8
In Table 1, we have compiled a comprehensive list of different
traversal, memory usage, and performance statistics for the seven
most important configurations.

5.1.1 “Best Performance” Configuration. We see that the QBVH8
and our CLBVH are roughly on par in terms of memory savings.
Our CLBVH does not compress inner nodes, and thus eventually
spends about two thirds of node memory on these uncompressed
inner nodes; however, our leaf nodes are nearly half the size of
the QBVH8 leaf nodes, and as such the total node memory use is
similar in all cases. At this equal memory footprint, our CLBVH
generally performs much better, reducing the performance impact
from 10-20% down to 2-4%. In terms of totalmemory savings neither
method can save more than about 10% as the lion’s share goes into
pre-gathered primitive data.

5.1.2 “Least Memory” Configuration. In the “least memory” con-
figuration total performance is already significantly lower, even
for the regular uncompressed BVH8, in part because the loss of
spatial splits triggers significantly more traversal steps and primi-
tive intersections (“trav/isecs” in Table 1), and because without the
pre-gathered vertices the primitive intersection tests become more
costly. It does, however, reduce memory by roughly 2×, even for
the uncompressed BVH8, primarily due to the significant reduction
in leaf primitive data (though also due to a roughly 10% reduction
in total nodes from not doing spatial splits).

Since leaves in this configuration store only indices, we can also
apply the additional primitive data compression described in Sec-
tion 4.5, leading to two different variants of our CLBVH: CLBVH-fast
uses our CLBVH nodes with regular, uncompressed leaf data, while
CLBVH-compact performs the leaf data compression (see Section 4.5).

When looking at only the QBVH8 and CLBVH-fast variants, the
relative memory savings of both are higher, since they are no longer
as dominated by the leaf data cost. Apart from this, we see the same
outcome as for the best-performance case: Generally speaking, our
CLBVH achieves nearly exactly the same memory savings as the
QBVH8, but at a much lower performance impact (in fact, in one
case we are even slightly faster than the uncompressed BVH).

When comparing the QBVH8-compact and CLBVH-compactmeth-
ods, the picture is slightly different, but still very positive. Generally
speaking, CLBVH-compact achieves even higher compression than
QBVH8, at still (slightly) higher performance.

We conclude that for both the best performance memory and
least memory configurations, our new CLBVH approach is consis-
tently better than Embree’s current QBVH8.

5.1.3 “Best Performance” vs “Least Memory”. When compar-
ing the fastest BVH8 with the least-memory option we find that
CLBVH-fast can save about a factor of 2.2× in total memory, for
a roughly 30-50% drop in performance, with nearly all the perfor-
mance drop due to the lower-quality BVH, and hardly any ad-
ditional cost from our method (see CLBVH-fast configured for
best performance). For an additional roughly 5% of performance,
CLBVH-compact can save even more memory (reaching nearly 3×).

6 SUMMARY AND DISCUSSION
In this paper, we have proposed a new variant for compressing
BVHs. As with existing compressed BVH types, our CLBVH allows
for trading performance for memory savings; however, in gen-
eral our technique is either better-compressing at the same perfor-
mance, or better-performing at the same compression, than Em-
bree’s QBVH8.

REFERENCES
Holger Dammertz, Johannes Hanika, and Alexander Keller. 2008. Shallow Bounding

Volume Hierarchies for Fast SIMD Ray Tracing of Incoherent Rays. Computer
Graphics Forum 27, 4 (2008), 1225–1233.

Manfred Ernst and Günther Greiner. 2008. Multi Bounding Volume Hierarchies. In
Proceedings of the IEEE/EG Symposium on Interactive Ray Tracing. 35–40.

Vlastimil Havran. 2000. Heuristic Ray Shooting Algorithms. Ph.D. Dissertation. Faculty
of Electrical Engineering, Czech Technical University in Prague.

Sean Keely. 2014. Reduced Precision for Hardware Ray Tracing in GPUs. In Proceedings
of High Performance Graphics. 29–40.

Jeffrey Mahovsky and Brian Wyvill. 2006. Memory-Conserving Bounding Volume
Hierarchies with Coherent Raytracing. Computer Graphics Forum 25, 2 (2006),
173–182.

Steven Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock, David
Luebke, DavidMcAllister, MorganMcGuire, Keith Morley, Austin Robison, andMar-
tin Stich. 2010. OptiX: A General Purpose Ray Tracing Engine. ACM Transactions
on Graphics 29, 4, Article 66 (2010), 13 pages.

Benjamin Segovia and Manfred Ernst. 2010. Memory Efficient Ray Tracing with
Hierarchical Mesh Quantization. In Proceedings of Graphics Interface. 153–160.

Ingo Wald, Carsten Benthin, and Solomon Boulos. 2008. Getting Rid of Packets:
Efficient SIMD Single-Ray Traversal using Multi-Branching BVHs. In Proceedings
of the IEEE/EG Symposium on Interactive Ray Tracing. 49–57.

Ingo Wald, Sven Woop, Carsten Benthin, Gregory Johnson, and Manfred Ernst. 2014.
Embree: A Kernel Framework for Efficient CPU Ray Tracing. ACM Transactions on
Graphics 33, 4, Article 143 (2014), 8 pages.

Henri Ylitie, Tero Karras, and Samuli Laine. 2017. Efficient Incoherent Ray Traversal
on GPUs Through Compressed Wide BVHs. In Proceedings of High Performance
Graphics. Article 4, 13 pages.

	Abstract
	1 Introduction
	2 Related Work
	3 Compressed-Leaf BVHs
	4 Implementation
	4.1 Node Compression and Decompression
	4.2 Introducing Compressed Multi-Leaf Nodes
	4.3 Builder Modifications
	4.4 BVH Traversal
	4.5 Compressing Leaf Data

	5 Results
	5.1 Comparison to BVH8 and QBVH8

	6 Summary and Discussion
	References

