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Abstract
The computational work to perform particle advection-based flow visualization techniques varies based on many factors, in-
cluding number of particles, duration, and mesh type. In many cases, the total work is significant, and total execution time
(“performance”) is a critical issue. This state-of-the-art report considers existing optimizations for particle advection, using
two high-level categories: algorithmic optimizations and hardware efficiency. The sub-categories for algorithmic optimizations
include solvers, cell locators, I/O efficiency, and precomputation, while the sub-categories for hardware efficiency all involve
parallelism: shared-memory, distributed-memory, and hybrid. Finally, this STAR concludes by identifying current gaps in our
understanding of particle advection performance and its optimizations.

1. Introduction

Flow visualization techniques are used to understand flow patterns
and movement of fluids in many fields, including oceanography,
aerodynamics, and electromagnetics. Many flow visualization tech-
niques operate by placing massless particles at seed locations, dis-
placing those particles according to a vector field to form trajec-
tories, and then using those trajectories to create a renderable out-
put. Each trajectory is calculated via a series of “advection steps,”
where each step advances a particle a short distance by solving an
ordinary differential equation.

Particle advection workloads can be quite diverse across differ-
ent flow visualization algorithms and grid types. The size of the
workload varies based on many factors, including the number of
particles, the duration of advection, the velocity field evaluation,
and any analysis associated with each advection step. One crucial
factor affecting performance is the total number of advection steps,
which depends on both the number of particles and their duration
of advection. Flow visualization techniques vary in terms of par-
ticle count and duration, with some techniques utilizing numerous
particles that go for short durations and others using few particles
that go for longer periods. In certain cases, such as studying ocean
flow [OPF∗12], many particles may be required for extended peri-
ods, resulting in billions of advection steps or more. With respect
to the velocity field evaluation, uniform grids require only a few
operations, while unstructured grids require many more (for cell
location and interpolation). In all, the diverse nature of particle ad-
vection workloads means there are diverse approaches for optimiz-
ing performance.

The main goal of this state-of-the-report is to survey the space of

optimizations for particle advection. After providing a background
on the building blocks for particle advection in Section 2, the survey
describes two high-level categories. First, Section 3 surveys algo-
rithmic optimizations. Then, Section 4 surveys approaches for uti-
lizing hardware more efficiently, with nearly all of these works uti-
lizing parallelism. Contrasting the two high-level categories, Sec-
tion 3 is about reducing the amount of work to perform, while Sec-
tion 4 is about executing a fixed amount of work more quickly. In
terms of how to read this survey, Sections 3 and 4 can be read in
any order. In particular, readers interested in a particular algorith-
mic optimization or technique for hardware efficiency can skip to
the corresponding subsection. That said, readers new to this topic
should start with Section 2 to gain a basic understanding of particle
advection performance.

With respect to previously published literature, this survey is the
first effort to provide a state-of-the-art report for optimizing par-
ticle advection performance. The closest work to our own is the
survey on distributed-memory parallel particle advection by Zhang
and Yuan [ZY18]. There are two main ways our survey is distinct
and novel in its contribution. First, our survey considers a broader
context, i.e., it considers algorithmic optimizations and additional
types of parallelism. Second, our discussion of distributed-memory
techniques includes a new summarization of workloads and paral-
lel characteristics (specifically Table 5), as well as, includes recent
works appearing since their publication. Further, there have been
many other excellent surveys involving flow visualization and par-
ticle advection: feature extraction and tracking [PVH∗03], dense
and texture-based techniques [LHD∗04], topology-based flow tech-
niques [LHZP07] and a subsequent survey focusing on topology
for unsteady flow [PPF∗11], integration-based, geometric flow vi-
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Figure 1: Organization of the components for a particle advection-based flow visualization algorithm. The components are arranged in
three rows in decreasing levels of granularity from top to bottom. In other words, the components at the bottom are building blocks for the
components at higher levels. The top row shows components that define the movement and analysis of a particle. The loop in the top row
indicates its components are executed repeatedly until the particle is terminated. The middle row shows components that define a single step
of advection. The arrows with the ellipsis from ODE solver to velocity field evaluation are meant to indicate that an ODE solver needs to
evaluate the velocity field multiple times. Each velocity field evaluation takes as input a spatial location and possibly a time, and returns the
velocity at the corresponding location (and time). The frequently-used Runge-Kutta 4 ODE solver requires four such velocity field evaluations.
Finally, as depicted in the bottom row, each velocity field evaluation requires first locating which cell in the mesh contains the desired spatial
location and then interpolating the velocity field to the desired location.

sualization [MLP∗10], and seed placement and streamline selec-
tion [SBGC20]. This STAR complements these existing surveys —
while some of these works consider aspects of performance within
their individual focal point, none of the surveys focus on optimizing
particle advection performance.

2. Particle Advection Background

Flow visualization algorithms perform three general operations:

• Seed Particles: defines the initial placement of particles.
• Advance Particles: defines how the particles are displaced and

analyzed.
• Construct Output: constructs the final output of the flow visu-

alization algorithm, which may be a renderable form, something
quantitative in nature, etc.

These three operations often happen in sequence, but in some in-
stances they happen in an overlapping fashion (i.e., seed, advance,
seed more, advance more, etc.)

Our organization, which is illustrated in Figure 1, focuses on the
“advance particles” portion of flow visualization algorithms. It di-
vides the components into three levels of granularity.

The “top” level of our organization considers the process of ad-
vancing a single particle. It is divided into three components:

• Advection Step: advances a particle from its current location to
its next location.

• Analyze Step: analyzes the advection step taken. The specifics
of the analysis vary by flow visualization algorithm, and could
be as simple as storing the particle’s new location in memory
(e.g.., streamlines) or could involve more computation (e.g., cal-
culating statistics, checking if a particle entered a critical region,
etc.).

• Check for Termination: determines whether a particle should be

terminated. Similar to the Analyze Step component, flow visual-
ization algorithms define specific criteria for when to terminate
a particle, i.e., number of steps, distance traveled, time elapsed,
etc.

The process of advancing a particle involves applying these three
components iteratively until the termination criteria are reached.

The “middle” level of our organization considers the process of
completing a single advection step for a particle. This level has two
components:

• ODE Solver: calculates a particle’s displacement to a new posi-
tion by solving an ordinary differential equation (ODE).

• Velocity Field Evaluation: calculates the velocity value at a spe-
cific location by interpolating within the located cell.

The “bottom” level of our organization considers the process of
velocity field evaluation. This level also has two components:

• Cell Location: locates the cell that contains some location.
• Field Interpolation: calculates velocity field at a specific loca-

tion via interpolation of surrounding velocity values.

Thus, to calculate the velocity value at some point P, a cell loca-
tion process is first used to identify the cell C containing P, and
then interpolation of the velocity field is performed to calculate the
velocity at P using information at the vertices of C.

Flow visualization techniques use these components in different
ways, resulting in varying performance across the algorithms. One
way of comparing the different algorithms’ performance can be the
workload characteristics of the algorithms, which roughly trans-
lates to the total computation required by an algorithm. This work-
load can be defined as the total number of advection steps com-
pleted by the algorithm, which is the product of the total number
of particles required by the algorithm and the number of steps ex-
pected to be completed by each particle. Figure 2 shows examples
of four flow visualization algorithms that demonstrate significant
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(a) streamlines (b) streamsurface

(c) FTLE (d) Poincaré

Figure 2: Example flow visualizations from four representative algorithms. Subfigure (a) shows streamlines rendered over a slice of jet
plume data created using the Gerris Flow Solver [Pop03], subfigure (b) shows a streamsurface which is split by turbulence and vortices
that can be observed towards the end [Fis13], subfigure (c) shows attracting (blue) and repelling (red) Lagrangian structures extracted from
ridges of the finite-time Lyapunov exponents (FTLE) of a von Korman vortex street simulation [KPH∗10], and subfigure (d) shows a Poincaré
plot of a species being dissolved in water, where the color of the dots represent the level of dissolution [Lex15].

differences in their workloads and behaviors. Table 1 highlights the
differences between the workloads for the example algorithms.

3. Algorithmic Optimizations

This section surveys algorithmic optimizations for the particle ad-
vection building blocks, i.e., techniques for executing a given work-
load using fewer operations. Some of the building blocks do not
particularly lend themselves to algorithmic optimizations. For ex-
ample, a RK4 solver requires a fixed number of FLOPS, and the
only possible “optimization” would be to use a different solver or
adaptive step sizes. That said, cell location allows room for possi-
ble optimizations. Further, the efficiency of vector field evaluation
can be improved by considering underlying I/O operations. This
section discusses four optimizations that address the algorithmic
challenges. Section 3.1 discusses optimizations to ODE solvers,
Section 3.2 discusses optimizations for cell location, Section 3.3
discusses strategies to improve I/O efficiency, and finally Section
3.4 discusses strategies that involve precomputation.

3.1. ODE Solvers

The fundamental problem underlying particle advection is solv-
ing of ODEs. Many methods are available for this, with different
trade-offs, and a comprehensive review is beyond the scope of this

work. We thus refer the reader to the excellent book by Hairer et
al. [HNW00] for a more thorough overview. Due to the generally
(numerically) benign nature of vector fields used in visualization, a
set of standard schemes is used in many visualization implementa-
tions.

Beyond the Euler and the fourth-order Runge-Kutta (RK4) meth-
ods, techniques with adaptive step size control have proven use-
ful. The primary objective of such methods is to allow precise
control over the local error of the approximation of the solution,
which is achieved by automated selection of the step size (which
in turn controls the local approximation error) in each step. Of-
ten used methods in this context are the Runge-Kutta Fehlberg
(RFK) method [HNW00], the Runge-Kutta Cash-Karp (RKCK)
method [HNW00], and the Dormand-Prince fifth-order scheme
(DOPRI5) [PD81]. Additional significant performance benefits can
be realized if relaxed error requirements allow adaptive step sizing
to perform fewer, larger steps, when compared to fixed-step size
methods. This is the case in many visualization scenarios, where
small-scale errors are reduced in further processing, e.g. in render-
ing or estimation of derived quantities. While the magnitude of such
benefits depends on a variety of factors that are hard to quantify, us-
ing an adaptive step sizing method is generally recommended. Cor-
responding implementations are widely available, e.g. in the VTK
framework [GSBW12, HMCA15].
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Table 1: Parameters for seeding strategy, the number of seeds,
and the number of steps for four representative flow visualization
algorithms. (a) describes the parameters and their classifications,
and (b) presents the typical values for the four algorithms.

Seeding Strategy Sparse Packed Seeding Curves

Number of Seeds Small Medium Large
≤1/1K cells ~1/100 cells ≥1/cell

Number of Steps Small Medium Large
≤100 ~1K ≥10K

(a) Each parameter is classified in three categories.

Algorithm Seeding # Seeds # Steps

Streamlines Sparse/Packed Small Large

Streamsurface Seeding Curves Small Large

FTLE Packed Large Small

Poincarè Packed Medium Large

(b) Typical parameter configurations for four different flow
visualization algorithms. That said, individual flow visualization
algorithms, including the four listed here, can have significant

variation in their parameter configurations across contexts, to the
point of having different values for each category.

For specialized applications, substantial performance benefits
may be obtainable by relying on domain-specific integration
schemes that generally exhibit higher accuracy orders and thus al-
low larger step sizes than general-purpose schemes. For example,
Sanderson et al. [SCT∗10] report substantial speedup from employ-
ing an Adams-type scheme for visualizing high-order fusion simu-
lation data. However, general guidance on the selection of optimal
schemes for domain-specific vector field data remains elusive.

3.2. Cell Locators

Evaluating the velocity field at a specific location in discrete data
requires interpolation. Typically, the entire velocity field domain is
divided into a set of cells of same or different types. The velocity
values given at the vertices of the cell containing the location are
then interpolated using pre-defined schemes, e.g. schemes used in
finite-element literature [Ern21] or in geometric modeling [Far02].
For grids whose cells exhibit an implicit structure, such as uniform
or rectilinear grids, it is easy to identify the relevant cell; however,
for other grid types (cf. e.g. [SML97]), cell location refers to the
problem of quickly locating the cell containing the location. Note
that particle advection does not fundamentally rely on cell location.
For example, given specialized data representations, interpolation
may be performed in a completely different manner [SCT∗10].

Since it is difficult to derive a general approach from such spe-
cial cases, here, we consider the more ubiquitous case of interpola-
tion in piecewise (multi-)linear (un-)structured grids, for which cell
locators are essentially required to achieve acceptable particle ad-
vection performance. Cell locators rely on auxiliary data structures
that partition candidate cells spatially, and are typically constructed

in a pre-processing step. They induce a linear memory overhead in
the number of cells N, while generally reducing the computational
complexity of queries. Hence, many cell location schemes allow
trading off memory overhead for improved performance. A variety
of schemes have been developed for different scenarios. For ex-
ample, limited available memory, e.g. on GPUs, can be addressed
through multi-level data structures.

Note that variants of the cell location problem have been con-
sidered in visualization contexts other than particle advection,
e.g. in volume rendering [Kno06], and for more general prob-
lems [com08]. In the following however, we limit our consideration
of techniques to those described specifically in conjunction with
particle advection. According to Lohner and Ambrosiano [LA90]
the process of cell location can follow one of the following three
approaches.

Using a Cartesian background grid: Cells are spatially subdi-
vided using a superimposed Cartesian grid, storing a list of over-
lapping cells of the original grid per superimposed cell. The super-
imposed cell can be found in constant time, and cell location then
requires traversing all overlapping cells to find the actual containing
cell for the query point. While conceptually simple, this approach
is not ideal if the background grid exhibits large variances in cell
sizes, either incurring excessive storage overhead or decreased per-
formance, depending on the resolution of the superimposed grid.

Using tree structures: Tree-based approaches leverage the prin-
ciple of n-ary search trees to achieve cell location complexity in
O(logN). A basic approach to hierarchical cell location is the use of
octrees [SML97,WvG92]. Each leaf of an octree stores cells whose
bounding box overlaps with the leaf extents. Leaves are subdivided
until either a maximum depth is reached, or the number of over-
lapping cells falls below an upper bound. Cell location proceeds by
traversing the octree from the root and descending through nodes
until a leaf is reached, which then contains all the candidate cells.
Due to the regular nature of octree subdivision, this approach does
not work well with non-uniform vertex distributions, requiring ei-
ther too many levels of subdivision and thus a considerable mem-
ory overhead, or does not shrink the candidate cell range down to
acceptable levels.

Using kd-trees instead of octrees facilitates non-uniform subdi-
vision, at the cost of generally deeper trees and a storage overhead.
An innovative approach was given by Langbein et al. [LST03],
based on a kd-tree storing just the vertices of an unstructured grid.
This allows quick location of a grid vertex close to the query point;
using cell adjacency, ray marching is used to traverse the grid to-
wards the query point using cell walking. Through clever storage
of the cell-vertex incidence information, storage overhead can be
kept reasonable.

Garth and Joy described the cell tree [GJ10], which employs a
kd-tree-like bounding interval hierarchy based on cell bounding
boxes to quickly identify candidate cells. This allows a flexible
trade-off between performance and storage overhead and allows
rapid cell location even for very large unstructured grids with hun-
dreds of millions of cells on commodity hardware and on memory-
limited GPU architectures.

Addressing storage overhead directly, Andrysco and Tric-
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oche [AT10] presented an efficient storage scheme for kd-trees and
octrees, based on compressed sparse row (CSR) storage of tree lev-
els, termed Matrix *Trees. The tree data structure is encoded as a
sparse matrix in CSR representation. This alleviates most of the
memory overhead of kd-trees, and they are able to perform cell
location with reduced time and space complexity when compared
with typical tree data structures.

Overall, non-uniform hierarchical subdivision can accommodate
large meshes with significant variations in cell shapes and sizes
well. While Lohner and Ambrosiano [LA90] note that vectorization
of this approach is challenging as tree-based schemes introduce ad-
ditional indirect addressing, vectorization is still possible on mod-
ern CPU and GPU architectures with good performance [GJ10].

Using successive neighbor searches: For the case of particle in-
tegration, successive interpolation queries exhibit strong coherence
and are typically spatially close. This enables a form of locality
caching: For each interpolation query except the first, the cell that
contained the previous query point is checked first. If it does not
contain the interpolation point, its immediate neighbors are likely
to contain it, potentially reducing the number of cells to check. The
initial interpolation point can be located using a separate scheme,
e.g. as discussed above.

Lohner and Ambrosiano [LA90], as well as Ueng et
al. [USM96], adopted a corresponding successive neighbor search
method to cell location in particle advection for efficient stream-
line, streamribbon, and streamtube construction. They restricted
their work to linear tetrahedral cells for simplification of certain
formulations, requiring a pre-decomposition for general unstruc-
tured grids. Note that when applied to tetrahedral meshes, the suc-
cessive neighbor search approach is sometimes also referred to as
tetrahedral walk [SBK06, BRKE∗11].

Kenwright and Lane [KL96] extended the work by Ueng et al.
by improving the technique to identify the tetrahedron that contains
a particle. Their approach uses fewer floating point operations for
cell location compared to Ueng et al.

Successive neighbor search is also naturally incorporated in the
method of Langbein et al. [LST03]; ray casting with adjacency
walking begins at the previous interpolation point in this case.

3.3. I/O Efficiency

Simulations with very large numbers of cells often output their vec-
tor fields in a block-decomposed fashion, such that each block is
small enough to fit in the memory of a compute node. Flow vi-
sualization algorithms that process block-decomposed data vary in
strategy, although many operate by storing a few of these blocks
in memory at a time, and loading/purging blocks as necessary. This
method is known as out-of-core computation. One of the significant
bottlenecks for flow visualization algorithms while performing out-
of-core computations is the I/O cost. Particle advection is a data-
dependent operation and efficient prefetching to ensure sequential
access to data can be very beneficial in minimizing these I/O costs.
This section discusses the works that aim to improve particle ad-
vection performance by improving the efficiency of I/O operations.

Chen et al. [CXLS11] presented an approach to improve the I/O

efficiency of particle advection for out-of-core computation. Their
approach relies on constructing an access dependency graph (ADG)
based on the flow data. The graph’s nodes represent the data blocks,
and the edges are weighted based on the probability that a particle
travels from one block to another. The information from the graph
is used during runtime to minimize data block misses. Their method
demonstrated speed-ups over the Hilbert curve layout [Hil91].
Chen et al. [CNLS12] extended the previous work to unsteady vec-
tor fields for out-of-core computation of pathlines. Their results
show a performance improvement of 10%-40% compared to the Z-
curve layout [ZZ94, ZZO03]. Further, Chen et al. [CS13] extended
their work by introducing a seed scheduling strategy to be used
alongside the graph-based data layout. They demonstrated an ef-
ficient out-of-core approach for calculating FTLE by minimizing
the number of data blocks loaded for flow map generation. This
involved estimating the total data block accesses given the seed as-
signment for each round and the path information calculated from
the graph model. They used this estimate to optimize the group-
ing of seeds and the order of execution. The performance improve-
ments observed against the Z-curve layout ranged from 8% to 32%.

3.4. Precomputation

Besides optimizing individual particle advection building blocks,
optimization of certain flow visualization workloads can benefit
from a two-stage approach. During the first stage, a set of parti-
cle trajectories can be computed to inform data access patterns,
or serve as a basis for interpolating new trajectories. Notably, as
demonstrated by recent work, these trajectories can be used to train
deep learning models as well. When used to inform data access
patterns, the accuracy of trajectories derived in the second stage is
not impacted by the precomputed trajectories. Whereas, for meth-
ods using precomputed trajectories as a basis for interpolating new
trajectories, the resolution and spatiotemporal sampling strategies
used impact reconstruction accuracy. Thus, depending on the objec-
tives, the number of trajectories precomputed during the first stage
varies.

Precomputed trajectories can inform data access patterns to pro-
vide a strategy to improve I/O efficiency, as mentioned in the con-
text of the study by Chen et al. [CXLS11] in the previous section.
A similar approach was studied by Nouansengsy et al. [NLS11] to
improve load balancing in a distributed memory setting. In these
cases, the first stage is a preprocessing step and a small number of
particles might be advected to form the set of precomputed trajec-
tories. Hong et al. [HZY18] proposed a novel method to learn the
access patterns for data blocks in unsteady flow fields using a deep
learning technique “Large Short Term Memory (LSTM),” as they
are much better for representing higher-order, long-term dependen-
cies. They trained their approach while using a few pathlines as a
means to train the LSTM model by generating a sequence of block
transitions from the initial blocks for the particles. The trained mod-
els are later employed as a block prediction and prefetching mech-
anism. The study showed improved performance in comparison to
not using any prefetching, employing the CPU for particle tracing
and the GPU to execute the model.

For a computationally expensive particle advection workload,
a strategy to accelerate the computation or improve interactivity
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Table 2: Summary of studies considering algorithmic optimizations to particle advection. Studies that do not report quantitative performance
improvements are not mentioned in the table. The asterisk for entries in the data size column represent unstructured grids.

Algorithm Application Intent / Data Time Seed Performance
Evaluation Size Steps Count

Lohner and
Ambrosiano [LA90]

Streamlines
Fast cell location and efficient
vectorization

870∗ - 10K 14X

Ueng et al. [USM96] Streamlines
Streamline computation and cell
location in canonical coordinate space

320K∗ -
100

1.61X
225K∗ - 1.59X
288K∗ - 1.58X

Chen et al. [CXLS11] Streamlines
Improving data layout for better I/O
performance

134M -
4K

0.96 - 1.30X
200M - 0.98 - 1.98X
537M - 0.99 - 1.29X

Chen et al. [CNLS12] Pathlines
Improving data layout for better I/O
performance

25M 48
4K

1.25 - 1.38X
65M 29 1.10 - 1.31X
80M 25 1.19 - 1.36X

Chen et al. [CS13] FTLE
Improving data layout for better I/O
performance

25M 48
- 1.08-1.32X65M 29

80M 25

of unsteady flow visualization is to divide the workload into two
sets. The first set includes basis particle trajectories computed us-
ing high-order numerical integration. The second set includes par-
ticle trajectories that are derived by interpolating the precomputed
basis trajectories from the first set. If new particle trajectories can
be derived, while maintaining accuracy requirements, from the pre-
computed set faster than numerical integration, then the total com-
putational cost of the workload can be reduced.

Hlawatsch et al. [HSW10] introduced a hierarchical scheme to
construct integral curves, streamlines or pathlines, using sets of
precomputed short flow maps. They demonstrated the approach for
the computation of FTLE and line integral convolution. Although
the method introduces reduced accuracy, they demonstrate their ap-
proach can result in an order of magnitude speed up for long inte-
gration times.

To accelerate the computation of streamline workloads, Bleile et
al. [BSGC17] employed block exterior flow maps (BEFMs) pro-
duced using precomputed trajectories. BEFMs, i.e., a mapping of
block-specific particle entry to exit locations, are generated to map
the transport of particles across entire blocks in a single interpo-
lation step. Thus, when a new particle enters a block, instead of
performing an unknown number of numerical integration steps to
traverse the region within the block, based on the mapping infor-
mation provided by precomputed trajectories, the location of the
particle exiting (or terminating within) the block can be directly
interpolated as a single step. Depending on the nature of the work-
load, large speedups can be observed using this strategy. For ex-
ample, Bleile et al. [BSGC17] observed up to 20X speed up for a
small loss of accuracy due to interpolation error.

To support exploratory visualization of time-varying vector
fields, Agranovsky et al. [ACG∗14] proposed usage of in situ pro-
cessing to extract accurate Lagrangian representations. In the con-

text of large-scale vector field data, and subsequent temporally
sparse settings during post hoc analysis, reduced Lagrangian repre-
sentations offer improved accuracy-storage propositions compared
to traditional Eulerian approaches, as well as, supporting accelera-
tion of trajectory computation during post hoc analysis. By seeding
the precomputed trajectories along a uniform grid, structured (uni-
form or rectilinear) grid interpolation performance can be achieved
during post hoc analysis. To further optimize the accuracy of re-
constructed pathlines in settings of temporal sparsity, research has
considered how varying the set of precomputed trajectories can im-
prove performance and accuracy-storage propositions. For exam-
ple, the use of adaptive sampling [BT13], longer precomputed tra-
jectories [SCB19], statistical sampling [RPD19], rank-specific lo-
cal flow maps [SYB∗21], and improved search structures for inter-
polation [COJ15] have been studied. Unstructured sampling strate-
gies, however, could increase the cost when using standard post hoc
interpolation techniques and diminish computational performance
benefits.

More recently, Han et al. [HSJ22] used precomputed particle tra-
jectories to train a deep learning model and replace interpolation
with an inference process to derive new particle trajectories in un-
steady flow. Once trained, the model has a reduced memory foot-
print and can be used to infer several locations along thousands of
pathlines in a few seconds using a GPU. While the study demon-
strates promise using a 2D analytical dataset, the application of
deep learning is yet to scale to accurately analyze large and com-
plex unsteady flow.

3.5. Summary

Table 2 summarizes studies that address algorithmic optimizations
and report performance improvements against a baseline imple-
mentation. The studies mentioned in the table either target opti-
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mizations for cell location or perform better I/O operations. For
ODE solvers and precomputation, reporting performance improve-
ments is difficult because of an associated accuracy trade-off for
better performance. Optimizations to cell locators for unstructured
grid enable significant speed-ups for the workloads. With a combi-
nation of efficient cell location and vectorization, Lohner and Am-
brosiano [LA90] achieved the speed of 14X. However, the other
study [USM96] demonstrated a speed-up of around 1.6X. The
works by Chen et al. [CXLS11, CNLS12, CS13] for efficient I/O
for particle advection all demonstrated speed-ups up to 1.3X.

4. Using Hardware Efficiently

Flow visualization algorithms often share resources with large sim-
ulation codes, or require large amounts of computational resources
of their own depending on the needs of the analysis task. As a con-
sequence, flow visualization algorithms are often required to ex-
ecute on supercomputers. Executing codes on supercomputers is
expensive, and it is necessary that all analysis and visualization
tasks execute with utmost efficiency. Modern supercomputers have
multiple ways to make algorithms execute fast. Typically, super-
computers have thousands of nodes over which computation can
be distributed, and each node has multi-core CPUs alongside mul-
tiple accelerators (e.g., GPUs) for parallelization. As a result, al-
gorithms are expected to make efficient use of the available con-
currency. This section discusses research for particle advection that
addresses efficient usage of available hardware. Section 4.1 dis-
cusses research that aims to improve shared-memory (on-node)
parallelism. Section 4.2 discusses research that aims to improve
distributed memory parallelism. Section 4.3 discusses research that
uses both shared and distributed memory parallelism.

4.1. Shared Memory Parallelism for Particle Advection

Shared memory parallelism refers to using parallel resources on
a single node. Devices that enable shared memory parallelism are
multi- and many-core CPUs and other accelerators, such as GPUs.
In the case of shared memory parallelism, multiple threads of a
program running on different cores of a processor (CPU or a GPU)
share memory, hence the nomenclature. One of the primary rea-
sons for the increase in supercomputers’ compute power can be at-
tributed to the advancements of CPUs and accelerator hardware. In
all, for applications to make cost-effective use of resources, it has
become exceedingly important to use shared memory resources ef-
ficiently. However, making efficient use creates many challenges
for the programmers and users. Two important factors to consider
are 1) efficient use of shared memory concurrency, and 2) perfor-
mance portability. GPUs have become a popular accelerator choice
in the past decade, with most leading supercomputers using GPUs
as accelerators [top20]. Part of this has been the availability of spe-
cialized toolkits, including early efforts like Brook-GPU [BFH∗04]
and popular efforts like Nvidia’s CUDA [Nic07], that enable GPUs
to be used as general purpose computing devices [BBC∗08]. How-
ever, programming applications for efficient execution on a GPU
remains challenging for three main reasons. First, unlike CPUs
which are built for low latency, GPUs are built for high through-
put. CPUs have fewer than a hundred cores, while GPUs have a

few thousand. However, each CPU core is significantly more pow-
erful than a single GPU core. Second, efficient use of the GPU
requires applications to have sufficiently large parallel workloads.
Third, executing a workload on a GPU also has an implicit cost of
data movement between the host and the device, where a host is the
CPU and the DRAM of the system, and the device is the GPU and
its dedicated memory. This cost makes GPUs inefficient for smaller
workloads.

This sub-section discusses particle advection using shared mem-
ory parallelism in two parts. Section 4.1.1 discuss works to op-
timize the performance particle advection on GPUs, while Section
4.1.2 discusses works that use CPUs for improving the performance
of particle advection.

4.1.1. Shared Memory Parallelism on GPUs

Most solutions that consider shared memory optimization focus on
improving performance using GPUs, which are particularly benefi-
cial when advecting numerous particles. Since particles can be ad-
vected independently from one another, each particle can be sched-
uled with a separate thread on the GPU, maximizing the available
concurrency. That said, the studies that have attempted to address
performance issues related to particle advection using GPUs have
employed different ways of utilizing the GPU’s capabilities.

Krüger et al. [KKKW05] presented an approach for interactive
visualization of particles in a steady flow field using a GPU. They
exploited the GPU’s ability to simultaneously perform advection
and render results without moving the data between the CPU and
the GPU. This was done by accessing the texture maps in the GPU’s
vertex units and writing the advection result. Their approach on the
GPU provided interactive rendering at 41 fps (frames per second)
compared to 0.5 fps on the CPU.

Bürger et al. [BSK∗07] extended the particle advection frame-
work described by Krüger et al. for unsteady flow fields. With
their method, unsteady data is streamed to the GPU using a ring-
buffer. While the particles are being advected in some time interval
[ti,ti+1], another host thread is responsible for moving ti+2 from host
memory to device memory. At any time, up to three timesteps of
data are stored on the device. By decoupling the visualization and
data management tasks, particle advection and visualization can oc-
cur without delays due to data loading. Bürger et al. [BKKW08]
further demonstrated the efficacy of their particle tracing frame-
work for visualizing an array of flow features. These features were
gathered using some metric of importance, e.g., FTLE, vorticity,
helicity, etc.

Bürger et al. [BFTW09] also provided a way for interactively
rendering streak surfaces. Using GPUs, the streak surfaces can be
adaptively refined/coarsened while still maintaining interactivity.

We organize the rest of this section into two parts: approaches
for specific applications and cell locators.

4.1.1.1. GPU Approaches for Specific Applications This sec-
tion considers works that use GPUs to solve problems for three dis-
tinct areas: feature detection, uncertainty visualizations, and Line
Integral Convolution (LIC).

Algorithms designed to detect and analyze fluid flow features,
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such as turbulence and critical points, necessitate the processing of
vast numbers of particles, which leads to substantial computational
demands. These algorithms also generate copious amounts of data
output, making it crucial to carefully consider their implementa-
tion on GPUs due to memory limitations. Ghaffari et al. [GGW22]
developed an interactive visualization system for analyzing turbu-
lent flow superstructures, utilizing data compression for efficient
GPU streaming and on-the-fly decompression for particle advec-
tion and feature detection tasks. Günther et al. [GKT16] created
a Monte Carlo-based method for visualizing Lagrangian fields in
fluid flows, demonstrating GPUs speedups of an order of magni-
tude better than its multi-threaded CPU counterpart, and later intro-
duced an enhanced version [RGG20] using GPU shaders achieving
8X their initial research speed.

In many real-world scenarios, the vector field data for particle
advection contains uncertainty. This uncertainty can arise from a
variety of factors, such as simulation models and parameters, en-
semble data, and errors introduced by temporal and/or spatial re-
duction. Moreover, the solvers used for particle advection, along
with their parameters (e.g., tolerance, step size, etc.), can result in
uncertainty regarding the computed particle trajectories. The com-
putational costs of flow visualization in uncertain data can be high,
particularly when extensive sampling is required. In this context,
utilizing GPUs for high-performance solutions can be crucial. Rapp
et al. [RD20] used GPUs to accelerate the visualization of transport
barriers in stochastic flows. Guo et al. [GHP∗16] used GPUs to ac-
celerate the most computationally expensive kernels used for FTLE
and LCS. Guo et al. [GHS∗19] used an approach using both dis-
tributed memory parallelism and hybrid shared memory parallelism
(CPU and GPU co processing) to estimate stochastic flow maps for
analysis of uncertainty in unsteady flows. Preuss et al. [PWK21]
used GPUs to accelerate a discrete probabilistic framework for
dense, textured based flow visualization.

Liu et al. [LM05] presented a GPU-based implementation for un-
steady flow line integral convolution (UFLIC), termed Accelerated
ULID (AUFLIC). Their approach relied on reusing pathline com-
putations such that only one particle is associated with one pixel,
resulting in near real-time visualizations with an order of mag-
nitude speed-up over a typical UFLIC algorithm. More recently,
Ding et al. [DLYC15] proposed an implementation inspired by AU-
FLIC, however, their entire pipeline, including particle manage-
ment, value scattering and depositing, post-processing is CUDA-
accelerated, resulting inreal-time dense visualization of unsteady
flows with high spatialtemporal coherence

4.1.1.2. Cell Locators for GPUs Bußler et al. [BRKE∗11] pre-
sented a GPU-based tetrahedral walk for particle advection. Their
approach for cell location borrowed heavily from the work by
Schiriski et al. [SBK06] discussed in Section 3.2. However, they
could execute the cell location strategy entirely on the GPU and do
not require the CPU for the initial search. Additionally, they eval-
uated different Kd-tree traversal strategies to evaluate the impact
of these strategies on the tetrahedral walk. Their results concluded
the single-pass method, which performs only one pass through the
kd-tree to find the nearest cell vertex (without the guarantee of it
being the nearest) performs the best. The other strategies evaluated
in the study were random restart and backtracking.

Garth and Joy [GJ10] presented an approach for cell location
previously discussed in Section 3.2 that improves construction
times via a heuristic to determine good spatial partitions. The au-
thors presented a use case of advecting a million particles on a
GPU in an unstructured grid with roughly 23 million hexahedral
elements. They obtained good performance on GPUs despite no
GPU-specific optimizations.

4.1.2. Shared Memory Parallelism on CPUs

Lane [Lan95] presented seminal work for parallelizing particle ad-
vection in a shared memory setting using CPUs. They evaluated the
strong scaling of their parallelization on three different systems, us-
ing up to 8 CPUs, and achieved speedups of up to 3.6X.

Hentschel et al. [HGK∗15] presented a solution focused on opti-
mizing particle advection on CPUs. Their solution studied the per-
formance benefits of using SIMD extensions on CPUs to achieve
better performance. This paper addresses the general tendency of
particles to move around in the flow field. This decreases memory
locality of the data required to perform the advection computation.
The study demonstrated the advantage of packaging particles into
spatially local groups where SIMD extensions are able to be more
efficient. The approach resulted in performance improvements of
up to 5.6X over the baseline implementation.

Finally, Pugmire et al. [PYK∗18] provided a platform portable
solution for particle advection using the VTK-m [MSU∗16] library.
The solution builds on data parallel primitives provided by VTK-
m. Their results demonstrated very good platform portability, pro-
viding comparable performance to platform specific solutions on
many-core CPUs and Nvidia GPUs.

4.1.3. Summary

Table 3 presents an overview of published research on shared
memory particle advection. These studies either presented ap-
proaches for interactive flow visualization or optimizations for par-
ticle advection of GPUs using cell locators, with one exception that
demonstrated platform portability.

Figure 3 shows a preliminary result for understanding the char-
acteristics of shared memory parallel particle advection based on
previous findings form Pugmire et al. [PYK∗18] and from newer
experiments designed for the purpose of this report. Some of the
key observations are:

1. Workloads with larger numbers of particles scale better with
added parallelism for the same amount of total work – this is
expected as more particles lead to more concurrency.

2. The studies that used the RK4 integrator generally scaled bet-
ter than the ones that used the Euler integrator – this behavior
can be generalized to other higher order solvers as well as they
perform significantly more arithmetic work per memory access.

3. Experiments with unstructured data scaled better on the CPU
than on the GPU – this can be explained by the nature of mem-
ory accesses required by cell locators and justifies more research
into GPU based cell locators.

Additionally, the plots for the CPUs demonstrate consistency in
terms of scalability when the workload is increased. The plot for
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Table 3: Summary of studies considering optimizations for shared memory particle advection. The asterisk for entries in the data size column
represent unstructured grids.

Algorithm Application Intent / Data Time Seed Performance
Evaluation Size Steps Count

Krüger et
al. [KKKW05]

source-dest
Interactive flow visualization (steady)
using GPUs

- - - 60 - 80X

Bürger et
al. [BSK∗07]

various
Interactive flow visualization
(unsteady)

Bürger et
al. [BKKW08]

various
Interactive flow visualization using
importance metrics

7M -
4M 22
1M 30

Bürger et
al. [BFTW09]

streak surface Interactive streak surface visualization
589K 102

400
4.1M 22

Schirski et
al. [SBK06]

pathlines,
source-dest

Efficient cell location on GPUs
0.8M∗ 5

1M1.1M∗ 101
3.7M∗ 200

Garth et al. [GJ10] source-dest
Efficient cell location on GPUs for
unstructured grids / Comparison
against CPUs

23.6M∗ -
250K

16.5X
1M

Bußler et
al. [BRKE∗11]

source-dest
Efficient cell location on GPUs using
improved tetrahedral walk

4.2M∗ 5
1M115M∗ 101

743M∗ 200

Pugmire et
al. [PYK∗18]

source-dest
Performance Portability / Comparison
with specialized comparators for CPUs
and GPUs

134M

- 10M

0.37 - 0.48X (GPUs)
0.29 - 0.36X (CPUs)

134M
1.56 - 2.24X (GPUs)
0.79 - 0.84X (CPUs)

134M
1.42 - 2.04X (GPUs)
0.51 - 0.59X (CPUs)

the P100 GPUs (Figure 3, top right) suggests that it is not able
to scale larger workloads with the same efficiency as the smaller
workloads considered by Pugmire et al. [PYK∗18] There is also a
tremendous variation in the speedups achieved by two considered
GPUs, where the P100 GPU is able to achieve speedups of over
125X and the K80 GPU achieves speedups of less than 12X. The
performance difference of particle advection between two genera-
tions of GPUs can be significant. Existing studies fail to capture
this relation, which makes it harder to estimate the speedup that
can be realized. Understanding the performance characteristics of
particle advection across different GPUs is a potential avenue for
future work.

4.2. Distributed Memory Parallelism for Particle Advection

Fluid simulations are capable of producing meshes with billions or
even trillions of cells. Analyzing and visualizing meshes this large
to extract useful information demands significant resources, often
close to that of the simulation. In most cases, this means access to
many nodes of a supercomputer to handle the computational and
memory needs of the analysis. Particle advection-based flow vi-
sualization algorithms often execute in a distributed memory set-
ting. The objective of the distribution of work is to perform ef-

ficient computation, memory and I/O operations, and communica-
tion. There are multiple strategies for distributing particle advection
workloads in a distributed memory setting to achieve these objec-
tives. These can be categorized under two main classes:

Parallelize over data: Blocks of partitioned data are distributed
among parallel processes. Each process only advances particles that
occur within the data blocks assigned to it. Particles are commu-
nicated between processes based on their data requirement. This
method aims to reduce the cost of I/O operations, which is more
expensive than the cost of performing computations.

Parallelize over particles: Particles are distributed among parallel
processes where M particles are distributed among N processors.
Most commonly, the particle distribution is done such that each
process is responsible for computing the trajectories of M

N particles.
Each process is responsible for the computation of streamlines for
particles assigned to it. This is done by loading the data blocks
required by the process in order to advect the particles. Particles are
advected until they can no longer continue within the current data
block, in which case another data block is requested and loaded.

Most distributed particle advection solutions are either an opti-
mization of these two classes or a combination of them. The deci-
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Figure 3: Scatter plots for multi-core CPU and GPU speedups
against serial experiments for particle advections workloads. The
X axis represents the magnitude of the workload in terms of the
total number of steps for each of the sub plots and the Y axis repre-
sents the speedup versus the corresponding serial experiment. The
size of the glyphs corresponds to the number of particles used in
the experiment. The data for the plots on the top is collected from
the study by Pugmire et al. [PYK∗18], which used 28 CPU cores
and a Nvidia P100 GPU. The data from the plots on the bottom is
collected from new experiments using VTK-m, which used 12 CPU
cores and a Nvidia K80 GPU.

sion to choose between these two classes depends on multiple fac-
tors, of which Camp et al. [CGC∗11] identify the most prominent
to be:

Data set size: If the data set can fit in memory, it can be easily repli-
cated across nodes and particles can be distributed among nodes,
i.e., the work can be parallelized over particles. However, for large
partitioned data sets, work parallelized over data can be more effi-
cient.

Number of particles: Some flow visualization algorithms require
small numbers of particles integrated over a long duration, while
others require large numbers of particles advanced for a short du-
ration. In the case where fewer particles are needed, parallelization
over data is a better approach as it could potentially reduce I/O
costs. In the case where more particles are needed, parallelization
over particles can help better distribute computational costs.

Distribution of particles: The placement of particles for advection
can potentially cause performance problems. When using paral-
lelization over data, if particles are concentrated within a small re-
gion of the data set, the processes owning the associated data blocks
will be responsible for a lot of computation while most other pro-
cesses remain idle. Parallelization over particles can lead to better
work distribution in such cases.

Data set complexity: The characteristics of the vector field have a
significant influence on the work for the processes, e.g., if a process
owns a data block that contains a sink, most particles will advect
towards it, causing the process to do more work than the others. In
such a case, parallelize over particles will enable better load bal-
ance. On the other hand, when particles switch data blocks often
(e.g., a circular vector field), parallelize over data is better since it
reduces the costs of I/O to load required blocks.

This section describes distributed particle advection works in
two parts. Section 4.2.1 describes the optimizations for paralleliz-
ing distributed-memory particle advection in more depth. Section
4.2.2 summarizes findings from the survey of distributed particle
advection studies.

4.2.1. Parallelization Methods

This section presents distributed particle advection works in three
parts. Section 4.2.1.1 presents works that optimize parallelization
over data. Section 4.2.1.2 presents works that optimize paralleliza-
tion over particles. Section 4.2.1.3 presents works that use a com-
bination of parallelization over data and particles.

Many of the works are implemented using the Message Pass-
ing Interface (MPI) [GLS99], which is the de facto standard for
distributed-memory computations on supercomputers. Some works
are “MPI-only,” i.e., they only incorporate distributed-memory par-
allelism via MPI. Other works are “MPI-hybrid,” i.e., they use both
distributed-memory parallelism via MPI and also shared-memory
parallelism (e.g., OpenMP, CUDA) within a compute node. Also,
note there are two types of hybrid parallelism in this space, with
one referring to what to parallelize over (particles, domains) and
one referring to how to incorporate both distributed- and shared-
memory parallelism. Finally, performance on supercomputers can
vary greatly based on architecture, scale, message size, and other
factors. That said, the MVAPICH project [PSCB21], an implemen-
tation of MPI, reported latency times to be between one microsec-
ond to one hundred microseconds, based on message size [Pan19].
Of course, latency is just one aspect of the overall performance
picture, which also includes marshaling and unmarshaling of mes-
sages, idle time while waiting for a message to be sent, and addi-
tional latencies within a compute node (i.e., CPU to GPU transfers).

4.2.1.1. Parallelization over Data Several solutions have been
proposed to optimize the “Parallelize over data” method described
above in Section 4.2. These solutions aimed to reduce the commu-
nication costs and maintain load balance.

Sujudi and Haimes [SH96] elicited the problems introduced by
decomposing data into smaller blocks that can be used within the
working memory of a single node. They presented important work
in generating streamlines in a distributed memory setting using
the parallelize over data scheme. They used a typical client-server
model where clients perform the work, and the server coordinates
the work. Clients are responsible for the computation of stream-
lines within their sub-domain; if a particle hits the boundary of the
sub-domain, it requests the server to transfer the streamline to the
process that owns the next sub-domain. The server is responsible
for keeping track of client requests and sending streamlines across
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to the clients with the correct sub-domain. No details of the method
used to decompose the data in sub-domains are provided.

Camp et al. [CGC∗11] compared the MPI-only implementation
to the MPI-hybrid implementation of parallelizing over data. They
noticed that the MPI-hybrid version benefits from reduced com-
munication of streamlines across processes and increased through-
put when using multiple cores to advance streamlines within data
blocks. Their results demonstrated performance improvements be-
tween 1.5X-6X in the overall times for the MPI-hybrid version over
the MPI-only version. The parallelize over data scheme is sensitive
to the distribution of particles and complexity of vector field. The
presence of critical points in certain blocks of data can potentially
lead to load imbalances. Several techniques have been developed
to deal with such cases and can be classified into two categories: 1)
works that require knowledge of vector field, and 2) works that do
not require knowledge of vector field.

Knowledge of vector field required: The works classified in this
category acquire knowledge of vector fields by performing a pre-
processing step. Pre-processing allows for either data or particles
to be distributed such that all processes perform the same amount
of computation.

Chen et al. presented a method that employs repartitioning of
the data based on flow direction, flow features, and the number
of particles [CF08]. They performed pre-processing of the vector
field using various statistical and topological methods to enable ef-
fective partitioning. The objective of their work is to produce par-
titions such that the streamlines produced would seldom have to
travel between different data blocks. This enabled them to speed up
the computation of streamlines due to the reduced communication
between processes.

Yu et al. [YWM07] presented another method that relies on pre-
processing the vector field. They treated their spatiotemporal data
as 4D data instead of considering the space and time dimensions
as separate. They performed adaptive refinement of the 4D data
using a higher resolution for regions with flow features and a lower
resolution for others. Later, cells in this adaptive grid were clustered
hierarchically using a binary cluster tree based on the similarity of
cells in a neighborhood. This hierarchical clustering helped them to
partition data that ensured workload balance. It also enabled them
to render pathlines at different levels of abstraction.

Nouanesengsy et al. [NLS11] used pre-processing to estimate
the workload for each data block by advecting an initial set of
particles. The estimates calculated from this step are used to dis-
tribute the work among processes. Their proposed solution main-
tained load balance and improved performance. While the solutions
in this category are better at load balancing, they introduce an addi-
tional step of pre-processing which has its costs. This cost may be
expensive and undesirable if the volume of data is significant.

Knowledge of vector field not required: The works classified in
this category aim to balance load dynamically without any pre-
processing.

Peterka et al. [PRN∗11] performed a study to analyze the effects
of data partitioning on the performance of particle tracing. Their
study compared static round-robin (also known as block-cyclic)

partitioning to dynamic geometric repartitioning. In static round-
robin partitioning, data blocks are distributed among processes in
a cyclic manner instead of a continuous manner. This partitioning
method reduces the probability of assigning one processor a chunk
of the data with a heavier workload (e.g., in the case of seed dense
distribution). In dynamic geometric repartitioning, the data blocks
are repartitioned during runtime depending on their workload. The
algorithm checks the workload of each data block at regular inter-
vals and redistributes the data blocks to assign similar workload
across processes. The comparison of the two partitioning methods
concluded that while static round-robin assignment provided good
load balancing for random dense distribution of particles, it fails
to provide load balancing when data blocks contain critical points.
They also noticed that dynamic repartitioning based on workload
could improve the execution time between 5% to 25%. However,
the costs to perform the repartitioning are restrictive. They suggest
more research needs to focus on using less synchronous communi-
cation and improvements in computational load balancing.

Nouanesengsy et al. [NLL∗12] extended the work by Perterka et
al. to develop a solution for calculating the FTLE for large time-
varying data. The major cost in performing FTLE calculations is
incurred due to particle tracing. Along with parallelize over data,
they also used parallelize over time, which enabled them to create a
pipeline that could advect particles in multiple time intervals in par-
allel. Although their work did not focus on load-balancing among
processes, it presented a novel way to optimize time-varying parti-
cle tracing. Their work solidifies the conclusions about static data
partitioning from the study by Peterka et al. [PRN∗11].

Zhang et al. [ZGH∗17] proposed a method that is better at
achieving dynamic load balancing. Their approach used a new
method for domain decomposition, which they term as the con-
strained K-d tree. Initially, they decompose the data using the K-
d tree approach such that there is no overlap in the partitioned
data. The partitioned data is then expanded to include ghost re-
gions to the extent that it still fits in memory. Later, the overlap-
ping areas between data blocks become regions to place the split-
ting plane to repartition data such that each block gets an equal
number of particles. Their results demonstrated better load balance
was achieved among the processes without the additional costs of
pre-processing and expensive communication. Their results also
demonstrate higher parallel efficiency. However, their work made
two crucial assumptions 1) an equal number of particles in data
blocks might translate to equal work, and 2) the constrained K-d
tree decomposition leads to an even distribution of particles. These
assumptions do not always hold practically.

Zhang [ZGYP18] et al. removed the pre-processing requirement
from Nouanesengsy et al. [NLL∗12] to support dynamic load bal-
ancing using data redistribution. As particles are traced, the amount
of work done in each block are recorded. At regular user-specified
intervals during the computation, this data is used to build a de-
pendency graph of blocks traversed by particles. This dependency
graph can be used to predict the future path of particles and is used
to redistribute the data and particles to achieve better load balance.
Their method improved the overall balance of work but comes at
the cost of using synchronous communication and may require the
movement of large amounts of data.
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Sisneros et al. [SP16] studied the impact of communication gran-
ularity and the use of both synchronous and asynchronous com-
munication. While the performance with respect to communica-
tion granularity is complex, the performance using asynchronous
communication is significantly better than synchronous communi-
cation.

Schwartz et al. [SCP21] compared different machine learning
approaches to formulate an oracle for optimizing particle advec-
tion. The oracle takes workload characteristics (number of parti-
cles, duration of advection, etc.) into consideration and determines
the best execution settings for the algorithm. Their approach con-
sidered two techniques thoroughly, Neural Networks and Random
Forests to optimize the oracle. By using the machine learning ap-
proaches, a maximum improvement of up to 20% was demon-
strated.

Finally, Morozov et al. [MPG∗21] presented an MPI-based ap-
proach for asynchronous communication and termination detection
for parallel algorithms. They demonstrated that particle advection,
which traditionally has been implemented as a bulk-synchronous
parallel pattern, can be expressed as an asynchronous parallel op-
eration. Each task only cares about the local computations for par-
ticles enqueued to it, terminating them when required, or enqueu-
ing them to the other process’s queue. Their approach resulted in
speedups of up to 3.6X compared to the classical implementation.

In conclusion, pre-processing works can achieve load balance
with an additional cost for parallelize over data. This cost increases
for large volumes of data. The overall time for completing par-
ticle advection might not benefit from the additional cost of pre-
processing, especially when the workload is not compute-intensive.
Most solutions that rely on dynamic load balancing suffer from in-
creased communication costs or are affected by the distribution of
particles and the complexity of the vector field. The work proposed
by Zhang et al. [ZGH∗17] is promising but still does not guarantee
optimal load balancing.

4.2.1.2. Parallelize over Particles Previous works have explored
different approaches to optimize the “Parallelize over particles”
method described above in Section 4.2. Since the blocks of data
are loaded whenever requested, the cost of I/O is a dominant fac-
tor in the total time [CPA∗10]. Prefetching of data involves pre-
dicting the next needed data block while continuing to advect par-
ticles in the current block to hide the I/O cost. Most commonly,
predictions are made by observing the I/O access patterns. Rhodes
et al. [RTBS05] used these access patterns as a priori knowledge
for caching and prefetching to improve I/O performance dynam-
ically. Akande et al. [AR13] extended their work to unstructured
grids. The performance of these methods depends on making cor-
rect predictions of the required blocks. One way to improve the
prediction accuracy is by using a graph-based approach to model
the dependencies between data blocks. Some works used a prepro-
cessing step to construct these graphs [CXLS11, CNLS12, CS13].
Guo et al. [GZL∗14] used the access dependencies to produce fine-
grained partitions that could be loaded at runtime for better effi-
ciency of data accesses. Zhang et al. [ZGY16] presented an idea
of higher-order access transitions, which produce a more accurate
prediction of data accesses. They incorporated historical data ac-
cess information to calculate access dependencies.

Since particles assigned to a single process might require ac-
cess to different blocks of data, most of the works using paral-
lelization over particles use a cache to hold multiple data blocks.
The process advects all the particles that occur within the blocks
of data currently present in the cache. When it is no longer possi-
ble to continue computation with the data in the cache, blocks of
data are purged, and new blocks are loaded into the cache. Differ-
ent purging schemes are employed by these methods, among which
“Least-Recently Used,” or LRU is most common. Lu et al. [LSP14]
demonstrated the benefits of using a cache in their work for gener-
ating stream surfaces. They also performed a cache-performance
trade-off study to determine the optimal size of the cache.

Camp et al. [CGC∗11] presented work comparing the MPI only
and MPI-hybrid implementations of parallelizing over particles.
Their objective was to prove the efficacy of using shared memory
parallelism with distributed memory to reduce communication and
I/O costs. They observed 2x-10x improvement in the overall time
for calculation of streamlines while using the MPI-hybrid version.

Along with caching, Camp et al. [CCC∗11] also presented work
that leveraged different memory hierarchies available on modern
supercomputers to improve the performance of particle advection.
The objective of the work is to reduce the cost of I/O operations.
Their work used Solid State Drives (SSDs) and local disks to store
data blocks, where SSDs are used as a cache. Since the cache can
only hold limited amounts of data compared to local disks, blocks
are purged using the LRU method. When required blocks are not
in the cache, the required data is searched in local disks before ac-
cessing the file system. The extended hierarchy allows for a larger
than usual cache, reducing the need to perform expensive I/O oper-
ations.

One trait that makes the parallel computation of integral curves
challenging is the dynamic data dependency. The data required to
compute the curve cannot be determined in advance unless there is
a priori knowledge of the data. However, this information is cru-
cial for optimal load-balanced parallel scheduling. One solution to
this problem is to opt for dynamic scheduling. Two well-studied
techniques for dynamic scheduling are work-stealing and work-
requesting. In both approaches, an idle process acquires work from
a busy process. Popularly, idle processes are referred to as thieves,
and busy processes are referred to as victims. The major distinction
between work-stealing and work requesting is how the thief ac-
quires work from the victim. In work-requesting, the thief requests
work items, and the victim voluntarily shares it. In work-stealing,
the thief directly accesses the victim’s queue for work items with-
out the victim knowing.

A large body of works addresses work-stealing in task-based
parallel systems in general [BL99, DLS∗09, ST19]. In the case of
integral curve calculation, task-based parallelism inspires the par-
allelize over particles scheme. Dinan et al. [DLS∗09] demonstrated
the scalability of the work-stealing approach. Lu et al. [LSP14] pre-
sented a technique for calculating stream surface efficiently using
work-stealing. Their algorithm aimed for the efficient generation of
stream surfaces. The seeding curve for streamlines was divided into
segments, and these segments were assigned to processes as tasks.
In their implementation, each process maintains a queue of seg-
ments. When advancing the streamline segment using the front ad-
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vancing algorithm proposed by Garth et al. [GTS∗04], if a segment
starts to diverge, it is split into two and placed back in the queue.
When a processor requires additional data to advance a segment, it
requests the data from the processes that own the data block. Their
solution demonstrated good load balancing and scalability.

Work stealing has been proven to be efficient in theory and prac-
tice. However, Dinan et al. reported its implementation is compli-
cated.

Muller et al. [MCHG13] presented an approach that used work
requesting for tracing particle trajectories. Their algorithm started
by equally distributing all work items (particles) among processes.
However, they started by assigning all particles to a single process
for performing the load balancing study. Every time an active par-
ticle from the work queue is unable to continue in the currently
cached data, it is placed at the end of the queue. Whenever a thief
tries to request work, the particles from the end of the queue are
provided, reducing the current processes’ need to load the data
block for the particle. The results reported performance improve-
ments between 30% to 60%.

While work-stealing and work requesting methods increase the
communication overhead, the surveyed solutions show an im-
proved overall performance and the majority of the time was spent
in computations.

Binyahib et al. [BPC19] compared the parallelize over particle
strategy to parallelize over data for its in-situ applicability. Their
findings suggest that for workloads where particles are densely
seeded in a certain region of the data, parallelize over particles is a
much better strategy and can result in speedups up to 10X.

While solutions like data prefetching reduce I/O time, they in-
cur additional costs of making predictions of which blocks to read.
Leveraging the memory hierarchy similar to Camp et. al. is a
good strategy, provided proper considerations for vector field, size,
and complexity are made. Apart from I/O costs, load balancing
remains another factor affecting performance adversely. Previous
work stealing and work requesting strategies have demonstrated
good load balance with additional costs of communicating work
items. These costs could potentially be restrictive in the case of
workloads with a large number of particles.

Table 4: Recommendation of parallelization strategy for particle
advection workloads based on features of the problem. This table
appears in the survey by Binyahib [Bin19].

Problem Classification
Parallelization Strategy

Over Data Over Particles

Dataset size Large Small

Number of particles Small Large

Seed Distribution Sparse Dense

Vector Field Complexity No critical No circular
points field

4.2.1.3. Hybrid Particle Advection The works described in this
section combine parallelize over data and parallelize over particles
schemes to achieve optimal load balance. Pugmire et al. [PCG∗09]
introduced an algorithm that uses a supervisor-worker model. The
processes were divided into groups, and each group had a super-
visor process. The supervisor is responsible for maintaining the
load balance between processes as it coordinates the assignment
of work. The algorithm begins with statically partitioning the data.
All processes load data on demand. Whenever a process needs to
load data for advancing its particles, it coordinates with the super-
visor. The supervisor decides whether it is more efficient for the
process to load data or to send its particles to another process. The
method proved to be more efficient in I/O and communication than
the traditional parallelization approaches.

Kendall et al. [KWA∗11] provided a hybrid solution which they
call DStep and works like the MapReduce framework [DG08].
Their algorithm used groups for processes as well and has a super-
visor to coordinate work among different groups. A static round-
robin partitioning strategy is used to assign data blocks to pro-
cesses, similar to Peterka et al. [PRN∗11]. The work of tracking
particles is split among groups where the supervisor process main-
tains a work queue and assigns work to processes in its group. Pro-
cessors within a group can communicate particles among them.
However, particles across groups can only be communicated by
the supervisor processes. The algorithm provided an efficient and
scalable solution for particle tracing and has been used by other
works [GYHZ13, GHS∗14, LGZY16].

Binyahib et al. [BPC21] proposed a new ‘HyLiPoD’ algorithm
for particle advection. Their work was inspired from the finding of
the previous bake-off study comparing different distributed particle
advection strategies [BPYC20]. HyLiPoD is short for Hybrid Life-
line and Parallelize over Data, and the algorithm aims to choose the
best strategy between the Lifeline algorithm [BPNC19] and paral-
lelize over data for distributed particle advection given a certain
workload.

Finally, Xu et al. [XGS∗22] presented an approach that achieved
load balancing using reinforcement learning (RL). They introduced
three novelties in their work for particle advection: a work donation
algorithm, a workload estimation algorithm, and a communication
cost estimation model. The RL-agent is responsible for work do-
nation based on the predicted workloads and the communication
costs for the current state of the system. Based on the costs the RL-
agent either decides to communicate particles or the data blocks to
wherever they might be required for a more evenly balanced load.
The improvements resultant of these contributions over a baseline
algorithm varied between 2X to 36X for the different datasets con-
sidered.

4.2.2. Summary

This section summarizes distributed particle advection in two parts.
First, general take-aways are discussed based on the various factors
discussed in the introduction of this section. Second, observations
from the studies in terms of their particle advection workloads are
presented.

Table 4 provides a simple lookup for a parallelization strategy
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Table 5: Summary of studies considering optimizations for large scale distributed particle advection. The numbers in parenthesis in the
Architecture column represent the total number of cores available on the execution platform. The keys to application: SL - streamlines, PL
- pathlines, SS - stream surface, S-D - source - destination, STRS - streak surface. The keys to seeding strategy: U - uniform, RD - random
distrubution, D - dense, LN - seed line, RK - rakes

Algo. Arch. Procs. Data Time Seed App. Seeding Intent /
size steps count Strategy Evaluation

[YWM07] Intel Xeon 32 644M - 1M SL, -
hierarchical representation, strong
scaling

(8x4) PL
AMD Optron 256 644M 100 1M -
(2048x2)

[CF08] Intel Xeon 32 162M - 700 SL -
data partitioning, strong scaling

(48x2)

[PCG∗09] Cray XT5 (ORNL) 512 512M - 4k, 22K SL U
data loading, data partitioning,
weak scaling

(149K) 512 512M - 10K U
512 512M - 20K U

[PRN∗11] PowerPC-450 16k 8B - 128k SL, RD domain decomposition, dynamic
repartitioning, strong and weak
scaling

(40960x4) 32K 1.2B 32 16k PL RD

[CCC∗11] Intel Xeon - 512M - 2.5K, 10K SL D, Effects of storage hierarchy
Dash (SDSC) - 512M - 2.5K, 10K U

- 512M - 2.5K, 10K

[CGC∗11] Cray XT4 (NERSC) 128 512M - 2.5K, 10K SL D, MPI-hybrid parallelism
9572x4 128 512M - 2.5K, 10K U

128 512M - 1.5K, 6K

[NLS11] PowerPC-450 4K 2B - 256K SL RD workload aware domain
decomposition, strong and weak
scaling

(1024x4) 4K 1.2B - 128K RD

[NLL∗12] PowerPC-450 1k 8M 29 186M FTLE U
pipelined temporal advection,
caching, strong and weak scaling

(40960x4) 1K 25M 48 65.2M U
16k 345M 36 288M U
16K 43.5M 50 62M U

[CCG∗12] Cray XT4 (NERSC) 128 512M - 128 SS RK
comparison of parallelization
algorithms for stream surfaces

(9572x4) 128 512M - 361 RK
128 512M - 128 RK

[MCHG13] AMD Magny-Cours 1K 32M 735 1M SL, U
work requesting load balancing,
strong scaling

(6384x24) PL

[CBP∗14] Nvidia Kepler 8 1B - 8M S-D U
distriburted particle advection over
different hardware architectures
comparison, strong scaling

(1 GPU / Proc)
Intel Xeon 192 1B - 8M

[GZL∗14] Intel Xeon 64 755M 100 - STRS LN
sparse data management, strong
scaling

(8x8) 64 3.75M 24 200 PL, U
Intel Xeon 512 25M 48 - FTLE U
(700x12)

[LSP14] PowerPC A2 1K 25M - 32K SS RK
caching, performance, strong
scaling

(2048x16) 4K 80M - 32K RK /
8K 500M - 32K RK
8K 2B - 64K RK
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Algo. Arch. Procs. Data Time Seed App. Seeding Intent /
size steps count Strategy Evaluation

[ZGY16] Intel Xeon 64 3.75M 24 6250 PL U
data prefetching, strong scaling

(8x8) 64 25M 48 4096 -

[ZGH∗17] PowerPC A2 8K 1B - 128M SL, -
domain decomposition, using K-d
trees, strong and weak scaling

(2048x16) 8K 3.8M 24 8M S-D, -
8K 25M 48 24M FTLE U

[HZY18] Intel Xeon (48)
+ Nvidia
M6000 (8)

48 25M 48 500K PL -
“LSTM” for block prediction and
prefetching

48 3.8M 24 87.5K PL -
48 83M 28 800K PL -

[BPC19] Intel Xeon 512 67M - 1M S-D D,
in situ parallelization over particles

(2388x32) U

[BPYC20] Intel Xeon 1K 34B - 343M S-D D, comparison of parallelization
algorithms(2388x32) (8K cores) - U

[BPC21] Intel Xeon 1K 34B - 343M S-D D, novel hybrid parallelization
algorithm(2388x32) (8K cores) - U

[SCP21] Nvidia V100
(64)

64 - - - S-D - Neural Networks and Random
Forests for execution parameters

[MPG∗21] Intel Xeon
(4392 x 64)

8K 134M - 536M S-D U novel algorithm for asynchronous
communication and termination
detection

[XGS∗22]
Intel Xeon
(664x32)

1K 134M - 2M SL U
“Reinforcement Learning” for
efficient load balancing, work
estimation, and communication

1K 8.7M 36 2.7M PL D
1K 25M 48 25M FTLE U

Intel Xeon
(4392x64)

16K 69B - 134.2M SL U

Table 6: Number of particles used per one thousand cells of data
for different applications from works described in Table 5.

Application Particles /1k Cells

Souce-destination 72222.20

FTLE 5013.02

Streamlines 9.89

Pathlines 6.93

Stream surface 0.25

based on various workload factors discussed earlier in the section.
These strategies were presented in a survey by Binyahib [Bin19].
Parallelize over data is best suited when the data set volume is
large. However, in the presence of flow features like critical points
and vortices, parallelize over data can suffer from load imbalance.
While several methods have been proposed for data repartitioning

for load-balanced computation, these works incur the cost of pre-
processing and redistributing data. Parallelize over particles is best
suited when the number of particles is large. It can suffer from
load imbalance due to inconsistencies in the computational work
for different particles. Some works aim to address the problem of
load imbalance but have added costs of pre-processing, commu-
nication, and I/O. Hybrid solutions demonstrate better scalability
and efficiency compared to the traditional methods. However, im-
plementing these methods is very complicated and typically has
some added cost of communication and I/O.

Figure 4 shows a comparison of scaling behaviors of four
parallelization algorithms, extracted from the study presented by
Binyahib et al. [BPYC20]. These algorithms include parallelize
over particles, parallelize over data, Lifeline Scheduling Method
(LSM, an extension of parallelize over particles) [BPNC19], and
supervisor-worker (a hybrid parallel algorithm). The figure presents
a weak scaling of these algorithms. The top row plots show the
throughput of each algorithm in terms of the number of particle ad-
vection steps completed by each MPI rank per second. For exam-
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Figure 4: Weak scaling plots comparing the performance of
distributed-memory particle advection algorithms. The plots are
presented in a 2x2 arrangement, with the columns organized by
workload and the rows organized by efficiency measure. For each
of the four plots, the X-Axis is the number of MPI ranks, the Y-
Axis is an efficiency measure, and the algorithms are represented
as colored dots or lines. With respect to workload, the left column
represents a “large” workload (1 particle per 100 cells, advancing
for 10K steps) while the right column represents a “small” work-
load (1 particle per 10K cells, advancing for 1K steps). With re-
spect to efficiency measure, the top row shows the number of steps
per rank per second (measured in millions of steps), while the bot-
tom row shows parallel efficiency (the dropoff in steps per second
relative to the lowest number of MPI ranks). These plots show that
when going from 16 MPI ranks to 1024 MPI ranks, the parallel effi-
ciency drops by a factor of approximately two for large workloads
and by a factor of approximately eight for small workloads. Fur-
ther, some algorithms achieve better performance than others, in
particular the Lifeline Scheduling Method. The data for these plots
are derived from a study by Binyahib et al. [BPYC20].

ple, for a large workload and 1024 MPI ranks, the LSM algorithm
(shown in purple) performed about 10 million advection steps per
second on each rank. The bottom row plots show the efficiency of
weak scaling achieved by the different algorithms. The efficiency
of the algorithms drop significantly as the concurrency and work-
load are increased. The drop is more significant in smaller work-
loads than in larger workloads. The only study which compared the
scaling behaviors of the most widely used parallelization algorithm
used weak scaling. In order to be able to quantify the speed-ups re-
sulting from added distributed parallelism for a given workload, a
strong scaling study is necessary. The strong scaling study for these
algorithms is a potential avenue for future research.

Table 5 summarizes large-scale parallel particle advection-based
flow visualization studies in terms of the distributed executions and
the magnitudes of the workloads. The platforms used by the con-
sidered studies in this section span from desktop computers to large
supercomputers. The work with the least amount of processes and
workload in this survey is by Chen et al. [CF08], which used only
32 processes to produce 700 streamlines. The work with the largest
number of processes was by Nouanesengsy et al. [NLL∗12], which
used 16 thousand processes for FTLE calculation. However, the
work with the most workload was by Binyahib et al. [BPYC20],
which used 343 million particles for advection in data with 34 bil-
lion cells.

Table 6 summarizes the number of particles used in proportion
to the size of the data used in the works included in Table 5. Stream
surface generation is the application that required the least amount
of particles. A significant part of the cost of generating stream
surfaces comes from triangulating the surfaces from the advected
streamlines. These streamlines cannot be numerous as they may
lead to issues like occlusion. Source-destination queries use the
most particles in proportion to the data size. All other applications
need to store a lot of information in addition to the final location
of the particle — streamlines and pathlines need to save intermedi-
ate locations for representing the trajectories, stream surfaces need
the triangulated surface for rendering, and FTLE analysis needs to
generate an additional scalar field. Source-destination analysis has
no such costs and can instead use the savings in storage and com-
putation to incorporate more particles.

4.3. Hybrid Parallelism for Particle Advection

Hybrid parallelism refers to a combination of using shared-
and distributed-memory parallel techniques. For these works,
the distributed-memory elements managed dividing work among
nodes, and the shared-memory parallelism approach was provid-
ing a “pool” of cores that could advect particles quickly. Camp et
al. [CGC∗11] provided algorithms using multi-core processors for
1) parallelization over particles, and 2) parallelize over data blocks.
For parallelization over particles, a total of 2N threads are allo-
cated, N worker threads, and N I/O threads. Each worker thread is
responsible for performing particle advection and each I/O thread
is responsible for managing the cache of data blocks and to sup-
port the worker threads. For parallelization over data blocks, N −1
worker threads are used, which access the cache of data blocks di-
rectly, and an additional thread was used for communicating results
with other processes.

Camp et al. [CKP∗13] also extended their previous work to
GPUs. One of their objectives was to compare particle advection
performance on the GPU against CPU under different workloads.
They varied the datasets, the number of particles, and the duration
of advection for their experiments. Their findings suggest that in
the case where the workloads have fewer particles or longer dura-
tions, the CPU performed better. However, in most other cases, the
GPU was able to outperform the CPU.

Childs et al. [CBP∗14] explored particle advection performance
across various GPUs (counts and device) and CPUs (processors and
concurrency). Their objective was to explore the relationship be-
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Figure 5: A proposed cost model-based workflow for deciding on
which optimizations to incorporate for a flow visualization algo-
rithm.

tween parallel device choice and the execution time for particle ad-
vection. Two of their key findings were: 1) For CPUs, adding more
cores benefited workloads that execute for medium to longer du-
ration, 2) CPUs with many cores were as performant as GPUs and
often outperformed GPUs for small workloads with short execution
times. 3) With higher particle densities (503 or more) GPUs can be
saturated and result in performance improvements proportional to
their FLOP rates, faster GPUs can provide better speedups.

Jiang et al. [JEHG14] studied shared memory multi-threaded
generation of streamlines with a locally attached NVRAM. Their
particular area of interest was in understanding data movement
strategies that will keep the threads busy performing particle ad-
vection. They used two data management strategies. The first used
explicit I/O to access data. The second was a kernel-managed im-
plicit I/O method that used memory-mapping to provide access to
data. Their study indicated that thread over-subscription of stream-
line tasks is an effective method for hiding I/O latency, which is a
bottleneck for particle advection.

Finally, Liao et al. [LMKK18] presented a hybrid-parallel imple-
mentation of 3D Line Integral Convolutions (LIC). Their technique
involved parallelizing ray casting operations using multi-threading
with OpenMP. During the process, LIC values are sampled seri-
ally as voxel intensity for each ray, and each sample involves seed-
ing a particle to trace an integral field line and convolve noise
values. They reported better strong scaling for both shared- and
distributed-memory parallelism for thier LIC implementation com-
pared to streamline generation.

5. Conclusion and Future Work

This state-of-the-report has considered optimizing particle advec-
tion performance, surveying existing approaches for algorithmic
optimizations and parallelism. Looking ahead to future work, we
feel this STAR has illuminated three types of gaps in the area of
particle advection performance.

The first type of gap involves the lack of holistic studies to in-
form behavior across diverse workloads. Adaptive step sizing, since

its focus is more on accuracy than performance, can lead to highly
varying speedups. Understanding when speedups occur and their
magnitude would be very helpful for practitioners when deciding
whether to include this approach. Similarly, the expected speedup
for a GPU is highly varied based on workload and GPU architec-
ture. While this survey was able to synthesize results from a recent
study [PYK∗18], significantly more detail would be useful.

The second type of gap covers possible optimizations that have
not yet been pursued. All of the hardware efficiency works in this
survey involved parallelism, yet there are still additional hardware
optimizations available. In the ray tracing community — similar to
particle advection in that rays move through a volume in a data-
dependent manner — packet tracing, where rays on similar trajec-
tories are traced together, has led to significant speedups. Further,
there can be significant improvement from complex schemes. For
example, Benthin et al. [BWW∗12] employed a hybrid approach
that generates and traces rays in packets and then automatically
switches to tracing rays individually when they diverge. This hybrid
algorithm outperforms conventional packet tracers by up to 2X. A
related point that needs further exploration is the impact of synchro-
nization and locking of shared memory on GPUs. Synchronization
allows for better coordination, for example, when tracing coherent
rays through a volume. Understanding the impact on particle advec-
tion is an area that needs further work. Finally, there are additional
types of optimizations. Taking another example from ray tracing,
Morrical et al. [MWUP20] presented a method that improved the
performance of direct unstructured mesh point location [SC20] by
using the Nvidia RTX GPU. Their approach re-implemented the
point location problem as a ray tracing problem, which enabled
tracing the points using the hardware. Their results showed equal
or better performance compared to state-of-the-art solutions and
could provide inspiration for improved cell locators on GPUs for
particle advection.

The third type of gap is in cost modeling. One benefit for cost
modeling would be using prediction to adapt workloads to fit avail-
able runtime. A second (perhaps more powerful) benefit would be
to enable a workflow for decision-making. This workflow is shown
via a flowchart in Figure 5, and would operate in three steps. In the
first step, the desired workload would be analyzed to see how many
operations need to be performed. In the second step, the analysis
from the first step would be used to estimate the execution time
costs to execute the algorithm. In the third step, the estimated costs
from the second step would be compared to user requirements. If
the estimated costs are within the user’s budget, then no optimiza-
tions are necessary and the workload can be executed as is. If not,
then candidate optimizations should be considered and the work-
flow should be repeated with candidate optimizations until the de-
sired runtime is predicted. Realizing such a cost model, however,
could be quite challenging, including I/O, precomputation, parallel
speedups, and more.
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