
DOI: 10.1111/cgf.14793 COMPUTER GRAPHICS forum
Volume 42 (2023), number 6, e14793

3D Generative Model Latent Disentanglement via
Local Eigenprojection

Simone Foti,1 Bongjin Koo,1,2 Danail Stoyanov1 and Matthew J. Clarkson1

1University College London, London, UK
s.foti@cs.ucl.ac.uk, bongjinkoo@ucsb.edu, {danail.stoyanov, m.clarkson}@ucl.ac.uk

2University of California, Santa Barbara, Santa Barbara, USA

Abstract
Designing realistic digital humans is extremely complex. Most data-driven generative models used to simplify the creation of
their underlying geometric shape do not offer control over the generation of local shape attributes. In this paper, we overcome this
limitation by introducing a novel loss function grounded in spectral geometry and applicable to different neural-network-based
generative models of 3D head and body meshes. Encouraging the latent variables of mesh variational autoencoders (VAEs) or
generative adversarial networks (GANs) to follow the local eigenprojections of identity attributes, we improve latent disentan-
glement and properly decouple the attribute creation. Experimental results show that our local eigenprojection disentangled
(LED) models not only offer improved disentanglement with respect to the state-of-the-art, but also maintain good generation
capabilities with training times comparable to the vanilla implementations of the models. Our code and pre-trained models are
available at github.com/simofoti/LocalEigenprojDisentangled.
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1. Introduction

In recent years digital humans have become central elements not
only in the movie and video game production, but also in augmented
and virtual reality applications. With a growing interest in the meta-
verse, simplified creation processes of diverse digital humans will
become increasingly important. These processes will benefit expe-
rienced artists and, more importantly, will democratize the char-
acter generation process by allowing users with no artistic skills
to easily create their unique avatars. Since digitally sculpting just
the geometric shape of the head of a character can easily require
a highly skilled digital artist weeks to months of work [GFZ*20],
many semi-automated avatar design tools have been developed.
Even though simpler and faster to use, they inherit the intrinsic con-
straints of their underlying generative models [FKSC22]. Usually
based upon blendshapes [LMR*15, OBB20, TDlTM11], principal
component analysis (PCA) [BV99, PWP*19, LBB*17], variational
autoencoders (VAEs) [RBSB18, GCBZ19, AATJD19, CNH*20],
or generative adversarial networks (GANs) [CBZ*19, GLP*20,
LBZ*20, ABWB19], these models are either limited in expressivity

or they cannot control the creation of local attributes. Considering
that deep-learning-based approaches, such as VAEs and GANs, of-
fer superior representation capabilities with a reduced number of
parameters and that they can be trained to encourage disentangle-
ment, we focus our study on these models.

By definition [BCV13, HMP*17, KM18], with a disentangled la-
tent representation, changes in one latent variable affect only one
factor of variation while being invariant to changes in other factors.
This is a desirable property to offer control over the generation of
local shape attributes. However, latent disentanglement remains an
open problem for generative models of 3D shapes [AATJD19] de-
spite being a widely researched topic in the deep learning commu-
nity [HMP*17, KM18, KWKT15, EWJ*19, DXX*20, WYH*21,
RL21]. Most research on latent disentanglement of generative mod-
els for the 3D shape of digital humans addresses the problem of
disentangling the pose and expression of a subject from its iden-
tity [AATJD19, AATDJ23, CNH*20, ABWB19, ZYL*20, LYF*21,
ZYHC22], but none of these works is able to provide disentan-
glement over the latent variables controlling the local attributes
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Figure 1: Shape generation and editing of two subjects randomly generated with LED-VAE, which is one of the proposed local eigenprojection
disentangled models. Left: effects caused on the generated shapes by traversing two arbitrary latent variables controlling the eyes and nose
of the first random subject. Right: example of shape editing performed manipulating the latent variables controlling jaw, nose, and forehead
of the second subject. The latent manipulations are performed with a GUI that allows the manual modification of the latent variables, but
random per-attribute modifications can also be performed. The edited shapes are always paired with their corresponding displacement map
highlighting the shape differences from the initial model.

characterizing the identity. Some control over the generation of lo-
cal attributes was achieved for generative models of 3D furniture
by leveraging complex architectures with multiple encoders and de-
coders independently operating on different furniture parts [NW17,
YML*20, RDC*21]. In contrast, [FKSC22] recently proposed a
method to train a single VAE while enforcing disentanglement
among sets of latent variables controlling the identity of a char-
acter. This approach allows their Swap Disentangled VAE (SD-
VAE) to learn a more disentangled, interpretable, and structured
latent representation for 3D VAEs of bodies and heads. How-
ever, although [FKSC22] disentangles subsets of latent variables
controlling local identity attributes, variables within each set can
be entangled and not orthogonal. In addition, their curated mini-
batching procedure based on attribute swapping is applicable only
to autoencoder-based architectures and it significantly increases the
training duration. In this work, we aim at overcoming these lim-
itations by leveraging spectral geometry to achieve disentangle-
ment without curating the mini-batching. In particular, we encour-
age the latent representation of a mesh to equal the most signifi-
cant local eigenprojections of signed distances from the mean shape
of the training data. Since the eigenprojections are computed us-
ing the eigenvectors of combinatorial Laplacian operators, we re-
quire meshes to be in dense point correspondence and to share the
same topology. This is a standard requirement for most of the tra-
ditional [BV99, BRZ*16, DPSD20, GFZ*20, LMR*15, OBB20,
PWP*19, PVS*21] and neural-network-based [FKD*20, FKSC22,
GCBZ19, RBSB18, ZWL*20, YLY*20] generative models, which
not only simplifies the shape generation process, but also the defi-
nition of other digital humans’ properties that will be automatically
shared by all the generated meshes (e.g. UV maps, landmarks, and
animation rigs).

To summarize, the key contribution of this work is the introduc-
tion of a novel local eigenprojection loss, which is able to improve
latent disentanglement among variables controlling the generation
of local shape attributes contributing to the characterization of the
identity of digital humans. Our method improves over SD-VAE
by enforcing orthogonality between latent variables and avoiding
the curated mini-batching procedure, thus significantly reducing the
training times. In addition, we demonstrate the flexibility and dis-
entanglement capabilities of our method on both VAEs and GANs.

2. Related Work

2.1. Generative models

Blendshapes are still widely adopted for character animation or as
consumer-level avatar design tools because, by linearly interpolat-
ing between a predefined set of artistically created shapes, the blend-
weights can be easily interpreted [LAR*14]. However, to compen-
sate for the limited flexibility and diversity of these models, large
amounts of shapes are required. This makes the models very large
and only a limited number of shapes can be used in most practi-
cal applications. An alternative approach capable of offering more
flexibility is to build models relying on principal component anal-
ysis (PCA) [BV99, EST*20]. These data-driven models are able
to generate shapes as linear combinations of the training data, but
the variables controlling the output shapes are related to statistical
properties of the training data and are difficult to interpret. In re-
cent years, PCA-based models have been created from large num-
ber of subjects. For example, Lsfm [BRZ*16] and Lyhm [DPSD20]
were built collecting scans from 10,000 faces and 1212 heads, re-
spectively. The twomodels were later combined in Uhm [PWP*19],
which was subsequently enriched with additional models for ears,
eyes, teeth, tongue, and the inner-mouth [PVS*21]. Also, [GFZ*20]
combined multiple PCAmodels, but they were controlling different
head regions and an anatomically constrained optimizationwas used
to combine their outputs and thus create an interactive head sculpt-
ing tool. PCA-based models of the body were also combined with
blendshapes in Smpl [LMR*15] and Star [OBB20], which were
trained with 3800 and 14,000 body scans respectively. PCA-based
models generally trade the amount of fine details they can repre-
sent with their size. The advent of geometric deep learning tech-
niques brought a new set of operators making possible the creation
of neural network architectures capable of processing 3D data such
as point-clouds and meshes. [RBSB18] introduced the first VAE for
the generation of head meshes. In its comparison against PCA, the
VAEmodel used significantly fewer parameters and exhibited supe-
rior performances in generalization, interpolation, and reconstruc-
tion. This pioneering work was followed by many other autoen-
coders which differed from one another mostly by their application
domain and the mesh operators used in their architecture [LBBM18,
FKD*20, YFST18, ZWL*20, GCBZ19, DS19, TZY*22, BBP*19].
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These mesh operators were used also for generative models based
on GAN architectures [OBD*21, CBZ*19], but they appear to be
less frequent than their VAE counterparts. Most GAN architectures
operate in the image domain by representing 3D shapes in a UV
space [MPN*20, LBZ*20].

2.2. Latent disentanglement

Most research on latent disentanglement is performed on gen-
erative models of images [KSB18, KM18, KWKT15, EWJ*19,
DXX*20, RL21, WYH*21]. The β-VAE [HMP*17] is proba-
bly the simplest model used to improve disentanglement in a
VAE. Other simple methods that leverage statistical properties
and do not require supervision over the generative factors are
for instance the DIP-VAEs [KSB18] and the FactorVAE [KM18].
All methods above were re-implemented to operate on meshes
by [FKSC22], but they did not report good levels of disentangle-
ment with respect to the identity attributes. In the 3D realm, there
are currently two prominent streams of research: the one disen-
tangling the identity from the pose or expression of digital hu-
mans [AATJD19, AATDJ23, CNH*20, ZYL*20, ZBPM20, TSL21,
JWCZ19, HHS*21, OFD*22], and the stream attempting to dis-
entangle parts of man-made objects [YML*20, NW17, LLW22,
RDC*21]. In both cases, the proposed solutions require complex
architectures. In addition, in the former category, current state-of-
the-art methods do not attempt to disentangle identity attributes. The
latter category appears better suited for this purpose, but the type of
generated shapes is substantially different because the generation
of object parts needs to consider intrinsic hierarchical relationships,
and surface discontinuities are not a problem. More similar to ours,
is the method recently proposed by [FKSC22], where the latent rep-
resentation of a mesh convolutional VAE is disentangled by curat-
ing the mini-batching procedure and introducing an additional loss.
In particular, swapping shape attributes between the input meshes
of every mini-batch, it is possible to know which of them share the
same attribute and which share all the others. This knowledge is har-
nessed by a contrastive-like latent consistency loss that encourages
subsets of latent variables from different meshes in the mini-batch
to assume the same similarities and differences of the shapes cre-
ated with the attribute swapping. This disentangles subsets of latent
variables which become responsible for the generation of different
body and head attributes. We adopt the same network architecture,
dataset, and attribute segmentation of SD-VAE. This choice is arbi-
trary and simplifies comparisons between the two methods, which
differ only in their disentanglement technique.

Like VAEs, the research on GANs comes mostly from the imag-
ing domain, where good levels of control over the generation pro-
cess were recently made possible. Most of these models leverage
segmentation maps [HMWL22, LLWL20, LKL*21], additional at-
tribute classifiers [HZK*19, SBKM21], text prompts [RKH*21],
or manipulate the latent codes and the parameter space of the pre-
trained model to achieve the desired results [KAL*21, HHLP20,
SYTZ22, LKL*21]. We argue that while the first two approaches
require more inputs and supervision than our method, the last two
offer less editing flexibility. In fact, describing the shape of human
parts is a difficult task that would ultimately limit the diversity of the
generated shapes, while the post-training manipulation may limit
the exploration of some latent regions. Only a few methods explic-

itly seek disentanglement during training [AW20, VB20] like ours.
However, [AW20] is specifically designed for grid-structured data,
like images, and [VB20] still requires a pre-trained GAN and two
additional networks for disentanglement. In the 3D shapes domain,
GAN disentanglement is still researched to control subject poses
and expressions [CTS*21, OBD*21] or object parts [LLHF21].
However, they suffer the same problems described for 3D VAEs:
they have complex architectures and do not have control over the
generation of local identity attributes.

2.3. Spectral geometry

Spectral mesh processing has played an essential role in shape
indexing, sequencing, segmentation, parametrization, correspon-
dence, and compression [ZVKD10]. Spectral methods usually
leverage the properties of the eigenstructures of operators such
as the mesh Laplacian. Even though there is no unique definition
for this linear operator, it can be classified either as geometric or
combinatorial. Geometric Laplacians are a discretization of the
continuous Laplace-Beltrami operator [Cha84] and, as their name
suggests, they encode geometric information. Their eigenvalues are
robust to changes in mesh connectivity and are often used as shape
descriptors[RWP06, GYP14]. Since they are isometry-invariant,
they are used also in VAEs for identity and pose disentangle-
ment [AATJD19, AATDJ23]. However, being geometry dependant,
the Laplace-Beltrami operator and its eigendecomposition have to
be precomputed for every mesh in the dataset. On the other hand,
combinatorial Laplacians treat a mesh as a graph and are entirely de-
fined by themesh topology. For these operators, the eigenvectors can
be considered as Fourier bases and the eigenprojections are equiv-
alent to a Fourier transformation [SNF*13] whose result is often
used as a shape descriptor. If all shapes in a dataset share the same
topology, the combinatorial Laplacian and its eigendecomposition
need to be computed only once. For this reason, multiple graph and
mesh convolutions [BZSL13, DBV16] as well as some data aug-
mentation techniques [FKD*20] and smoothing losses [FKSC22]
are based on combinatorial Laplacian formulations.

3. Method

The proposed method introduces a novel loss to improve latent
disentanglement in generative models of 3D human shapes. Af-
ter defining the adopted shape representation, we introduce our lo-
cal eigenprojection loss, followed by the two generative models on
which it was tested: a VAE and two flavours of GANs.

3.1. Shape representation

We represent 3D shapes as manifold triangle meshes with a fixed
topology. By fixing the topology, all meshes M = {X, E,F} share
the same edges E ∈ N

ε×2 and facesF ∈ N
�×3. Therefore, they differ

from one another only for the position of their vertices X ∈ R
N×3,

which are assumed to be consistently aligned, scaled, and with
point-wise correspondences across shapes.

3.2. Local eigenprojection loss

We define F arbitrary attributes on a mesh template by manu-
ally colouring anatomical regions on its vertices. Thanks to the
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assumption of our shape representation, the segmentation of the
template mesh can be consistently transferred to all the other meshes
without manually segmenting them. Mesh vertices can be then
grouped per-attribute such that X = {Xω}Fω=1. Seeking to train gen-
erative models capable of controlling the position of vertices cor-
responding to each shape attribute Xω through a predefined set of
latent variables, we evenly split the latent representation z in F sub-
sets of size κ , such that z = {zω}Fω=1 and each zω controls its cor-
responding Xω. To establish and enforce a direct relationship be-
tween each Xω and zω we rely on spectral geometry and compute
low-dimensional local shape descriptors in the spectral domain. We
start by computing the Kirchoff graph Laplacian corresponding to
each shape attribute as: Kω = Dω − Aω, where Aω ∈ N

Nω×Nω is the
adjacency matrix of attribute ω, Dω ∈ R

Nω×Nω its diagonal degree
matrix, and Nω the number of its vertices. Values on the diagonal
of Dω are computed as Daa = ∑

bAab. The Kirchoff Laplacian is
a real symmetric positive semidefinite matrix that can be eigende-
composed asKω = Uω�ωUT

ω. The columns ofUω ∈ R
Nω×K are a set

of K orthonormal eigenvectors known as the graph Fourier modes
and can be used to transform any discrete function defined on the
mesh vertices into the spectral domain. The signal most commonly
transformed is the mesh geometry, which is the signal specifying the
vertex coordinates. However, the local eigenprojection X̃ω = UT

ωXω

would result in a matrix of size K × 3 containing the spectral rep-
resentations of the 3 spatial coordinates. Instead of flattening X̃ω to
make it compatible with the shape of the latent representation, we
define and project a one-dimensional signal: the signed distance be-
tween the vertices of a mesh and the per-vertex mean of the training
setM (see Figure 2). We have:

sd(X) = γ‖X − M‖2 with γ = sign
(〈
X − M,N

〉)
, (1)

Figure 2: Schematic representation of the local eigenprojection,
the operation at the core of our local eigenprojection loss. The
signed distance between a given mesh X and a mean shape tem-
plate is computed as sd(X). sd(X) is locally eigenprojected into a
vector z� where each subset of variables is a spectral descriptor of a
shape attribute. The projection is performed by matrix-multiplying
the signed distance byU�

ω, the highest-variance eigenvectors of each
shape attribute ω. The heads in the bottom part of the figure rep-
resent one-dimensional vectors whose values are mapped with di-
verging colour maps on the mean shape head. On the heads corre-
sponding to the columns of U�

ω, the black seams mark the different
attributes that we seek to control during the generation procedure.

where 〈·, ·〉 is the inner product, and N are the vertex normals re-
ferred to the mesh template with vertex positionsM. If X was stan-
dardized by subtracting M and dividing by the per-vertex standard
deviation of the training set �, being � the Hadamard product,
Equation 1 can be rewritten as:

sd(X) = γ‖X � �‖2 with γ = sign
(〈
X � �,N

〉)
. (2)

We assume that not all eigenprojections are equally significant when
representing shapes. Therefore, for each attribute ω, we eigenpro-
ject all the local signed distances sd(Xω ) computed over the training
set, and identify the κ (with κ � K) spectral components with the
highest variance. While these spectral components are responsible
for most shape variations, the small shape differences represented
by other components can be easily learned by the neural-network-
based generative model. After eigenprojecting the entire training
set, we select the Fourier modes U�

ω ∈ R
Nω×κ associated with the

highest variance eigenprojections (Figure 2) and use them to com-
pute the eigenprojection loss. During this preprocessing step, we
also compute the mean and standard deviation of the highest vari-
ance local eigenrpojections, which we denote bym�

ω and s�ω, respec-
tively. We thus define the local eigenprojection loss as:

LLE (X, z) = 1

Fκ

F∑

ω=1

∥∥∥zω − (U�
ω )

T sd(Xω ) − m�
ω

s�ω

∥∥∥
1

(3)

Note that combinatorial Laplacian operators are determined exclu-
sively by the mesh topology. Since the topology is fixed across the
dataset, the Laplacians and their eigendecompositions can be com-
puted only once. Therefore, the local eigenprojection can be quickly
determined by matrix-multiplying signed distances by the precom-
puted U�

ω. Also, if the Laplace-Beltrami operator was used in place
of the Kirchoff graph Laplacian, the eigendecomposition would
need to be computed for every mesh. Not only this would signifi-
cantly increase the training duration, but backpropagating through
the eigendecomposition would bemore complex as this would intro-
duce numerical instabilities [WDH*19]. Alternatively, an approach
similar to [MRC*21] should be followed.

3.3. Mesh variational autoencoder

Like traditional VAEs [KW14], our 3D-VAE is also built as a prob-
abilistic encoder-decoder pair parameterized by two separate neu-
ral networks. The probabilistic encoder is defined as a variational
distribution q(z|X) that approximates the intractable model poste-
rior. It predicts the mean μ and standard deviation σ of a Gaus-
sian distribution over the possible z values from which X could
have been generated. The probabilistic decoder p(X|z) describes
the distribution of the decoded variable given the encoded one.
During the generation process, a latent vector z is sampled from
a Gaussian prior distribution p(z) = N (z; 0, I) and an output shape
is generated by the probabilistic decoder. Since the decoder is used
as a generative model, it is also referred to as generator. Follow-
ing this convention, we define our architecture as a pair of non-
linear functions {E,G}, where E : X → Z maps from the vertex
embedding domain X to the latent distribution domain Z , and G :
Z → X vice versa. Since traditional convolutional operators are
not compatible with the non-Euclidean nature of meshes, we build
both networks as in [FKSC22], using the simple yet efficient spiral
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convolutions [GCBZ19] and sparse matrix multiplications with
transformation matrices obtained with quadric sampling [GCBZ19,
RBSB18] (see Supplementary Materials for more details).

As in [FKSC22], the 3D-VAE is trained minimizing LVAE =
LR(X,X′) + αLL(X′) + βLKL(μ, σ ). While α and β are weighting
constants, LR is the reconstruction loss, LL is a Laplacian regu-
larizer, and LKL is a Kullback–Leibler (KL) divergence. In auto-
encoder parlance, the reconstruction lossLR(X,X′) = 1

N ‖X′ − X‖2F
encourages the output of the VAE to be as close as possible to
its input by computing the squared Frobenius norm between X′ =
G(E(X)) and X. The KL divergence can be considered as a reg-
ularization term that pushes the variational distribution q(z|X) to-
wards the prior distribution p(z). Since both prior and posterior
are assumed to be Gaussian LKL(μ, σ) = σ2 + μ2 − log(σ) − 1.
The Laplacian loss LL(X′) = 1

N ‖TX′‖2F is a smoothing term com-
puted on the output vertices X′ and based on the Tutte Laplacian
T = D−1K = I − D−1A, where A, D, and K are the adjacency, di-
agonal degree, and Kirchoff Laplacian introduced in the previous
paragraph and computed on the entire mesh rather than on shape at-
tributes.

Latent disentanglement is enforced by separately applying the lo-
cal eigenprojection loss to the encoder and generator.We thus define
the total loss as:

L = LR(X,X′) + αLL(X′) + βLKL(μ, σ)

+ η1LLE (X,μ) + η2LLE (X′, μ), (4)

where η1 and η2 are two scalar weights balancing the contributions
of the two local eigenprojection losses. Note thatLLE (X, μ) is back-
propagated only through E. This term pushes the predicted μ to-
wards the standardized local eigenprojections of the input, while the
KL divergence attempts to evenly distribute the encodings around
the centre of the latent space. Similarly, LLE (X′, μ) is backpropa-
gated only throughG and it enforces the output attributes to have an
eigenprojection compatible with the predicted mean.

3.4. Mesh generative adversarial networks

We propose two flavours of 3D Generative Adversarial Networks:
one based on Least Squares GAN (LSGAN) [MLX*17] and one on
Wasserstein GAN (WGAN) [ACB17]. Like VAEs, GANs also rely
on a pair of neural networks: a generator-discriminator pair {G,D}
in LSGAN and a generator-critic {G,C} pair in WGAN. The ar-
chitecture of the generators is the same as the one adopted in the
generator of the 3D-VAE. The architectures of D and C are similar
to E, but with minor differences in the last layers (see Supplemen-
tary Materials). Nevertheless, all networks are built with the same
mesh operators of our 3D-VAE and [FKSC22, GCBZ19].

In the LSGAN implementation, G samples an input latent repre-
sentation from a Gaussian distribution p(z) = N (z; 0, I) and maps
it to the shape space as G(z) = X′. While it tries to learn a distribu-
tion over generated shapes, the discriminator operates as a classifier
trying to distinguish generated shapes X′ from real shapes X. Using
a binary coding scheme for the labels of real and generated sam-
ples, we can write the losses of G and D respectively as LG

LSGAN =
1
2Ez∼p(z)[(D(G(z)) − 1)2] and LD

LSGAN = 1
2EX∼p(X)[(D(X) − 1)2] +

1
2Ez∼p(z)[D(G(z))2]. We also add the Laplacian regularization term

LL(X′) to smooth the generated outputs. When seeking disentan-
glement, we train the discriminator by minimizing LD

LSGAN and the
generator by minimizing the following:

LG
LS = LG

LSGAN + αLL(X′) + ηLLE (X′, z). (5)

InWGAN,G still tries to learn a distribution over generated shapes,
but its critic network C, instead of classifying real and generated
shapes, learns a Wasserstein distance and outputs scalar scores that
can be interpreted as measures of realism for the shapes it processes.
The WGAN losses for G and C are LG

WGAN = −Ez∼p(z)[D(G(z)]
andLC

WGAN = Ez∼p(z)[D(G(z))] − EX∼p(X)[D(X)] respectively. Sim-
ilarly to the LSGAN implementation, when enforcing disentangle-
ment, the critic is trained minimizing LC

WGAN , while the generator
minimizing:

LG
W = LG

WGAN + αLL(X′) + ηLLE (X′, z). (6)

Note that to make C a 1-Lipschitz function, and thus satisfies
the Wasserstein distance computation requirements, C weights are
clipped to the range [−c, c].

4. Experiments

4.1. Datasets

Since our main objective is to train a generative model capa-
ble of generating different identities, we require datasets contain-
ing a sufficient number of subjects in a neutral expression (pose).
Most open source datasets for 3D shapes of faces, heads, bodies,
or animals (e.g. Mpi-Dyna [PMRMB15], Smpl [LMR*15], Sur-
real [VRM*17], Coma [RBSB18], Smal [ZKJB17], etc.) focus
on capturing different expressions or poses and are not suitable for
identity disentanglement. For comparison, we rely on the 10,000
meshes – with neutral expression and pose – generated in [FKSC22]
using two linear models that were built using a large number of sub-
jects: Uhm [PWP*19] and Star [OBB20] (Section 2.1). We also
use the same data split with 90% of the data for training, 5% for
validation, and 5% for testing. Since these data are generated from
PCA-based models, we also train our models on real data from the
Lyhm dataset [DPSD20] registered on the Flame [LBB*17] tem-
plate. In addition, even though it is beyond the scope of this work,
we attempt to achieve disentanglement through local eigenprojec-
tion also on Coma [RBSB18], a dataset mostly known for its wide
variety of expressions. All models and datasets are released for non-
commercial scientific research purposes.

4.2. Local eigenprojection distributions

We observe that the eigenprojections are normally distributed for
datasets with neutral poses or expressions (Figure 3). By stan-
dardizing the eigenprojections in Equation (3) we ensure their
mean and standard deviation to be 0 and 1, respectively. Since we
enforce a direct relation between the local eigenprojections and the
latent representations, this is a desirable property that allows us to
generate meaningful shapes by sampling latent vectors from a nor-
mal distribution. In order to explain why this property holds for
datasets with neutral poses and expressions, we need to hypothe-
size that shapes follow a Gaussian distribution. This is a reasonable
hypothesis for datasets generated from PCA-based models, such as
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Figure 3: Local eigenprojection distributions. All training meshes are locally eigenprojected to observe the distributions of the elements in
the resulting vectors. Distributions are colour-coded according to the shape attribute they are referred to. The segmentation of the shape
attributes displayed next to the distributions is rendered on the mean shape templates of the corresponding dataset. The dashed distributions,
which are obtained sampling a Gaussian, are reported for comparison.

those obtained from Uhm and Star, because vertex positions are
computed as linear combinations of generative coefficients sam-
pled from a Gaussian. However, following the maximum entropy
explanation [Lyo14], it is also reasonable to assume that shapes in
dataset obtained capturing real people (like Lyhm), are normally
distributed. [Lyo14] argues that although the Central Limit Theo-
rem is the standard explanation of why many things are normally
distributed, the conditions to apply the theorem are usually not met
or they cannot be verified.We assume that, like people’s height, also
body and head shapes are largely determined by genetics and par-
tially by environment and epigenetic effects. The selection pressure
determines an ideal shape with some variability to hedge against
fluctuating circumstances in the environment. This amounts to fix-
ing the mean, and an upper bound on the variance. Apart from that,
the population will naturally tend to a state of maximal disorder (i.e.
maximum entropy). Therefore, according to the maximum entropy
explanation, human shapes are normally distributed because the dis-
tributionmaximizing entropy subject to those constraints is a normal
distribution. If the shapes are normally distributed, we can consider
also vertex positions consistently sampled on the shape surfaces to
follow each a different Gaussian distribution centred at the corre-
sponding vertex coordinates on the mean shape. Considering that
the signed distance and the local eigenprojection are both linear op-
erations, they preserve normality, and for this reason also the lo-
cal eigenprojections are normal. Note that expressions are subject-
specific deformations with highly non-linear behaviour [CBGB20].
There is no guarantee that these transformations preserve the nor-
mality of the shape distribution. Therefore, datasets containing ex-
pressions, such as Coma, may not satisfy the normality assumption.
In fact, we observe that the standardized eigenprojections havemore
complex distributions which appear to be mixture of Gaussians (see
Figure 3). Intuitively, each Gaussian in the mixtures could be related
to a different subset of expressions.

4.3. Comparison with other methods

We compare our local eigenprojection disentangled (LED) meth-
ods against their vanilla implementations and against the only state-
of-the-art method providing control over the generation of local

shape attributes: the swap disentangled VAE (SD-VAE) proposed
in [FKSC22]. The authors compared their SD-VAEwith other VAEs
for latent disentanglement. Among their implementation of DIP-
VAE-I, DIP-VAE-II, and FactorVAE, the first one appeared to be
the best performing. Therefore, we report results for DIP-VAE-
I. For a fair comparison, all methods were trained on the same
dataset (Uhm) using the same batch size and the same number of
epochs. In addition, they share the same architecture with minor
modifications for the GAN implementations (see Supplementary
Materials). The SD-VAE implementation, as well as the evalua-
tion code and the benchmark methods, are made publicly avail-
able at github.com/simofoti/3DVAE-SwapDisentangled. All mod-
els were trained on a single Nvidia Quadro P5000, which was
used for approximately 18 GPU days in order to complete all the
experiments.

The reconstruction errors reported in Table 1 are computed as the
mean per-vertex L2 distance between input and output vertex po-
sitions. This metric is computed on the test set and applies only
to VAEs. We report the generation capabilities of all models in
terms of diversity, JSD, MMD, COV, and 1-NNA. The diversity is
computed as the average of the mean per-vertex distances among
pairs of randomly generated meshes. The Jensen-Shannon Diver-
gence (JSD) [ADMG18] evaluates the KL distances between the
marginal point distributions of real and generated shapes. The cov-
erage (COV) [ADMG18] measures the fraction of meshes matched
to at least one mesh from the reference set. The minimum matching
distance (MMD) [ADMG18] complements the coverage by averag-
ing the distance between each mesh in the test set and its nearest
neighbour among the generated ones. The 1-nearest neighbour ac-
curacy (1-NNA) is a measure of similarity between shape distribu-
tions that evaluates the leave-one-out accuracy of a 1-NN classifier.
In its original formulation [YHH*19], it expects values converging
to 50%. However, following [FKSC22], in Table 1 we report abso-
lute differences between the original score and the 50% target value.
All the generation capability metrics can be computed either with
the Chamfer or the Earth Mover distance. Since we did not observe
significant discrepancies between the metrics computed with these
two distances, we arbitrarily report results obtained with the Cham-
fer distance.
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Table 1: Quantitative comparison between our model and other state-of-the-art methods. All methods were trained on Uhm [PWP*19]. Diversity, JSD, MMD,
COV, and 1-NNA evaluate the generation capabilities of the models, while VP evaluates latent disentanglement. The different metrics are computed as detailed
in Section 4.3. Note that the training time does not consider the initialization time.

Method Mean Rec. (↓) Diversity (↑) JSD (↓) MMD (↓) COV (%, ↑) 1-NNA (
%, ↓) VP (%, ↑) Training Time (↓)
VAE 0.61 4.23 4.89 1.53 65.49 1.17 63.73 1h :46m
LSGAN — 6.12 1.14 1.65 43.41 22.04 46.83 2h:23m
WGAN — 4.04 22.75 1.36 57.94 23.98 71.07 2h:22m
DIP-VAE-I 4.65 4.74 5.32 1.24 55.57 4.31 35.60 1h:48m
SD-VAE 0.73 4.23 4.30 1.56 65.67 0.50 79.75 7h:21m

LED-VAE 1.46 5.30 2.27 1.73 49.83 15.80 80.75 2h:53m
LED-LSGAN — 6.38 2.09 2.03 43.41 17.23 79.75 2h:28m
LED-WGAN — 5.77 2.55 1.81 47.47 14.95 74.11 2h:28m

Figure 4: Random samples and vertex-wise distances showing the effects of traversing three randomly selected latent variables (see Supple-
mentary Materials to observe the effects for all the latent variables).

Observing Table 1 we notice that none of the models is consis-
tently outperforming the others. GANs generally report better di-
versity scores than VAEs, but they are worse in terms of coverage
and 1-NNA. GANs were also more difficult to train and were prone
to mode collapse. On the other hand, VAEs appeared stable and re-
quired significantly less hyperparameter tuning. The scores of our
LED models were comparable with other methods, thus showing
that our loss does not negatively affect the generation capabilities.
However, LED models are consistently outperformed in terms of
MMD, COV, and 1-NNA. These metrics evaluate the quality of gen-
erated samples by comparing them to a reference set. Since com-
parisons are performed on the entire output shapes, we hypothesize
that a shape with local identity attributes resembling each a different
subject from the test set is more penalized than a shape whose at-
tributes are plausibly obtained from a single subject. Note also that
MMD, COV, and 1-NNA appear to be inversely proportional to the
diversity, suggesting that more diverse generated shapes are also less
similar to shapes in the test set. LED-models report higher diversity
because attributes can be independently generated. This negatively
affectsMMD, COV, and 1-NNA, but the randomly generated shapes

are still plausible subjects (see Figure 4 and Supplementary Materi-
als). Interestingly, SD-VAE appears to be still capable of generating
shapes with attributes resembling the same subject from the test set,
but at the expense of diversity and latent disengagement (see Sec-
tion 4.4).

LED-LSGAN and LED-WGAN train almost as quickly as the
vanilla LSGAN and WGAN. Training LED-VAE takes approxi-
mately 1 h more than its vanilla counterpart because the local eigen-
projection loss is separately backpropagated through the encoder.
However, since latent disentanglement is achieved without swap-
ping shape attributes during mini-batching, the training time of
LED-VAE is reduced by 61% with respect to SD-VAE. Note that
the additional initialization overhead of LED models (3.72 min) is
negligible when compared to the significant training time reduction
over SD-VAE, which is the only model capable of achieving a sat-
isfactory amount of latent disentanglement.

If we then qualitatively evaluate the random samples in Figure 4,
we see that the quality of the meshes generated by LED-LSGAN
and LED-WGAN is slightly worse than those from LED-VAE. We
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Figure 5: Effects of traversing each latent variable across different mesh attributes. For each latent variable (abscissas) we represent the
per-attribute mean distances computed after traversing the latent variable from its minimum to its maximum value. For each latent variable,
we expect a high mean distance in one single attribute and low values for all the others.

attribute this behaviour to the –usually undesired– smoothness typi-
cally introduced by 3D VAEmodels. In this case, the VAEmodel it-
self acts as a regularizer that prevents the shape artefacts introduced
by the local eigenprojection disentanglement. In addition, traversing
the latent variables, we find that mesh defects tend to appear when
latent variables approach values near ±3 (see Supplementary Mate-
rial video). This might be a consequence of the reduced number of
training data with local eigenprojections with these values (see Fig-
ure 3). Nonetheless, the problem can be easily mitigated with the
truncation trick, thus sampling latent vectors from a Gaussian with
standard deviation slightly smaller than one.

4.4. Evaluation of latent disentanglement

Latent disentanglement can be quantitatively evaluated on datasets
with labelled data. However, such labels are not available for the
disentanglement of shape attributes and traditional metrics such as
Z-Diff [HMP*17], SAP [KSB18], and Factor [KM18] scores can-
not be used. Since the Variation Predictability (VP) disentangle-
ment metric does not require labelled data and it has shown good
correlation with the Factor score [ZXT20], we rely on this metric
to quantify disentanglement across different models (see Table 1).
The VPmetric averages the test accuracies across multiple few-shot
training of a classifier. The classifier takes as input the difference
between two shapes generated from two latent vectors differing in
only one dimension and predicts the varied latent dimension. We
implement the classifier network with the same architecture of our
encoders, discriminators, and critiques. The network was trained for
five epochs with a learning rate of 1e−4. As in [ZXT20], we set
ηVP = 0.1, NVP = 10, 000 and SVP = 3.

In addition, we qualitatively evaluate disentanglement as
in [FKSC22] by observing the effects of traversing latent variables
(Figure 1, left). For each latent variable, we compute the per-vertex
Euclidean distances between two meshes. After setting all latent
variables to their mean value (0), the first mesh is generated set-
ting a single latent to its minimum (−3) and the second mesh set-
ting the same variable to its maximum (+3). The Euclidean dis-
tances can be either rendered on the mesh surface using colours
proportional to the distances (Latent Traversals in Figure 4 and Fig-
ure 6), or plotted as their per-attribute average distance (Figure 5
and Figure 6). When plotted, the average distances isolated to each
attribute provide an intuitive way to assess disentanglement: good
disentanglement is achieved when the traversal of a single variable
determines high mean distances for one attribute and low mean dis-
tances for all the others. Observing Figure 4 and Figure 5, it is
clear that the only state-of-the-art method providing control over
local shape attributes is SD-VAE. Since the eigenvectors used in
the local eigenprojection loss are orthogonal, we improve disentan-
glement over SD-VAE. In fact, traversing latent variables of LED
models determines finer changes within each attribute in the gen-
erated shapes. For instance, this can be appreciated by observing
the eyes of the latent traversals in Figure 4, where left and right
eyes are controlled by different variables in LED-VAE, while by
the same one in SD-VAE (more examples are depicted in the Sup-
plementary Materials). We also notice that the magnitude of the
mean distances reported in Figure 5 for our LED models is big-
ger than SD-VAE within attributes and comparable outside. This
shows superior disentanglement and allows our models to gener-
ate shapes with more diverse attributes than SD-VAE. Our model
exhibits good disentanglement performances also on other datasets
(Figure 6).
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Figure 6: Results of LED-VAE on other datasets. For each dataset are displayed the effects of traversing latent variables (Uhm is reported in
Figure 5), three random samples and three vertex-wise distances highlighting the effects of traversing three latent variables (Uhm is reported
Figure 4). Mean distances are plotted following the colour coding depicted in Figure 3.

4.5. Direct manipulation

Like SD-VAE, also LED-VAE can be used for the direct manip-
ulation of the generated shapes. As in [FKSC22], the direct ma-
nipulation is performed by manually selecting ϒ vertices on the
mesh surface (S ◦ X′ = S ◦ G(z) ∈ R

ϒ×3) and by providing their
desired location (Y ∈ R

ϒ×3). Then, minzω ‖S ◦ G(z) − Y‖22 is opti-
mized with the Adam optimizer for 50 iterations while maintaining
a fixed learning rate of lr = 0.1. Note that the optimization is per-
formed only on the subset of latent variables zω controlling the local
attribute corresponding to the selected vertices. If vertices from dif-
ferent attributes are selected, multiple optimizations are performed.
As it can be observed in Figure 7, LED-VAE is able to perform di-
rect manipulations causing fewer shape changes than SD-VAE in
areas that should remain unchanged.

Figure 7: Direct manipulation. Left: the user manually selects an
arbitrary number of vertices (blue) and specifies their desired posi-
tion (red). Right: results of the direct manipulation optimization for
LED-VAE and SD-VAE. For each method, the output shape, a close-
up of the manipulated attribute, and the rendering of the per-vertex
distances between the initial and manipulated shapes are reported.
The colour-map used to represent vertex distances is blue where
distances are zero and red where they reach their maximum value.

5. Conclusion

We introduced a new approach to train generative models with a
more disentangled, interpretable and structured latent representa-
tion that significantly reduces the computational burden required by
SD-VAE. By establishing a correspondence between local eigenpro-
jections and latent variables, generative models can better control
the creation and modification of local identity attributes of human
shapes (see Figure 1). Like the majority of state-of-the-art methods,
the main limitation of our model is the assumption on the training
data, which need to be consistently aligned, in dense point corre-
spondence, and with a fixed topology. Even though this is surely a
limitation, as we mentioned in Section 1, this assumption can sim-
plify the generation of other digital human’s properties. Among the
different LEDmodels we proposed, we consider LED-VAE to be the
most promising. This model is simpler to train, requires less hyper-
parameter tuning, and generates higher-quality meshes. We trained
and tested this model also on other datasets, where it showed equiv-
alent performances. Datasets with expressions have complex local
eigenprojection distributions (Figure 3) which are more difficult
to learn. In fact, random samples generated by LED-VAE trained
on Coma present mesh defects localized especially in areas where
changes in expression introduce significant shape differences char-
acterized by a highly non-linear behaviour (e.g. the mouth region).
Controlling the generation of different expressions was beyond the
scope of this work andwe aim at addressing the issue as future work.
We proved that our loss can be easily used with both GANs and
VAEs. Being efficient to compute and not requiring modifications
to the mini-batching procedure (like SD-VAE), it could be lever-
aged also in more complex architectures for 3D reconstruction or
pose and expression disentanglement. In the LED-VAE the local
eigenprojection loss is computed also on the encoder (see how this
improves disentanglement in the ablation study provided with the
supplementary materials). Having an encoder capable of providing
a disentangled representation for different attributes could greatly
benefit shape-analysis research in plastic surgery [OvdLP*22] and
in genetic applications [CRW*18]. Therefore, we believe that our
method has the potential to benefit not only experienced digital
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artists but also democratize the creation of realistic avatars for the
metaverse and find new applications in shape analysis. Since the
generation of geometric shapes is only the first step towards the
data-driven generation of realistic digital humans, as future work,
we will research more interpretable generative processes for expres-
sions, poses, textures, materials, high-frequency details, and hair.
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