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Some details had to be omitted from the main paper due to the
page limit; we present those details here. In the following, we re-
port on ablation experiments in Sec. 1.1, which were carried out to
determine the best performing fast optical-flow network, and also
expand on quantization and pruning which were employed for our
mobile-optimized network. In Sec. 1.2 we expand on training and
implementation details. In Sec. 2 we provide detailed numbers for
the warping error. In Sec. 3 we compare our method subjectively
against Shekhar et al. [SST∗19] and Thimonier et al. [TDKP21]
through a user study. Finally, in Sec. 4, we present further visual
results of our optical-flow network.

1. Fast Optical Flow Network

1.1. Ablation Study

To analyze our optimization steps, we compare different variants of
our Convolutional Neural Network (CNN). All variants are trained
on the full dataset schedule unless stated otherwise. We make use of
Sintel Final Train dataset [BWSB12] as a benchmark and measure
accuracy (in terms of Endpoint Error (EPE)), number of parame-
ters, and run-time for different variants. Due to different desktop
and mobile Graphics Processing Unit (GPU) hardware, the run-
time performance can vary between platforms, thus we measure
them separately.

Table 1: Comparison of DenseNet [HLvdMW17] and
light [LZH∗20] connections on a desktop system and mobile
devices on Sintel Final Train.

Params Desktop iPad Air iPad Pro
Variant EPE (↓) M (↓) FPS (↑) FPS (↑) FPS (↑)

dense 2.507 9.36 29.97 1.53 2.80
light 2.825 5.99 40.26 2.83 5.09

DenseNet Connection Replacement. As a first architectural im-
provement, we replace DenseNet [HLvdMW17] connections in the
flow estimators with light connections [LZH∗20]. Replacing these

results in a significant run-time improvement on both desktop sys-
tems and mobile devices, with a larger relative speed-up on mobile
devices (Tab. 1). We conjecture that convolutions with a large num-
ber of channels (dense architecture uses up to 565 channels) might
perform worse on mobile GPUs due to smaller memory and cache
sizes. Thus, reducing these high channel counts results in a larger
speed-up on mobile devices. The light connections result in a loss
in accuracy (Tab. 1), but due to the significant run-time improve-
ments, we find it a reasonable trade-off and use light connections
in the following experiments and in our proposed mobile architec-
ture.

Table 2: Ablation of different channel reduction on desktop system

Params Desktop iPad Air iPad Pro
Variant EPE (↓) M (↓) FPS (↑) FPS (↑) FPS (↑)

5 estimators 2.825 5.99 40.26 2.83 5.09
-25% channels 3.659 3.55 46.86 3.95 6.65
-50% channels 4.236 1.73 56.07 6.33 10.92

Channel Reduction. We reduce the number of channels through-
out the CNN [HZC∗17]. In this case, the loss in accuracy and
achieved trade-off is not beneficial (Tab. 2). We hypothesize that
channel reduction is potentially better for high-level Computer Vi-
sion (CV) tasks, where high-dimensional convolution features are
mapped to very low-dimensional results [HZC∗17]. Optical flow,
however, requires pixel-precise predictions of continuous values
(motion vectors) and thus requires a much higher spatial fidelity.
Furthermore, we observe that the relative speed-up on mobile de-
vices is again higher than on desktop systems which supports our
previous belief that larger convolutions are more difficult for mo-
bile GPUs with smaller memory and cache sizes.

Flow Estimators. We evaluate different configurations of sepa-
rable convolutions for the five flow-estimator modules. Replacing
all convolutions in the flow estimators with separable convolutions
leads to a significant loss in accuracy (Tab. 3). The last two flow es-
timators operate on the highest pyramid resolutions and have the
largest impact on run-time performance. Thus, loss of accuracy
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Table 3: Ablation of different light flow-estimator configurations.

Sintel Final
Train

Number of
parameters

Desktop
run-time

iPad Air
run-time

iPad Pro
run-time

Variant EPE (↓) M (↓) FPS (↑) FPS (↑) FPS (↑)

5 estimators, none separated 2.825 5.99 40.26 2.83 5.09
5 estimators, all separated 3.813 +34.9% 2.66 -55.6% 43.49 +8.0% 4.52 +59.7% 7.76 +52.4%
5 estimators, last two separated 3.104 +9.8% 4.77 -20.3% 44.06 +9.4% 4.22 +49.1% 7.28 +43.0%
4 estimators, none separated 3.229 +14.3% 5.31 -11.3% 79.12 +96.5% 6.17 +118.0% 10.41 +104.5%
4 estimators, last separated 3.460 +22.4% 4.68 -21.8% 81.28 +101.7% 7.35 +159.7% 12.80 +151.4%

Table 4: Ablation of different refinement configurations.

Sintel Final
Train

Number of
parameters

Desktop
run-time

iPad Air
run-time

iPad Pro
run-time

Variant EPE (↓) M (↓) FPS (↑) FPS (↑) FPS (↑)

4 estimators, default refinement 3.229 5.31 79.12 6.17 10.41
4 estimators, no refinement 3.258 +0.9% 4.79 -9.8% 86.72 +9.6% 7.44 +20.5% 13.22 +27.0%
4 estimators, separated refinement 3.169 -1.8% 4.85 -8.6% 83.53 +5.5% 7.23 +17.1% 12.87 +23.6%

5 estimators, default refinement 2.825 5.99 40.26 2.83 5.06
5 estimators, no refinement 3.248 +14.97% 5.47 -8.6% 51.80 +28.6% 4.22 +49.1% 7.31 +44.4%
5 estimators, separated refinement 2.922 +3.43% 5.53 -7.6% 47.43 +17.8% 3.47 +22.6% 6.00 +18.5%

Table 5: Ablation of different pruning amounts on desktop system.

Sintel Final
Train

Number of
parameters

Desktop
run-time

iPad Air
run-time

iPad Pro
run-time

Variant EPE (↓) M (↓) FPS (↑)

4 estimators, separated refinement 3.169 4.85 79.12 7.23 12.87
30% pruned 3.275 +3.3% 3.38 -30.3% 86.47 -9.3% 8.79 +21.5% 16.45 +27.8%
40% pruned 3.443 +8.6% 2.83 -41.6% 86.61 -9.4% 10.00 +38.3% 18.94 +47.1%
50% pruned 4.036 +27.3% 2.24 -53.8% 88.94 -12.4% 13.76 +90.3% 27.50 +113.6%

5 estimators 2.825 5.99 40.26 2.83 5.06
30% pruned 2.900 +2.6% 4.06 -32.2% 46.79 -16.2% 3.89 +37.4% 6.95 +37.3%
40% pruned 3.022 +6.9% 3.35 -44.0% 50.68 -25.8% 4.63 +63.6% 8.17 +61.4%
50% pruned 3.106 +9.9% 3.01 -49.7% 51.51 -27.9% 4.86 +71.7% 8.47 +57.4%

Table 6: Ablation of different quantization options on mobile devices using our lite-flow CNN.

Quantization settings
CNN

file size
Sintel Final

Train
iPad Air
run-time

iPad Pro
run-time

Number of
bits

low-prec.
acc. MB (↓) EPE (↓) FPS (↑) FPS (↑)

32-bit 16.3 3.577 9.95 18.94
32-bit ✓ 16.3 3.584 +0.2% 12.73 +27.9% 24.04 +26.9%
16-bit 8.2 -49.6% 3.577 ±0.0% 10.00 +0.5% 18.64 -1.5%
16-bit ✓ 8.2 -49.6% 3.584 +0.2% 12.68 +27.4% 23.96 +21.9%

8-bit 4.1 -74.8% 3.609 +0.9% 9.69 -2.6% 18.74 -1.0%
8-bit ✓ 4.1 -74.8% 3.621 +1.2% 12.89 +29.5% 23.84 +27.2%
4-bit 2.1 -87.1% 6.665 +86.3% 9.77 -1.8% 18.75 -1.0%
4-bit ✓ 2.1 -87.1% 6.665 +86.3% 12.93 +29.9% 23.81 +27.0%
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can be minimized by using separable convolutions only for the last
two flow estimators. Moreover, we find that removing only the last
flow estimator leads to a larger speed-up and overall better trade-
off [HTL20], both on desktop systems and mobile devices (Tab. 3).
The last flow estimator – operating on quarter input resolution –
comprises only 11.3 % of parameters, but removing it results in
more than 100 % speed-up on mobile devices.

Refinement. For the four previously chosen flow estimators, we
find that dense refinement can be replaced by separable convolu-
tions which even results in a slight increase in accuracy on both
desktop and mobile devices (Tab. 4). For five flow estimators, we
observe that dense refinement has a larger impact on accuracy.

Pruning: As an additional improvement for mobile deployment,
we evaluate pruning as a post-training step. Convolution filter prun-
ing is applied as proposed by Li et al. [LKD∗16] and a l1 strategy
combined with automatic consistency checks [Fan19] is used for
selecting which filters to prune. We apply it to each convolution
layer that has more than two output channels. To keep pruning sim-
ple, we prune the same percentage of filters from each layer and
then perform a single re-training to account for the loss of accuracy.
We find that pruning 40 % of filters achieves a good trade-off for the
final architecture – reducing accuracy by less than 10 % (< 0.5px
EPE) for more than 40 % speed-up (Tab. 5). We re-train the pruned
CNN with the same dataset schedule and settings as initial training,
except for training on FlyingChairs [FDI∗15] where we start with
the lower learning rate of 1× 10−5 and train for fewer iterations
as training converges quickly, e.g., a maximum of 15 epochs (1.5
hours).

We evaluate different options of pruning as post-training opti-
mization. As our initial training consists of multiple stages with
different datasets, we first evaluate after which stage to prune and
at which stage to start re-training. We observe that the best accu-
racy is obtained when pruning the fully trained CNN and re-training
from the beginning of the dataset schedule (Tab. 7). We believe
this works best as learned representations after only training on
Chairs [FDI∗15] or Things3D [MIH∗16] are not as distinctive as
after full training.

Next, we evaluate which trade-offs result from different amounts
of pruned channels. For mobile devices and our final CNN, we
find that pruning up to 40% of channels results in significant run-
time improvement with plausible accuracy loss. Pruning 50% of
channels results in a substantially higher accuracy loss (Tab. 5).
For desktop, pruning – similar to reducing the number of channels
(Tab. 2) – results in a smaller speed-up than on mobile devices.
Considering only a small improvement of the already high frame
rate in exchange for a significant loss in quality, we do not recom-
mend pruning for the desktop version.

Quantization and Mobile Deployment: For mobile deployment,
we make use of CoreML [App] as the framework for executing
our CNNs on Apple mobile devices. We apply 8 bit linear weight-
quantization and enable the accumulation of low-precision inter-
mediate results (Tab. 6). This minimizes the file size by 75 % (com-
pared to 32 bit weights) and further improves run-time performance
by 30 % (on mobile devices) with only negligible accuracy loss.

Table 7: Ablation of pruning and re-training at different training
stages. The Initial model is the one with 4 estimators and separated
refinement and then we have its variations with respect to pruning
at different stages. Note that increase in EPE is the least for the 3rd

variant.

Training: Chairs → Things3D → Sintel

Variant EPE (↓) on Sintel Train

Initial 3.169
Prune 30% after Chairs, re-
train from Chairs

3.505 +10.6%

Prune 30% after Things3D,
re-train from Things3D

3.290 +3.8%

Prune 30% after Sintel, re-train from Chairs 3.275 +3.3%
Prune 30% after Sintel, re-
train from Sintel

3.413 +7.7%

Further analysis shows that our method does not profit from using
the on-device Neural Processing Unit (NPU).

1.2. Implementation Details

Pruning. For convolution filter pruning we use a PyTorch [P∗19]
implementation by Gongfan Fang [Fan19]. We use l1 strategy
for selecting filters to prune. l2 strategy is available too but
Li et al. [LKD∗16] show that these strategies perform compa-
rable. We round the number of resulting channels to a multiple
of 8, as other filter counts result in a run-time overhead on mo-
bile devices. We re-train the pruned CNN with the same dataset
schedule and settings as initial training, except for training on Fly-
ingChairs [FDI∗15] where we start with the lower learning rate
of 1 × 10−5 and train for fewer iterations as training converges
quickly, e.g., a maximum of 15 epochs (1.5 hours).

Mobile execution. We use CoreML [App] as the framework for
executing our CNNs on Apple mobile devices. We evaluate using
iPad Pro (11-inch, 2nd gen 2020) and iPad Air (3rd gen, 2019).
CoreML efficiently implements standard CNN operations, how-
ever, the two operations specific to optical flow, i.e., correlation
and warping, need to be implemented as custom layers using Metal
GPU shaders for parallel and efficient computation using the mo-
bile GPU. After CNN conversion to CoreML, we apply 8-bit linear
weight quantization using coremltools , low precision acculumation
is enabled to enforce low precision accumulation in all operations.

1.3. Training Settings

Similar to the original PWC-Net [SYLK18], we train our mobile ar-
chitecture on the training dataset schedule FlyingChairs [FDI∗15]
→ FlyingThings3D → Sintel [BWSB12]. Tab. 8 lists training set-
tings for respective stages. We compute the multi-scale losses by
taking the per-pixel difference between the output of each flow es-
timator and an accordingly downscaled ground-truth optical flow.
The pixel-level loss values are summed up to a final single value
which is then used as a training objective by the optimizer. Like
PWC-Net [SYLK18], we scale the ground-truth optical flow with
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Table 8: Our training settings for different datasets. Training times are specified for one Nvidia V100 GPU.

FlyingChairs [FDI∗15] FlyingThings3D [MIH∗16] Sintel (Final) [BWSB12]

Batch size 8 4 4
Dataset resolution 512 × 384 960 × 540 1024 × 436
Training resolution 448 × 320 768 × 384 448 × 384
Loss function EPE (Eqn. 1) robust l1 (Eqn. 2) robust l1 (Eqn. 2)

q = 0.4, ε = 0.01 q = 0.4, ε = 0.01
Initial learning rate 1×10−4 1×10−5 5 ·1×10−5

Learning rate schedule as Slong in [IMS∗17] as Sfine in [IMS∗17] as in [SYLK18]†

Total epochs 60 10 200
Total iterations 1200K 400K 200K
Training time 6 hours 10 hours 4 hours

Table 9: Ablation of different hyperparameters for baseline train-
ing on desktop. Sintel Final EPE is measured after training the
original PWC-Net [SYLK18] architecture for 30 epochs on Fly-
ingChairs [FDI∗15].

Hyperparameters
Sintel Final

Train

Optimizer Loss weights
Regular-
ization

Gradient
stopping EPE (↓)

Adam exponential 5.561
Adam exponential l2 6.938

AdamW exponential 5.153
AdamW exponential l2 5.263
AdamW equal l2 5.086
AdamW exponential l2 ✓ 6.269
AdamW equal l2 ✓ 5.465

Table 10: Our augmentation settings. The same settings are ap-
plied to all training stages (tab. 8), except when fine-tuning on Sin-
tel [BWSB12] where no Gaussian noise is added.

Augmentation Value range Probability

Rotation uniform in [-17°; 17°] 0.2
Random crop training resolution, cf. tab. 8 1.0
Horizontal flip 0.5
Vertical flip 0.5
Additive brightness normal, σ = 0.02 1.0
RGB multiplier uniform in [0.9; 1.1] 1.0
Contrast multiplier uniform in [0.7; 1.3] 1.0
Gamma adjustment uniform in [0.7; 1.5] 1.0
RGB random order 1.0
Additive gaussian noise σ uniform from [0; 0.04] 1.0

a factor of 20 prior to calculating the loss and thus have to divide
the flow estimate by 20 at test time. For training we use AdamW
optimizer [LH19] with β1 = 0.09, β2 = 0.99, and l2 weight regu-
larization with trade-off γ = 0.0004.

Given predicted flow field uvPred and ground-truth flow field uvGT,
EPE loss (Eqn. 1) and a robust l1 loss (Eqn. 2) is defined as follows:

LEPE(uvPred,uvGT) =
1

W ·H ∑
x,y

∥uvPred(x,y)−uvGT(x,y)∥2 (1)

Lrobust(uvPred,uvGT)=
1

W ·H ∑
x,y

(
∥uvPred(x,y)−uvGT(x,y)∥1 + ε

)q

(2)
with typical values of ε = 0.01 and q = 0.4. q < 1 results in less
penalty to large error values and thus makes the loss more robust
to outliers, which is necessary for fine-tuning on realistic, difficult
datasets [SYLK18].

1.4. Hyperparameters Configuration

We evaluate different hyperparameters while training the original
PWC-Net [SYLK18] to determine a baseline that achieves the best
possible accuracy. We find that AdamW optimizer [LH19] reaches

a significantly better accuracy than Adam [KB15] – with and with-
out l2 weight regularization (Tab. 9). Furthermore, we find that
equally weighted multi-scale losses – as opposed to commonly
used exponential weighting [SYLK18,HTL18,HTL20,YR19] – re-
sult in slightly better accuracy. Additionally, we consider gradient
stopping as proposed by Hofinger et al. [HBP∗20], but observe that
it does not result in any improvement.

1.5. Data Augmentation

Dosovitskiy et al. [FDI∗15] found that augmentations are important
for learning-based optical flow methods to prevent overfitting on
synthetic training data and to ensure generalization for real-world
data. Similarly, we apply geometric and color transformations to
input frames and corresponding flow fields, as listed in tab. 10. Ge-
ometric transformations are applied equally to both frames of an
input pair, and must be reflected accordingly in the flow field. For
example, a translation applied to the frames requires a translation
applied to the flow field; a rotation of frames requires a rotation of
the flow field and its motion vectors. Color transformations need
to be applied only to the frames, not the flow field. While it would
be possible to apply different transformations (geometric, colors)
per frame of an input pair [TD20] – to further increase robustness
against illumination changes for example – we find that transforma-
tions applied equally per frame pair are sufficient augmentations

© 2023 The Authors.
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Warping Error: L1
DAVIS VIDEVO

Task Vp [BTS∗15] [LHW∗18] Ours Vp [BTS∗15] [LHW∗18] Ours
CycleGAN/photo2ukiyoe 0.037 0.028 0.028 0.033 0.036 0.026 0.028 0.032
CycleGAN/photo2vangogh 0.049 0.033 0.037 0.042 0.047 0.032 0.036 0.041
fast-neural-style/rain-princess 0.079 0.043 0.055 0.062 0.076 0.040 0.055 0.061
fast-neural-style/udnie 0.044 0.025 0.031 0.036 0.038 0.021 0.026 0.031
WCT/antimonocromatismo 0.052 0.030 0.036 0.041 0.046 0.023 0.030 0.035
WCT/asheville 0.067 0.040 0.049 0.056 0.061 0.033 0.042 0.049
WCT/candy 0.065 0.035 0.045 0.051 0.058 0.029 0.038 0.045
WCT/feathers 0.058 0.035 0.040 0.049 0.054 0.030 0.037 0.045
WCT/sketch 0.054 0.037 0.038 0.046 0.050 0.032 0.035 0.041
WCT/wave 0.052 0.033 0.037 0.044 0.048 0.029 0.034 0.040
Average 0.056 0.034 0.040 0.046 0.051 0.036 0.036 0.042

Table 11: Flow Warping Error over stylization tasks. The optical flow evaluation is computed using GMA [JCL∗21]

that prevent overfitting, while not making training of small CNN
variants too difficult [HZC∗17].

2. Warping Error

In Tab. 11 we show the warping error (using ℓ1 metric, as de-
fined in the main paper) over the stylization tasks following Lai
et al. [LHW∗18].

3. Extended User Study

To also compare with the methods of Shekhar et al. [SST∗19] and
Thimonier et al. [TDKP21] we conducted another user study, in-
volving only these two methods. The setup is similar to the one
described in the main paper except that it was performed by a dif-
ferent group of participants to avoid bias. In total, 12 persons (3
female, 8 male, and 1 did not specify) between the ages of 25 to
40 years participated in the study. Fig. 1 shows that our method
surpasses the other methods by a large margin.

4. More Optical-Flow Results

In Fig. 2 and Fig. 3 we show further results for our lite optical flow
network (configured as presented in the main paper) compared to
other methods on Sintel and DAVIS.

31

30

77

78

0 20 40 60 80 100

Thimonier

Shekhar

Others Ours

Figure 1: Statistics of the user study results on the removal of
temporal flickering from per-frame stylized videos. For 12 par-
ticipants and 9 different videos, we compare our method against
Shekhar et al. and Thimonier et al. through a total of 108 random-
ized A/B tests.
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(a) Frame Overlay (b) Ground-truth (c) RAFT [TD20] (d) PWC-Net [SYLK18] (e) Ours

Figure 2: Optical flow estimated using the synthetic Sintel dataset [BWSB12].
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(a) Frame Overlay (b) RAFT [TD20] (c) PWC-Net [SYLK18] (d) Ours

Figure 3: Optical flow estimated for the real-world dataset DAVIS [PTPC∗17].
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