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In this document, we report all the additional details that do not
find a place in the main manuscript due to lack of space.

1. Details on the datasets

In this Section, we report some additional details on the datasets
involved in our evaluation.

1.1. Human shapes datasets

F.7x [BRLB14]: 10 subjects, in the same 10 articulated poses, all
represented with the same triangular mesh with 6890 vertices.
Fig: The same shapes of F. 7k, remeshed to the same triangu-
lar mesh with 1K vertices. The same mesh is applied to all the

shapes, which thus share a 1:1 correspondence.

Fix N: The same shapes of Fjx with Gaussian noise applied to the
3D coordinates with standard deviation equal to 0.01. This noise
should simulate some error in the acquisition process.

Fix O: The same shape from F. 7k with a different sampling of
1K points. Some of them have been randomly moved far from
the surface, generating a sparse set of outliers.

S19 [MMR*19]: 44 shapes from different repositories, whit var-
ious triangulation, numbers of points (from ~ 5K to more than
200K), poses, and subjects. A list of 430 pairs is provided to
evaluate the resiliency of the method to different connectivities
and densities.

1.2. Animal shapes datasets

SMAL 100 random pairs selected among 300 shapes generated
with the SMAL parametric model that have never been seen dur-
ing the training. The shapes belong to all the classes generated
by SMAL (cat, dog, cow, horse, hippo).

HIPPO 100 random pairs composed only of hippos (with different
sizes, proportions, and poses) generated with the SMAL model
that have never been seen during the training.

TOSCA [BBKO08] is a benchmark of synthetic triangular meshes
belonging to different classes with various poses (cat, dog, horse,
wolf, 3 human subjects, among others). We remesh them to
~ 10K vertices. Shapes in each class are isometric, and with the
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vertices ordered in 1:1 correspondence. We only consider pairs
composed of shapes from the same class. For the test on the ani-
mal shapes, we consider only the classes of dog, horse, and wolf.
We exclude the cat class involved in the training of a specific
model we test in our experiments.

2. Evaluation
2.1. Surface attention in Oursgy

Following [TCM*21], for each point xp € X, we estimate its area
contribution as the inverse of the local point density: A(X), =
(Hxj € & st ||xj —xp|2 < r}) ™1, where |- | denotes the cardi-
nality of a set, and r is a local radius set to 0.05. In our case, the at-
tention energy & defined in equation 4 in the main paper, is changed
as:

g SAC(X.SERY)
YEAC(X,SEPY)

where Ac(X,SEP,Y) is the concatenation of the A(X), A(Y),
and a dummy separator SEP set to 1.

ey

2.2. Evaluation metrics

Given the ground truth correspondence Hgfy between X and Y
(i.e,y= HE{T_y (x) € Y is the correct match Vx € X), we compute
the geodesic error 59(7y(x) of the estimated correspondence IT as:

EX y(x) = Gy (T y (x), TI(x)), 2

where Gy, is the geodesic distance on the surface Y. The average
geodesic error, namely AGE, is the average value of this error on
all the points that discretize X'. The average geodesic error, namely
AGE, which is the mean value of this error on all the points that
discretize X

1
xe

is the main metric adopted to globally assesses the estimated cor-
respondence. In the same way, we can compute these errors in the
opposite direction if the Hgfx is available. In the tables, for each
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dataset, we report the average value of the AGE on a collection of
pairs. For visualization, we encode this error in a colormap, points
with large errors have dark colors while O errors are white.

A common metric we can adopt when the ground truth corre-
spondence is not available is the Chamfer distance, which for the
pair X,Y is defined as:

. 2 . 2
Y min[x—ylz+ Y min|ly—x]3. O]
SoxveY yEy XX
This measure is more specific for shape registration, but it can be
useful also for shape matching in absence of ner,

2.3. Evaluation with augmentation

As described in the main test, we apply two types of augmentation
at training time: random rotations and random permutation. The
loss we adopt requires the 1:1 correspondence between X and )
that is not available after the transformations we apply in the aug-
mentation step. For this reason, for every pair, we apply the inverse
of these transformations to the output of our model to make the loss
evaluation meaningful.

3. Details about our choices
3.1. Matching and not registration

As we state in the main paper, with our work, we aim to target the
shape matching problem instead of the registration one. Even if po-
tentially more precise, we believe that focusing on the analysis of
the components and design of the transformer, it is better to target
the more general shape matching task. Moreover, the metric (AGE)
we adopt to evaluate and compare the performances is properly de-
fined for the shape matching and not for the registration problem.
To be as general as possible in our pipeline, we do not require any
template or particular properties for one of the two shapes in each
pair which is proper for the registration setting. Given that, we rec-
ognize that, following the method proposed in [TCM*21], the pro-
cedure we apply to compute the estimated correspondence belongs
to the registration setting. The loss we exploit provides strong con-
straints about the desired solution and makes the shape matching
problem (combinatorial in its nature) easier to optimize. Further-
more, by implementing the same loss, our model is directly com-
parable to SRTT, which is the main objective of our evaluation.
Our main limitation is the fixed number of points that we can input
into our model. We consider this a strong limitation for the registra-
tion, even if in shape matching, this does not hurt the performance
too much, as we can appreciate from the quantitative evaluation, in
which we outperform the competitors most of the time. In the fu-
ture, we aim to target this limitation and, once do that, extend our
model and experiment with its potential in the registration task.

3.2. Implementation details

Our implementation follows the Transformer encoder base set-
ting [VSP*17]. Specifically, we use 6 layers, 512 as a model di-
mension, 2048 as a hidden dimension, and 8 attention heads of
64 dimension each. As an initial dimensionality augmentation, as
shown in Figure 2 in the main paper, we use 6 linear layers of size

(16,32,64,128,256,512) interleaved by the Tanh activation func-
tion. Similarly, as a final dimensionality reduction, we use 6 linear
layers of size (256,128,64,32,16,3) with the Tanh activation func-
tion between all of them. We train our model for 5000 epochs on
an NVIDIA A100 using Adam optimizer [KB15] with a constant
learning rate of le-4, and batch size of 8. We release our com-
plete implementation at: https://github.com/raganato/
SGP23_AttPos4ShapeMatching.

We note that, to allow the model to learn sparse attention
weights, we could replace the softmax operator in the attention
heads with o-entmax functions [MA16, PNM19, CNM19]. How-
ever, this did not lead to any change in performance in the ablation
setting (see Table 1). For simplicity, we keep the softmax operator.

Moreover, we note that we could also train our model to mini-
mize the Chamfer distance respectively between X' and Y or be-
tween Y and X, without using the ground truth correspondence
(see Equation 5 in the main paper). However, our main interest is
in the analysis of the proposed architecture in relation to the match-
ing problem, thus we do not explore this possibility and leave it as
a future direction.

Table 1: Ablation study

Method fParams Fix FixkN DEV
Ours 19.2M 0.0880  0.0826  0.0489
Ours-entmax 19.2M 0.0880  0.0826  0.0489

3.3. Details on Figure 8

Figure 8 in the main paper shows a 3D Principal Component Analy-
sis (PCA) visualization using the embedding projection online tool
https://projector.tensorflow.org/.

4. Additional Results

In this Section, we collect some additional figures and quantitative
results.

4.1. Additional visualizations

In Figure 1, we depict the comparison between Ours and SRTT on
a second pair from SMAL dataset. As can be seen, the poses of
these animals are quite extreme. Also, in this case, our method
outperforms the competitor. In particular, while SRTT is wrongly
mapping two legs of the cow on the same leg of the hippo (vi-
sualized through the dark yellow color of the points in these re-
gions), our result is correct. Figures 2 and 3 contain other results
for the texture transfer application on pairs from the challenging
S19 [MMR™19] dataset. In Figure 2, we visualize the texture trans-
fer results produced by our method. Finally, In Figure 3, we report
another comparison with SRTT. Once again, we highlight that even
if numerically worse than SRTT on S19, we are accurate enough
to target this application.
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Geodesic Error

Figure 1: Comparison between Qurs and SRTT [TCM*21] on a
pair from the SMAL dataset.

5 E % :
Source i i Source % i

Ours Ours Ours
Figure 2: Three texture transfer results (source on the top and

transfer on the bottom of each pair) obtained from the correspon-
dences estimated by our method on the challenging SHREC 19
[MMR* 19]. Even if numerically worse than the scores of SRTT on
the same dataset, we are accurate enough to target this application.

(%rr%lgnd SRTT Ours
Source Transfer results (S19)

Figure 3: Texture transfer results for one pair from S19. From left
to right, we visualize the source shape with the texture, the ground
truth transfer, the output of SRTT, and our result.

4.2. Test on shapes with different numbers of vertices

In Table 2, we collect the quantitative evaluation of shapes with
different densities. In the first and second columns, we have the
results for the Fig and F. 7k that are also in Table 1 of the main
manuscript. In the last column we report the results for the same
pairs but with X’ from Fix and ) from F.7x. The last one is a
more complicated setting due to the different densities of the two
points distributions. The errors do not change too much in any case.
As can be appreciated, even if a bit less stable, our method outper-
forms SRTT in every case. Furthermore, as highlighted in the main
document, Ours, is more stable than Qurs, proving that the addi-
tional training with a different sampling of the points can help. We
aim to explore this direction further in the future. Finally, neither
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Oursgy and Oursgy, outperform Qurs, confirming that the sur-
face attention by itself does not improve our solution even in the
case of shapes with different numbers of vertices.

Table 2: Comparison to SRTT [TCM*21] on shapes with different
numbers of vertices.

Method Fix  Fux Fuok
SRTT 0.042  0.051 0.050
SRTT, 0.036  0.044 0.043
Ours 0.014  0.024 0.029
Ours, 0.013  0.020 0.022
Oursgy 0.015 0.023 0.027
Oursgy,,  0.017  0.022 0.024

5. Analysis of the attention

In this section, we report all the additional analyses that were not
included in the main paper due to the limited space.

We highlight here the main insights we inherit from these visu-
alizations.

e Ours shows clear and sharp self and cross-attention patterns.
Each head specializes in a specific pattern across the heads.

e No Bid does not present any cross-attention patterns, and the
subdivision between the entries related to the two shapes is not
sharp as in Ours.

e No RA does not specialize the heads. As an example, Head 1
switches from self to cross-attention in Layers 4 and 5.

e No Pos does not generate any meaningful pattern, as we under-
stand from the bad quantitative results of this model.
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Figure 4: Visualization of the first four attention heads of Ours model across the 6 layers of the architecture. The stronger the red, the higher
the attention score.
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Figure S: Visualization of the last four attention heads of Ours model across the 6 layers of the architecture. The stronger the red, the higher

the attention score.
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Figure 6: Visualization of the first four attention heads of No Bid model across the 6 layers of the architecture. The stronger the red, the
higher the attention score.
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Figure 7: Visualization of the last four attention heads of No Bid model across the 6 layers of the architecture. The stronger the red, the
higher the attention score.
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Figure 8: Visualization of the first four attention heads of No RA model across the 6 layers of the architecture. The stronger the red, the
higher the attention score.
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Figure 9: Visualization of the last four attention heads of No RA model across the 6 layers of the architecture. The stronger the red, the
higher the attention score.
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Figure 11: Visualization of the last four attention heads of No Pos model across the 6 layers of the architecture. The stronger the red, the
higher the attention score.
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