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Abstract
In this paper, we propose a novel surface subdivision scheme called non-box subdivision, which is generalized from four-
directional S1

3 non-box splines. The resulting subdivision surfaces achieve C1 continuity with the convex hull property. This
scheme can be regarded as either a four-directional subdivision or a special quadrilateral subdivision. When used as a quadri-
lateral subdivision, the proposed scheme can control the shape of the limit surface more flexibly than traditional schemes due
to the natural introduction of auxiliary face control vertices.

CCS Concepts
• Computing methodologies → Shape modeling;

1. Introduction

Subdivision surfaces are obtained as the limit of a recursive refine-
ment process applied to polyhedra. The power of this technique
comes from its ability to model complicated shapes with much sim-
pler polyhedra using a few subdivision rules.

Box splines [dBHR93] provide a natural framework for building
subdivision surfaces. Most of the known spline-based subdivision
schemes are derived from box splines. Tensor product biquadratic
and bicubic B-splines lead to Doo-Sabin [DS78] and Catmull-
Clark [CC78] subdivision, respectively. Three-directional quartic
box spline gives raise to the Loop subdivision scheme [Loo87].
Midedge scheme [PR97, HW99] is derived from four-directional
quadratic box splines, and 4-8 subdivision [VZ01] is generalized
from four-directional sextic box splines. Except for box splines,
there are relatively few schemes derived from other types of splines.
Recently, Barendrecht et al. [BSK19] proposed a novel C1 honey-
comb subdivision scheme based on cubic half-box splines.

The above spline-based schemes are all derived from scalar-
valued subdivision, whose underlying spline spaces are spanned by
one single refinable spline. On the other hand, vector-valued sub-
division schemes [MS98] are deduced from two or more refinable
functions.

Conti and Jetter [CJ00] proposed S0
1 and S1

3 bivariate splines
on the four-directional meshes, starting from two non-box spline
generators. Here, S0

1 and S1
3 stand for piecewise linear splines and

piecewise cubic C1-splines, respectively. Based on their vector-
valued subdivision scheme for four-directional S1

3 splines, we de-

rive the subdivision rules for regular cases and extend them to
polygonal meshes of arbitrary topology. The proposed non-box
subdivision scheme has the following characteristics:

• Extension from vector-valued subdivision. The four-directional
S1

3 spline has two generating splines. Thus, its subdivision
scheme is vector-valued.

• Generalization of non-box spline subdivision. Neither of the two
generating functions for the four-directional S1

3 splines is a box
spline. We generalize the subdivision scheme for the S1

3 non-box
spline from regular four-directional meshes to arbitrary topol-
ogy.

• C1 continuity. The generated subdivision surfaces are C1-
continuous.

• Convex hull property. All subdivision weights are non-negative.
• Flexible modeling ability. It can be applied to arbitrary topolog-

ical quasi-four-directional meshes and polygonal meshes with
face control vertices (FCVs). By setting different FCVs, differ-
ent limit surfaces can be produced from the same initial mesh.

The rest of this paper is organized as follows. The next section
briefly reviews the four-directional S1

3 non-box splines. Section 3
deduces the subdivision rules for regular four-directional meshes,
then extend them to quasi-four-directional meshes and polygonal
meshes with FCVs. In Section 4, we discuss the selection of the
weights of the subdivision scheme. By analyzing the subdivision
matrix and characteristic map, we verify that the scheme is C1-
continuous, and derive the formula of the limit position and tangent
vectors. Section 5 briefly discusses the implementation of the algo-
rithm, boundary rules and selection of FCVs. In Section 6, some
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examples are given and compared with other subdivision schemes.
Finally, we conclude the paper with some suggestions for future
work.

2. Four-directional non-box splines

In this section, we briefly review vector-valued subdivision [MS98]
and four-directional S1

3 non-box splines [CJ00].

2.1. Vector-valued subdivision

A compactly supported continuous function vector Φ =

(
φ1
φ2

)
:

R2 → R2 is refinable with respect to the dilation matrix
(

2 0
0 2

)
,

if it satisfies the following matrix refinement equation:

Φ = ∑
α∈Z2

AαΦ(2 ·−α) (1)

Here, the refinement matrix mask A = (Aα)α∈Z2 is a bi-infinite ma-
trix; and Aα,α ∈ Z2 are real (2×2)-matrices.

Denote ℓ(Z2) as the linear space formed by all infinite sequences
on Z2, and ℓ∞(Z2) as the linear space of all bounded infinite se-
quences on Z2. The vector-valued subdivision operator associated
with A is defined as

SA : (ℓ(Z2))2 → (ℓ(Z2))2

(SAΛ)α := ∑
β∈Z2

AT
α−2βΛβ, α ∈ Z2,Λ ∈ (ℓ(Z2))2 (2)

For a given initial vector sequence Λ ∈ (ℓ(Z2))2, the vector-valued
subdivision scheme is defined as

Λ
0 := Λ, Λ ∈ (ℓ(Z2))2

Λ
m := SAΛ

m−1, m = 1,2, . . .

We say that the subdivision scheme converges with respect to Λ ∈
(ℓ(Z2))2, if there exists a continuous function fΛ : R2 → R, such
that

lim
m→∞

∥∥∥ fΛ
( ·

2m

)
e−Λ

m
∥∥∥
∞

= 0

Here, e =

(
1
1

)
, and ∥ · ∥∞ denotes the sup-norm of a vector se-

quence Λ =

(
λ

1

λ
2

)
, i.e.

∥∥∥∥(λ
1

λ
2

)∥∥∥∥
∞

:=
2

∑
i=1

∥λ
i∥∞ :=

2

∑
i=1

sup
α∈Z2

∥λ
i
α∥

2.2. Four-directional S1
3 non-box splines

Denote C as the unit square [0,1]2 and D as the rectangle on the
uniform four-directional mesh with (−1,0),(0,−1),(1,0),(0,1) as
vertices. φ1 and φ2 are two pyramidal hat functions with C and D as
supports, respectively. That is, they are S0

1 spline functions on the
four-directional grid satisfying φ1(1/2,1/2) = φ2(0,0) = 1.

It is easy to see that the Z2-translates of φ1 and φ2 span the S0
1

spline space on a regular four-direction grid [CJ00].

Let χC be the characteristic function of the square C := [0,1]2,
which is a piecewise constant function with C as support:

χC(x,y) =

{
1, (x,y) ∈C := [0,1]2;

0, otherwise .

We convolve φ1 and φ2 with χC respectively to obtain two S1
3

non-box spline functions:

φ1 = φ1 ∗χC,

φ2 = φ2 ∗χC.

The S1
3 non-box spline function vector Φ =

(
φ1
φ2

)
satisfies the ma-

trix refinement equation (1), where the refinement matrix mask A
is as follows [CJ00]:

A = (Aα)α∈Z2

=


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...
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...
...
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4
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· · · 0
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8
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8

0 0

) ( 1
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1
4
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4

) ( 1
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1
8

1
4

1
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) ( 1
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1
4
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4
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0 · · ·

· · · 0
( 1

8
1
4

0 0

) ( 1
2

1
2

0 1
8

) ( 1
2

1
4

0 1
4

) ( 1
8 0
0 1

8

)
0 · · ·

· · · 0
(

0 1
8

0 0

) ( 1
8

1
4

0 0

) ( 1
8

1
8

0 0

)
0 0 · · ·

· · · 0 0 0 0 0 0 · · ·
...

...
...

...
...

...


(3)

Here, A(0,0) =

( 1
2

1
2

0 1
8

)
, and we have the following convergence

theorem [CJ00]:
Theorem 1. The subdivision scheme associated with the matrix

mask A is convergent for all Λ =

(
λ

1

λ
2

)
∈ (ℓ(Z2))2, and the limit

function is given by the piecewise cubic four-directional C1 spline

fΛ = ∑
α∈Z2

λ
1
αφ1(·−α)+ ∑

α∈Z2

λ
2
αφ2(·−α).

3. Non-box subdivision scheme

In this section, we deduce a non-box subdivision scheme for regular
four-directional meshes, and then extend this scheme to meshes of
arbitrary topology.

3.1. Regular case

There are two types of vertices and two types of edges on a regular
four-directional mesh. We call a vertex type 1 if its valence is 8;
and type 2 if its valence is 4. An edge is called type 1 if both of its
endpoints have valence 8, i.e. both vertices are type 1. Otherwise,
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an edge is called type 2, if the valences of its two endpoints are 4
and 8 respectively, that is, one is a type 1 vertex and the other is a
type 2 vertex.
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Figure 1: 1-4 split on regular four-directional meshes

For regular four-directional meshes, 1-4 split inserts a split ver-
tex on each edge to subdivide each triangle into four sub-triangles
as shown in Figure 1:

• On each type 1 edge, a new type 1 E-vertex is inserted, which is
a type 1 vertex with valence 8 on the refined mesh.

• On each type 2 edge, a new type 2 E-vertex is added, which is a
type 2 vertex of valence 4 on the refined mesh.

• Each type 1 vertex corresponds to a type 1 V-vertex on the refined
mesh, which remains a type 1 vertex.

• Each type 2 vertex is associated with a type 2 V-vertex on the
refined mesh, which is a type 1 vertex with valence 8.

From the matrix mask A in Eq. (3), we obtain four different sub-
division stencils correspond to type 1 E-vertex, type 2 E-vertex,
type 1 V-vertex, and type 2 V-vertex, respectively, as illustrated in
Figure 2.

3.2. Arbitrary topology

For the non-box subdivision scheme on regular four-directional
meshes, we can consider it as either a four-directional subdivision
or a special quadrilateral subdivision. When viewed as a quadri-
lateral subdivision, type 2 vertices are regarded as auxiliary face
control vertices (FCVs). Following these two perspectives, we will
generalize the regular non-box subdivision scheme to arbitrary
topology.

3.2.1. Topological refinement rules

To extend the regular non-box subdivision to polygonal meshes
with arbitrary topology, we can triangulate a polygonal mesh into a
quasi-four-directional mesh as depicted in Figure 3:

1. Face vertex insertion: a face control vertex (FCV) is introduced
on each face (see Figure 3(b)).

2. Triangulation: an n-sided polygon is divided into n triangles by
connecting its n vertices with the FCV (see Figure 3(d)).

For regular quadrilateral meshes, the corresponding quasi-four-
directional meshes are obviously regular four-directional meshes.

In the quasi-four-directional mesh, we regard the vertices and
edges of the original polygon mesh as type 1 vertices and type 1

1
4

1
4

1
4

1
4

(a) Stencil for type 1 E-vertices

0

1
8

1
8

0
1
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2

(b) Stencil for type 2 E-vertices
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1
8

1
8

1
8
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8
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(c) Stencil for type 1 V-vertices

1
8

1
8

1
8

1
8

1
2

(d) Stencil for type 2 V-vertices

Figure 2: Subdivision stencils for regular case

edges of regular four-directional meshes; and the FCVs and new
edges as type 2 vertices and type 2 edges. Thus, each triangle has
two type 1 vertices and one type 2 vertex, and has one type 1 edge
and two type 2 edges.

For quasi-four-direction meshes, the following topological re-
finement rules are adopted (Figure 3(d)→(e)):

1. On each edge of the coarse mesh in Figure 3(d), a new E-vertex
is inserted, which is called type 1 E-vertex or type 2 E-vertex,
according to the type of the edge.

2. For each triangle of the coarse mesh, the new type 1 E-vertex
is connected with the old type 2 vertex and the two new type 2
E-vertices to generate three new edges and four small triangles.

3. In the refined mesh of Figure 3(e), the old type 1 vertices, type
2 vertices and the new type 1 E-vertices become type 1 vertices;
and new type 2 E-vertices become type 2 vertices.

4. In the refined mesh, an edge joined by two type 1 vertices is a
type 1 edge; and an edge joined by a type 1 vertex and a type 2
vertex is a type 2 edge.

After one step of four-directional subdivision, type-2 vertices in the
refined mesh all have valence 4.

If only FCV insertion step is performed on a polygonal mesh,
we can get a polygonal mesh with FCVs (see Figure 3(b)). In such
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(a) Initial control mesh (b) Control mesh with FCVs (c) One step of quadrilateral subdivision with FCVs

(d) Quasi-four-direction mesh (e) One step of four-directional subdivision

Figure 3: Topological refinement rules.

mesh, we similarly treat the vertices and edges of the original
polygonal mesh as type 1 vertices and type 1 edges respectively,
and regard FCVs as type 2 vertices. We adopt the topological re-
finement rules as follows (Figure 3(b)→(c)):

1. On each edge of the coarse mesh, a new E-vertex is inserted.
2. For each face of the coarse mesh, its FCV is linked to the E-

vertices associated with its edges.
3. On each face of the refined mesh, a new FCV is inserted.

After one refinement step, a polygonal mesh with FCVs becomes
a quadrilateral mesh with FCVs. Except for FCVs, the topology is
the same as Catmull-Clark subdivision. Therefore, one can regard
this subdivision as a special quadrilateral subdivision. And if we
perform the triangulation step on each quadrilateral, we will get the
same mesh as the four-directional subdivision (Figure 3(c)→(e)).

Because of this connection, we can utilize similar geometric re-
finement rules for the above two subdivisions. The difference is that
after refinement, triangular meshes and quadrilateral meshes with
FCVs are obtained, respectively.

3.2.2. Geometric refinement rules

For four-directional subdivision, there are four subdivision stencils
as follows:

1. Type 1 E-vertex rule (see Figure 4(a)): the new E-vertex on
a type 1 edge is the barycenter of the four vertices of two old
triangles with this edge as the common edge.

2. Type 2 E-vertex rule (see Figure 4(b)): the new E-vertex on a
type 2 edge is computed as

1
4

V I
0 +

1
2

V II
0 +

1
8

V II
1 +

1
8

V II
−1,

where V I
0 and V II

0 are the type 1 vertex and type 2 vertex of the
type 2 edge respectively; and V II

1 ,V II
−1 are the two type 2 vertices

adjacent to V I
0 and closest to V II

0 .
3. Type 1 V-vertex rule (see Figure 4(c)): the new position of an

existing type 1 vertex V I is computed as

(1−ak)V
I +(ak/k)

k−1

∑
i=0

V II
i ,

where V I is a type 1 vertex with valence k, and V II
i , i= 0, . . . ,k−

1 are the k vertices of type 2 adjacent to it.
4. Type 2 V-vertex rule (see Figure 4(d)): the new position of an

existing type 2 vertex V II is computed as

(1−ak)V
II +(ak/k)

k−1

∑
i=0

V I
i ,

where V II is a type 2 vertex of valence k, and V I
i , i = 0, . . . ,k−1

are the k vertices of type 1 adjacent to it.
Note that after one level of refinement, the valence of type 2 ver-
tices will remain 4. Then the type 2 V-vertex rule will degenerate
to the regular case as shown in Figure 2(d).
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In Figure 4, black solid lines represent the type 1 edges; blue dot-
ted lines represent the type 2 edges; black hollow dots represent
the type 2 vertices; red solid dots represent the new vertices to be
calculated; and the remaining vertices are type 1 vertices.

For quadrilateral subdivision with FCVs, there are four subdivi-
sion stencils as well:

1. E-vertex rule (see Figure 4(a)): the newly inserted E-vertex for
each edge is computed as an average of the two endpoints of
the corresponding edge and the two FCVs of the faces sharing
the same corresponding edge, i.e. an average of four related ver-
tices.

2. V-vertex rule (see Figure 4(c)): the new position of an existing
vertex V is computed as

(1−ak)V +(ak/k)
k−1

∑
i=0

FCVi,

where V is a vertex with valence k, and FCVi, i = 0, . . . ,k−1 are
the FCVs of the k faces incident to the corresponding vertex.

3. FCV rule (see Figure 4(d)): the new position of an existing FCV
is computeds as

(1−ak)FCV +(ak/k)
k−1

∑
i=0

Vi,

where FCV is the corresponding old FCV of a k-sided face with
Vi, i = 0, . . . ,k−1 as vertices.
Note that after one refinement step, all faces will be quads. Then
the FCV rule will degenerate to the regular case as shown in
Figure 2(d).

4. NFCV rule (see Figure 4(b)): the new FCV associated with
each new face is computed as

1
4

V0 +
1
2

FCV0 +
1
8

FCV1 +
1
8

FCV−1,

A new face is a quadrilateral composed of one V-vertex, one
FCV and two E-vertices. Here, V0 is the old vertex correspond-
ing to the V-vertex, FCV0 is the FCV of the old face F0 corre-
sponding to the new face, and FCV1,FCV−1 are the FCVs of
the two old faces incident to V0 and adjacent to F0.

In Figure 4, black solid lines represent old edges; green dotted lines
represent new edges; black hollow dots represent FCVs; and red
solid dots represent new vertices to be calculated.

4. Smoothness analysis

On regular four-dimensional meshes, the surfaces generated by the
proposed subdivision scheme are S1

3 non-box spline surfaces, so we
only need to analyze the smoothness at extraordinary positions.

Following the framework of [Rei95, Zor00] for analyzing con-
vergence and continuity of subdivision schemes, we will perform
eigenstructure analysis on a local subdivision matrix Sk for an ap-
propriate invariant neighborhood of extraordinary vertices, that is,
type-1 vertices of valence 2k,k ̸= 4 on a quasi-quadrilateral mesh,
or vertices of valence k,k ̸= 4 on a polygonal mesh with FCVs.

For simplicity, we will analyze the quadrilateral subdivision with
FCVs. The invariant neighborhood of an extraordinary vertex with

valence k has 1+10k control vertices. With the labeling illustrated
in Figure 5, we can construct a local subdivision matrix Sk of
(1+ 10k)× (1+ 10k). Let us assume that the subdivision matrix
Sk has eigenvalues {λ0,λ1, .,λ1+10k}, with eigenvalues organized
in decreasing moduli |λi| ≥ |λi+1|.

2 4

6 8

0 1 3

5 7

109

Figure 5: Labeling of control vertices of an extraordinary sector.

By applying the standard discrete Fourier transform (DFT) ap-
proach [PR08], the local subdivision matrix Sk,k ≥ 3 can be trans-
formed into a similar block diagonal matrix:

diag(B0,B1, . . . ,Bk−1).

Here,

B0 := B(0)

=



1−ak 0 ak 0 0 0 0 0 0 0 0
1
4

1
4

1
2 0 0 0 0 0 0 0 0

1
4 0 3

4 0 0 0 0 0 0 0 0
0 1

2
1
4 0 1

8 0 1
8 0 0 0 0

0 1
4

5
8 0 1

8 0 0 0 0 0 0
1
8

1
4

1
2 0 0 1

8 0 0 0 0 0
0 1

4
5
8 0 0 0 1

8 0 0 0 0
0 1

4
1
4 0 1

4
1
4 0 0 0 0 0

0 0 1
2 0 1

8
1
4

1
8 0 0 0 0

0 1
4

1
4 0 0 1

4
1
4 0 0 0 0

0 0 1
8 0 1

8
1
2

1
8 0 1

8 0 0


and

Bm := B(m)

=



1
4

1
4 (1+ω) 0 0 0 0 0 0 0 0

0 1
2 +

1
4 c 0 0 0 0 0 0 0 0

1
2

1
8 (1+ω) 0 1

8 0 1
8 ω 0 0 0 0

1
4

1
2 +

1
8 ω 0 1

8 0 0 0 0 0 0
1
8 (1+ω) 1

2 0 0 1
8 0 0 0 0 0

1
4 ω

1
2 +

1
8 ω 0 0 0 1
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1
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4 ω
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
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1
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ak
k
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k
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1−ak

(c)
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k
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k
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k

ak
k
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Figure 4: Geometric refinement rules. (a) Stencil for type 1 E-vertex rule of four-directional subdivision, and stencil for E-vertex rule
of quadrilateral subdivision with FCVs. (b) Stencil for type 2 E-vertex rule of four-directional subdivision, and stencil for NFCV rule
of quadrilateral subdivision with FCVs. (c) Stencil for type 1 V-vertex rule of four-directional subdivision, and stencil for V-vertex rule
of quadrilateral subdivision with FCVs. (d) Stencil for type 2 V-vertex rule of four-directional subdivision, and stencil for FCV rule of
quadrilateral subdivision with FCVs.

where 0 ≤ ak ≤ 1, ω = exp(2πim/k), c = cos(2πm/k), i2 =
−1, m = 1, . . . ,k−1, k ≥ 3.

The eigenvalues of the matrix block B(0) are 1, 3
4 −

ak,
1
4 ,

1
8 ,

1
8 ,

1
8 ,0,0,0,0,0, and the eigenvalues of matrix blocks B(m)

are 1
2 +

c
4 ,

1
4 ,

1
8 ,

1
8 ,

1
8 ,0,0,0,0,0, m = 1, . . . ,k−1.

For regular meshes, ak = a4 = 1
2 . If ak = 1

2 is still adopted for
general valence k, the resulting limit surface has a poor appear-
ance near extraordinary vertices. The weights ak should therefore
be a function related to valence k of extraordinary vertices such that
a4 =

1
2 .

Convex hull property. All subdivision stencils should be non-
negative, which guarantees the convex hull property. This con-
straint is equivalent to 0 ≤ ak ≤ 1, k ≥ 3.

Convergence. A subdivision scheme converges if and only if

1 = λ0 > λ1.

It is easy to see that 3
4 − ak < 1 and 1

2 + c
4 < 1. According to

[Rei95], the real eigenvalues cannot be negative. It follows that

3
4
−ak ≥ 0.

Therefore, if 0 ≤ ak ≤ 3
4 , k ≥ 3, then the proposed scheme con-

verges.

G1 continuity. The resulting subdivision surface is tangent plane
continuous at each extraordinary vertex if there exists a pair of sub-
dominant eigenvalues λ1,λ2 satisfy

1 = λ0 > λ1 = λ2 > λ3 · · ·

Since 1
2 +

1
4 cos(2π/k)> 1

4 , k ≥ 3, the constraints for tangent plane
continuity are therefore

λ1 = λ2 =
1
2
+

1
4

cos(2π/k),

3
4
−ak <

1
2
+

1
4

cos(2π/k).

Thus, if 1
4 − 1

4 cos(2π/k) < ak ≤ 3
4 , k ≥ 3, then the limit surfaces

generated by the presented scheme are G1 continuous.

C1 continuity. The characteristic map [Rei95] of an k-valence ver-
tex is defined as the planar limit surface whose initial control mesh
is defined by the two right eigenvectors corresponding to the two
subdominant eigenvalues λ1,λ2, respectively. If the characteristic
map of a G1 subdivision scheme is regular and injective, then the
surfaces generated by subdivision are C1 continuous.

The regularity and injectivity of this map can be approximately
judged from the triangulation obtained from the control meshes af-
ter several refinement steps [OS03].

(a) k = 3 (b) k = 5

(c) k = 8 (d) k = 9

Figure 6: Natural configurations for extraordinary vertices with
valence k = 3,5,8,9.
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Figure 7: Normalized characteristic wedges for extraordinary ver-
tices with valence k = 3,5,20,∞.

According to the above G1 constraints, we set the weights ak as

a3 =
3
4
, ak =

3
4
− (

1
2
+

1
4

cos(2π/k))2,k ≥ 4.

The natural configurations for extraordinary vertices with valence
k = 3,5,8,9 are illustrated in Figure 6.

To better visualize the behavior of the characteristic map as
k → ∞, one can map this wedge of angle 2π/k to a normalized
characteristic wedge of angle π/2 [OS03]. Figure 7 shows the nor-
malized characteristic wedges for extraordinary vertices with va-
lence k = 3,5,20,∞.

According to the visualization of natural configurations in Fig-
ure 6 and normalized characteristic wedges in Figure 7 respectively,
the characteristic map for arbitrary valence is regular and injective.
It follows that
Proposition 1. If a3 =

3
4 ,ak =

3
4 −( 1

2 +
1
4 cos(2π/k))2,k ≥ 4, then

the proposed non-box subdivision scheme achieves C1 continuity at
extraordinary vertices of arbitrary valence.

Limit position and tangent vectors. The limit position of a control
vertex and the tangent vectors at the limit position can be obtained
by the eigen analysis of the local subdivision matrix [HKD93].
Denote V = (V0,V

0
1 , . . . ,V

k−1
1 , . . . ,V 0

10, . . . ,V
k−1
10 )T as the column

vector formed by 10k+1 vertices in the invariant neighborhood of
an extraordinary vertex V0 with valence k; and l0, l1, l2 as the left
eigenvectors of the local subdivision matrix Sk with respect to the
largest three eigenvalues λ0,λ1,λ2, respectively.

The limit position of the control vertex V0 is defined by

V∞
0 = l0 ·V.

And the tangent vectors at the limit position V∞
0 are defined by

u1 = l1 ·V, u2 = l2 ·V.

For the proposed scheme, it follows that

l0 =
1

1+4ak
(1,0, . . . ,0,4ak/k, . . . ,4ak/k,0, . . . ,0)

l1 = (0,0, . . . ,0,c0,c1, . . . ,ck−1,0, . . . ,0)

l2 = (0,0, . . . ,0,s0,s1, . . . ,sk−1,0, . . . ,0)

where c j = cos(2π j/k),s j = sin(2π j/k), j = 0, . . . ,k−1.

Thus, the limit position of a control vertex with valence k is

V∞
0 =

kV0 +4ak ∑
k−1
j=0 V j

2

k(1+4ak)
.

The tangent vectors at V∞
0 are

u1 =
k−1

∑
j=0

c jV
j

2 ,

u2 =
k−1

∑
j=0

s jV
j

2 .

5. Implementation

For arbitrary polygonal meshes, one can transform them into polyg-
onal meshes with FCVs or quasi-four-directional meshes. How-
ever, polygonal meshes with FCVs are simpler than quasi-four-
directional meshes in data structure and implementation. In the
following we only describe algorithms for polygonal meshes with
FCVs as examples. To obtain a quasi-four-directional mesh, we
only need to triangulate each face.

Algorithm 1: One step of quadrilateral subdivision with
FCVs.

/* (1) Compute the vertices on the new refined mesh */
/* (1.1) Calculate V-vertices */
for each vertex v do

Compute the new position of v according to the
V-vertex rule (see Figure 4(c));

/* (1.2) Calculate E-vertices */
for each edge e do

Compute the position of new E-vertex corresponding to
e according to the E-vertex rule (see Figure 4(a));

/* (1.3) Update FCVs */
for each face f do

Compute the new position of FCV on f according to the
FCV rule (see Figure 4(d));

/* (2) Construct new faces in the refined mesh */
for each face f do

for each vertex v in face f do
Form a new quad face by the FCV of f , the V-vertex

corresponding to v, and the two new E-vertices on
the edges of f adjacent to v;

/* (3) Calculate FCV of the new face */
Compute the position of FCV for the new face

according to the NFCV rule (see Figure 4(b));

Considering the similarity with general polygonal meshes, the
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data structure and implementation can refer to the algorithms for
Catmull-Clark subdivision, except that each face needs to store an
additional FCV.

Boundary rules. The non-box subdivision scheme presented in
previous section applies to closed meshes. For open meshes, since
the FCV rule is only related to the vertices of the face where the
FCV lies, it is still applicable near the boundary. We need to de-
sign boundary E-vertex rule, V-vertex rule and NFCV rule. Follow-
ing [HDD∗94], we use the subdivision rules of cubic B-spline on
the boundary. Figure 8 presents the stencils of the boundary geo-
metric refinement rules. The initial mesh and subdivision surface
of an open pipe surface is depicted in Figure 9.

1
2

1
2

1
2

1
2

1
8

6
8

1
8

1
2

1
2

(a) (b)

Figure 8: Boundary geometric refimenent rules. (a) Boundary V-
vertex stencil (upper) and E-vertex stencil (lower). (b) Boundary
NFCV stencil.

(a) Initial mesh (b) Limit surface

Figure 9: Subdivision surface of an open mesh.

Choice of initial FCVs. To apply the proposed subdivision
schemes to general polygonal meshes, FCVs should be introduced
to convert the general meshes into quasi-four-directional meshes or
polygonal meshes with FCVs.

The selection of initial FCVs has a great influence on the shape
of the limit surfaces. In practice, an initial FCV can be taken as the

barycenter of each face, and then its position can be modified inter-
actively by the designer according to the modeling requirements.

Given that the initial control mesh is a cube centered at the ori-
gin, we take FCV as 0.5, 1, and 1.5 times the barycenter of each
face, respectively, to obtain the different results in Figure 10.

6. Examples and comparison

In this section, we compare the presented non-box subdivision with
other subdivision schemes, and give some surface modeling exam-
ples. Unless otherwise specified, initial FCVs in the example are
taken as barycenters of the faces.

Figure 11 shows the subdivision surfaces generated from a cube
or a tetrahedron by different subdivision schemes. We can see that
although non-box subdivision is also derived from C1 spline func-
tions, the generated surfaces are smoother than those generated by
Doo-Sabin scheme. The visual appearance of the surfaces produced
by our scheme is close to Loop and 4-8 subdivision schemes.

As a special quadrilateral subdivision, compared with the tradi-
tional schemes, the proposed scheme introduces FCVs which can
be used to control the limit shapes. In interactive modeling, the
shape of the limit surface can be controlled more flexibly to get
the desired surface. The control mesh in Figure 12(a) generates
a doughnut shape by general schemes. While with the proposed
scheme, different limit surfaces can be produced by adjusting the
positions of the FCVs, as illustrated in Figure 12.

Some examples of complex surfaces are given in Figure 13 and
Figure 14. The initial mesh of the model in Figure 13 is a quadrilat-
eral mesh with vertices of valences from 3 to 6, and the initial mesh
of the Manequin head model in Figure 14 is a triangular mesh.

7. Conclusion

In this paper, we present a surface subdivision scheme based on
four-directional S1

3 non-box splines. The resulting limit surfaces are
C1 continuous with the convex hull property. The scheme can be
viewed as either a four-directional subdivision or a special quadri-
lateral subdivision. As a quadrilateral subdivision, due to the in-
troduction of auxiliary face control vertices (FCVs) in the con-
trol meshes, we can obtain limit surfaces with different character-
istics by setting different initial FCVs. Compared with traditional
schemes, our scheme is more flexible and simple in shape control.

The proposed boundary refinement rules are heuristic and lack
smoothness analysis. In future work we will investigate C1 bound-
ary rules and tune the presented non-box subdivision scheme to
achieve better limit surface quality. It’s possible to generate a limit
surface with a crease or self-intersects if moving FCVs to some po-
sitions. How to get a good shape by FCVs will be an interesting
topic. Additionally, we will explore interpolatory surface schemes
based on interpolatory vector subdivision schemes [CZ04].
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barycenters as FCVs. (c) Polygonal control mesh with 1.5 times barycenters as FCVs. (d) Limit surface corresponding to (a). (e) Limit
surface corresponding to (b). (f) Limit surface corresponding to (c). FCVs are marked as red dots.

the Anhui Provincial Major Science and Technology Project (No.
202203a05020016), and the National Natural Science Foundation
of China (Nos. 71991464 and 61877056).

References

[BSK19] BARENDRECHT P., SABIN M., KOSINKA J.: A bi-
variate C1 subdivision scheme based on cubic half-box splines.
Computer Aided Geometric Design 71 (2019), 77–89. URL:
https://www.sciencedirect.com/science/article/
pii/S0167839619300184, doi:https://doi.org/10.
1016/j.cagd.2019.04.004. 1

[CC78] CATMULL E., CLARK J.: Recursively generated B-spline
surfaces on arbitrary topological meshes. Computer-Aided Design 10,
6 (1978), 350–355. URL: https://www.sciencedirect.com/
science/article/pii/0010448578901100, doi:https:
//doi.org/10.1016/0010-4485(78)90110-0. 1

[CJ00] CONTI C., JETTER K.: A new subdivision method for bi-
variate splines on the four-directional mesh. J. Comput. Appl. Math.
119, 1-2 (jul 2000), 81–96. URL: https://doi.org/10.1016/
S0377-0427(00)00372-1, doi:10.1016/S0377-0427(00)
00372-1. 1, 2

[CZ04] CONTI C., ZIMMERMANN G.: Interpolatory rank-1 vec-
tor subdivision schemes. Computer Aided Geometric Design 21, 4
(2004), 341–351. URL: https://www.sciencedirect.com/
science/article/pii/S0167839603001596, doi:https:
//doi.org/10.1016/j.cagd.2003.11.003. 8

[dBHR93] DE BOOR C., HÖLLIG K., RIEMENSCHNEIDER S.: Box
Splines. Springer-Verlag, Berlin, Heidelberg, 1993. 1

[DS78] DOO D., SABIN M.: Behaviour of recursive division sur-
faces near extraordinary points. Computer-Aided Design 10, 6
(1978), 356–360. URL: https://www.sciencedirect.com/
science/article/pii/0010448578901112, doi:https:
//doi.org/10.1016/0010-4485(78)90111-2. 1

[HDD∗94] HOPPE H., DEROSE T., DUCHAMP T., HALSTEAD M.,
JIN H., MCDONALD J., SCHWEITZER J., STUETZLE W.: Piecewise
smooth surface reconstruction. In Proceedings of the 21st Annual Con-
ference on Computer Graphics and Interactive Techniques (New York,
NY, USA, 1994), SIGGRAPH ’94, Association for Computing Machin-
ery, p. 295–302. URL: https://doi.org/10.1145/192161.
192233, doi:10.1145/192161.192233. 8

[HKD93] HALSTEAD M., KASS M., DEROSE T.: Efficient, fair in-
terpolation using Catmull-Clark surfaces. In Proceedings of the 20th
Annual Conference on Computer Graphics and Interactive Techniques
(New York, NY, USA, 1993), SIGGRAPH ’93, Association for Com-

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

9 of 12

https://www.sciencedirect.com/science/article/pii/S0167839619300184
https://www.sciencedirect.com/science/article/pii/S0167839619300184
https://doi.org/https://doi.org/10.1016/j.cagd.2019.04.004
https://doi.org/https://doi.org/10.1016/j.cagd.2019.04.004
https://www.sciencedirect.com/science/article/pii/0010448578901100
https://www.sciencedirect.com/science/article/pii/0010448578901100
https://doi.org/https://doi.org/10.1016/0010-4485(78)90110-0
https://doi.org/https://doi.org/10.1016/0010-4485(78)90110-0
https://doi.org/10.1016/S0377-0427(00)00372-1
https://doi.org/10.1016/S0377-0427(00)00372-1
https://doi.org/10.1016/S0377-0427(00)00372-1
https://doi.org/10.1016/S0377-0427(00)00372-1
https://www.sciencedirect.com/science/article/pii/S0167839603001596
https://www.sciencedirect.com/science/article/pii/S0167839603001596
https://doi.org/https://doi.org/10.1016/j.cagd.2003.11.003
https://doi.org/https://doi.org/10.1016/j.cagd.2003.11.003
https://www.sciencedirect.com/science/article/pii/0010448578901112
https://www.sciencedirect.com/science/article/pii/0010448578901112
https://doi.org/https://doi.org/10.1016/0010-4485(78)90111-2
https://doi.org/https://doi.org/10.1016/0010-4485(78)90111-2
https://doi.org/10.1145/192161.192233
https://doi.org/10.1145/192161.192233
https://doi.org/10.1145/192161.192233


Z. Huang / A Non-Box Spline Subdivision Scheme

(a) Initial mesh (b) Catmull-Clark (c) Doo-Sabin

(d) Loop (e) 4-8 subdivision (f) Non-box subdivision

(a’) Initial mesh (b’) Catmull-Clark (c’) Doo-Sabin

(d’) Loop (e’) 4-8 subdivision (f’) Non-box subdivision

Figure 11: Comparison between surfaces generated by different subdivision schemes.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 12: Comparison of surfaces generated from different FCVs. (d), (e), (f), (j), (k) and (l) are the limit surfaces generated from the
control meshes in (a), (b), (c), (g), (h) and (i), respectively. FCVs are marked as red dots.
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(a) Initial mesh (b) Limit surface

Figure 13: A model generated from a quadrilateral mesh with ver-
tices of valences from 3 to 6.

(a) Initial mesh (b) Limit surface

Figure 14: Manequin head model.
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