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1. Additional Color Images

This document provides supplementary material to our pa-
per [ZWMW23]. We present several high-resolution color images
that would not fit into the paper due to space limitations. We use
presentations similar to Fig. 1 from the paper to convey the spatial
structure of the data. Fig. 1 shows the NASA Exajet data set from
the front; Fig. 2 shows Exajet from a rear view. The structures near
the wing and fuselage are finely tessellated with tiny dual cells.
Fig. 3 shows the LANL meteor impact data set; note the finely tes-
sellated ocean surface. We use a clip plane to reveal and further
convey the structure in Fig. 4. Fig. 5 shows the NASA Landing
Gear, again with a visualization inspired by Fig. 1 from the paper.
The data set suffers from the “teapot in a stadium” problem, as can
be seen in Fig. 6.

2. Additional Evaluation

In the paper we mention that we use gridlets of size 83 cells that
store 93 voxels. Fig. 7 presents an evaluation of gridlet size vs.
memory consumption, both manually computed and measured with
nvidia-smi. Smaller gridlets have more ghost cells as scalars
at gridlet boundaries are replicated; bigger gridlets contain more
empty cells. Bigger gridlets also result in a more shallow BVH; we
still observed negative returns in both memory as well as rendering
performance when scaling beyond gridlet sizes of 83.
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Figure 7: Gridlet size vs. memory and rendering performance. We
use a gridlet size of 83 cells (93 scalars); gridlet sizes beyond that
show negative returns both in memory consumption (“data”, man-
ually computed and “final”, measured with nvidia-smi) and in
rendering performance (in frames/second, FPS).

Note that the differences in frames/second are still subtle: always

approximately in the range of 7-8 FPS for the TAC Cloud, and 4.5-
5 FPS for LANL Impact.

We use a bilinear face test for boundary stitching elements. For
that we ported the implementation from OpenVKL [Int] for pyra-
mids, wedges, and hexes. We use ten Newton iterations to refine the
result. In Fig. 8 we present a visual comparison, including differ-
ence images and contrast-enhanced images to highlight the subtle
differences.

3. Code Listings

We provide code snippets in C++ pseudo code that represent gridlet
construction (Algorithm 1) Figs. 9 and 10. This implementation as-
sumes that a hashmap is used to represent the macrocells of the
virtual grid, i.e., macrocells that are (and stay) empty are never cre-
ated in memory. Hashmaps are not necessarily the most sensible
choice to use when focusing on performance; however, they allow
for a very simple implementation of Algorithm 1. In Fig. 11 we
provide CUDA pseudo code to sample the gridlet element type in
the shader or ray tracing program.
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Figure 1: Exajet front view. Top: shaded (top-right) and voxels+stitching elements (bottom-left). Bottom: gridlets colored by primitive ID.

Figure 2: Exajet back view. Top: shaded (top-right) and voxels+stitching elements (bottom-left). Bottom: gridlets colored by primitive ID.
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Figure 3: LANL impact. Left: shaded (top-right) and voxels+stitching elements (bottom-left). Right: gridlets colored by primitive ID.

Figure 4: LANL impact. Left: shaded (top-right) and voxels+stitching elements (bottom-left). Right: gridlets colored by primitive ID. We use
a clip plane to reveal the inner structure of the ocean and plume.
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Figure 5: NASA Landing Gear. Left: shaded (top-right) and voxels+stitching elements (bottom-left). Right: gridlets colored by primitive ID.

Figure 6: NASA Landing Gear, zoomed out. Left: showing gridlets colored by primitive ID. Right: same, but with a different transfer function.
The gear itself is seen at a distance. This data set suffers from the “teapot in a stadium” problem.
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(a) (b) (c)

(d) (e) (f)

Figure 8: We use sampling tests that model twisted stitching elements (a) with bilinear faces (b). Element tests that approximate that with
planar faces exhibit subtle artifacts (c). In (d) we show a difference image generated with FLIP [ANA∗20]. (e) shows a contrast-enhanced
region of interest of (b). (f) shows a contrast-enhanced region of interest of (c).
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1 // static macrocell size
2 const static int3 g_mcSize{16,16,16};
3

4 // compute macrocell ID from voxel
5 int3 mcID(Voxel voxel) {
6 return voxel.lower/g_mcSize;
7 }

Figure 9: Mapping voxel coordinates to macrocell IDs.

1 void makeGrids(int level) {
2 // map from voxel corners (int3)
3 // to macrocells (3D box, integer coordinates)
4 map<int3,box3i> macrocells;
5

6 // macrocells are invalid initially; lazily
7 // "activate" only when cubes overlap
8 for (auto cube : cubes[level]) {
9 Voxel vox(cube,level);

10 macrocells[mcID(vox)].extend(cube.bounds());
11 }
12

13 // Iterate over all *active* macrocells;
14 // these become "gridlets"
15 for (auto mc : macrocells) {
16 int3 numVoxels = mc.second.size();
17 // gridlets store data at the cell corners:
18 int numScalars = (numVoxels.x+1)
19 * (numVoxels.y+1)
20 * (numVoxels.z+1);
21

22 Gridlet gridlet = {
23 .lower = mc.second.lower,
24 .level = level,
25 .numScalars = numScalars,
26 .scalarIDs = int[numScalars]
27 };
28

29 // Add to gridlet list
30 g_gridlets[level].add(gridlet);
31 }
32 }

Figure 10: Algorithm to cluster voxels to gridlets using a virtual
uniform grid of macrocells.

1 bool sample(Gridlet g, float3 pos, float *value){
2 box3f bounds = g.bounds();
3 if (bounds.contains(pos)) {
4 // gridlets store data at the corners
5 int3 numScalars = g.dims+1;
6

7 // compute box around position in raster
8 // coords on the gridlet’s level
9 int3 imin = (pos-bounds.lower)/(1<<g.level);

10 int3 imax = min(imin+1,numScalars-1);
11

12 // data values at the box corners
13 float values[8] = {
14 g.scalars[int3(imin.x,imin.y,imin.z)],
15 g.scalars[int3(imax.x,imin.y,imin.z)],
16 g.scalars[int3(imin.x,imax.y,imin.z)],
17 g.scalars[int3(imax.x,imax.y,imin.z)],
18 g.scalars[int3(imin.x,imin.y,imax.z)],
19 g.scalars[int3(imax.x,imin.y,imax.z)],
20 g.scalars[int3(imin.x,imax.y,imax.z)],
21 g.scalars[int3(imax.x,imax.y,imax.z)]
22 };
23

24 if (all(values) != NAN) {
25 // trilinear interpolation
26 float3 p = (pos-bounds.lower)/(1<<g.level);
27 float3 frac = p-imin;
28 *value = trilerp(values,frac);
29

30 return true;
31 }
32 }
33

34 // either missed bounds, or hit an empty cell
35 return false;
36 }

Figure 11: Gridlet point sampling function.
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