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1. Training Details

1.1. Training on ShapeNet

1.1.1. Teacher network.

We train the Teacher network using the Chamfer Distance as a
loss function; see Equation (1) in the Main Manuscript. We adopt
Adam [KB14] as an optimizer and use a learning rate of 10−4. We
use a batch size of 128 and train our network for 450 epochs. We
noticed during our experiments that batch normalization [IS15] and
Dropout [HSK∗12] layers prevent the network from converging,
thus we do not use them in the Teacher network. To avoid over-
fitting, we downsample the input point cloud and make use of the
Chamfer Distance’s robustness to noise. By downsampling the in-
put point cloud, instance-specific details such as car spoilers, car
bumpers, and table emboss will (1) very likely be removed from the
down-sampled point cloud, and (2) will be treated as noise/outliers
by the Chamfer Distance.

We sample 1024 points from each shape of the train-
ing set [CXG∗16] of ShapeNet [CFG∗15]. We follow the
train/validation split of Mesh R-CNN [GMJ19], which results in
798,357 training instances and 41,832 validation instances. We
train the network for 150 epochs with a fixed learning rate then
start decaying the learning rate with a factor of 0.99 at the end of
each epoch. The best performance on the validation set happened
at the end of epoch 418. During training, the Teacher network takes
as input 1024 ground-truth points and outputs 2025 points.

1.1.2. Student network.

To speed up the training while achieving visually-appealing 3D
reconstructions, we train the Student network in two phases. In
the first phase, we train the encoder part, i.e., the VGG and the
fully connected layers, to match the latent vector produced by the
second stage of the Teacher network. We initialize the weights of
the VGG network using ImageNet’s pre-trained weights and adopt
Adam [KB14] as an optimizer. We freeze the first five layers of the
pre-trained VGG network as well as all the Batch Normalization
layers [IS15]. We initialize and freeze the decoder weights with the
weights of the decoder of the Teacher network. Then, we optimize
it for 25 epochs using a learning rate of 10−4 and a weight decay
of 10−7. We use the loss function described in Equation (3) in the

Main Manuscript. Then, we unfreeze the layers of the encoder and
optimize the network for five more epochs.

In the second phase, we freeze the weights of the encoder and
train the decoder for 30 epochs using the Latent Distance of Equa-
tion (1) in the Main Manuscript.

1.1.3. Refinement network.

We train the refinement network using the loss term of Equation (4)
in the Main Manuscript using Adam as optimizer, a learning rate of
3×10−6, and a weight decay of 10−6 for a total of five epochs. The
refinement network deforms its input point cloud. As such, it out-
puts a point cloud. To train the refinement network in an adversarial
manner, we define a discriminator network, which receives a point
cloud as input and outputs a probability value, which represents the
likelihood of the input belonging to the ground-truth distribution.
The proposed discriminator network relies on PointNet [QSMG17]
to extract point-based features. We extract a feature vector of size
1024, which is then processed by a cascade of 2 MLPs having 512
and 1 units, respectively. For the hidden layer, we apply batch nor-
malization and ReLU as a non-linear activation function. For the
prediction, we apply the softmax function. We train the discrim-
inator network using the binary cross-entropy loss. For the first
epoch, we regularly train both the Discriminator network and the
Refinement network, i.e., for each mini-batch, we optimize the Dis-
criminator network and then immediately optimize the Refinement
network. For the remaining four epochs, We train the Discrimina-
tor periodically using a period of five mini-batches while regularly
training the Refinement network. For the Alpha complex algorithm,
we use a filtering value of 0.03.

1.2. Training on Pix3D

1.2.1. Teacher network.

We fine-tune, for a total of 600 epochs, the Teacher network (Sec-
tion 1.1), which was originally trained on ShapeNet [CFG∗15]. We
adopt the Chamfer Distance of Equation (1) in the Main Manuscript
as a loss function and Adam [KB14] as an optimizer. We use a
learning rate of 7×10−5, which we decay by a factor of 0.99 after
each epoch. We normalize the CAD objects of Pix3D to fit within
a cube of 1m. We also center the models at the origin.
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1.2.2. Student network.

Pix3D [SWZ∗18] is composed of real images and slightly mis-
aligned 3D CAD models. To overcome the misalignment issue, we
train the Student network in two stages. In the first stage, we train,
for 300 epochs, the Student network to map the input images to the
embedding vectors of the Teacher network using the loss function
of Equation (2) in the Main Manuscript. We adopt Adam [KB14] as
an optimizer and use an initial learning rate of 7×10−5. We initial-
ize the weights of the VGG network using ImageNet’s pre-trained
weights. In the second stage, we apply augmentation on the input
images. To take the misalignment between images and CAD mod-
els into consideration, we predict, for each image, its correspond-
ing point cloud then align the prediction with the ground truth point
clouds using the Iterative Closest Point (ICP) algorithm [BM92].

2. Evaluation Protocols

The Chamfer Distance, which is widely used to evaluate the perfor-
mance of 3D object reconstruction methods, is not a metric. In fact,
it is affected by the scale of the objects and the number of points
used to represent the 3D objects. Several protocols have been sug-
gested to address this issue. To ensure a fair comparison, we adopt
the following four evaluation protocols.

2.0.1. AttentionDPCR protocol [LXL∗19].

This protocol estimates the Chamfer distance on unscaled
ShapeNet [CFG∗15] models. Both the ground truth and the recon-
structed models are represented with 16,384 points each.

2.0.2. 3D-LMNet protocol [MMAB18].

This protocol normalizes the CAD models so that they fit within
a bounding box of unit length (of size 1m). It uses ground truth
metadata to rotate the predicted points to the canonical view. The
Iterative Closest Point (ICP) algorithm is used to properly align the
predicted points and the ground-truth points. A resolution of 1024
points is used for both prediction and ground truth. The reconstruc-
tion error is reported in centimeters.

2.0.3. Pixel2Mesh protocol [WZL∗18].

This protocol scales the ground truth and the reconstructed 3D ob-
jects by a factor of 0.57 to align them with their corresponding
rendering. The Chamfer Distance and F1 scores are then used to
assess the quality of the reconstruction. The F1 score is based on
point accuracy. A predicted point is considered accurate if a ground
truth point cloud is found within a sphere of a certain radius r. The
induced measure is denoted by Fr

1, with r ∈ {0.0001,0.0002}.

2.0.4. Mesh R-CNN protocol [GMJ19].

This protocol scales the ground truth and the reconstructions so
that the longest edge is of length 10m. The Chamfer Distance is
then evaluated on 10k points. The F1 score is adopted as a point-
accuracy measure and the Absolute Normal Consistency of Equa-
tion (1) is used to assess the smoothness of the reconstructed mesh.
The Fr

1 score uses the l1 distance to estimate whether a point is
found within a radius r ∈ {0.1,0.3,0.5}.

Table 1: Quantitative comparison on the ShapeNet benchmark [3] follow-
ing DefTet [GCX∗20] and SkeletonNet [THT∗21] evaluation protocols. The
lower the error the better is the result.

DefTet protocol SkeletonNet protocol

Category 3D-R2N2 DeepMCube Pixel2Mesh DISN DefTet Ours IMNet SkeletonNet Ours
Plane 2.26 4.80 1.52 1.52 1.49 1.13 1.459 0.771 0.818
Bench 2.00 7.58 1.62 1.96 1.77 1.13 2.020 1.037 0.709
Chair 2.83 7.01 2.64 2.51 2.39 1.44 1.485 1.138 1.091
Firearm 2.26 3.62 1.82 2.15 2.13 1.15 1.706 0.685 0.947
Table 2.17 6.10 2.20 1.78 1.68 1.15 2.540 1.718 0.848
Car 1.80 5.79 1.30 1.28 1.18 1.03 1.692 0.675 0.588
Cabinet 2.02 5.50 1.85 1.61 1.44 1.24 1.857 1.468 0.851
Couch 2.38 7.40 1.90 1.66 1.58 1.41 1.049 1.256 0.972
Lamp 4.33 6.39 2.91 3.49 3.53 2.04 5.450 2.540 2.305
Watercraft 2.69 5.23 2.01 2.29 2.26 1.42 2.318 1.064 1.085
Monitor 3.01 6.78 1.30 1.28 1.18 1.51 2.637 1.316 1.162
Speaker 2.94 6.73 2.67 2.21 2.03 1.74 3.486 2.446 1.553
Cellphone 1.78 6.48 1.59 1.55 1.34 1.08 1.088 1.127 0.723
Mean 2.50 6.11 2.04 2.04 1.95 1.34 2.214 1.326 1.050

The Absolute Normal Consistency between a reconstructed
point cloud P and its corresponding ground truth Q is defined
in terms of the angle between the unit normal vectors np and nq at
points p ∈P and q ∈Q, respectively:

ANC(P,Q) =
1
|P| ∑

p∈P,q=N (p)
|np ·nq|

+
1
|Q| ∑

q∈Q,p=N (q)
|np ·nq|.

(1)

Here, · is the inner product of two vectors. The protocol also uses a
subset of the original ShapeNet [CFG∗15] test set, which contains
objects of complex topological structures, referred to as holes test
set. It is designed to assess the performance of methods on recon-
structing meshes of arbitrary topological structures.

2.0.5. SkeletonNet protocol [THT∗21]

This protocol estimates the Chamfer distance on unscaled
ShapeNet [CFG∗15] models. Both the ground truth and the recon-
structed models are represented with 10,000 points each.

2.0.6. DefTet protocol [GCX∗20]

This protocol estimates the Chamfer distance on unscaled
ShapeNet [CFG∗15] models. Both the ground truth and the recon-
structed models are represented with 100K points each.

3. Implicit functions

Explicit volumetric representations suffer from problems such as
limited resolution. Implicit functions [MON∗19, CZ19, XWC∗19,
CLW21] alleviate the memory footprint problem. An implicit func-
tion receives the coordinates of a 3D point and outputs its corre-
sponding occupancy or signed distance value. At inference time,
implicit functions are capable of generating 3D reconstructions at a
user-selected resolution. Additionally, a deep learning network that
generates implicit functions does not operate directly on voxels,
which results in a low memory footprint. However, these methods
require time-consuming post-processing operations to identify the
iso-surface and extract the 3D mesh, e.g., by using the Marching
Cubes algorithm.

In Table 1, we extend the performance comparison to in-
clude implicit function-based methods. We compare our method
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Table 2: In this ablation study, we analyze the effect of the different com-
ponents of our framework. We report the Chamfer Distance computed be-
tween 1024 un-scaled ShapeNet [CFG∗15] ground truth points and 2048
reconstructed points. All values should be multiplied by 10−3. The ablation
of the Teacher network is performed after training for 15 epochs.

Student No Teacher ResNet50 VGG11 No LD Full

4.031 2.635 1.572 2.19 1.338

Teacher No reg Batch norm Dropout - Full

1.471 1.693 1.535 - 1.169

to DISN [XWC∗19], DeepMarchCubes [LDG18], and IM-
Net [CZ19]. As one can see, the proposed method outperforms
DISN [XWC∗19], which is the most accurate implicit function-
based method among the considered ones, by 38%. We also com-
pare our method to SkeletonNet [THT∗21], which relies on an in-
termediate volumetric representation to reconstruct the surface of
the 3D object. Our method is 20% more accurate than Skeleton-
Net [THT∗21]. Finally, we compare the performance of our pro-
posed method to DefTet [GCX∗20], which predicts the occupancy
of a tetrahedral grid. As seen in Table 1, the proposed method out-
performs DefTet [GCX∗20] by 31%.

4. Evaluation on additional images

Figure 1 provides additional results, which could not fit in the Main
Manuscript. In this figure, we show the input images (first column)
followed by the reconstruction results obtained using our method.
We also show the ground truth (last two columns) for comparison.
We can clearly see that our reconstructions exhibit a nice visual as-
pect compared to the ground truth points; see for example rows 2,
3, and 4. The surface extracted points, such as ground truth points
showcased in rows 1 and 2 of Figure 1, are randomly sampled and
have no structure. Our proposed framework relies on the annota-
tions of the Teacher network and a novel loss function to learn to
reconstruct structured points.

In Figure 3, we present further examples demonstrating our
Teacher’s capacity to reconstruct detailed structures. The teacher
network reconstructs a structured, or parametrized, point cloud
(Columns 2 and 4) from an input point cloud (Columns 1 and 3).
The Teacher network was trained using the Chamfer distance and
as a result, the reconstructions shown in Figure 3 present some mi-
nor noise.

5. Ablation Study

We undertake an ablation study to assess the contribution of each
of the components of the proposed framework.

Training methodology. To assess the importance of the proposed
Student-Teacher training methodology, we train our Student net-
work without the Teacher annotations. In this case, we train the
Student network to reconstruct point clouds in an end-to-end man-
ner using the Chamfer Distance as a loss function (Equation 1 in
the main paper). As illustrated in Table 2, the student network fails
to converge without the annotations of the Teacher network. This is

not a surprise as it explains why most state-of-the-art methods rely
on more complex architectures to solve the single view-based 3D
object reconstruction problem.

Latent distance. We train our student network with the Chamfer
Distance instead of the newly defined loss function. As seen in Ta-
ble 2, the ablated version of our model performs poorly compared
to the full model. The Chamfer Distance does not establish a one-
to-one correspondence between points. On the other hand, our la-
tent loss addresses this limitation by using a deep feature extractor
that generates a global feature vector. It then compares points in the
latent space. From this observation, we conclude that our proposed
Latent Distance is more accurate in comparing point clouds.

Refinement. We evaluate the performance of our proposed method
without the refinement stage and report the results in Table 2 in the
main paper. The proposed Refinement network results in a perfor-
mance increase, in terms of CD, of more than 20%.

Regularization. We down-sample the ground-truth points to avoid
over-fitting our training set. Traditional regularization methods in-
clude batch normalization [IS15] and Dropout [HSK∗12]. We train
our Teacher network using various regularization methods and re-
port the results in Table 2. Our novel regularization method results
in a faster convergence compared to the traditional methods that are
commonly used in 3D point cloud reconstruction.

Image feature extractor. We adopt VGG19 [SZ14] to extract deep
features from the input RGB images. We compare the performance
of various feature extractors and report their respective results in
Table 2.

Alpha shape. The alpha complex algorithm generates meshes of
high resolution as seen in Table 3. We use the alpha shape algo-
rithm (i.e., we only keep the boundary of the alpha complex recon-
struction) to generate meshes of lower resolutions. This results in
more consistent normal vectors; see normal consistency in Table 3,
and a lower reconstruction accuracy; see the CD and F1 scores in
Table 3.

Structure. The Teacher network folds a 2D grid to reconstruct 3D
objects. As stated by FoldingNet [YFST18], this operation estab-
lishes a mapping from a 2D regular domain to a 3D point cloud.
In this paper, we make the following hypothesis: a mapping from
a regular 2D grid to a 3D point cloud engenders structure. The
framework proposed in this paper relies on this hypothesis to pro-
pose a lightweight model for single-view 3D point cloud recon-
struction. As this structure generated by the Teacher network is
regularized but not supervised, the annotations of the Teacher net-
work are pseudo-labels. To validate the hypothesis, we compare the
ground-truth point clouds to the point clouds reconstructed using
the Teacher network. As one can see in Figure 2, the flat surfaces
of the Teacher’s reconstructions have grid-like properties, i.e., they
look uniformly distributed.

Noise. To assess the sensitivity to noise of the proposed LD and
CD, we add random noise to the reconstructed points. First, we
reconstruct using the Student network 10K points. Then, using a
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Input image Ours Ours Ground truth Ground truth
(view 1) (view 2) (view 1) (view 2)

Figure 1: Additional on the ShapeNet Benchmark [CFG∗15].
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Table 3: Reconstruction error on ShapeNet using the scale-invariant protocol of Mesh R-CNN. We compare to the state-of-the-art and to an ablated model of
Mesh R-CNN.

Full Test Set Holes Test Set

CD ↓ Normal ↑ F0.1
1 ↑ F0.3

1 ↑ F0.5
1 ↑ |V | |F | CD ↓ Normal ↑ F0.1

1 ↑ F0.3
1 ↑ F0.5

1 ↑ |V | |F |

Pixel2Mesh 0.265 0.729 29.9 76.2 89.0 2466 ±0 4928 ±0 0.273 0.733 30.8 76.5 88.9 2466 ±0 4928 ±0
Mesh R-CNN (Best) 0.133 0.729 38.8 86.8 95.1 1899 ±928 3800 ±1861 0.130 0.725 41.7 86.7 94.9 2291 ±903 4595 ±1814
Mesh R-CNN (Pretty) 0.171 0.713 35.1 82.6 93.2 1896 ±928 3795 ±1861 0.171 0.700 37.1 82.4 92.7 2292 ±902 4598 ±1812

Ours (Alpha shape) 0.114 0.731 41.3 88.3 96.0 2120 ±502 7729 ±2008 0.116 0.705 41.4 87.7 95.7 2120 ±502 7729 ±2008
Ours 0.108 0.611 44.5 89.2 96.3 3161 ±569 31311 ±7455 0.108 0.588 46.5 88.9 96.0 3165 ±576 30887 ±6537

selection probability of 2%, we randomly select points from the
reconstructed 10k points and deform them by 10cm. Finally, we
report the CD and the LD between the noisy reconstructions and
the ground truth points.

We recall that the Chamfer distance between point sets P and
Q is given by:

CD(P,Q) =
1
|P| ∑

p∈P
min
q∈Q
∥p−q∥2

2 +
1
|Q| ∑

q∈Q
min
p∈P
∥p−q∥2

2, (2)

After attaining a certain precision, the CD becomes insensitive to
subtle changes. To demonstrate this, we can select one point iold
from set Pold and deform it by offset in any direction ( i = iold +
offset). The resulting CD between the new point set P and the
target Q is then:

CD(P,Q) =
1
|P| ∑

p∈P,p ̸=i
min
q∈Q
∥p−q∥2

2 +min
q∈Q
∥i−q∥2

2+

1
|Q| ∑

q∈Q
min
p∈P
∥p−q∥2

2,

(3)

We note qold = arg min
q∈Q
∥iold −q∥2

2. We know that:

min
q∈Q
∥i−q∥2

2 ≤ ∥i−qold∥2
2 =

∥iold +offset−qold∥2
2.

(4)

∥iold +offset−qold∥2
2 = ∥iold−qold∥2

2+

∥offset∥2
2 +2× (iold−qold,offset).

(5)

Applying Cauchy-Swatrz with x = iold− q and y = offset, we ob-
tain:

(iold−qold,offset)≤ ∥iold−qold∥2∥offset∥2. (6)

Therefore:

∥iold +offset−qold∥2
2 = ∥iold−qold∥2

2+

∥offset∥2
2 +2×∥iold−qold∥2∥offset∥2.

(7)

Now if ∥offset∥2is larger than the error ∥iold−qold∥2, and by com-
bining Equations (3) and (7), we obtain:

CD(P,Q)≤ CD(Pold ,Q)+
3
|P|
∥offset∥2

2. (8)

In our case, |P|= 10K, offset = 0.01, and the average CD at train-
ing stage (CD(Pold,Q)) is around 3× 10−4. Therefore, after off-
setting the reconstruction, the new CD would, at most, be higher by
3×10−8, which is insignificant compared to CD(Pold,Q).

Resampling. We compare the qualitative aspect of our reconstruc-
tions before and after the resampling. As seen in Figure 2, points
that are resampled look more similar, in terms of patterns, to the
ground-truth points than the raw reconstructions. Additionally, our
raw reconstructions look more similar to the Teacher annotations
than to the ground-truth points. This is expected since we use the
Teacher’s annotations to train the Student network. As one can see
in Figure 2, both the Teacher annotations and the raw reconstruc-
tions have grid-like patterns. These patterns are more observable on
flat surfaces such as the tabletop of the second row of Figure 2.

Teacher. We report the quantitative performance of the Teacher
network in Table 2 of the main paper. The Teacher network has
an Fτ

1 score that is 8% higher than the refined network. We note
that the Teacher network auto-encodes 3D point clouds and has a
drastically easier task than the Student network.

We also provide a qualitative evaluation in Figure 2. The Teacher
network was trained using the Chamfer Distance. Therefore, it has
some noisy reconstructions as seen in the second and third rows of
Figure 2.

6. Implementation of the training pipeline

Algorithm 1 outlines the training pipeline of the Student Network.
For each mini-batch, the training function takes as input the ground
truth points P and the input image I. At first, we re-annotate (rear-
range/structure) the points using the Teacher network, i.e., P un-
dergoes a full encoding-decoding cycle. Second, we extract a latent
descriptor of the annotated points using the Teacher’s encoder. We
then generate an estimation of the latent space using the Student
encoder and decode it to obtain its respective reconstruction. We
encode the student reconstruction using the Teacher encoder. This
allows us to compute the Latent Distance which compares the la-
tent descriptor of the annotation to that of the reconstruction. Fi-
nally, we compute the total loss as stated in Equation 3 in the main
manuscript.
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Input Student. Resampled. Teacher annotations. Ground truth.

Figure 2: Qualitative comparison, using ShapeNet [CFG∗15], of the visual aspect of our reconstructions. We show the the reconstructions of our method
before (raw) and after refinement, refined points, the annotations of our Teacher network, and, we compare them to the ground truth points.

Algorithm 1 The proposed training algorithm of the student net-
work.
Require: Ground truth points P , Input image I.

1: function TRAIN(P, I)
2: Annotations← Teacher(P)
3: Latent_gt ← Teacher.Enc(Annotations)
4: Latent_s← Student.Enc(I)
5: Reconstruction← Student.Dec(latents)
6: Latent_gen← Teacher.Enc(Reconstruction)
7: Latent_loss←MSE(Latent_gen,Latent_gt)
8: Loss← Latent_loss +
9: MSE(Latent_s,Latent_gt)

10: end function
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Input. Reconstruction. Input. Reconstruction.

Figure 3: Additional examples highlighting our Teacher’s capacity to reconstruct detailed structures. The Teacher network reconstructs a structured, or
parametrized, point cloud (Reconstruction) from an input point cloud. © 2023 Eurographics - The European Association

for Computer Graphics and John Wiley & Sons Ltd.


