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Figure 1: We use a deep classification network to detect aliasing artifacts in image sequences. In this example we show the
output for one sequence of 4 frames. The network generates a scalar value as a measure of aliasing for each 64 x 64 tile of this
sequence, resulting in the images shown on the right. Increasing sample counts result in lower overall output. Further, since
we only measure aliasing, use of high-quality temporal antialiasing (TAA) correctly results in output similar to that of 16spp
images. Metrics like SSIM and PSNR would classify the former as being much different from the latter.

ABSTRACT

In this short paper we present a machine learning approach to
detect visual artifacts in rendered image sequences. Specifically, we
train a deep neural network using example aliased and antialiased
image sequences exported from a real-time renderer. The trained
network learns to identify and locate aliasing artifacts in an input
sequence, without comparing it against a ground truth. Thus, it is
useful as a fully automated tool for evaluating image quality.

We demonstrate the effectiveness of our approach in detecting
aliasing in several rendered sequences. The trained network cor-
rectly predicts aliasing in 64 X 64 X 4 animated sequences with more
than 90% accuracy for images it hasn’t seen before. The output of
our network is a single scalar between 0 and 1, which is usable as
a quality metric for aliasing. It follows the same trend as (1-SSIM)
for images with increasing sample counts.
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1 INTRODUCTION

Ongoing evaluation of image quality is an important aspect of de-
signing rendering software. While manual assessment can require
a lot of time and effort, automated assessment often requires the
availability of high-quality ground truth images to compare against
arenderer’s output. In this work, we explore the ability of deep neu-
ral networks to detect rendering artifacts in images and sequences
without comparing them against a reference. Inspired by the ability
of humans to do the same, we believe that an appropriately de-
signed neural network will be able to identify patterns in image
sequences that indicate undesirable visual artifacts.

Specifically, we train a deep neural network to identify aliasing
artifacts in rendered image sequences, and utilize it to build an
automated tool for detecting aliasing in real-time renderers. Since
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aliasing is a common problem in real-time rendering, our work
is useful in evaluating the quality of output from an interactive
graphics application, and is potentially useful in development of
antialiasing techniques [Jimenez et al. 2011].

Our results show that a machine learning network is capable of
distinguishing images with different degrees of aliasing. The output
of our trained network is usable as a metric for image quality,
producing results that correlate with traditional image metrics like
Structural Similarity (SSIM) and Peak Signal-to-Noise Ratio (PSNR)
when aliasing is the only artifact.

Our key contributions include:

e An approach to trains a neural network to locate artifacts in
rendered image sequences without ground truth images

e An automated method for measuring and locating aliasing
in rendered images, which generates a scalar metric repre-
senting the magnitude of aliasing in an image sequence

2 PREVIOUS WORK

There are several metrics usable in image quality analysis. Straight-
forward options include £; and L norms, and Peak Signal-to-
Noise Ratio (PSNR), which establish numerical differences between
an image and some ground truth. Perceptually-based metrics can
better identify visibility differences between images, and can thus be
more useful in identifying viewer-perceivable visual artifacts. Some
popular perceptual metrics include Structural Similarity (SSIM) [Wang
et al. 2004] and HDR-VDP-2 [Mantiuk et al. 2011]. More recently,
researchers have found that activations within trained image-clas-
sification networks (VGG19 [Simonyan and Zisserman 2014]) are
also capable of computing perceptual differences between images.

However, all of these approaches compute difference between a
pair of images, requiring access to a ground truth image whenever
measuring image quality. Generating ground truth images can often
be impractical (e.g. path tracing) and sometimes impossible (e.g. MRI
scans). In contrast, this short paper proposes a practical algorithm
and metric which is able to measure aliasing in image sequences
without looking at antialiased ground truth.

Further, there are no standardized metrics to measure spatiotem-
poral aliasing in a image sequences. While temporal image-quality
metrics have been studied [Aydin et al. 2010; Li et al. 2016], unlike
our method these methods don’t directly address aliasing artifacts,
and additionally they still require ground truth reference images
for comparison.

Deep neural networks are increasingly useful in computer graph-
ics [Nalbach et al. 2017], and our work explores their ability to mea-
sure quality of rendered image sequences. We specifically study
aliasing, but our approach will likely apply to other artifacts as
well.

3 METHODOLOGY
3.1 Network Architecture

Figure 2 provides and overview of our network architecture. Broadly,
it resembles deep image classification networks, and is inspired by
VGG19 [Simonyan and Zisserman 2014]. Specifically, it has two
phases: a first phase with multiple groups of convolutions followed
by pooling, and a second phase with several fully-connected layers.
The key modifications that we made to the VGG19 architecture are:
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Figure 2: Overview of our aliasing detector network. The ar-
chitecture is inspired by the VGG19 network, with modifica-
tions to prioritize detecting small-scale artifacts like alias-
ing. We implemented this network using Tensorflow and
Keras.

o We use 64 X 64 X 4 RGB image sequences as network input;
trading off spatial pixels with temporal ones helps localize
detected artifacts to smaller regions, and also enables the net-
work to use spatiotemporal information in detecting aliasing.
We tried different spatial and temporal tiles, and found that
larger tiles and longer sequences worked better. However,
we picked 64 X 64 X 4 because it resulted in high accuracy
for a practically-sized network.

e We include additional convolutions in the first few high-
resolution layers, designed to capture the local nature of
aliasing artifacts, and consequently fewer convolutions as
the latter low-resolution layers.

e We increase the overall feature counts based on experimental
observations.

Additionally, we also use batch normalization before activation
of each convolutional layer, and leaky ReLU instead of ReLU for
layer activations. We found both these changes to help the network
achieve lower loss during training as well as validation. In total,
our network architecture has 70,160,129 trainable parameters.

The final fully connected layer has a single output with sigmoid
activation, and constrains network outputs to be scalars between 0
and 1 to indicate the magnitude of aliasing detected.

The following subsections provide details of our training and
inference procedures. We used Tensorflow [Abadi et al. 2015] and
Keras [Chollet et al. 2015] as the machine learning frameworks for
our work, and a NVIDIA Titan V GPU for acceleration.

3.2 Training

We train our network to detect aliasing in 64 X 64 X 4 RGB image
sequences by showing it aliased as well as antialiased inputs in a
supervised fashion, setting that target output as 1 for the former
and 0 for the latter.

Dataset. Figure 3 shows the scenes we used for training and
validation, all part of ORCA [NVIDIA 2017] and rendered using
Falcor [Benty et al. 2017]. We consider several animated sequences
in our dataset, and extract the first 4 of each sequence of 25 frames
in each animation. This helps provide a diverse database of short
animated sequences.

During training, we randomly crop each sequence into a 64 X 64
tile, which our network’s input dimension. To add variety to our
training, we also augment our data with random permutations.
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(a) Classroom (600 frames) (b) Emerald Square (600 frames)

(c) Sun Temple (2000 frames)  (d) Lumberyard Bistro (600 frames)

Figure 3: We used the above scenes as the dataset for our
studies. Of these, we used 3(a), 3(b) and 3(c) for training, and
3(d) for validation. To generate short sequences from these
animations, we only consider the first 4 of each set of con-
secutive 25 frames. This also ensures we fully cover each an-
imation.

Specifically, we randomly flip our sequences along the time, height,
and width axes with a probability of 0.1 each, and scale the bright-
ness and contrast of the sequence to between 0.6 and 1.4.

For each of our sequences, we use a 1 sample-per-pixel (1spp)
rendering as the aliased input, and 16—64 sample-per-pixel super-
ssampled rendering as the antialiased reference. For scenes with
simple content (e.g. Classroom), 16spp inputs were sufficient to
provide stable anti-aliased images, but for scenes with more compli-
cated content (e.g. Emerald Square), we had to use 64spp renderings
to fully eliminate aliasing.

Training Procedure. For training, we use batches containing four
64X 64 x4 sequences. We choose each sequence in a batch randomly
from either the aliased or the antialiased subsets of the training
dataset, perform a randomized crop to 64 X 64 pixels and augmen-
tations as described above.

A key requirement of our aliased inputs (target output 1) is that
those sequences must contain visible aliasing artifacts. This is not
a guarantee in rendered images, since there may be image regions
that are entirely covered by low frequency effects (e.g. sky) or
texture maps (e.g. flat surfaces). To ensure that we don’t mark those
inputs as aliased, we compare the cropped, augmented sequence
against the corresponding antialiased sequence to ensure that the
two are sufficiently different. We tried various metrics to compute
this difference (e.g. £1 and L2 norms) but got the best results with
SSIM. If the SSIM between our aliased input sequence and the
corresponding antialiased sequence was less than 0.97, we set the
target output to 1 (aliased). Otherwise, we set the target output to
0 (antialiased) even though the sequence comes from the aliased
(1spp) subset.

The above modification unbalances our dataset, resulting in far
more antialiased inputs than aliased ones. To ensure that the aliased
inputs with target 1 are considered equally, we weigh their loss
higher than antialiased ones. For this purpose use a running count
of our target outputs to compute the weight.
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Figure 4: Running loss and accuracy during training. In
these plots, we show the exponential moving average (¢« =
0.1) of the loss as well as accuracy as it evolves over the train-
ing procedue. The validation loss and accuracy follow the
trend of training loss, but slightly diverge in later epochs.

Since our target outputs are either 0 or 1, we use binary crossen-
tropy as our loss function. For our optimizer, we use Stochastic
Gradient Descent (SGD) with a learning rate of 0.001 and no decay.
To help improve generalization, we perform batch normalization
between each convolution layer and its activation, and include
dropout with a probability of 0.2 after each of the first two fully
connected layers.

Using Keras for training on a single NVIDIA Titan V GPU takes
approximately 19 seconds per epoch (256 batches), including the
time taken for validation. Figure 4 shows how the training and
validation loss evolves over the training process. It also shows how
the accuracy of aliasing classification evolves. We get good infer-
ence results after approximately 1000 epochs, but the loss continues
to improve after that. The validation losses do not improve much
beyond 3000 epochs.

3.3 Inference

During inference, we simply perform forward evaluation of the
network for all 64 X 64 tiles across four consecutive frames of a test
sequence. This results in a coarse output image as shown in Figure 1,
which roughly indicates the magnitude of detected aliasing across
the image. This output is then useful to locate aliased regions in
the image. We can also use the average output across the image
as an overall measure of aliasing artifacts in the image. Inference
for each 64 X 64 X 4 sequence takes 7 ms as reported by Keras. See
Section 4 for details.

4 RESULTS

Figure 1 shows an example output after training the detector for
5000 epochs. Please see the supplementary video for results on
other scenes, a still sequence, and a downsampled real-life video.
For increasing sampling densities, the detector reports consistently
fewer aliasing artifacts. At 1 sample per pixel, it detects most tiles
as being aliased, while at 16 samples per pixel, it detects very few
tiles as containing aliasing artifacts. It also detects very few aliased
tiles for image sequences antialiased using temporal antialiasing
(TAA), which is the current state-of-art algorithm for high-quality
antialiasing in contemporary modern video games. Since TAA is
known to cause blur, conventional image metrics will tend to report
a high difference against ground truth. Note that we did not include
any TAA images in our training dataset.
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Figure 5: Comparing our output to 1-SSIM for image se-
quences rendered with increasing sample counts. Our out-
put is consistent with 1-SSIM, since aliasing is the dominant
artifact in these images. As shown in Table 1, our approach
is able to look at aliasing in isolation, even when other arti-
facts are present.

Table 1: Comparing our output to SSIM and PSNR, as mea-
sured against a 16spp ground truth, for the image (and 3 pre-
ceding frames) shown in Figure 1. Our network does not re-
quire a ground truth for comparison, and unlike SSIM and
PSNR, we correctly report TAA output as low aliasing.

Image Source  Ours  SSIM  PSNR

1spp 0.8822 0.9709 30.87
4spp 05012 0.9915 36.68
8spp 0.1697 0.9966 41.67
16spp 0.0787 1.000 -

TAA 0.0572 0.9269 29.32

Figure 5 and Table 1 shows the output of our network averaged
over the image, as it varies with increasing samples per pixel. As
expected, the output is close to 1 for 1spp input images, and reduces
to less than 0.1 for 16spp input images. It is similarly less than
0.1 for TAA input. Figure 5 also shows that our output correlates
well with (1-SSIM) when the only artifacts are aliasing related. The
detector is able to do so despite having no access to a ground truth
antialiased image. However, Table 1 shows that the metric does not
correlate well with SSIM or PSNR when other artifacts are present.
For instance, outputs of temporal antialiasing (TAA) have a low
SSIM and PSNR values because the algorithm tends to trade off
image sharpness for antialiasing. Our metric only measures aliasing
and hence provides a similar output for TAA images and 16spp
images, even though the former is significantly less sharp. In this
respect, the aliasing detector is more useful when we simply want
to identify aliasing artifacts in an image sequence.

5 CONCLUSIONS AND FUTURE WORK

In this short paper we have presented the first steps towards us-
ing deep neural networks as tools for analyzing image quality of
rendered images. We have shown that it is possible to train a net-
work to identify visual quality artifacts in images without looking
at ground truth images. Specifically, we have demonstrated how
a trained network can detect aliasing artifacts in input image se-
quences. We have also shown that the these networks have two
desirable properties. First, they are easy to train by simply showing
examples of images containing the chosen artifacts as well as those
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free from those artifacts. Second, their output is well correlated
with the magnitude of the artifacts they are trained to detect, as
well as with conventional metrics when those are the only artifacts
present. It also appears that such networks learn to effectively ig-
nore other artifacts present in their inputs, which is useful when
we wish to selectively measure image quality.

One of the limitations of our approach lie in the reliability of the
output. Even at 16spp input with no visible aliasing, we notice some
false positives in the output (Figure 1), although when averaged, the
metric appears to be much more reliable. We also expect false posi-
tives when rendered image features resemble aliasing. For example,
a flickering light might appear as aliasing to the detector. Another
limitation of this approach is that it is currently very expensive
with more than 70 million parameters. Running inference requires
several hundred invocations, which can be slow in practice.

Going forward, we would like to explore the ability for our
network to learn to detect other visual artifacts that commonly
affect modern renderers, like Monte Carlo noise, ghosting, and low-
frequency boiling. We would also like to investigate if we can train
a single network to simultaneously detect and classify multiple
artifacts. Finally, we wish to explore leaner configurations of such
networks which can detect rendering artifacts in real time.
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