Estimating Cloth Simulation Parameters From Tag Information and Cusick Drape Test Supplementary Material

Eunjung Ju¹ Kwang-yun Kim¹ Sungjin Yoon¹ Eungjune Shim¹ Gyoo-Chul Kang¹ Phil Sik Chang¹ Myung Geol Choi²

> ¹CLO Virtual Fashion Inc., South Korea ²The Catholic University of Korea, South Korea

1. Fabric Dataset

Category	Sub Category	Type Name	Quantity	Category	Sub Category	Type Name	Quantity
	Dobby	Dobby	236		Double	Double knit / Interlock	211
	Double weave	Double weave	69			Neoprene / Scuba	29
	Eyelet	Eyelet	58			Pointelle	13
	Jacquard	Clip jacquard	152			Ponte	69
		Jacquard / Brocade	213			Quilted knit	8
	Pile	Boucle	19			Rib	131
		Corduroy	135			Waffle	24
		Velvet / Velveteen	27		Jacquard	Dobby mesh	4
	Plain	Canvas	26			Jacquard knit	264
		Challis	115	Cut & Sew knit	Pile	Fleece	54
		Chambray / Oxford	66			French terry	60
		Chiffon	114			Loop terry	46
		Crepe / CDC	241			Polar fleece	30
		Dewspo	102			Sherpa	27
		Flannel	167			Velour	33
		Gauze / Double gauze	75		Single	ITY / Matte jersey	2
Woven		Georgette	45			Jersey	298
		Memory	41		Texture	Crepe knit	20
		Organza	42			Flatback rib	21
		Ottoman	2			Low gauge knit	11
		Plaid	52			Pique	46
		Plain	178		Warp knit	Crochet	90
		Poplin	58			Lace	155
		Taffeta	40			Mesh / Tulle	200
		Voile	45			Tricot	28
	Ripstop	Ripstop	37			Velvet	60
	Satin	Satin	103	Animal	Vegan fur	Vegan fur	43
	Seersucker	Seersucker	26		Vegan leather	Vegan leather	111
	TRS	TRS	53	anematives	Vegan suede	Vegan suede	35
	Twill	Denim	108	Non-fabric	PVC	PVC	63
		Melton / Boiled	57		Tyvek	Tyvek	16
		Tweed	104	Total		5145	
		Twill	137				

Table 1: Fabric types and the number of fabrics in each type in 5K–DATA

 \otimes 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

2 of 7

Fiber	Quantity	Fiber	Quantity
Acetate	14	Nylon	699
Acrylic	299	Organic cotton	2
Alpaca	1	PE	31
Aluminium	3	PTT	1
Angora	11	PVC	23
Bamboo viscose	16	Pima cotton	5
Camel	1	Polyester	3069
Cashmere	5	Ramie	3
Cation	3	Recycled nylon	8
Cork	2	Recycled polyester	34
Cotton	1807	Silk	60
Cupro	7	Spandex / Elastane	1248
EVA	3	Supima cotton	7
Jute	2	TENCEL TM	75
Linen	163	TPU	14
Lyocell	64	Triacetate	2
Metallic	129	Viscose rayon	714
Modal	32	Wool	320
Mohair	2		

Table 2: Fiber types and the number of fabrics containing each fiber in 5K–DATA

We acquired data for about 5000 real fabrics (5K–DATA), which are available for purchase by anyone, from [Swa22]. The data includes tag information for each fabric and simulation parameter data optimized by experts for each fabric. The fabrics are classified into 64 fabric types, and the total number of fiber types included in all fabrics is 37. Table 1 shows the number of fabrics in each type, classified into three levels of hierarchy according to the system commonly used in the fabric industry. Table 2 lists the types of fibers and the number of fabrics containing each fiber in 5K– DATA. It can be seen that the data includes a variety of fabrics with different characteristics.

2. Simulation

2.1. Stretching and Shearing Parameters

In Baraff-Witkin cloth simulation, we can construct a mapping between the weft and warp coordinates (u, v) of each point on the cloth and its 3D position $\mathbf{w}(u, v) : \mathbb{R}^2 \to \mathbb{R}^3$. The derivative of this mapping $F = [\mathbf{w}_u \ \mathbf{w}_v]$ is constant over each triangle primitive in the discretized cloth mesh, and is used to calculate various energies and well as its gradients / hessians.

To calculate the stiffness energy for each triangle, our simulation employs an energy term for each each weft and warp direction:

$$E_{i} = \frac{1}{2}k_{i}A(l_{i} - \bar{l}_{i})^{2}$$
(1)

where $i = \{u, v\}, k_i$ is the weft and warp stiffness, respectively, A is the area of the triangle, $l_i = ||\mathbf{w}_i||$ denotes the stretch ratio in the weft/warp direction, and $\overline{l_i}$ is the rest length ratio. The distinction between warp and weft stiffness allows us to create various kinds of anisotropic cloth materials.

Since the cloth also needs to resist against shearing, we add an additional shearing stretch energy term as described in [CK03],

which acts on the bias direction (the diagonal vector between warp and weft) and its orthogonal direction. We create a new set of coordinates (\tilde{u}, \tilde{v}) which uses the diagonal directions as its basis, and calculate the shearing energy terms based on the newly constructed basis $\mathbf{w}_{RS} = (\mathbf{w}_u + \mathbf{w}_v)/\sqrt{2}$ and $\mathbf{w}_{LS} = (\mathbf{w}_u - \mathbf{w}_v)/\sqrt{2}$:

$$E_{h} = \frac{1}{2}k_{h}A(||\mathbf{w}_{RS}|| - \bar{l}_{h})^{2} + \frac{1}{2}k_{h}A(||\mathbf{w}_{LS}|| - \bar{l}_{h})^{2}$$
(2)

2.2. Bending Parameters

To express the buckling properties of cloth materials, we also define a bending energy term calculated for each bending wing (comprised of two adjacent triangles, show in Fig. 1 below). Denoting the angle between the two triangles as θ (and its rest angle θ_0 , usually set to π). We can define a quadratic angle-based bending energy:

Figure 1: Diagram of a bending wing used for our cloth model.

$$E_b = k_b \left(\frac{e}{L_a} + \frac{e}{L_b}\right) (\theta - \theta_0)^2 \tag{3}$$

Since this energy term cannot describe any anisotropic bending behavior (where the cloth experiences a higher restoring force when folded in a different direction), we vary k_b depending on the direction of each bending wing. To achieve this, we define three stiffness parameters for the warp, weft, and bias direction (k_{bu} , k_{bv} , k_{bh}), and interpolate between the three values depending on the angle of bending direction in the (u, v) space ϕ :

$$I(\phi, a_u, a_v, a_h) = \begin{cases} (1 - \frac{4\phi}{\pi})a_u + \frac{4\phi}{\pi}a_h & (\phi < \frac{\pi}{4})\\ (\frac{4\phi}{\pi} - 1)a_v + (2 - \frac{4\phi}{\pi})a_h & (\phi > \frac{\pi}{4}) \end{cases}$$
(4)

$$k_b = I(\phi, k_{bu}, k_{bv}, k_{bh}) \tag{5}$$

We observed the bending wing stiffness also needs to change depending on the angle θ in order to simulate a wider range of cloth. Therefore, we modelled the bending stiffness to be a piecewise constant function of θ : the value is scaled by s_b when the angle displacement is above a threshold T_b :

$$k_b'(\theta, \phi) = \begin{cases} k_b^0(\phi) & (|\sin(\frac{\theta}{2}) - \sin(\frac{\theta_0}{2})| < T_b(t_b)) \\ k_b^1(\phi) \left(= s_b k_b^0(\phi)\right) & (|\sin(\frac{\theta}{2}) - \sin(\frac{\theta_0}{2})| \ge T_b(t_b)) \end{cases}$$
(6)

© 2024 The Authors. Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd. The angle threshold $T_b(t_b)$ can be controlled by a user-tweakable variable t_b , and its function is defined as:

$$T_b(t_b) = \text{clamp}(1 - \frac{L_{avg}}{2R_b(t_b)}, 0, 1)$$
(7)

$$L_{avg} = \frac{L_a + L_b}{2} \tag{8}$$

$$R_{b}(t_{b}) = \begin{cases} 0.01 & (t_{b} \leq 0) \\ 0.01 \cdot (1 - \frac{t_{b}}{0.1}) + 1 \cdot \frac{t_{b}}{0.1} & (0 < t_{b} \leq 0.1) \\ 1 \cdot (1 - \frac{t_{b} - 0.1}{0.8}) + 100 \cdot \frac{t_{b} - 0.1}{0.8} & (0.1 < t_{b} \leq 0.9) \\ 100 \cdot (1 - \frac{t_{b} - 0.9}{0.09}) + 10000 \cdot \frac{t_{b} - 0.9}{0.09} & (0.9 < t_{b} \leq 0.99) \\ 10000 & (0.99 < t_{b} \leq 1) \end{cases}$$

$$(9)$$

To model anisotropic behavior for the threshold and scaling values, t_b and s_b are interpolated from t_{bi} and s_{bi} 's depending on the angle of bending direction ϕ , similar to Eq. 11:

$$t_b = I(\phi, t_{bu}, t_{bv}, t_{bh}) \tag{10}$$

$$s_b = I(\phi, s_{bu}, s_{bv}, s_{bh}) \tag{11}$$

In our experiments, t_b is fixed to 0.3.

- 3. Comparison between Actual and Simulated Garments
- 3.1. Cusick's Drape Test

	Category	Sub Category	Туре	Composition	Density (gsm)
Α	Animal alternatives	Vegan leather	Vegan leather	Spandex / Elastane (100%)	340
В	Cut & Sew knit	Double	Ponte	Polyester (68%), Spandex / Elastane (2%), Viscose rayon (30%)	276
С	Woven	Plain	Crepe / CDC	Polyester (100%)	84
D	Woven	Twill	Twill	Linen (29%), Polyester (68%), Spandex / Elastane (3%)	168
Е	Woven	Plain	Organza	Polyester (100%)	24
F	Animal alternatives	Vegan leather	Vegan leather	Viscose rayon (100%)	604
G	Cut & Sew knit	Warp knit	Mesh / Tulle	Metallic (10%), Viscose rayon (90%)	120
Н	Cut & Sew knit	Single	Jersey	Polyester (88%), Spandex / Elastane (12%)	197
Ι	Woven	Plain	Plain	Cotton (63%), Nylon (31%), Spandex / Elastane (6%)	197
J	Cut & Sew knit	Warp knit	Lace	Metallic (5%), Polyester (90%), Spandex / Elastane (5%)	87
K	Woven	Plain	Challis	Modal (20%), Polyester (80%)	124
L	Woven	Plain	Plaid	Linen (100%)	140
Μ	Cut & Sew knit	Double	Double knit / Interlock	Metallic (20%), Viscose rayon (80%)	180
N	Cut & Sew knit	Single	Jersey	Nylon (50%), Polyester (50%)	64
0	Woven	Plain	Plain	Polyester (85%), Spandex / Elastane (15%)	123

Figure 2: Cusick's drape test examples. (Left) Actual garments. (Right) Simulated results by estimated parameters. (Table) The tag information of each fabric.

3.2. Dress

	Category	Sub Category	Туре	Composition	Density (gsm)
Α	Woven	Plain	Chiffon	Silk (88%), Spandex / Elastane (11%)	55
B	Woven	Plain	Organza	Polyester (99%)	56
C	Cut & Sew knit	Double	Neoprene / Scuba	Polyester (91%), Spandex / Elastane (8%)	468
D	Cut & Sew knit	Single	Jersey	Cotton (59%), Modal (40%)	104
E	Woven	Plain	Dewspo	Recycled polyester (99%)	52

Figure 3: Dress examples. (Left) Actual garments. (Right) Simulated results by estimated parameters. (Table) The tag information of each fabric.

3.3. Flared Skirt

Figure 4: Flared skirt examples. (Left) Actual garments. (Right) Simulated results by estimated parameters. The tag information of each fabric is the same as in Fig. 9 in the main paper.

References

[CK03] CHOI, KWANG-JIN and KO, HYEONG-SEOK. "Extending the Immediate Buckling Model to Triangular Meshes for Simulating Complex Clothes". *Eurographics 2003 - Short Presentations*. Eurographics Association, 2003. DOI: 10.2312/egs.20031062 2.

[Swa22] SWATCHON INC. VMOD 3D Library. https://www.vmod.xyz/. 2022 2.