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1. Analysis of poorer performance for the CSIQ dataset

We further investigate the correlation of each metric across six dis-
tortion categories for the CSIQ dataset. We found that our approach
slightly improves or maintains high correlations for the majority of
the distortion categories; the only exception is the global contrast
decrements category, where we see a significant decrease in the cor-
relation across all metrics, resulting in an overall negative impact on
the correlation. We attribute this behavior to the fact that the global
contrast change results in strong brightness differences where our
masking model apparently can not generalize to this specific unseen
distortion category. Fig. 1 illustrates two sample images from this
category where our predicted mask for the E-MAE metric exhibits
less sensitivity to changes in brightness, particularly noticeable in
the sky regions.
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Figure 1: Visualizations of error maps for MAE and its enhanced
version (E-MAE) alongside the predicted masks for two sample
examples within the "global contrast decrements" category from the
CSIQ dataset.

2. Additional results for analyzing the visual mask

In addition to Fig. 6 in the main paper, in Fig. 2, we further inspect
the visual masks predicted by our approach across multiple metrics,
using an example of motion blur distortions from the PIPAL dataset.
As can be seen, the presence of blur is not uniform across the entire
image; it becomes particularly noticeable when the direction of the
motion blur is different from the pattern of the shirt (the right and
upper parts). Here, we observe similar characteristics of predicted
masks for MAE, PSNR, FLIP, and the first layer of VGG metrics,
as in Fig. 6. For SSIM, which already includes a divisive contrast
component akin to visual masking modeling, our predicted mask
assigns identity weights to regions where SSIM accurately predicts

errors and lowers weights in areas where SSIM exaggerates the
error.

3. Mask visualization for the ablation experiments

In this section, we aim to investigate how the quantitative measures
in ablation experiments are reflected in the predicted error maps. To
this end, we show the E-MAE error map within various experimental
setups (detailed in Sec. 4.3 of the main paper) for a Gaussian noise
distortion example from the TID dataset. Fig. 3 shows the error maps
when the metric is trained with only one distortion level per category.
We observe that our enhanced error maps have less visual similarity
compared to training across all five levels when it is trained using
the lowest and highest distortion levels, while it has the highest
similarity when trained with distortion level 3. This observation is
aligned with our correlation measurement in Fig. 9. Additionally,
Fig. 4 shows the error maps when E-MAE is trained with a subset
of images in the training set. Training with 20 reference images
appears insufficient in generating accurate visual masking, which is
aligned with our findings in Fig. 10, where a reduction in correlation
is observed with just 20 images. Conversely, training with 40 or 60
images closely approximates the results of training with the entire
dataset, similarly reflected in the error maps. Lastly, in Fig. 5, we
present the maps obtained through training with different subsets
of distortion categories from the training set. Here, we observe that
training exclusively with noise and blur can not produce precise
masking, and including more categories is necessary to produce
more localized masking. This is consistent with the correlation
measures reported in Tbl. 4 in the main paper.

Employing the enhanced VGG metric as a loss Following the
experiments in optimizing image restoration algorithms in main
paper, we trained the state-of-the-art image restoration method,
Restormer [ZAK∗22] for the image-denoising with MAE + VGG
and MAE + E-VGG in an identical conditions as stated in the main
paper. The results are reported in Tbl. 1. The trained method with
VGG shows a better LPIPS score as expected; however, we found
denoising with E-VGG looks visually better, particularly in smooth
low contrast regions (Fig. 6).
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Table 1: Evaluation of a blind Gaussian denoising task when employing VGG and the equal combination of VGG and E-VGG as loss functions.
We show the performance of the trained models on synthetic Gaussian noise created with four distinct noise levels (σ) averaged across five
benchmark datasets, consistent with the ones used in [ZAK∗22].

σ = 15 σ = 25 σ = 50 σ = 60

Loss PSNR↑ SSIM↑ LPIPS↓ E-MAE↓ PSNR↑ SSIM↑ LPIPS↓ E-MAE↓ PSNR↑ SSIM↑ LPIPS↓ E-MAE↓ PSNR↑ SSIM↑ LPIPS↓ E-MAE↓

MAE + VGG 34.16 0.936 0.033 0.0356 31.68 0.900 0.056 0.0882 28.51 0.826 0.111 0.3279 27.66 0.797 0.132 0.4451
MAE + E-VGG 34.34 0.939 0.049 0.0340 31.91 0.905 0.078 0.0837 28.78 0.835 0.139 0.3131 27.98 0.811 0.155 0.4216
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Figure 2: Visualisation of predicted mask across different metrics for a given pair of reference and distorted images with motion blur from the
PIPAL dataset. The SSIM values have been remapped to 1-SSIM, where lower values indicate less visible errors. In the case of the PSNR, we
show the error map for the measured MSE. For the VGG metric, we visualize the predicted mask for all layers, while the error map is shown
only for the first layer.
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Figure 3: Visualization of E-MAE error maps when it is trained with different levels of distortion.
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Figure 4: Visualization of E-MAE error maps when it is trained with a different number of training images.
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Figure 5: Visualization of E-MAE error maps when it is trained with different distortion categories.
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Denoised with MAE + E- VGG Noisy Reference Denoised with MAE + VGG Denoised with MAE + E- VGG

Figure 6: Visual results in the image denoising task when employing MAE+VGG and MAE+E-VGG as loss functions. Denoising with
MAE+VGG typically remains the noise in the dark region. On the other hand, MAE+E-VGG removes the noise successfully that matches
better with human perception.
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