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Abstract
3D surface reconstruction from point clouds is a key step in areas such as content creation, archaeology, digital cultural heritage
and engineering. Current approaches either try to optimize a non-data-driven surface representation to fit the points, or learn
a data-driven prior over the distribution of commonly occurring surfaces and how they correlate with potentially noisy point
clouds. Data-drivenmethods enable robust handling of noise and typically either focus on a global or a local prior, which trade-off
between robustness to noise on the global end and surface detail preservation on the local end. We propose PPSURF as a method
that combines a global prior based on point convolutions and a local prior based on processing local point cloud patches. We
show that this approach is robust to noise while recovering surface details more accurately than the current state-of-the-art. Our
source code, pre-trained model and dataset are available at https://github.com/cg-tuwien/ppsurf .
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1. Introduction

3D surface reconstruction from point clouds is a key step for work-
flows in areas such as content creation, archaeology, digital cultural
heritage and engineering, to convert raw 3D point scan data, like
casual RGBD (colour and depth) mobile phone images or more ac-
curate range scans (e.g. from laser range scanner), to surface-based
3D object representations that can be used in downstream applica-
tions (see Figure 1).

Given the large practical interest, surface reconstruction has be-
come a central problem in computer graphics and vision research.
The problem is generally ill-defined, as different surfaces may cor-
respond to similar point clouds. However, several approaches have
been proposed to tackle this ambiguity. One research direction at-
tempts to optimize surface representations with strong non-data-
driven inductive biases to fit the point cloud [KBH06, WSS*19,
PJL*21, BZYSM21]. This resolves the ambiguity, but is suscep-
tible to deteriorating conditions of the input points, such as scan
noise or regions with missing points, which cannot easily be cor-

rected using a fixed inductive bias. Another line of research focuses
on learning data-driven priors, usually over the distribution of com-
monly occurring surfaces and how they correlate with potentially
noisy point clouds [PFS*19, EGO*20, PJL*21, BM22]. The sur-
face reconstruction ambiguity can then be resolved by finding a sur-
face that has a high probability for the given point cloud under the
learned prior. The prior in these data-driven methods can range from
global, where the prior captures a distribution over full 3D object
surfaces, to local, where the prior captures the distribution over lo-
cal surface patches. Global priors are the least susceptible to noise
and missing points, but have limited capability to capture fine local
details. Local priors, on the other hand, can capture such fine de-
tails accurately, but are more susceptible to strong noise andmissing
points. Existing methods mostly focus their prior on a small range in
this global–local spectrum. For example, DeepSDF [PFS*19] uses
a global prior, Points2Surf [EGO*20] mostly focuses on a local
prior, while POCO’s point convolutions [BM22] learn a prior in the
medium range that is reasonably robust to deteriorating conditions,
but still struggles to accurately capture local detail.
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Figure 1: We present PPSURF, a method to reconstruct surfaces from noisy point clouds. Unlike previous methods, our approach combines
two strong data-driven priors, one prior over local surface details, and a second prior over the coarse shape of larger surface regions. This
makes PPSURF robust to noise, while reconstructing surface detail better than current methods.

We propose PPSurf as a method that covers a wider range in the
global–local spectrum of priors, by combining the local prior of a
patch-based method like Points2Surf with a more global prior of
a point convolution-based method like POCO. For this purpose, we
design an architecture that has two branches: the first branch is based
on POCO [BM22] and provides a global prior by applying several
layers of point convolutions to a sparse set of support points. To
reconstruct geometric details more accurately, we merge features
from this first branch with features from a second branch, which
processes a local patch of points with PointNet [QSMG16]. We ad-
ditionally discovered that modifying the architecture of PointNet by
replacing the sum aggregation with an attention-based aggregation
improves performance. This results in a method that is robust to
noise and missing points, while preserving details more accurately
than previous methods.

In our experiments, we compare PPSurf to several previous
state-of-the-art methods, both data-driven and non-data-driven, on
synthetic as well as real-world data, and demonstrate improved per-
formance on both in-distribution, and out-of-distribution surface re-
construction tasks.

2. Related Work

Surface reconstruction from point clouds is an active area of re-
search. We distinguish between data-driven methods that train on
a large dataset, and non-data-driven methods that do not use ma-
chine learning or overfit to a single shape.

Non-data-driven methods. Poisson reconstruction [KBH06,
KH13] has for many years been the gold standard of non-data-
driven approaches. Recent works have suggested optimizing the
parameters of a neural network to predict the signed distance to the
surface [AL20, SMB*20, AL21] directly from a single point cloud.
In particular, Atzmon and Lipman [AL20] introduced this concept
for un-oriented point clouds. They optimized the parameters of
the neural network with a sign-agnostic loss and a geometric
initialization of its parameters. Gropp et al. [GYH*20] and Atzmon

and Lipman [AL21] followed up on this work and included a
gradient regularization in the loss. Later, Ma et al. [BZYSM21]
introduced Neural-Pull, an optimization objective that uses directly
the gradient of the optimized SDF to move the query points to
the closest point in the input point cloud. In follow-up work, this
approach was extended by incorporating a network to classify a
point being on the surface or not [CHL23], and an additional
loss that aligns the gradient direction between different level sets
of the SDF [MZLH23]. In order to improve the quality of the
final SDF, Yifan et al. [YWOSH20] and Zhou et al. [ZML*22]
proposed to iteratively increase the input point cloud with points
sampled from the optimized SDF in the previous iteration. A
different approach was proposed by Peng et al. [PJL*21] (also used
in LION [ZVW*22]), based on a differentiable Poisson surface
reconstruction operation that could be used for optimization-based
or learned reconstructions. Differently from previous methods,
the set of points in the surface is optimized through the differen-
tiable reconstruction instead of a neural network representing the
SDF. Lin et al. proposed a parametric Gauss formula for recon-
struction [LXSW22], which has quadratic complexity in memory
leading to prohibitive costs for larger point clouds. VIPSS by Huang
et al. [HCJ19] formulates reconstruction as a constrained quadratic
optimization problem. iPSR by Hou et al. [HWW*22] uses an iter-
ative approach to Poisson reconstruction that improves the surface
more and more, while removing the need to be given point normals.
IsoPoisson by Xiao et al. [XSL*23] incorporate an isovalue con-
straint to the Poisson equation, which helps with consistent normal
orientation and consequently improved reconstruction.

Non-data-driven methods are sensitive to noise, which is usu-
ally present in real 3D scans. In order to address this limitation to
some extent, a recent pre-print from Wang et al. [WWW*22] pro-
posed Neural-IMLS, a non-data-driven method that regularizes the
smoothness of surface normals using an MLP with limited capac-
ity. While this produces smooth surfaces, it also loses some geo-
metric detail due to this non-data-driven regularization. Noise-to-
noise mapping by Baorui et al. [MLH23] focuses on the reconstruc-
tion of noisy point clouds in an unsupervised overfitting scheme.
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Additionally, these methods require significant reconstruction times
due to the optimization being performed for each shape individually,
which can be a limiting factor for large scans.

Data-driven methods. A recent line of research has approached
the problem of shape reconstruction in a data-driven manner
by using a large dataset to learn a prior over the distribution of
commonly occurring surfaces and how they correlate with the input
point cloud. These approaches are typically fast and robust to noisy
inputs compared to non-data-driven approaches. However, in such
methods, the resulting reconstruction highly depends on the quality
of such priors.

Several works have proposed to use a global prior to capturing the
distribution over full 3D object surfaces [CZ19,MON*19, PFS*19].
These methods define such a prior as a single latent vector rep-
resenting the shape, which is then used as a condition in a fully
connected network to decode the SDF of a given query point. Usu-
ally, the decoder is trained on large data sets with a point-cloud en-
coder [MON*19, CZ19]. However, Park et al. [PFS*19] proposed
to train the decoder directly on such data sets and then optimize
the latent vector to match the noisy point cloud during inference.
Recently, Zhang et al. [ZTNW23] proposed to use richer global pri-
ors. They introduced an encoder–decoder network that encodes the
input point cloud using attention modules into a set of latent vectors
representing the shape, which are then used to predict the SDF for
a set of query points using cross-attention modules.

Other works have opted to condition their models with local pri-
ors. Siddiqui et al. [STM*21] encoded the input point clouds in a
set of latent scene patches. These latent vectors are used to query a
database of latent vectors from patches obtained from the training
set. The obtained patches are then blended together using an atten-
tion mechanism. Ma et al. [BYSZ22] incorporated local priors by
including a network pre-trained on a large number of surface patches
which classifies a point as being on the surface or not. This network
is used to guide an optimization process that learns the shape’s SDF
using another neural network. Jiang et al. [JSM*20] pre-trained an
SDF encoder–decoder on a large data set of object parts. Then, dur-
ing the optimization process, only the latent codes of the different
parts of the object are optimized. Chen et al. [CTFZ22] propose a
dual contouring method learned on a small local prior.

Since global and local priors provide complementary informa-
tion about the shape, a common approach is to use a prior in
the medium range using a hierarchical encoder–decoder network.
These approaches reduce the input point cloud to a simplified rep-
resentation, e.g. voxelization or sub-sampled point cloud, which
is then enriched by the global information provided by the bottle-
neck of the encoder–decoder architecture. Chibane et al. [CAPM20]
and Peng et al. [PNM*20] proposed a 3DCNN encoder–decoder
network to encode the sparse or noisy point cloud to later pre-
dict the SDF for an arbitrary point around the surface. Chibane
et al. [CMPM20] extended this work to predict an unsigned dis-
tance field, which allowed them to represent complex open surfaces.
Tang et al. [TLX*21] extended the work of Peng et al. [PNM*20] to
include test-time optimization to improve out-of-distribution point
clouds. Ummenhofer and Koltun [UK21] proposed a CNN that
works directly on an Octree, from which the model was able to

predict the SDF. Wang et al. [WLT22] also represented the input
point cloud with an octree, from which they constructed a graph.
This graph was further processed by a GCN encoder–decoder to
generate an embedding for each octree node, from where the fi-
nal SDF is predicted. Dai et al. [DDN20] instead used a 3D sparse
encoder–decoder network to complete partial 3D scans and predict
a complete SDF. Lionar et al. [LESP21] also developed an encoder–
decoder network but used instead the projection of the input point
cloud to a set of arbitrary 2D planes, from which the final SDF was
predicted. Boulch and Marlet [BM22] recently proposed to use an
encoder–decoder network that directly workedwith points, avoiding
discretization artifacts from voxel-based representations. Although
all these methods work relatively well when compared with meth-
ods that use global or local priors alone, they struggle to accurately
capture fine local details of the shapes.

Erler et al. [EGO*20] proposed to explicitly model global and
local priors directly from point clouds using two different branches.
Each branch used a PointNet [QSMG16] architecture, to process
the local patch around the query point in the local branch, and a
point cloud representing the complete shape in the global branch.
While the local branch was able to capture high-frequency details
relatively well, they used a weak global prior due to the small subset
of points selected to represent the shape. Our approach addresses the
limitations of all these methods by incorporating strong global and
local priors.

3. Method

The goal of our method is to take as input an unoriented point cloud
P = {p1,p2, . . . ,pn} that was sampled from an unknown watertight
surface Sgt with a noisy sampling process, and output a surface S
that approximates Sgt as closely as possible. Similar to several pre-
vious approaches, we define the surface S using an implicit repre-
sentation, since this guarantees watertightness and naturally handles
arbitrary surface topology in a smooth and differentiable way. More
specifically, S is defined as the 0.5-level set of an occupancy field
o(x): S := {x‖ o(x) = 0.5}.

We train a network fθ (x,P) with parameters θ to model the field
o given a point cloud P:

o(x) := fθ (x,P) (1)

The network f uses two branches: (i) a global branch f g(x,P′) that
performs point convolutions [BPM20] on a sparse random subset of
points P′ ⊆ P and effectively learns a global prior over the coarse
shape of S given the input points P, and (ii) a local branch f l (x,Px)
that processes a small local patch Px ⊂ P around x and effectively
learns a local prior over the detailed shape of local surface patches.
Each branch outputs a feature vector for a given query point x that
is combined into a single feature vector before being processed by
a small MLP f o that outputs the occupancy probability o(x):

fθ (x,P) := f o
(
f g(x,P′) ⊕ f l (x,Px)

)
, (2)

where ⊕ is the operation used to combine the two feature vectors,
a sum in our experiments. Here, we omit the parameters of the net-
works f o, f g and f l to avoid a cluttered notation. Figure 2 illustrates
our architecture.
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Figure 2: PPSURF computes the occupancy probability at a query point x given a noisy point cloud P. A global branch processes a sparse
subset P′ ⊆ P using point convolutions, followed by an attention-based interpolation to get features at x that capture the coarse shape of the
point cloud. A local branch processes a local patch Px ⊂ P using a PointNet [QSMG16] with attention-based aggregation to get features at x
that capture the detailed shape of the point cloud near x. Global and local features are aggregated to compute the occupancy probability at x.

In the following, we describe the architecture of PPSurf, in-
cluding the global and local branches in Section 3.1, followed by
a description of the training and inference setups in Sections 3.2
and 3.3, respectively.

3.1. Architecture

Global branch. The global branch f g(x,P′) takes as input a ran-
dom subset P′ ⊆ P and a 3D query point x and outputs a global
feature vector for the point x, which encodes information about the
coarse shape of the point cloud.We implement the global branch us-
ing POCO [BM22], which consists of two main components: (i) a
point convolution module that computes a feature vector z′

i for each
sparse point p′

i ∈ P′, followed by (ii) an interpolation module that
interpolates the feature vectors z′

i to get the global feature vector at
point x.

The point convolution module uses FKAConv [BPM20] to pro-
cess the sparse point cloud P′ into a feature vector for each point:

Z′ = FKAConv(P′), (3)

where Z′ = {z′
1, z

′
2, . . . , z

′
|P′ |} is the set of feature vectors at each

sparse point. Due to limitations both in performance and network
capacity, convolutions can only be performed on the sparse subset
P′ instead of the full point cloud P, with |P′| = 10k in our exper-
iments. This module consists of 10 layers of convolutions. Each
layer uses a convolution kernel that operates over the 16 nearest
neighbours of each point.

Given a query point x, the interpolation module interpolates the
feature vectors z′

i at the nearest neighboursN ′
x of the query point to

get the global feature vector using an attention-based weighting:

f g(x,P′) := f gb

⎛
⎝∑

j∈N ′
x

wx, j f
ga

((
x − p′

j

) ‖z′
j

)
⎞
⎠ (4)

with wx, j := 1

k

64∑
k=1

softmax j f
gw
k

((
x − p′

j

) ‖z′
j

)
, (5)

where ‖ denotes concatenation, f ga, f gb are two MLPs that trans-
form the feature vectors before and after the weighted sum, and f gwk
are learned weighting functions, each implemented as a single linear
layer. Analogous to the attention heads in multi-head attention, mul-
tiple different weighting functions are used as a form of ensemble
learning, 64 in our experiments. Note that when evaluating multiple
query points x for a point cloud, the point convolution module only
needs to be evaluated once, while the interpolation module needs to
be evaluated once per query point.

Local branch. The local branch f l (x,Px) processes a local patch
Px around the query point x and outputs a local feature vector for the
point x, which encodes information about the detailed shape of the
point cloud near x. We base the local branch on the popular Point-
Net [QSMG16] architecture, which has been successfully applied in
various methods that process local point cloud patches [GKOM18,
RLBG*19]. We modify the architecture with an attention-based ag-
gregation, instead of the original max- or sum-based aggregation,
which we found to improve performance.

We define the local patch Px as the 50 nearest neighbours of the
query point x. We normalize the patch by centering it at the origin
and scaling it to fit into a unit sphere, obtaining the normalized patch
P̄x. Subsequently, we apply PointNet with attention-based aggrega-
tion similar to Equations (4) and (5), but without using multiple at-
tention heads:

f l (x,Px) := f lb

⎛
⎝ ∑

p̄ j∈P̄x
v j f

la(p̄ j )

⎞
⎠ (6)

with v j := softmax j f
lv
(
f la(p̄ j )

)
, (7)
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where f lv is a learned weighting function implemented as linear
layer, and f la, f lb are two MLPs that transform the feature vectors
before and after the weighted aggregation.

3.2. Training setup

We train our network with a binary cross-entropy loss
BCE(o(x), ogt(x)) supervised by the ground-truth occupancy
ogt(x) on query points defined by the Points2Surf ABC var-noise
training set [EGO*20]. We train with AdamW (lr = 0.001, betas =
(0.9, 0.999), eps = 1e-5, weight_decay = 1e-2, amsgrad = False)
for 150 epochs with scheduler steps at 75 and 125 epochs. On our
training machine, we can fully utilize all four NVIDIA A40 GPUs
with distributed data-parallel training using a total batch size of 50
and 48 workers. The other hyperparameters are mostly based on
POCO, namely 10k manifold points, a network decoder k of 64 and
two output classes. One change is the increased latent size of 128,
which was 32 in POCO. The additional hyperparameters for the
local branch are a PointNet latent size of 256 and a patch size of
50. The training takes about 5 h.

3.3. Inference setup

We use the inference setup from POCO [BM22], which differs
from the training setup in two main aspects: First, we perform
test-time augmentation in our global branch to obtain more reliable
results. Second, we sample query points in a grid and use a variant
of marching cubes to reconstruct a mesh. We describe both in more
detail below.

Test-time augmentation. The sparse sub-sample P′ ⊆ P used for
the global branch may miss important geometric detail. To improve
robustness, we compute the per-point feature vectors z′

i for multi-
ple different random sub-samples P′

1,P
′
2, . . . , until each point in P

is included in at least 10 sub-samples. The ≥10 different feature
vectors for each point in P are then averaged before performing the
interpolation step.

Mesh reconstruction. We place query points in a 2573 grid and
use a variant of marching cubes [LC87] proposed in POCO to ob-
tain a mesh from the occupancy field o(x). That marching cubes
variant uses a region-growing strategy starting from the input points
to avoid the costly evaluation at all grid points, and super-samples
marching-cube edges that intersect a surface to get a more accurate
estimate of the intersection point.

4. Results

We evaluate PPSurf by comparing our surface reconstruction per-
formance to several state-of-the-art methods, both data-driven and
non-data-driven. We show both quantitative and qualitative compar-
isons in Section 4.1. Additionally, we provide an ablation to empir-
ically validate our main design choices in Section 4.2.

Metrics. We use three well-known metrics to evaluate the error of
our reconstructed surfaces: the Chamfer distance, the F1-score and
the normal error. We evaluate each metric at 100k random surface

samples for the Chamfer distance and normal error, or volume sam-
ples for the IoU. This results in roughly ±0.5% variance between
different runs.

The Chamfer distance [BTBW77, FSG17] measures the distance
between two point sets. We use it to measure the distance between
reconstructed and GT surface samples. It is defined as

1

|A|
∑
pi∈A

min
p j∈B

‖pi − p j‖22 + 1

|B|
∑
p j∈B

min
pi∈A

‖p j − pi‖22, (8)

where A and B are point sets of size 100k sampled on the surface of
the GT object and the reconstructed object.

The F1 Score [TH15] measures the overlap between the ground
truth surface and the region enclosed by the reconstructed surface,
similar to the IoU. It weights precision and recall equally.

The normal error measures the difference between the normals
of the reconstructed surface and the ground truth normals. We sam-
ple 100k points uniformly on the ground truth mesh A and the re-
constructed mesh B, storing the normals of their originating faces.
Then, we find the closest neighbour of each point b ∈ B in A. We
report the average angle between the normals of these point pairs:
1
ns

∑ns
i=1(arccos(n

A
i · nBi )), where nAi and nBi are ground truth and re-

constructed normals, respectively.

Datasets. We evaluate our method on the set of dataset variants
introduced in P2S [EGO*20]:

• The ABC variant of P2S [EGO*20] is a subset of the ABC dataset
by Koch et al. [KMJ*19] and contains 4950 points clouds from
high-quality CADmeshes in the training set and 100 point clouds
in the test set.

• The Famous [EGO*20] dataset consists of 22 diversewell-known
meshes, including the Stanford Bunny, the Utah Teapot and the
Armadillo. We use this dataset for testing only.

• A subset of 100 shapes from the Thingi10k [ZJ16] dataset is used
as additional test set. The Thingi10k dataset contains a variety of
CAD shapes, but also more organic shapes like statues.

• The Real [EGO*20] dataset consists of three real-world point
clouds.

All synthetic point clouds were created with the simulated scan-
ner BlenSor [GKUP11] with a scanner resolution of 176 × 144, us-
ing a random number of scans between 5 and 30. Each dataset comes
in up to five variants:

• no noise: A version without noise
• med. noise: A version with noise using a standard deviation of
0.01L, where L is the largest side of the object’s bounding box.

• high noise: A version with noise using a standard deviation of
0.05L.

• var. noise: A version with variable noise, where the amount of
noise used for a given shape is sampled uniformly in [0, 0.05L]
and the number of scans in [5, 30].

• sparse: A version with medium noise where all shapes only uses
five scans, resulting in point clouds between 2k and 22k points.

• dense: A version with medium noise where all shapes use 30
scans, resulting in point clouds between 5k and 112k points.
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Figure 3: Point cloud examples of the data sets used in our evalu-
ation.

For a fair comparison, we train all data-driven methods on the
ABC var. noise dataset and evaluate them with each test set. Some
point cloud examples of these data sets are illustrated in Figure 3.

4.1. Comparisons

We compare PPSurf to several recent data-driven and non-data-
driven reconstruction methods. PGR [LXSW22], Neural-IMLS
(IMLS) [WWW*22] and Shape as Points (SAP-O) are non-data-
driven methods that do not train on a large dataset and instead di-
rectly fit a surface to the input point cloud. Shape as Points also has a
data-driven variant (SAP) that uses a trained network. Additionally,
we use Points2Surf (P2S) [EGO*20] and POCO [BM22] as data-
driven methods. We took the best available variants and settings
for each method: For PGR, we use the default parameters wmin =
0.0015, alpha= 1.05 for no noise, med noise and var. noise. We use
the following adapted parameters for the other datasets: wmin =
0.03, alpha = 2.0 for high noise, wmin = 0.03, alpha = 1.5 for
dense and sparse. We use thingi-noisy for SAP-O, vanilla for P2S
and 10k-FKAConv-InterpAttentionKHeadsNet for POCO. We used
the provided noise-large configuration for SAP. For IMLS, we used
the results provided by the authors (high noise datasets were not pro-
vided by the authors). Note that IMLS was developed concurrently
with our work.

Qualitative comparison. Figure 4 shows comparisons for one ex-
ample of each dataset variant. While non-data-driven methods give
competitive results on low-noise results, PPSurf has a clear advan-
tage with sparse and noisy point clouds.

We show examples on real-world point clouds in Figure 5, where
PPSurf produces clearer edges and finer details.

Quantitative comparison. Table 1 shows the performance of PP-
Surf on all dataset variants. We report the average over all shapes
in the test set. Similar to the qualitative results, POCO, PPSurf and
the non-data-driven methods share the first place in most low-noise
dataset variants, but PPSurf 50NN takes the lead in almost all other
dataset variants. This confirms that adding the local branch does in-
deed improve the local reconstruction.

Computation time and memory consumption. Training PPSurf
on the ABC var-noise training set was done in 5 h on 4NVIDIAA40
GPUs and 48AMDEPYC-Milan cores.We reconstruct all shapes in
our test sets on a single A40 and 48 CPU cores. See the timings and
memory consumption in Table 2. While non-data-driven methods
tend to be faster than data-driven ones, SAP is a lightning-fast ex-
ception. PPSurf with small patch sizes has a negligible impact on
resources compared to POCO. Neural IMLS does not report tim-
ings. As it is concurrent work, we could not do our own measure-
ments. While it is fast, PGR’s memory usage varies a lot with point
cloud size, between a few GB to going out-of-memory with>46GB
on 21 shapes.

Discussion. For dense and noise-free point clouds, non-data-driven
methods such as PGR, SAP-O and especially IMLS are a good op-
tion. However, their performance is limited in the presence of typical
point-cloud artifacts, due to missing data-driven priors. Data-driven
methods such as SAP, P2S, POCO and PPSurf can better deal with
such artifacts. SAP is the fastest method but lacks accuracy, possi-
bly due to its very small network. A bigger version could perhaps
produce competitive results but would require non-trivial changes
to the method.

P2S employs a relatively simple PointNet for global shape encod-
ing, which results in a weak global prior that can not reach the qual-
ity of a more efficient encoder such as FKAConv. Furthermore, it
reconstructs noisy surfaces, which is reflected in the relatively high
normal error, even with noise-free inputs.

Apart from some noise-free datasets, only POCO is close to
PPSurf’s quality. PPSurf achieves similar results on low-noise
point clouds, but significantly better reconstructions for noisy point
clouds. When predicting the occupancy at the query points, POCO
has no direct access to the full point cloud, only to a coarse latent
representation. This inability to accurately represent local informa-
tion is likely the reason why POCO tends to produce blobby struc-
tures and over-smooth the reconstructed surfaces. We avoid this by
providing a latent code that captures local detail more accurately by
adding a local branch that directly encodes dense local patches of
the point cloud.

4.2. Ablation

We investigate several design choices in an ablation study on the
ABC var-noise test set. Most importantly, Table 3 shows that having
both global and local branches gains a major advantage. Referring
to Table 4, the optimal local patch size lies in the range of 25NN to
100NN. Further, attention is a better symmetric operation than max,
and concatenating features is similar to summing them. This can be
seen in Table 5. Please see the supplementary for an evaluation of
the most relevant variants on all datasets. We compare the following
variants of our method:

• Full is the full method as described in Section 3.
• For Only Local, we set the global features to zeros, disabling this
branch. Based on the results of this experiment, we conclude that
thismodel can not reliably encode any surface since it lacks global
knowledge of the surface to reconstruct.

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Figure 4: Qualitative comparison to all baselines. We evaluate one example from each dataset variant (except for the no-noise variants, where
we only show one example due to space constraints). Colours show the distance of the reconstructed surface to the ground-truth surface. Due to
our combined local and global branches, PPSURF reconstructs details more accurately than the baselines, especially in the presence of strong
input noise. Note that results for Neural IMLS are not provided by the authors for the high-noise dataset variants. See the supplementary
material for a qualitative comparison on all shapes in our test sets.
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Figure 5: Real-world reconstructions. We compare to all baselines on the two point clouds that were obtained from real-world objects.

Table 2: Comparison of reconstruction times and memory usage. We show
the mean reconstruction time per shape and the maximum GPU-memory
consumption for each method on the ABC var noise dataset. 200NN uses
reconstruction batch size 25k instead of 50k. PGR went out of memory on
21 shapes

Time per shape Max GPU memory

PGR 1.9 min >46GB
SAP-O 1.1 min 3.8GB
SAP 0.8 s 3.1GB
P2S 13.5 min 14.3GB
POCO 1.6 min 9.0GB
PPSurf 10NN 1.6 min 9.1GB
PPSurf 25NN 1.7 min 9.1GB
PPSurf 50NN 1.9 min 9.3GB
PPSurf 100NN 2.6 min 13.7GB
PPSurf 200NN 3.5 min 13.2GB

Table 3: Branch Ablation Study. Using the ABC var-noise test set, we com-
pare PPSURF Full to variants with disabled branches. The only-local variant
failed to produce some meshes, which are ignored in the metrics. The best
results per column are marked in bold

Model Chamfer (×100) ⇓ F1 score ⇑ Normal error ⇓
Only local 2.69 0.36 1.56
Only global 0.70 0.89 0.33
PPSurf Full 0.66 0.90 0.30

• Only Global is similar to POCO as it omits the local branch. The
results show that a global prior can help to obtain reliable recon-
structions but with lower performance due to the missing fine de-
tails.

• For Sym Max, we replace the attention-based interpolation used
in the local branch with the max, effectively making this branch
a PointNet [QSMG16]. The results show an advantage for atten-
tion.

Table 4: Patch Size Ablation Study. Using the ABC var-noise test set, we
compare PPSURF Full (which is 50NN) to variants with different patch sizes.
The best results per column are marked in bold

Model Chamfer (×100) ⇓ F1 score ⇑ Normal error ⇓
PPSurf 10NN 1.10 0.90 0.40
PPSurf 25NN 0.66 0.90 0.31
PPSurf Full 0.66 0.90 0.30
PPSurf 100NN 0.66 0.90 0.30
PPSurf 200NN 0.67 0.89 0.31

Table 5: Miscellanous Ablation Study. Using the ABC var-noise test set, we
compare PPSURF Full (which uses Merge Sum and Sym Att) to more variants.
The best results per column are marked in bold

Model Chamfer (×100) ⇓ F1 score ⇑ Normal error ⇓
PPSurf Sym Max 1.11 0.90 0.40
PPSurf QPoints 0.67 0.89 0.31
PPSurf Merge Cat 0.66 0.90 0.30
PPSurf Full 0.66 0.90 0.30

• In Merge Cat, we concatenate the features of both branches in-
stead of summing them, which leads to twice the input size for
the final MLP. Results show that this is slightly worse than Full.

• The QPoints variant is the same as Merge Cat, but additionally,
we concatenate query point coordinates to the input of the learned
weighting function f lv . However, this results in a slightly worse
performance than Full and even Merge Cat.

• For the xNN variants, we take the x nearest neighbours for local
sub-sample. Full is equal to 50NN.

4.3. Limitations

Reconstruction times are still non-interactive, due to the need to
evaluate the occupancy at a large number of samples. Possibilities
for speed-ups includemore efficient sampling strategies to use fewer
query points.

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Figure 6: Limitations. Our method has difficulties to recover the
edges of clean point clouds due to training with noisy point clouds.

Figure 7: Limitations. Our method struggles with reconstructions
of large missing areas in the input point cloud since we did not in-
corporate any generative model capabilities.

As our learned priors were trained on noisy data to make PP-
Surf more robust to noise, they also bias the reconstructed sur-
face to some extent towards the distributions learned by the priors.
This results in some loss of accuracy when applied to noise-free
point clouds compared to some of the non-data-driven methods (see
Figure 6). Learning a prior that is specialized to noise-free point
clouds, or including more noise-free point clouds in our training set
would alleviate this issue.

While PPSurf is better than the baselines in filling scan shadows,
it is not a generative method and cannot generate new geometric de-
tail in large missing regions. This limits the size of missing regions
that can be filled with plausible geometry. Combining PPSurf with
a generativemodel would be an interesting direction for futurework.
See Figure 7 for an example of inaccurately filled scan shadows.

5. Conclusion

In this paper, we have introduced PPSurf as a method for surface
reconstruction from raw, unoriented point clouds. In contrast to pre-
vious methods, PPSurf incorporates strong local and global priors
learned from data. Whilst our global prior is based on a point con-
volutional neural network that processes the point cloud as a whole,
fine details are preserved through the local prior based on dense lo-
cal point cloud patches. We have shown in extensive studies that
PPSurf is able to achieve better surface reconstructions than pre-
vious data-driven and non-data-driven methods, being more robust
to noise in the input point cloud and preserving fine details at the
same time.

In the future, we would like to investigate howmodern techniques
borrowed from generative models could improve the obtained re-
construction from sparse point clouds where large parts of the shape
are missing.
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