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Figure 1: Knowledge sharing between scenes: a) Vanilla NeRF overfits on a single scene and can not leverage shared information across
different scenes. b) Our proposed CP-NeRF is able to use contextual information within and across scenes through a HyperNetwork.

Abstract
Neural radiance fields (NeRF) have demonstrated a promising research direction for novel view synthesis. However, the ex-
isting approaches either require per-scene optimization that takes significant computation time or condition on local features
which overlook the global context of images. To tackle this shortcoming, we propose the Conditionally Parameterized Neural
Radiance Fields (CP-NeRF), a plug-in module that enables NeRF to leverage contextual information from different scales.
Instead of optimizing the model parameters of NeRFs directly, we train a Feature Pyramid hyperNetwork (FPN) that extracts
view-dependent global and local information from images within or across scenes to produce the model parameters. Our model
can be trained end-to-end with standard photometric loss from NeRF. Extensive experiments demonstrate that our method can
significantly boost the performance of NeRF, achieving state-of-the-art results in various benchmark datasets.
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1. Introduction

Novel view synthesis aims to generate photo-realistic novel view-
points of a scene from sparse 2D observations [TTM˚22, LH96,
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MST˚21, MBRS˚21]. Early works tackled this problem with ei-
ther 3D structures inference [WSK˚15, SHN˚19, MON˚19] or
image-based rendering [SMKLM15, HPP˚18]. However, image-
based rendering may generate novel views with non-neglectable ar-
tifacts, while 3D structures inference is expensive in nature to scale
to high-resolution images as it requires cubic (n3) memory for com-
putation. Recently, Neural Radiance Field (NeRF) [MST˚21] has
shown a promising direction, achieving high-quality results with
affordable memory and computational costs. Using a differentiable
volumetric render, NeRF enables photo-realistic novel view syn-
thesis at high resolution with several multi-layer perception (MLP)
networks [HTFF09].

Despite the appealing performance, NeRF requires a lengthy
training process for every scene, which is costly when many
scenes are optimized. Besides, as each scene is optimized indi-
vidually, NeRF can not leverage shared information across differ-
ent scenes, as shown in Fig. 1. Consequently, each scene requires
many training views to guarantee a smooth transition. Several prior
works [WWG˚21, YYTK21, TY21] tried to resolve this shortcom-
ing by disentangling the geometry and color information by con-
ditioning on local features. However, these methods ignored the
global context of images, which are proven to be useful in this
paper. Moreover, some of these works relied on pre-trained mod-
els [YYTK21, WWG˚21], which may not work well when query
scene images lay outside the training space.

To address the aforementioned problems, we propose the Condi-
tionally Parameterized Neural Radiance Fields (CP-NeRF), a plug-
in module that enables training NeRF with multiple scenes. In-
stead of optimizing NeRF weights directly, we train a HyperNet-
work [HDL16] that produces the weights based on training im-
ages. The benefits are manifolds. Firstly, our HyperNetwork takes a
whole training image as input, and thus it can leverage global infor-
mation of different locations. Besides, our HyperNetwork can learn
shared knowledge of different scenes by jointly optimizing them.
By fully using contextual information within and across scenes, our
module significantly improves the performance of NeRF.

Notably, bring the idea from [HDL16, LW19, SZW19,
VOHSG19, GW20] that stacking a HyperNetwork on top of NeRF
network can introduce inferior performance since HyperNetwork
transforms input images from a high dimensional space to a low
dimensional latent space. As a result, when we use prior knowl-
edge to predict NeRF weights, fine-grained information might be
lost during such transformation and degrades the quality of the
generated novel view. In this paper, we make some key contri-
butions to tailor HyperNetwork for CP-NeRF. Firstly, comparing
with [HDL16,LW19,SWT˚20,VOHSG19,SZW19,ATM˚22] that
directly generate weights with a few layers, we propose a Fea-
ture Pyramid hyperNetwork (FPN) that could jointly extract both
global and local scene information to predict NeRF weights and
refine local details of novel views. Note that without our feature
pyramid mechanism, the HyperNetwork produces weights with a
global feature with limited bandwidth and thus may fail to carry
detailed information, resulting in blurry artifacts when rendering
high-resolution images. Our proposed FPN leverages intermediate
features to extract local information, significantly improving high-
resolution images’ fidelity. In addition, our HyperNetwork also

leverages a weighted aggregation module to avoid misalignment in
local features. Finally, we propose a Global View-aware Attention
module to adaptively aggregate information on the training views.
This avoids floating artifacts caused by non-consistency in far-away
viewpoints. Our contribution can be summarized as follows:

‚ We propose a meta-learning-based one-for-all NeRF framework
that takes multi-view inputs as a prior through a HyperNetwork.
By conditioning on scene-specific global and local information,
our network can generalize to many scene-specific models.

‚ Our proposed method can be easily plugged into other NeRF-
like networks as a module, improving the quality of their gen-
erated novel views and enabling them to generalize to multiple
diverse scenes.

‚ Extensive experiments show that our method surpasses existing
single-scene baselines. In addition, we outperform other local
conditioned methods.

2. Related Works

Novel View Synthesis. Novel view synthesis is a long-standing
problem in computer vision, where the goal is to infer an unseen
point of view from a sparse set of 2D observations [TTM˚22].
Early works without knowing 3D structures do not reach the pho-
torealism of a scene and require dense viewpoints to generate a
novel view of a scene [LH96, DTM96, GGSC96]. The voxel-based
method overcomes such an issue by explicitly defining a 3D struc-
ture but is limited by spatial resolution due to high memory con-
sumption [BLRW16, LDG18, SG18, WWX˚17]. Others investi-
gate using implicit representation which maps xyz coordinates to
a signed distance function [MON˚19,PFS˚19,NMOG20,CLI˚20,
SHN˚19].

Recent works show a promising research direction by encoding
a 3D scene as neural radiance fields [MST˚21]. Such methods use
a neural network to represent a scene’s geometry and color over
its coordinates; using a differentiable render can generate photo-
realistic novel views with a sparse set of 2D observations. Since a
scene is represented with a couple of multi-layer perceptron (MLP)
networks, their model size is very compact compared to other tra-
ditional networks. However, one drawback of such an approach is
that they must overfit each scene with a model, thus requiring a
substantial amount of optimization time. To overcome this short-
coming, various techniques have been proposed in recent literature.
Plenoxels [FKYT˚22] utilizes spherical harmonics functions to ex-
pedite optimization time. InstanceNGP [MESK22] deploys com-
pact multilayer perceptrons (MLPs) in tandem with hash-encoding
to achieve more efficient training. Similarly, PERF [RSA22] em-
ploys Gauss-Newton approximations as second-order derivatives,
providing an alternative to traditional optimizers like Adam. How-
ever, it should be emphasized that the scope of these methods is
generally limited to optimization on single scenes.

Some prior works have addressed the generalization issue in
NeRF. PixelNeRF [YYTK21] used a 2D CNN to extract features
from different viewpoints on each ray point sampled. By condi-
tioning 2D image features along the ray, it learns the prior over the
space of the radiance field. IBRNet [WWG˚21] leverages a similar
idea by using a 2D UNET to extract image features from neighbor-
ing views and aggregating image features using a ray transformer
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Figure 2: The overview of CP-NeRF architecture. a) We first identify N closest neighboring source views (e.g., views labeled 1, 2,..., N).
These views’ features are extracted using an encoder. b) The extracted features are aggregated through a multi-head global view-aware
attention (MGA) module, resulting in a fused, view-dependent global feature vector. c) Next, the view-dependent global feature is input into
a HyperNetwork to generate weight and bias for coarse and fine networks. d) Finally, For each ray queried in the novel view, we compute the
local features from the neighboring views using the FPN module and concatenate its corresponding information to generate a target view.

to disentangle a scene’s geometry and color. NeRFusion [ZBS˚22]
extends the idea by creating a 3D volumetric feature space by fus-
ing the local features using a recurrent connection. However, these
methods focus on conditioning the neural radiance field on local
features and overlook the features from the global level. In contrast,
our approach combines scene information from the global and lo-
cal levels, which enhances the quality of the generated novel view.
HyperNetworks. HyperNetwork is introduced in [HDL16], and
has a wide range of applications in the meta-learning-based frame-
work [NWH21, BLRW17]. The core idea is to use two networks
f and g, where f is trained to output the weights of network g.
Network g is used for a specific task without seeing the data in
f. Thus, the scene information used in f is directly embedded in the
optimization space of network g. In the 3D scene representation
field, HyperCube [PMTS21] and HyperCloud [SWT˚20] produce
explicit 3D shape representations like voxel or mesh by HyperNet-
work. Littwin et al. [LW19] leverage a HyperNetwork to produce
point cloud estimation conditioned on single image inputs, where
the network takes coordinate inputs and conditions on scene im-
age. However, since discrete explicit representations limit spatial
resolution and do not show scene surfaces smoothly, Sitzmann et
al. [SZW19, SCT˚20, SMB˚20] introduced the implicit continu-
ous 3D representation of a learned prior on SDF within a cate-
gory. Once the geometry is reconstructed, a HyperNetwork ren-
ders category-specific color. However, these methods either overfit
a single 2D image or require further optimization at inference time.
Our method overcomes such issues by using multiple neighboring
views with self-attention to fuse their global embeddings, which

can be applied to a wider range of scenes and does not require test
time optimization.

3. Methodology

At the core of our proposed system, we try to solve the issue that
NeRF network only focuses on local patches of a scene and does
not have the ability to learn shared knowledge within or across
scenes. To overcome these issues, we present CP-NeRF, an end-to-
end multi-scene aware neural radiance field network that leverages
a HyperNetwork to inject scene-specific global and local informa-
tion as prior knowledge to condition on the network’s parameter
space, as shown in Fig. 2. Our system can be divided into three
key components: a) a backbone encoder extracts global features
from a set of source views when given a target view in a scene,
b) a weight generation network that injects scene-specific global
knowledge into a network’s optimization space, c) a weighted ag-
gregation FPN module that extracts local features from multi-view
inputs, and conditions on the NeRF representation. We will intro-
duce them in detail in the following sections.

3.1. Hypernetwork and encoder

Hypernetwork is introduced in [HDL16,LW19,SZW19] that injects
prior knowledge to produce learnable parameters for a target net-
work. Therefore, we define the process as an encoder that takes a
set of input images and maps the image representations into param-
eters of a target network. Let’s denote E as the backbone encoder
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that generates global prior knowledge and F as the NeRF network
that produces neural radiance fields.

To learn the scene-specific global feature representation Z, we
first identify a set of viewpoints that are closer to the novel tar-
get view based on their camera projections. Let’s denote X “

tXiu
i“1,...n as a set of observations of a scene. To render a novel

view X j, we first select the top–k closest viewpoints and extract
their features as view-dependent global feature representation, de-
noted as Zk. The selection of k depends on the GPU memory and
the distribution of the viewpoint locations. Our observation is that
a source view that is occluded from the target view does not con-
tribute to the view-dependent global features and introduces un-
wanted artifacts, and we empirically found that k between 2 to 4
works best for our proposed method.

Let Xi P r0,1sHiˆWiˆ3 denote the i-th source view, and E denote
the backbone encoder used to extract the global feature Zi P Rd

from each image. Therefore,

Zi “ EpXiq, where i “ 1, . . . ,k and Zi P Rd . (1)

Therefore, Z “ pZ1,Z2, . . . ,Zkq represents the global features cor-
responding to the synthesis of the novel view X j. Global Feature
Fusion. We observe that naively interpolating global features Zk
acquired from Eq. (1) to synthesize novel view X j will have float-
ing artifacts around the edge of the scene. This is caused by non-
consistent feature aggregation in 3D space, as source views that are
close to the novel view’s position should weigh more when fus-
ing the global features. Therefore, instead of applying equal weight
for source view features, we adopt a learnable Global View Aware
Attention (GVA) [VSP˚17] module to fuse the generated global
features, as shown in Fig. 3. To generate the novel view X j, we first
determine that Pj P R3ˆ4 and Pi P R3ˆ4 are the camera projection
matrices for the novel view at j and the set of source views from 1
to k. The global feature Z for the novel view X j can be written as

Z :“ AttpZi,Pj,Piq,where i “ 1, ...k. (2)

The global view aware attention learns to predict weights for in-
coming neighboring view features and produce one final target
view-dependent global feature Z P Rd that will be used as a prior
for the weight generation network, which will be described in §3.2.

3.2. Weight generation network

To incorporate the global scene-aware information, we use a weight
generation network denoted as H, a neural network used to inject
prior knowledge into the learnable parameter space for the target
network. For the fused global feature Z P Rd from Eq. (2), H em-
beds such prior knowledge and parameterizes it to the optimization
space of the NeRF network. Specifically, the parameters W P Rdˆd

and b P Rd are generated by H conditioning on the global feature
embedding Z. Therefore, it can be formulated as the following:

ΘΘΘpWl ,blq “ HpZq (3)

where l is the number of layers of NeRF network. Since we are
producing weights W and bias b of NeRF, the network H acts as
a global scene operator and generates many network parameters

Figure 3: Multi-head Global view aware Attention. The multi-head
global view attention module aggregates view-dependent global
feature vector Z j of input neighboring view features Zi given the
input views’ position and target view’s position. For each input
neighboring view, Zi is calculated from encoder E. The generated
global feature is then fed to the weight generation network to gen-
erate weights and bias.

based on the global features. Therefore, instead of directly optimiz-
ing a neural radiance field of the 3D scene via NeRF, we dynami-
cally adjust the NeRF parameters based on different scene inputs.
Thus, we successfully disentangle the 3D space coordinates with
their scene-specific information, as shown in Fig. 4.

Figure 4: A t-SNE visualization of global embedding from the 8
scenes of the Real Forward Facing test set.

3.3. Local Feature aggregation

Although the scene-specific global feature provides prior knowl-
edge for modeling the 3D space, it transports source view image
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data to a lower-dimensional latent space, which overlooks fine-
grained details at the local level. Therefore, to incorporate local
feature awareness, we add a feature pyramid network at blocks
2,3,4 from our encoder E to generate a local feature map f with
dimension RHl ˆWl ˆd . When querying a ray at a specific loca-
tion px,y,zq of the target view at j, we retrieve the local features
ζi P Rd , where i “ 1, . . . ,k via projecting the location from the tar-
get domain to the source domain and extract local features from the
i-th feature maps by bilinear interpolation. Please see appendix for
more details.

ζi “ f ppx,y,zq jÑiq,where i “ 1, ...k. (4)

Therefore, ζ “ pζ1,ζ2, ...,ζkq denotes the local features from each
source view when querying a specific location px,y,zq at target view
position j. To fuse the features at the local level while maintaining
the 3D consistency, we aggregate each local feature with a weighted
factor γ . The γ is calculated based on the relative distance between
the target view and the source view camera position.

γi “ DistpP j,Piq “ Distp
P j

›

›P j
›

›

2
,

Pi

}Pi}2
q, i P t1, ...,ku . (5)

Specifically, we follow PointNet [QSMG17] design and extract
mean and variance from the weighted local features obtained from
Eq. (4) and Eq. (5), and pool them to generate weighted mean µw
and σ2

w. Finally, local features are integrated into the last two out-
put layers in conjunction with the viewing parameter. The process
can be formulated as the following:

pµw,σ
2
wq “ poolpγi ¨ ζiq,where i “ 1, ...k. (6)

Therefore, the color and α at the specific 3D space can be repre-
sented as

pc,αq “ Fpx,y,z,µw,σ
2
w,θ ,φ |Θq. (7)

Where F represents the NeRF network whose parameters are gen-
erated from Eq. (3) and view-dependent local features are condi-
tioned from Eq. (6).

3.4. Rendering and Loss

We use the same volumetric rendering function as vanilla NeRF
that computes color and density at the continuous 5D location. To
render a color of a ray in a scene, we first query M samples along
the ray and accumulate colors with its densities at the given loca-
tion:

C̃prq “

M
ÿ

k“1

Tkp1 ´ expp´σkqqck. (8)

where Tk “ expp´

k´1
ÿ

j“1

σ jq. (9)

We also use a hierarchical sampling strategy to predict the fi-
nal RGB color. The hierarchical sampling first uniformly samples
Mc points along the ray and renders through the coarse network.
Given the coarse network’s prediction, we then sample M f points
along the ray and render through the fine network. Therefore, to-
tal Mc ` M f points are accumulated along each ray. Since both of

the coarse and fine networks are optimizing the same ray in the
same scene, the parameters of both networks are generated using
the same HyperNetwork.

The final loss function can be formalized as following:

L “
ÿ

rPR

”

}C̃cprq ´Cprq}2
2 ` }C̃ f prq ´Cprq}2

2

ı

. (10)

3.5. Implementation details.

We use ResNet-34 [HZRS16] as our backbone encoder for global
feature extraction. However, the backbone encoder can be any other
genetic network. We implement a feature pyramid network for lo-
cal features with two additional up-sampling layers. We fuse the
outputs from layer 4 to layer 2 of the FPN and produce one final
feature map whose dimension is H{4,W{4,64. The N views global
information is aggregated using a global view aware attention mod-
ule to produce one global feature whose dimension is d “ 512, and
local features are queried via the ray coordinates projected to the
N views’ local feature map. To render a novel view, we first query
its N nearest neighboring views via camera pose information. We
create the training pairs with (target view and reference views). The
reference views are then sent to the backbone encoder to produce
global features and generate NeRF network weights and bias. The
target view’s coordinates are then sent to the generated NeRF net-
work and the local features queried from the local feature map for
final prediction. We train our framework end to end with Adam
optimizer [KB14]. The base learning rate is 5ˆ10´4, decaying ex-
ponentially along with the optimization steps. Our model is trained
on eight NVIDIA RTX 3090Ti GPUs with a batch size of 2000 to
5120 rays, depending on image resolution. We train our network
for 400k iterations, which takes about a day to finish. We provide
more implementation details in supplementary materials.

4. Experiments

In this section, we conduct experiments to evaluate the effective-
ness of our proposed framework. First, we introduce the bench-
marks and evaluation metrics. Next, we compare our model to other
baselines. Finally, we give a detailed analysis of our design choice
and the effectiveness of our method by ablation studies. More anal-
ysis and visualizations are provided in supplementary pages.

Datasets and metrics. We evaluate our method on two different
datasets from NeRF Realistic synthetic 360° and Real forward-
facing [MST˚21]. For Realistic synthetic 360° dataset, it has eight
different scenes and each of which consists of complicated geome-
try and non-Lambertian materials. Objects in the synthetic dataset
have 100 training views and 200 test views; each views have 800
ˆ 800 image resolution rendered 360°from either the upper hemi-
sphere or the full sphere. For the Real forward-facing dataset, we
use the LIFF [MSOC˚19] benchmark that has 35 real scenes from
cellphone capture for pretraining, then finetuning on NeRF real for-
ward facing dataset. The latter one contains eight complex scenes,
each captured with 20 to 62 images at image resolution 1008 ˆ

756. We also follow the same setup as NeRF that 1{8th of the im-
ages are held out as testset. Such a setup is to show that our method
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Figure 5: Qualitative comparison on Realistic Synthetic 360°and Real Forward-Facing [MST˚21] dataset. Visualization of generated novel
views. IBRNet [WWG˚21] has difficulties when input views are sparse, resulting in floating artifacts around object boundaries. NeRF
[MST˚21] rendered objects are missing texture information, and some fine details are not well recovered (see T-Rex). Our method can
leverage global and local information. Thus, it produces high-quality novel views. : denotes the method with pre-trained model.

can learn shared knowledge cross various complex scenes. To eval-
uate the visual quality of generated novel views, the mean value
of the Peak-Signal-to-Noise Ratio (PSNR), Structural Similarity in
Images (SSIM) [WBSS04] and LPIPS [ZIE˚18] perceptual metric
are reported across all scenes in each of the two datasets.

Baselines and settings. We compare our method with two different
baselines, vanilla and local condition-based neural radiance field
networks. For the vanilla neural radiance field network, we com-
pare ours with NeRF [MST˚21], which requires per-scene opti-
mization for separate networks, and it does not generalize at all. We
also compare ours with the local conditioned neural radiance field
network IBRNet [WWG˚21], which uses local patches to blend
neighboring views into novel viewpoint. Both ours and IBRNet are
designed to optimize multiple scenes together. However, the major
difference between ours and IBRNet is we inject prior knowledge
into the optimization space instead of feeding it directly as input.

We evaluate our methods in two ways: a) we directly train all the

scenes together without finetuning specific scenes. Note that NeRF
has to optimize on a single scene. In addition, IBRNet requires a
large dataset for pretraining. b) We then finetune our model on each
specific scene for a fair comparison between our proposed method
and baselines. Results are shown in Tab. 1. In addition, we also
show that when our method is plugged in as a module to the existing
baselines, such as NeRF and mip-NeRF [BMT˚21], it will also
improve the quality of their generated novel views and enable them
to optimize multiple diverse scenes with a single model. We show
the results in Results Tab. 2.

4.1. Results

We sample 3 nearest source views from the training dataset to ren-
der a novel view from the evaluation dataset. We report our result
in Tab. 1.

Quantitative comparisons. Tab. 1 shows that when all scenes are
trained together, our model consistently outperforms IBRNet on

© 2023 Eurographics - The European Association
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Method Settings
Realistic Synthetic 360° Real Forward-Facing

PSNRÒ SSIMÒ LPIPSÓ PSNRÒ SSIMÒ LPIPSÓ

PixelNeRF [YYTK21]
No Per-Scene
Optimization

22.65 0.808 0.202 18.66 0.588 0.463
IBRNet [WWG˚21] 25.49 0.916 0.100 25.13 0.817 0.205

MVSNeRF [CXZ˚21] 23.62 0.897 0.176 21.93 0.795 0.252
Ours 29.54 0.921 0.092 25.41 0.766 0.199

NeRF [MST˚21]
Per-Scene

Optimization

31.01 0.947 0.081 26.50 0.811 0.250
IBRNet [WWG˚21] 28.14 0.942 0.072 26.73 0.851 0.175

MVSNeRF [CXZ˚21] 27.07 0.931 0.168 25.45 0.877 0.192
Ours_ft 31.77 0.949 0.063 27.23 0.812 0.136

Table 1: Quantitative comparison: Realistic Synthetic 360°and Real Forward-Facing [MST˚21] with baselines.

Method
Lego Materials

PSNRÒ SSIMÒ LPIPSÓ PSNRÒ SSIMÒ LPIPSÓ

NeRF [MST˚21] 32.54 0.961 0.050 29.62 0.949 0.063
NeRF + Ours 33.35(+0.81) 0.966 0.016 30.02(+0.4) 0.945 0.026

mip-NeRF* [BMT˚21] 33.72 0.969 0.035 29.86 0.954 0.046
mip-NeRF* + Ours 34.48(+0.76) 0.969 0.014 30.68(+0.82) 0.953 0.025

Table 2: Quantitative comparison: When our method is plugged in as a module to NeRF [MST˚21] and mip-NeRF [BMT˚21], we show
results on lego and materials from Real synthetic 360° [MST˚21] dataset. * denotes stopped early from [BMT˚21].

both synthetic and real forward-facing datasets. After finetuning
on each specific scene, our method also outperforms the per-scene
optimized neural radiance field method and achieves better PSNR,
SSIM, and LPIPS. Such results show that our model is robust and
consistently generates photo-realistic images on synthetic and real
datasets. Note that in the Realistic synthetic 360° dataset, training
views are sparsely captured from either the upper hemisphere or
the full sphere. Therefore, methods like IBRNet suffers under such
condition simply because local information is insufficient for gen-
erating a novel view, as shown in Fig. 5. However, ours can lever-
age shared knowledge across different viewpoints and outperform
per-scene-optimized methods.

In addition to the Real forward-facing dataset, some of the
scenes only have a limited number of training views. Our method
can leverage shared knowledge across different scenes and produce
high-quality novel views compared to the one that does not explore
global information at all or the local conditioned method that only
sees patches of the image (see Fig. 6).

Qualitative comparisons. As shown in Fig. 5, our method can
leverage contextual information within or across scenes, producing
high-fidelity novel view images compared with other methods. As
we can see, local condition methods such as IBRNet have difficulty
generating novel views from sparse inputs, resulting in floating ar-
tifacts at the boundary of objects. A per-scene-optimized method
such as NeRF requires a dense training point. Therefore, they pro-
duce unrealistic noise when the training set is limited. In contrast,
our method can recover more information from either sparse inputs
or limited training sets.

Figure 6: Global features. When input source views are masked
out at a specific region, the global feature is affected by the missing
information, which results in blurring or missing regions for the
generated novel view. Error map shows that mask is affecting the
whole object as our method explores global contextual information,
where IBRNet only affects mask region as they only condition on
local patches.

4.2. Ablation study

In this section, we first conduct experiments to validate our design
choice of each individual module on Real synthetic 360° dataset
[MST˚21]. We first remove our FPN module that aggregates lo-
cal features when queried on specific coordinates. Therefore, the
model only conditions the global features of neighboring views.
Removing the FPN module hinders the overall quality of gener-
ated novel views. We then remove the GVA module and put equal
weights on each neighboring view. Averaging the global features
causes the generated novel view to have blurring artifacts on the
edge of the object, which is caused by non-consistency in far away
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viewpoints (please see supplementary material for more details).
Note that if we remove the HyperNetwork, our method degrades to
vanilla NeRF and does not generalize across different scenes. We
report the result on Tab. 3.

Model
Realistic Synthetic 360°

PSNRÒ SSIMÒ LPIPSÓ

w/o Local 31.24 0.941 0.069
w/o GVA 30.92 0.936 0.073

Ours 31.77 0.949 0.063

Table 3: Ablation study: Real synthetic 360° [MST˚21] data. The
results are from the per-scene optimized model by taking an aver-
age of 8 different scenes.

Sensitivity to global features. We investigate how the global fea-
ture is affecting our overall performance in Real forward-facing
[MST˚21] dataset. We show in Fig. 6 that if N source views are
masked out at a specific region, the generated novel view will have
a blurring patch around the masked region. Notice that when all in-
put source views are masked out at a specific region, it affects the
entire object in the generated novel views in our method. Whereas
local condition methods such as IBRNet only affect the masked
region. This demonstrates that our method can explore global con-
textual information for novel view synthesis.

Plugging in as a Module. We show in Tab. 2 that when our method
is plugged in as a module to the per-scene optimized methods, we
can enable them to learn shared knowledge across scenes and en-
hance their overall performance. As a result, those per-scene opti-
mized methods can now train only one model for all scenes. Such
a result demonstrates the effectiveness of our proposed method and
its potential to be practically used.

Sensitivity to the number of neighboring views. We conduct ex-
periments to investigate how the number of source views affects the
quality of generated novel views. The result is shown in Fig. 7 that
simply blending more source views does not enhance the quality
of the generated novel view. This result also demonstrates that if a
source view is far from the novel viewpoint, it does not contribute
much globally and locally.

Computation Metrics. We comprehensively examined the compu-
tational cost of our proposed method and compared it with baseline
approaches, as delineated in Tab. 4. Remarkably, our method de-
mands significantly fewer Floating Point Operations Per Second
(FLOPs) than the baseline methods, reducing computational re-
quirements by factors of 6, 10, and 12 compared to IBRNet, NeRF,
and PixelNeRF, respectively. This efficiency gain is primarily at-
tributed to our weight generation module, which leverages shared
knowledge across scenes. Specifically, for a set of N query points
in a given scene, the forward pass through the weight generation
module occurs only once to produce the global embedding. Sub-
sequently, the predicted NeRF network is executed for each query
point individually. Additionally, our methodology stands apart by
its capacity for a singular model to generate representations for N
distinct scenes. This starkly contrasts NeRF, which necessitates N

Figure 7: Selection of the number of neighboring views. We select
k “ 1, ...9q during training on Real forward-facing dataset and re-
port their training PSNR.

Model GFLOPsÓ Finetune Iteration

NeRF 121.6 N/A
PixelNeRF 146.6 N/A

IBRNet_ft 77.85 500
Ours_ft 11.90 500

Table 4: Computation Metrics: All FLOPs are calculated for ren-
dering a 400x400 novel view. We use 5 neighbor views to render
one novel view and report its GFLOPs [Sov23]. Finetune Iteration
denotes per-scene finetuning from the pretraining.

distinct models for N unique scenes. Consequently, after the initial
training phase, which is required only once, our approach necessi-
tates only a limited number of iterations for finetuning each specific
scene.

5. Conclusion

In this paper, we propose the CP-NeRF, a conditionally parameter-
ized neural radiance field that learns global and local features via
a HyperNetwork. Our major advantage is that we can fully lever-
age contextual information across different scales. We also show
that when our method is plugged in as a module to NeRF, we en-
able them to generalize on multiple diverse scenes and enhance its
overall performance. Experimental results show that our proposed
method outperforms baselines and produces state-of-the-art render-
ing quality on novel view synthesis for both real and synthetic data.
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