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Figure 1: Overview of the Strokes2Surface pipeline. (a) The designer creates a sketch of an architectural object. (b) The pipeline’s binary
classifier distinguishes between Shape strokes depicting edges (blue) and Scribble strokes depicting faces (red). (c) Shape strokes are parsed
into clusters and consolidated representing single edges, (d) the intended topology is recovered, forming a well-connected curve network, (e)
Scribble strokes are parsed into clusters representing faces of the object corresponding to curve network cycles, and (f) the final reconstructed
surface mesh. Images rendered using Polyscope [S∗19].

Abstract
We present Strokes2Surface, an offline geometry reconstruction pipeline that recovers well-connected curve networks from
imprecise 4D sketches to bridge concept design and digital modeling stages in architectural design. The input to our pipeline
consists of 3D strokes’ polyline vertices and their timestamps as the 4th dimension, along with additional metadata recorded
throughout sketching. Inspired by architectural sketching practices, our pipeline combines a classifier and two clustering
models to achieve its goal. First, with a set of extracted hand-engineered features from the sketch, the classifier recognizes the
type of individual strokes between those depicting boundaries (Shape strokes) and those depicting enclosed areas (Scribble
strokes). Next, the two clustering models parse strokes of each type into distinct groups, each representing an individual
edge or face of the intended architectural object. Curve networks are then formed through topology recovery of consolidated
Shape clusters and surfaced using Scribble clusters guiding the cycle discovery. Our evaluation is threefold: We confirm
the usability of the Strokes2Surface pipeline in architectural design use cases via a user study, we validate our choice of
features via statistical analysis and ablation studies on our collected dataset, and we compare our outputs against a range of
reconstructions computed using alternative methods.

CCS Concepts
• Computing methodologies → Artificial intelligence; Computer graphics; Machine learning;

1. Introduction

Freeform architectural design often involves two essential stages:
concept design and digital modeling [DLP∗22]. During the former
stage, designers typically favor freehand sketching due to its low
overhead in representing, exploring, and communicating geometric
ideas [CKX∗08]. In this stage, sketching allows designers to easily
tap into their intuition and enter a state of mental flow that other-

wise might be difficult to achieve [Mah18]. Subsequent to the con-
cept design, the digital modeling stage ensues. In this stage, taking
the sketch as a visual reference, the architect or designer usually
uses 3D modeling software to manually create and edit a 3D digital
model into the desired shape, which can be subsequently processed
for presentation, structural analysis, manufacturing, or other down-
stream design pipelines.
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Traditionally, architects and designers relied on pen and paper as
their primary drawing medium during the ideation process in the
concept design stage. However, with the growing availability of 3D
sketching interfaces and Augmented, Virtual, and Mixed Reality
(AR/VR/MR) technologies [DXS∗07,Mah18,ZLDM16,XSS08], a
paradigm shift is being witnessed. These emerging environments
and technologies allow designers to sketch in 3D and, in turn, en-
hance efficiency and maintain better supervision over their cre-
ations. This shift has piqued the attention of architects and experts,
sparking explorations of the potential of architectural design within
these environments [DA22]. When it comes to the digital modeling
stage, manually translating a sketch into a digital model often re-
quires a considerable amount of time and is susceptible to misinter-
pretations, underscoring the need for an automated reconstruction
pipeline. Recent studies [XCS∗14, GHL∗20, HGSB22, TF22] have
shown that 2D design sketches can be lifted into 3D sketch or 3D
digital models. Also, several 3D, AR, VR, and MR academic and
commercial interfaces come with a coupled reconstruction pipeline
allowing sketch-based modeling [RRS19,YAS∗21]. However, most
of these systems primarily target industrial design, which functions
under its own assumptions that may not necessarily align with ar-
chitectural design, putting a question on their applicability for such
purposes. More specifically, many existing 3D sketch-based mod-
eling methods often either impose certain interface-specific con-
straints that designers must adhere to or progressively neaten the
designer-drawn strokes on the fly in an online manner to facili-
tate the modeling. Such constraints and interaction setups can in-
hibit the designer’s freedom and disrupt the ideation process, lead-
ing architects to feel like losing authorship and control over their
creations [Do02]. The noted barriers highlight the need for an au-
tomated geometry reconstruction method, tailored specifically for
architectural design, functioning akin to a "magical button", seam-
lessly capturing the design intention and translating the completed
sketch into the desired geometry in an offline manner.

To this end, building upon MR.Sketch, a pen-on-tablet 4D sketch-
ing interface targeted for architectural design developed within our
research group [KEKF23], we introduce the Strokes2Surface ge-
ometry reconstruction pipeline. Strokes2Surface processes 4D ar-
chitectural design sketches to form well-connected curve networks,
thereby bridging the gap between the concept design and digital
modeling stages. The input to our pipeline consists of the 4D sketch
strokes, along with the additional metadata (geometry and stylus-
related properties) actively recorded at the time of sketching. Given
this, our pipeline is motivated by architectural sketching practices,
the inherent characteristics of the inputs, and our thorough analysis
of the recorded metadata:

• Our studies and observations of architectural sketching practices
reveal that designers draw two types of strokes when depicting
their geometric ideas. One set of strokes outlines the bound-
aries and edges of the intended geometry, while the other type
is drawn to fill in and mark mark the faces of the intended geom-
etry (Section 4).

• Concept design sketches are often imprecise, exhibiting over-
sketching or gaps and missing intersections between strokes.

• Our thorough analysis shows that the fourth dimension, along
with the recorded metadata during sketching, inherently carries

valuable information pertaining to the design intent. (Sections
5.1.1, 7.1.1, and 7.1.2).

In summary, Strokes2Surface is an offline pipeline comprising
three Machine Learning (ML) models. The first model is a meta
estimator, which is responsible for classifying the type of drawn
strokes (Section 5.1) trained using a curated dataset of architectural
design sketches (Section 6.2). Then, there are two clustering mod-
els that further parse strokes of each type into separate groups rep-
resenting a set of potentially over-sketched strokes forming either a
single boundary and edge, or a single face of the geometry, respec-
tively (Sections 5.2.1 and 5.3.1). The groups resulting from the first
clustering model are further consolidated into 3D aggregate curves
by using cubic B-spline approximation, and a well-connected curve
network is then formed by recovering the intended topology of the
curves by formulating it as a minimization problem (Section 5.2.2).
Furthermore, the groups obtained by the second clustering model
guide the pipeline to infer which curve network cycles must bound
patches and which must not, ultimately facilitating the reconstruc-
tion of the user-intended geometry (Section 5.3.2) (Figure 1). Our
code and data are available at: https://gitlab.cg.tuwien.ac.
at/srasoulzadeh/strokes2surface.git.

Our evaluation of the pipeline is threefold: We confirm our stud-
ies of architectural sketching practices and the usability of the
Strokes2Surface pipeline in architectural design use cases via a user
study (Section 6), we validate our choice of features via statistical
analysis and ablation tests on our collected dataset (Section 7.1.1
and 7.1.2), and we compare the outputs produced by different steps
of the pipeline against point cloud, stroke cloud, and curve network
surfacing methods (Section 7.2.1).

2. Related Work

Our work builds upon prior research across multiple domains.

Sketch Consolidation. When creating sketches, designers fre-
quently depict their intended curves using multiple, tightly clus-
tered, or over-sketched strokes. Sketch beautification and consol-
idation methods parse such strokes into groups that jointly de-
fine intended aggregate curves. [BTS05] was among the first to
present an algorithm for line drawing simplification, in which a
complex vector graphic drawing is "redrawn" with fewer strokes.
They address this problem by clustering strokes and then replac-
ing each cluster with a single representative curve. Thereafter, nu-
merous works followed this same basic cluster-and-replace frame-
work [OK11, OMYA16, LRS18, VMLV∗21]. [CLHC14] applies a
low-pass Gaussian filter to translate the strokes based on the weight
of the filtering, and then the strokes are paired based on the strokes’
endpoints’ positions and tangents. In terms of learning-based meth-
ods, [OK11] tackles this problem by using a neural network tak-
ing as input a set of geometric features extracted from each pair
of strokes and classifying whether the two strokes should reside
in the same group or not. Similarly, [OMYA16] trained a support
vector machine to estimate the pair of strokes to be merged. Signif-
icantly improving on the state-of-the-art are the two recent works
StrokeAggregator [LRS18] and StrokeStrip [VMLV∗21]. [LRS18]
uses human perception principles and artistic practice observations
for stroke clustering, employing angular and proximity scores with
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HDBSCAN for incremental merging, followed by local cluster re-
finement and curve fitting. Given a vector sketch with multiple
overdrawn strokes, [LABS23] consolidates it through two classi-
fiers: the first evaluates strokes locally, while the second, incorpo-
rates global context, refining the first classifier’s consolidation out-
put. The second step in our pipeline shares similarities with existing
2D sketch consolidation methods. However, in 3D, some assumed
properties in 2D sketches no longer hold (Section 5.2.1), requiring
a tailored 3D method. A recent interface targeting industrial design,
ScaffoldSketch [YDSG21], facilitates in-air design drawing using
a two-stage approach akin to 2D design. It decomposes strokes into
Scaffold and Shape types, auto-correcting and beautifying them for
aesthetic, accurate 3D drawings.

There are several 3D sketching interfaces that solely focus on
novel interaction techniques, while some others are also coupled
with modeling algorithms. Additionally, there are several stan-
dalone surfacing methods developed specifically for inputs origi-
nating from typical 3D sketching interfaces, such as curve networks
or stroke clouds, or can be applied to other geometric formats pro-
duced from 3D sketches, such as point clouds.

3D Sketching Interfaces. A prominent interface is MentalCan-
vas [DXS∗07], designed to allow architects to organize concept
drawings in 3D by first making several regular 2D sketches of
their design from different viewpoints and then fusing them to-
gether into a 3D structure. A number of other sketching systems
follow 3D projective sketching [XSS08, LKB22]. NapkinSketch
[XSS08] allows users to draw 3D sketches on top of a drawing
canvas set up by pen strokes. A more recent work of a similar
vein is [LKB22], where they present a pen-on-tablet system fea-
turing multi-touch gestures developed for rapidly creating concepts
of articulated objects. Among VR sketch-based modeling inter-
faces, [Mah18] introduced a prototype for a 3D sketching interface
in architecture, utilizing machine learning to translate sketches into
3D forms through conversion to an intermediate description fol-
lowed by the use of a reconstruction function. CASSIE [YAS∗21] is
another VR-based conceptual modeling system that leverages free-
hand mid-air sketching coupled with a 3D optimization framework
performing automatic surface neatening in real-time, resulting in
well-connected 3D curve networks.

Surfacing Point Clouds. 3D sketches often can be converted into
point clouds by sampling points along each stroke, allowing lever-
aging the wealth of both non-data-driven and data-driven meth-
ods developed for surfacing point clouds. However, such sam-
plings often produces very sparse point clouds, exhibiting incon-
sistent normal orientation, multiple samples in the interior of the
intended object, and other artifacts inconsistent with the assump-
tions made by typical reconstruction techniques. In terms of early
non-data-driven methods, VIPSS [HCJ19], a method applicable to
point sets obtained from 3D sketches, reconstructs implicit surfaces
from un-oriented sets using quadratic optimization but struggles
with sharp surface discontinuities common in architectural struc-
tures. Screened Poisson Reconstruction [KH13] is the most com-
monly used method to convert an unstructured point cloud along
with its per-point normals to a surface mesh. However, the absence
of data-priors in these type of methods makes them fail to handle

noisy inputs, which is a very common case in point clouds pro-
duced by sketches. Points2Surf [EGO∗20] is a data-driven patch-
based learning framework creating surfaces from raw scans without
needing normals, trained on solid objects. Learning a prior over a
combination of detailed local patches and coarse global informa-
tion improves generalization performance and reconstruction ac-
curacy. However, their network, faces challenges in reconstruct-
ing surfaces from point clouds of non-solid 3D sketched objects.
Yet another recent interesting point cloud reconstruction method is
Point2Mesh [HMGCO20] which optimizes the weights of a Convo-
lutional Neural Network (CNN) to deform an initial mesh to shrink-
wrap the input point cloud. The optimized CNN weights act as a
prior, which encode the expected shape properties and converge
to a desirable solution. In Section 7.2.1, we produce point clouds
from our 3D sketches and compare our specialized reconstructions
against three of point cloud reconstruction methods.

Surfacing Stroke Clouds. In the computer graphics and vision
community, a few methods have been proposed to reconstruct
3D geometries from stroke clouds [FK10, BAOBK12, YAB∗22,
LCX∗23]. Relying on the images from coarsely calibrated cameras,
[FK10] developed a framework for 3D reconstruction from an unor-
ganized set of curves. Close to our work is SurfaceBrush [RRS19],
which is also an offline reconstruction method for freeform sur-
face modeling from input cloud of 3D stroke ribbons. Their spe-
cialized surfacing algorithm, coupled with their sketching inter-
face, works by converting raw designer-drawn strokes into a user-
intended manifold 3D surface by matching edge sequences along
input stroke polylines. [BAOBK12] surfaces sparse and imprecise
3D sketches by smoothly deforming an initial low-fidelity sur-
face of correct topology, using a discrete guidance vector field
that points towards the closest stroke point. This approach pro-
duces globally smooth surfaces but requires user intervention to
specify strokes that should be inserted into the mesh as sharp
edge polylines. [YAB∗22] transforms sparse 3D stroke clouds into
piecewise-smooth surfaces using iterative segmentation and opti-
mization of smooth patches to fit surrounding strokes. Unlike our
pipeline, which requires no user intervention, both two latter meth-
ods rely on user-annotation to determine boundary strokes to trim
the surface. Our inputs do not conform their input specifications
but the output that the second step of our pipeline produces can be
regarded as stroke clouds and fed to their method. We provide de-
tailed comparison of our reconstructions to [YAB∗22] in Section
7.2.1.

Surfacing Curve Networks. The advent of practical interfaces
and devices has motivated the development of algorithms to au-
tomatically surface a sparse, designer-drawn set of well-connected
curves, so-called curve networks. In general, surfacing curve net-
works is considered a two-step challenge. The first challenge is
to discover, among all closed cycles in the curve network, which
closed cycles should be delimiting surface patches and which
should not [AJA12, ZZCJ13]. A second challenge is to gener-
ate the surface geometry that interpolates the cycle boundaries
by propagating geometric information on the boundary curves
[ZJC13, PLS∗15, SHBSS16]. Finding the optimal set of cycles of-
ten corresponds to a cycle basis in graph representation of the curve
network. A cycle basis is a minimal set of cycles in a graph such
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that any cycle not in the basis can be constructed by the ring sum
of some cycles in the basis. The cycle basis of a graph can be
computed easily using spanning trees, but the computed basis may
contain cycles not corresponding to desired surface patches. Given
the graph representation of the curve network, [AJA12] addresses
this problem by starting with an initial cycle basis and then uses a
greedy algorithm to construct the optimal one. On the other hand,
[ZZCJ13] considers an alternative representation called a routing
system, which implicitly encodes a set of cycles by local variables
at each vertex and each curve of the network. Optimizing cost met-
rics designed for these variables, they are able to compute cycles
more efficiently and handle inputs with more complex topology
and geometry. So as to solve the second challenge, [ZJC13] in-
vestigated an algorithm to obtain a triangulation of multiple and
non-planar 3D polygons while minimizing additive weights, such
as the total triangle areas or the total dihedral angles between ad-
jacent triangles. [SHBSS16] is yet another 3D curve network sur-
facing algorithm, which requires surface normals as well. The al-
gorithm has been proposed to improve the quality of the generated
surfaces and could be applied to our results as a post-processing.
The outputs from the very last step of our proposed pipeline, can
be benchmarked against these methods designed to tackle the two
previously mentioned challenges: cycle finding and curve network
surfacing. We compare our approach toward guiding the cycle dis-
covery leveraging clustered Scribble strokes by comparing against
state-of-the-art cycle identification method proposed in [ZZCJ13]
and use the method of [ZJC13] for triangulating the cycles.

3. The 4D Drawing Interface

Strokes2Surface is built upon a 4D sketching interface named
MR.Sketch [KEKF23], targeted for architectural design, utilizing
a tablet (iPad) and a stylus (Apple Pencil) as its primary drawing
medium. The interface enables the creation of 4D sketches by em-
ploying 3D canvases, where the 2D strokes drawn on the tablet’s
surface are projected onto the canvases, forming 3D strokes. Ad-
ditionally, temporal data of all strokes is continuously captured
throughout the drawing process, providing the 4th dimension,
namely timestamp, to the sketch and its constituent strokes.

The interface is composed of a ground plane within its environ-
ment and offers a choice of various geometric primitives as preset
built-in canvases, including a plane, cube, sphere, and cylinder. The
designer can select a canvas and arbitrarily transform (translate, ro-
tate, and scale) it throughout the scene while having control over
the camera viewpoint’s position and rotation. With such controls,
once the camera and canvas are in the designer’s desired transfor-
mation, the designer can lock both and start drawing a stroke on
the canvas from the respective locked viewpoint. In this setting, as
the designer starts drawing a stroke on the tablet’s surface, the ray
originating from the camera viewpoint is intersected with the can-
vas’s triangular mesh, and the resulting 3D point is stored as the
continuation of the stroke polyline vertices, forming a 3D stroke
(Figure 2). Depending on the chosen brush type, the resultant 3D
stroke is either rendered in the form of triangle strips (ruled surface
strips) or square sweeps of user-specified width (ranging contin-
uously from 0.01 to 1.0) centered around the 3D stroke polyline
vertices. It is noteworthy that the designer is not limited to use just

Figure 2: 3D stroke formation through ray casting. As 2D strokes
are drawn on the tablet’s surface, rays originating from the cam-
era’s viewpoint are intersected the selected canvas, and the result-
ing 3D point lying on the canvas is stored as the continuation of the
corresponding 3D stroke polyline vertices.

one single canvas; the overall sketch can incorporate combinations
of strokes with varying types of parent canvases drawn from vary-
ing viewpoints, enabling the design of complex architectural ob-
jects. To aid the designer in terms of precision and scale, they are
provided with two canvas visualization methods interface: grid vi-
sualization, which renders the drawing canvas with a grid of major
(white) and minor (black) lines, where major lines are spaced 1 m
apart and minor lines are spaced 10 cm apart; and intersection vi-
sualization, which renders green lines indicating where the current
active canvas intersects with previously sketched strokes.

Throughout the drawing process, along with the positions of the
strokes’ 3D polyline vertices and their corresponding timestamps,
additional metadata comprising a set of geometry and stylus-related
properties is actively recorded with the aim of facilitating data-
driven sketch analysis. While some of these properties are recorded
per each stroke, some others are recorded per each stroke poly-
line vertex. Properties that are attributed to each stroke include ink-
Colour, inkWidth, cameraViewPosition, cameraViewRotation, can-
vasID, and canvasTransform. As their names imply, they represent
the brush color and width chosen by the designer, the camera posi-
tion, the camera rotation when drawing the stroke, the ID, and the
transformation matrix of the stroke’s parent canvas, respectively.
Additionally, for every vertex point on the 3D stroke polyline, sev-
eral properties are individually recorded, including normal, tilt,
twist, and pressure. These represent the normal vector of the canvas
at each point, the stylus’s tilt in the x and y directions, the twist of
the stylus, and the perpendicular force applied to the tablet’s sur-
face at each polyline vertex point of the drawn stroke, respectively.

4. Input Drawing Characteristics

Our study of architectural sketching practices [Chi19], together
with close observation and analysis of sketches created by two
modeling experts in our research group as well as those created by
participants in our user study (Section 6) point to several common
core characteristics inherent in architectural design sketches:

Distinct Types. The designer-drawn strokes are mainly of two
kinds, one depicting the form and structure, and the other depicting
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Figure 3: An example of a conventional 2D drawing of an architec-
tural object portraying two types of strokes as the design: strokes
outlining the boundaries and those marking the enclosed areas. Im-
ages’ source: iStock. Credit: SireAnko. Licenses purchased by the
first author.

the tone and texture [Chi19]. For form and structure, designers of-
ten draw a set of strokes to outline the boundaries and edges of their
intended architectural object, which we refer to as Shape strokes in
this paper. While these strokes are essential to communicate the
design idea, the surfaces of forms and shapes cannot be fully de-
scribed by such strokes alone. To this end, designers draw another
set of tonal strokes to colorize, fill in, and mark the enclosed ar-
eas by the boundaries, forming the faces of the intended geometry.
There are several basic techniques for creating tonal strokes, such
as hatching, scribbling, and stippling; due to the great flexibility
scribbling offers compared to others, we primarily focus on scrib-
bling in this paper, referring to this particular type of strokes as
Scribble strokes (Figure 3). In this context, Shape strokes are usu-
ally delineated elaborately with more precision and intent in a sin-
gle direction. On the other hand, Scribble strokes are often drawn
as a network of random, multi-directional lines.

Impreciseness. When creating sketches, designers frequently
draw multiple, tightly clustered, over-sketched strokes to depict
their intended geometry. Also, designer-drawn strokes at junctions
are often imprecise, with strokes intended to intersect ending up
either short of doing so or over-shooting.

5. Strokes2Surface: The Geometry Reconstruction Pipeline

The described characteristics of sketches are analogous to how
curve networks are formed and surfaced, thus motivating the idea of
curve network recovery from architectural design sketches. By first
recognizing the types of individual strokes in the sketch, potential
rough and coarse Shape strokes can then be parsed into groups and
consolidated. Hence, treating them as curve segments in the curve
network facilitates curve network recovery once their pairwise con-
nectivities are fixed. Similarly, Scribble strokes, when parsed into
clusters, can correspond to cycles in the recovered curve network,
which can subsequently be leveraged for surfacing the recovered
network. In the following subsections we describe the individual
steps in the curve reconstruction pipeline.

5.1. Stroke Type Recognition: Shape Versus Scribble

We observed subtle nuances in a designer’s approach toward
sketching boundaries and edges (Shape strokes) compared to the
enclosed areas and faces (Scribble strokes), revealing a distinct pat-
tern. Specifically, designers seemed to draw Shape strokes more
deliberately with a slower pace, often as short straight lines, in con-
trast to Scribble strokes, which were often drawn loosely with a
higher speed, featuring longer lines with numerous turning points.
These characteristics suggest the possibility of using a stroke clas-
sifier for Shape versus Scribble strokes given the right input fea-
tures. To this end, first, given the metadata recorded by the draw-
ing interface during sketching per stroke and per stroke polyline
vertex (Section 3), we employ this recorded metadata either di-
rectly as input features, or leverage them to extract a set of hand-
engineered features (Section 5.1.1). Second, we individually and
independently evaluate the relevance of each feature with respect
to its significance for predicting the binary target variables in our
curated dataset: Shape (1) versus Scribble (0) (Section 7.1.1). Ul-
timately, we perform ablation studies over four subsets of features
and two candidate classifiers and select the best model and subset
of features based on the reported metrics (Section 7.1.2).

5.1.1. Feature Extraction

We extract a total of 11 features for each stroke in a sketch. The
computation of some features relies solely on geometry-related
properties of strokes, some depend solely on stylus-related prop-
erties, and others are a combination of both. In Table 1, we outline
the definition of each feature and explain the rationale behind their
extraction.

To gain additional visual insight into how the values of these fea-
tures differ between Shape and Scribble strokes, Figure 4 displays
their trends in a sample sketch.

5.1.2. Stroke Classifier

The trends in stroke feature values on boundaries compared to
enclosed areas suggest their potential use in a classification task.
After statistical analysis (Section 7.1.1) and excluding AvgPres-
sure and AvgTilt due to their insignificant relevance to the binary
target variables, we proceed with our best meta-estimator model
(RFGEO∨ST Y ) after performing ablation studies (Section 7.1.2).
We use this random forest classifier for inference, with its predic-
tions on a sample unseen sketch shown in Figure 5.

5.2. Curve Network Formation

Upon the removal of Scribble strokes from the classifier’s predic-
tions on the input sketch, we are left with Shape strokes delineat-
ing the boundaries and edges of the desired geometry. Typically,
they are expressed by multiple tightly clustered strokes that may be
partly or fully over-sketched or sketched as a continuation of one
another by the designer. Thus, recovering a curve network from the
remaining strokes requires several steps; it is necessary to further
cluster Shape strokes into separate groups, beautify and consolidate
them, and recover the pairwise connectivities among consolidated
segments.

© 2024 The Authors.
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Feature Definition Reason

AvgPressure
Mean pressure applied when drawing the stroke computed
using interface-recorded "pressure" property per stroke
polyline vertices

Observed deliberation in drawing Shape strokes com-
pared to Scribbles.

AvgSpeed
Mean speed used to draw the stroke, calculated by com-
puting the speed at each vertex using its coordinates and
timestamp, and those of its subsequent vertex

Motiviated similarly as AvgPressure.

AvgTilt
The mean stylus tilt when drawing the stroke, computed
using interface-recorded "tilt" property

Designers may slightly tilt the stylus when mark the
enclosing areas, a gesture potentially less prevalent in
Shape strokes.

ColorShift
The mean L2 distance between the InkColor of stroke Si
and the InkColors of its each neighboring stroke S j that is
within a distance of 2.5× wi+w j

2

Shape strokes are often drawn with a different color
than neighboring Scribbles strokes.

Density
Number of stroke polyline vertices, once simplified using
the Ramer-Douglas-Peucker (RDP) algorithm [DP73], di-
vided by the original count of vertices (ϵ= 0.5× InkWidth)

Scribble strokes require a great count of vertices af-
ter simplification due to their complexity and numerous
turning points.

Dist
The geodesic distance between the two endpoints of the
stroke on its parent canvas

Scribble strokes often have endpoints close to each
other, due to their due to their forward/backward move-
ments. Hence, often resulting in lower Dist values.

Duration
The time taken to draw the stroke, computed using the
timestamps of the first and last points

Potentially higher in Scribble strokes to to their longer
length.

Length The cumulative arc length of the stroke
Scribble strokes are generally observed to possess
longer length.

Order Normalized stroke order in the sketch
designers are often observed outlining Shape strokes
first before transitioning to Scribble strokes.

PrimSegCount
Number of primary segmentation points of a stroke com-
puted as described in [FMRU03] (dependent on AvgSpeed)

Exhibiting higher values in Scribble strokes due to their
increased count of segments, angles, and motion.

Straightness The Dist feature divided by Length
Measuring stroke straightness, potentially resulting in
higher values in Shape strokes.

Table 1: Extracted features, their corresponding definitions, and the reasons behind their inclusion.

Figure 4: The top-left image represents the original sketch of a curved wall, created using the 4D drawing interface for theater stage design
purposes, and the rest are the visualizations of raw, scalar-valued features of the sketch strokes that are color-coded from pink to green using
a colormap that maps feature values into distinct colors according to their magnitude. The gradient ranging from pink to green denotes the
increase in feature values, with pink representing lower values and green representing higher values. Below each image, min and max of
each feature value are noted. Input sketch: Ingrid Erb.

5.2.1. Clustering Shape Strokes

In our setting, Shape strokes depicting the same edge cannot al-
ways be consolidated using existing techniques in 2D [LRS18,
VMLV∗21]. This is mainly due to two reasons: firstly, as pointed
out in [RRS19], 2D sketched stroke vertices have unique nearest
left/right neighbors along the stroke’s orthogonal. This property no

longer holds in 3D, making the determination of the best pairwise
vertex matches a lot more challenging. Secondly, and more specific
to our problem, it is observed that even Shape strokes depicting the
same edge do not always have the same parent canvas geometry to
use 2D consolidation methods on the canvas’s surface. As an ex-
ample, assume the designer drawing a cube using solely a plane
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Figure 5: Left: the original sketch if a pavilion with three legs.
Right: the classifier’s predictions on strokes with Shape Strokes col-
ored in blue and Scribble strokes in red.

canvas; a commonly observed scenario is that when drawing two
adjacent faces meeting at a shared edge, sometimes the designer
depicts the edge by partially over-sketching strokes lying on dif-
ferent planes, making consolidation on the canvases’ surfaces inap-
plicable. These two limitations necessitate a sketch consolidation
method tailored to 3D sketches.

In order to detect stroke groups for consolidation, we compute a
pairwise similarity score between Shape strokes. However, prior to
that, strokes must go through a pre-processing process for two rea-
sons: first, there is often redundancy and noise within the recorded
stroke polyline vertices because of the varying drawing speed and
the nature of the sampling strategy in the sketching software. Sec-
ond, stylus slippage on the tablet surface often results in unintended
hooks at the beginning and end of the strokes. To this end, using the
method described in [FMRU03], we filter the Shape stroke poly-
line vertices to eliminate possible redundancy and noise, and then
approximate the stroke by fitting a cubic B-Spline curve to each
stroke.

After pre-processing, to be able to compute the similarity scores
between each pair of Shape strokes Si and S j, where 1 ≤ i, j ≤ M
and M is the total number of strokes classified as Shape, we switch
to a point-based representation of the obtained curves by sampling a
fixed number of points inversely proportional to the curves’ lengths,
denoted as Pi and Pj. After turning the polyline vertices of each
stroke into a K-Dimensional Tree (KDTree), matching sequences
between each pair of strokes are computed. We define a match-
ing sequence between strokes Si and S j as a pair of subsets of
ordered points Mk = (Qk,i,Qk, j) where Qk,i ⊆ Pi and Qk, j ⊆ Pj,
such that for each point qk,i ∈ Qk,i, there exists a point qk, j ∈ Qk, j
such that the Euclidean distance between qk,i and qk, j is at most
1.5×min(wi,w j). Here, wi and w j denote the stroke widths of Si
and S j, respectively.

Given the definition above, for every two curves that satisfy
the above criteria, we obtain a set of matching sequences Mi, j =
{M1, · · · ,M|M|}, where each Mi is a tuple containing a subset
of ordered points in Pi and Pj. Thereafter, for each matching se-
quence Mk, where 1 ≤ k ≤| M |, let t̄k,i and t̄k, j be the vectors
denoting the average tangent directions along Qk,i and Qk, j , re-
spectively. Pairwise computation of the dot products between the
tangents for each pair matching sequence in Mk leads to the set
{t̄1,i · t̄1, j, · · · , t̄|M|,i · t̄|M|, j}. Taking the average of all such dot
products over all matching sequences Mk between the two strokes
will lead to a number between 0 and 1, representing the similarity

score of the two strokes:

ScoreShape(Si,S j) =
1

| M |

|M|

∑
k=1

t̄k,i · t̄k, j. (1)

If there exists no matching sequence between a pair of strokes, we
set the score to 0. It is crucial to highlight that the coefficient 1.5
is chosen empirically and deliberately set to a number higher than
1 to account for the situations where the two strokes are meant to
overlap or continue each other but slightly stop short of doing so.

The pairwise similarity scores computed above are used in con-
junction with the DBSCAN [EKS∗96] clustering algorithm with
the ϵ value determined dynamically based on its k-distance plot
with k = 1 (refer to Supplementary Material for more details). Fig-
ures 6a and 6d show a sample input sketch and the resultant clusters
of the Shape strokes following the approach above.

Consolidation. Once the clusters are identified, they must be fur-
ther consolidated into a single curve. Our clustering method com-
putes the pairwise scores between shape strokes based on their
local similarities. However, at times, the strokes in an identified
group may feature bifurcating branches, representing two or more
edges that form a Y-junction, thereby requiring the formation of
two or more curves to approximate a cluster instead of one. Such
cases may be difficult to detect at a local level, necessitating global
post-processing of each group. Inspired by similar works in 2D
[OK11, LRS18, VMLV∗21], as of the post-processing, we detect
such cases and further divide the clusters exhibiting Y-junctions
into sub-clusters exhibiting no bifurcation points. To identify these
cases, we initially thin each cluster’s point cloud – the set of points
of the strokes falling into the cluster – using the method of [Lee00],
employing the modified Moving-Least-Squares (MLS) fitting algo-
rithm extended to 3D. Thinning the point cloud requires a param-
eter H that denotes the initial thickness of the point cloud. We set
this parameter to the mean of the brush widths of the cluster’s con-
stituent strokes. Once a sufficiently thin point cloud is obtained, we
compute the Euclidean Minimum Spanning Tree (EMST) T of the
thinned point cloud to check for bifurcating points. Similar to the
2D case [OK11], the candidate bifurcating points are those sets of
points in the tree that have at least three neighboring points and
that the sub-graphs and branches created by removing such points
are significant enough in terms of their size and length. Whenever
Tmin
Tmax

≥ 0.05, the point is marked as a candidate bifurcating point,
where Tmin and Tmax are the minimum and maximum cumulative
subgraph lengths formed by removing the candidate point. By iter-
ating over thinned cluster points, identifying bifurcating points, and
subsequently splitting the cluster, a series of sub-clusters are ob-
tained. Each sub-cluster represents a single Y-junction-free bound-
ary and edge of the intended geometry. Finally, before recovering
the intended topology to form a curve network, the orderings of the
points along each (sub-) cluster must be known for further curve
approximation. To this end, we use the EMST of each sub-cluster
and traverse the shortest path between the two ends of the tree and
order the points. Finally, the ordered points are approximated with
a cubic B-spline curve with four control points (Figure 7).
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Figure 6: (a) A sample sketch of a dome-like architectural object
created by participant P01. (b) The outcome of the classification
process, where strokes predicted as Scribble are highlighted in red,
and those identified as Shape are marked in blue. (c) The sketch
after removal of the Scribble strokes, leaving only the Shape strokes
in their original color. (d) The result of clustering the Shape strokes
into distinctive groups, each representing a boundary or edge, with
each group displayed in a unique color for clarity.

Figure 7: Consolidation results. (a) Shows multiple over-sketched
curves, each rendered using a random color assigned to it. (b) The
consolidated curve overlaid on the original strokes with reduced
transparency.

5.2.2. Topology Recovery

The obtained consolidated curves representing the boundaries and
edges are still disconnected and should be further processed for the
creation of a well-connected curve network. To this end, for each
curve Ci we compute its shortest distance to every other curve C j,
where 1 ≤ i, j ≤ N, i ̸= j, and N is the total number of consolidated
curves obtained from the preceding processes:

di, j = min ∥ pi,u − p j,v ∥
s.t. 1 ≤ u ≤ Numi,

1 ≤ v ≤ Num j
(2)

where pi,u and p j,v represent sampled points on the curves’ param-
eter space with Numi and Num j being the total number of such
points on the curves Ci and C j, respectively. If the di, j is less than
1.5×min(wi,w j), we deem the curves as requiring a connection.
We then check if the point

p∗i,u = argmin
i,u

di, j (3)

Figure 8: (a) An exemplar sketch created by the user study partic-
ipant P02, utilizing the cylinder canvas. (b) The results obtained
from the classification process. (c) The consolidated Shape sub-
clusters derived following the post-processing stage; note the in-
sets highlighting the disconnections amid the curves. (d) Depicts
the output of the topology recovery process, resulting in a well-
connected curve network.

is sufficiently close to one of the endpoints of the curve Ci, in which
case we constrain the corresponding endpoint; otherwise, we split
the curve Ci at p∗i,u and constrain the end-points of the resultant
curves C1

i and C2
i to be connected to the point p∗i,u. By repeating

this process for each curve, we obtain a new set of curves that ei-
ther do not require a connection or are constrained on their end-
points to be connected to a target connecting point. Given a subset
of curves Ĉ1, · · · ,ĈN with their corresponding endpoints p̂1, · · · , p̂N
constrained to be connected to a target connecting point, we first
compute the tangent vectors t̂1, · · · , t̂N for each endpoint on each
curve. We then determine their connecting point by minimizing the
following function using the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method:

N

∑
i=1

∥ (p̂− p̂i)× t̂i ∥ (4)

Once the optimum point p̂∗ is determined, each of the curves Ĉi
is extended from their p̂i end to the point p̂∗, and once again, we
approximate the new updated set of points on each curve Ĉi with a
cubic B-Spline. It should be noted that when computing the shortest
distance between two curves, the coefficient 1.50 was empirically
selected, as this particular value has demonstrated the best perfor-
mance across the set of sketches experimented with.

Following the process above, we obtain a set of curves that
are well-connected, thereby forming a well-connected curve net-
work(s) for the sketch (Figure 8). Next, we need to infer which cy-
cles of the curve network should bound a surface patch and which
should not. To this end, we rely on the Scribble strokes groups, as
described in the next section.
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5.3. Surfacing Curve Network

Finding cycles in a curve network is generally a complex and am-
biguous problem. Several methods have been developed to auto-
matically find an acceptable set of cycles that bound patches, of-
ten involving global optimization over the entire curve network
[ZZCJ13, AJA12, SHBSS16]. However, in our problem, we can
leverage the presence of Scribble strokes to more accurately dis-
cover the designer-intended cycles in the recovered curve network.
To achieve this, we can cluster the Scribble strokes into distinct
groups, each representing a single face of the intended geometry of
the architectural object. Then, we can apply the existing algorithms
locally to the neighboring boundary curves of each group — the
segments of the curve network that fall within the bounding box of
that group — rather than running them globally on the complete
curve network.

5.3.1. Clustering Scribble Strokes

We cluster Scribble strokes using a similar strategy to the one em-
ployed for the Shape strokes (Section 5.2.1). The designers are
mainly observed to draw single or multiple overlapping Scribble
strokes on the same canvas with the same transformation matrix to
fill in an enclosing area by boundary curves. However, exceptions
occasionally occur when the designer depicts a single face with
multiple canvases of the same type or of different types but with
distinct transformation matrices – different positions, scales, and
rotations. Thus, a general and robust clustering approach for Scrib-
ble strokes should account for such scenarios. Given this, for every
two Scribble strokes Si and S j, we first compute the total number of
their polyline points that are at most in distance 1.5×min(wi,w j)
of each other. Assuming that Ni, j shows the cardinality of all such
pairs, their corresponding similarity score is computed as follows:

ScoreScribble(Si,S j) =min(C×12.5×
Ni, j

Ni +N j
,1)

−25× min
1≤k≤N

Ni, j,k

(5)

where Ni and N j denote the number of points on Scribble strokes Si
and S j . C is the coefficient taking into account the canvas types and
their corresponding transformation at the time of drawing the two
Scribble strokes. Assuming that CPi and CPj denote the coordinates
of the center of the two parent canvases Ci and C j of the two strokes
Si and S j, C is computed as follows

C =


100, Type(Ci,C j) = Plane∧ 1

∥CPi−CPj∥ ≤ 0.375

100, Type(Ci,C j) = Sphere∧ 1
∥CPi−CPj∥ ≤ 1.750

1
12.5 , otherwise

(6)

Moreover, the second term in the equation is to account for the
cases where a shape stroke is going through the middle of the two
Scribble strokes Si and S j. In such cases, it is likely that the Scribble
strokes must belong to two different faces of the intended geome-
try as they are being separated by a Shape stroke. To this end, we
simply compute the fraction of points of stroke Ni, j that are over-
lapping with each stroke classified as Shape earlier and compute
the numbers Ni, j,k for 1 ≤ k ≤ N, where N is the total number of
strokes classified as Scribble.

Similar to Shape clustering, using the pairwise scores defined

Figure 9: (a) The Scribble strokes shown in Figure 8b parsed into
clusters, each representing a single face of the geometry. (b) The
axis-aligned bounding box for one of the Scribble clusters of the
sketch. Only the subset of curve segments forming the boundaries
of the cluster colored in pink fall into the bounding box area and
are used for cycle discovery.

above, we merge clusters using the DBSCAN algorithm with the
ϵ parameter determined dynamically for each sketch (refer to Sup-
plementary Material for more detail). Figure 9a shows the resultant
Scribble clusters computed following the above method.

5.3.2. Cycle Discovery and Geometry Generation

Parsed Scribble clusters explicitly represent the faces of the in-
tended architectural object and can be exploited to identify the cy-
cles in the curve network that must bound patches. To this end, we
compute the axis-aligned bounding box for the points of the strokes
forming a Scribble cluster and then scale the bounding box slightly
with a factor of 1.50. We then take the subset of curves falling
into the bounding box and use it as input to the method presented
in [ZZCJ13] to find it corresponding formed cycles cycles (Figure
9). Next, we triangulate the closed 3D area formed by each cycle’s
boundary curves using the method described in [ZJC13]. Repeat-
ing this process for every Scribble cluster leads to all the cycles in
the curve network that are must-bound patches. Last, sometimes,
some unwanted curves fall into the bounding box and lead to extra
potentially wrong patches. To address this, after surfacing all the
identified cycles, we discard any bounding patch where no cluster
group can be projected onto the surface using its normal vector’s
direction and distance thresholding. We note that the scaling factor
is intentionally chosen to a number greater than 1 to ensure bound-
ary curves fall within the bounding box, even if Scribbles are not
densely sketched.

6. User Study

The purpose of our user study was three-fold. First, we aimed to
confirm further our studies and observations (Section 4) regard-
ing the characteristics of architectural design sketches on which the
pipeline is based and developed. Second, to collect a dataset of such
sketches to train our model’s binary classifier. And third, to validate
and assess the usability of the pipeline in architectural design use
cases. To this end, we conducted a workshop with 10 participants
(P01-P10), where the majority of them were university students of
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architecture or civil engineering programs and were experienced
with at least one commercial 3D design modeling software (refer
to Supplementary Materials for the individual participants’ design
backgrounds).

Initially, participants were given a 15-minute presentation in-
troducing the research project and providing an overview of the
drawing interface and the Strokes2Surface geometry reconstruc-
tion pipeline. This was followed by a 30-minute tutorial that fa-
miliarized the participants with the various features of MR.Sketch
in detail and the framework of Strokes2Surface. Throughout the tu-
torial, each student was guided by the instructor to sketch a 3D cube
for a hands-on experience with the MR.Sketch (the given instruc-
tion can be found in Supplementary Materials). After this initial
getting-started session, once the participants felt comfortable with
the sketching interface, they were tasked with drawing two archi-
tectural objects within a 1-hour time frame. First, they were tasked
to draw from observation, where each participant had to select an
object from a pre-curated list of actual built structures in the real
world (refer to Supplementary Material for the links to the selected
structures). For each structure, they were provided with reference
images from various views, and these images remained visible on
a large screen throughout the session to offer clear drawing tar-
gets. Second, they were tasked to draw from imagination, where
the users could sketch a structure by following their own ideation
process. Depending on the complexity and scale with which the de-
signer sketched the objects, it took the participants varying amounts
of time to complete the tasks. Nevertheless, all the participants
completed both tasks within the allotted time frame. Moreover, five
of the participants were keen and chose to stay for about an addi-
tional hour to draw extra objects.

6.1. Preliminary Examination

In line with our first aim, our examination of each sketch’s con-
stituent strokes revealed that participants created sketches analo-
gous to conventional 2D architectural sketching; they often drew
boundaries, whilst they often filled in the enclosing areas to block
out strokes seen in the background. We were also excited to observe
slight variations in sketching styles among participants. For exam-
ple, we observed slight variations in the density of their sketches,
with some participants sketching objects more densely and others
more sparsely. Furthermore, some participants drew a single long
stroke to depict multiple connecting boundary curves, in contrast
to others who favored multiple shorter strokes in similar situations.
Users also varied in their use of color to delineate boundaries; some
employed multiple colors, while others preferred using a single
color across the sketch (Figure 8a). The extent of over-sketching
varied among participants as well; some tended to emphasize on
previously drawn boundary strokes with over-sketching, whereas
others did not over-sketch as much. Overall, these observations
were crucial to the development of Strokes2Surface to ensure ro-
bustness regarding a wider variety of sketches and styles and also
provided us valuable insights for future work.

6.2. Dataset

Following our second aim, we further manually labeled strokes of
each sketch with one of three ground-truth values: 0 for Scribble, 1

Sketches (Shape / Scribble / Noise)
3D Cube 10 635 (375 / 224 / 36)

Observation 10 1973 (1024 / 906 / 43)
Imagination 27 1676 (1029 / 623 / 24)

Sum 47 4284 (2428 / 1753 / 103)

Table 2: Statistics of the collected dataset of 4D architectural de-
sign sketches.

for Shape, and −1 as noise for those that were unclear or created us-
ing techniques other than scribbling. These sketches created by par-
ticipants throughout the study and eight additional sketches made
by two expert architectural designers from our research group were
curated as a dataset of freehand 4D architectural sketches. Overall,
it contains 47 architectural labeled sketch drawings encompassing
4284 4D strokes coupled with their additional metadata recorded
by the drawing interface (Section 3). Table 2 presents the dataset
statistics, categorized by the mode of drawing, i.e., 3D cube, draw-
ings from observation, or the imagination.

6.3. User Feedback

Finally, once we trained and tested the classifier using the labeled
data, we provided each participant a customized link to a web-
based interface, allowing them to visualize from arbitrary view-
points the color-coded step-wise outputs of the pipeline as it ran
on their individual sketches. Along with the link, they received
a post-study questionnaire designed to quantitatively and qualita-
tively probe their assessment of the interface (MR.Sketch) and the
pipeline’s interpretations Strokes2Surface).

The data from our questionnaires are presented in Figures 10
and 11. Aggregating responses across all questions relating to
MR.Sketch (Q1-Q5) and those relating to Strokes2Surface (Q6-
Q9), followed by one-sample non-parametric permutation test
against the theoretical median response of "Neutral", indicates a
significant effect in favor of MR.Sketch (p-value ≈ 0.029 < 0.05)
and Strokes2Surface (p-value ≈ 0.005 < 0.05).

In the open-ended feedback sections, participants reflected on
their experience in transferring their 2D drawing skills to 3D
sketching with MR.Sketch: "In contrast to 2D sketching, which
is single-perspective, here I had the freedom over the entirety of
my sketch, which made me more confident to design (P01)", "...
MR.Sketch allowed me to sketch quickly and roughly like I am
used to when making concept sketches in 2D (P09)". In this regard,
some also pointed out how the tutorial session helped them to better
understand the interface: "After 15-20 minutes I got used to it and
was surprised by how easy it was to sketch 3D objects (P04)", and
"In the beginning it was a bit difficult to get a grasp on it, but you
quite easily get accustomed to it after tutorial (P07)". In response to
a question asking participants for further suggestions or feedback
to share with respect to MR.Sketch, they brought our attention to
certain areas for improvement: "It would have been easier if I could
copy part of my drawings, at least the boundaries (P01)", and two
other participants commented on ease of use of canvas transforma-
tions: "I think this would boost the drawing experience if I could
auto-snap the canvas to certain positions or pre-select an axis where
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it snaps to (P06)", and "being able to enter the exact angle I want to
rotate the canvas, with just a few changes, I think it would be a very
helpful tool to sketch in 3D (P03)". Alongside the raised points,
users are currently restricted to built-in preset canvases and cannot
create their own. Including this feature in future work could en-
hance the drawing experience, especially for freeform geometries.
Likewise, saving and displaying previously used canvas positions
would aid in more accurate sketching for adding strokes later on.

Users were also asked to share their opinion on Strokes2Surface:
"It would make it more convenient if Strokes2Surface could result
in geometrically regular shapes (P03)". Although the pipeline re-
constructs neat geometries, some properties such as symmetry are
not enforced. This could be an intriguing direction for future re-
search. Users elaborated further on how they see Strokes2Surface
benefiting them: "... to explain designs to non-experts and cus-
tomers I find it a very good system (P07)", "it is more efficient
in externalizing architectural ideas than dealing with the complex-
ity of CAD systems, especially when presenting ideas in the early
stages of a design project (P09)", and a participant pinpointed an-
other area which could be addressed in future work: "In the re-
constructed geometry, if the system could recognize the type of
building elements in sketch, it would really help with streamlining
the design to geometry and further prepare for structural analysis
(P08)".

7. Results and Validation

7.1. Training the Classifier

We quantify extracted features (Section 5.1.1) using statistical anal-
ysis to ensure that only relevant features are retained for our clas-
sification. We also perform ablation tests, evaluating 8 different
training configurations with 2 meta-estimators, each trained on 4
different subsets of the retained features. This is done to study the
contribution of geometry and stylus-related properties to the clas-
sification and to obtain the best-performing model.

7.1.1. Feature Significance Testing

To validate whether our justifications for features’ definitions align
with the data statistics and to ascertain their relevance in the in-
tended classification task, we individually and independently eval-
uate the importance of each feature with respect to its significance
for predicting the target variable. To this end, for each extracted
feature in our collected dataset, its influence on the binary target
variable (type of the stroke) is assessed using the univariate Mann-
Whitney U test [MN10], calculating its corresponding p-value. Af-
ter obtaining the p-values for all features, they are subsequently
assessed using the Benjamini Hochberg procedure [BY01] to de-
termine which features to retain and which to omit. The results are
presented in Table 3, listing features in descending order based on
their significance. As shown in the table, AvgPressure and AvgTilt
are the only features considered to be irrelevant in our classification
task. Excluding these features, we proceed to an ablation study as
described in the following section.

7.1.2. Ablation Studies

There are several features associated with our classification task. To
further understand how geometry-related and stylus-related prop-

Feature GEO ST Y p-value
PrimSegCount ✓ ✓ 1.83e−161< 0.05∗

Density ✓ ✓ 7.05e−129< 0.05∗

Straightness ✓ ✗ 7.99e−83< 0.05∗

Length ✓ ✗ 3.25e−48< 0.05∗

Order ✗ ✓ 6.92e−41< 0.05∗

Duration ✗ ✓ 3.47e−40< 0.05∗

Dist ✓ ✗ 7.69e−23< 0.05∗

ColorShift ✗ ✓ 3.22e−7< 0.05∗

AvgSpeed ✗ ✓ 2.26e−5< 0.05∗

AvgPressure ✗ ✓ 3.44e−1
AvgTilt ✗ ✓ 7.04e−1

* p-values less than 0.05 considered to be significant.

Table 3: Relevance table for extracted features with respect to the
binary target variable (Shape versus Scribble). The GEO (ST Y)
column is checked if the feature’s computation, according to its
definition, involves geometry- (stylus-) related properties from the
interface-recorded metadata.

erties convey useful information related to the design intent in our
classification task, we run ablation tests with two meta-estimators,
Random Forest (RF) [Bre01] and XGBoost [CG16] (XGBRF) clas-
sifiers, on four different subset of retained features from Table 3 as
defined below:

• GEO: Features only involving geometry-related properties in
their computation and no stylus-related properties.

• ST Y: Features only involving stylus-related properties in their
computation and no geometry-related properties.

• GEO∨ST Y: All retained features that incorporate either geom-
etry or stylus-related properties in their computation.

• GEO ∧ST Y: Features that require at least a geometry and at
least a stylus-related property in their computation.

The classifiers are trained and tested using an 80%-20% data
split from our collected dataset (Section 6.2). We perform robust
standardization on the features using the 5th and 95th percentiles
of each feature. Also, for training, a grid search is performed over
specified parameter values for the estimator to select optimal hyper-
parameters using 5-fold cross-validation. We then refit an estimator
using the resultant optimal hyper-parameters on the training set and
report its scores on the unseen fresh test set, as outlined in Table
4. According to reported metrics, the best model is RFGEO∨ST Y .
Compared with other models, the superiority of this model in terms
of the reported metrics suggests that both geometry and stylus-
related properties are vital to the performance of the model in dis-
tinguishing the type of drawn strokes.

7.2. Our Reconstructions

We tested our pipeline on a a large number of inputs. These include
sketches created by the participants in our user study and a few oth-
ers drawn by the two architectural design modeling experts from
our research group. These input sketches depict architectural ob-
jects of varying scales and complexities, ranging from small-scale
theater stage design walls to large-scale pavilions. In most of the
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0% 20% 40% 60% 80% 100%

(Q1) It was intuitive to use interface
for 3D concept design.

(Q2) It was easy to transform camera
and canvases around the scene.

(Q3) I did not fill limited by the preset
canvases.

(Q4) I could easily use MR.Sketch to
draw from observation.

(Q5) I could easily use MR.Sketch to
draw from the imagination.

Strongly disagree Disagree Neutral Agree Strongly agree

Figure 10: Visualizations of the MR.Sketch questions. The questions are provided on the left. For each question there is a stacked bar where
each bar has five responses from a 5-point Likert scale.

0% 20% 40% 60% 80% 100%

(Q6) My sketched strokes are cor-
rectly interpreted/classified.

(Q7) Shape strokes were correctly
grouped.

(Q8) Scribble strokes were correctly
grouped.

(Q9) Grouped Shape strokes are cor-
rectly connected.

Strongly disagree Disagree Neutral Agree Strongly agree

Figure 11: Visualizations of the Strokes2Surface questions structured similarly as Figure 10.

Model Set Accuracy Precision Recall

RFGEO∨ST Y
Train 99.64 99.39 100.00
Test 99.52 99.14 100.00

RFGEO
Train 99.40 99.59 99.39
Test 89.95 90.59 91.37

RFST Y
Train 99.88 99.79 100.00
Test 96.65 94.30 100.00

RFGEO∧ST Y
Train 98.92 98.39 99.79
Test 99.04 98.30 100.00

XGBRFGEO∨ST Y
Train 99.16 99.38 99.18
Test 98.56 97.47 100.00

XGBRFGEO
Train 91.86 92.74 93.49
Test 89.95 89.25 93.10

XGBRFST Y
Train 98.44 97.61 99.79
Test 95.69 93.49 99.13

XGBRFGEO∧ST Y
Train 98.80 98.58 99.39
Test 99.04 98.30 100.0

Table 4: Ablation results for two models, evaluated across four fea-
ture subsets as indicated by the model’s subscripts.

sketches, our outputs accurately reflect the designer-intended ge-
ometry (Figure 12), confirming its robustness to scale and com-
plexity of the sketched objects. We detail in Table 5 the scale, the
complexity of sketches in terms of number of strokes they consti-
tute, and runtime of the four main steps of our pipeline (Sections
5.2.1, 5.2.2, 5.3.1, and 5.3.2) on the eight sketches shown in Figure
12 (refer to Supplementary Material for additional results). Tim-
ings vary from a few seconds on small-scale sketches with a low
amount of strokes up to a few minutes (max. 5 minutes) on large-
scale sketches with a very high number of strokes. The bottlenecks
reside mainly in the feature extraction step in the very beginning for
the classifier’s inference and in the topology recovery step when the
sketch is complex and possesses a large number of strokes. On the
other hand, clustering Shape and Scribble strokes takes less than 5
and 12 seconds in most cases, respectively.

7.2.1. Comparison to Prior Art

Strokes2Surface recovers curve networks from a dense set of 3D
strokes, coupled with timestamp (fourth dimension) and additional
metadata recorded by the interface at the time of sketching. There-
fore, its inputs do not exhibit exactly the same characteristics as the
ones created by other 3D interfaces. However, aside from the fact
that our input sketches can be easily converted into point clouds,
the output produced by clustering Shape strokes, once consoli-
dated, aligns with the input specifications of stroke cloud surfacing
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Figure 12: A number of input sketches and the reconstructions produced by Strokes2Surface. Each is captioned by its corresponding Partic-
ipant ID who sketched the object.

ID Scale∗ Strokes (i) (ii) (iii) (iv)
P01_03 7.2 198 25.1s 4.7s 108.8s 5.6s
P02_03 3.2 28 4.4s 1.5s 1.5s 1.4s
P04_02 12.1 54 9.6s 2.6s 11.7s 1.4s
P06_05 4.3 62 12.5s 1.9s 11.4s 3.3s
P09_02 15.1 306 107.6s 5.7s 5.1s 185.8s
P09_04 36.1 402 284.5s 37.8s 159.9s 101.1s
P10_02 15.1 50 7.3s 6.2s 11.0s 1.9s
P10_03 8.1 70 13.9s 2.5s 3.9s 2.8s

* Scale is computed as the diameter of the sketch’s axis-aligned
bounding box.

Table 5: For each sketch in Figure 12, we provide the scale, com-
plexity in terms of total number of strokes, and runtimes for the
main four steps of the pipeline: (i) Stroke Type Prediction, (ii) Clus-
tering Shape Strokes, (iii) Topology Recovery, and (iv) Clustering
Scribble Strokes. All the computations were carried out on an Ap-
ple M1 chip featuring an 8-core CPU with 16GB memory.

methods and can be compared with those. Furthermore, to high-
light the effect of the clustering Scribble strokes in cycle discovery,
we present comparisons of our recovered curve networks surfaced
with and without taking this step into account. In the following
sections, we provide targeted comparisons of our reconstructions
against state-of-the-art methods from point cloud, stroke cloud, and
curve network surfacing methods.

Comparison Against Point Cloud Surfacing. Our input sketches
can be easily converted into point clouds using stroke polyline ver-
tices or by sampling points on the triangle strips or square sweeps
forming the sketch’s constituent strokes. Most of the existing point
cloud reconstruction methods by design require dense point clouds
and are doomed to fail on 3D sketches that only provide very sparse
and non-uniform sampled input data. Figure 13 shows compar-
isons of our outputs to those produced from Poisson [KBH06],
and two recent learning-based point cloud reconstruction meth-
ods, Points2Surf [EGO∗20] and Point2Mesh [HMGCO20]. For
the Poisson reconstruction, we set the depth of the octree used

for the surface reconstruction to 8, and for Points2Surf, we used
their provided pre-trained best model based on their ablation re-
sults. Point2Mesh learns from a single object by optimizing the
weights of a CNN to deform an initial mesh to shrink-wrap the in-
put point cloud. Following what they suggested in their implemen-
tation, we computed the convex hull of the input sketch point cloud,
used it as the initial mesh, and ran the algorithm for 6000 itera-
tions. As evident in Figure 13, these methods catastrophically fail
on 3D sketches, producing meshes with multiple redundant con-
nected components and mesh triangles connecting unrelated sur-
face parts. Thanks to the underlying curve network structure, our
method yields a collection of surface patches joined together on the
curve segments rather than a single triangle mesh. The availability
of individual surface patches could be beneficial for several archi-
tectural design applications within which each patch could repre-
sent an architectural element, e.g., a roof or a wall in Building In-
formation Modeling (BIM) context. Also, the curve network seg-
ments themselves could be exploited for various architectural de-
sign purposes, e.g., paneling surfaces [EKS∗10] or simplification
for maintaining structural stability [NPTB22].

Comparison Against Stroke Cloud Surfacing. After the strokes
are classified to determine their type, by omitting those identified
as Scribble, what remains – when consolidating those classified as
Shape before topology recovery – is a set of strokes that depict the
boundaries of the intended object but without their connectivities
fixed. This can be fed as input to stroke cloud surfacing methods. To
this end, given this stroke cloud as input to the method described in
[YAB∗22], we compare our reconstructions with theirs, as depicted
in Figure 15. Their method requires an approximate proxy surface
to which they project the strokes and further segment the surface
into smooth patches joined sharply along some strokes, and opti-
mize these patches to fit surrounding strokes. Following what their
implementation suggests, we used the VIPSS algorithm [HCJ19] to
compute the initial proxy mesh from the consolidated Shape strokes
and then manually annotated them as boundary curves before feed-
ing them to their method. In cases where the design has a manifold
shape, their method reconstructs very similar results to ours (Figure
15, third and fourth rows). However, it encounters errors in cases
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Figure 13: Comparison of our reconstructions against point cloud reconstruction techniques using input strokes polyline vertices. For the
methods requiring per point normals, we provided the stroke’s parent canvas normal for each vertex of the stroke polyline.

where the designed architectural object is non-manifold and con-
tains openings or holes (Figure 15, first and second rows) and ends
up connecting unintended parts of the geometry together or leav-
ing some void areas. Compared to their results, our reconstructions
are vulnerable in reconstructing surfaces with high curvature when
there are only a few surrounding strokes present. This limitation
can potentially mitigated by using the boundary normals when tri-
angulating the cycle patches.

Comparison Against Curve Network Surfacing. Presence of
Scribble strokes is not required by the pipeline, rather an often ob-
served practice designers employ. However, to evaluate their im-
pact on cycle discovery in the final reconstructions, we applied the
method from [ZZCJ13] in two ways: first, to the subset of curves
in our recovered curve networks determined by bounding box of
the Scribble clusters; and second, to the complete curve network
without considering the Scribble clusters. In both cases, we surface
the identified cycles using the method described in [ZJC13] (Fig-
ure 14). For our tests, we set all curves’ capacity values to 2, in line
with the default assumptions in their paper. As depicted in Figure
14, when cycles are searched for globally within the whole curve
network rather than locally leveraging Scribbles, and the geometry
is non-manifold or has holes – a scenario frequently observed in
architectural design – their algorithm struggles to correctly identify
all cycles. At times, due to the non-manifoldness of the underlying
object, it skips some cycles. This issue is evident on both the front
and back sides of the geometry in the example shown in the first
row of Figure 14. Furthermore, without verifying the existence of
Scribble strokes against the surfaced bounding patches of cycles,
some unintended areas are surfaced, such as the openings in the
first row of Figure 14. As pointed out in their paper, some of these
drawbacks could be addressed if the program could automatically
identify possibly non-manifold curves and suggest their capacity.

8. Conclusion

We presented Strokes2Surface, an offline geometry reconstruction
pipeline for 4D architectural design sketches, aimed at bridging
the gap between concept design and digital modeling stages. The
pipeline is supported by three machine learning models: A bi-

nary classifier responsible for stroke type recognition and the two
density-based clustering models responsible for parsing strokes of
each type into groups representing boundaries and edges, and en-
closing areas and faces, enabling recovery of a curve network from
the design sketch. To the best of our knowledge, this is the first
offline geometry reconstruction of 3D/4D sketches in the architec-
tural design domain. Furthermore, the pipeline introduces the fol-
lowing key standalone technical contributions:

• The Shape/Scribble dichotomy, based on architectural sketching
practices, and our hand-engineered features as input to the classi-
fier are introduced for the first time in the 3D sketching domain.
Our stroke classifier has the capability to be used in existing pen-
on-tablet sketching interfaces that allow creation of 3D sketches,
i.e., MentalCanvas [DXS∗07] and NapkinSketch [XSS08].

• Our pipeline introduces a 3D sketch consolidation method that
handles imprecise sketches from various 3D sketching interfaces
and is not limited to pen-on-tablet interfaces, as it only relies on
3D stroke vertices and brush thickness values.

• Our Stroke Classifier and Shape Clustering models’ outputs can
be combined to provide suitable input for stroke cloud surfacing
methods, thereby facilitating 3D reconstruction in pen-on-tablet
interfaces not inherently coupled with a modeling algorithm.

• We presented the first dataset of 3D/4D architectural design
sketches in the literature for further use in the community.

Limitations and Future Work. Despite our method’s contribu-
tions, there is still potential for further improvements in various
directions. As mentioned in Section 4, scribbling is one of the few
techniques for drawing the surfaces of forms and shapes. Extend-
ing our classifier to recognize strokes drawn using other drawing
techniques would diversify the applicability of the pipeline to other
sketching styles. In its current state, Strokes2Surface does not take
into account the geometry of underlying strokes’ parent canvases
when surfacing the recovered curve networks, however, they could
provide a powerful prior for more accurate reconstruction, i.e., to
obtain more realistic shape curvature. What we further plan to ad-
dress in our future work is taking into account the spatial rela-
tionship among different networks recovered from an input design
sketch to avoid scenarios where a surface patch ends up covering
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Figure 14: Comparison of our reconstructions with and without using Scribble clusters for guiding the cycle discovery using the [ZZCJ13]
and [ZJC13]. The wrong cycles detected are shown in red, and the missed ones are shown in blue, while the corresponding cycles detected
by ours are shown in green.

Figure 15: Comparison of our reconstructions against [YAB∗22].
Consolidated clusters of Shape strokes are given as the input stroke
cloud to their method.

another area which is supposed be an opening and void within an-
other patch (see Figure 12 (P09_04)). Furthermore, obtaining para-
metric geometries is crucial for many downstream design pipelines,
for which we find extending [LPBM22] to 3D sketches an intrigu-
ing direction for future research.

Acknowledgments

This research was funded by Austrian Science Fund (FWF) project
F 77 (SFB “Advanced Computational Design”). We would like to

thank our partners in ACD Sub-Project 2 who provided valuable in-
put for the topics of this paper: Michael Hensel, Peter Ferschin, Ju-
lia Resiginer, Ingrid Erb, Balint Istvan Kovacs, and Dalel Daleyev.

References
[AJA12] ABBASINEJAD F., JOSHI P., AMENTA N.: Surface patches from

unorganized space curves. In Proceedings of the twenty-eighth annual
symposium on Computational geometry (2012), pp. 417–418. 3, 4, 9

[BAOBK12] BATUHAN ARISOY E., ORBAY G., BURAK KARA L.: Free
form surface skinning of 3d curve clouds for conceptual shape design.
Journal of computing and information science in engineering 12, 3
(2012), 031005. 3

[Bre01] BREIMAN L.: Random forests. Machine learning 45 (2001),
5–32. 11

[BTS05] BARLA P., THOLLOT J., SILLION F. X.: Geometric cluster-
ing for line drawing simplification. In ACM SIGGRAPH 2005 Sketches.
2005, pp. 96–es. 2

[BY01] BENJAMINI Y., YEKUTIELI D.: The control of the false discov-
ery rate in multiple testing under dependency. Annals of statistics (2001),
1165–1188. 11

[CG16] CHEN T., GUESTRIN C.: Xgboost: A scalable tree boosting sys-
tem. In Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining (2016), pp. 785–794. 11

[Chi19] CHING F. D.: Design drawing. John Wiley & Sons, 2019. 4, 5

[CKX∗08] CHEN X., KANG S. B., XU Y.-Q., DORSEY J., SHUM H.-
Y.: Sketching reality: Realistic interpretation of architectural designs.
ACM Transactions on Graphics (TOG) 27, 2 (2008), 1–15. 1

[CLHC14] CHIEN Y., LIN W.-C., HUANG T.-S., CHUANG J.-H.: Line
drawing simplification by stroke translation and combination. In Fifth In-
ternational Conference on Graphic and Image Processing (ICGIP 2013)
(2014), vol. 9069, SPIE, pp. 180–185. 2

[DA22] DZURILLA D., ACHTEN H.: What’s happening to architectural
sketching? 2

[DLP∗22] DENG Z., LIU Y., PAN H., JABI W., ZHANG J., DENG B.:
Sketch2pq: freeform planar quadrilateral mesh design via a single sketch.
IEEE Transactions on Visualization and Computer Graphics (2022). 1

[Do02] DO E. Y.-L.: Drawing marks, acts, and reacts: Toward a com-
putational sketching interface for architectural design. AI EDAM 16, 3
(2002), 149–171. 2

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



16 of 16 S. Rasoulzadeh, M. Wimmer, P. Stauss, I. Kovacic / Strokes2Surface

[DP73] DOUGLAS D. H., PEUCKER T. K.: Algorithms for the reduc-
tion of the number of points required to represent a digitized line or its
caricature. Cartographica: the international journal for geographic in-
formation and geovisualization 10, 2 (1973), 112–122. 6

[DXS∗07] DORSEY J., XU S., SMEDRESMAN G., RUSHMEIER H.,
MCMILLAN L.: The mental canvas: A tool for conceptual architectural
design and analysis. In 15th Pacific Conference on Computer Graphics
and Applications (PG’07) (2007), IEEE, pp. 201–210. 2, 3, 14

[EGO∗20] ERLER P., GUERRERO P., OHRHALLINGER S., MITRA
N. J., WIMMER M.: Points2surf learning implicit surfaces from point
clouds. In European Conference on Computer Vision (2020), Springer,
pp. 108–124. 3, 13

[EKS∗96] ESTER M., KRIEGEL H.-P., SANDER J., XU X., ET AL.:
A density-based algorithm for discovering clusters in large spatial
databases with noise. In kdd (1996), vol. 96, pp. 226–231. 7

[EKS∗10] EIGENSATZ M., KILIAN M., SCHIFTNER A., MITRA N. J.,
POTTMANN H., PAULY M.: Paneling architectural freeform surfaces. In
ACM SIGGRAPH 2010 papers. 2010, pp. 1–10. 13

[FK10] FABBRI R., KIMIA B.: 3d curve sketch: Flexible curve-based
stereo reconstruction and calibration. In 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (2010), IEEE,
pp. 1538–1545. 3

[FMRU03] FIORENTINO M., MONNO G., RENZULLI P. A., UVA A. E.:
3d sketch stroke segmentation and fitting in virtual reality. In Interna-
tional conference on the Computer Graphics and Vision (2003), vol. 5,
Citeseer. 6, 7

[GHL∗20] GRYADITSKAYA Y., HÄHNLEIN F., LIU C., SHEFFER A.,
BOUSSEAU A.: Lifting freehand concept sketches into 3d. ACM Trans-
actions on Graphics (TOG) 39, 6 (2020), 1–16. 2

[HCJ19] HUANG Z., CARR N., JU T.: Variational implicit point set sur-
faces. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–13. 3,
13

[HGSB22] HÄHNLEIN F., GRYADITSKAYA Y., SHEFFER A.,
BOUSSEAU A.: Symmetry-driven 3d reconstruction from concept
sketches. In ACM SIGGRAPH 2022 Conference Proceedings (2022),
pp. 1–8. 2

[HMGCO20] HANOCKA R., METZER G., GIRYES R., COHEN-OR
D.: Point2mesh: A self-prior for deformable meshes. arXiv preprint
arXiv:2005.11084 (2020). 3, 13

[KBH06] KAZHDAN M., BOLITHO M., HOPPE H.: Poisson surface re-
construction. In Proceedings of the fourth Eurographics symposium on
Geometry processing (2006), vol. 7, p. 0. 13

[KEKF23] KOVACS B. I., ERB I., KAUFMANN H., FERSCHIN P.: Mr.
sketch. immediate 3d sketching via mixed reality drawing canvases. In
2023 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR) (2023), IEEE, pp. 10–19. 2, 4

[KH13] KAZHDAN M., HOPPE H.: Screened poisson surface reconstruc-
tion. ACM Transactions on Graphics (ToG) 32, 3 (2013), 1–13. 3

[LABS23] LIU C., AOKI T., BESSMELTSEV M., SHEFFER A.: Strip-
maker: Perception-driven learned vector sketch consolidation. ACM
Transactions on Graphics (TOG) 42, 4 (2023), 1–15. 3

[LCX∗23] LUO L., CHOWDHURY P. N., XIANG T., SONG Y.-Z.,
GRYADITSKAYA Y.: 3d vr sketch guided 3d shape prototyping and ex-
ploration. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (2023), pp. 9267–9276. 3

[Lee00] LEE I.-K.: Curve reconstruction from unorganized points. Com-
puter aided geometric design 17, 2 (2000), 161–177. 7

[LKB22] LEE J. H., KIM H., BAE S.-H.: Rapid design of articulated
objects. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1–8. 3

[LPBM22] LI C., PAN H., BOUSSEAU A., MITRA N. J.: Free2cad:
Parsing freehand drawings into cad commands. ACM Transactions on
Graphics (TOG) 41, 4 (2022), 1–16. 15

[LRS18] LIU C., ROSALES E., SHEFFER A.: Strokeaggregator: Consol-
idating raw sketches into artist-intended curve drawings. ACM Transac-
tions on Graphics (TOG) 37, 4 (2018), 1–15. 2, 6, 7

[Mah18] MAHONEY J. M.: The v-sketch system, machine assisted de-
sign exploration in virtual reality. 1, 2, 3

[MN10] MCKNIGHT P. E., NAJAB J.: Mann-whitney u test. The Corsini
encyclopedia of psychology (2010), 1–1. 11

[NPTB22] NEVEU W., PUHACHOV I., THOMASZEWSKI B., BESS-
MELTSEV M.: Stability-aware simplification of curve networks. In ACM
SIGGRAPH 2022 Conference Proceedings (2022), pp. 1–9. 13

[OK11] ORBAY G., KARA L. B.: Beautification of design sketches us-
ing trainable stroke clustering and curve fitting. IEEE Transactions on
Visualization and Computer Graphics 17, 5 (2011), 694–708. 2, 7

[OMYA16] OGAWA T., MATSUI Y., YAMASAKI T., AIZAWA K.: Sketch
simplification by classifying strokes. In 2016 23rd International Confer-
ence on Pattern Recognition (ICPR) (2016), IEEE, pp. 1065–1070. 2

[PLS∗15] PAN H., LIU Y., SHEFFER A., VINING N., LI C.-J., WANG
W.: Flow aligned surfacing of curve networks. ACM Transactions on
Graphics (TOG) 34, 4 (2015), 1–10. 3

[RRS19] ROSALES E., RODRIGUEZ J., SHEFFER A.: Surfacebrush:
from virtual reality drawings to manifold surfaces. arXiv preprint
arXiv:1904.12297 (2019). 2, 3, 6

[S∗19] SHARP N., ET AL.: Polyscope, 2019. www.polyscope.run. 1

[SHBSS16] STANKO T., HAHMANN S., BONNEAU G.-P., SAGUIN-
SPRYNSKI N.: Smooth interpolation of curve networks with surface
normals. In Eurographics 2016 Short Papers (2016), Eurographics As-
sociation, pp. 21–24. 3, 4, 9

[TF22] TONO A., FISCHER M.: Vitruvio: 3d building meshes via single
perspective sketches. arXiv preprint arXiv:2210.13634 (2022). 2

[VMLV∗21] VAN MOSSEL D. P., LIU C., VINING N., BESSMELTSEV
M., SHEFFER A.: Strokestrip: Joint parameterization and fitting of
stroke clusters. ACM Transactions on Graphics (TOG) 40, 4 (2021),
1–18. 2, 6, 7

[XCS∗14] XU B., CHANG W., SHEFFER A., BOUSSEAU A., MCCRAE
J., SINGH K.: True2form: 3d curve networks from 2d sketches via se-
lective regularization. ACM Transactions on Graphics 33, 4 (2014). 2

[XSS08] XIN M., SHARLIN E., SOUSA M. C.: Napkin sketch: handheld
mixed reality 3d sketching. In Proceedings of the 2008 ACM symposium
on Virtual reality software and technology (2008), pp. 223–226. 2, 3, 14

[YAB∗22] YU E., ARORA R., BAERENTZEN J. A., SINGH K.,
BOUSSEAU A.: Piecewise-smooth surface fitting onto unstructured 3d
sketches. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1–16. 3,
13, 15

[YAS∗21] YU E., ARORA R., STANKO T., BÆRENTZEN J. A., SINGH
K., BOUSSEAU A.: Cassie: Curve and surface sketching in immersive
environments. In Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems (2021), pp. 1–14. 2, 3

[YDSG21] YU X., DIVERDI S., SHARMA A., GINGOLD Y.: Scaffolds-
ketch: Accurate industrial design drawing in vr. In The 34th Annual ACM
Symposium on User Interface Software and Technology (2021), pp. 372–
384. 3

[ZJC13] ZOU M., JU T., CARR N.: An algorithm for triangulating mul-
tiple 3d polygons. In Computer graphics forum (2013), vol. 32, Wiley
Online Library, pp. 157–166. 3, 4, 9, 14, 15

[ZLDM16] ZHENG Y., LIU H., DORSEY J., MITRA N. J.: Smartcanvas:
Context-inferred interpretation of sketches for preparatory design stud-
ies. In Computer Graphics Forum (2016), vol. 35, Wiley Online Library,
pp. 37–48. 2

[ZZCJ13] ZHUANG Y., ZOU M., CARR N., JU T.: A general and effi-
cient method for finding cycles in 3d curve networks. ACM Transactions
on Graphics (TOG) 32, 6 (2013), 1–10. 3, 4, 9, 14, 15

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.


