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Figure 1: HalfedgeCNN revolves around a triangle mesh’s halfedges as central entities. Convolution, pooling, and unpooling operators
are defined directly on halfedge neighboorhoods. In contrast to other mesh entities (vertices, edges, faces), halfedges combine multiple
advantages such as well-defined orientation, constant neighborhood structure, and unique relations to other mesh entities. This allows
defining versatile neural networks that, in a sense, operate natively on meshes.

Abstract
We describe HalfedgeCNN, a collection of modules to build neural networks that operate on triangle meshes. Taking inspiration
from the (edge-based) MeshCNN, convolution, pooling, and unpooling layers are consistently defined on the basis of halfedges
of the mesh, pairs of oppositely oriented virtual instances of each edge. This provides benefits over alternative definitions on
the basis of vertices, edges, or faces. Additional interface layers enable support for feature data associated with such mesh
entities in input and output as well. Due to being defined natively on mesh entities and their neighborhoods, lossy resampling
or interpolation techniques (to enable the application of operators adopted from image domains) do not need to be employed.
The operators have various degrees of freedom that can be exploited to adapt to application-specific needs.

CCS Concepts
• Computing methodologies → Shape analysis; Mesh models; Neural networks;

1. Introduction

The impressive advances achieved in recent years in a variety of
application areas by neural networks, in particular convolutional
neural networks (CNNs), have sparked interest in applying such
techniques beyond their classical domains (most prominently 2D
pixel and 3D voxel arrays). One recent focus is on surfaces, i.e.
2-manifolds. Such domains are more complex than the 2D plane,
while 3D volumetric approaches are unnecessarily general as they
do not exploit the sub-manifold nature of surfaces.

While, as briefly reviewed in Sec. 2, there are ways to phrase
learning tasks on 2-manifolds as (multiple) 2D learning problems,
as well as ways to reduce the overhead when applying overly gen-
eral 3D approaches, it is natural to ask for neural network archi-
tectures tailored directly to the surface setting. The key ingredients

of CNNs being operators for convolution, pooling, and unpooling,
a central challenge lies in defining those in an adequate way on
2-manifolds.

Probably the most common and flexible geometric representa-
tion of surfaces is via triangle meshes. A variety of approaches
to defining the above operators on surface meshes have been ex-
plored in recent years. Their less regular structure in comparison to
pixel or voxel grids brings about challenges regarding the defini-
tion of suitable convolution and pooling operators. For instance, a
convolution operator requires an identical neighborhood structure
everywhere on the domain so as to effectively enable weight shar-
ing, a key property of CNNs [LBBH98, FM82]. This can be ap-
proached using interpolation or resampling techniques that effec-
tively simulate a constant neighborhood structure in a local man-
ner [MBBV15, BMRB16].
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More recently, some works have proposed ways to define con-
volution operators that consume mesh-based data more directly,
or natively. One example is SpiralNet [LDCK18] and variations
thereof [GCBZ19, BBP∗19]; it establishes a linear ordering of a
vertex’ neighboring vertices, so as to enable the application of 1D
convolutions or RNNs. Another example is MeshCNN [HHF∗19];
it operates on data associated with a mesh’s edges and exploits the
local edge neighborhood, which (in contrast to vertex neighbor-
hoods) is constant in a triangle mesh, to define a convolution oper-
ator.

1.1. Contribution

We describe HalfedgeCNN, a network that revolves around the
concept of halfedges in a triangle mesh. It can be viewed as a gen-
eralization of MeshCNN, and it in particular:

• removes the need to restrict to symmetric filters due to orienta-
tion ambiguities;

• increases expressiveness by being able to represent a broader
range of functions;

• increases flexibility regarding the choice of convolution neigh-
borhoods and pooling rules;

• enables dealing with data that is not edge based but vertex based,
face based, or oriented-edge based in a more direct manner.

Like in the classical halfedge mesh data structure [Wei85,Ket98]
we view each edge of a triangle mesh as a pair of oppositely ori-
ented halfedges. Internally, the network generally operates on data
(features) associated with halfedges. Through interface layers also
per-vertex, per-edge, and per-face data can be handled in network
input and output when required, without information loss or degra-
dation on the input side.

2. Related Work

In recent years we could witness the proposal of quite a variety of
approaches to make deep learning, in particular using CNNs, ap-
plicable to 2-manifold domains [BBL∗17], most relevantly in the
form of surface triangle meshes [HL21]. These range from globally
or locally reducing surface-based settings to 2D image settings, to
defining novel operators and architectures (in particular for convo-
lution and pooling) dedicated to the triangle mesh setting.

Image Reduction One approach consists of applying classical 2D
image pixel grid based CNNs. To this end the surface (or rather
the input data associated with it, such as coordinates, colors, de-
scriptors) needs to be mapped to the plane, as a whole or in pieces.
This can be done by means of rendering techniques in multi-view
methods [SMKLM15, CMW∗17, SBZB15] or by means of map-
ping methods that unfold the surface to the plane [MGA∗17, ES-
KBC17,HSBH∗19,SBR16]. Challenges lie in dealing with aspects
such as visibility, topology, and distortion.

Local Resampling Another idea consists of, around each point of
interest (typically each vertex), resampling the input data associ-
ated with the mesh onto a fixed (e.g. polar) grid structure, so as
to establish constant neighborhoods that enable the application of
a common convolution operator [MBBV15, BMRB16, KBLB12].

This can then be used to define convolutional layers for a neural net-
work architecture. The need to resample, based on interpolating the
input data that is often defined per vertex, can be seen as a down-
side, because a loss of information and fidelity is inevitable. An
alternative are unstructured “continuous” convolutions, that may
assume a fixed neighborhood size but do not assume a fixed neigh-
borhood grid structure [YLB∗21, MKK21, WEH20].

Graph-Based Approaches The vertices and edges of a mesh form
a graph. Hence, general graph neural networks using graph convo-
lutions [SGT∗08, HBL15] can easily be applied. Per se, such an
approach does not exploit the manifold surface nature of the mesh,
though. A number of proposals have been made to inject geometric
surface information in this context [KJP∗18, SACO22].

Mesh-Based Approaches A few recent methods focus on truly
embracing the fact that the input is a mesh describing a 2-manifold
surface, and on operating natively on the mesh-associated input
data. The method of Feng et al. [FFY∗19] is face based, exploit-
ing the constant neighborhood structure of three edge-adjacent
faces per face. It therefore also assumes input and output sig-
nals of the network to be face based. The work of Hertz et
al. [HHGCO20] likewise uses face based convolutions. Larger or
dilated convolution neighborhoods in the face based setting can
be used when restricting (e.g. via remeshing) to largely regular
meshes (with subdivision connectivity) [HLG∗22]. The MeshCNN
method [HHF∗19, BEB21] is edge based, exploiting the constant
neighborhood structure of four directly adjacent edges per edge.
Input and output signals are assumed to be edge based in this
case. In both cases (face based and edge based) there are order-
ing ambiguities among the neighboring elements, requiring sorting
[HHF∗19], maximum selection [HHGCO20], averaging, or other
forms of “symmetrization”, with an associated loss of information.
The method of Milano et al. [MLR∗20] can be viewed as a combi-
nation thereof, natively taking edge based and face based features
as input. One configuration of their method, the dual graph with
double nodes discussed in their supplementary material, though
not framed in terms of halfedges, can effectively be viewed as a
particular instance of our framework, with a particular convolution
neighborhood choice (namely D⃝ as of Sec. 3.1).

In the case of vertex based signals to be processed, the situa-
tion is more intricate because the vertex neighborhood structure
commonly (and often inevitably) is variable across a mesh. This
precludes the direct definition of a shared convolution operator. A
convolution-like operator can still be formed by convolving only
fixed-size subsequences of the one-ring neighborhood and pooling
over all subsequences cyclically. Like in the above face or edge
centered approaches, this pooling (e.g. by averaging) is necessary
to deal with the ordering ambiguity. The vertex layer of Liu et
al. [LKC∗20] roughly follows this approach (additionally insert-
ing subsequence-specific input features). Let us remark that the
oriented half-flap operator used in that work might easily be mis-
taken to be closely related or even equivalent to part of our halfedge
centered approach. However, this operator (which specifically con-
sumes vertex based latent features combined with halfedge based
input features) serves as a logical sub-unit of vertex-to-edge and
vertex-to-vertex convolution-like layers (using averaging over sub-
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Figure 2: Illustration of the different neighborhoods of a central halfedge (red) considered in Sec. 3.1. On the far left the minimal neighbor-
hood (S,O,N) is shown, consisting of only the central halfedge itself, its opposite, and its next halfedge. The neighborhood on the far right
contains all halfedges belonging to the five edges of two edge-adjacent faces.

sequences, as discussed above). In particular that work does not in-
volve any cascadable halfedge-to-halfedge layers (whether of con-
volution or pooling type) that consume and produce latent features
living on halfedges.

Non-Convolutional Approaches Less related are approaches fo-
cusing on non-convolutional networks. This includes techniques
that essentially bring mesh vertices into one-dimensional orders to
enable the applications of recurrent neural networks (RNNs), us-
ing random walks [LT20] or spiral patterns [LDCK18, GCBZ19,
BBP∗19]. Also point cloud based techniques [QSMG17] can eas-
ily be applied to the set of vertex points, albeit not exploiting the
potentially useful mesh connectivity information.

3. Halfedge-Based Convolution

Assume we are given a closed manifold triangle mesh. The two
halfedges corresponding to an edge {a,b} between two vertices a
and b are the ordered tuples (a,b) and (b,a); they can be viewed
as (oppositely) oriented edges. We say a halfedge (a,b) belongs
(see Fig. 6) to the vertex a, to the edge {a,b}, and to the triangle
(a,b,c), where the latter is a cyclic list (i.e. equivalent to (b,c,a)
and (c,a,b)) ordered counterclockwise (by convention).

a b

c

(a,b)

(b,a)

(b,c)

The adjacency among the set of all
halfedges of a triangle mesh is fully rep-
resented by two pieces of information
per halfedge (a,b): the opposite half-
edge (i.e. (b,a)) and the next halfedge
(i.e. (b,c) if there is a triangle (a,b,c)).

3.1. Neighborhoods

A minimal halfedge neighborhood that can therefore be used to
define a reasonable convolution operator centered at a halfedge is
the halfedge itself (S), its opposite halfedge (O), and its next half-
edge (N). We abbreviate this neighborhood (S,O,N), illustrated in
Fig. 2 left. It is minimal in the sense that repeated convolutions
performed over this neighborhood allow information exchange be-
tween arbitrary halfedges in a mesh. Smaller neighborhoods, (S,O)
or (S,N), would confine information exchange to within individual
edges or triangles—similar to how, e.g., 1×3-convolutions in pixel
grids would limit exchange to within columns (or rows).

Similar to how differently sized convolution kernels are em-
ployed in CNNs on grid data depending on the specific use case,
we may define also larger (non-minimal) ordered neighborhoods.
This includes the following, as illustrated in Fig. 2, where we, e.g.,
use NO to denote the next→opposite halfedge of S, and abbrevi-
ate NN as P (because the previous halfedge in a triangle is the next
halfedge of the next halfedge):

A⃝ (S,O,N)
B⃝ (S,O,N,P)
C⃝ (S,O,N,ON)
D⃝ (S,NO,PO,ON,OP)
E⃝ (S,O,N,P,NO,PO)
F⃝ (S,O,N,P,ON,OP)
G⃝ (S,O,N,P,ON,OP,NO,PO)
H⃝ (S,O,N,P,ON,OP,NO,PO,ONO,OPO)

Even larger neighborhoods could be defined. However, they could
easily be improper depending on the local mesh connectivity
around the center halfedge S. We say a neighborhood is proper if it
contains no halfedge of the mesh more than once. The above neigh-
borhoods, due to being confined to the set of halfedges belonging to
the edges of two edge-adjacent triangles, are always proper as long
as the mesh contains no loop edges (of type (a,a)) and no vertices
of valence below 3. While impropriety is not an issue per se, it leads
to potentially less useful convolution results of questionable com-
parability depending on the local tessellation; we therefore restrict
our considerations to the above neighborhood options.

3.2. Convolution

For any such choice η = (η0, . . . ,ηnn−1) of neighborhood, of
size nn, the halfedge based convolution operation (Fig. 3) is then
simply defined at a halfedge h as

fout(h) =
nn−1

∑
i=0

wi · fin(ηi(h)), (1)

where ηi(h) is the ηi-neighbor halfedge of h, fin ∈ Rnc×nh is
the feature input (with nc channels for nh halfedges) to the con-
volution layer, fout ∈ Rn′c×nh its output (with n′c channels), and
wi ∈Rnc×n′c×nn the learnable weights. As usual, a bias can be added
and a nonlinear activation function can follow.
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Figure 3: Illustration of the convolution operation, on the example
of the (S,O,N,ON) neighborhood, centered at a halfedge (red).

Notice that there is no ambiguity regarding order or orientation
among the neighborhood elements. We therefore do not need to
impose symmetries onto the operation (as in MeshCNN) or apply
local rotational pooling operations (as in SpiralNet) to achieve in-
variance to ambiguities.

In the case of meshes with boundary, where neighborhoods can
be partial, the sum may skip the missing entries, akin to zero-
padding commonly used in image convolutions.

4. Halfedge-Based Pooling

Pooling, i.e. increasing the receptive field of subsequent layers
without increasing their complexity (number of connections and
weights), can be performed in a mesh-based setting by means of
mesh decimation or element agglomeration. The simplest and most
local operation to that end is the edge collapse, as employed for that
purpose in MeshCNN.

4.1. Pooling

The main degrees of freedom, besides the choice of edges to col-
lapse, lie in the choice of function that combines the features as-
sociated with the edges that are removed and merged, respectively.
Fig. 4 illustrates the setting and the indexing used in the follow-
ing. Directly adapting the choice proposed for MeshCNN to our
halfedge setting would correspond to the following, where the two
halfedges belonging to an edge are treated indifferently (which we
will refer to as edge-pooling in the following):

fout(h2/h5) =
(

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 , 0,0, 0,0

)(
fin(h0), . . . fin(h9)

)T
fout(h6/h9) =

(
1
6 ,

1
6 , 0,0, 0,0, 1

6 ,
1
6 ,

1
6 ,

1
6

)(
fin(h0), . . . fin(h9)

)T
We can, however, choose the coefficients more flexibly. Con-

ceptually, any combination of coefficients could be used, or func-
tions beyond linear combinations (e.g. max pooling). Exploiting
the opposite-orientation nature of halfedges, the following combi-
nation appears to be a sensible option:

fout(h2) =
(

1
3 ,0,

1
3 ,0,

1
3 ,0, 0,0, 0,0

)(
fin(h0), . . . fin(h9)

)T
fout(h5) =

(
1
3 ,0, 0, 1

3 , 0, 1
3 , 0,0, 0,0

)(
fin(h0), . . . fin(h9)

)T

fout(h6) =
(

0, 1
3 , 0,0, 0,0, 1

3 ,0,
1
3 ,0

)(
fin(h0), . . . fin(h9)

)T
fout(h9) =

(
0, 1

3 , 0,0, 0,0, 0, 1
3 , 0, 1

3

)(
fin(h0), . . . fin(h9)

)T
We use this variant (called halfedge-pooling) as a default in our
halfedge-based pooling layer.

The consideration of the fixed pooling coefficients as learnable
parameters may be a worthwhile aspect for future work.

4.2. Unpooling

For unpooling, executed as an un-collapse operation on the mesh,
we can analogously distinguish between oppositely oriented half-
edges and, with indexing again following Fig. 4, set

fout(h2) = fout(h4) = fin(h2)

fout(h3) = fout(h5) = fin(h5)

fout(h6) = fout(h8) = fin(h6)

fout(h7) = fout(h9) = fin(h9)

fout(h0) =
1
2 fin(h2)+

1
2 fin(h5)

fout(h1) =
1
2 fin(h6)+

1
2 fin(h9)

Mesh Regularity Uncontrolled edge collapses can cause a mesh
to become topologically irregular, for instance containing two
edges between one pair of vertices, or even loop edges. This not
only increases demands on the generality of the mesh data struc-
ture, it also affects the propriety of convolution neighborhoods
(cf. Sec. 3.1). This can be avoided by omitting collapses of edges
that violate the link condition [DEGN98], which, however, may
preclude the desired pooling order. More flexibility can be achieved
using a special handling of vertices of valence 3 next to a to-be-
collapsed edge, as these would cause an irregularity if the edge is
collapsed. By first removing such a vertex with a 3:1 triangle col-
lapse, as illustrated in Fig. 5, the edge collapse can be enabled.
A similar special treatment, while not described in the respec-
tive paper, can also be found in the prototype implementation of
MeshCNN.

h0

h4h3
h2 h5

h1

h8h7
h6 h9

h2 h5

h6 h9

pool

unpool

Figure 4: Illustration of the pooling (and unpooling) operation
centered at a pair of halfedges (red). The indexing is used in Sec. 4
to define the accompanying feature update formulas.
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Figure 5: Special pre-handling of a valence 3 vertex (center) next
to a to-be-collapsed edge (red): The opposite edge (green) is col-
lapsed first, effectively performing a 3:1 triangle collapse. After-
wards the red edge is no longer in violation of the link condition
due to the valence 3 vertex.

5. Vertex/Edge/Face Interface Layers

The above described convolution and pooling layers allow for the
composition of deep networks that have per-halfedge values as in-
put and output. Depending on the use case, it may be desirable or
more natural to deal with values associated with other mesh enti-
ties.

Notice that the belonging-relationships (as defined in Sec. 3) be-
tween halfedges and vertices, edges, faces are 1:k, 1:2, and 1:3
relationships, respectively; see Fig. 6. This allows us to define x-to-
halfedge interface layers that can be prepended to a network. For
example, a vertex-to-halfedge layer takes as input a value (a feature
vector) per vertex and assigns it to all uniquely associated halfedges
in its output:

fout(h) = fin(from(h)), (2)

where from(h) yields the vertex the halfedge h belongs to. Analo-
gously, one defines edge-to-halfedge and face-to-halfedge layers.

Regarding network output, an averaging operation over the be-
longing halfedges can be used to define halfedge-to-x layers. For
the example of a halfedge-to-vertex layer:

fout(a) =
1

valence(a) ∑
(a,b)

fin ((a,b)) . (3)

Analogously, one defines halfedge-to-edge and halfedge-to-face
layers (where the averaging is over a fixed number of 2 or 3 half-
edges, respectively). These layers should not be misunderstood as
post-processing operations; they can be used as part of a network
architecture that is learned end-to-end. We note that related opera-
tions are sometimes used in other mesh-based learning approaches,
e.g. edge-to-vertex [HMGCO20] or face-to-vertex [HHGCO20] av-
eraging.

Note that the halfedge-to-edge output layer effectively performs
a symmetrization, in the sense that potential feature differences be-
tween the two halfedges of an edge are lost – which is inevitable if
edge-based network output is asked for. This does not mean, how-
ever, that the use of halfedges in the preceding network layers is
pointless; the input features as well as the latent features are free to
be non-symmetric, with positive effects as observed in the experi-
ment in Sec. 7.2. The data in Table 1 in Sec. 7.3 provides further
insight into the non-symmetry of the halfedge based features in la-
tent layers.

Figure 6: Illustration of the halfedges (red) belonging to a vertex,
an edge, or a face (marked in black), in 1:k, 1:2, and 1:3 relation-
ships, respectively.

6. Input Features

The surface signals that are relevant as input data to the network of
course strongly depend on the application scenario. For geometric
learning tasks naturally some kind of geometric information should
be (part of) the input.

In particular, we can easily use the same edge-based input used
by Hanocka et al. [HHF∗19], namely, for each edge, its dihedral an-
gle, the two opposite inner angles, and the height-base-ratios of the
two adjacent triangles, or, as discussed by Barda et al. [BEB21], the
edge’s dihedral angle and its (normalized) length. This is possible
simply via an edge-to-halfedge input layer, i.e. effectively assign-
ing the same value to both halfedges belonging to an edge.

Importantly, in the halfedge based setting we can easily also take
oriented information into account. Instead of dealing with the or-
dering ambiguity of an edge’s two adjacent faces (e.g. by averag-
ing or sorting the feature values associated with the two faces by
value [HHF∗19]), the halfedge orientation can be exploited, avoid-
ing such ambiguities. For instance, we can use as input features per
halfedge: the dihedral angle of its edge, the opposite inner angle in
the unique triangle that the halfedge belongs to, and the base-height
ratio of the unique triangle that the halfedge belongs to. The benefit
of this avoided need for symmetrization is evaluated in Sec. 7.

Note that also data that natively is vertex or face based can be
taken as input via an interface layer (Sec. 5), e.g. the discrete Gaus-
sian curvature at a vertex or the roundness of triangle, and, if de-
sired, extrinsic information like vertex coordinates or face normal
vectors.

7. Evaluation

Given the genericity of the presented framework, it can be used for
a variety of geometric learning tasks, with different settings and
in conjunction with various pooling rules, attention mechanisms,
etc. [BEB21, MLR∗20]. Note that it is not our intention to claim
that the described approach is in any way strictly better for a spe-
cific task than all other potential alternative approaches. Rather, we
are interested in evaluating the benefits and potential negative ef-
fects of using the halfedge centered setting as compared to the edge
centered setting. To this end we consider the learning problems also
used in the evaluation of the edge centered MeshCNN [HHF∗19,
Sec. 5] for comparison in the following.

© 2023 The Authors.
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We adopt the network architectures used in the MeshCNN eval-
uation as directly as possible for HalfedgeCNN, so as to enable fair
and insightful comparisons and ablations. Concretely, we only

• exchange the original edge based convolution layers with our
halfedge based convolution layers,

• depending on the experiment, exchange the original (un)pooling
rules with our halfedge-pooling or edge-pooling,

• depending on the experiment, use halfedge based input features
or, via a prepended edge-to-halfedge layer, the original edge
based input features.

Apart from that, all other architecture details including hyperpa-
rameters, pooling hierarchy sizes, collapse selection by feature
magnitude, and training data augmentation strategy are kept the
same.

Regarding the convolution, we focus our experiments on a se-
lection of the convolution neighborhoods discussed in Sec. 3.1, as
listed in the table below. The (increasing) number of halfedges (be-
sides the central halfedge) involved in these neighborhoods is listed
in the table as well. We will refer to the neighborhoods by this
neighborhood size in the plots (on the horizontal axes) in the fol-
lowing.

Neighborhood Name: A⃝ C⃝ D⃝ F⃝ G⃝ H⃝
Neighborhood Size: 2 3 4 5 7 9

7.1. Classification

We first consider a shape classification task on the basis of the
SHREC dataset [LGB∗11], cf. Fig. 7, using a split of each class
into 16 training and 4 test examples.

Because training results deviate slightly from execution to ex-
ecution of the training process (due to random initialization of the
learnable weights), we generally train each network (HalfedgeCNN
as well as MeshCNN) for each setting in each experiment 30
times, and report test accuracies averaged over these 30 runs in
the following. Note that, to ensure comparability, we also rerun the
MeshCNN experiments in this manner in the same environment on
the same hardware, instead of simply reporting the values from the
original paper—for instance, for the classification task we obtain an
accuracy of around 99.0%, while the original paper reports 98.6%.

Oriented Input Features

The benefit of not having to symmetrize input features can be ob-
served in Fig. 8. In this plot, HalfedgeCNN was used with var-
ious convolution neighboorhood settings (horizontal axis). Edge-
pooling (see Sec. 4.1) was used, mimicking the edge-based pool-
ing of MeshCNN. The use of oriented, i.e. halfedge-based, input

Figure 7: Examples of models (3 of 20) from two of the 30 classes
of the classification dataset.

2 3 5 7 9
98.0%

98.5%

99.0%

99.5%

100.0%

Neighborhood Size
M
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n

A
cc
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ac

y

symmetrized features
oriented features
MeshCNN

Figure 8: Classification task. Comparison of using the sym-
metrized edge-based input features of MeshCNN (5 values per
edge—opposite inner angles, height-base ratios, dihedral angle—
sorted to make them orientation independent), assigned to both
halfedges of an edge, versus oriented halfedge-based input features
(the same 5 values, not pairwise sorted by magnitude but ordered
based on the halfedge’s orientation). In addition, the mean accu-
racy of MeshCNN is shown as a baseline (black) for comparison,
and the associated variance (over the 30 runs) is indicated by a
one standard deviation thick corridor (light gray). For the others
the analogous corridor is delineated by the thin ‘graphs’ above
and below the bold mean ‘graph’.

features (green) turns out to be consistently beneficial over sym-
metrized features (red), regardless of the chosen convolution neigh-
borhood size, though the magnitude of the benefit varies.

It can also be seen that the mean classification accuracy of
HalfedgeCNN with non-symmetrized features, exploiting one as-
pect enabled by its halfedge nature, is higher than that of MeshCNN
for all but the smallest neighborhood A⃝. Even for this minimal
neighborhood it is very close though, while at the same time the
number of learnable parameters is reduced by almost 40%, from
1323K of MeshCNN to 806K.

Interestingly, also with the symmetrized input features
HalfedgeCNN shows some benefit, though to a lesser extent and
with somewhat higher variance, and only for the larger neighbor-
hood sizes.

Halfedge-Pooling

The effect of switching to halfedge-based pooling can be observed
in Fig. 9. Notice that this brings the performance of the sym-
metrized input features even for a small neighborhood like C⃝
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Figure 9: Classification task. Same setting as in Fig. 8, but using
halfedge-based pooling in HalfedgeCNN, causing some small ad-
ditional benefit for most settings.

(size 3) very close to MeshCNN. In combination with oriented in-
put features, enabled by our halfedge setting, we again observe a
further advantage. In particular, notice that the error (the accuracy
gap to 100%) of MeshCNN is more than halved when using the
oriented halfedge features with halfedge-pooling and the largest
neighborhood H⃝ (which is the equivalent of the MeshCNN neigh-
borhood).

In Fig. 10 it can be seen that HalfedgeCNN with halfedge-
pooling can indeed cause pooling behavior significantly different
from MeshCNN; its implications, beyond the reported quantitative
differences, are hard to interpret visually, though.

We repeat the classification experiment for different training/test
splits of the SHREC dataset (10/10 and 4/16 in addition to the
above 16/4) and observe similar behavior: for very small neigh-
borhood sizes the classification accuracy is consistently similar or
lower than that of the MeshCNN baseline, for the larger neighbor-
hoods it is consistently higher, across these various splits.

7.2. Segmentation

We now consider a segmentation task on the basis of the Human
Body Segmentation dataset [MGA∗17], cf. Fig. 11. We again use
the same setup as in the evaluation of MeshCNN in [HHF∗19],
except that for both, HalfedgeCNN and MeshCNN, we reduce the
number of epochs to 300 as we did not observe benefits beyond that.
Note that in contrast to the classification task, here also unpooling
layers (Sec. 4.2) come into play in the U-Net architecture.

Figure 10: Examples of the pooling hierarchy observed for two
test models of the classification task with HalfedgeCNN (lighter)
and MeshCNN (darker).

Just like in the above classification task, we always train the net-
works 30 times and report the average accuracy.

Figure 11: Examples of the body part segmentation task, for illus-
tration. Left: ground truth segmentation. Center: prediction using
trained MeshCNN. Right: prediction using trained HalfedgeCNN.
Differences are often in the details; the lower one is an example
with clearly visible prediction deviations from ground truth.
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Figure 12: Segmentation task. Accuracy for different neighbor-
hoods, with edge-pooling and halfedge-pooling, in comparison to
MeshCNN.

Oriented Input Features

In Fig. 12 we can see that in this learning task, in contrast to the
classification task in Sec. 7.1, the choice of either symmetrized or
oriented input features does not make a consistent difference. It
can also be observed that the flexibility in terms of convolution
neighborhoods, that HalfedgeCNN offers, can be exploited benefi-
cially: While rather small neighborhood sizes proved adequate for
the classification task (in terms of accuracy, and with potential ben-
efits in terms of training and inference time, due to a lower num-
ber of operations needed), for the segmentation task larger neigh-
borhoods turn out to be strongly advisable—notwithstanding that
different architectures or hyperparameters may of course lead to
beneficial behavior of smaller convolution neighborhoods as well.

Halfedge-Pooling

Switching to halfedge-pooling leads to a consistent increase in ac-
curacy relative to edge-pooling, over both input feature modes and
all neighborhood sizes, as can be seen in Fig. 12, comparing dashed
(edge-pooling) and full (halfedge-pooling) lines. The benefit over
MeshCNN is increased by a factor of about 2–4 for the larger
convolution neighborhoods. Interestingly, the benefit of halfedge-
pooling over edge-pooling is much more pronounced and consis-
tent in this segmentation task than in the above classification task.
This may be related to the fact that the segmentation network makes
use of pooling as well as unpooling layers in its U-Net architecture.

7.3. Further Observations

As mentioned in Sec. 2, one variant of the framework proposed by
Milano et al. [MLR∗20] can be viewed as performing halfedge-
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Figure 13: Segmentation task. Same setting as in Fig. 12, addi-
tionally including neighborhood D⃝ of size 4. Furthermore, the
results of instead using the fundamental form input features for
HalfedgeCNN are shown. Variance corridors are indicated like in
Fig. 8.

based convolutions, fixed to neighborhood D⃝. We performed ex-
periments also with this neighborhood and did not find it to perform
particularly well. With the oriented input features, there is even a
peculiar drop in accuracy compared to the next smaller as well as
the next larger neighborhood (see Fig. 14). For the segmentation
task this neighborhood shows more reasonable behavior (Fig. 13),
but in particular for the proposed fundamental form features, neigh-
borhood F⃝ of size 5 performs better.

Another interesting observation is that on the segmentation task,
the use of the fundamental form input features (instead of the de-
fault) leads to lower accuracy than MeshCNN when using edge-
pooling (e.g. −0.35% for F⃝, −0.61% for G⃝, −0.50% for H⃝).
In combination with the use of our halfedge-pooling, by contrast,
a higher accuracy is achieved (+0.69% for F⃝, +0.32% for G⃝,
+0.68% for H⃝).

Training time per epoch (on a system with Core i9-12900K and
GeForce RTX 3080) with our HalfedgeCNN implementation that
very closely follows the implementation of MeshCNN published
by the authors, even when using the largest convolution neighbor-
hood H⃝, interestingly is higher by a factor of 1.48 only (15.6s vs
23.1s) on the classification task and 1.27 only (38.3s vs 48.7s) on
the segmentation task—despite the fact that the number of entities
(halfedges instead of edges) as well as the convolution size (10 in-
stead of 5) are doubled.

Attempting to get an idea to what extent the additional degrees of
freedom of the halfedge based setting are exploited by the network,
Table 1 reports the average non-symmetry of features within pairs
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Figure 14: Classification task. Same setting as in Fig. 9, addi-
tionally including neighborhood D⃝ of size 4. Furthermore, the
results of instead using the fundamental form input features for
HalfedgeCNN is shown.

of halfedges. Indeed, there are clear deviations. Even when feeding
symmetric features into the network, the features of latent layers
diverge within halfedge pairs, indicating that some use is made of
the degrees of freedom—which was to be expected based on the
improvements observed in the above experiments.

8. Conclusion

We have described HalfedgeCNN, a collection of modules to build
neural networks that operate on triangle meshes. The key character-
istic is the fact that all operations are centered on halfedges. From a
conceptual point of view this can provide benefits over operations
based on other mesh entities, such as higher flexibility and avoid-
ance of orientation ambiguities. Our experiments indicate that, de-
pending on the application scenario, these conceptual benefits can
materialize as concrete advantages.

We therefore believe that this proposal is a valuable addi-
tion to the range of available options. The further exploration of
application-specific practical benefits, as well as the task of gen-
erally bringing some order into the growing zoo of alternative ap-
proaches for geometric deep learning on surfaces, provide interest-
ing and worthwhile avenues for future work.
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Layer: input pool-1 pool-2 pool-3 pool-4

Classification
oriented 7.17% 13.17% 13.33% 13.39% 13.32%
symmetrized 0.00% 14.75% 14.85% 14.87% 15.09%

Segmentation
oriented 7.25% 13.06% 12.85% 12.83% –
symmetrized 0.00% 14.50% 14.43% 14.38% –

Table 1: Relative deviation between the feature values of the two
halfedges of an edge, averaged over all edges and all features dur-
ing all test set inferences of the classification task and the segmen-
tation task, with neighborhood F⃝ and halfedge-pooling. Shown
is the relative deviation in the input and after each of the four
(three) convolution+pooling double-layers of the network, for sym-
metrized as well as for oriented input features. Notice that even if
the input features are symmetric, i.e. equal for paired halfedges, the
features of halfedges develop individually in the further layers.
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