Doppler Volume Rendering: A Dynamic, Piecewise Linear Spectral Representation for Visualizing Astrophysics Simulations. Supplemental Material

Reem Alghamdi¹, Thomas Müller², Alberto Jaspe-Villanueva¹, Markus Hadwiger¹, Filip Sadlo³

¹KAUST, Saudi Arabia, ²Max-Planck-Institute for Astronomy, Germany, ³Heidelberg University, Germany

1. Accumulation Cases

The mathematical formulation for all the possible 11 accumulation cases of f(x) and g(x) piecewise linear functions is as follows:

Case	Accumulation	Case	Accumulation
Case 1 or 11: $x_2 < y_1 \lor y_2 < x_1$	$f(x) + g(x) = \begin{cases} m_1 x + b_1 & x_1 \le x \le x_2 \\ m_2 x + b_2 & y_1 \le x \le y_2 \\ 0, & \text{else} \end{cases}$	Case 2: $x_1 < y_1 < x_2 < y_2$	$f(x) + g(x) = \begin{cases} m_1 x + b_1 & x_1 \le x \le y_1 \\ (m_1 + m_2)x + (b_1 + b_2) & y_1 < x \le x_2 \\ m_2 x + b_2 & x_2 < x \le y_2 \\ 0, & \text{else} \end{cases}$
Case 3: $y_1 < x_1 < y_2 < x_2$	$f(x) + g(x) = \begin{cases} m_2 x + b_2 & y_1 \le x \le x_1 \\ (m_1 + m_2)x + (b_1 + b_2) & x_1 < x \le y_2 \\ m_1 x + b_1 & y_2 < x \le x_2 \\ 0, & \text{else} \end{cases}$	Case 4: $x_1 < y_1 < x_2 = y_2$	$f(x) + g(x) = \begin{cases} m_1 x + b_1 & x_1 \le x \le y_1 \\ (m_1 + m_2)x + (b_1 + b_2) & y_1 < x \le y_2 \\ 0, & \text{else} \end{cases}$
Case 5: $x_1 = y_1 < x_2 = y_2$	$f(x) + g(x) = \begin{cases} (m_1 + m_2)x + (b_1 + b_2), & x_1 \le x \le x_2 \\ 0, & \text{else} \end{cases}$	Case 6: $y_1 < x_1 < x_2 = y_2$	$f(x) + g(x) = \begin{cases} m_2 x + b_2 & y_1 \le x \le x_1 \\ (m_1 + m_2)x + (b_1 + b_2) & x_1 < x \le y_2 \\ 0, & \text{else} \end{cases}$
Case 7: $x_1 = y_1 < x_2 < y_2$	$\begin{cases} f(x) + g(x) = \\ \begin{cases} (m_1 + m_2)x + (b_1 + b_2) & x_1 \le x \le x_2 \\ m_2 x + b_2 & x_2 < x \le y_2 \\ 0, & \text{else} \end{cases}$	Case 8: $x_1 = y_1 < x_2 < y_2$	$f(x) + g(x) = \begin{cases} (m_1 + m_2)x + (b_1 + b_2) & x_1 \le x \le y_2 \\ m_1 x + b_1 & y_2 < x \le x_2 \\ 0, & \text{else} \end{cases}$
Case 9: $x_1 < y_1 < y_2 < x_2$	$\begin{cases} f(x) + g(x) = \\ m_1 x + b_1 & x_1 \le x \le y_1 \\ (m_1 + m_2)x + (b_1 + b_2) & y_1 < x \le y_2 \\ m_1 x + b_1 & y_2 < x \le x_2 \\ 0, & \text{else} \end{cases}$	Case 10: $y_1 < x_1 < x_2 < y_2$	$\begin{cases} f(x) + g(x) = \\ m_2 x + b_2 & y_1 \le x \le x_1 \\ (m_1 + m_2)x + (b_1 + b_2) & x_1 < x \le x_2 \\ m_2 x + b_2 & x_2 < x \le y_2 \\ 0, & \text{else} \end{cases}$

© 2023 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

2. Galaxy Dataset Information

Additional information of the Galaxy dataset, simulating the asymmetries of the center of the Milky Way, by Sormani et al.:

Density range	$\rho \in [7.65 \times 10^{-26} \text{g/cm}^3, 1.94 \times 10^{-15} \text{g/cm}^3] \rho_{q=0.05} = 8.1 \times 10^{-23} \text{g/cm}^3, \rho_{q=0.95} = 3.16 \times 10^{-20} \text{g/cm}^3$	
Gas temperature range	$T \in [130.7 \text{ K}, 481.1 \text{ K}] T_{q=0.05} = 439.0 \text{ K}, T_{q=0.95} = 480.9 \text{ K}$	
Velocity ranges	$v_x \in [-342, 328]$ km/s, $v_y \in [-238, 242]$ km/s, $v_z \in [-140, 117]$ km/s	
	$v_{x,q=0.05} = -267 \mathrm{km/s}, v_{x,q=0.95} = 267 \mathrm{km/s}$	
	$v_{y,q=0.05} = -200.0 \mathrm{km/s}, v_{y,q=0.95} = 200 \mathrm{km/s}$	
	$v_{z,q=0.05} = -10.0 \mathrm{km/s}, v_{z,q=0.95} = 9.39 \mathrm{km/s}$	
	(Compare Speed-of-light $c = 299\ 792.458 \mathrm{km/s}$)	
Matter included	neutral hydrogen HI	
	molecular hydrogen H_2	
	carbon monoxide CO	

3. Synthetic Dataset

With the aim of evaluating our technique in a controlled environment, we created a synthetic dataset, consisting of a radial density field of hydrogen, moved by a vector field with cylindrical dynamics, of thickness around 10% of the side of the volume. The figure shows two sample spectra along respective rays traversing the velocity field.

