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Abstract
In this additional material, we have expanded upon our experimentation in greater detail. Firstly, to provide a more precise
assessment of the noise suppression capabilities of our proposed BTRetinex model, we conducted experiments using LOL-v1 and
LOL-v2 datasets. Secondly, as a commonly used no-reference image evaluation metric in low-light image enhancement tasks,
we have included NIQE (Natural Image Quality Evaluator) results for various methods on the MixPG660 dataset. Thirdly,
to analyze the impact of parameters on model performance, we have conducted a parameter study for the BTRetinex model.
Lastly, we performed experiments on the VV dataset, which features high-resolution images, enabling more accessible visual
comparisons. Code, dataset and experimental results are available at https://github.com/YangWeipengscut/BTRetinex.

1. Experiments on the LOL-v1 and LOL-v2 Datasets

We conducted experiments using the LOL-v1 [WWYL18] and LOL-v2 [YWH∗21] datasets, each consisting of 15 and 100 paired test images,
respectively. As our method is unsupervised, we only compared it with other unsupervised methods, namely WVM, Jiep, STAR, PnPRetinex,
ZeroDCE and SCI, using PSNR and SSIM [WBSS04] metrics for evaluating noise suppression performance. Furthermore, since the majority
of images in the LOL dataset have extremely low brightness, to achieve effective brightness enhancement, we set the gamma correction
parameter for all Retinex-based methods to 2.6, instead of the commonly used 2.2.

The model parameters remain consistent with those stated in our paper, with parameters λ1, λ2 and λ3 set to 0.002, 0.005 and 10−6,
respectively. We denote this parameter configuration as "Base". The quantitative results on these two datasets and the visual comparisons are
presented in Table 1, Figure 1, Figure 2 and Figure 3, respectively. In the subsequent text, the numbers highlighted in bold red, bold green
and bold blue correspond to the best, second-best and third-best results, respectively.

As observed from Table 1, under the Base parameter configuration, the proposed BTRetinex model achieves optimal results in both PSNR
and SSIM metrics, indicating its superior noise suppression performance. Concurrently, from Figures 1, 2 and 3, it can be discerned that the
LR3M method exhibits unstable brightness enhancement and excessive smoothing of the enhanced image details. The enhancement results of
WVM, JieP and STAR methods display inadequate or inaccurate brightness enhancement (as evidenced by the black artifacts surrounding the
digits of the clock in Figure 2). Moreover, the enhancement results from the PnPRetinex method exhibit a considerable number of erroneous
red pixels (visible in both Figure 1 and Figure 3).

2. Experiments on the MixPG660 Dataset

In addition to utilizing the ILNIQE, NIQMC and VIF metrics, we integrated the NIQE [MSB12] metric. The NIQE metric is a commonly
used evaluation metric in the field of low-light image enhancement, where a smaller value indicates higher image quality. The quantitative
results on this dataset and visual comparisons are presented in Table 2 and Figure 4, respectively.

As evident from Table 2, learning-based methods such as LLFlow, URetinex and SCI consistently rank first or second in terms of ILNIQE,
NIQMC and NIQE metrics, showcasing favorable results in these evaluation metrics. However, their performance in the VIF metric is
comparatively modest, implying a reduced fidelity of visual information. This tendency is reflected in their visual outcomes, as depicted in
Figure 4. Notably, the SCI method tends to exhibit pronounced over-enhancement, while the URetinex and LLFlow methods often result in
severe color distortion, prominent artifacts, or over-enhancement.
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Table 1: Quantitative comparison on the LOL-v1 and LOL-v2 datasets in terms of PSNR and SSIM.

Dataset LOL-v1 LOL-v2
Metric PSNR↑ SSIM↑ PSNR↑ SSIM↑
WVM 13.148 0.551 15.878 0.568
JieP 13.435 0.567 16.250 0.584

STAR 14.242 0.587 17.150 0.586
LR3M 10.223 0.399 13.411 0.508

PnPRetinex 14.754 0.597 17.463 0.580
ZeroDCE 14.861 0.585 18.059 0.603

SCI 14.784 0.523 17.304 0.555
BTRetinex(Base) 15.291 0.611 18.171 0.621

Figure 1: Visual comparison of various low-light image enhancement methods on an image from the LOL-v1 dataset, including WVM
[FZH∗16], JieP [CXG∗17], STAR [XHR∗20], LR3M [RYCL20], PnPRetinex [LL22], ZeroDCE [GLG∗20] and SCI [MML∗22].

As established in Section 3 through our parameter study, the rationale behind adopting the Base parameter configuration for our proposed
BTRetinex model lies in achieving a harmonious balance between effective noise suppression and compelling visual results. If considering
image evaluation metrics alone, the parameter settings of Case-4 yield improved comprehensive scores for our proposed model. Specifically,
within this context, our model achieves the optimal value in the NIQE metric and ranks second in the ILNIQE metric. Additionally, under
the parameter configurations of Case-7 and Case-8, there is also an observed improvement in the NIQMC and VIF metrics.

3. Parameter Study

In this section, we assess the impact of various values of the regularization parameters, namely λ1, λ2 and λ3, on the performance of the
proposed BTRetinex model. Table 3 presents 8 distinct sets of values for the model’s regularization parameters. Tables 4 and 5 showcase the
quantitative results of the proposed model on the LOL-v1, LOL-v2 and MixPG660 datasets.

In the Base, Case-1, Case-2, Case-3 and Case-4 configurations, we maintained the values of λ1 and λ2 while varying the parameter λ3.
Analyzing the results from the LOL-v2 dataset, which encompasses a larger test image pool (100 paired images), it becomes apparent that
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Figure 2: Visual comparison of various low-light image enhancement methods on an image from the LOL-v1 dataset, including WVM
[FZH∗16], JieP [CXG∗17], STAR [XHR∗20], LR3M [RYCL20], PnPRetinex [LL22], ZeroDCE [GLG∗20] and SCI [MML∗22].

Figure 3: Visual comparison of various low-light image enhancement methods on an image from the LOL-v2 dataset, including WVM
[FZH∗16], JieP [CXG∗17], STAR [XHR∗20], LR3M [RYCL20], PnPRetinex [LL22], ZeroDCE [GLG∗20] and SCI [MML∗22].
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Table 2: Quantitative comparison on the MixPG660 dataset

Metric ILNIQE↓ NIQMC↑ VIF↑ NIQE↓
Input 27.445 4.508 1.000 3.449
WVM 26.153 4.683 1.315 3.315
JieP 25.517 4.732 1.319 3.386

STAR 25.836 4.804 1.212 3.425
LR3M 27.909 4.842 0.782 3.628

PnPRetinex 25.998 4.999 1.520 3.703
ZeroDCE 25.545 4.930 1.260 3.727

SCI 26.875 5.278 1.229 3.956
URetinex 24.008 5.166 1.074 3.597
LLFlow 23.062 5.293 1.171 3.227

BTRetinex(Base) 24.819 4.939 1.328 3.612

Figure 4: Visual comparison of various low-light image enhancement methods on images from the MixPG660 dataset, including WVM
[FZH∗16], JieP [CXG∗17], STAR [XHR∗20], LR3M [RYCL20], PnPRetinex [LL22], ZeroDCE [GLG∗20], SCI [MML∗22], URetinex
[WWZ∗22] and LLFlow [WWY∗22].
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Table 3: Different values of regularization parameters for the proposed BTRetinex model

Parameter λ1 λ2 λ3

BTRetinex(Base) 0.002 0.005 1e-06
Case-1 0.002 0.005 1e-08
Case-2 0.002 0.005 1e-04
Case-3 0.002 0.005 0.001
Case-4 0.002 0.005 0.01
Case-5 0.0002 0.005 1e-06
Case-6 0.02 0.005 1e-06
Case-7 0.002 0.0005 1e-06
Case-8 0.002 0.05 1e-06

Table 4: Parameter study on the LOL-v1 and LOL-v2 datasets in terms of PSNR and SSIM.

Dataset LOL-v1 LOL-v2
Metric PSNR↑ SSIM↑ PSNR↑ SSIM↑

BTRetinex(Base) 15.291 0.611 18.171 0.621
Case-1 13.645 0.449 18.172 0.621
Case-2 13.668 0.473 18.376 0.656
Case-3 15.295 0.639 18.585 0.669
Case-4 15.203 0.632 18.578 0.665
Case-5 13.378 0.457 17.826 0.620
Case-6 15.665 0.592 18.415 0.601
Case-7 15.148 0.595 17.778 0.582
Case-8 13.610 0.465 18.480 0.644

as λ3 increases, the model’s PSNR and SSIM values exhibit an upward trend. This trend indicates an enhanced noise suppression capability
of the model with the increment of λ3. Nevertheless, excessively large λ3 values lead to a loss of image details and adversely affect the VIF
metric on the PG660 dataset, indicating a decline in the visual quality of the enhanced images. Consequently, we adopt the λ3 value of 1.0e-6
from the Base parameter configuration.

In the Base, Case-5 and Case-6 configurations, we maintained the values of λ2 and λ3 while varying the parameter λ1. As evidenced by
the NIQMC and VIF values in Table 5, increasing λ1 primarily serves to enhance the contrast and visual information fidelity of the enhanced
images. However, it is worth noting that excessive λ1 values lead to a loss of image details, manifesting in the lower SSIM value in Case-
6 in Table 4 compared to the SSIM value in the Base configuration. Therefore, we adopt the λ1 value of 0.002 from the Base parameter
configuration.

In the Base, Case-7 and Case-8 configurations, we maintained the values of λ1 and λ3 while varying the parameter λ2. As demonstrated by
the NIQMC and VIF values in Table 5, reducing λ2 primarily enhances the contrast and visual information fidelity of the enhanced images.
However, it is important to note that excessively small λ2 values can lead to a reduction in the noise suppression performance of the model,
as evident in Case-7 in Table 4, where both PSNR and SSIM values are lower than those in the Base configuration. Therefore, we set the
value of λ2 to 0.002 from the Base parameter configuration.

Table 5: Parameter study on the MixPG660 dataset

Metric ILNIQE↓ NIQMC↑ VIF↑ NIQE↓
BTRetinex(Base) 24.819 4.939 1.328 3.612

Case-1 24.868 4.939 1.334 3.610
Case-2 23.983 4.933 1.215 3.459
Case-3 23.735 4.924 1.161 3.262
Case-4 23.774 4.952 1.131 3.207
Case-5 25.182 4.732 1.154 3.795
Case-6 25.132 5.186 1.392 3.542
Case-7 25.184 5.018 1.417 3.631
Case-8 25.049 4.691 1.070 3.503
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4. Experiments on the VV Dataset

To facilitate more effective visual comparisons, experiments were also conducted on the VV dataset [Von17]. The VV dataset comprises
24 of the most challenging images captured during Vassilios Vonikakis’ everyday experiences. Within this dataset, each image showcases a
section that is correctly exposed, alongside another section that exhibits significant under/over-exposure. The images in this dataset possess
a resolution of around 2300×1700. The visual comparisons are presented in Figure 5 and 6. As illustrated in these figures, it is apparent that
our model not only efficiently suppresses noise but also achieves noteworthy improvements in visual quality.

The LR3M method consumes a substantial amount of memory (approximately 51GB) when processing images from the VV dataset.
Furthermore, based on the experimental results obtained from the LOL-v1 and LOL-v2 datasets, it becomes evident that the performance of
this method is subpar, as it tends to smooth out a significant portion of image detail. Therefore, we have chosen not to include the results of
the LR3M method in this section.

Figure 5: Visual comparison of various low-light image enhancement methods on an image from the VV dataset, including ZeroDCE
[GLG∗20], SCI [MML∗22], URetinex [WWZ∗22], LLFlow [WWY∗22], WVM [FZH∗16], JieP [CXG∗17], STAR [XHR∗20] and Pn-
PRetinex [LL22].

Figure 6: Visual comparison of various low-light image enhancement methods on an image from the VV dataset, including ZeroDCE
[GLG∗20], SCI [MML∗22], URetinex [WWZ∗22], LLFlow [WWY∗22], WVM [FZH∗16], JieP [CXG∗17], STAR [XHR∗20] and Pn-
PRetinex [LL22].
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