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Figure 1: Our Ray-aligned Occupancy Map Array (ROMA) provides fast and approximate ray tracing. We demonstrate its applications in (a)
ambient occlusion and (b) one-bounce indirect illumination. Our ROMA is implemented without any specific hardware units for acceleration,
but performs comparably fast as hardware ray tracing. And compared to distance functions (DF) with the same resolution and equal storage,
our method is about 2.5×–10× faster in generation and tracing, and achieves better quality.

Abstract
We present a new software ray tracing solution that efficiently computes visibilities in dynamic scenes. We first introduce a
novel scene representation: ray-aligned occupancy map array (ROMA) that is generated by rasterizing the dynamic scene once
per frame. Our key contribution is a fast and low-divergence tracing method computing visibilities in constant time, without
constructing and traversing the traditional intersection acceleration data structures such as BVH. To further improve accuracy
and alleviate aliasing, we use a spatiotemporal scheme to stochastically distribute the candidate ray samples. We demonstrate
the practicality of our method by integrating it into a modern real-time renderer and showing better performance compared
to existing techniques based on distance fields (DFs). Our method is free of the typical artifacts caused by incomplete scene
information, and is about 2.5×–10× faster than generating and tracing DFs at the same resolution and equal storage.

CCS Concepts
• Computing methodologies → Rendering;

† Corresponding author: luwang_hcivr@sdu.edu.cn.

1. Introduction

Photorealistic rendering is becoming increasingly crucial for real-
time applications such as video games, virtual reality, and visual-
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izations. It is generally believed that employing ray tracing over
rasterization is the key to achieving photorealism, which is prov-
ably easier and more consistent to simulate global shading effects
such ambient occlusion and indirect illumination.

However, with only hardware ray tracing (HWRT) using specific
hardware acceleration support, one can barely achieve real-time
frame rates. More crucially, even today, only high-end platforms
support HWRT. So we still need a HWRT alternative, software ray
tracing (SWRT) solution, as a reasonable approximation to HWRT
for providing users with the option to scale down: allowing trade-
offs between quality and performance for low-end platforms, e.g.,
mobile devices and VR headsets.

A widely used SWRT solution is screen space ray trac-
ing [BS08; RGS09; Ulu18]. It uses depth maps, which are eas-
ily acquired from G-buffers, as the proxy scene representation and
achieves fast tracing performance with the mip-map support. How-
ever, it will miss the geometries out of the screen and behind the
nearest surfaces, because the depth map merely provides informa-
tion about the nearest boundary of scene geometry to the camera.
Using screen space ray tracing usually leads to visible artifacts.

Another popular alternative is distance fields (DFs) coupled with
sphere tracing [TDD*22]. DFs provide a good approximation to
the scene geometry, and sphere tracing enables fast ray tracing
against DFs. However, the major drawback of this solution is that
DFs are costly to generate (1.7×–11.0× slower than our method;
see Table 2) and therefore are hard to support dynamic scenes.
Moreover, as we will demonstrate later, tracing against DFs is not
as fast as expected.

Unlike DFs, occupancy maps (OMs) serve as an approximate
scene representation which can be generated efficiently from scene
geometry [ED06]. By placing a camera and rasterizing the scene, it
discretizes the scene into binary grid cells, indicating whether each
cell contains any geometry or not. Every 32 cells along the camera’s
z-axis are encoded into a 32-bit integer. In this way, a 3D OM can
be compactly represented by a 2D texture map. However, tracing
rays against the OM representation is challenging. Thiedemann et
al. [THGM11] propose a tracing method that exploits the nature
that the cells are encoded in bits: they trace rays in the texels of an
OM following the 2D DDA algorithm [AW*87] and compute the
visibility along a ray using bit operations. But their method suffers
from slow tracing since multiple and inconsistent steps have to be
performed to trace a ray.

Our goal is to develop an SWRT solution that achieves fast
generation and tracing simultaneously. Inspired by Thiedemann et
al. [THGM11], we propose a new SWRT solution built on a novel
ray-aligned occupancy map array (ROMA). It combines the advan-
tages of the above solutions: fast generation of the required infor-
mation from scene geometry (e.g., generating a ROMA with 1283

resolution takes 0.3 ms, while generating a DF with the same res-
olution takes 3.3 ms) thus effectively supporting dynamic scenes;
fast tracing that is about 5× faster than DFs using sphere tracing.
Also, our solution is fully scalable and is easy to integrate with a
spatiotemporal scheme to improve performance further and avoid
aliasing.

Our key observation is that the thread divergence caused by the

inconsistent number of algorithm iterations seriously impacts per-
formance. When tracing against the OM in the 2D DDA style, the
number of iterations is associated with the projected length of ray
onto the texture plane. Hence, our insight is, what if we only have
to trace rays along the camera’s z-axis? Ray tracing then becomes
extremely simple—a ray only travels along a 1D bit array (with
zero projected length onto the texture plane). In this way, not only
a constant one-step tracing can be achieved (Sec. 4), but the thread
divergence can also be minimized.

To achieve this, we need to generate a group of OMs whose z-
axes are aligned with all possible ray directions. In practice, we pre-
sample an array of uniformly distributed candidate directions, and
generate ray-aligned OMs only along these directions. During ren-
dering, for any given ray, we replace its direction with the closest
candidate direction to achieve fast and low-divergence ray tracing
that takes exactly one step. We present a fast generation scheme:
instead of rasterizing the scene multiple times, we “rotate” a well-
generated base occupancy map (BOM) to create our ROMA.

Finally, we provide a fully scalable solution, by tuning the reso-
lution of OMs (positional resolution) and the number of candidate
directions (angular resolution). Inspired by Temporal Anti-Aliasing
(TAA) [TKD*14], we use jittered samples for both camera pixels
when generating the BOM and the candidate directions of ROMA
over different frames. This spatiotemporal support not only pro-
vides good anti-aliasing but also enables a fully scalable solution
to further improve our performance.

In summary, our main contributions are as follows:

• a new SWRT solution that enables fast approximate ray tracing,
• a novel scene representation with spatiotemporal support that of-

fers more options to trade off performance and quality,
• a fast generation method for the new scene representation that

effectively supports dynamic objects with deformation or ani-
mation, and

• a fast tracing method that enables non-hierarchical and low-
divergence tracing in O(1) time.

2. Related Work

Real-time ray tracing for visibility. The occupancy map (OM) is
widely used to improve occlusion queries [SBM03] or simulate hair
self-shadowing [SA09]. It is also referred to as voxel bit bricks in
the industry [TDD*22]. Generation of occupancy maps from scene
is pervasively studied in scene voxelization: it turns scene geome-
tries into a 3D uniform grid and encodes each cell with specific
scene information such as occupancy, lighting, or material. Eise-
mann et al. [ED06] propose a fast binary scene voxelization using
rasterization with graphics hardware. It voxelizes and encodes the
boundary of scene geometries into bits and save them on a 2D tex-
ture. Dong et al. [DCB*04] present a similar approach with three
textures are generated to address the problem of holes appears on
geometries parallel to viewing direction. Forest et al. [FBP09] pro-
pose a novel tracing method built upon the voxelization by first
converting scene geometries into a voxel octree and using an adap-
tive bitmask to directly eliminate the nodes that potentially have
intersections and refine the octree. Thiedemann et al. [THGM11]
follow this idea and propose to drop the octree and directly tracing
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against the 2D texture. They also propose a mip-map scheme to ac-
celerate the tracing. While these methods successfully explore fast
generation of occupancy map from scene geometries, the tracing
method still remains inefficient. Instead, our method propose trac-
ing against a novel ray-aligned occupancy maps array (ROMA) to
achieve fast and low-divergence tracing.

Distance fields (DFs) is another form of scene representation
widely used in computer graphics. It can be used for ray trac-
ing [TDD*22; LM22], in which case it is an approximation to the
scene geometries and typically generated using jump flooding algo-
rithm (JFA) [RT06] with occupancy maps as seeds. Sphere tracing
is used to perform fast tracing against DFs to find nearest inter-
section. However, due to the complexity of JFA, DFs are generally
considered costly to update on a per-frame basis and thus hard to
support dynamic objects. In contrast, we target at fast generation
and strong support for dynamic objects while keeping tracing rea-
sonably fast and low-divergence. DFs can also be employed to com-
pose neural implicit representations [TLY*21; SJ22; MESK22].
However, the inference performance limits its practicality in real-
time applications where 1ms is considered prohibitively expensive.

Real-time global illumination. There are many approaches to
GI achieving real-time frame rates by utilizing rough approxima-
tions of scene geometry, visibility, lighting, or materials. Crassin et
al. [CNS*11] propose to generate a hierarchical voxel octree repre-
sentation on the fly from scene geometries and use cone tracing to
estimate visibility and incoming energy. Ritschel et al. [RGK*08]
propose a coarse approximation to scene visibility coupled with
virtual point lights (VPLs) to achieve real-time GI. Each VPL gen-
erates an imperfect shadow map from a subset of the rough point-
based representation of the scene. This inspires us that it can be
practical to generate our ray-aligned occupancy map for each pos-
sible direction. Ritschel et al. [REG*09] propose to perform fi-
nal gathering at visible surface on micro-buffer, which is raster-
ized from a hierarchical point-based scene representation. Szirmay-
Kalos et al. [SP98] propose global ray-bundles to first rasterize
scene surfaces into planar patches for a group of global ray di-
rections, and then exchange radiance between visible patches to
approximate global illumination. Hermes et al. [HHGM10] fur-
ther combine global ray-bundles with a k-buffer [BM08] to achieve
radiance exchanges for all patches of the scene instead of the
visible ones only. Recent work on irradiance probes [MGNM19;
MMSM21; MMK*21] approximate dynamic global illumination
with precomputed probes in a 3D grid and is ready to use inside the
NVIDIA RTXGI SDK.

That said, our method focuses on computing visibility queries
and is orthogonal to real-time GI techniques. In Section 7, we
demonstrate that our method can be integrated with one of the real-
time GI techniques and computes single-bounce diffuse indirect il-
lumination efficiently.

Spatiotemporal scheme. Using a spatiotemporal scheme to dis-
tribute computational workload spatially and temporally to im-
prove performance while achieving good quality has became a
defacto solution to many applications. Temporal Anti-Aliasing
(TAA) [TKD*14] jitters the sample position in pixels in current
frame, and blend them with pixel values from previous frames to
produce anti-aliased result. Reservoir-based SpatioTemporal Im-

portance Resampling (ReSTIR) [BWP*20] generally only sample
one candidate for each reservoir and then spatiotemporally com-
bines reservoirs to decrease variance. Similar to these methods, we
also employ a spatiotemporal scheme to further improve perfor-
mance while avoid significant alias, using a small angular reso-
lution (the number of OMs in ROMA) for each frame with dif-
ferent candidate directions for different frames. Note specifically
that being able to employ spatiotemporal approaches to distribute
the workload is unique to our method – the trait of fast generation
makes this practically possible.

3. Background and Problem Analysis

In this section, we briefly review the occupancy map technique and
explain how to trace rays against occupancy maps to perform visi-
bility tests.
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Figure 2: Example of an occupancy map with its corresponding
scene geometry and 3D (uniform) binary volume.

3.1. Occupancy Map, Distance Field, and Ray Tracing

An occupancy map (OM) is essentially a 3D (uniform) binary vol-
ume that approximately represents scene geometries (Figure 2).
Each grid cell contains a binary value indicating whether it inter-
sects with the scene geometry or not. To store an OM compactly,
every 32 cells along one dimension, normally the z-axis, of the grid
are encoded into a 32-bit integer. As a result, 3D OMs can be com-
pactly represented by 2D texture maps [ED06].

Generation of the above-mentioned OMs can be easily accom-
plished by rasterization using graphics hardware [ED06] (see Sec. 6
for more details). This means it is possible to generate the OMs
from scratch for every new frame, which enables support for dy-
namic objects with deformation or animation.

For visibility computations between OM and rays, there is an
intuitive but inefficient solution: performing a 3D DDA [AW*87]
to traverse and check all cells one by one along the ray. Unsur-
prisingly, this performed poorly on most of the hardware, simply
due to the typically large and inconsistent number of iterations to
advance rays. To improve it, one idea is to uniformly sample and
only check a small and fixed number of cells between the endpoints
of the ray [RBA09]; however, this may miss occupied cells and
therefore cause artifacts. Instead of using this 3D tracing scheme,
Thiedemann et al. [THGM11] proposes a method that exploits the
nature of cells being encoded as bits along the z-axis inside a texel.
Instead of directly tracing the rays in 3D space to check all cells,
they first project the ray onto the 2D texture map—the xy-plane;
then, they perform a 2D DDA to traverse all texels along the ray:
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Figure 3: Examples of tracing rays against occupancy maps and
distance fields in 2D. In this case, 2D occupancy maps are repre-
sented by 1D texture maps. When traversing the 1D texture map,
a group of cells along z-axis can be checked at once. The num-
ber of algorithm iterations depends on the projected area of the
cells through which the ray should have traversed. (a) A ray travels
from the lower left corner to the upper right corner, which leads
to the maximum number of iterations. (b) In contrast, when a ray
is traveling along z-axis, it only requires one single iteration. (c) A
typical failure case when using mip-maps to hierarchically traverse
the occupancy map: it always fails to advance to the next mip-level.
(d) Failure case of sphere tracing the distance fields when rays are
at grazing angles. Since each step size the sphere tracing method
takes depends on the distance to the closest surface, the algorithm
has to take a large number of small steps to advance the ray.

for each texel, a group of cells along z-axis can be checked at once
with one texture fetch and one bit operation. See Figure 3 for exam-
ples in 2D. Moreover, similar to the hierarchical-Z screen space ray
tracing technique [Ulu18], to further reduce the number of neces-
sary iterations, mip-maps of OM can be generated for faster skip-
ping of empty space during hierarchical traversal. However, such
hierarchical traversal scheme always has difficulties in progressing
to a higher mip level when tracing, especially in the case shown in
Figure 3(c).

It is also possible to accelerate tracing by incorporating a prox-
imity map into OM and utilizing sphere tracing to march towards
the nearest occupied cell. This is commonly referred to as distance
fields (DFs). However, sphere tracing the distance fields are still
too slow for long and incoherent rays (computed with different
numbers of iterations per thread) [TDD*22], especially for grazing
angle rays shown in Figure 3(d). When rays are close to grazing
angles, the sphere tracing method has to take a large number of
small steps to advance the ray and therefore result in a large num-
ber of iterations. Besides, distance fields are costly to generate. In
real-time applications, distance fields are typically generated either

from OMs using jump flooding algorithm (JFA) [RT06; LM22] on
the fly, or by closest point queries [TDD*22] in a pre-computation
manner. However, considering the cost of these methods, and the
time required to filling a 3D array of floating numbers, distance
fields are more expensive to support per-frame update for dynamic
objects than OMs.

Apart from requiring multiple iterations to advance rays, all
these tracing methods also suffer from thread divergence, which
comes from the inconsistent number of iterations per thread, as il-
lustrated in Figure 3(a) and (b). This means if rays are sampled
randomly and uncorrelated, which is a common case when sim-
ulating global illumination, the method will always suffer from
thread divergence. Mip-maps acceleration can scale down the pos-
sible number of iterations, but it is ineffective to avoid the thread
divergence [THGM11].

3.2. Analysis and Motivation

We intend to further speed up ray tracing against OMs and better
utilize the trait of fast generation for dynamic scene objects. As
shown in Figure 3, our key observation is that when a ray is tracing
along the z-axis, i.e., when the projection of that ray on the texture
plane is entirely inside a single texel, the tracing algorithm requires
only a single iteration. If all of our rays are tracing along the z-axis,
in other words, when the OMs are aligned with the rays, we will not
only minimize the thread divergence but also achieve O(1) tracing
performance. Considering that the ray directions in real-time ap-
plications are fully random, the most intuitive way to achieve this
goal is, for each possible ray direction, to precompute a ray-aligned
occupancy map whose z-axis of the normalized device coordinate
(NDC) space aligned with the ray direction.

This immediately introduces two problems. Firstly, we need an
infinite number of ray-aligned OMs, which is intractable in prac-
tice. Secondly, generating each ray-aligned occupancy map invokes
one pass of rasterization for the entire scene, resulting in significant
generation overhead.

For the first problem, we have a key insight that it is unneces-
sary to generate ray-aligned occupancy maps for all possible ray
directions. We can instead generate only for a subset of candidate
directions, which are distributed evenly on a hemisphere. After that,
for any ray to be traced, we select the most appropriate ray-aligned
occupancy map based on the similarity between its direction and
the candidate directions; then, instead of tracing the (still possibly
skewed) ray, we always trace the ray straight through the selected
ray-aligned OM, along its z-axis. Essentially, we enforce our rays
to be sampled only from a discrete set of directions to reduce the
necessary number of ray-aligned occupancy maps. Intuitively, this
may cause inaccuracies. However, we find that for every frame, the
candidate directions can be sampled sparsely and differently. To-
gether with a spatiotemporal denoising approach (Section 4.3), we
are able to distribute the computation over time, and achieve clean
results.

For the second problem, we observe that a well-generated occu-
pancy map contains complete 3D geometric information from ev-
ery viewing angle (unlike a depth map). So, instead of re-generating
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this information based on a new view direction aligned with a can-
didate ray through rasterization, we only need to rasterize the scene
once to a base occupancy map (BOM), then simply “rotate” the
information for the new view direction within a compute shader,
resulting in fast generation of our ray-aligned occupancy map ar-
ray (ROMA).

4. Method

In this section, we present our tracing method for fast visibility and
intersection computations between rays and occupancy map (OM)
(Figure 4).

Our high-level idea is to first perform a fast generation from
scene geometry (Section 4.1): we rasterize a high-quality base oc-
cupancy map (BOM), select a set of candidate directions, rotate
the BOM to get ray-aligned OMs, and then save them to our ray-
aligned OM array (ROMA). For each ray to be traced, we find
the “closest” candidate direction and trace the corresponding ray-
aligned OM to achieve O(1) performance (Section 4.2). Since gen-
erating a ROMA is fast, in each frame we re-sample a different
set of candidate directions and generate a new ROMA to improve
accuracy and alleviate aliasing artifacts (Section 4.3).

4.1. Generating Ray-aligned Occupancy Map Array

Algorithm 1: Algorithm to generate a ray-aligned occu-
pancy map (OM) given the base OM. Inputs: M′

viewpro j:
view-projection matrix of the base OM. M−1

viewpro j: in-
verse of view-projection matrix of the ray-aligned OM.
uv: the uv coordinates of the currently processed texel.
Output: OMaligned(uv): Texel value of the ray-aligned
OM.

1 Function Generate(M′
viewpro j, M−1

viewpro j, uv) :
OMaligned(uv) is

2 xstart ← (uv,0.5/32), xend ← (uv,1.0−0.5/32);
3 xstart

world ← ToWorldSpace(xstart , M−1
viewpro j);

4 xend
world ← ToWorldSpace(xend , M−1

viewpro j);
5 xstart

base ← FromWorldSpace(xstart
world , M′

viewpro j);
6 xend

base← FromWorldSpace(xend
world , M′

viewpro j);
7 vstep← (xend

base−xstart
base )/31;

8 Ualigned ← 0;
9 for i← 0 to 31 do

10 uvbase← xstart
base .xy;

11 t←Floor(xstart
base ×32).z;

12 Ubase← OMbase(uvbase);
13 U ← (Ubase << t)>> 31;
14 if U > 0 then
15 U ′← 1 << (31− i);
16 Ualigned ←Uresult |U ′;
17 xstart

base ← xstart
base +vstep

18 OMaligned(uv)←Ualigned ;

A straightforward way to generate a ROMA is computing all the

maps by rasterization, but it is inefficient due to the limited time
budget. Instead, we generate a BOM by rasterization and use it to
“rotate” to other ray-aligned OMs (Figure 4). As displayed in Al-
gorithm 1, for each cell of a new ray-aligned OM associated with
a specific candidate direction and camera pose, we first transform
the cell to the world space, further transform it to the NDC space of
the BOM, and fetch the value. This only involves simple coordinate
transformations and queries in the BOM, which can be efficiently
implemented only using compute shaders and is decoupled from
scene complexity. Note that in Algorithm(s) 1 (and 2), we demon-
strate our method using a single 32-bit integer for simplicity. It is
straightforward to extend it to support more bits; please refer to our
code for details.

To improve the accuracy of our approximate scene representa-
tion, we choose candidate directions to evenly distributed on the
hemisphere, because these directions are used for generating ray-
aligned OMs and will later be selected for replacing each newly
sampled ray during tracing. We use 2D stratified sampling based
on the concentric mapping [SC97]. This technique maps concen-
tric squares to concentric circles on the hemisphere and preserves
fractional areas.

Discussion: difference to imperfect shadow map. The imper-
fect shadow map [RGK*08] also generate a group of approximate
scene representation – depth maps from multiple views and save
onto a single atlas. The key difference is that the depth map only
provides the nearest boundary of the scene geometries, thus they
can not generate another depth map from the existing one for a dif-
ferent view. So they have to rasterize the same scene primitives for
many times, which is in practice replaced by distributing a point-
represented scene over different views, trading performance with
“imperfection”.

4.2. Tracing against Ray-aligned Occupancy Map Array

With the ROMA generated in Section 4.1, achieving fast and low-
divergence tracing is easy.

Given a newly sampled ray for visibility or intersection com-
putations, the first step is to find the “closest” candidate direction.
This process can be done by comparing dot products of the ray di-
rection and candidate directions, which is intuitive but inefficient,
especially when considering the limited budget. Our key observa-
tion here is that when using stratified sampling, for any sampled
ray direction, we can immediately find its corresponding stratum;
and the candidate direction in that stratum is already close to the
sampled ray direction. Therefore, as illustrated in Figure 4, instead
of finding the “closest” candidate direction for sampled ray direc-
tion, we find a close enough one by using stratified sampling and
employing the concentric mapping [SC97].

Then, as described in Section 3.2, to minimize the number of it-
erations and the thread divergence, instead of directly tracing the
newly sampled ray, we “snap” the ray to the selected candidate di-
rection before tracing it. Then, we trace against the ray-aligned OM
which corresponds to that candidate direction in ROMA (See Fig-
ure 4).

Having this ray and its aligned OM, visibility or intersection
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Occupancy Map Array

Base Occupancy Map

Rotate

Concentric
Mapping

Concentric
Mapping

u ∈ [0,1]2 u ∈ [0,1]2

Candidate Directions Sampled Ray Direction

Figure 4: Algorithm overview. Given the geometries, we first rasterize them into a regular Base Occupancy Map (BOM). Then we rotate it
towards stochastically selected candidate directions to build our Ray-aligned Occupancy Map Array (ROMA). With ROMA, given any ray
to be traced against the geometries, we find its closest candidate direction and the corresponding OM from ROMA, to perform fast O(1) ray
tracing using bit operations.

computations can be simply done using bit operations (Algo-
rithm 2). For visibility, we only need to check if there is an in-
tersection along the ray (an any hit query). Given the ray’s origin
and direction (either along z or −z), an any hit query can be ac-
complished in two steps. First, we left shift (or right shift, depends
on the direction) the bit values saved on the OM – the resulting
bit values are belonging to cells where the ray would have passed
through; then check if the resulting bit values is beyond zero – in
that case, there is an intersection. For finding the exact intersecting
position (a closest hit query), there is only one extra step: perform-
ing a low-bit operation (or formost-bit operation, again depending
on the ray’s direction) to locate the right-most (or left-most) occu-
pied cell where the ray would have intersected first.

Discussion: “snap” or not. Although “snapping” the sampled
rays to the candidate directions is the best way to perform ray trac-
ing with ROMA, note specifically that ROMA also benefits directly
from tracing the sampled rays (un-“snapped” rays). This is because,
for any sampled ray, the corresponding ray-aligned OM chosen
from ROMA is already a good OM to be directly traced against:
the sampled ray direction is close to the candidate direction, so it
only requires a few iterations to cross the entire OM. This means,
considering that the “snapped” rays do not introduce artifacts only
the original sampled rays are distributed on the entire hemisphere,
for applications that require the sampled rays pointing to specific
directions (for example, soft shadows in Section 5), we can choose
not to “snap” the rays to trade some performance for better visual
quality. In our experiments, we found using 8 iterations in ROMA
tracing is sufficient for simulating visually pleasing soft shadows.

4.3. Spatiotemporal

With our tracing method performed on ROMA, as reported in Ta-
ble 2, we can already achieve fast generation from scene geometry
and fast tracing. However, we can further boost its performance
while alleviating aliasing by employing a spatiotemporal scheme.

Since the OM is a discrete representation of scene geometries,
the resolution of each OM in our ROMA, we call it the positional
resolution of our method, is critical for representing the scene well
and avoiding aliasing. Also, the number of candidate rays or the
number of OMs in a ROMA, the angular resolution of our method,
determines how many directions we can really trace; insufficient
number of directions will lead to artifacts on final rendering (See
Figure 9). However, the extra time and space costs incurred by uti-
lizing higher positional and angular resolutions are always unac-
ceptable.

Inspired by the idea of Temporal Anti-Aliasing
(TAA) [TKD*14], we propose to use a spatiotemporal scheme to
distribute the computational workload spatially and temporally.
More specifically, for each new frame: when generating the OMs,
we jitter objects’ geometric positions for each OM; before rotating
to ROMA, we resample candidate directions using stratified
sampling. Coupled with a spatiotemporal denoiser [SPD18], we
increase the effective positional and angular resolutions within the
limited budget and therefore alleviate aliasing artifacts. Tunable
positional and angular resolutions make our method fully scalable
on quality and performance.
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Algorithm 2: Algorithm to trace a ray-aligned OM from
ROMA. Inputs: OMaligned : the selected ray-aligned OM that
is a 32-bit texture map. Mviewpro j: view-projection matrix of
the ray-aligned OM. dworld : the world-space ray direction.
oworld : the world-space ray origin. Output: hitInfo: the re-
sult of visibility or intersection computation.

1 Function AnyHit(U: int) : hitInfo is
2 if U > 0 then
3 return Occluded;
4 else
5 return Missed;
6 Function ClosestHit(U: int, z: float) : hitInfo is
7 if U > 0 then
8 if z > 0 then find foremost bit
9 return 32 - Floor(log2 Uresult ) - 0.5

10 else find lowest bit
11 return 32 - log2 (Uresult&(−Uresult))

12 else
13 return Missed;
14 Function Trace(OMaligned , Mviewpro j , dworld , oworld , uv) :

hitInfo is
15 oaligned ← FromWorldSpace(oworld ,Mviewpro j);
16 daligned ← FromWorldSpace(dworld ,Mviewpro j);
17 uv← oaligned .xy;
18 tstart ← Floor (oaligned×32);
19 if daligned .z≥ 0 then
20 tend ← 31;
21 else
22 tend ← 0;
23 Uresult ← 0;
24 Ualigned ← OMaligned(uv);
25 tmin← Min (tstart , tend), tmax← Max (tstart , tend);
26 Uresult ← (Ualigned << tmin)>> (31− tmax + tmin);
27 return AnyHit(Uresult ) or

ClosestHit(Uresult << (31− tmax), daligned .z);

5. Applications

Our method can accelerate real-time rendering applications by ef-
ficiently answering the ray intersection queries, i.e., any hit queries
and closest hit queries. In this section, we first demonstrate two rep-
resentative applications using sampled rays distributed on the entire
hemisphere: ambient occlusion with fast any hit queries, and one-
bounce diffuse indirect illumination with fast closest hit queries.
Then, we show another representative application using sampled
rays pointing to specific directions: soft shadows from area lights
with any hit queries.

Ambient occlusion. One of the most straightforward application
employing visibility test is ambient occlusion, which captures the
occlusion at x with normal n, calculated from the visibility V (x,ω)
of incident rays from all directions ω on hemisphere Ω:

AO(x) = 1
π

∫
Ω

V (x,ω)(n ·ω)dω. (1)

We compute the visibility function V (x,ω) using ROMA with
any hit queries with an infinite tmax in constant time (Algorithm 2).

One-bounce diffuse indirect illumination. Starting from the
primary shading point x on a diffuse surface with albedo ρ, we
need to trace secondary rays to compute the one-bounce indirect
illumination Lo(x):

Lo(x) =
∫

Ω

ρ

π
Li(x,ω)(n ·ω)dω. (2)

To compute the incident radiance Li(x,ω), the first thing is find-
ing the closest intersection point along the secondary ray direc-
tion ω. ROMA with closest hit queries can be employed here to
find the closest intersection (Algorithm 2), i.e., the secondary shad-
ing point. Then, there are many ways to inject lighting and calcu-
late illumination at the secondary shading point, including radiance
cache [MRNK21], mesh cards [TDD*22], and reflective shadow
map (RSM) [DS05]. In this paper, we use the RSM technique.
RSMs are generated for spot and point lights with radiance, po-
sition, and normal in each pixel. For each secondary shading point
we found, we transform and project it into the RSM to fetch the
scattered radiance Li(x,ω) to primary shading point from its posi-
tion.

Rays from the above-mentioned two applications are distributed
over the entire hemisphere; each single visibility query does not
have to be very precise as long as the final integral approximates
well. Therefore, we can safely use “snapped” rays without intro-
ducing artifacts. Next, we show one application that requires pre-
cise visibility.

Soft shadows. Having chosen a particular area light to calculate
direct lighting from, we need to trace shadow rays from the shad-
ing point x to a point x′ sampled on the area light to simulate soft
shadows:

L0 (x) =
∫
M

ρ

π
Le

(
x′→ x

)
G
(
x′↔ x

)
dA(x′). (3)

We compute the visibility function V
(
x′↔ x

)
in the geometry

term G
(
x′↔ x

)
using ROMA with any hit queries with a finite

tmax. Note that since simulating soft shadows requires precise vis-
ibility, i.e., rays have to point to specific directions, we choose not
to “snap” the ray for accuracy.

Discussion: range of applications that can be handled. As
shown in Table 1, ROMA supports the above-mentioned three ap-
plications well. However, for applications using rays pointing to a
single specific direction like hard shadows from point lights and
pure specular reflection, although we can choose not to “snap” the
ray to use the original sampled direction, there will still be light
leaking caused by the limited positional resolution. Such applica-
tions are challenging to all voxel-based methods including ROMA
since it requires an extremely high positional resolution. Applying
the spatiotemporal scheme here can only alleviate but fails to elim-
inate the artifacts.

6. Implementation

We implement our algorithm with the Slang [HFF18] shading lan-
guage inside the NVIDIA Falcor [KCK*22] renderer. We will re-
lease our code upon publication.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

7



Z. Zeng, Z. Xu, L. Wang, L. Wu, & L. Yan / Ray-aligned Occupancy Map Array for Fast Approximate Ray Tracing

Sampled rays’ direction Applications Support “Snap”

Entire
hemisphere

Ambient occlusion
Diffuse reflection

✓ ✓

Specific
directions

Soft shadows
Glossy reflection

✓ ✗

One specific
direction

Hard shadows
Pure specular reflection

✗ N/A

Table 1: Range of applications that can be handled by our method.
For applications using rays distributed on the entire hemisphere,
we recommend to use “snapped” rays to maximize performance.
For applications using rays pointing to specific directions, we rec-
ommend not to “snap” the rays to avoid artifacts. Same as other
voxel-based methods, we do not support applications that have rays
pointing to one specific direction like hard shadow and pure spec-
ular reflection, because the limited positional (grid) resolution will
lead to light leaking artifacts.

ROMA generation. By default, we use a positional resolution
of 1282 (effectively representing a 3D binary grid with a resolu-
tion of 1283 because of bit compression) for the base occupancy
map (BOM) and the ray aligned OMs in ROMA. The default an-
gular resolution for ROMA is 42, i.e., we sample 42 candidate di-
rections. When simulating effects that require precise visibility like
soft shadows, we use an angular resolution of 82 to increase tracing
accuracy.

The quality of the BOM is vital for generating our ROMA with
complete geometric information. One major drawback of the BOM
generation strategy described in Section 3 is that surfaces with
slopes close to the grid’s z-axis will not be rasterized into frag-
ments and thus will not occupy any cells. To address this issue, for
all our results, we perform three times of rasterization with cameras
placed towards three axis directions: x, y, and z, and then compute
the union of the three resulting BOMs, as suggested by Forest et
al. [FBP09]. It improves accuracy while adding some overhead.

To avoid potential race conditions caused by multiple fragments
being sent to the same pixel, we use rasterizer order views (ROVs)
when generating the BOM using rasterization.

Tracing ROMA. To avoid shadow acne caused by self-
intersections due to the insufficient positional resolution, for the
starting points of bounced rays, we perturb them along the sur-
face normal directions by 1.5× ROMA’s grid cell size in the world
space.

Real-time GI approximation. We use reflective shadow maps
(RSMs) to approximate the real-time single-bounce diffuse indi-
rect illumination. For each spot light and point light, We generate
a 512× 512 RSM to inject lighting and compute indirect illumi-
nation. We apply the same techniques as those for generating the
OMs, to generate RSMs: we jitter the light position to avoid alias-
ing; when testing the texel in RSM to accumulate lighting, we per-
turb the points to avoid shadow acne of RSMs.

Post-processing. We use the ReLAX denoiser in the NVIDIA
Real-Time Denoisers (NRD) library [NVI] for our results at 1 sam-
ple per pixel every frame, followed by a Temporal Anti-Aliasing

(TAA) [TKD*14] filter to compress residual noise and reduce spa-
tiotemporal aliasing.

Distance fields. We implement real-time distance fields as one
of the baseline methods. For the DF generation, we apply the 3D
Jump Flooding algorithm [RT06] on our BOM and create a 3-level
mipmap of the resulting global distance field’s grid with a resolu-
tion of 1283. Each grid cell records the distance to the center of
the nearest occupied cell and the distance is saved in float16 for
best performance (equal storage to ROMA with an angular res-
olution of 42). Hardware trilinear interpolation is used between
the cells. For tracing, we use the sphere tracing accelerated by
mipmaps [Aal18] with up to 64 iterations. To achieve the best
visual quality and prevent artifacts such as light leaks and self-
intersection, for each scene we manually tweaked the hyperparame-
ters including the minimum ray propagation distance, the threshold
value of ray intersection, and the offset distance along the surface
normals.

7. Results

In this section, we present our results of ambient occlusion and
single-bounce diffuse indirect illumination. We also compare our
rendering results with distance fields (DF) and hardware ray tracing
(HWRT). All experiments and timings are conducted on a desktop
with a 3.70 GHz Intel i9-10900K and an NVIDIA GeForce RTX
3080 Ti. We use the FLIP [ANA*20] image metric as the visual
difference evaluator. All results are rendered using only one sample
per pixel and are denoised further by ReLAX denoiser and TAA.
Please refer to the supplementary video for the results on dynamic
scenes.

7.1. Main Results

Ambient occlusion (AO). As shown in Figure 1(a) and Figure 5,
we compare our method (ROMA) with DF on computing AO for
five scenes. We use the AO simulated by HWRT as the reference.
The comparison indicates that our ROMA achieves better visual
quality than DFs on all test scenes with around 2.5×–10× speed-
up. The contact shadows appear over-darkening caused by self in-
tersections in both ROMA’s and DF’s results. This is fundamentally
due to the limited positional resolution and the inappropriate ray
origin perturbation used by ROMA and DFs.

Single-bounce diffuse indirect illumination. As shown in Fig-
ure 1(b) and Figure 6, we use three scenes with spot lights for
comparing the single-bounce diffuse indirect illumination among
our method (ROMA), DF, and HWRT. Both ROMA and DF use
reflective shadow maps (RSMs) to inject lighting into the scene,
while HWRT directly simulates global illumination using path trac-
ing with next event estimation (NEE). We show both direct illu-
mination and single-bounce diffuse indirect illumination in the re-
sults. The comparison indicates that ROMA achieves comparable
and even better visual quality. We also observe the over-darkening
issue that appears in AO here, especially near the bottom of objects.

Soft shadows. As shown in Figure 7, we use three dynamic
scenes with area lights on the ceilings for comparing soft shad-
ows among our method (ROMA), DF, and HWRT. We show both
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DF FLIP DF ROMA FLIP ROMA Ref.
(a) DRAGON scene.

DF FLIP DF ROMA FLIP ROMA Ref.
(b) GAMING STATION scene.

DF FLIP DF ROMA FLIP ROMA Ref.
(c) CAN HOUSE scene.

DF FLIP DF ROMA FLIP ROMA Ref.
(d) COFFEE CART scene.

Figure 5: Comparison between our method (ROMA), distance field (DF), and hardware ray tracing (Ref.) on simulating ambient occlusion.
We use the FLIP image as the visual difference evaluator. ROMA achieves better visual quality on all four scenes, with around 2.5-10×
speed-up to DF.

direct illumination with soft shadows and single-bounce diffuse in-
direct illumination (same as Figure 6) in the results. MORPHING

SPOT scene and MORPHING SPIKE scene have deformations, while
BRAINSTEM scene has skinned animations. The comparison indi-
cates that ROMA achieves comparable visual quality. Please see
the supplemental video for animated comparisons.

Performance. In Table 2, we report and compare the average
computation cost in milliseconds among ROMA, DF, and HWRT.
The timings are measured on the BUNNY scene (Figure 1) ren-

dered in 1080P for AO. At the generation stage, our ROMA is built
within 1 ms, even with a positional resolution of 1282. In contrast,
DF requires 3.3 ms to build at the same resolution and with equal
storage, which is 11.0× slower than ours. This is mainly due to
the time complexity of the 3D Jump Flooding algorithm [RT06].
The speedup shrinks as the resolution decreases, but our generation
speed is consistently 1.7×–11.0× faster than DF. At the tracing
stage, our method using ROMA can answer ray intersection queries
in 0.16 ms regardless ROMA’s resolutions, thanks to our constant-
time tracing method. Tracing is around 3.4×–8.1× faster than DF,
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DF FLIP DF ROMA FLIP ROMA Ref.
(a) LION scene.

DF FLIP DF ROMA FLIP ROMA Ref.
(b) ARCADE scene.

Figure 6: Comparison between our method (ROMA), distance field (DF) and hardware ray tracing (Ref.) on simulating one-bounce diffuse
indirect illumination. We use the FLIP image as the visual difference evaluator. Each scene curtains a spot light. Both ROMA and DF use
reflective shadow maps (RSMs) to inject lighting, while HWRT directly using path tracing with next event estimation (NEE). We show both
direct illumination and single-bounce diffuse indirect illumination in the results.

Pos. Res. 322 642 1282

Ang. Res. 42 82 42 82 42 82

GENERATION
ROMA 0.14 ms 0.18 ms 0.20 ms 0.31 ms 0.30 ms 0.69 ms

Distance field 0.31 ms 0.55 ms 3.31 ms
(Speed-up) (2.2×) (1.7×) (2.7×) (1.7×) (11.0×) (4.8×)
(Storage) (1×) (4×) (1×) (4×) (1×) (4×)
HWRT 0.08 ms

TRACING (1 sample per pixel)
ROMA 0.16 ms 0.16 ms 0.16 ms 0.16 ms 0.16 ms 0.16 ms

Distance field 0.55 ms 0.84 ms 1.30 ms
(Speed-up) (3.4×) (5.25×) (8.1×)

HWRT 0.31 ms
(Speed-up) (1.9×)

TOTAL
ROMA 0.30 ms 0.34 ms 0.36 ms 0.47 ms 0.46 ms 0.85 ms

Distance field 0.86 ms 1.39 ms 4.61 ms
(Speed-up) (2.9×) (2.5×) (3.9×) (3.0×) (10.0×) (5.4×)

Table 2: Runtime breakdown between our method (ROMA), dis-
tance field (DF), and hardware ray tracing (HWRT). The times are
measured on the BUNNY scene (Figure 1) rendered in 1080P for
ambient occlusion. Compared with DF, our method is consistently
faster in both generation and tracing. Compared with HWRT, gen-
erating ROMA is slower but tracing is 1.9× faster.

and in total we are 2.5×–10× faster than DF combined with the
generation time. Although ROMA generation is slower than the
hardware BVH construction/update for HWRT, the tracing speed
with ROMA is about 1.9× faster than HWRT.

We also measure the average timings on the MORPHING SPOT

scene, MORPHING SPIKE scene, and BRAINSTEM scene simulat-
ing soft shadows. At the generation stage, the situation is the same:
our ROMA is built within 0.8 ms, while DF requires 2.9 ms to build
at the same resolution, which is 3.6× slower than ours. At the trac-
ing stage, tracing un-“snapped” rays using ROMA with a maximum
of 8 iterations only takes 0.23ms, which is 1.7× faster than tracing
DF with a maximum of 16 iterations(0.40ms) and 1.3× faster than
HWRT (0.30ms).

7.2. Discussions

Artifacts by “snapping” the ray. As described in Section 4, given
the newly sampled ray for ray intersection query, instead of directly
tracing the new ray, we “snap” the ray to the selected candidate di-
rection before tracing it. This idea boosts performance while do not
introduce extra visual artifacts for applications like AO and diffuse
indirect illumination. As shown in Figure 8 (a) on the MARBLE

scene for one-bounce diffuse indirect illumination, there is no vis-
ible difference between “snapping” and not “snapping”. Besides,
when “snapping” the ray, the tracing stage takes 0.24 ms, and when
not doing it, the tracing stage takes 2.05 ms with a maximum of 64
iterations (for getting the comparable color bleeding), which means
we can gain a 8.5× speed-up when choose to “snap” the ray. Also,
as discussed in Section 4.2, for applications like soft shadows, as
shown in Figure 8 (b) on MORPHING SPOT scene, “snapping” the
ray would cause artifacts since the “snapped” shadow rays may
point to wrong places. So, we choose to directly trace the sampled
rays for better visual quality and use a higher angular resolution of
82 for maintaining the good performance. We can achieve 0.23ms
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DF FLIP DF ROMA FLIP ROMA Ref.
(a) MORPHING SPOT scene.

DF FLIP DF ROMA FLIP ROMA Ref.
(b) MORPHING SPIKE scene.

DF FLIP DF ROMA FLIP ROMA Ref.
(c) BRAINSTEM scene.

Figure 7: Comparison between our method (ROMA), distance field (DF), and hardware ray tracing (Ref.) on simulating soft shadows. We
use the FLIP image as the visual difference evaluator. We show both direct illumination with soft shadows and single-bounce diffuse indirect
illumination in the results. MORPHING SPOT scene and MORPHING SPIKE scene have deformations, while BRAINSTEM scene has skinned
animations. Please make sure to check out our accompanying video for much clearer comparison in dynamic. ROMA achieves comparable
quality, with around 3.6× speed-up in generation and 1.7× speed-up in tracing than DF.

in tracing with a maximum of 8 iterations (for simulating visually
pleasing soft shadows), in comparison to 0.15ms when “snapping”.

Choice of resolutions. We compare the AO results in Figure 9
when choosing different positional and angular resolutions. A posi-
tional resolution of 1282 and an angular resolution of 42 can already
achieve visually pleasing results and fast performance (according to
Table 2), while avoiding obvious light leaking; thus, we make it the
default choice. When simulating effects that require precise visibil-
ity like soft shadows, we can increase the angular resolution to 82

to boost tracing accuracy.

ROMA as a HWRT alternative. The purpose of ROMA is to
provide a different way to perform ray tracing. Though much faster
in building and tracing, ROMA is not designed as an alternative
to DFs, for that DFs offer other convenient properties other than
ray tracing, e.g., the simplicity to compute surface normal, dif-
ferentiability [VSJ22] and their unique way to compute soft shad-
ows [Wri15].

The same conclusion also applies to GI. Since ROMA only offers
a fast ray tracing solution for secondary rays in GI, ROMA itself is
not a GI solution. Therefore, any methods that provide caches to
the outgoing radiance or incident illumination, e.g., Voxel Global
Illumintaion [CNS*11] and Neural Radiance Caching [MRNK21],
is orthogonal to what ROMA does. And their compatibility with
ROMA depends on how fast these methods perform to build and
update the cache, and whether they also support dynamic objects
or not.

Fast hardware ray tracing. Note that in Table. 2, the BVH
building process using HWRT is faster than our ROMA. We would
like to specifically note that, although building the BVH is not
hardware-accelerated, it is specially optimized and handled by
drivers. For instance, BVH allows partial updates (BVH refitting)
instead of rebuilding from scratch when the scene changed. For
tracing the BVH, HWRT is accelerated with specific-purpose hard-
ware (e.g. RT cores from NVIDIA RTX GPUs). Hence, it is al-
ready extraordinary that ROMA traces rays faster than HWRT. We
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Undenoised Snap Snap FLIP Snap Not Snap FLIP Not Snap
(a) MARBLE scene. We show both direct illumination from RSM and one-bounce diffuse indirect illumination traced using ROMA.

Undenoised Snap Snap FLIP Snap Not Snap FLIP Not Snap
(b) MORPHING SPOT scene. We show both direct illumination with soft shadow and one-bounce diffuse indirect illumination traced using ROMA.

Figure 8: Comparison between “snapping” the ray and not “snapping” the ray on MARBLE scene (aiming at showing one-bounce indirect
illumination traced using ROMA) and MORPHING SPOT scene (aiming at showing soft shadow traced using ROMA). We use the FLIP
image as the visual difference evaluator to the ground truth. For applications like diffuse indirect illumination, “snapping” the rays boost
performance (0.24ms, in comparison to 2.05ms when not “snapping”) while do not introduce extra visual artifacts. Also, for applications
like soft shadows, “snapping” the rays would cause artifacts; so we choose to trace un-“snapped” rays for better visual quality while using
a higher angular resolution for maintaining good performance (0.23ms, in comparison to 0.15ms when “snapping”).

322 FLIP 322 642 FLIP 642 1282 FLIP 1282 Ref.
(a) Different positional resolution (with a same angular resolution of 42).

82 FLIP 82 162 FLIP 162 322 FLIP 322 Ref.
(b) Different angular resolution (with a same positional resolution of 1282).

Figure 9: Ambient occlusion on LEGO scene rendered with positional and angular resolutions. We use the FLIP image as the visual difference
evaluator.

believe that with equal hardware support, ROMA could be built
and run even faster. A note to SDF practitioners: tracing SDF is
not necessarily faster than HWRT (as we have also demonstrated).
We quote the following text from the design document of Lu-
men [TDD*22] as one of the important reason to use DF: “Hard-
ware Ray Tracing is great and it is the future, but we need options
to scale down. In the PC market there are still plenty of video cards

that don’t support hardware ray tracing, and console Hardware Ray
Tracing is not that fast”.

Light leaking. ROMA can possibly has few cells missing in
each view. This is due to the aliasing from the “rotation” step.
But these missing cells are located in different places cross views
and frames; with our spatiotemporal scheme, we do not observe
any obvious light leaking caused by this. However, like all other
voxel-based representations with limited positional resolutions,

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

12



Z. Zeng, Z. Xu, L. Wang, L. Wu, & L. Yan / Ray-aligned Occupancy Map Array for Fast Approximate Ray Tracing

both ROMA and DF suffer from light leaking caused by thin ob-
jects that fit within a voxel; for example, the light leaking on the
morphing cow’s foot in Figure 7. Similar to shadow acne, this can
be resolved by perturbation of a voxel-sized bias.

Temporal artifacts. As with other ray tracing techniques for dy-
namic scenes at 1 sample per pixel, if we do not carefully tune the
denoiser, our method will suffer from ghosting, lagging, or noise.
We have carefully tested by finding parameters of NRD to guar-
antee that it accumulates up to 10 frames, which is good enough
to suppress most noise and lagging. Besides, considering that a
high FPS will hide most of these temporal artifacts, we provide the
results showing temporal quality at 60 FPS in the accompanying
video to prove that ROMA does not need a high FPS to converge
better. Please make sure to check out.

Scalability to larger scenes. Same as DFs, ROMA cannot be
directly used on larger scenes due to the limited positional reso-
lution; but we believe it can be extended to support larger scenes.
Following the previous extending ideas on DFs, potential solutions
are as follows: one simple solution is to use cascades [LM22]: par-
tition the scene into multiple areas according to the distance from
the camera and use different resolutions of ROMAs for these areas.
Similar to Lumen of using two levels of DFs [TDD*22], another
solution is to use two levels of ROMAs: precise mesh ROMAs for
near-field tracing and a coarse global ROMA for far-field tracing.
One solution can be to refer to AMD’s Brixelizer [Kra23] to em-
ploy local mesh ROMAs coupled with AABB tree traversal.

8. Conclusion and Future Work

We have presented Ray-aligned Occupancy Map Array (ROMA),
a new software solution that enables fast approximate ray tracing,
by producing multiple rotated versions of a scene/object. ROMA is
fast to generate, requiring only one base occupancy map (BOM) to
be rasterized then rotated, therefore effectively supports dynamic
objects. ROMA is also fast to perform visibility queries, providing
an O(1) ray-aligned coherent tracing scheme. Moreover, by tuning
different positional and angular resolutions of ROMA, it offers a
fully scalable solution to balancing the performance and quality in
a spatiotemporal way.

While we believe in the bright future when full hardware ray
tracing (HWRT) will take over, it is still uncertain how long we
will have to wait before it happens. During the interim, we also
believe it worthy to study HWRT alternatives and their hybrid so-
lutions. As for our ROMA solution, in the near future, it would be
of immediate interest to look for hardware support for ROMA to
boost its performance. Meanwhile, using geometry shaders to im-
prove the performance of BOM generation can also help – until the
performance is only related to its positional resolution rather than
the number of triangles. A hybrid solution like combining screen-
space ray tracing for near-field tracing and using ROMA only for
far-field tracing could also improve the practicality of ROMA.
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