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We expand on the details behind sampling random rigid transfor-
mations in Sec. 1, and we provide details of training the modified
prior work of [WSS18] in Sec. 2.

1. Sampling Random Rigid Transformations

The Algorithm 1 in the main paper describes the process of gener-
ating the misaligned pairs of face meshes to train our method. We
introduced the function G(εR,εT ) : R×R→ R4×4 which, given
two scalars εR,εT , generates a random rigid transformation

Sε =

[
R t

0> 1

]
,

where R ∈ R3×3 is a rotation matrix and t ∈ R3 is a translation
vector.

We generate the rotation matrix R by sampling an angle α from a
normal distribution parameterized by εR and a random axis a ∈ R3

as follows:

α∼N (0,εR)

x,y,z∼ U(−1,1)

a = [x,y,z]>

Sε =A(α,a),

where A converts an angle and an axis to the rotation matrix. Fi-
nally, we generate the translation vector t as follows:

x,y,z∼N (0,εT )

t = [x,y,z]>.

2. Learned Confidence Map Implementation

As discussed in Section 4.3. of the main paper, we re-implemented
the existing work of [WSS18], referred to as CMAP, but found the
original formulation to produces unsatisfactory results. This section
details the modification and training procedure we applied to boost
its performance.

At its core, CMAP performs a Procrustes alignment. How-
ever, the strength of the methods come from the learned facial
mask, which determines the facial regions to be considered for
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Figure 1: Distribution of the facial mask weights learned by the
various versions of CMAP.
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Figure 2: Facial masks learned by the various versions of CMAP.

the rigid alignment. Let Us,Ut ∈ R4×N be the source and tar-
get vertices in homogeneous coordinates, w ∈ [0,1]N per-vertex
weights, P(Us,Ut) Procrustes alignment producing the source ver-
tices aligned to the target, and � Hadamard product. We can com-
pute weighted source and target vertices as

Ũs =W �Us

Ũt =W �Ut

W = [1,1,1,1]>w>.

Then, CMAP finds the optimal weights w∗ by solving the following
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Table 1: Quantitative comparison of the CMAP variants.

region md ↓ mx ↓ mAUC ↑

Original 2.37±1.51 9.50 54.94
Contrast 1.72±1.05 6.21 65.57
Contrast&Consistent 1.51±1.00 5.43 69.66

minimization problem:

w∗ = argmin
w

αdataLdata +αregLreg

Ldata = ‖P(Ũs,Ũt)−Ũt‖2
F

Lreg = max
(

0,ρN−‖w‖2
)
,

where αdata,αreg are loss term weights, and ρ is a hyperparameter
set by the authors to 0.4.

We refer to this energy formulation as Original, and we found
that optimizing this problem leads to a very narrow distribution of
weights which do not clearly prefer some facial areas from others,
as can be seen in Fig. 1 and Fig. 2. This further leads to suboptimal
results, as shown in Tab. 1.

To encourage higher contrast in the learned weights, we add an
additional energy term

Lσ =−σ(w),

where σ computes standard deviation over a vector of values. This
variant, which we refer to as Contrast, is forced to make a clear de-
cision about which facial areas are relevant for the rigid alignment,
as seen in Fig. 1 and Fig. 2. It is evident that the method tends to
discard the jaw area, which is typically the least stable part across
an expression set. While the results improve, as seen in Tab. 1, the
mask appears noisy which harms the performance.

Therefore, we add an additional energy term encouraging local
spatial consistency of the weights, defined as

LN =
1
N

N

∑
i=1

σ(Nk(wi)),

where Nk(wi) finds the weights of k nearest neighbors of vertex Ui.
Finally, we find the best weights as

w∗ = argmin
w

αdataLdata +αregLreg +ασLσ +αNLN.

We performed grid search over the loss term weights and number of
neighbors k on the validation set and eventually set them to αdata =
100,αreg = 0.01,ασ = 100,αN = 100,k = 10.

The final variant is referred to as Contrast&Consistent. As can
be seen in Fig. 1, the distribution of the weights across the surface
is not as extreme as in the case of Contrast, but it is still clearly bi-
modal and it discards the lower part of the face as shown in Fig. 2.
This variant yields the best performance, as shown in Tab. 1 and
thus we use it for all experiments in the main paper.
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