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Abstract
Understanding the behavior of deep reinforcement learning (RL) agents is a crucial requirement throughout their development
and deployment. Existing work has addressed the identification of observable behavioral patterns in state sequences or analysis
of isolated internal representations, however the overall decision-making of deep-learning RL agents remains opaque. To
tackle this, we present VISITOR, a visual analytics system enabling the analysis of entire state sequences, the diagnosis of
singular predictions, and the comparison between agents. The system specifically addresses the requirements of reinforcement
learning experts by enabling a domain-agnostic progressive analysis and annotation workflow. A sequence embedding view
enables the multiscale analysis of state sequences, utilizing custom embedding techniques for a stable spatialization of the
observations and internal states. This view contains semantically enriched state sequences based on generated labels and manual
annotation. We provide multiple layers: (1) a state space embedding, highlighting different groups of states inside the state-action
sequences, (2) a trajectory view, emphasizing decision points, (3) a network activation mapping, visualizing the relationship
between observations and network activations, (4) a transition embedding, enabling the analysis of state-to-state transitions.
The embedding view is accompanied by an interactive reward view that captures the temporal development of metrics, which
can be linked directly to states in the embedding. Lastly, a model list allows for the quick comparison of models across multiple
metrics. An automated guided tour can be generated based on the user-generated annotations. Our evaluation with six RL experts
confirms the effectiveness in identifying states of interest, comparing the quality of policies, and reasoning about the internal
decision-making processes. The tool supports experts for debugging of models, understanding of their limitations, and provides a
way to communicate complex properties of RL agents to other users.

CCS Concepts
• Human-centered computing → Visual analytics; • Computing methodologies → Reinforcement learning;

1. Extended Related Work: Explainable AI for Reinforcement
Learning

Due to space constraints, we have omitted some additional related
research that had a direct impact on our work. Beyond the research
area of visual analytics, there is additional research, in particular in
explainable AI, which also inspired part of this work.

Projection-Based Explanations – In a first contribution, Zahavi
et al. [ZZM16] utilize a t-SNE [vdMH08] projection of the neural
activations of states encountered by agents. The clustering of states
is performed based on hand-crafted features, e.g., the position of in-
game elements of Atari games. Additionally, this approach uses a
skill-discovery algorithm to highlight state transitions between high-
level clusters. Compared to their approach, we utilize projections
that preserve the global structure, facilitating the tracing of state
sequences. This allows, e.g., the comparative analytics between
multiple agents. Furthermore, our approach requires no manual
feature extraction but instead allows simple annotations in the tool.

Attribution-Based Explanations – Greydanus et al. [GKDF18]
and Shie et al. [SHS∗20] propose methods that probe the effect of

input perturbations on action selections, i.e., they determine which
input regions have the strongest effect on decision-making, gener-
ally called attribution methods. These techniques are related to ex-
isting interpretability methods for supervised learning, which use
masking or perturbations and probe their effect on model output,
such as LIME [RSG16]. Attribution maps are often integrated into
existing frameworks due to their simplicity, both for implementation
and interpretation by users [ZZM16, WGSY19]. However, the reli-
ability of these methods is often unclear [AGM∗18], and multiple
interviewed experts raised concerns about their use. We, therefore,
decided to use them at selected steps.

Sample-Based Explanations – Sequeira et al. [SG20] present a
general framework to extract steps in the training/testing phase based
on a conceived interestingness measure, with the goal to explain
key behaviors in a condensed form. We draw on the basic idea by
integrating measures of interestingness and leading users to potential
behaviors based on both automated analysis and visual inspection.
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Figure 1: The previous iteration of the main interface design. In the state-sequence embedding view [E], comparison of models was enabled
by a split view S. In the new version, we opted to visualize all trajectories in the same view, but improved filtering, abstraction, and visual
differentiation. Compared to the version presented in the main paper, the model list was missing. Instead, space was taken up by the detail view,
which is no more compact in the updated design. The previous version did not provide comparable functionality in terms of state-sequence
abstractions and annotations, which limited the utility of the state-action sequence embedding view.

2. Previous Design Iterations

Fig. 1 shows a previous design iteration of the tool. While core
elements of the application were present, e.g., the linked state se-
quence embedding and temporal reward views, there were several
omissions: Connected state sequences were used, however, visual
abstractions were more limited: While hierarchical clustering was
implemented, it required manual user input to choose the number
of clusters, and analysts did not find it fully useful. We decided to
build on this by creating four views on the same underlying data
which we presented in the main paper. Furthermore, we added or
changed the following additional designs:

1. Right Pannel: In the old version, the right panel of the application
was occupied by an action probability view and an environment
detail view, showing summary statistics. While this was relevant
information, used extensively by the experts, it took up a large
amount of screen space. In the new version, we significantly
miniaturized the detail view by putting the rendering in the top-
right corner of the sequence embedding view, with details on
demand.

2. The comparison of different models was a major goal for the
application. However, in the previous version, agent comparison
was not supported sufficiently. To overcome this issue, we added
a model list in the right panel of the application. The model
list allows for a quick comparison between models based on

important metrics such as average reward, episode length, or
action entropy, i.e., how much an agent explores.

3. We merged the checkpoint controls with the model list, simpli-
fying the user interface.

4. We added multiple ways to annotate the state space with persis-
tent labels, which enables saving, presenting, and exporting the
generated knowledge.

3. Details on the embedding and 2D projections

Ensuring suitable 2D projection is crucial as it is the centerpiece of
the application. Therefore, as mentioned in the main paper, consid-
erable effort was necessary to ensure that the projection algorithms
were able to process the state sequence data. Here, we want to give
important implementation details, which aim to support future work.

3.1. Optimizing Unsupervised State Sequence Embedding

To represent trajectory and policy space in a general and scalable
way, we rely on embeddings. We have experimented with different
methods to further optimize the state sequence embedding to RL
specifics.

Basic Embeddings – We choose UMAP [MHM18] as the basis
for a dimensionality-reduction algorithm. We investigated both raw
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observations, i.e., the input to the neural network, and the output of
the last layer of the used neural feature extractor to compute two-
dimensional embeddings of high-dimensional input observations.
Feature extractors are part of deep learning architectures to encode,
e.g., images, to a policy. The latent feature vector does not have to
be a specific shape or structure, as the computation of embedding
relies only on similarity.

Action-Angle Loss – As an additional element contributing to
the state sequence embeddings, we experimented with encoding ac-
tions in a globally consistent way. The performed action that leads
from one state to the next one is encoded as the angle between the
two sequential states. The action-angle loss is defined either as a cat-
egorical action distribution or a one-dimensional continuous action.
An action is mapped onto a distinct angle, e.g., 4 available actions
would be mapped onto [0◦,90◦,180◦,270◦]. An auxiliary loss is
added to the cost function of the final embedding training step of
ParametricUMAP. The original cost function for ParametricUMAP
by Sainsburg et al. [SMG20]:

CUMAP = ∑
i ̸= j

pi j log
(

pi j

qi j

)
+(1− pi j) log

(
1− pi j

1−qi j

)
Hence, the adapted cost function incorporating the action-angle loss
is:

CUMAP+Angle =CUMAP +β
∥∥θ̂at −θst+1,st

∥∥
with θst+1,st = atan2(yst+1 − yst ,xst+1 − xst ). Here x and y repre-
sent the positions of the respective states in the embedding space.∥∥θ̂at −θst+1,st

∥∥ represents the real distance between angles, i.e., an
angle of 0.05 and 2π− 0.05 is very similar. A weight factor β de-
termines the trade-off between the original optimization objective
and the action-angle loss. We have generally achieved good results
with a β-weight of 0.1. We have seen, that applying the action-angle
auxiliary loss leads to very consistent embedding between different
runs, in particular when the distribution of actions is similar. On the
flip side, when only a small number of actions is used, the embed-
ding can get skewed in a particular direction. We plan to further de-
velop and evaluate UMAP embeddings with auxiliary action-angle
losses as a general approach for the visualization of state-action se-
quences in future work.

Including Temporal Information – A second way of introducing
RL-specific information is to concatenate the episode step onto the
embedding input vector. In Figure 2, we present the effect of this
episode step concatenation with different weighting factors. Besides
the implicit temporal weighting, our tool also allows plotting a one-
dimensional UMAP embedding, with the time step being on the
vertical axis.

Stable Embeddings for Model Comparison – As described, one
main development goal was to enable comparison between agents
and/or checkpoints. E.g., we want the sequence embedding to be
stable over training time to show the change in visited state distribu-
tion, i.e., we want the same embedding position for a visited state
at any time during training. The same goes for two or more differ-
ent models. This is achieved by using a common, fixed embedding
function for any possible state. For low-dimensional observations
(e.g., kinematics vectors, etc.), we can rely on the raw features as
input to UMAP. For high-dimensional observations like images, we

apply a re-projection of observations via the feature extractor of
the best available model (which should provide wide coverage of
the state space) to extract the latent features for ParametricUMAP.
While the usage of a single neural feature extractor introduces a bias
in terms of similarity, we assume the latent features to be informa-
tive in terms of embedding position. Furthermore, the trained fea-
ture extractor is already available as a result of the RL training. To
achieve a non-biased embedding of high-dimensional features, we
may use an auto-encoder-style neural network trained from scratch.
To still faithfully represent model-specific internal representations,
we found the split view very effective: Displaying, e.g., the common
projection of observations on the left, and the individual projections
of latent features on the right. We often can identify meaningful di-
mensions in projections of latent features. In particular, we found
that the value of a state is often implicitly modeled by the neural net-
work, and is therefore encoded in the latent features. We highlight
this observation in Figure 3.

4. Implementation Details

We implement VISITOR as a stand-alone web application based
on React and d3.js. To support the rendering of large state spaces,
we used the regl-scatterplot [Lek] library, with the default render
and additional elements being implemented with d3 and canvas. We
tightly integrate the application with open-source frameworks for
reinforcement learning (StableBaselines3 [RHE∗19]) and imitation
learning (Imitation [WTGE20]), widely used throughout the RL re-
search community. Furthermore, more generic experiment tracking
tools like Tensorboard are also integrated as separate tabs. At any
point, recorded episodes, as well as computed intermediate values
and embeddings can be saved and reused for future use. In particu-
lar, the annotated state sequences can be saved and reloaded, which
enables sharing results, including annotations.

To fully support iterative model development, including retrain-
ing of models, VISITOR is integrated into a multi-page web appli-
cation that supports the entire development and evaluation workflow
(available as open-source).

5. Detailed Expert Study Results

In the following, we want to give some additional details of the
expert study, including the full distribution of scores, as well as a
selected set of verbose feedback.

5.1. Detailed Responses

Question: How do you rate the ease of use of the tool?
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Figure 2: The tool allows visualizing the same state sequence embedding with a different weighting of the temporal component: (a) No weight
on the temporal component (b) The step-index inside an episode is concatenated to the data vector, but its magnitude is scaled to the maximum
value in the data, (c) 1D UMAP embedding with the step on the x-axis, and state similarity on the y-axis, (d) the data vector is not scaled
which leads to the step number being the dominant component determining step similarity.

Question: How do you rate the completeness of the tool?
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Question: How do you rate the Effectiveness of the tool?
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Question: How do you rate the Frustration you feel while
using the tool?
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Question: How do you rate your Mental Demand while using
the tool?
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Figure 3: The tool allows visualizing the same state sequence embedding with a different weighting of the temporal component: (a) No weight
on the temporal component (b) The step-index inside an episode is concatenated to the data vector, but its magnitude is scaled to the maximum
value in the data, (c) 1D UMAP embedding with the step on the x-axis, and state similarity on the y-axis, (d) the data vector is not scaled
which leads to the step number being the dominant component determining step similarity.

5.2. Selected Responses of participants

Question: Would you consider this tool useful for analyz-
ing/training RL agents? For which tasks would you consider it
to be useful? Answers:

1. Yes, specifically for tasks that do not have an easy visualization

2. Yes, it would be useful for any kind of task that includes compli-
cated environments and actions

3. Yes, for visualization, potentially debugging

Question: What did you like most about the tool?

1. Seeing which events lead to reward spikes. Also seeing the trend
in reward over time

2. Different views, annotate tool/clustering

3. Reward View, Action distribution diagram

Question: What is still missing in your opinion? Here, we focus
on suggestions that were given after the second expert study, as most
feedback after the first expert study was already integrated into the
second prototype:

1. It’s not completely clear how the projection onto 2D space is be-
ing done; including the metrics that are used to do this projection
would be useful (or allowing the user to change these metrics).
Also, allowing the user to change the speed of playback or use
the arrow keys would be useful. (Authors Note: The feature to
change projection settings is already available in the application)

2. Better description/guidelines for some of the embedding views

3. (The) current state seems to be complete for me

6. Additional Screenshots and Results

Here, we provide a small number of additional screenshots that
showcase some of the functionalities:
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Figure 4: The four available layer options for the state sequence embedding side by side: The State space shows abstracted information, in
this case, the value estimate of the RL algorithm. The state has been annotated which is visible in the embedding visualization, the decision
point view only shows a subset of relevant trajectories and states, and the activation mapping view shows the relationship between highlighted
observations and activations, and finally, the transition embedding is an alternative visualization, which visually connects state-to-state
transitions to respective states.

Figure 5: State Space with a different color scale, here state entropy.

Figure 6: Decision Point view for a non-branching trajectory. Small
segments, e.g., loops, are abstracted.

Figure 7: Mapping between observation states and latent observa-
tions. Parallel connection lines indicate similar mapping to the state
space. Diverging directions indicate similar states mapped, e.g., to
different parts of the state space.

Figure 8: Transition embedding with a larger set of highlighted
states. Again, lines that deviate from the parallel pattern are visible
and can indicate states that can be further investigated.
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