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Figure 1: We introduce the symmetric ratio weight and visibility optimizations, which are designed to effectively reduce energy loss and
noise. We conduct a series of tests on the BISTRO [Luml17], and ZERO-DAY [Winl9] scenes, utilizing the RTXDI framework. Our approach
is compared with a baseline that employs the generalized pairwise MIS as proposed in Lin et al.’s work. Our method outperforms the baseline
in the BISTRO scene, achieving a Symmetric Mean Absolute Percentage Error (SMAPE) of 9.72% for the denoised result and 37.16% for the
noisy version, compared to the baseline’s 12.31% and 37.85%, respectively. Similarly, in the ZERO-DAY scene, our method have achieved
SMAPESs of 22.5% and 29.6% for the denoised and noisy results, while the baseline achieved 29.9% and 37.6%, respectively.

Abstract

In real-time rendering, optimizing the sampling of large-scale candidates is crucial. The spatiotemporal reservoir resampling
(ReSTIR) method provides an effective approach for handling large candidate samples, while the Generalized Resampled Im-
portance Sampling (GRIS) theory provides a general framework for resampling algorithms. However, we have observed that
when using the generalized multiple importance sampling (MIS) weight in previous work during spatiotemporal reuse, vari-
ances gradually amplify in the candidate domain when there are significant differences. To address this issue, we propose a
new MIS weight suitable for resampling that blends samples from different sampling domains, ensuring convergence of results
as the proportion of non-canonical samples increases. Additionally, we apply this weight to temporal resampling to reduce
noise caused by scene changes or jitter. Our method effectively reduces energy loss in the biased version of ReSTIR DI while
incurring no additional overhead, and it also suppresses artifacts caused by a high proportion of temporal samples. As a result,
our approach leads to lower variance in the sampling results.
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1. Introduction

Real-time rendering of complex scenes with millions of dy-
namic light sources and indirect illumination has been a long-
standing challenge in computer graphics. The advent of hardware-
accelerated ray tracing in modern GPUs has opened up new pos-
sibilities for achieving high-quality rendering at interactive frame
rates. However, even with these advancements, the limited num-
ber of rays that can be traced per pixel in real-time applications
still poses a significant challenge for path tracing, especially when
combined with state-of-the-art denoising algorithms.

Recently, spatiotemporal reservoir resampling (ReSTIR
[BWP*20, WKL*23]) has demonstrated promising results in
rendering scenes with millions of light sources using a minimal
number of shadow rays per pixel. ReSTIR achieves efficient
sampling by combining samples from different sampling domains.
Subsequently, ReSTIR has been extended to compute global
illumination, volume rendering and path tracing, among others.

Our method addresses the limitations of Multiple Importance
Sampling (MIS) weights within the framework of Generalized Re-
sampled Importance Sampling (GRIS). In scenarios where the radi-
ance distribution exhibits significant spatial variations, spatial reuse
may introduce additional variance. To mitigate this issue, we intro-
duce a novel symmetric ratio MIS weight, which effectively im-
proves the situation, particularly in scenes with significant spatial
variations due to factors such as geometry edges, normal maps, spa-
tially varying materials, and shadow edges.

Furthermore, we apply our MIS weight to temporal reuse, en-
hancing the sensitivity of the results to changes and efficiently shar-
ing information about important paths that contribute to lighting
across both spatial and temporal dimensions. Our improvements do
not incur additional overhead and achieve better results in multiple
scenarios compared to the original method.

Our contributions can be summarized as follows:

o We propose a novel MIS approach within the ReSTIR pipeline,
effectively resolving the issue caused by combining neighbor-
hood samples that exhibit significant differences in target radi-
ance distribution compared to the center sample.

e We explore the impact of different Multiple Importance Sam-
pling (MIS) weights on the final variance, offering valuable in-
sights into the selection of MIS weights for improved rendering
quality.

2. Related Work

The field of rendering algorithms has witnessed significant ad-
vancements, with techniques such as sampling importance resam-
pling (SIR) [Rub87] and multiple importance sampling (MIS)
[VGI5] being widely adopted. Talbot [TCEOS] proposed Resam-
pling Importance Sampling (RIS), which utilizing resampling to ac-
celerate the process of light transport rendering. Subsequently, Re-
STIR [BWP*20] introduced weighted reservoir sampling [Cha82]
to perform RIS in a streaming fashion. It also incorporates spa-
tiotemporal reuse to obtain additional candidates for resampling.

ReSTIR is an efficient Monte Carlo algorithm initially proposed
for computing direct illumination and later extended to compute

global illumination [OLK*21], volume rendering [LWY21], path
tracing [LKB*22], and differentiable rendering [CSN*23]. To re-
duce the variance of ReSTIR, there are currently three main ap-
proaches.

Engineering optimizations, such as adjusting the pipeline of
ReSTIR to achieve more efficient light computation [WP21]. An-
other optimization involves storing the reservoir in a hash grid
built entirely on the GPU, making it more cache-friendly during
reuse, as demonstrated by world-space spatiotemporal reservoir
reuse [Boi2l].

Enhancing the efficiency of sampling, particularly reducing
the discrepancy between the initial sampling distribution and the
radiance distribution, represents another avenue for optimization.
Grid-based reservoirs [BJW21] proposes a technique that involves
pre-sampling local lights and storing them in a uniform grid for
initial sampling. Additionally, traditional sampling techniques like
path guiding and precomputed PDFs [VKv*14,HEV*16, MGN17,
MMR*19] can be considered to optimize the initial sampling pro-
cess.

More effective blending of spatiotemporal samples. ReSTIR
[BWP*20] rejects neighborhoods with significant differences by
considering factors such as depth and normal thresholds, and com-
bines the neighborhoods using MIS weights similar to those in
[TCEO5]. Another approach is to estimate the differences in tar-
get PDFs between different reservoirs [Tok23] to reject neighbor-
hood candidates, but requires an additional round of resampling to
estimate the PDFs. Lin et al. [LKB*22] extended the RIS theory
and provided more effective pairwise MIS weights. Our method
focuses primarily on this aspect and introduces a novel symmet-
ric ratio MIS weight that is more suitable for some RIS scenarios,
without any additional time or space overhead.

Optimal MIS weight. Multiple Importance Sampling (MIS)
[VGI5] provides an estimator for combining Monte Carlo integrals,
robustly blending contributions from different sampling domains,
and has been extended to bidirectional path tracing [Vea98]. Nu-
merous works have focused on investigating how to choose more
appropriate MIS weights. For instance, [LPG13] optimized the al-
location of samples between BSDF and environment maps by esti-
mating variances. [SHSK18] proposed a balance heuristic estima-
tor. [KVG*19] theoretically analyzed the variance of optimal MIS
weights and established a connection between the new weighting
functions and control variate. [HGS23] extended the theory using a
control variate to address challenges in real-world rendering appli-
cations. Previous work primarily focused on general MIS optimiza-
tion, while our approach introduces MIS optimization specifically
tailored for RIS.

3. Background

We assume that readers already have a basic understanding of im-
portance sampling concepts, such as importance sampling, multi-
ple importance sampling, and resampling. In this section, we will
begin by introducing the ReSTIR algorithm [BWP*20, LKB*22,
WKL*23] and then discuss how Multiple Importance Sampling
(MIS) plays a role in enhancing the effectiveness of ReSTIR.
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3.1. ReSTIR

ReSTIR [BWP*20] is a spatiotemporal reservoir resampling
method, extending Resampled Importance Sampling (RIS) in
[TCEO5]. Sampling from a complex distribution of lights can be
effectively achieved by ReSTIR, that generates samples consistent
with the lighting distribution using a two-pass algorithm: gener-
ating samples for reservoirs, and streaming combined candidates
from spatiotemporal reservoirs by resampling.

To solve the lighting equation

fo= [ fiwax= [ Lp-G. )

where L. represents radiance, p represents the Bidirectional Scat-
tering Distribution Function (BSDF), and G represents the geomet-
ric term, we often employ Monte Carlo sampling. In this context,
resampled importance sampling plays a significant role.

Resampled Importance Sampling (RIS) generates candidates
x; from a source PDF p; (e.g. p; « L.) and resamples them with
a probability of w; proportional to the target function p (e.g. p
L. - p - G) to obtain the sample Y. Lin et al. proposed candidate
weight w; can be expressed as

an;
ox, i

where m; is the weight of Multiple Importance Sampling (MIS),
m; should satisfy Vx € Q, Y, m; (x) = 1, with M denoting the
count of distinct sampling strategies employed. In the next section,
we will provide a detailed explanation of m’s specific form. 7; is a
shift mapping from domain ; of x; to the integral domain Q. W;
is an unbiased contribution weight, W; = 1/p;(x;) when generating
samples from a tractable PDF p;. The integral can be approximated
unbiasedly using

wi =m; (T; (x;)) p(T; (x;)) W; - ; 2

/Q F () dx = E[f (Y)Wy] ~ £ (Y)W, 3)

where

1 M
Wy = —— Y w; 4
y ﬁ(YL-:Z]W )

is an unbiased contribution weight for estimating the reciprocal
PDF of the resampled sample. An unbiased contribution weight
means that for a random variable X € Q,

E[f(X)W]= f(x)dx ®)
supp(X)
for any integrable function f : Q — R, the integral is naturally lim-
ited to where p > 0, i.e., supp(X), where p represents the probabil-
ity distribution of the random variable X.

The ReSTIR algorithm generates initial k = 1,...,n samples
from a sequence of tractable source PDFs p; for every reservoir i,
and resamples using the unbiased contribution weight Wy (x;) =
1/pi (xi). Since Qi = Q;, Ty = T;, pix = pi- the resampling
weight for generating initial samples is given by wy (xix) = (1/M) -

(P (xix) / pi (xit))-

The core of ReSTIR is spatiotemporal reuse. Since the PDF of
reservoir samples is intractable, we use the unbiased contribution
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weight from Eq. (4) as the candidate weight in equation Eq. (2).
While reusing samples from the spatiotemporal reservoir, ReSTIR
effectively maintains the unbiased nature of the sampling results.

3.2. MIS Weights in Resampling

Even when using a target function that is consistent with the dis-
tribution of the function being integrated, i.e. p = f, the variance
remains the same as importance sampling with the same number of
samples. The resampling process itself does not reduce variance.

The effectiveness of resampling lies in the unbiased reuse of
spatiotemporal samples, which exponentially increases the effec-
tive number of samples. Therefore, the crucial factor that affects
the variance in resampling is how to combine samples from differ-
ent sampling domains. The simplest approach is to use a constant
weight, considering each sample equally important.

Constant MIS weight with 1/M is defined as

mi(y) = —. (6)

Although weights of 1/M are optimal in many instances (such as
when different candidates are independently and identically dis-
tributed), Lin et al. [LKB*22] pointed out that this is typically not
the case when the candidates are not identically distributed.

[TCEO5] suggested the inclusion of Multiple Importance Sam-
pling (MIS) weights during the resampling process. [LKB*22] ex-

tended this to GRIS and defined the symbol p.; to represent "p
from i".

A AT )|/ @), ity € T (supp(Xy),
P+i ()7) =
0, otherwise.
@)
Generalized balanced heuristic MIS weight is defined as
mi(y) = PO ®)

Z?‘il D j ()’)

They choose the balance heuristic MIS weight, which was initially
introduced by Talbot et al. [TCEO5] and later extended to neigh-
borhood combining in resampling by Bitterli et al. [BWP*20].
However, it is unfortunate that the computation complexity of this
weight is O(M?), making it unsuitable for ReSTIR when using a
streaming sampler. [BWP*20] proposed another multiple impor-
tance sampling method.

Constant MIS weight with contribution follows the same form
as balanced heuristic. Specifically, it first performs resampling us-
ing a constant weight, given by

Gy 1
= Y)izzlwh ©)

mi(Y)  p(
where ¢; is only related to the final selected sample Y from M re-
samplings. m; can be a constant function, such as 1/M. By evalu-
ating the weight only once for the selected sample, this approach
reduces the complexity to O(M).

To ensure more accurate weights for each sample, Lin et al.
[LKB*22] divided the samples into canonical samples and non-
canonical samples.
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Definition 1 (Canonical Sample) An input sample X; € Q; is
canonical if its domain is Q, it uses the identity shift map 7; (x) = x,
uses p; = p, and covers supp p (i.e., supp p C suppX;).

Let R denote the set of canonical samples, and |R| represent
the number of canonical samples in each resampling. Lin et al.
[LKB*22] introduced a pairwise MIS weight.

Generalized pairwise MIS is defined as

1 Py

m; (y) = M —[R| j%? [RIp()+(M—R)) peej ()’ ify €R,
o Pei(y) |

RIPO)+M—|R) pesi(y)’ FyéR

(10

Lin et al. [LKB*22] extended Talbot’s method to the pairwise
case. This approach can be seen as replacing Y j¢g P« j(y) with
(M — |R|)p—i(y) for non-canonical samples. This method reduces
the computational complexity of MIS weights from O(M?) to
O(M -|R|). Typically, there is only one canonical sample in a single
reuse, which can be seen as reducing the complexity to O(M). And
in temporal resampling, it is same as generalized Tablot weight,
because both M — |R| and |R| equals to 1. Additionally, in Lin et
al. [LKB*22], another "defensive" MIS weight is also proposed.

Generalized pairwise MIS (defensive case) is defined as

RS P i

mi(y) = M+M1§e|R‘15(y)+(M—|R|)ﬁ<_j((y)7 fyer,
RS Pei(y) i

M |RIp()+M—|R)pi(y)’ fy%(fl.)

This method heuristically reduces the weight of non-canonical
samples. Specifically, it multiplies the original weight of non-
canonical samples by a coefficient of (M — |R|)/M = 1—|R|/M.
This appropriately reduces the weight of non-canonical samples,
with the proportion of non-canonical samples decreasing as the
number of canonical samples increases.

3.3. Comparison of Different MIS Weights

In this section, we provide an intuitive explanation for the moti-
vation behind introducing a new MIS weight, and present conver-
gence analysis and variance analysis.

MIS is used to combine samples from different sampling prob-
ability functions. [VG95] suggested that it is possible to combine
samples from lighting L. and BSDF p sampling, both of which are
important components contributing to the lighting function. They
dominate in rough or smooth surfaces, respectively. This mixture
can be seen as combining samples with different strengths and
weaknesses (see Figure 2). However, the situation is different dur-
ing the resampling process. In the ReSTIR pipeline, we have a
sampling distribution that closely resembles the target function,
which is then combined with samples from neighboring regions.
However, for those neighbor samples whose radiance distribution
significantly differs from the original, we refer to them as "unre-
liable neighbors". We aim to assign lower weights to these unreli-
able neighbors when they are combined, rather than increasing their

Pdf 1| Pdf |
51 Pdf2 | Pdf2

T T T T T T T T T T T T

00 02 04 06 08 10 00 02 04 06 08 10
(a) (b)

Figure 2: Different sampling PDFs have distinct advantages in the
integration process in (a), and MIS yields results with lower vari-
ance reduction. However, in the ReSTIR pipeline, as the resampling
distribution converges to the target PDF; the distribution generated
by non-canonical reservoirs is always inferior to the canonical dis-
tribution. Using a balance heuristic mixture may increase the vari-
ance.

MIS weight as p increased. [Vea98, VG95] proposed the power
heuristic to address this situation.

Generalize power heuristic is defined as

(v)P
m; (y) = Npez O 5 (12)
by j=1DP«j )

However, the power heuristic alone still cannot effectively sup-
press the noise introduced by combining samples from different
domains. In cases where the neighborhood samples have signit-
icantly larger values, i.e., p;(y) > p(y), the weights m; (y) in
balanced heuristic MIS weight Eq. (9), power MIS (Equation 12),
and pairwise MIS weight (Equation 10) are approximately equal
to 1. To illustrate this, we used two normal distributions, p; and
P2, to simulate a reuse scenario, where p; = p represents the
canonical weight. We randomly generated samples x| and x; from
the distributions, and selected the samples with weights w; (x;) =
m; (x;) p(x;) /pi (xi). The resulting distribution is shown in Figure
3. It can be observed that using constant, balanced heuristic, or
power heuristic all lead to the final distribution being influenced
by p», with power heuristic being the most affected. In the follow-
ing sections, we propose our symmetric ratio MIS weight (shown
in Figure 3 the fourth column), which tends to ensure that the dis-
tribution after reuse closely resembles the distribution of the tar-
get function, without being significantly influenced by unreliable
neighborhood distributions.

4. Method
4.1. Symmetric Ratio Weight

We define the difference between two functions as D,
() gx)
D|f,g] (x :m1n< , , (13)
S0 =m0
where D[-, -] represents the difference between two functions, with
range of [0,1]. The larger the difference, the smaller the corre-
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Figure 3: bar chart represents probability distribution results after a single combining using different MIS weights with power

B = 10 for power heuristic and symmetric ratio MIS. The

function represents the canonical distribution, and the

function represents

the neighborhood distribution. The leftmost column shows the result using constant MIS, the second column shows the balance heuristic MIS,
the third column shows power heuristic MIS, and the rightmost column shows our proposed symmetric ratio MIS. It can be observed that
as the power increases, the distribution of the power weight py, deviates more from the original distribution. However, our symmetric ratio

weight produces results that are very close to the original distribution.

sponding symmetric ratio weight. We define the corresponding
MIS weight named symmetric ratio weight as follows:

m;i(y) = — . 14
Y DIp,pej ()P
Additionally, we extend this concept to the pairwise form:
1 1
— , ify€eR,
M= 18] L, R+ 04— R) Dlp P O)
m; (y) = R B
= iR yé¢R.
IRl + (M —[R|)D[p, p+il (¥)
(15)

Our symmetric ratio weight can be seen as determining the
weights of neighborhood samples based on the differences ob-
served in the canonical sample. This approach helps suppress the
occurrence probability of high-weight samples Y in the neigh-
borhood, even when they have low canonical weights. This phe-
nomenon often leads to artifacts in ReSTIR, like boiling.

Furthermore, as the exponent 3 increases, the power weight fails
to correctly reject low-weight samples that have a high-weight in
neighbor, which can result in convergence to results that deviate
significantly from the target distribution, as shown in Figure 3 (c).
However, with our symmetric ratio weight, even when reusing sam-
ples with significant differences, the probability py of the reused
samples remains similar to the original target PDF as Figure 3 (d).

We also propose a more defensive pairwise weight, which con-
verges under more relaxed conditions, called Asymmetric ratio
Weight:

DIp, peilP ()
IR+ (M — |R|) D[p, pej] (¥
DIp,pei] ()
M b

mi(y) =
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wheny ¢ R. And m; (y) = (1 =X j¢gm; (y)) / |R|, wheny € R. This
approach assigns higher weights to canonical samples, ensuring
that when the number of samples M and the number of canonical
samples |R| increase, the convergence condition in GRIS is relaxed.
We provide detailed explanations in the next subsection.

4.2. Variance Analysis

In this section, we analyze the variance of RIS and provide an ex-
planation for the rationale behind defining our symmetric ratio MIS
weight.

Assuming that each sample X; in the reservoir is reasonably dis-
tributed for integrating p;, i.e., IC;, s.t. p;W; < C;, where W, is the
unbiased contribution weight of x;, then w; has an upper bound:

G
i< =L
YRl
Lin et al. had proven that the balanced heuristic MIS Eq. (9), pair-
wise MIS Eq. (10), and pairwise defensive MIS Eq. (11) hold. Sim-

ilarly, our symmetric and asymmetric ratio weights also satisfy this
condition, as follows:

an

Theorem 1 (Convergence of Symmetric Ratio Weight) If there
exists C; such that p;W; < C;, the power B > 1, then the symmetric
ratio weight satisfies w; (y) < %.

Theorem 2 (Convergence of Asymmetric Ratio Weight) If there
exists C; such that p;W; < C;, the power § > 1, then the asymmetric
ratio weight satisfies w; (y) < %, when y ¢ R; w; (y) < %l’ when
YER.

For independent samples, if the condition w; < C;/|R| holds,

and there exists a common upper bound C, such that C; < C, then
Var[Z?il wi] = Zi‘i] Var[w;]| have

M M 2 2
C; M
Var i < L= 18
by applying Popoviciu’s inequality, We observe that for
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Var[Y'™, w;] to converge, it is necessary for M/|R|> — 0, which
implies that |R| should grow faster than v/M. However, our asym-
metric ratio weight only requires |R| — oo for convergence.

Theorem 3 (Variance of Asymmetric ratio Weight) For asym-
metric ratio weight, Var[Y¥, w;] converges to 0, when |R| — oc.

In other words, when using the asymmetric ratio weight, we do
not need to ensure that |R| grows faster than v/M in order to guar-
antee convergence of the variance.

The proofs of Theorems 1-3 will be provided in Appendix A.

4.3. Optimal Visibility Sampling

Employing the symmetric and asymmetric ratio weight tends to
make the probability distribution py after reuse more akin to the
canonical PDF. We have also faced an additional problem that in-
troduces substantial noise and deviation from the canonical distri-
bution when implementing ReSTIR [BWP*20, OLK*21] visibility
noise.

In practical applications of RIS, to reduce the cost of visibility
tests, [BWP*20, OLK*21] dis not perform visibility tests for every
resampling. Typically, they use unshadowed lighting p = L. -p-G
as the target function. During the initial sampling, ray-tracing is
performed only after M resampling iterations, and the weights W
of invisible candidates are set to 0. The same operation is performed
after spatial reuse.

B
R A

et i AR TR0

bz

Figure 4: Comparison of results with and without visibility opti-
mization. The left image shows the overall comparison, while the
right image provides a detailed view. The result with visibility op-
timization exhibits smoother shadows, while the result without vis-
ibility optimization shows significant black noise with zero lumi-
nance.

In fact, setting the weights W of invisible candidates to O can be
seen as using shadowed lighting p = L. -p- G-V as the target func-
tion and combining the candidates into an empty reservoir. Since
we assume that samples from the canonical reservoir have already
passed the visibility test, we perform the visibility test earlier by
first resampling the spatial samples after spatial reuse, then trac-
ing visibility rays for the resampled results, and finally combining

the neighbor candidates with the canonical candidates, as shown in
Algorithm 1.

Like the biased version of ReSTIR DI, our method is not an unbi-
ased algorithm. Maintaining unbiasedness during spatial reuse re-
quires an additional M — 1 ray tracing operations. However, over-
all, our improvements yield a lower bias compared to the original
method without incurring additional overhead. Comparative results
will be presented in the following section.

Data: Reservoirs after temporal resue
Result: Spatial reuse result

Function Spatial Reuse (centerReservoir):
Reservoir r;
for i< 1toMdo
Reservoir s;
s < loadNeighborReservoir(canonicalReservoir);
r.combine(s);
end
if TraceVisibility(surface, r) :
| rW<«0;
r.combine(canonicalReservoir);
return r;

Algorithm 1: Spatial reuse with optimal visibility sampling

5. Result and Discussion

We implement our method on ReSTIR DI [BWP*20], ReSTIR
GI [OLK*21] and ReSTIR PT [LKB™*22] for evaluation. We inte-
grate our method into the RTXDI framework provided by NVIDIA
(https://github.com/NVIDIAGameWorks/RTXDI) and compare
the results with RTXDI biased version. Since our approach does
not introduce additional performance overhead, the comparison of
results primarily focuses on the error analysis, without including
the performance analysis.

We recommend using asymmetric ratio weight when there is a
significant variance or bias introduced during reuse, such as with
higher temporal samples. However, in most cases, we recommend
using the symmetric ratio weight. In our tests, we find that using
symmetric ratio weight and asymmetric ratio weight yield similar
results in spatial reuse. Therefore, we maintain consistency by us-
ing the same MIS weight for both spatial and temporal reuse in our
tests. Additionally, when using the symmetric ratio weight or asym-
metric ratio weight, we find that as B increases to 3, the variance
decreases for spatial reuse. However, as B continues to increase,
the weights of non-canonical samples gradually decrease, result-
ing in an increase in variance at sampling points where there is a
significant difference from the canonical distribution in most neigh-
borhoods. So we choose appropriate parameters of 3 = 3 for spatial
reuse and B = 1 for temporal reuse, considering that temporal sam-
ples have a higher weight M, such as M = 20. For the generalized
pairwise weight, we select B = 1 to align with the original GRIS,
using a balance MIS instead of a power MIS.

We present the results of our method in different views of multi-
ple scenes in Figure 5, comparing the outcomes of ReSTIR DI and

© 2024 Eurographics - The European Association
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Symmetric Asymmetric
Symmetric Ratio MIS Ratio MIS
@ Reference Constant MIS Pairwise MIS Ratio MIS +0VS +0VS

SMAPE: 449% SMAPE: 41.2% SMAPE: 33.7% SMAPE: 32.8% SMAPE: 34.0%

SMAPE: 44.6% SMAPE: 39.9% SMAPE: 35.0% SMAPE: 32.6% SMAPE: 41.5%

SMAPE: 44.8% SMAPE: 40.7% SMAPE: 36.1% SMAPE: 34.5% SMAPE: 36.5%

it

e SR o |
SMAPE: 59.2% SMAPE: 58.9% SMAPE:55.1% SMAPE: 45.7%  SMAPE: 49.7%

Figure 5: Comparison of the results with different MIS weight. (a), (b) and (c) shows the results of ReSTIR DI. (d) shows the result with only
global illumination. "OVS" means with the optimal visibility samplinig.

ReSTIR GI, with parameter temporal samples M = 20, and one less blurring at shadow boundaries. Figure 5 (b), (c), and (d) high-
spatial reuse sample. Additionally, we evaluate our method on the light the effectiveness of our optimal visibility sampling (OVS) in
BISTRO scene, which consists of 20,638 emissive triangles, and the handling high-frequency noise at shadow edges. Near the red cur-
ZERO-DAY scene, which contains 10,973 dynamic emissive trian- tains in Figure 5 (b), our method exhibits lower variance, while

gles. In Figure 5 (a), we demonstrate that our approach produces

© 2024 Eurographics - The European Association
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Figure 6: We evaluate the convergence rate of the SMAPE using different MIS weights as the number of accumulated frames increased. Our
proposed method consistently outperformed the original constant weight approach in terms of convergence. The figures above illustrate the

SMAPE in the BISTRO(day), BISTRO(night), and ZERO-DAY scenes.

Figure 5 (c) showcases reduced energy loss compared to ReSTIR
DI biased version.

Figure 6 demonstrates the convergence of our method as the
number of accumulated frames increases. It is worth noting that our
method incurs no additional overhead, making this comparison fair.
Our approach achieves significantly faster convergence and lower
accumulated bias compared to the generalized pairwise MIS and
constant MIS methods.

We also test our method within the ReSTIR PT framework. In the
hybrid mode, the results of our symmetric ratio MIS were not sig-
nificantly different from those obtained with the original pairwise
MIS approach. However, in the reconnection mode, by increasing
the number of spatial reuse iterations, the differences became more
pronounced. Specifically, we employ 5 spatial rounds with 6 neigh-
bor candidates each, as shown in Figure 7. With a higher number
of spatial reusing iterations, the overall variance is noticeably re-
duced. Given that the contribution from neighborhood candidates
became more substantial, using the original method could lead to
large-area artifacts caused by infrequently occurring neighborhood
samples, such as in corners or on metallic teapots. Our method,
on the other hand, suppresses unreasonable neighborhood reuse,
thereby avoiding such artifacts.

Candidates from the temporal domain are not always canonical.
Due to changes in the scene or jitter, the sample space of the pre-
vious frame can differ significantly from the current frame. There-
fore, it is necessary to use our symmetric ratio weight approach to
handle such cases. Our method also reduces the variance caused by
temporal differences, shown in Figure 8.

Jitter is commonly used for anti-aliasing. Due to jitter, the sur-
face within a pixel can vary between different surfaces in adjacent
frames. Even if the scene remains unchanged, temporal samples
cannot be considered as canonical samples when jitter is enabled.
In fact, due to the significant weight of the temporal component, jit-
ter introduces more variance than anticipated, especially in scenes
with large differences in local lighting functions, resulting in addi-
tional noise.

Figure 9 shows a comparison of the results of a smooth metal
sphere under ambient lighting, using 4k environment maps of
Derelict Overpass and Adamas Place Bridge. The top row uti-
lizes the default parameters of RTXDI, with temporal samples of
M = 20, and spatial reuse with one neighbor, and the boiling fil-
ter turned off. The bottom row uses a higher temporal sample ra-
tio, with temporal samples of M = 100, while keeping the other
parameters the same as in the first row. Since the initial sampling
includes BRDF sampling, an initial sample of the canonical sam-
ple already approximates the target function distribution. However,
samples from neighbors may have significant differences in dis-
tribution compared to the canonical samples, which increase vari-
ance when spatial reuse is applied. Additionally, due to the influ-
ence of jitter, the surface information of the current frame differs
from the previous frame, and a high temporal sample ratio, such
as in (a2), also increase variance. The original pairwise MIS can-
not control the proportion of inappropriate non-canonical samples,
whereas our method avoids this issue. In both temporal reuse and
spatial reuse in (d1) and (d2), we utilize the symmetric ratio MIS,
which effectively controls the high variance caused by significant
differences in non-canonical samples.

Boiling is often considered to occur when low-probability sam-
ples are encountered. In methods like pairwise MIS in Eq. (10), the
convergence of the resampling distribution py depends on the ra-
tio of the number of canonical samples |R| to the total number of
samples M. This means that as the temporal samples M increases,
in regions with significant differences in the neighborhood lighting
function, especially when there is a large difference in weights be-
tween samples with low probability of being sampled, a high-value
weight quickly propagate to the neighborhood, resulting in boiling,
as shown in Figure 10. The phenomenon of boiling is particularly
pronounced when using a larger number of temporal samples. In
ReSTIR, the boiling filter is heuristically used to limit samples with
low sampling probabilities. However, this method also introduce
bias by sacrificing energy.

For global illumination, similar situations also arise in the prop-
agation of Jacobians and the reuse of smoother surfaces. For low-
probability samples with larger Jacobians, significant variance can

© 2024 Eurographics - The European Association
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Pairwise MIS

Reference

Const MIS Symmetric ratio MIS

Figure 7: A comparison of results obtained by applying different MIS within the ReSTIR PT framework [LKB*22]. The right side of the
figure highlights the details of the metallic teapot and the corner of the wall.

Reference ReSTIR + BPW Ours

SMAPE: 20.0% SMAPE: 18.4%

SMAPE: 32.4% SMAPE: 29.2%

Figure 8: Comparison of our symmetric ratio weight and general-
ized pairwise MIS in a dynamic lighting scene. Our method exhibits
lower variance near the just illuminated blue light source and also
performs better for highlights near the red sunshade.

be introduced, especially near wall corners where Jacobians may
exhibit substantial differences. In ReSTIR GI [OLK*21], the upper
bound of the Jacobian is limited to avoid excessive variance. This
approach is similar to the boiling filter, as it enforces a maximum
weight for the samples, but comes at the cost of energy loss. In our
comparative experiments, we refrain from using this trick to ensure
unbiased results, as shown in Figure 11.

Bias. In real-time rendering, we do not trace additional rays to
check the visibility of the current selection sample in each neigh-
borhood, resulting in slightly darker results compared to the ground
truth. By comparing the depth and normal values and setting a
threshold for their differences, ReSTIR [BWP*20] heuristically re-
jects neighborhoods with significant discrepancies to reduce bias
and variance.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

[LKB*22] introduced the defensive pairwise MIS Eq. (11)
heuristic to limit the weights of non-canonical samples from un-
reliable neighbors, while our method automatically controls the
weights from unreliable neighborhoods.

We test different MIS methods in the BISTRO scene, as shown
in Figure 12. Subfigure (b) represents ReSTIR with spatial reuse
using a constant MIS of 1/M. Subfigure (c) shows the pairwise
MIS as defined in Eq. (10). Subfigure (d) demonstrates the use of
our symmetric ratio pairwise MIS with a power of B = 1. Subfig-
ure (e) represents the asymmetric ratio pairwise MIS used in both
spatiotemporal reuse. We observe that our symmetric ratio MIS sig-
nificantly reduces bias, especially in the case of asymmetric ratio
pairwise MIS.

6. Conclusions and Future Work

We believe that our method will effectively avoid the influence of
unreliable neighborhoods in regions with low initial sampling vari-
ance and demonstrate improved performance as the overall sam-
pling efficiency increases. Our approach automatically balances the
weights introduced by reusing candidates, preventing the introduc-
tion of excessive noise and bias that hinder convergence.

One of the limitations is that when there is a significant differ-
ence between the initial resample result and the target distribution,
our conservative reuse of neighborhoods may result in a less sig-
nificant reduction in variance compared to using uniform weights.
To address this issue, we increase the number of temporal samples
used in resampling, which has proven effective as our method does
not exhibit degradation, such as boiling and GI artifacts shown in
the figures above.

In future work, we plan to dynamically select MIS weights and
corresponding powers based on surface properties such as rough-
ness and metallic parameters. Additionally, since our method is ap-
plicable to any form of resampling, we extend its application to
other resampling combining techniques. Another potential avenue
of research is to utilize our symmetric ratio function, which is used
to assess neighborhood differences, in denoising algorithms to ef-
fectively control the introduced bias while removing noise.
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ReSTIR DI w.o. Jitter ReSTIR DI with Jitter ReSTIR DI with Jitter ReSTIR DI with Jitter
+ Constant MIS + Constant MIS + Pairwise MIS + Symmetric ratio MIS Reference

(a2) (b2) (c2) (d2) (e2)

Figure 9: Comparison of results for a smooth metal sphere. The upper row shows the temporal samples affected by jitter, with temporal
samples of M = 20, while the lower row uses temporal samples of M = 100. With a high M, our symmetric ratio weight ensures a smaller
variance in the final results by preserving the distribution of the combined samples close to the target distribution.

Pairwise MIS Symmetric ratio MIS ~ Asymmetric ratio MIS
SMAPE: 89.7% SMAPE: 75.3% SMAPE: 36.7%

Pairwise MIS Symmetric ratio MIS Asymmetric ratio MIS j#®

Figure 10: In the BISTRO scene, when using a large number of temporal samples M = 1000 and disabling the boiling filter. Bitterli et
al. [BWP*20] introduce several artifacts like "boiling" on the ground and walls. This results in some regions appearing overly bright due to
spatial reuse, while the overall image appears darker. In the "BPW" approach, we utilize the ray-traced bias correction mode for temporal
reuse and pairwise MIS for spatial reuse. In both "DPW" and "ADPW", we employ symmetric ratio pairwise weight or asymmetric ratio
pairwise weight for temporal and spatial reuse, respectively. Our method effectively suppress the boiling effect and reduce bias, particularly
in ADPW.
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Ours + Denoiser

ReSTIR -Gl + Denoiser

110of 13

Error (%)
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Figure 11: The images presented depict the occurrence of cone-shaped artifacts at the wall corners in the ZERO-DAY scene when using
M = 300 temporal samples and disabling the boiling filter. These artifacts are overly bright and are present in the original ReSTIR GI.
However, our proposed asymmetric ratio weight effectively suppresses the occurrence of such artifacts.

Constant MIS with
Reference
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Figure 12: The images presented depict the comparison of scene convergence when using different MIS weights for accumulating multiple
frames in a static scene. The following visualization shows the error graph. In spatial reuse, bias is introduced due to the lack of testing the
visibility of selected samples in each neighborhood. However, our proposed symmetric ratio weight, especially when utilizing the asymmetric
ratio weight, significantly reduces this bias compared to the original method.

BISTRO scene, and M. Winkelmann and K. Anderson for their
contribution to the ZERO-DAY scene. This work was mainly
done by Xingyue Pan during her internship at Lightspeed Stu-
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Appendix A: Proofs of Theorems

Theorem 1 (Convergence of Symmetric Ratio Weight). If there ex-
ists C; such that p;W; < C;, the power B > 1, then the symmetric
ratio weight satisfies w; < |Q

R|"
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Theorem 2 (Convergence of Asymmetric Ratio Weight). If there
exists C; such that p;W; < C;, the power > 1, then the asymmetric
ratio weight satisfies w;(y) < 1%‘ when y ¢ R, wi(y) < \RI’ when
YER

Proof

We have proven that w;(y) < C;/|R|, when y € R, and w;(y) <
Ci/M,wheny ¢ Rand pi(y) > p(y).

It remains to show that w;(y) < C;/M, when 'y ¢ R and p;(y) <
Pp(y). In this case,
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Theorem 3 (Variance of Asymmetric Ratio Weight). For inde-
pendent samples, the variance Var[Z?il w;] using asymmetric ratio
weight convergence to 0, when |R| — co.

Proof
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It is evident that the variance converges to 0 as |R| — co.
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