
EUROGRAPHICS 2024 / A. Bermano and E. Kalogerakis
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 43 (2024), Number 2

Appendix: The Impulse Particle-In-Cell Method

Sergio Sancho1,2, Jingwei Tang2, Christopher Batty3, Vinicius C. Azevedo2

1ETH Zürich, Switzerland 2DisneyResearch|Studios, Switzerland 3University of Waterloo, Canada

1. Derivation of the Impulse Equation

This section provides a Lagrangian derivation for the impulse equa-
tion of motion based on the material derivative D

Dt = ∂

∂t + u · ∇,
following [Cor95]. As discussed in the paper, the impulse variable
is defined as

m = u+∇φ, (1)

where φ is any scalar field and we have ∇·u = 0. If we take the curl
in Equation 1 we recover the exact vorticity ω =∇×m =∇×u.
Note that by taking the divergence ∇·m =∇2

φ we obtain a Poisson
equation that allows us to recover the divergence-free velocity u
through a projection.

For the next derivation, consider the following identities:

∇
(

1
2
|u|2
)
= (∇u)T u (ID.1)

D
Dt

∇φ =∇
(

Dφ

Dt

)
− (∇u)T ∇φ (ID.2)

Starting from Equation 1, we can apply the material derivative on
both sides of the equation and use the identities ID.1 and ID.2 to
obtain the following result:

Dm
Dt

=
Du
Dt

+
D
Dt

∇φ =
Du
Dt

+∇
(

Dφ

Dt

)
− (∇u)T ∇φ

=
Du
Dt

+∇
(

Dφ

Dt
+

1
2
|u|2
)
− (∇u)T m

(2)

In the last equation, we know that for an inviscid and incompress-
ible fluid Du

Dt =−∇p. If we substitute this identity in Equation 2 we
obtain

Dm
Dt

=∇
(

Dφ

Dt
+

1
2
|u|2 − p

)
− (∇u)T m. (3)

Additionally, the last expression depends on an initial definition
of φ. Since this scalar field can be arbitrarily chosen, we can conve-
niently let φ evolve according to

Dφ

Dt
+

1
2
|u|2 − p = 0, (4)

which implies that the gradient in Equation 3 cancels out and reduces

this expression to our equation of motion for the impulse variable:

∂m
∂t

+u ·∇m+(∇u)T m = 0 (5)

2. Derivation of the Velocity Jacobian Correction

We can compute the Jacobian of the flow map per particle and apply
the stretching correction on the velocity that the particle is carrying
during the APIC advection. Since we are following the impulse
equation, we will refer to the stretched quantity as impulse denoting
it by m. We can modify the per-particle stored impulse as

m◦ = (∇Φ
◦)−T u◦. (6)

The problem of correcting the carried impulse by a matrix in
the particle space is that APIC also utilizes the affine term A◦ =
∇u◦ during the particle-to-grid transfer, so a proper modification
of this term should be performed. Even though the flow map can be
assumed to be locally constant in space to get a simpler approach,
we can provide a more accurate derivation that respects the space-
dependency of the flow map function. Our goal is to obtain the APIC
affine term for the new modified impulse, i.e., A◦

m =∇m◦.

For the rest of this section, the flow map is a function of x, that
is, Φ(x), so the corresponding Jacobian matrix is also dependent
of x. We will drop the particle/grid superscript symbols to provide
a cleaner derivation. For convenience and to avoid the appearance
of third order tensors, we will derive the matrix-vector product
∇m ∆x, with the constant vector ∆x = x⊞− x◦p, since this is the
only operation where we need to apply the impulse APIC term. In
terms of notation, we will refer to the transpose Jacobian matrix
of the flow map (∇Φ)T as a generic invertible matrix F(x) that
depends on x, which can be written in the form

F(x) = ∑
i j

fi j(x)Ei j

where Ei j has a 1 in the (i, j) position and zeros in all other positions.

We have the expression

∇m ∆x =∇
(

F−1(x)u(x)
)

∆x

that can be extended applying the product rule to

∇m ∆x = F−1(x)∇u(x)∆x+∇
(

F−1(x)û
)

∆x,

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

2 of 5 S. Sancho et al. / Appendix: The Impulse Particle-In-Cell Method

where û is the vector u(x) treated as a constant vector. Note that the
last expression avoids the use of third order tensors. We can notice
that the last term can be treated as an extension of a directional
derivative for a vector-valued function F−1(x)û in the direction
and magnitude of ∆x and evaluated at x, which we will denote as
∇∆x

[
F−1(x) û

]
. Thus, we have

∇∆x

[
F−1(x)û

]
=−F−1(x)∇∆xF(x) F−1(x) û,

where matrix ∇∆xF(x) contains the derivatives of F and is defined
as

∇∆xF(x) =∇∆x ∑
i j

fi j(x)Ei j = ∑
i j
∇∆x fi j(x)Ei j

= ∑
i j

(
∇ fi j(x)T

∆x
)

Ei j,

and we have used the matrix rule ∂

(
X−1

)
=−X−1 (∂X)X−1.

We can now obtain the final expression

∇m ∆x = F−1(x)∇u(x)∆x −F−1(x)∇∆xF(x) F−1(x) û.

The last equations shows how to compute the new affine term
A◦

m =∇m◦ associated with the corrected m◦ that we need in order
to perform an accurate APIC transfer. Recovering F(x) = (∇Φ

◦)⊤,
we get the following expression

A◦
m ∆x = J ◦A◦

∆x −J ◦ ∇∆x

[
(∇Φ

◦)⊤
]
J ◦ u◦.

The matrix ∇∆x

[
(∇Φ

◦)−⊤
]

contains the second derivative
terms that come from the Hessian tensor of the flow map. Despite
having included the vector ∆x in the derivation for convenience,
we would like to extract it as an independent vector to be able to
reuse the existing infrastructure of an APIC transfer. Rearranging
the terms easily leads us to the following expression:

A◦
m ∆x = J ◦(A◦−H◦) ∆x (7)

where the matrix H◦ can be computed in 2D or 3D as

H◦
2D =

(

mx∇ ∂Φx
∂x +my∇ ∂Φy

∂x

)⊤(
mx∇ ∂Φx

∂y +my∇ ∂Φy
∂y

)⊤
 (8)

H◦
3D =

(

mx∇ ∂Φx
∂x +my∇ ∂Φy

∂x +mz∇ ∂Φz
∂x

)⊤(
mx∇ ∂Φx

∂y +my∇ ∂Φy
∂y +mz∇ ∂Φz

∂y

)⊤(
mx∇ ∂Φx

∂z +my∇ ∂Φy
∂z +mz∇ ∂Φz

∂z

)⊤
 , (9)

which allows us to drop the distance vector ∆x. Note that mx, my and
mz represent the components of the already computed m◦ vector
and the different ∇ ∂Φe

∂e ,e ∈ (x,y,z) vectors contain the second order

derivatives of the flow map, e.g., ∇ ∂Φx
∂x =

(
∂

2
Φx

∂x2 , ∂
2
Φx

∂y∂x ,
∂

2
Φx

∂z∂x

)
.

Figure 1 shows the initial location of the extra particles ci and hi
at every time step needed to compute the Jacobian and the Hessian
terms in 3D for a central particle at position c0. As shown in the im-
age, we follow a central finite-difference approach with a separation

Figure 1: Extra particles initialization to compute Jacobian and
Hessian of the flow map. The particles are advected with the flow to
obtain the deformed positions ĉi and ĥi at the following time step.

distance of δx. All the particles, including the extra particles, are ad-
vected forward in time with the flow using Runge-Kutta integration
obtaining ĉi and ĥi.

We show now the discretization for a 3D simulation. Since the
positions ĉi and ĥi correspond to the position of the particles in
the new deformed state with respect to the original finite-difference
position, we can compute the Jacobian of the flow map as

J ◦
3D ≈ 1

δx

(ĉ2 − ĉ1)
⊤

(ĉ4 − ĉ3)
⊤

(ĉ6 − ĉ5)
⊤

−1

. (10)

The Hessian terms can be discretized in the following way:

(
∂

2
Φx

∂x2 ,
∂

2
Φy

∂x2 ,
∂

2
Φz

∂x2

)
≈ 4

(δx)2 (ĉ2 −2ĉ0 − ĉ1) (11)

(
∂

2
Φx

∂y2 ,
∂

2
Φy

∂y2 ,
∂

2
Φz

∂y2

)
≈ 4

(δx)2 (ĉ4 −2ĉ0 − ĉ3) (12)

(
∂

2
Φx

∂z2 ,
∂

2
Φy

∂z2 ,
∂

2
Φz

∂z2

)
≈ 4

(δx)2 (ĉ6 −2ĉ0 − ĉ5) (13)

(
∂

2
Φx

∂x∂y
,

∂
2
Φy

∂x∂y
,

∂
2
Φz

∂x∂y

)
≈ 1

2δx
(
ĥ1 − ĥ2 − ĥ3 + ĥ4

)
(14)

(
∂

2
Φx

∂x∂z
,

∂
2
Φy

∂x∂z
,

∂
2
Φz

∂x∂z

)
≈ 1

2δx
(
ĥ5 − ĥ6 − ĥ7 + ĥ8

)
(15)

(
∂

2
Φx

∂y∂z
,

∂
2
Φy

∂y∂z
,

∂
2
Φz

∂y∂z

)
≈ 1

2δx
(
ĥ9 − ĥ10 − ĥ11 + ĥ12

)
(16)

3. Extended Results

In Figure 2 we include the energy plots for the Taylor Vortices
example on the main paper.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

S. Sancho et al. / Appendix: The Impulse Particle-In-Cell Method 3 of 5

1 2 3 4 5 6

0.6

0.62

0.64

0.66

0.68

Time (s)

Energy (J)

MC APIC FLIP CF-MC MC-R IPIC

Figure 2: Energy plots for the Taylor vortices example. IPIC has
better energy preservation than the state of the art Covector fluids
method.

4. Baseline Comparisons

Throughout the paper, the baseline methods Semi-Lagrangian, Mac-
Cormack, PIC, FLIP, and APIC use a first-order projection scheme,
performing two consecutive substeps with a half-time step size. For
each step, this setting is as expensive as performing the second order
scheme that we propose for our method, as it involves two advection
and two projection stages. We explored two other reasonable con-
figurations, which under-perform the baseline approach. Figure 3
shows an energy comparison for the Taylor vortices example using
the different baseline configurations, and the corresponding vorticity
maps are displayed in Figure 4.

APIC (and the other baseline methods) with a first-order pro-
jection scheme and a single step involves less computation, as it
performs only one advection and projection stage. With less num-
bers of transfers of quantities between grid and particles, this scheme
can potentially be beneficial to reduce numerical error. Empirical
results show that it is not the case and performing two substeps
improves energy preservation.

APIC (and the other baseline methods) using the second order
projection scheme does not correspond to a second order accuracy
upgrade. Note that the proposed scheme is only suitable when com-
bined with the impulse variable — which is divergent by definition
— introducing degrees of freedom that can be exploited by the pro-
jection operator. More details about the intuition behind this issue
can be found in Section 4.5 of [NWRC22]. Our experiments support
this theoretical conclusion.

5. Eulerian Stretching

As explored by [FLX∗22], it is possible to solve the stretching term
in an Eulerian way, independent of the advection step. However, this
approach suffers from the splitting error that occurs when solving ad-
vection and stretching in a decoupled way. Recent work [DYZ∗23]
investigated this issue, and found that an inaccurate flow map com-
putation not corresponding to the proper flow map can introduce
dissipation.

In our initial attempts, we discretized the impulse stretching
in the particle setting, applying a similar idea as Covector Flu-
ids [NWRC22]. We first performed the usual APIC advection using

1 2 3 4 5 6

0.6

0.65

Time (s)

Energy (J)

MC APIC FLIP

MC (1st order) APIC (1st order) FLIP (1st order)

MC (2nd order) APIC (2nd order) FLIP (2nd order)

Figure 3: Energy plots that shows the ablation on 2D Taylor vortices
baseline methods

MC FLIP APIC

MC (1st order) FLIP (1st order) APIC (1st order)

MC (2nd order) FLIP (2nd order) APIC (2nd order)

Figure 4: 2D Taylor vortices with the different baseline configura-
tions at t = 6. First row shows the baseline setting used in the main
paper, where two first order substeps are performed in one timestep.
A single first order step is used in the second row. The third rows
shows the results with a second order projection scheme.

particles and splatted the velocities to the grid. Then, the Jacobian
matrices of the flow map on the grid are computed using a Semi-
Lagrangian approach, applying them to the grid velocity. However,
this solution is not so effective in preserving energy, as there is a
clear mismatch between the forward scheme used to advect veloci-
ties and the backward scheme used to compute the Jacobian. The
result of this approach is shown in Figure 5.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

4 of 5 S. Sancho et al. / Appendix: The Impulse Particle-In-Cell Method

(a) Grid-based Jacobian (b) Particle-based Jacobian

Figure 5: Performing coupled advection-stretching in the particle
setting, which involves computing and applying the Jacobian of the
flow map in a per-particle way, significantly reduces the dissipation
of the method. Applying the Jacobian on the grid after particle
advection, as shown in (a), showcases a more dissipative method
than our approach in (b).

6. Fluid-air Interface Treatment

Particle-In-Cell methods generally extrapolate velocities from fluid
cells into air cells to interpolate velocity values for particles close to
the free-boundary surface. This solution, however, does not provide
precise Jacobian computation at the free-boundary surface for im-
pulse stretching. Furthermore, the gradients computed by APIC can
become inaccurate in the absence of a sufficient number of particles
at the boundaries.

For these reasons, we revert to FLIP at the interface between air
and fluid cells, specifically within a threshold of 2 cells. Although
this approach reduces the accuracy of the simulation at the liquid
surface, our empirical results show that our method still better pre-
serves the vorticity of the simulation while ensuring method stability.
Figure 6 shows an unsuccessful experiments that occurs when FLIP
is not used at the fluid-air surface.

(a) Particle Velocities (b) Jacobian Determinant

Figure 6: Determinant of Jacobian of flow map on the fluid-air
interface. (a) visualizes the particle velocity magnitude of the 2-D
liquid simulation. Light blue indicates higher velocity, black indi-
cates lower velocity. (b) visualizes the corresponding determinant
of the Jacobian of the flow map. Purple indicates the determinant
is 1 (correctly computed), yellow indicates being far away from 1
(wrongly computed), and blue indicates close to 1.

7. Stability and CFL Condition

Our method makes use of the impulse variable to avoid the excessive
and uncontrollable dissipation of the former methods, enforcing
stability by using a Jacobian-Aware Blending strategy with α and β

limiters.

Table 1 shows an analysis of simulation settings of different CFL
conditions on the 2D Plume example. In all our simulations, we fix
∆x = 1, and we study how the CFL number changes with the time
step size. We compute the CFL condition C as

C =
|umax| ∆t

∆x
,

where |umax| is the maximum velocity magnitude obtained during
the simulation. For those unstable simulations, we indicate the time
step where they explode. Impulse-based methods such as Covector
Fluids (CF) require using a prohibitively small time step to remain
stable. Our blending strategy, with a set of properly-chosen parame-
ters, can ensure stability while obtaining better energy preservation.
However, as similarly noticed in [QZG∗19], an extremely large time
step size can still produce inaccurate results, adding artificial vortex
structures that do not correspond to physically-accurate results. Fig-
ure 7 shows the visual result of the simulation for a varying set of
time step sizes.

Table 1: CFL conditions and stability.

Method ∆t CFL Stability
0.25 8.6 Unstable at t = 66

CF 0.5 9.6 Unstable at t = 35
1.0 14.8 Unstable at t = 24
0.25 15.7 Stable

IPIC 0.5 40.7 Unstable at t = 75
(α = 0.9,β = 0.95) 1.0 34.2 Unstable at t = 39

0.25 7.7 Stable
IPIC 0.5 12.5 Stable
(α = 0.99,β = 0.998) 1.0 35.9 Stable

0.125 3.5 Stable
APIC 0.25 6.7 Stable

0.5 15.6 Stable

(a) ∆t = 0.25 (b) ∆t = 0.5 (c) ∆t = 1.0

Figure 7: Simulation at time t = 112 using IPIC with α = 0.99 and
β = 0.998 for different time step sizes.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

S. Sancho et al. / Appendix: The Impulse Particle-In-Cell Method 5 of 5

References
[Cor95] CORTEZ R.: Impulse-Based Methods for Fluid Flow. Tech. rep.,

1995. 1

[DYZ∗23] DENG Y., YU H.-X., ZHANG D., WU J., ZHU B.: Fluid
simulation on neural flow maps. ACM Trans. Graph. 42, 6 (2023). 3

[FLX∗22] FENG F., LIU J., XIONG S., YANG S., ZHANG Y., ZHU B.:
Impulse Fluid Simulation. IEEE Transactions on Visualization and Com-
puter Graphics (2022). doi:10.1109/TVCG.2022.3149466. 3

[NWRC22] NABIZADEH M. S., WANG S., RAMAMOORTHI R., CHERN
A.: Covector fluids. ACM Transactions on Graphics 41, 4 (jul 2022),
1–16. doi:10.1145/3528223.3530120. 3

[QZG∗19] QU Z., ZHANG X., GAO M., JIANG C., CHEN B.: Efficient
and conservative fluids using bidirectional mapping. ACM Transactions
on Graphics 38, 4 (2019), 1–12. doi:10.1145/3306346.3322945.
4

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://doi.org/10.1109/TVCG.2022.3149466
https://doi.org/10.1145/3528223.3530120
https://doi.org/10.1145/3306346.3322945

