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Figure 1: Qualitative visualization of two color samples in 256 × 256 × 512 size reconstructed by the proposed MIMU and previous
strong baseline methods. “Meas”,“GT” stands for measurement and ground truth respectively. “MIMU” stands for our proposed method.
LFE [CWK∗20], Phasor [LGLM∗19], LCT [OLW18], SP [WLH∗21], FK [LWO19] and FBP [AGJ17] are baseline methods.

Abstract
Non-line-of-sight (NLOS) imaging can reconstruct hidden objects by analyzing diffuse reflection of relay surfaces, and is po-
tentially used in autonomous driving, medical imaging and national defense. Despite the challenges of low signal-to-noise
ratio (SNR) and ill-conditioned problem, NLOS imaging has developed rapidly in recent years. While deep neural networks
have achieved impressive success in NLOS imaging, most of them lack flexibility when dealing with multiple spatial-temporal
resolution and multi-scene images in practical applications. To bridge the gap between learning methods and physical priors,
we present a novel end-to-end Multi-scale Iterative Model-guided Unfolding (MIMU), with superior performance and strong
flexibility. Furthermore, we overcome the lack of real training data with a general architecture that can be trained in simula-
tion. Unlike existing encoder-decoder architectures and generative adversarial networks, the proposed method allows for only
one trained model adaptive for various dimensions, such as various sampling time resolution, various spatial resolution and
multiple channels for colorful scenes. Simulation and real-data experiments verify that the proposed method achieves better
reconstruction results both in quality and quantity than existing methods.

CCS Concepts
• Computing methodologies → Computational photography;

1. Introduction

Because light travels in straight lines, it is challenging to cap-
ture images of objects that are hidden around corners. To
break this restriction, non-line-of-sight (NLOS) imaging analyzes

the diffuse reflection from a relay wall to image hidden ob-
jects [FVW20, MSS∗19], which has broad applications in many
fields, such as medical imaging, autonomous driving, and robotic
vision [LWK19, SMBG19, SOG18, XST∗18]. With the rapid de-
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velopment of photon-sensitive sensors and imaging algorithms,
most current NLOS imaging techniques utilize inverse physi-
cal models [LZH∗22, LWL∗21] that are constructed with active
or passive lighting and reconstruction algorithms to recover hid-
den scenes [BZT∗15, GWV∗12, LGLM∗19, VWG∗12, WZH∗21,
WLH∗21]. Most recently, deep learning algorithms for NLOS
imaging have received a lot of attention [GCHWI20, CWK∗20].

In most cases, active NLOS imaging surpasses passive one,
since the active methods can collect different kinds of informa-
tion, including intensity, time, and coherence. In order to perform
a high-resolution 3D reconstruction with active methods, a sensi-
tive time-resolved detector is used to detect the light reflected on
the relay surface, hidden objects, and relay surface in sequence.
Then, the collected third-bounce light is analyzed by different opti-
mized algorithms, e.g., backprojection [VWG∗12], inverse meth-
ods [HXHH14, AGJ17], and SPIRAL-3D [WLH∗21] to recon-
struct the hidden scene. Learning based approaches [CWK∗20,
GCHWI20] integrated with physical models have demonstrated
successful results by modeling the underlying physics of NLOS
imaging, while leveraging learned scene priors useful for recon-
structing familiar shapes and visual details. Unfortunately, these
existing approaches produce unsatisfactory results in a fixed time-
spatial resolution setup. In other problems, camera sensors are usu-
ally standard industrial products, the captured measurements thus
are more easily reproduced than NLOS without concerning the set-
ting for physical parameters such as wall size, time resolution and
number of sampling points.

On one hand, due to the high-order loss with distance and envi-
ronmental noise during the light transmitting, NLOS imaging is an
ill-posed problem with low SNR [MSS∗19], making high-quality
reconstruction extremely difficult. Different hidden scenes may
produce the same measurement, which deepens the ill-condition of
the problem. On the other hand, the spatial resolution of the recon-
struction result is limited by the size of the scanning area (wall size)
and the system’s temporal resolution. When the size of the hid-
den scene is large or complex, the spatial resolution will be limited
by the computational complexity. To conquer these limitations, we
introduce an unfolding architecture consisting of an inverse prop-
agation module and a voxel mapping module into a deep neural
network for multi-scale NLOS reconstruction. Specifically, our in-
verse propagation module adapts the iteration process of SPIRAL-
3D [WLH∗21] operator previously used for NLOS reconstruction
with large Poisson noise, and our volume renderer takes the tempo-
ral resolution as an input and uses a condition module to transmit
information about the input features to each stage, thus enabling our
model to be trained under multiple time-spatial resolutions. Fur-
thermore, to enable our model to handle various scenes more ro-
bustly, we adopt a more challenging training dataset with blur and
expect it to serve as a universal dataset in future NLOS research.
Through extensive experiments, we demonstrate that this design
yields superior reconstruction quality for both synthetic data and
real captures.

Specific contributions of this paper are as follows:

• First, we propose a flexible MIMU network for confocal NLOS
(C-NLOS) reconstruction with physical model guided iterative
optimization.

• Second, we develop a multi-scale strategy to promote network
adaptability, which enables the proposed method to reconstruct
C-NLOS with different spatial-temporal resolutions through a
single trained model.

• Finally, extensive experiments demonstrate MIMU’s robustness
when handling various scenarios with state-of-the-art perfor-
mance (including challenging large light spot synthetic and
mainstream real-world data) and attractive running time.

2. Related Work

The objective of NLOS imaging is to retrieve hidden information
about a target scene that cannot be directly observed by a cam-
era. Abramson [Abr78] was the first to show a holographic cap-
ture system for transient imaging, and Kirmani [KHDR09] tempo-
rally resolved light transport measurements capturing short pulses
of light before the global transport reaches steady state, which
was initially proposed. Reconstruction algorithm can be classi-
fied into four main categories [MMP∗22]: backprojection meth-
ods [VWG∗12], wave propagation-based methods [HXHH14], iter-
ative optimization methods [WLH∗21], and geometry-based meth-
ods [XNK∗19]. SPIRAL-3D [WLH∗21] obtains an approximate
solution of the inverse problem with LASSO-type optimization.
The initial step of this method involves modeling the imaging for-
ward model as a Poisson process and then discretizing the transient
function. However, this process is time-consuming, requiring hun-
dreds of iterations. Our objective is to enhance and expedite this
iterative process by optimizing the update of a parametric repre-
sentation.

It can be seen that the conventional methods based on phys-
ical imaging models, are still the mainstream of research in re-
cent years [GCHWI20, HOZ∗19, IH20, ICY∗20, LYP∗22, PDV19,
TSG19, XNK∗19, YHLX21, YLG∗20]. In traditional approaches,
NLOS imaging is constrained by three factors: i) the capabilities
of the imaging setup and illumination (e.g., whether it is active
or passive), ii) the accuracy of the forward imaging models, and
iii) the effectiveness of the reconstruction algorithms. As an illus-
tration, in [WLH∗21], confocal settings and a dual-telescope setup
were utilized to achieve an impressive NLOS imaging range of 1.43
km. Similarly, Liu et al. [LGLM∗19] employed the phasor field to
transform the NLOS imaging model into a LOS imaging model, en-
abling high-quality reconstruction of complex scenes. Another ap-
proach by O’Toole [OLW18] involved assuming a high-order trans-
mission as a convolution with variable parameters, effectively con-
verting the NLOS reconstruction problem into a 3D deconvolution
problem.

However, recent advancements have capitalized on diverse
learning-based approaches to overcome the theoretical and hard-
ware limitations of NLOS reconstruction by leveraging statisti-
cal scene priors learned from extensive datasets. In terms of net-
work design principles, deep learning methods applied in NLOS
imaging can be categorized into two groups: end-to-end net-
works [GCHWI20] and physics-based networks [CWK∗20]. LFE
[CWK∗20] presents a method that learns customized feature em-
beddings for NLOS reconstruction, as well as specific imaging,
classification, and object detection tasks. Deep learning algorithms,
in comparison to traditional algorithms [NBB∗21, PZD∗21], have
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the capacity to comprehensively learn scene priors, automatically
extract features, and successfully reconstruct hidden objects. Our
proposed MIMU draws inspiration from this line of research
[MJY20,MWZ22,WZM21,ZG18] and, for the first time, develops
a robust multi-scale iterative model-guided unfolding (MIMU)
network for C-NLOS reconstruction.

3. Physical Forward Model

Figure 2: A schematic diagram of the C-NLOS imaging system.

The C-NLOS imaging system typically consists of a scanning
pulsed laser and a single photon time-resolved detector, which fo-
cuses on the same points on a diffuse reflective wall. As shown in
Figure 2, the directly illuminated points (ξ,κ,0) on the visible wall
are considered as the sampling points. Then, the first diffuse reflec-
tion ray propagates to the points (x,y,z) ∈ Ω on the hidden object.
φφφ(x,y,z) is the second reflected wave from the object, and after the
third reflections, of which reflective position (ξ,κ,0) is the same
with the first one, a time resolved diffusive intensity d(ξ,κ, t) is re-
ceived by the detector. Here t represents the time of photon flight
between the first reflection and the third reflection. Finally, a three
dimensional (3D) light transient ddd(ξ,κ, t) is measured by an m×m
array sampling. As derived in [OLW18], the 3D continuous signal
is formulated as

ddd(ξ,κ, t) =∫∫∫
Ω

1
rrr4(x−ξ,y−κ,z)φφφ(x,y,z)δ(2rrr− ct)dxdydz, (1)

rrr(x−ξ,y−κ,z) =
√

(x−ξ)2 +(y−κ)2 + z2,

where the Dirac delta function δ models the light propagation, c is
the speed of light. Note that rrr is the distance between the sampling
points and the corresponding points on the surface of the hidden ob-
ject. Combining all the detected photon arrival events into a single
histogram results in a discrete inhomogeneous Poisson-distributed
random variable as

yyy ∼ Poisson(Aφ̄φφ+bbb), (2)

where yyy ∈ Rnxnynt represents the discretized measurement by scan-
ning point (nx,ny) with respect to the discretized time bin nt . A ∈
Rnxnynt×nxnynz is the discretized version of the volumetric Albedo

model in (1). φ̄φφ ∈ Rnxnynz represents the discretized Albedo of the
hidden object. bbb ∈ Rnxnynt denotes the dark count of the detector
and background noise [BVT∗16]. Since solving φ̄φφ is an ill-posed
problem, we reconstruct the hidden object by considering it as a
regularized convex optimization problem.

4. Proposed MIMU Network

In this section, we begin by providing a comprehensive overview
of the conventional iterative reconstruction algorithm SPIRAR-
3D [WLH∗21]. Subsequently, we shift our attention to the MIMU
network, which serves as the fundamental component of the pro-
posed framework. Lastly, we delve into specific implementation
details.

4.1. SPIRAR-3D for C-NLOS

SPIRAR-3D [WLH∗21] obtains an approximate solution of the in-
verse problem with LASSO optimization [Tib96] with various reg-
ularization. The proposed method first regards the imaging forward
model as a Poisson process in (2) and subsequently obtains the
probability function:

p
(
yyy | Aφ̄φφ+bbb

)
= ∏i=1

(eeeT
i Aφ̄φφ+βββ)yi

yi! exp(−eeeT
i Aφ̄φφ−βββ), (3)

where the background noise bbb is considered in the Poisson process
with βββ [BVT∗16]. eeei is the ith canonical basis unit vector. Denoting
fff as the estimation of φ̄φφ, the negative Poisson log-likelihood of (3)
is given by

F( fff ) = 1T A fff −∑
m
i=1 yi log

(
eeeT

i A fff +βββ

)
, (4)

∇F( fff ) = AT 1−∑
m
i=1

yi
eeeT

i A fff+βββ
AT eeei, (5)

∇2F( fff ) = AT
[

∑
m
i=1

yi

(eeeT
i A fff+βββ)2 eeeieeeT

i

]
A, (6)

where 1 is a vector of ones and log(yi!) is neglected. In a sequen-
tial quadratic approximation [HMW12], for iteration k, we compute
a separable quadratic approximation to (4) using its second-order
Taylor series approximation at fff k. ∇F( fff ) is the gradient matrix
and the Hessian Matrix ∇2F( fff ) will be approximated by an iden-
tity matrix αkI, with step length αk > 0 chosen by Barzilai-Borwein
method [HMW12], similar to the second-order Taylor series ap-
proximation of (4) in [WNF09] and then yields

Fk( fff ) = F( fff k)+( fff − fff k)T∇F( fff k)+ αk
2 ∥ fff − fff k∥2

2. (7)

Then we can translate it to an optimized subproblem:

sssk = fff k − 1
αk
∇F( fff k), (8)

fff k+1 = argmin
fff∈Rn

1
2

∥∥∥ fff − sssk
∥∥∥2

2
+ τ

αk
pen( fff ) s.t. fff ≥ 0, (9)

where sssk is the gradient descent. The regularization penalty is con-
sidered as the penalty term pen( fff ) with coefficient τ.

4.2. Unfolding the Iterative Algorithm

Due to the above optimized iteration progress, the method requires
an interpretable forward and inverse model. Nevertheless, the real
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Figure 3: Illustration of the proposed MIMU framework, which includes two parts: (a) Initialization and (b) Reconstruction. (c) MGGD
module in each stage. (d) Each PVMM module composes of downsampling blocks and unsampling blocks.

transient forward process is hardly modeled due to the uncer-
tainty with the temporal and spatial variant distribution [HDY∗21,
SCZ∗20]. Inspired by SPIRAR [HMW12] with a fixed 3D total
variation denoiser, unfolding method [MJY20, MWZ22, WZM21,
ZG18] trained jointly in all stages by optimizing the each denoiser
at the same time. Specifically, we construct the unfolding network
with n concatenated stages with respect to n iterations for optimiz-
ing fff k, shown in Figure 3. The proposed network includes the fol-
lowing modules:

• Model-Guided Gradient Descent (MGGD) works as the gradient
descent operation in (11).

• Pyramid Voxel Mapping Module (PVMM) is a trainable opera-
tor which works to improve the k-th 3D denoiser module Fk

A in
SPIRAR.

• Unlike various regularizer design in the primitive SPIRAR, we
utilize the same scalable U-Net framework in all stages to gen-
erate the spatially shift-invariant filters. According to (12), we
filter the sssk by the generated 3D filters for updating the fff k+1.

In the resampling and initialization section, shown in Fig-
ure 3(a), the matrix M is from resampling operator proposed in
LCT [OLW18] code, which means changing of variables in the in-
tegral by z =

√
u and v = (tc/2)2. C-NLOS forward model can be

expressed as a 3D convolution yyys after resampling.

Subsequently we formulate the problem as a regularized Least-
Square problem, of which nonlocal extension is beneficial to im-
proving the incoherence between sampling matrix and L1 sparse
dictionaries under the framework of model-based NLOS recon-
struction. (9) can be specified as:

fff k+1 = argmin
fff∈Rn

1
2

∥∥∥ fff − sssk
∥∥∥2

2
+ τ

αk
|| fff ||1. (10)

The proximal mapping in SPIRAR is derived as a soft thresholding

function and in the proposed MIMU this step of iteration is updated
by

sssk = fff k − 1
αk

AT (yyys −A fff k), (11)

fff k+1 = Fk
A(sss

k), (12)

where Fk
A(·) is implemented by the proposed PVMM.

4.3. Network Structure

We propose a pyramid mapping method following the model-
guided gradient descent process to allow one trained model appli-
cable for various input sizes shown in Figure 3. Subsequently, we
choose corresponding loss function to learn multiple tasks such as
NLOS intensity image reconstruction and depth estimation. In or-
der to intuitively illustrate how the proposed MIMU works, we plot
the intermediary results in the bottom of Figure 3(b).

Model-Guided Gradient Descent (MGGD) In the discretized
Poisson function (2), A is hard to estimate precisely due to the
Gaussian distribution and jitter distribution in spatial and tempo-
ral domain respectively. In order to conquer the divergence in it-
erations, λk is set as a trainable parameter to control the step
size in each stage, instead of the Barzilai-Borwein method used
in [HMW12], which reduces amounts of auxiliary variable and
memory occupation. A 3D interpolation layer with adaptive scal-
ing factor is further adopted in each MGGD to increase the spatial-
temporal resolutions of various feature map. The gradient descent
in our proposed module can be expressed as:

sssk = fff k −λkAT (yyys −A fff k). (13)

Pyramid Voxel Mapping Module (PVMM) After caculating the
optimized gradient, the goal of the next step is to make fff k closer to
the desired voxel feature mapping fff k+1. For updating the parameter
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fff k+1, we replace the previous TV-denoiser with the module shown
in Figure 3(d). This lightweight U-Net based module includes two
down-sampling blocks (encoding) and two up-sampling blocks (de-
coding), which deals with multi-scale feature maps due to redun-
dancies of natural scenes. Each of them consists of two Convolu-
tional layers (3×3 filters) or Trans-Conv layers (3×3 filters) with
ReLU nonlinear activation function. The two Max Pooling layers
are utilized to down-sample the voxel maps with a scaling factor of
2 and we noticed that the max pooling works better than average
pooling in our problem, which ensures the flexibility of the whole
framework and enhances the scalability for multi-scale input. The
channel numbers of the voxel features in the PVMM are 32, 64,
128, 64 and 32, respectively. In order to alleviate the information
loss in the down-sampling process, the skip connection (concate-
nation operation with the voxel feature maps in the same spatial di-
mension) between down-sampling blocks and up-sampling blocks
are set as shown in Figure 3(d). The output voxel feature of is also
added with the voxel feature map generated by MGGD module.
Then the updated fff k+1 is sent to the subsequent stage to refine the
voxel feature maps by fff k+1 = Fk

A(sss
k). Ablation study in Section

5.5 shows that the PVMM module has advantages in adapting to
various time resolution measurement, reducing dependence on the
accuracy of the provided physical parameters.

The motivation of PVMM is to transform the voxel feature map-
ping to temporal measurement domain and shrink the value of each
voxel rapidly with the help of ReLU and tanh nonlinear layers,
which consumes hundreds of iterations to converge in the prim-
itive SPIRAR method. Compared to original TV-based denoiser,
PVMM performs a highway for data propagation without numer-
ous loop computation, which makes it more efficient. We will ver-
ify the computing efficiency by comparing the running times later.
We consider the PVMM module in each stage to play the role of
mitigating the distortion introduced by the signal domain transfor-
mation model. Considering the gradient vanishing problem and in-
trinsic information loss such as edges and textures in MIMU frame-
work, the long pathways connecting the encoder layers of different
stages are designed to reuse multiple hidden states. In this way,
voxel feature maps generated from each stage can preserve refined
spatial information, leading to an spatially adaptive feature map-
ping operation.

5. Results

In this section, we first describe some implementation details of
our proposed algorithm and then present the simulation and real
data results to demonstrate the superiority of MIMU. At last, an
ablation study is also conducted to evaluate each module.

5.1. Implementation Details

Training and testing datasets For the multi-scale C-NLOS recon-
struction, our training dataset consists of 3000 generated measure-
ment with corresponding intensity image and depth 256×256 pixel
resolution 2D images, which involves various bikes 3D model.
We also did data augmentation by scaling, shifting and rotation the
3D model among the samples. The real data include 6 scenes solely
provided in [CWK∗20]. We randomly split the synthetic dataset in
training and testing pairs with 7 : 3.

Figure 4: Intensity image prediction in 512× 512× 1024, 256×
256×512 and 128×128×512 size.

Loss Function Considering the albedo and depth information in
each voxel of NLOS, the loss function is the combination of
them, not like discrepancy and constraint loss used before [ZG18].
Specifically, the loss function is various norm distance between the
ground truth and output of the last stage K

L=
∥∥∥ fff ∗albedo − fff K

albedo

∥∥∥
p
+µ

∥∥∥ fff ∗depth − fff K
depth

∥∥∥
p
, (14)

where fff ∗albedo and fff ∗depth is the 2D ground truth of albedo and depth
value generated from 3D voxel. fff K

albedo and fff K
depth are generated

from the output 3D voxel of the last stage. p is selected as 1 or
2. Here we take the maximums for each pixel of the 3D voxel as
the 2D albedo value, and their indexes multiplying a corresponding
distance coefficient as the 2D depth value. We adopts mixed loss
function, such as L1 plus L2 loss, but the convergence results re-
mains a stabilization error especially in depth maps in our model
when p = 1. We set µ = 1 and p = 2 for the final training.

Training Strategy The proposed method is implemented by the
pytorch 1.7. The optimizer is initialized with Adam and a digressive
learning rate from 0.01 to 0.00001. We utilize a Nvidia GeForce
RTX 3090 to train the proposed model consuming 2 days to make
the training loss converge. We also try to add the batch normaliza-
tion layer or dropout strategy to facilitate the training progress.

5.2. Results on Simulated Datasets

Gray Scale In order to compare the C-NLOS reconstruction re-
sults fairly in the same size with existing methods, we evaluate
the performance in quality and quantity on the same test data in
256× 256× 512 size, 32ps time resolution and 2m wall size. In
addition to these large scale dataset in Figure 4, we further test on
a small scale datasets with large light spot by rendering MNIST in
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size of 64×64×1024, 8ps time resolution and 0.7m wall size. The
results are consistent with the common dataset.

Figure 5: Intensity image prediction on the blur MNIST dataset in
64×64×1024 size.

Methods MIMU LFE [CWK∗20] SP [WLH∗21] FBP [AGJ17] LCT [OLW18] FK [LWO19]
PSNR(dB) 28.77 27.54 18.34 17.63 19.02 23.51

SSIM 0.92 0.89 0.76 0.62 0.85 0.87
RMSE 0.06 0.08 0.65 0.73 0.59 0.54

TIME(S) 1.12 0.96 - 0.65 0.89 1.63

Table 1: Quantitative results on the motorbikes testing dataset

We quantitatively evaluate the results among these baseline ap-
proaches in Table 1, where we can see that the accuracy of the
proposed MIMU exceeds existing methods, although FBP is the
simplest and fastest method.

Challenging Blur Figure 5 shows the reconstruction results on the
synthetic MNIST augmented by the spatial blur and temporal jitter,
which is proposed in a long distance NLOS system [WLH∗21]. The
forward model (1) is updated to (15). The 3D convolution operation
is shown in Figure 6, and more details in supplementary material
(SM).

ddd(ξ,κ, t) = gxy∗xygt∗t∫∫∫
Ω

1
rrr4(x−ξ,y−κ,z)φφφ(x,y,z)δ(2rrr− ct)dxdydz,

(15)

where gt = exp(− t2

2σ2
t
), gxy = exp(− ξ

2

2σ2
x
− κ

2

2σ2
y
) represent temporal

and spatial distribution modeled by Gaussian function with respect
to standard deviation σt = 60ps and σx = σy = 5/64m respectively.

In order to generate 3D dataset with depth from the 2D MNIST,
we set every number as a plane randomly fixed in the space 0m to
1.2m from the reflective wall. Since there is no pretrained model

Figure 6: The augmented operation on MNIST dataset.

Figure 7: Depth prediction in 512×512×1024, 256×256×512
and 128 × 128 × 512 size. “GT” stands for depth ground truth.
“MIMU” stands for our proposed method.

Figure 8: Depth error heatmap of the public motorbike dataset.
1st row: ground truth of depth map. 2nd row: depth error map of
MIMU. 3rd row: depth error map of LCT.

of LFE in this size, we compare with two main traditional meth-
ods. The proposed MIMU retains good quality consistently in both
motorbike dataset without blur, shown in Figure 4 and blurred 3D
MNIST dataset, shown in Figure 5.

Colorful Scale The proposed MIMU is able to retrieve not only
the sharp shapes of the objects but also the colorful fine texture
and details, as shown in Figure 1. All methods adopt the same
physical parameters, specially in the iterative optimization method
SPIRAL-3D, the iteration is set to 150 due to much more time
cohnsuming than other methods. For the learning based method
LFE, FK is adopted as its feature propagation module, which man-
ually performs better than LCT and Phasor modules. Uniformly,
the final results from all methods are normalized in the same way,
as the SPIRAL-3D (SP) reconstruction appears brighter than the
others. We note that the proposed MIMU, LFE and LCT are able
to achieve decent geometric performance while LCT causes distor-
tion in color. This indicates the proposed MIMU’s scalability and
robustness in multiple spectral channels. More importantly, the pro-
posed MIMU retains sharper edges and finer texture on the motor-
bikes. Simultaneously, the proposed MIMU avoids noise and arti-
facts on the background that appear in other methods. Interestingly,
FK misses the dark part of the reconstructed object due to the over-
sensitivity of the illumination condition.

RMSE Evaluation As shown in Figure 7, compared with the
ground truth, the proposed method generates the least distance er-
ror and sharpest edges. The RMSE in Table 1 shows that it es-
pecially outperforms existing methods thanks to the albedo-depth
joint training strategy.

Error Heatmap Besides RMSE used in [MMP∗22], we also test
the model with error map [CWK∗20] in Figure 8 and SM. With
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Figure 9: Reconstructions from real measurements at 32ps time resolution. “MIMU” stands for proposed method. LFE [CWK∗20], Pha-
sor [LGLM∗19], LCT [OLW18], FK [LWO19], FBP [AGJ17] and SP [WLH∗21] are baseline methods.

the help of the bottom color bar, we can see that the error dis-
tributions vary spatially and align with the edges and textures of
the objects. Assisted by the long pathways connecting different
stages’ encoder layers, the entire network emphasizes the edges
and textures. A quantitative assessment of testing simulation depth
maps are shown in residual error map between reconstructed depth
map and ground truth depth map. Compared with other methods,
the proposed method generates the lowest distance error. Figure 8
demonstrates that it particularly surpasses existing methods in the
background region, which can be attributed to the denoising mod-
ule FAk(·) in each stage. More details of the experiments are pro-
vided in the SM.

5.3. Results on Real Data

The qualitative results in Figure 9 is a common captured data pro-
vided in [LWO19] adopted by existing mainstream methods con-
sisting of multiple distances, scenes, illumination and challenging
mirror surfaces, which is sufficient to verify the practical perfor-
mance.

The proposed MIMU is trained exclusively on synthetic bike
dataset and performs well to the real measurements provided by
the system [LWO19]. To ensure a fair comparison with existing
methods, the 3D object model used for training, which was down-
loaded from a Google Drive link, is identical to that of LFE. Fig-
ure 9 validates that the proposed MIMU is able to restore hidden
details, high-frequency texture information and weak illumination
part, which achieves superior results in terms of both quality and
quantity. In comparison to previous works, the proposed MIMU
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Figure 10: Performance of reconstruction on sampling time resolution disturbance. In each method, Left column: data with time resolution
= 31ps, Right column: data with time resolution = 33ps.

network reconstructs the surface of the hidden object with sharper
and cleaner details, particularly in scenes with multiple objects. It
effectively eliminates the Gaussian noise from the background and
the Poisson noise introduced from the detector, as demonstrated by
the reconstructed resolution chart presented in the Figure 9. More-
over, the proposed MIMU method faithfully restores the bike front
wheel, the dragon tail, and the adjacent blocks of the discoball,
surpassing other learning-based or feed-forward methods. MIMU
leverages the 3D spatial prior learned from the training dataset, en-
hancing the model’s ability to interpret hidden information in com-
plex scenes. For instance, in the bottom row of Figure 9, the statue
is easily overlooked by existing methods due to its greater distance
from other foreground objects. Our multi-stage structure takes ad-
vantage of dynamic weight adjustment in each stage, enhancing the
perception of weak signals.

Additionally, it corrects the reflection error on object surfaces,
ensuring that the white resolution chart appears brighter than the
book on the bookshelf. When dealing with the challenging dis-
coball, the proposed MIMU successfully distinguishes the specular
blocks, demonstrating its robustness in handling diverse surfaces.

5.4. Robustness on Time Resolution

Considering the sensor errors in the real data, we evaluate the per-
formance of the proposed MIMU at two different sampling time
resolutions, which are different from the training settings. Figure
10 shows the results for four scenes. We compare the performance

of two learning-based methods (MIMU, LFE) and two geometric
methods (LCT, Phasor). The results demonstrate that the proposed
MIMU achieves stable reconstruction even when the time resolu-
tion of the measurements differs from the parameters used during
training, thereby validating its robustness against temporal inter-
ference. Another interesting insight is that the non learning-based
method, such as LCT and Phasor, have fault tolerance for slight
time resolution error caused by detector error. However, the per-
formance of the LFE method significantly deteriorates as the time
resolution varies under the same conditions. The MIMU, which
leverages multiple stages including geometric propagation instead
of relying on fixed learning priors, exhibits tolerance to parameter
changes during information recovery.

5.5. Ablation Study

In order to investigate the behaviour of stage number and long path-
way among multiple stages. We implement two groups of abla-
tion studies to control variable. The top table shows that multiple
stages of MIMU architecture improves performance in PSNR. As
mentioned in the paper, the spatial resolution of the test dataset is
256×256.

Number of stages. The Table 2 shows how stages’ number of
MIMU method influences the performance. We can find that the
performance increases with the larger number of stages, demon-
strating the effectiveness of the proposed MIMU method. Our mul-
tiple stages structure takes advantages of the dynamic adjustment
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Stages 2 3 4 8

PSNR(dB) 25.5036 28.7724 28.8753 29.1893

Table 2: Ablation study of the stage number.

Mode Proposed w/o Pathway w/o Shortcut

PSNR(dB) 28.7724 28.0175 28.0387

Table 3: Ablation study of different connecting mechanism.

with corresponding weights in different stages to enhance the per-
ception of the weak signal. By making a trade-off between perfor-
mance and computational complexity, we employ 3 stages in our
proposed network.

Pathway Design. As illustrated in Table 3, to verify the effective-
ness of the long pathways connecting among different stages’ en-
coder layers, we remove it from the proposed MIMU method, rep-
resented as “w/o Pathway". Additionally, we investigate the effec-
tiveness of the shortcut in PVMM module in each stage by remov-
ing it, represented as “w/o Shortcut" in Table 3. The performance
degradation demonstrates the positive effect of these designs, and
it is evident that the long pathways contribute more to the final re-
sults.

Backbone Comparison. Since MGGD integrated with SPIRAR is
irreplaceable, we test different backbones in PVMM in Table 4.
We also replace PVMM with PnP framewor [VBW13] for compar-
ison, which has been demonstrated in multiple image restoration
tasks [ZLZ∗22, ZZZ19, YLSD20].

Backbone Proposed VDSR [KLL15] VGG16 [SZ15] PnP [TDV20] MAE [HCX∗22]

PSNR(dB) 28.7724 27.8352 25.4581 24.0384 22.5920

Table 4: Comparison of various light backbone in PVMM.

5.6. Memory and Runtime

We implement all experiments on an NVIDIA GeForce RTX 3090
GPU. The inference process of the proposed MIMU consumes
about 5GB of GPU memory, which is significantly lower than the
feed-forward methods. The runtime of each method is listed in Ta-
ble 1.

6. Discussion and Conclusion

We have proposed a robust MIMU architecture method to closely
integrate the iterative optimization and learning prior for versa-
tile NLOS reconstruction tasks, such as 2D image reconstruction,
depth map estimation and colorful image recovery. Visual results
and quantity evaluation demonstrate that the proposed MIMU con-
sistently outperforms existing learning-based, feed-forward and it-
erative optimization baseline methods.

The main advancement of MIMU benefits from the multiple con-
catenated stages comparing existing deep learning method. Specif-
ically, LFE [CWK∗20] takes physical prior one time and Feed-
Forward [GCHWI20] is an end-to-end network without physical

model, which tends to generate unsatisfactory results with temporal
disturbance due to a local optimized solution. Our MIMU method
plays different roles with corresponding physical prior in different
stages, which guides the reconstruction convergence closer to the
ground truth step by step.

Simulator used to generate training dataset inevitably mis-
matches real physical process and affects the performance of
learning-based methods on experimental data. In the future, we will
design simulators closer to real physical process to bridge this gap.

References

[Abr78] ABRAMSON N.: Light-in-flight recording by holography.
Opt. Lett. 3, 4 (Oct. 1978), 121–123. Publisher: Optica Publish-
ing Group. URL: https://opg.optica.org/ol/abstract.
cfm?URI=ol-3-4-121, doi:10.1364/OL.3.000121. 2

[AGJ17] ARELLANO V., GUTIERREZ D., JARABO A.: Fast back-
projection for non-line of sight reconstruction. In ACM SIGGRAPH
2017 Posters (Los Angeles California, July 2017), ACM, pp. 1–
2. URL: https://dl.acm.org/doi/10.1145/3102163.
3102241, doi:10.1145/3102163.3102241. 1, 2, 6, 7

[BVT∗16] BRONZI D., VILLA F., TISA S., TOSI A., ZAPPA F.: Spad
figures of merit for photon-counting, photon-timing, and imaging appli-
cations: A review. IEEE Sensors Journal 16, 1 (2016), 3–12. doi:
10.1109/JSEN.2015.2483565. 3

[BZT∗15] BUTTAFAVA M., ZEMAN J., TOSI A., ELICEIRI K., VEL-
TEN A.: Non-line-of-sight imaging using a time-gated single photon
avalanche diode. Optics express 23, 16 (2015), 20997–21011. 2

[CWK∗20] CHEN W., WEI F., KUTULAKOS K. N., RUSINKIEWICZ S.,
HEIDE F.: Learned feature embeddings for non-line-of-sight imaging
and recognition. ACM Transactions on Graphics 39, 6 (Dec. 2020),
1–18. URL: https://dl.acm.org/doi/10.1145/3414685.
3417825, doi:10.1145/3414685.3417825. 1, 2, 5, 6, 7, 9

[FVW20] FACCIO D., VELTEN A., WETZSTEIN G.: Non-line-of-sight
imaging. Nature Reviews Physics 2, 6 (2020), 318–327. 1

[GCHWI20] GRAU CHOPITE J., HULLIN M. B., WAND M., ISERING-
HAUSEN J.: Deep non-line-of-sight reconstruction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2020), pp. 960–969. 2, 9

[GWV∗12] GUPTA O., WILLWACHER T., VELTEN A., VEERARAGHA-
VAN A., RASKAR R.: Reconstruction of hidden 3d shapes using diffuse
reflections. Optics express 20, 17 (2012), 19096–19108. 2

[HCX∗22] HE K., CHEN X., XIE S., LI Y., DOLLÁR P., GIRSHICK
R.: Masked autoencoders are scalable vision learners. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2022), pp. 16000–16009. 9

[HDY∗21] HUANG T., DONG W., YUAN X., WU J., SHI G.: Deep
Gaussian Scale Mixture Prior for Spectral Compressive Imaging. In
2021 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR) (Nashville, TN, USA, June 2021), IEEE, pp. 16211–
16220. URL: https://ieeexplore.ieee.org/document/
9578572/, doi:10.1109/CVPR46437.2021.01595. 4

[HMW12] HARMANY Z. T., MARCIA R. F., WILLETT R. M.:
This is SPIRAL-TAP: Sparse Poisson Intensity Reconstruction ALgo-
rithms—Theory and Practice. IEEE Transactions on Image Processing
21, 3 (Mar. 2012), 1084–1096. Conference Name: IEEE Transactions on
Image Processing. doi:10.1109/TIP.2011.2168410. 3, 4

[HOZ∗19] HEIDE F., O’TOOLE M., ZANG K., LINDELL D. B., DIA-
MOND S., WETZSTEIN G.: Non-line-of-sight imaging with partial oc-
cluders and surface normals. ACM Transactions on Graphics (ToG) 38,
3 (2019), 1–10. 2

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://opg.optica.org/ol/abstract.cfm?URI=ol-3-4-121
https://opg.optica.org/ol/abstract.cfm?URI=ol-3-4-121
https://doi.org/10.1364/OL.3.000121
https://dl.acm.org/doi/10.1145/3102163.3102241
https://dl.acm.org/doi/10.1145/3102163.3102241
https://doi.org/10.1145/3102163.3102241
https://doi.org/10.1109/JSEN.2015.2483565
https://doi.org/10.1109/JSEN.2015.2483565
https://dl.acm.org/doi/10.1145/3414685.3417825
https://dl.acm.org/doi/10.1145/3414685.3417825
https://doi.org/10.1145/3414685.3417825
https://ieeexplore.ieee.org/document/9578572/
https://ieeexplore.ieee.org/document/9578572/
https://doi.org/10.1109/CVPR46437.2021.01595
https://doi.org/10.1109/TIP.2011.2168410


10 of 11 X. Su / Multi-scale Iterative Model-guided Unfolding Network for NLOS Reconstruction

[HXHH14] HEIDE F., XIAO L., HEIDRICH W., HULLIN M. B.: Dif-
fuse Mirrors: 3D Reconstruction from Diffuse Indirect Illumination Us-
ing Inexpensive Time-of-Flight Sensors. In 2014 IEEE Conference on
Computer Vision and Pattern Recognition (June 2014), pp. 3222–3229.
ISSN: 1063-6919. doi:10.1109/CVPR.2014.418. 2

[ICY∗20] ISOGAWA M., CHAN D., YUAN Y., KITANI K., O’TOOLE
M.: Efficient non-line-of-sight imaging from transient sinograms. In
European Conference on Computer Vision (2020), Springer, pp. 193–
208. 2

[IH20] ISERINGHAUSEN J., HULLIN M. B.: Non-line-of-sight recon-
struction using efficient transient rendering. ACM Transactions on
Graphics (ToG) 39, 1 (2020), 1–14. 2

[KHDR09] KIRMANI A., HUTCHISON T., DAVIS J., RASKAR R.:
Looking around the corner using transient imaging. In 2009 IEEE 12th
International Conference on Computer Vision (2009), IEEE, pp. 159–
166. 2

[KLL15] KIM J., LEE J. K., LEE K. M.: Accurate image
super-resolution using very deep convolutional networks. CoRR
abs/1511.04587 (2015). URL: http://arxiv.org/abs/1511.
04587, arXiv:1511.04587. 9

[LGLM∗19] LIU X., GUILLÉN I., LA MANNA M., NAM J. H., REZA
S. A., HUU LE T., JARABO A., GUTIERREZ D., VELTEN A.: Non-
line-of-sight imaging using phasor-field virtual wave optics. Nature 572,
7771 (2019), 620–623. 1, 2, 7

[LWK19] LINDELL D. B., WETZSTEIN G., KOLTUN V.: Acoustic non-
line-of-sight imaging. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2019), pp. 6780–6789. 1

[LWL∗21] LIU X., WANG J., LI Z., SHI Z., FU X., QIU L.: Non-line-
of-sight reconstruction with signal–object collaborative regularization.
Light: Science & Applications 10, 1 (2021), 1–20. 2

[LWO19] LINDELL D. B., WETZSTEIN G., O’TOOLE M.: Wave-based
non-line-of-sight imaging using fast f-k migration. ACM Transactions
on Graphics 38, 4 (July 2019), 116:1–116:13. URL: https://doi.
org/10.1145/3306346.3322937, doi:10.1145/3306346.
3322937. 1, 6, 7

[LYP∗22] LIU P., YU Y., PAN Z., PENG X., LI R., WANG Y., YU J., LI
S.: Hiddenpose: Non-line-of-sight 3d human pose estimation. In 2022
IEEE International Conference on Computational Photography (ICCP)
(2022), IEEE, pp. 1–12. 2

[LZH∗22] LIU J., ZHOU Y., HUANG X., LI Z.-P., XU F.: Photon-
efficient non-line-of-sight imaging. IEEE Transactions on Computa-
tional Imaging 8 (2022), 639–650. 2

[MJY20] MENG Z., JALALI S., YUAN X.: GAP-net for Snapshot Com-
pressive Imaging, Dec. 2020. arXiv:2012.08364 [eess]. URL: http:
//arxiv.org/abs/2012.08364. 3, 4

[MMP∗22] MU F., MO S., PENG J., LIU X., NAM J. H., RAGHAVAN
S., VELTEN A., LI Y.: Physics to the Rescue: Deep Non-line-of-sight
Reconstruction for High-speed Imaging, Aug. 2022. arXiv:2205.01679
[cs, eess]. URL: http://arxiv.org/abs/2205.01679. 2, 6

[MSS∗19] MAEDA T., SATAT G., SWEDISH T., SINHA L., RASKAR
R.: Recent advances in imaging around corners. arXiv preprint
arXiv:1910.05613 (2019). 1, 2

[MWZ22] MOU C., WANG Q., ZHANG J.: Deep Generalized
Unfolding Networks for Image Restoration. In 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR)
(New Orleans, LA, USA, June 2022), IEEE, pp. 17378–17389. URL:
https://ieeexplore.ieee.org/document/9878586/,
doi:10.1109/CVPR52688.2022.01688. 3, 4

[NBB∗21] NAM J. H., BRANDT E., BAUER S., LIU X., RENNA M.,
TOSI A., SIFAKIS E., VELTEN A.: Low-latency time-of-flight non-line-
of-sight imaging at 5 frames per second. Nature communications 12, 1
(2021), 1–10. 2

[OLW18] O’TOOLE M., LINDELL D. B., WETZSTEIN G.: Confocal
non-line-of-sight imaging based on the light-cone transform. Nature 555,

7696 (Mar. 2018), 338–341. URL: http://www.nature.com/
articles/nature25489, doi:10.1038/nature25489. 1, 2,
3, 4, 6, 7

[PDV19] PEDIREDLA A., DAVE A., VEERARAGHAVAN A.: Snlos: Non-
line-of-sight scanning through temporal focusing. In 2019 IEEE Interna-
tional Conference on Computational Photography (ICCP) (2019), IEEE,
pp. 1–13. 2

[PZD∗21] PEI C., ZHANG A., DENG Y., XU F., WU J., DAVID U., LI
L., QIAO H., FANG L., DAI Q.: Dynamic non-line-of-sight imaging
system based on the optimization of point spread functions. Optics Ex-
press 29, 20 (2021), 32349–32364. 2

[SCZ∗20] SOLOMON O., COHEN R., ZHANG Y., YANG Y., HE Q.,
LUO J., VAN SLOUN R. J. G., ELDAR Y. C.: Deep Unfolded
Robust PCA With Application to Clutter Suppression in Ultrasound.
IEEE Transactions on Medical Imaging 39, 4 (Apr. 2020), 1051–
1063. URL: https://ieeexplore.ieee.org/document/
8836615/, doi:10.1109/TMI.2019.2941271. 4

[SMBG19] SAUNDERS C., MURRAY-BRUCE J., GOYAL V. K.: Com-
putational periscopy with an ordinary digital camera. Nature 565, 7740
(2019), 472–475. 1

[SOG18] SMITH B. M., O’TOOLE M., GUPTA M.: Tracking multiple
objects outside the line of sight using speckle imaging. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(2018), pp. 6258–6266. 1

[SZ15] SIMONYAN K., ZISSERMAN A.: Very deep convolutional net-
works for large-scale image recognition. In 3rd International Confer-
ence on Learning Representations (ICLR 2015) (2015), Computational
and Biological Learning Society, pp. 1–14. 9

[TDV20] TASSANO M., DELON J., VEIT T.: Fastdvdnet: Towards real-
time deep video denoising without flow estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2020), pp. 1354–1363. 9

[Tib96] TIBSHIRANI R.: Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society: Series B (Methodolog-
ical) 58, 1 (1996), 267–288. 3

[TSG19] TSAI C.-Y., SANKARANARAYANAN A. C., GKIOULEKAS I.:
Beyond volumetric albedo–a surface optimization framework for non-
line-of-sight imaging. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2019), pp. 1545–1555. 2

[VBW13] VENKATAKRISHNAN S. V., BOUMAN C. A., WOHLBERG
B.: Plug-and-play priors for model based reconstruction. In 2013 IEEE
Global Conference on Signal and Information Processing (2013), IEEE,
pp. 945–948. 9

[VWG∗12] VELTEN A., WILLWACHER T., GUPTA O., VEERARAGHA-
VAN A., BAWENDI M. G., RASKAR R.: Recovering three-dimensional
shape around a corner using ultrafast time-of-flight imaging. Nature
Communications 3, 1 (Jan. 2012), 745. URL: http://www.nature.
com/articles/ncomms1747, doi:10.1038/ncomms1747. 2

[WLH∗21] WU C., LIU J., HUANG X., LI Z.-P., YU C., YE J.-T.,
ZHANG J., ZHANG Q., DOU X., GOYAL V. K., XU F., PAN J.-W.:
Non–line-of-sight imaging over 1.43 km. Proceedings of the National
Academy of Sciences 118, 10 (Mar. 2021), e2024468118. URL: https:
//pnas.org/doi/full/10.1073/pnas.2024468118, doi:
10.1073/pnas.2024468118. 1, 2, 3, 6, 7

[WNF09] WRIGHT S. J., NOWAK R. D., FIGUEIREDO M. A. T.: Sparse
reconstruction by separable approximation. IEEE Transactions on Sig-
nal Processing 57, 7 (2009), 2479–2493. doi:10.1109/TSP.2009.
2016892. 3

[WZH∗21] WANG B., ZHENG M.-Y., HAN J.-J., HUANG X., XIE X.-
P., XU F., ZHANG Q., PAN J.-W.: Non-line-of-sight imaging with pi-
cosecond temporal resolution. Physical Review Letters 127, 5 (2021),
053602. 2

[WZM21] WT Z., ZHANGT J., MOU C.: Dense Deep Unfolding Net-
work with 3D-CNN Prior for Snapshot Compressive Imaging, Oct. 2021.
doi:10.1109/ICCV48922.2021.00485. 3, 4

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://doi.org/10.1109/CVPR.2014.418
http://arxiv.org/abs/1511.04587
http://arxiv.org/abs/1511.04587
http://arxiv.org/abs/1511.04587
https://doi.org/10.1145/3306346.3322937
https://doi.org/10.1145/3306346.3322937
https://doi.org/10.1145/3306346.3322937
https://doi.org/10.1145/3306346.3322937
http://arxiv.org/abs/2012.08364
http://arxiv.org/abs/2012.08364
http://arxiv.org/abs/2205.01679
https://ieeexplore.ieee.org/document/9878586/
https://doi.org/10.1109/CVPR52688.2022.01688
http://www.nature.com/articles/nature25489
http://www.nature.com/articles/nature25489
https://doi.org/10.1038/nature25489
https://ieeexplore.ieee.org/document/8836615/
https://ieeexplore.ieee.org/document/8836615/
https://doi.org/10.1109/TMI.2019.2941271
http://www.nature.com/articles/ncomms1747
http://www.nature.com/articles/ncomms1747
https://doi.org/10.1038/ncomms1747
https://pnas.org/doi/full/10.1073/pnas.2024468118
https://pnas.org/doi/full/10.1073/pnas.2024468118
https://doi.org/10.1073/pnas.2024468118
https://doi.org/10.1073/pnas.2024468118
https://doi.org/10.1109/TSP.2009.2016892
https://doi.org/10.1109/TSP.2009.2016892
https://doi.org/10.1109/ICCV48922.2021.00485


X. Su / Multi-scale Iterative Model-guided Unfolding Network for NLOS Reconstruction 11 of 11

[XNK∗19] XIN S., NOUSIAS S., KUTULAKOS K. N., SANKARA-
NARAYANAN A. C., NARASIMHAN S. G., GKIOULEKAS I.: A theory of
fermat paths for non-line-of-sight shape reconstruction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (2019), pp. 6800–6809. 2

[XST∗18] XU F., SHULKIND G., THRAMPOULIDIS C., SHAPIRO J. H.,
TORRALBA A., WONG F. N., WORNELL G. W.: Revealing hidden
scenes by photon-efficient occlusion-based opportunistic active imaging.
Optics express 26, 8 (2018), 9945–9962. 1

[YHLX21] YE J.-T., HUANG X., LI Z.-P., XU F.: Compressed sensing
for active non-line-of-sight imaging. Optics Express 29, 2 (2021), 1749–
1763. 2

[YLG∗20] YOUNG S. I., LINDELL D. B., GIROD B., TAUBMAN D.,
WETZSTEIN G.: Non-line-of-sight surface reconstruction using the di-
rectional light-cone transform. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (2020), pp. 1407–
1416. 2

[YLSD20] YUAN X., LIU Y., SUO J., DAI Q.: Plug-and-play algo-
rithms for large-scale snapshot compressive imaging. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2020), pp. 1447–1457. 9

[ZG18] ZHANG J., GHANEM B.: ISTA-Net: Interpretable Optimization-
Inspired Deep Network for Image Compressive Sensing. In
2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (Salt Lake City, UT, June 2018), IEEE, pp. 1828–
1837. URL: https://ieeexplore.ieee.org/document/
8578294/, doi:10.1109/CVPR.2018.00196. 3, 4, 5

[ZLZ∗22] ZHANG K., LI Y., ZUO W., ZHANG L., VAN GOOL
L., TIMOFTE R.: Plug-and-Play Image Restoration With Deep
Denoiser Prior. IEEE Transactions on Pattern Analysis and
Machine Intelligence 44, 10 (Oct. 2022), 6360–6376. URL:
https://ieeexplore.ieee.org/document/9454311/,
doi:10.1109/TPAMI.2021.3088914. 9

[ZZZ19] ZHANG K., ZUO W., ZHANG L.: Deep plug-and-play
super-resolution for arbitrary blur kernels. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2019), pp. 1671–1681. 9

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://ieeexplore.ieee.org/document/8578294/
https://ieeexplore.ieee.org/document/8578294/
https://doi.org/10.1109/CVPR.2018.00196
https://ieeexplore.ieee.org/document/9454311/
https://doi.org/10.1109/TPAMI.2021.3088914

