
DOI: 10.1111/cgf.14789 COMPUTER GRAPHICS forum
Volume 42 (2023), number 6, e14789

Faster Edge-Path Bundling through Graph Spanners

Markus Wallinger,1 Daniel Archambault,2 David Auber,3 Martin Nöllenburg1 and Jaakko Peltonen4

1TU Wien, Vienna, Austria
{mwallinger, noellenburg}@ac.tuwien.ac.at

2Swansea University, Swansea, UK
d.w.archambault@swansea.ac.uk

3University of Bordeaux, Bordeaux, France
david.auber@u-bordeaux.fr

4Tampere University, Tampere, Finland
jaakko.peltonen@tuni.fi

Abstract
Edge-Path bundling is a recent edge bundling approach that does not incur ambiguities caused by bundling disconnected edges
together. Although the approach produces less ambiguous bundlings, it suffers from high computational cost. In this paper, we
present a new Edge-Path bundling approach that increases the computational speed of the algorithm without reducing the quality
of the bundling. First, we demonstrate that biconnected components can be processed separately in an Edge-Path bundling of a
graph without changing the result. Then, we present a new edge bundling algorithm that is based on observing and exploiting
a strong relationship between Edge-Path bundling and graph spanners. Although the worst case complexity of the approach is
the same as of the original Edge-Path bundling algorithm, we conduct experiments to demonstrate that the new approach is
5–256 times faster than Edge-Path bundling depending on the dataset, which brings its practical running time more in line with
traditional edge bundling algorithms.

Keywords: computational geometry, information visualization, visualization

CCS Concepts: • Human-centred computing → Graph drawings; • Theory of computation → Sparsification and spanners

1. Introduction

Edge-Path bundling [WAA*22] is a recent edge bundling approach
that is designed to avoid any independent edge ambiguities, which
are known to occur in edge bundling if two edges from different con-
nected components of a graph are grouped together into a common
edge bundle. Such independent edge ambiguities create the false il-
lusion of all-to-all connectivity between the two sets of endpoints on
either side of an edge bundle, even if two edges in the bundle belong
to different connected components. Edge-Path bundling is free of in-
dependent edge ambiguities by bundling long edges against existing
alternative paths between their endpoints. Hence, by design, no two
independent edges from different components can ever be bundled
against the same path. Given a particular drawing of a graph, in the
undirected case, this procedure is equivalent to bundling the cycles
and in the directed case, it is equivalent to bundling a directed edge
with a directed path that starts at the source vertex of the edge and
ends at its target. Note that in an Edge-Path bundling, there can still

be other visual ambiguities, e.g. when two bundles or edges cross
at shallow angles. But even straight-line drawings with no bundling
at all suffer from such visual edge ambiguities due to shallow angle
crossings. While Edge-Path bundling does not incur independent
edge ambiguities, it is computationally expensive, posing a barrier
for its application to larger networks. This paper presents an ap-
proach to improve the performance of Edge-Path bundling, with two
main contributions: a new Edge-Path bundling invariant, and a new
algorithm for Edge-Path bundling that improves its runtime perfor-
mance.

A new invariant. The original Edge-Path bundling was the first
algorithm to compute a bundling using the Edge-Path primitive. All
bundling algorithms turn an input drawing DG into a bundled draw-
ing �. In all previous algorithms, edges in a drawing were bundled
with other edges. In the case of Edge-Path bundling, long edges are
bundled along paths in a particular drawing—the Edge-Path prim-
itive. Many other possible algorithms can be written that use the

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

1 of 15

https://diglib.eg.orghttps://www.eg.org

http://creativecommons.org/licenses/by/4.0/

2 of 15 M. Wallinger et al. / Faster Edge-Path Bundling Through Graph Spanners

Edge-Path primitive to produce what we define as a valid Edge-
Path bundling: a bundled drawing without independent edge ambi-
guities. In this paper, we demonstrate an invariant of all Edge-Path
bundlings that can be applied in conjunction with any algorithm that
produces a valid Edge-Path bundling. The property is that each bi-
connected component of the network can be processed separately,
without influencing the resulting Edge-Path bundling. Although a
biconnected component decomposition will not change the worst-
case complexity of Edge-Path bundling, it will limit the search of
shortest path computations to within a biconnected component be-
cause primitives cannot cross biconnected components.

A new efficient algorithm. Second, we introduce a new Edge-Path
bundling algorithm based on graph spanners that reduces the prac-
tical running time of computing Edge-Path bundlings making them
competitive with previous work. A graph t-spanner is a connected
sub-graph that preserves shortest path distances between any pair
of vertices within a factor of t ≥ 1 [PS89]. The research presented
in our paper demonstrates an important connection between graph
spanners and computing an Edge-Path bundling with bounded dis-
tortion: all the edges of a graph spanner will form part of a path prim-
itive for Edge-Path bundling and conversely the set of locked edges
in the original Edge-Path bundling algorithm [WAA*22] forms a
graph spanner as long edges are only bundled against paths whose
length is below a selected distortion factor.

Accordingly, there exists an Edge-Path bundling algorithm equiv-
alent for every algorithm that computes a graph spanner. Here
we propose an algorithm based on the greedy spanner algo-
rithm [ADD*93]. For a graph G = (V,E) and a particular drawing
DG of it to be bundled, our invariant and new algorithm (S-EPB) still
have a worst-case time complexity ofO(|E|2 log |V |), but the practi-
cal runtime performance is 5–256 times faster than EPB [WAA*22]
depending on the dataset. Moreover, its bundling quality in terms of
the three originally proposed metrics ink ratio, distortion and am-
biguity is comparable. Our spanner approach does not incur inde-
pendent edge ambiguities and has performance similar to previous
CPU-based edge bundling approaches [LBA10, HvW09]. However,
all previous approaches, other than EPB and our new approach, in-
cur independent edge ambiguities.

2. Related Work

Edge bundling [LHT17b, Hol06] and confluent draw-
ings [DEGM05] have been the main approaches to reduce edge
clutter in dense, non-planar drawings of graphs. Edge-bundling
approaches turn an input drawing DG into a bundled drawing �

by clustering individual edges (or parts of them) together, either
explicitly or implicitly, reducing the visual clutter. Edge bundling
approaches suffer from independent edge ambiguities when they
group edges from separate connected components into a single
bundle that may create the (false) impression of a fully connected
graph between the endpoints of the bundle (a biclique). Confluent
drawings, as a theoretically motivated counterpart of edge bundling,
consider only bicliques for bundling, meaning that by design they
do not suffer from independent edge ambiguities. However, con-
fluent drawings do not exist for all graphs, at least according to
their original planar definition [DEGM05], and suffer from a low
degree of bundling in real graphs. Edge-Path bundling [WAA*22],

Figure 1: Illustration of the effect of independent edge ambigui-
ties. (a) Bundling two independent edges together incurring a false
connection between u and x when there is no such connection. (b)
A collection of random disconnected edges. As there is no signal,
there should not be a pattern in the bundling. (c) A bundling of this
graph with Winding Roads [LBA10]. The image clearly depicts a
pattern where there is none. Edge-Path bundling algorithms, like
the ones described in this paper, will not suffer from this drawback
by definition and will not bundle this graph.

in contrast to both approaches, given a drawing DG bundles a long
edge (u, v) ∈ E in the graph with an alternative path between u and
v that is below a threshold deviation from the Euclidean distance
of their straight-line connection. In the case of directed graphs, it
bundles a directed edge (u, v) along a directed path from u to v. In
the case of undirected graphs, the approach bundles cycles (usually
with one long edge). This definition of the Edge-Path primitive is
essentially the same as Equation (1) in Lhuillier et al. [LHT17b]
for groups of edges, but we use distortion to play the role of δ and
κ in their definition.

Independent edge ambiguities, see Figure 1a, have been noted
as an issue for over a decade [SHH11, LLCM12], leading to solu-
tions such as the one we describe here. These ambiguities do cause
concerns for visualizations when connectivity and graph topology
is of interest. However, for certain tasks and data, this is not of in-
terest. Consider trail-sets for which the location of vertices cannot
be changed (e.g. vehicle positions, locations of cities) and we are
more concerned about patterns in movement represented by the di-
rect connections of the edges. The independent edge ambiguity is
not a concern in this case and edges heading in the same direction
should be grouped together, similar to a wire tie around computer
cables. Furthermore, spatial trail-sets can be combined with a sec-
ondary structure that constrains the bundling. For example, origin–
destination trails of car traffic and a road network. The additional
information that is available can be used to infer which edges in the
trail-set should and should not be bundled.

In this paper, we aim to bundle drawings where the indepen-
dent edge ambiguities matter for the visualization task and where
patterns in connectivity beyond direct connections are important.

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

M. Wallinger et al. / Faster Edge-Path Bundling Through Graph Spanners 3 of 15

Consider Figure 1b, which contains a collection of random discon-
nected edges. Seeing it as a graph, there is no pattern in this data.
However, all edge bundling algorithms, with the exception of con-
fluent drawing algorithms, EPB, and this work, would find mislead-
ing structure in this data (see Figure 1c).

We now describe related work in these areas and conclude with a
discussion on graph spanners as we demonstrate a strong connection
between Edge-Path bundling and graph spanners.

Edge bundling. Since its introduction [Hol06], many edge
bundling algorithms have been proposed and evaluated. The
first algorithm required a hierarchy [Hol06] where internal ver-
tices of the hierarchy were used as control points. This re-
quirement for a hierarchy was relaxed and a number of algo-
rithms were written based on a variety of different methods: grids
and quad trees [LBA10, LLCM12], triangular meshes [CZQ*08],
force-directed approaches [HvW09, NHE11, SHH11], visibility
spanners [PNBH16], multilevel approaches [GHNS11] and clus-
ter hierarchies [TNI*17, LDB11, RVET14]. Image-based ap-
proaches [TE10, HET12, vCT16, EHP*11, WYY15, LHT17a],
which do not require hierarchies either, greatly accelerated the
bundling of edges by operating on the pixels of individual edges.
A density or similarity map is created at the pixel level by summing
up the contributions of all edges, after which the edges are indepen-
dently advected upstream along gradients of the map.

Furthermore, in visualizations of origin–destination trail sets,
constrained bundling approaches are commonly applied. Here, a
secondary data structure is used to constrain the bundling. For ex-
ample, vector maps are used to compute a bundling of the trail set
along paths in the secondary graph [TP15] or road networks are used
to estimate optimal parameters and adapt the kernel density estima-
tion of KDEEB [ZSJT19]. One advantage of the approach in Zeng
et al. [ZSJT19] is to morph [LLC*20] between a faithful representa-
tion of trails according to the road network and a visually simplified
representation. In contrast, Edge-Path bundling does not need a sec-
ondary data structure and purely uses elements of the input graph for
bundling. More precisely, our approach bundles long direct edges
against shortest paths in the network, which typically pass through
few nodes of high centrality.

Edge bundling has been a topic of active research for the past
one and a half decades [LHT17b] with many approaches proposed.
However, all of these edge bundling approaches suffer from the
independent edge ambiguity which can bundle edges in different
connected components together, causing false connections in the
graph to appear. This issue can have significant consequences in
networks where it creates signal where there is none (see Lhuillier
et al. [LHT17b] fig. 19 and Figure 1). The approach presented in this
paper, as in the work of Wallinger et al. [WAA*22], does not suffer
from independent edge ambiguities, greatly reducing the ambiguity
of bundled drawings.

Confluent drawings. Confluent drawings were introduced by
Dickerson et al. [DEGM05] as a way of creating planar layouts of
non-planar graphs using the existence of smooth paths in a crossing-
free system of terminals (the vertices) and junctions, as well as
arcs between pairs of terminals or junctions as the representation
of the edges of the graph. Due to this property, confluent drawings

are sometimes described as train track layouts, where two points
u, v are connected if and only if a forward-moving train can reach
v when starting in u [HPSŠ07]. A confluent edge bundle thus im-
plies full connectivity (a biclique) between the vertices on one side
with the vertices on the other side. A number of variations of con-
fluent drawings have been studied in the literature, among them
strong confluence [HPSŠ07], strict confluence [EHL*16] and �-
confluence [EGM06]. From a theoretical point of view, character-
ization and recognition problems are of interest, and it is known
that large classes of non-planar graphs admit planar confluent draw-
ings, there are also graphs that do not have planar confluent draw-
ings [DEGM05, FGKN19] and, for instance, recognizing graphs
with strict confluent drawings is NP-complete [EHL*16]. More
practical approaches [BRH*17, ZPG21] that relax some of the strict
constraints of confluent drawings have also been investigated, but
they assume full freedom to place or re-position vertices, which is
usually not permitted for spatial graphs whose vertex positions en-
code meaningful information.

Edge-Path bundling. The original Edge-Path bundling algo-
rithm [WAA*22] has the main advantage of combining a higher
degree of bundling than confluent drawings without introducing in-
dependent edge ambiguities; the approach never bundles two edges
from different connected components together and thereforewill not
create false connections between endpoints from different compo-
nents. However, the resulting bundles can still suffer from ambigu-
ities when edges or bundles cross at a flat angle close to 180◦. The
approach achieves this property by bundling edges along paths in
the graph creating Edge-Path primitives. A path does not necessar-
ily have a semantic meaning; only the positions of the vertices along
the path are used as a structure to infer control points to bundle the
edge. If sufficiently many Edge-Path primitives use similar paths
in the graph, the visual complexity of the drawing is reduced. This
approach works well on graphs of thousands of edges and is very
easy to implement, with re-implementations available [epb, HMD-
MAGB22]. However, the approach is computationally not as scal-
able as other edge bundling approaches in the literature. This pa-
per improves upon the computational performance and scalability
of Edge-Path bundling approaches.

Graph spanners. Our new Edge-Path bundling approach heav-
ily uses graph spanners to determine the paths that long edges will
be bundled against. Graph spanners are sparsification methods for a
graph to create spanning sub-graphs that do not affect shortest path
distances between vertices too much, increasing the speed of dis-
tance approximation. A (multiplicative) t-spanner of a graph G =
(V,E) with a parameter t ≥ 1 is a spanning sub-graph H = (V,E ′)
of G with E ′ ⊂ E and the property that for any pair u, v ∈ V their
shortest distance in H is at most a factor of t (called the stretch
factor) from their original distance in G, i.e. dH (u, v) ≤ tdG(u, v).
The proposed algorithm in this paper uses graph spanners as a ba-
sis for computing an Edge-Path bundling. Representative sparsified
sub-graphs have been used for visualizing and drawing graphs be-
fore [AAM06, vHW08, NOB15], whereas here we use graph span-
ners specifically for bundling. Graph spanners have been inves-
tigated for decades [Awe85, PS89] and a recently published sur-
vey [ABS*20] gives a detailed overview of different types of graph
spanners and their respective theoretical bounds. We only consider
multiplicative t-spanners in this paper and will continue to use the

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

4 of 15 M. Wallinger et al. / Faster Edge-Path Bundling Through Graph Spanners

term graph spanner to refer to this concept. Finding the sparsest
(fewest edges) or lightest (minimum total edge length) spanner has
been proven to be NP-hard [PS89, Cai94]. On the positive side, In-
teger Linear Programming (ILP) formulations exist that can pro-
vide exact solutions, but practically they only work on small graphs
of up to 100 vertices [SZ04, AHJ*19]. However, as sparsification
with spanners is important in practical applications [Cow01, CW04,
SVZ07, SS10], heuristic approaches have been published. The first
greedy algorithm was introduced by Althöfer et al. [ADD*93]
which was later improved to be less computationally expen-
sive [FG09, FG07, BCF*10], less memory intensive [ABtBB15] or
sacrificing either sparseness, lightness or runtime to improve an-
other property [RZ11, ADF*19, TZ05, ADF*19, ES16]. Approx-
imation algorithms [KP94, DN97] started to appear shortly after
the greedy algorithm and have been subsequently refined [EP01,
BGJ*12, DK11, BBM*13, DZ16]. Similarly, probabilistic ap-
proaches [EN19, MPVX15, BS07] have been explored. Although
both classes of algorithms are asymptotically faster, the guarantee
for sparseness and lightness does not improve when compared to
the greedy algorithm, and they do not generalize well to arbitrary
graphs. Recently, an experimental evaluation [CS21] compared dif-
ferent spanner algorithms on runtime, sparsity, and lightness to
clarify practical implications; they confirmed that the greedy algo-
rithm [ADD*93] provides the best balance of these three criteria.

In this paper, we show a strong connection between computing
a t-spanner and an Edge-Path bundling. Our algorithm is based on
the greedy approach [ADD*93] and produces faster practical per-
formance when compared to the original Edge-Path bundling algo-
rithm [WAA*22].

3. Algorithm

In this paper, we describe a new approach to Edge-Path bundling,
which includes two independent steps. The algorithm takes a graph
G = (V,E) and an input drawing DG. Our first step decomposes the
graph G into its biconnected components. Each component can be
processed separately as an Edge-Path primitive will never span two
biconnected components (Section 3.1). This decomposition can be
applied in conjunction with any Edge-Path bundling algorithm. Our
second step is a new algorithm for Edge-Path bundling based on
multiplicative t-spanners (Section 3.2).

3.1. Process biconnected components independently

The first step divides the graph into smaller components, the bicon-
nected components of the graph, that can be bundled independently
without changing the Edge-Path bundling of the drawing. A bicon-
nected component in a graphG is a maximal biconnected sub-graph
H of G, i.e. the removal of any single vertex in H leaves H still
connected. A connected graph can be decomposed in O(|V | + |E|)
time into its biconnected components, which are linked together at
cut vertices, i.e. vertices whose removal from G increases the num-
ber of connected components. Figure 2 shows an example of a graph
with its three biconnected components. Edge-Path bundling bundles
cycles in the undirected case, and a directed path with an edge in the
same direction in the directed case. In either case, the Edge-Path pair
forms an underlying cycle (possibly ignoring the edge directions),

Figure 2: Biconnected component decomposition of a graph (in-
dicated using colour). A graph is split into three biconnected com-
ponents at the respective cut vertices. Each component can be pro-
cessed individually as there are no cycles between components.

which is by definition biconnected. Hence any Edge-Path pair for
bundling must be contained within a single biconnected component
and we can process the biconnected components of G separately.
Although this does not provide a guaranteed improvement in worst
case complexity (the input graph may already be biconnected), it
will restrict the search radius of the shortest path computations to be
contained within the individual biconnected components improving
the running time in many cases.

3.2. Sparsification with multiplicative t-spanner

The bottleneck, in terms of practical running time, of the Edge-Path
bundling [WAA*22] algorithm is the computation of the shortest
path in a dynamically updated graph using Dijkstra’s shortest path
algorithm, which is implemented in O(|E| log |V |) runtime. This
step is repeated for each potentially bundled edge, which means
that the worst case computational complexity of the algorithm is
O(|E|2 log |V |) as shortest path calculations are repeated |E| times.
For each vertex during the path computation, all outgoing edges are
explored as they could potentially improve the length of the short-
est path. Hence reducing the total number of edges in the graph will
generally result in faster computation of paths. To obtain such a spar-
sified graph, we first calculate a corresponding t-spanner, which we
later use to calculate shortest paths that will be used to bundle edges.

Recall that a (multiplicative) t-spanner of an edge-weighted graph
G = (V,E) is a sub-graphH = (V,E ′) with the property that for any
u, v ∈ V , the graph distance in H increases by at most a factor of t,
i.e. dG(u, v) ≤ tdH (u, v). The graph distance dG(u, v) is defined as
the length of a shortest path between u and v in G using the given
edge weights as edge lengths. In a geometric graph, edge weights
are usually considered as the Euclidean distances between the end-
points.

Informally, we may exclude an edge (u, v) when constructing a
spanner if there is already an alternative path with stretch less than
t between vertices u and v. Recall that in the Edge-Path bundling
algorithm [WAA*22], an edge was only bundled against a path be-
tween its endpoints if the length of this path was less than the length
the edge times a distortion factor of k. This definition and the defi-
nition of t-spanner are equivalent in the following sense: the graph
induced by the unbundled edges in the result of Edge-Path bundling
is a k-spanner of the input graph as we have an alternative path of
stretch at most k for every bundled edge. Conversely, we can bun-
dle all the edges that were excluded from a t-spanner along their
shortest paths in the t-spanner and guarantee a bundling distortion
of at most t.

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

M. Wallinger et al. / Faster Edge-Path Bundling Through Graph Spanners 5 of 15

Algorithm 1. Greedy spanner algorithm [ADD*93].

Input: Graph G = (V,E), edge-weights w : E → R
+, stretch factor t > 1

Output: t-spanner H = (V,E ′ ⊆ E)
E ′ ← ∅
H ← (V,E ′)
sortedEdges ← sortAscending (E, w)
for e = (u, v) ∈ sortedEdges do
p← shortestPath (H, u, v)
if p.length() > t ∗ w(u, v) then
E ′ ← E ′ ∪ {e}

return H = (V,E ′)

As mentioned previously, the sparseness of the spanner H re-
duces the overall runtime as less edges need to be explored when
computing shortest paths; thus, sparser spanners having faster run-
times. However, finding the sparsest spanner—a minimum number
of edges in E ′—is NP-hard [PS89, Cai94]. Several works have been
published that present algorithms for efficiently constructing (non-
optimal) t-spanner for directed and undirected, weighted graphs.We
mainly focus on the greedy approach by Althöfer et al. [ADD*93];
other approaches are asymptotically faster but practically less effi-
cient [FS20], or have no guarantees on sparseness that are compet-
itive with the greedy approach [CS21].

Greedy spanner algorithm. Arguably the most well-studied al-
gorithm to construct a spanner is the greedy algorithm [ADD*93].
We first discuss the basic implementation, shown in Algorithm 1,
before we introduce concepts from existing literature that can fur-
ther optimize this approach.

Given an edge-weighted input graphG = (V,E) and a stretch fac-
tor t > 1, we start by creating a graph H = (V,E ′) with the same
vertex set V and an initially empty edge set E ′. Next, we sort the
edges e ∈ E in increasing order by their edge weights w(e) (e.g.
their Euclidean length) and process each edge individually in that
order. In every iteration, we perform a shortest path computation for
the endpoints of the next edge e = (u, v) on the current graph H. If
there exists no path between u and v or the length of the computed
shortest path dH (u, v) > t · w(e), we add the edge e to the edge set
E ′. At the end of the process, the graph H satisfies the t-spanner
property by construction.

We observe that the greedy spanner algorithm is agnostic towards
directed or undirected graphs and can handle both, meaning we can
do both directed and undirected bundling in this way; thus, directed
edge bundling can be computed without change to the algorithm.

Optimizing the greedy spanner. In the decades following the
publication of the original greedy spanner algorithm, some work
introduced techniques to improve the performance of this algorithm
while constructing deterministicly the same spanner.

One approach, referred to as FG-greedy [FG07, FG09], decreases
the computational cost by storing the known shortest path distances
for vertex pairs. Whenever a shortest path between u and v is cal-
culated, we update the distances from u to all vertices found dur-
ing the path computation. But instead of performing a shortest path
computation for every edge, we first check if there exists a stored

Algorithm 2. Spanner-Edge-Path bundling algorithm.

Input: Graph G = (V,E), input drawing DG, maximum distortion t > 1,
edge weight parameter κ .

Output: Control points for an Edge-Path bundled drawing �.
H = (V,E ′) ← greedySpanner(G, || · ||, t)
for e ∈ E ′ do
weight(e) ← ||e||κ

for e = (u, v) ∈ E \ E ′ do
p← shortestPath (H, u, v, weight)
if p.length() ≤ t ∗ ||e|| then
controlPoints(e) ← p.getVertexCoords()

return controlPoints

path that fulfills the stretch constraint and safely dismiss the edge in
the positive case. Otherwise, if there is no entry or the length of the
path exceeds the stretch, we perform a shortest path computation.
Due to the fact that only edges that are known to be shorter than an
already explored t-spanner path are dismissed, the algorithm pro-
duces the same t-spanner as the original algorithm, but may reduce
the required runtime.

Another observation is that the search radius for the shortest path
between u and v can be bounded by t · w(u, v) as a longer path will
immediately result in adding the edge to the spanner. So practically
speaking, we can stop the shortest path search immediately after
exceeding this threshold.

3.3. The spanner Edge-Path bundling algorithm

We will now describe our improved spanner-based Edge-Path
bundling (S-EPB) algorithm, seeAlgorithm 2. This algorithm can be
applied to an entire graph or, after computing a biconnected compo-
nent decomposition of the graph, to those components sequentially
or in parallel. Similar to Edge-Path bundling [WAA*22], the input
is a graph G = (V,E) with a drawing DG and Euclidean distance
|| · || as the edge length, a maximum distortion threshold t > 1, and
a bundling parameter κ ≥ 1. Instead of immediately processing the
edges of G, we first construct a t-spanner H = (V,E ′) based on Eu-
clidean distances as a sparse representation of G. Recall that it is
guaranteed by construction of H that each edge uv is either con-
tained in H or there is a u–v path p in H whose length exceeds
||uv|| by at most the distortion factor t. Once we have computed the
graph spanner, we assign to each spanner edge e ∈ E ′ a new param-
eterized weight w(e) = ||e||κ (similar to the approach presented by
Wallinger et al. [WAA*22]) and store it in a hash set.

Next, we iterate over all non-spanner edges in E \ E ′ to determine
their bundling paths in H. For each edge e = (u, v) in this set, we
calculate a shortest path p in H using the new edge weights. While
for κ = 1, these edge weights remain the Euclidean edge lengths
and p is a Euclidean shortest path inH, for κ > 1, we give adjustable
preference to slightly longer paths with shorter edges over shorter
paths with longer edges (from the perspective of the Euclidean met-
ric). If the Euclidean length of that path p exceeds t · ||e||, we do not
bundle e; otherwise, we assign the vertices of p as control points for
drawing the bundled edge e. This guarantees a distortion of at most
t for any bundled edge even though we use adjusted edge weights

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

6 of 15 M. Wallinger et al. / Faster Edge-Path Bundling Through Graph Spanners

Figure 3: An example graph G (a) with a 1.25-spanner H (b). The
computed Edge-Path bundling in (c) shows three bundled edges
(red) and one unbundled edge e (blue) whose shortest path (orange)
with edge weights || · ||κ for κ = 2 exceeds the maximum distortion
of 1.25||e||.

to compute the shortest bundling path p. As we show in our exper-
iments, the two parameters t and κ control both the maximum dis-
tortion and the bundling strength of the computed drawing. Figure 3
shows an example execution of Algorithm 2.

The worst case time complexity of Algorithm 2 is still
O(|E|2 log |V |), but it is practically faster than the original Edge-
Path bundling algorithm as early stages of spanner computation
have sparser graphs and the shortest paths for bundling edges are
computed on the spannerH instead of the entire graphG. The graph
spanner H can be computed in O(|E|2 log |V |) time using Algo-
rithm 1. Although the result of this algorithm is different when com-
pared to the original Edge-Path bundling approach [WAA*22], it is
still an Edge-Path bundling algorithm that creates a valid Edge-Path
bundling. Cycles are turned into Edge-Path primitives in the undi-
rected case and directed edges are turned into Edge-Path primitives
with a directed path from source vertex to target vertex in the di-
rected case.

Optimizing the shortest path computation. Instead of comput-
ing a shortest path for each edge e ∈ E \ E ′, we can reuse the short-
est path computation and process multiple edges with one compu-
tation. This variation computes paths for Edge-Path primitives by
processing all vertices of V iteratively. In each iteration, we first
compute a list of neighbours of a vertex u. We only consider vertices
which are not connected by an edge in E ′ as neighbours. Then, we
sort this list descending according to the distance between u and the
respective neighbour. We perform a Dijkstra’s shortest path compu-
tation from source vertex u to the first neighbour in the list. Once
we found the shortest path, we iterate over the list and process and
remove all neighbours where we also have a valid shortest path. If
the list is empty, we continue with the next vertex in V . Otherwise,
we compute a new shortest path between u and a new unprocessed
target neighbour.

4. Experiments

Our experimental evaluation primarily compares Edge-Path
bundling (EPB) [WAA*22] to the Spanner Edge-Path bundling
(S-EPB) introduced in this paper. We hypothesize that S-EPB is
faster and produces a bundling that is of commensurate quality. All
datasets, images, algorithm implementation and code to reproduce

Table 1: The five datasets used in the experimental section ordered by in-
creasing number of edges.

Dataset |V | |E| undir. |E| dir. |C| C>2 |cmax|
Airlines 235 1297 2101 40 6 191
Migrations 1702 6487 9726 643 14 1008
Airtraffic 1533 16,480 16,494 337 6 1187
Amazon200k 192,976 269,271 – 69,747 3838 104,368
PanamaPapers 743,253 1120,783 – 447,925 19,664 232,971

Additionally, information regarding the size of components c ∈ C after the
biconnected component decomposition is shown. |C| is the number of com-
ponents andC>2 are components with at least three edges. |cmax| is the size
of the largest component in terms of number of vertices.

the experiments can be found in the supplementary material on
OSF (osf.io/t4h6j/).

4.1. Datasets and experimental procedure

We test our S-EPB approach on the same datasets used in Wallinger
et al. [WAA*22] plus one new larger dataset (Panama Papers).

Statistics about the datasets can be seen in Table 1. The bicon-
nected component decomposition decreases the input size for com-
puting a valid Edge-Path bundling drastically. As a graph needs at
least three edges to form a valid Edge-Path primitive all components
with less than three edges can be ignored. Interestingly, all datasets
have similar structural property of many small (|ci| < 100) compo-
nents and one large component (cmax). As mentioned in Section 3.1,
we can process biconnected components in parallel. However, due
to the aforementioned structure of the graphs, the opportunity for
load balanced parallelization is not present.

The experimental setting was the following: all runtime experi-
ments were executed sequentially on an AMD Ryzen 5 5600x, with
3.7-GHz base clock 6-core CPU, but limited to one core. The L1
cache of 64KB and L2 cache of 512KB are available to each core
exclusively while the L3 cache of 32 MB is shared among all cores.
Thirty-two gigabytes of memory were available on the system; how-
ever, peak memory allocation never required that amount. The used
operating system was Ubuntu 22.04LTS. Algorithms were imple-
mented in C++ using the Open Graph algorithms and Data struc-
tures Framework (OGDF) [CGJ*13]. Graph datastructures, the bi-
connected component decomposition and Dijkstra’s shortest path
algorithm were used from OGDF. The code of the implementation
was compiled with GCC 11.2.0 for optimized performance with
compiler flag -O3.

We measured the wall clock time of the bundling algorithms, i.e.
including the biconnected component decomposition and assign-
ment of control points but excluding the loading of the graph, cal-
culation of Bézier curves for the curved edges and rendering of the
output. Our experiment procedure performed 100 runs of each in-
dividual bundling algorithm and we averaged the runtime over all
results. Both Amazon200K and Panama Papers were drawn with
FM3 [HJ04] beforehand. As these datasets are large, we only ran the
algorithm three times. For measuring memory allocation, we used
Ubuntu’s time command which summarizes system resource usage

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

http://osf.io/t4h6j/

M. Wallinger et al. / Faster Edge-Path Bundling Through Graph Spanners 7 of 15

of a programme. Here, we were mainly interested in the resident set
size which includes heap, stack and shared library memory alloca-
tion.

For the ambiguity experiments, we rendered the output exactly
the same as presented in Wallinger et al. [WAA*22]. For each edge,
we exported a list of 50 control points representing a polyline ap-
proximation of a cublic Bézier curve.

4.2. Bundling quality metrics

For evaluating the bundling quality, we use the same metrics as
Wallinger et al. [WAA*22], which we briefly describe below.

Ink reduction. The ink reduction ratio of a bundled graph lay-
out is the proportion of its active pixels (which are coloured above
some grey value threshold) compared to the active pixels of the un-
bundled layout. The smaller the ratio, the stronger the ink reduction.
Consider an m× n greyscale bitmap image I ∈ {0, . . . , 255}m×n of
a bundled graph layout �. We define its binarization IB ∈ {0, 1}m×n

as

IB(i, j) =
{
1 I(i, j) ≥ δ

0 I(i, j) < δ
, (1)

where δ ∈ {0, 1, . . . , 255} is a grey value above which we consider a
pixel active. Analogously, let J ∈ {0, . . . , 255}m×n be the greyscale
image of the unbundled layout and JB its binarization. Then the ink-
reduction inkJ (I) of I with respect to J is defined as

inkJ (I) =
∑m

i=1

∑n
j=1 I

B(i, j)∑m
i=1

∑n
j=1 J

B(i, j)
. (2)

Distortion. The next metric quantifies the average distortion of the
edges in a bundled layout � compared to their straight-line render-
ings. For an edge (u, v) ∈ E, we define ||u− v|| as its Euclidean
length and d� (u, v) as its length in �. The distortion dist(�) of lay-
out � is calculated as the average distortion of its edges

dist(�) = 1

|E|
∑

(u,v)∈E

d� (u, v)

||u− v|| . (3)

Ambiguity. The ambiguity of a bundled layout aims to quan-
tify how many wrong adjacencies in the underlying graph can
be derived or perceived from ambiguous renderings of edge or
Edge-Path bundles, and also how wrong they are in terms of
graph distance of false neighbours. We first define for each
edge e = (s, t) ∈ E and an endpoint s of e the (visually) reach-
able neighbour sets of s along e in � as N� (s, e) = {v ∈ V |
∃ ambiguous connection from s to v in �}. We say that there is such
an ambiguous connection if, for some point p on the curve of e, there
is another curve of edge e′ = (u, v) that intersects a disk Uε (p) of
radius ε around p and the angle between e and e′ within Uε (p) is
smaller than a threshold θ . In other words, the curves of edges come
very close and form a very flat angle so that the human eye tracing
e may inadvertently flip to e′ instead.

Now the reachable neighbour sets N� (s, e) may contain some
true and some false neighbours, where in case of false neigh-
bours, we can classify the degree of being false by a graph dis-
tance threshold δ ≥ 1. We define the true neighbours as Nt

� (s, e) =

{v ∈ N� (s, e) | dG(s, v) ≤ δ} and the false neighbours asN f
� (s, e) =

N� (s, e) \ Nt
� (s, e). Here dG(s, v) is the hop distance between s and

v in G, i.e. the length of the shortest unweighted path between s
and v in G. For a value of δ = 1, the true neighbours must be direct
neighbours of s, whereas for δ > 1, we accept vertices as true neigh-
bours that are at most δ hops away from s in G. We finally define
the ambiguity amb(�) of bundled layout � as

amb(�) =
∑

v∈V
∑

e=(v,w)∈E |N f
� (v, e)|∑

v∈V
∑

e=(v,w)∈E |N� (v, e)| . (4)

This value measures the proportion of false neighbours to all neigh-
bours visually implied by�, with lower values corresponding to less
ambiguous drawings.

4.3. Runtime and memory experiments

We evaluated several S-EPB variants against EPB to determine the
runtime andmemory behaviour.We also determined the effect of the
biconnected component decomposition on the different variants. In
the paper, we show images comparing EPB to S-EPB to demonstrate
that the quality is maintained with a reduction in practical running
time. For completeness, we provide all result images and metrics for
all bundling algorithms in the supplementary material.

S-EPB variants. Section 3.2 presents a number of optimizations
that can be made to the S-EPB algorithm. We tested two variants
with different approaches to compute the spanner (Greedy and FG-
Greedy) with the improved Dijkstra shortest path algorithm (V -
Dijkstra), as well as a variant that uses FG-Greedy but performs
a shortest path computation for each edge (E-Dijkstra). We also
ran all experiments once with the biconnected component decom-
position and once without biconnected component decomposition.
These variations are all meant to improve performance.

Table 2 presents the runtime of these variants and EPB. The bi-
connected component decomposition drastically decreases the run-
time of the Edge-Path bundling computation. The only exception
here is the Air Traffic dataset as the largest component contains ap-
proximately 80% of all vertices. While all variants are still consid-
erably faster than EPB, the overhead of computing the biconnected
component decomposition and the respective sub-graphs neglects
most of the speed-up when comparing S-EPB variants with and
without biconnected component decomposition

For all datasets, the proposed approach to computemultiple short-
est paths, instead of performing a shortest path computation for each
edge, improves S-EPB. However, the two variants to compute the
spanner are less clear and no variant clearly outperforms the other.
This behaviour can be explained with the overhead of tracking the
shortest distance between vertices and the correlation between den-
sity of the graph and succesful look-ups.

Large datasets. Table 2 shows the results of EPB and S-EPB on
the large datasets. Here, we were mainly interested in the scalability
of S-EPB. Generally, we see that S-EPB is 5–256 times faster de-
pending on the dataset. S-EPB with and without biconnected com-
ponent decomposition scales better with increased input data size.

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

8 of 15 M. Wallinger et al. / Faster Edge-Path Bundling Through Graph Spanners

Table 2: Comparison of different EPB and S-EPB implementations.

Undirected Directed Large undirected

Algorithm Airlines Migrations Airtraffic Airlines Migrations Airtraffic Amazon200k Panama Papers

Without Bicon. Decomp.
EPB 34 603 2670 34 599 1543 47.01 min 11.47 h
S-EPB (FG-Greedy, V -Dijkstra) 5 109 195 8 174 231 1.18 min 39.70 min
S-EPB (Greedy, V -Dijkstra) 5 110 194 8 174 232 1.17 min 45.00 min
S-EPB (FG-Greedy, SSSP Dijkstra) 13 269 524 16 346 642 1.21 min 1.17 h

With Bicon. Decomp.
EPB 32 443 2518 29 449 1522 3.96 min 1.8 h
S-EPB (FG-Greedy, V -Dijkstra) 5 71 176 7 121 220 10.98 s 9.48 min
S-EPB (Greedy, V -Dijkstra) 5 71 176 7 120 220 10.86 s 9.51 min
S-EPB (FG-Greedy, SSSP Dijkstra) 13 175 537 16 248 666 11.42 s 16.61 min

Undirected contains the undirected bundling versions of the small datasets. Directed contains the directed versions of the small datasets. Large undirected
contains the Amazon200k and Panama Papers datasets. All runtimes are given in milliseconds except indicated otherwise.

Table 3: Comparison on the small datasets of Wallinger et al. [WAA*22].

Algorithm Airlines Migrations Airtraffic Implementation

CUBu 0.01 0.01 0.01 C++; CUDA
KDEEB 0.01 0.03 0.05 C++
S-EPB 0.01 0.11 0.19 C++
S-EPB Biconn. Dec. 0.01 0.07 0.17 C++
Winding Roads 0.35 3.27 7.60 C++
Force-directed 2.34 17.97 32.50 Javascript
EPB Biconn. Dec. 0.44 0.44 2.52 C++
EPB 0.03 0.60 2.67 C++

All runtimes are given in seconds.

Memory. For the panama dataset approximately 1.45 GB of
memory are allocated for EPB and 1.55 GB for biconnected S-EPB.
A table with the respective memory allocation for each dataset and
variant can be found in the supplementary material. Memory con-
sumption does not significantly increase when comparing EPB to
any S-EPB variant. The reason here is that most memory is allocated
to represent the input with OGDF’s graph structure while both, S-
EPB and the biconnected component decomposition, only allocate
marginally more memory linear in the number of edges.

Table 4: Scores of the quality metrics for the undirected real-world datasets and a variety of undirected bundling algorithms.

US airlines Migrations Air traffic

inkJ dist amb1 amb2 inkJ dist amb1 amb2 amb3 amb4 amb5 inkJ dist amb1 amb2 amb3

Straight-line 1.00 1.00 1.00 0.66 0.03 1.00 1.00 1.00 0.67 0.39 0.13 0.06 0.04 1.00 1.00 1.00 0.54 0.10 0.00
EPB 0.57 1.07 1.03 0.79 0.05 0.58 1.06 1.02 0.68 0.34 0.10 0.05 0.04 0.60 1.10 1.06 0.58 0.14 0.01
S-EPB 0.58 1.08 1.04 0.80 0.05 0.59 1.07 1.03 0.69 0.34 0.10 0.05 0.03 0.63 1.11 1.07 0.58 0.14 0.01
CUBu 0.47 1.08 1.06 0.86 0.05 0.64 1.06 1.05 0.77 0.43 0.15 0.06 0.04 0.71 1.00 1.00 0.59 0.11 0.01
Winding Roads 0.47 1.08 1.06 0.86 0.05 0.58 1.06 1.04 0.75 0.42 0.15 0.07 0.05 0.56 1.06 1.04 0.58 0.12 0.01
Force-directed 0.77 1.04 1.02 0.73 0.04 0.77 1.12 1.06 0.76 0.44 0.15 0.07 0.05 0.79 1.06 1.02 0.54 0.10 0.00

S-EPB has parameters t = 2, κ = 2. Column dist gives mean and median. Columns ambδ are only shown for 1 ≤ δ ≤ 5 if there are non-zero entries.

Comparison to other bundling algorithms. Table 3 compares
the original edge path bundling algorithm to the graph spanner ap-
proach on the same machine as in the previous study [WAA*22].
Additionally, the original Edge-Path bundling algorithm was re-
implemented in C++ using OGDF for increased performance.
The S-EPB variant used in comparison computes the spanner with
the FG-Greedy algorithm and uses V -Dijkstra to compute shortest
paths. As seen in the table, S-EPB is on par with or outperforms all
of the other bundling algorithms that are CPU-based. The image-
and GPU-based approaches are still the fastest of all approaches,
taking less than a 100 ms even for the panama dataset. However,
all of these edge bundling algorithms have the independent edge
ambiguity. For the approaches that do not have independent edge
ambiguities, S-EPB is always faster than EPB by a factor of 5–21
times as it operates on a sparser graph.

Summary. The performance of S-EPB compared to EPB is be-
tween 5–256 times faster depending on the dataset. On the two
larger datasets, S-EPB was at least 110 times faster and shows in-
creased scalability compared to EPB. The speed-up of S-EPB com-
pared to EPB can mainly be explained by the fact that shortest
path calculations are performed on sparse sub-graphs of the input
graph. The variance of speed-up between datasets is mainly due to
structural differences between the graphs. Especially, sparsity and

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

M. Wallinger et al. / Faster Edge-Path Bundling Through Graph Spanners 9 of 15

Table 5: Scores of the quality metrics for the directed real-world datasets and a variety of directed bundling algorithms.

US airlines Migrations Air traffic

inkJ dist amb1 amb2 inkJ dist amb1 amb2 amb3 amb4 inkJ dist amb1 amb2 amb3 amb4

Straight-line 1.00 1.00 1.00 0.65 0.04 1.00 1.00 1.00 0.70 0.50 0.27 0.19 1.00 1.00 1.00 0.65 0.52 0.47 0.43
EPB 0.64 1.07 1.02 0.80 0.07 0.66 1.06 1.02 0.75 0.51 0.25 0.18 0.81 1.06 1.02 0.68 0.54 0.49 0.45
S-EPB 0.63 1.08 1.03 0.80 0.07 0.68 1.07 1.02 0.75 0.50 0.25 0.18 0.82 1.06 1.02 0.68 0.54 0.49 0.45
CUBu 0.55 1.05 1.03 0.85 0.10 0.64 1.07 1.02 0.79 0.56 0.30 0.21 0.56 1.02 1.01 0.68 0.56 0.50 0.46
Force-directed 0.88 1.11 1.05 0.86 0.10 0.83 1.14 1.07 0.86 0.62 0.33 0.22 0.84 1.60 1.39 0.72 0.57 0.51 0.46

S-EPB has parameters t = 2, κ = 2. Column dist gives mean and median. Columns ambδ are only shown for 1 ≤ δ ≤ 4 if there are non-zero entries.

distribution of lengths of shortest paths is an indicator of the mag-
nitude of speed-up. As Dijkstra’s shortest path computation stops
once the target vertex is found, a longer path usually correlates with
a higher number vertices explored. Similarly, sparsity of the span-
ner correlates with fewer vertices explored during bundling in the
S-EPB algorithm, thus, an overall speed-up. Biconnected compo-
nent decomposition did help on certain datasets, but its performance
was more variable and dataset dependent as expected. Especially,
the Panama Papers and Amazon200k datasets profit from the bi-
connected component decomposition as an Edge-Path bundling is
computed on a much smaller sub-graph; see Table 1 for details.

4.4. Quality metrics

Tables 4 and 5 show the results of the quality metric calculations
on the three small real-world datasets. As presented in Wallinger
et al. [WAA*22], the ambiguity metric is costly to compute and
could not be computed on the larger datasets. Overall, all approaches
are comparable, especially for higher values of delta. S-EPB with-
out all pairs shortest path on the spanner tends to bundle less than
the other approaches (seen by higher ink ratio and some lower am-
biguity). Therefore, we can conclude that S-EPB has a similar per-
formance to EPB on these quality metrics, but with an improvement
in terms of runtime.

4.5. Comparison of image results

Figures 4–6 show the results of EPB and S-EPB on the Airlines and
Migrations datasets, respectively. S-EPB is consistently faster when
computing a bundling of these images. Even though EPB and S-EPB
will compute different bundlings, the results look very similar as can
be seen from the images. There are small differences between the
two (burgundy bundles near Texas in Figure 4, thickness of bun-
dle near the centre of the United States in Figure 5, and bundles
across the Atlantic and Pacific in Figure 6), but the overall structure
is similar with both bundlings free of independent edge ambiguities.
Therefore, performance, in terms of speed, is greatly improved with
the drawing quality remaining the same.

In Figure 7, we vary and compare the t and κ parameters to see
how the stretch factor and bundling parameter influence the quality
of the drawing. Both results images and quality metrics are available
in this figure. The stretch factor t will determine which edges go into
the graph spanner while the bundling parameter κ determines which

Figure 4: Airlines (undirected). (a) Straight line drawing. (b) The
original Edge-Path bundling algorithm. (c) Spanner Edge-Path
bundling. Visual quality is very similar for EPB and S-EPB with
minor differences—specifically, the ocher and turquoise colour bun-
dles around Atlanta and the bundles in the Great Lakes region
(marked by circles).

are bundled (higher values of κ favour short edges on shortest paths).
When t and κ are both low, the drawing divides itself into many
bundles in a similar way to Winding Roads [LBA10]. Lower values
of t mean that more edges are present in the graph spanner which

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

10 of 15 M. Wallinger et al. / Faster Edge-Path Bundling Through Graph Spanners

Figure 5: Migrations (directed). (a) Straight line drawing. (b)
The original Edge-Path bundling algorithm. (c) Spanner Edge-Path
bundling. Visual quality is very similar for EPB and S-EPB with mi-
nor differences—specifically, the bundle at the centre of the United
States (marked by an ellipse).

results more of them being used as parts of paths. Low versions of
κ encourage bundling with low thresholds. Higher values of t and κ

result in fewer bundles andmore unbundled edges. The high value of
t will cause a sparser graph spanner meaning there fewer edges can
be used for paths, leading to fewer bundles. A high value of κ leads
to more unbundled edges as the threshold is more easily exceeded.
We can see these effects when we vary t (low values number of
bundles increase) and κ (high values less bundling) independently
through the table. As a reminder, our main experiments were run
with S-EPB t = 2, κ = 2. This value of κ is the equivalent setting
for the original Edge-Path bundling algorithm.

4.6. Unsuccessful optimizations

The following observations describe that some of the unsuccessful
optimization ideas we discarded after the experimentation with the
implementation showed that they did not have a positive effect.

One observation is that we have already computed a valid path
to bundle against when it is decided an edge will not be added

Figure 6: Airtraffic (undirected). (a) Straight line drawing. (b)
The original Edge-Path bundling algorithm. (c) Spanner Edge-Path
bundling. Visual quality is very similar for EPB and S-EPB with
minor differences—specifically, the bundles over the Atlantic and
Pacific Oceans (marked by circles).

to the spanner. Therefore, we can reuse the shortest path compu-
tations from the spanner construction for bundling edges against
paths. While this produces a valid bundling, both the runtime and
quality of the bundling are reduced. The runtime degrades because
we keep track of the predecessors during the shortest path compu-
tations. Furthermore, adapting this method to work with the FG-
greedy algorithm means that it is necessary to additionally store
shortest paths between vertices and update them, increasing mem-
ory requirements. The quality is mainly affected by the fact that
edges are bundled against shortest paths in an incomplete spanner.
Visually, this results in a low level of bundling. See the supplemen-
tary material on OSF for images.

Also, the above-mentioned issue of a low level of bundling arises
from the fact that the bundling parameter κ is not used. We tested
a variant of the above algorithm that keeps track of both || · || and
|| · ||κ during the greedy spanner construction. Vertices on the short-
est path are explored in order of || · ||κ but only if || · || cost of the
path p is also valid. While this has the desired effect of clustering
bundled edges along paths with short edges, the resulting images
are overbundled with bundles that are too tight. Furthermore, the
overhead of storing additional information during path computa-
tions affects the runtime. See the supplementary material on OSF
for images.

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

M. Wallinger et al. / Faster Edge-Path Bundling Through Graph Spanners 11 of 15

Figure 7: Migrations (undirected). Different parameters are tested. (a)–(i) Values for t ranging from 1.5 to 2.5 and κ ranging from 1 to 3.
With decreasing t, more edges are available in the spanner to be used as paths, splitting the drawing into more bundles. With increasing κ ,
fewer edges are bundled because the threshold is harder to exceed. Shorter edges are favoured for paths to be used in bundling. (j) Quality
metrics for this range of parameter values. As expected, lower values of t produce higher ink ratios, low distortion and a bit less ambiguity.
Higher values of κ can have higher ink ratio, similar distortion and similar ambiguity.

As the graph spanner does not change after the construction, we
tried to compute all shortest paths in one sweep by performing an
all-pairs-shortest-path computation. The results of this computation
was stored in a dictionary, which was used to query the paths be-
tween two end points when the remaining edges in E \ E ′ were pro-
cessed. This resulted in a minor runtime improvement for some ex-
periments, but it did not generalize to all experiments. For the larger
datasets (Amazon200k, Panama Papers), this memory overhead was
too high causing the approach to run out of memory when construct-
ing this additional data structure.

As we are mainly interested in bundling long edges, we tested in-
troducing a threshold length on the edges for bundling, which could
be used to instantly add shorter edges to the spanner. For example,
we sorted the edges in increasing order and added the first 20% of
edges to E ′ before proceeding with the greedy algorithm on the re-
maining edges. In practice, this approach added unnecessary edges

to the spanner that increased the cost of the shortest path computa-
tion and resulted in slower total runtimes.

Finally, we experimented with replacing Dijkstra’s shortest path
algorithm with A* [HNR68] and the Euclidean distance between
vertices as heuristic. While we noticed minor speed decrease for the
smaller datasets, the additional cost of pre-computing and storing
the pair-wise distances between vertices did increase the runtime
for the larger datasets.

5. Conclusion

In this paper, we presented Spanner Edge-Path bundling. This ap-
proach uses graph spanners to accelerate the computation of edge
path bundling while achieving commensurate results in terms of vi-
sual quality. The approach provides a 5–256 times speed increase

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

12 of 15 M. Wallinger et al. / Faster Edge-Path Bundling Through Graph Spanners

when compared to Edge-Path bundling, depending on the dataset
used. Although the approach has the same worst case complexity of
O(|E|2 log |V |), as the graph spanner is sparser than the full graph
G, the shortest path computations take less time. The bundling com-
puted by S-EPB is not the same as that of EPB, but both are of the
same class of algorithm that do not produce independent edge am-
biguities.

We have improved the computational performance of Edge-
Path bundling to bring it in line with other bundling approaches.
However, the approach still cannot compete with image-based ap-
proaches, such as CUBu [vCT16], which can bundle large datasets
in less than a second but suffers from independent edge ambiguities.
In future work, it would be interesting to see if image-based tech-
niques can be adapted to minimize the impact of independent edge
ambiguities in bundlings of graphs or if the computational com-
plexity, worst case or otherwise, of the approach can be reduced
by other means.

As noted in the introduction, there is a strong connection between
algorithms that produce Edge-Path bundlings and graph spanners. In
this paper, we explore greedy spanner approaches, but other span-
ner construction algorithms exist which have not been explored. For
example, probabilistic methods can produce spanners in linear time
but without the sparseness guarantees of the greedy algorithm. Sim-
ilarly, there is extensive work on increasing the efficiency of shortest
path calculations. Especially, shortest path algorithms on dynamic
data structures would be worth investigating.

As noted in the survey [LHT17b], drawings are bundled. Thus,
bundlings will vary depending on the drawing of the graph. In future
work, it would be interesting to see graph drawing algorithms that
are able to optimize EPB algorithms, and possibly traditional edge
bundling algorithms, to reduce visual clutter in drawings.

It is important to emphasize that not all the tasks edge bundling
can support require the complete absence of independent edge am-
biguities. Traditional edge bundling algorithms group edges headed
in the same direction together, and as mentioned in related work, are
more appropriate for the case of trail-sets. In the case of trajectories
or trails, when the edges are a group of trajectories that start in one
location and end up in another, Edge-Path bundling is not possible
as no Edge-Path primitives exist and clustering groups of edges in
the layout is sufficient. Future work should consider ways of deter-
mining when the extra constraints of Edge-Path bundling are needed
to support the user tasks.

Conceptually, Edge-Path bundling removes all independent edge
ambiguities, however, in cases where two bundles or edges cross at
shallow angles there can still be visual ambiguities. Future research
could focus on computing a different set of control points that re-
solves this issue.

Last, Edge-Path bundling uses the vertices of a path as a structure
to infer control points of the curve representing an edge. However,
depending on the context of the underlying data such a path might
imply semantic meaning. Directions of future work could tackle this
observation by decoupling the vertices of a path and the implied
control points.

Acknowledgements

The authors have nothing to report.

References

[AAM06] Archambault D., Auber D., Munzner T.: Smash-
ing peacocks further: Drawing quasi-trees from biconnected
components. IEEE Transactions on Visualization and Computer
Graphics 12, 05 (2006), 813–820. doi:10.1109/TVCG.2006.
177

[ABS*20] Ahmed A. R., Bodwin G., Sahneh F. D., Hamm K.,
Jebelli M. J. L., Kobourov S. G., Spence R.: Graph spanners:
A tutorial review. Computer Science Review 37 (2020), 100253.
doi:10.1016/j.cosrev.2020.100253

[ABtBB15] Alewijnse S. P. A., Bouts Q. W., ten Brink A.
P., Buchin K.: Computing the greedy spanner in linear space.
Algorithmica 73, 3 (2015), 589–606. doi:10.1007/s00453-015-
0001-2

[ADD*93] Althöfer I., Das G., Dobkin D. P., Joseph D., Soares
J.: On sparse spanners of weighted graphs. Discret. Comput.
Geom. 9 (1993), 81–100. doi:10.1007/BF02189308

[ADF*19] Alstrup S., Dahlgaard S., Filtser A., Stöckel M.,
Wulff-Nilsen C.: Constructing light spanners deterministically
in near-linear time. In Proceedings of the 27th Annual European
Symposium on Algorithms, LIPIcs (2019), vol. 144, pp. 4:1–4:15.
doi:10.4230/LIPIcs.ESA.2019.4

[AHJ*19] Ahmed A. R., Hamm K., Jebelli M. J. L., Kobourov
S. G., Sahneh F. D., Spence R.: Approximation algorithms and
an integer program for multi-level graph spanners. In Analysis of
Experimental Algorithms - Special Event, SEA2 Revised Selected
Papers, LNCS (vol. 11544). Springer, Cham (2019), pp. 541–562.
doi:10.1007/978-3-030-34029-2_35

[Awe85] Awerbuch B.: Complexity of network synchronization.
Journal of the ACM 32, 4 (1985), 804–823. doi:10.1145/4221.
4227

[BBM*13] Berman P., Bhattacharyya A., Makarychev K.,
Raskhodnikova S., Yaroslavtsev G.: Approximation algo-
rithms for spanner problems and Directed Steiner Forest. Infor-
mation and Computation 222 (2013), 93–107. doi:10.1016/j.ic.
2012.10.007

[BCF*10] Bose P., Carmi P., Farshi M., Maheshwari A., Smid
M. H. M.: Computing the greedy spanner in near-quadratic time.
Algorithmica 58, 3 (2010), 711–729. doi:10.1007/s00453-009-
9293-4

[BGJ*12] Bhattacharyya A., Grigorescu E., Jung K.,
Raskhodnikova S., Woodruff D. P.: Transitive-closure span-
ners. SIAM Journal on Computing 41, 6 (2012), 1380–1425.
doi:10.1137/110826655

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

https://doi.org/10.1109/TVCG.2006.177
https://doi.org/10.1109/TVCG.2006.177
https://doi.org/10.1016/j.cosrev.2020.100253
https://doi.org/10.1007/s00453-015-0001-2
https://doi.org/10.1007/s00453-015-0001-2
https://doi.org/10.1007/BF02189308
https://doi.org/10.4230/LIPIcs.ESA.2019.4
https://doi.org/10.1007/978-3-030-34029-2_35
https://doi.org/10.1145/4221.4227
https://doi.org/10.1145/4221.4227
https://doi.org/10.1016/j.ic.2012.10.007
https://doi.org/10.1016/j.ic.2012.10.007
https://doi.org/10.1007/s00453-009-9293-4
https://doi.org/10.1007/s00453-009-9293-4
https://doi.org/10.1137/110826655

M. Wallinger et al. / Faster Edge-Path Bundling Through Graph Spanners 13 of 15

[BRH*17] Bach B., Riche N. H., Hurter C., Marriott K.,
Dwyer T.: Towards unambiguous edge bundling: Investigating
confluent drawings for network visualization. IEEE Transactions
on Visualization and Computer Graphics 23, 1 (2017), 541–550.
doi:10.1109/TVCG.2016.2598958

[BS07] Baswana S., Sen S.: A simple and linear time randomized
algorithm for computing sparse spanners in weighted graphs.
Random Structures & Algorithms 30, 4 (2007), 532–563. doi:10.
1002/rsa.20130

[Cai94] Cai L.: NP-completeness of minimum spanner problems.
Discrete Applied Mathematics 48, 2 (1994), 187–194. doi:10.
1016/0166-218X(94)90073-6

[CGJ*13] Chimani M., Gutwenger C., Jünger M., Klau G.
W., Klein K., Mutzel P.: The open graph drawing framework
(OGDF). In Handbook on Graph Drawing and Visualization. R.
Tamassia (Ed.). Chapman andHall/CRC, Boca Raton, FL (2013),
pp . 543–569.

[Cow01] Cowen L.: Compact routing with minimum stretch. Jour-
nal of Algorithms 38, 1 (2001), 170–183. doi:10.1006/jagm.
2000.1134

[CS21] Chimani M., Stutzenstein F.: Spanner approximations
in practice. In 30th Annual European Symposium on Algorithms
(ESA 2022). Leibniz International Proceedings in Informatics
(LIPIcs) (2022). S. Chechik, G. Navarro, E. Rotenberg and
G. Herman (Eds.), vol. 244: pp. 37:1–37:15. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik: Dagstuhl, Germany. https:
//drops.dagstuhl.de/opus/volltexte/2022/16975

[CW04] Cowen L., Wagner C. G.: Compact roundtrip routing in
directed networks. Journal of Algorithms 50, 1 (2004), 79–95.
doi:10.1016/j.jalgor.2003.08.001

[CZQ*08] CuiW., Zhou H., Qu H., Wong P. C., Li X.: Geometry-
based edge clustering for graph visualization. IEEE Transactions
on Visualization and Computer Graphics 14, 6 (2008), 1277–
1284. doi:10.1109/TVCG.2008.135

[DEGM05] Dickerson M., Eppstein D., Goodrich M. T., Meng
J. Y.: Confluent drawings: Visualizing non-planar diagrams in a
planar way. Journal of Graph Algorithms and Applications 9, 1
(2005), 31–52. doi:10.7155/jgaa.00099

[DK11] DinitzM., KrauthgamerR.: Directed spanners via flow-
based linear programs. In Proceedings of the 43rd ACM Sym-
posium on Theory of Computing (STOC) (2011), pp. 323–332.
doi:10.1145/1993636.1993680

[DN97] Das G., Narasimhan G.: A fast algorithm for construct-
ing sparse euclidean spanners. International Journal of Compu-
tational Geometry & Applications 7, 4 (1997), 297–315. doi:10.
1142/S0218195997000193

[DZ16] Dinitz M., Zhang Z.: Approximating low-stretch span-
ners. In Proceedings of the Twenty-Seventh Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA (2016), pp. 821–840.
doi:10.1137/1.9781611974331.ch59

[EGM06] Eppstein D., Goodrich M. T., Meng J. Y.: Delta-
confluent drawings. In Graph Drawing (GD’05), LNCS (2006),
Springer, vol. 3843, pp. 165–176. doi:10.1007/11618058_
16

[EHL*16] Eppstein D., Holten D., Löffler M., Nöllenburg
M., Speckmann B., Verbeek K.: Strict confluent drawing. Jour-
nal of Computational Geometry 7, 1 (2016), 22–46. doi:10.
20382/jocg.v7i1a2

[EHP*11] Ersoy O., Hurter C., Paulovich F., Cantareiro G.,
Telea A.: Skeleton-based edge bundling for graph visualization.
IEEE Transactions on Visualization and Computer Graphics 17,
12 (2011), 2364–2373. doi:10.1109/TVCG.2011.233

[EN19] Elkin M., Neiman O.: Efficient algorithms for construct-
ing very sparse spanners and emulators. ACM Transactions on
Algorithms 15, 1 (2019), 4:1–4:29. doi:10.1145/3274651

[EP01] Elkin M., Peleg D.: Approximating k-spanner problems
for k>2. In Proceedings of the 8th International IPCO Confer-
ence on Integer Programming and Combinatorial Optimization
(2001), LNCS, Springer, vol. 2081, pp. 90–104. doi:10.1007/3-
540-45535-3_8

[epb] The Edgbundle R Package. https://github.com/schochastics/
edgebundle. Accessed: October 30, 2021.

[ES16] Elkin M., Solomon S.: Fast constructions of lightweight
spanners for general graphs. ACM Transactions on Algorithms
12, 3 (2016), 29:1–29:21. doi:10.1145/2836167

[FG07] Farshi M., Gudmundsson J.: Experimental study of ge-
ometric t-spanners: A running time comparison. In Proceed-
ings of the 6th International Workshop on Experimental Algo-
rithms, WEA, LNCS (2007), Springer, vol. 4525, pp. 270–284.
doi:10.1007/978-3-540-72845-0_21

[FG09] Farshi M., Gudmundsson J.: Experimental study of ge-
ometric t-spanners. ACM Journal of Experimental Algorithmics
14 (2009). doi:10.1145/1498698.1564499

[FGKN19] Förster H., Ganian R., Klute F., Nöllenburg M.:
On strict (outer-) confluent graphs. In Graph Drawing and Net-
work Visualization (GD’19), LNCS (vol. 11904). Springer, Cham
(2019), pp. 147–161. doi:10.1007/978-3-030-35802-0_12

[FS20] Filtser A., Solomon S.: The greedy spanner is existen-
tially optimal. SIAM Journal on Computing 49, 2 (2020), 429–
447. doi:10.1137/18M1210678

[GHNS11] Gansner E. R., Hu Y., North S., Scheidegger C.:
Multilevel agglomerative edge bundling for visualizing large
graphs. In Proceedings of the Pacific Visualization Symposium
(2011), IEEE, pp. 187–194. doi:10.1109/PACIFICVIS.2011.
5742389

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

https://doi.org/10.1109/TVCG.2016.2598958
https://doi.org/10.1002/rsa.20130
https://doi.org/10.1002/rsa.20130
https://doi.org/10.1016/0166-218X(94)90073-6
https://doi.org/10.1016/0166-218X(94)90073-6
https://doi.org/10.1006/jagm.2000.1134
https://doi.org/10.1006/jagm.2000.1134
https://drops.dagstuhl.de/opus/volltexte/2022/16975
https://drops.dagstuhl.de/opus/volltexte/2022/16975
https://doi.org/10.1016/j.jalgor.2003.08.001
https://doi.org/10.1109/TVCG.2008.135
https://doi.org/10.7155/jgaa.00099
https://doi.org/10.1145/1993636.1993680
https://doi.org/10.1142/S0218195997000193
https://doi.org/10.1142/S0218195997000193
https://doi.org/10.1137/1.9781611974331.ch59
https://doi.org/10.1007/11618058_16
https://doi.org/10.1007/11618058_16
https://doi.org/10.20382/jocg.v7i1a2
https://doi.org/10.20382/jocg.v7i1a2
https://doi.org/10.1109/TVCG.2011.233
https://doi.org/10.1145/3274651
https://doi.org/10.1007/3-540-45535-3_8
https://doi.org/10.1007/3-540-45535-3_8
https://github.com/schochastics/edgebundle
https://github.com/schochastics/edgebundle
https://doi.org/10.1145/2836167
https://doi.org/10.1007/978-3-540-72845-0_21
https://doi.org/10.1145/1498698.1564499
https://doi.org/10.1007/978-3-030-35802-0_12
https://doi.org/10.1137/18M1210678
https://doi.org/10.1109/PACIFICVIS.2011.5742389
https://doi.org/10.1109/PACIFICVIS.2011.5742389

14 of 15 M. Wallinger et al. / Faster Edge-Path Bundling Through Graph Spanners

[HET12] Hurter C., Ersoy O., Telea A.: Graph bundling by ker-
nel density estimation. Computer Graphics Forum 31, 3 (2012),
865–874. doi:10.1111/j.1467-8659.2012.03079.x

[HJ04] Hachul S., Jünger M.: Drawing large graphs with a
potential-field-based multilevel algorithm. In Proceedings of the
International Symposium on Graph Drawing (2004), pp . 285–
295.

[HMDMAGB22] Hassan-Montero Y., De-Moya-Anegón F.,
Guerrero-Bote V. P.: SCImago graphica: A new tool for ex-
ploring and visually communicating data. Profesional de la in-
formación 31, 5 (Sep. 2022). doi:10.3145/epi.2022.sep.02

[HNR68] Hart P. E., Nilsson N. J., Raphael B.: A formal ba-
sis for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science&Cybernetics 4, 2 (1968), 100–
107. doi:10.1109/TSSC.1968.300136

[Hol06] Holten D.: Hierarchical edge bundles: Visualization of
adjacency relations in hierarchical data. IEEE Transactions on
Visualization and Computer Graphics 12, 5 (2006), 741–748.
doi:10.1109/TVCG.2006.147

[HPSŠ07] Hui P., Pelsmajer M. J., Schaefer M., Štefankovič
D.: Train tracks and confluent drawings. Algorithmica 47 (2007),
465–479. doi:10.1007/s00453-006-0165-x

[HvW09] HoltenD., vanWijk J. J.: Force-directed edge bundling
for graph visualization. Computer Graphics Forum 28, 3 (2009),
983–990. doi:10.1111/j.1467-8659.2009.01450.x

[KP94] Kortsarz G., Peleg D.: Generating sparse 2-spanners.
Journal of Algorithms 17, 2 (1994), 222–236. doi:10.1006/jagm.
1994.1032

[LBA10] Lambert A., Bourqui R., Auber D.: Winding Roads:
Routing edges into bundles. Computer Graphics Forum 29, 3
(2010), 853–862. doi:10.1111/j.1467-8659.2009.01700.x

[LDB11] Lambert A., Dubois J., Bourqui R.: Pathway preserv-
ing representation of metabolic networks. Computer Graphics
Forum 30, 3 (2011), 1021–1030. doi:10.1111/j.1467-8659.2011.
01951.x

[LHT17a] Lhuillier A., Hurter C., Telea A.: FFTEB: Edge
bundling of huge graphs by the fast fourier transform. In Pro-
ceedings of the IEEE Pacific Visualization Symposium (2017),
pp. 190–199. doi:10.1109/PACIFICVIS.2017.8031594

[LHT17b] Lhuillier A., Hurter C., Telea A.: State of the art in
edge and trail bundling techniques. Computer Graphics Forum
36, 3 (2017), 619–645. doi:10.1111/cgf.13213

[LLC*20] Lyu Y., Liu X., Chen H., Mangal A., Liu K., Chen
C., Lim B. Y.: OD morphing: Balancing simplicity with faithful-
ness for OD bundling. IEEE Transactions on Visualization and
Computer Graphics 26, 1 (2020), 811–821. doi:10.1109/TVCG.
2019.2934657

[LLCM12] Luo S., Liu C., Chen B., MaK.: Ambiguity-free edge-
bundling for interactive graph visualization. IEEE Transactions
on Visualization and Computer Graphics 18, 5 (2012), 810–821.
doi:10.1109/TVCG.2011.104

[MPVX15] Miller G. L., Peng R., Vladu A., Xu S. C.: Im-
proved parallel algorithms for spanners and hopsets. In Pro-
ceedings of the 27th ACM on Symposium on Parallelism in Al-
gorithms and Architectures, SPAA (2015), ACM, pp. 192–201.
doi:10.1145/2755573.2755574

[NHE11] Nguyen Q. H., Hong S., Eades P.: TGI-EB: A new
framework for edge bundling integrating topology, geometry
and importance. In Graph Drawing (GD’11), LNCS (vol. 7034).
Springer, Berlin (2011), pp. 123–135. doi:10.1007/978-3-642-
25878-7_13

[NOB15] Nocaj A., Ortmann M., Brandes U.: Untangling the
hairballs of multi-centered, small-world online social media net-
works. Journal of Graph Algorithms and Applications 19, 2
(2015), 595–618. doi:10.7155/jgaa.00370

[PNBH16] Pupyrev S., Nachmanson L., Bereg S., Holroyd A.
E.: Edge routing with ordered bundles. Computational Geometry
52 (2016), 18–33. doi:10.1016/j.comgeo.2015.10.005

[PS89] Peleg D., Schäffer A. A.: Graph spanners. Jour-
nal of Graph Theory 13, 1 (1989), 99–116. doi:10.1002/jgt.
3190130114

[RVET14] Reniers D., Voinea L., Ersoy O., Telea A.: The
Solid* toolset for software visual analytics of program structure
and metrics comprehension: From research prototype to prod-
uct. Science of Computer Programming 79 (2014), 224–240.
doi:10.1016/j.scico.2012.05.002

[RZ11] Roditty L., Zwick U.: On dynamic shortest paths prob-
lems. Algorithmica 61, 2 (2011), 389–401. doi:10.1007/s00453-
010-9401-5

[SHH11] Selassie D., Heller B., Heer J.: Divided edge bundling
for directional network data. IEEE Transactions on Visualization
and Computer Graphics 17, 12 (2011), 2354–2363. doi:10.1109/
TVCG.2011.190

[SS10] Shpungin H., Segal M.: Near-optimal multicriteria span-
ner constructions in wireless ad hoc networks. IEEE/ACM Trans-
actions on Networking 18, 6 (2010), 1963–1976. doi:10.1109/
TNET.2010.2053381

[SVZ07] Schindelhauer C., Volbert K., Ziegler M.: Geomet-
ric spanners with applications in wireless networks. Computa-
tional Geometry 36, 3 (2007), 197–214. doi:10.1016/j.comgeo.
2006.02.001

[SZ04] Sigurd M., Zachariasen M.: Construction of minimum-
weight spanners. In Proceedings of the 12th Annual European
Symposium on Algorithms - ESA 2004, LNCS (2004), vol. 3221,
pp. 797–808. doi:10.1007/978-3-540-30140-0_70

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

https://doi.org/10.1111/j.1467-8659.2012.03079.x
https://doi.org/10.3145/epi.2022.sep.02
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TVCG.2006.147
https://doi.org/10.1007/s00453-006-0165-x
https://doi.org/10.1111/j.1467-8659.2009.01450.x
https://doi.org/10.1006/jagm.1994.1032
https://doi.org/10.1006/jagm.1994.1032
https://doi.org/10.1111/j.1467-8659.2009.01700.x
https://doi.org/10.1111/j.1467-8659.2011.01951.x
https://doi.org/10.1111/j.1467-8659.2011.01951.x
https://doi.org/10.1109/PACIFICVIS.2017.8031594
https://doi.org/10.1111/cgf.13213
https://doi.org/10.1109/TVCG.2019.2934657
https://doi.org/10.1109/TVCG.2019.2934657
https://doi.org/10.1109/TVCG.2011.104
https://doi.org/10.1145/2755573.2755574
https://doi.org/10.1007/978-3-642-25878-7_13
https://doi.org/10.1007/978-3-642-25878-7_13
https://doi.org/10.7155/jgaa.00370
https://doi.org/10.1016/j.comgeo.2015.10.005
https://doi.org/10.1002/jgt.3190130114
https://doi.org/10.1002/jgt.3190130114
https://doi.org/10.1016/j.scico.2012.05.002
https://doi.org/10.1007/s00453-010-9401-5
https://doi.org/10.1007/s00453-010-9401-5
https://doi.org/10.1109/TVCG.2011.190
https://doi.org/10.1109/TVCG.2011.190
https://doi.org/10.1109/TNET.2010.2053381
https://doi.org/10.1109/TNET.2010.2053381
https://doi.org/10.1016/j.comgeo.2006.02.001
https://doi.org/10.1016/j.comgeo.2006.02.001
https://doi.org/10.1007/978-3-540-30140-0_70

M. Wallinger et al. / Faster Edge-Path Bundling Through Graph Spanners 15 of 15

[TE10] Telea A., Ersoy O.: Image-based edge bundles: Sim-
plified visualization of large graphs. Computer Graphics Fo-
rum 29, 3 (2010), 843–852. doi:10.1111/j.1467-8659.2009.
01680.x

[TNI*17] Toeda N., Nakazawa R., Itoh T., Saito T., Archam-
bault D.: Convergent drawing for mutually connected directed
graphs. Journal of Visual Languages & Computing 43 (2017),
83–90. doi:10.1016/j.jvlc.2017.09.004

[TP15] Thöny M., Pajarola R.: Vector map constrained path
bundling in 3D environments. In Proceedings of the 6th ACM
SIGSPATIAL International Workshop on GeoStreaming, IWGS
2015, November 3–6, 2015 (Bellevue, WA, USA, Nov. 2015), F.
B. Kashani, C. Zhang and A. M. Hendawi (Eds.), ACM, pp. 33–
42. doi:10.1145/2833165.2833168

[TZ05] Thorup M., Zwick U.: Approximate distance oracles.
Journal of the ACM 52, 1 (2005), 1–24. doi:10.1145/1044731.
1044732

[vCT16] van der ZwanM., Codreanu V., Telea A.: CUBu: uni-
versal real-time bundling for large graphs. IEEE Transactions on
Visualization and Computer Graphics 22, 12 (2016), 2550–2563.
doi:10.1109/TVCG.2016.2515611

[vHW08] van Ham F., Wattenberg M.: Centrality based visual-
ization of small world graphs.Computer Graphics Forum (2008).
doi:10.1111/j.1467-8659.2008.01232.x

[WAA*22] Wallinger M., Archambault D., Auber D., Nöl-
lenburg M., Peltonen J.: Edge-path bundling: A less ambigu-
ous edge bundling approach. IEEE Transactions on Visualization
and Computer Graphics (2022), 313–323. doi:10.1109/TVCG.
2021.3114795

[WYY15] Wu J., Yu L., Yu H.: Texture-based edge bundling: A
web-based approach for interactively visualizing large graphs.
In Proceedings of the IEEE Big Data (2015), pp. 2501–2508.
doi:10.1109/BigData.2015.7364046

[ZPG21] Zheng J. X., Pawar S., Goodman D. F. M.: Fur-
ther towards unambiguous edge bundling: Investigating power-
confluent drawings for network visualization. IEEE Transactions
on Visualization and Computer Graphics 27, 3 (2021), 2244–
2249. doi:10.1109/TVCG.2019.2944619

[ZSJT19] ZengW., Shen Q., Jiang Y., Telea A. C.: Route-aware
edge bundling for visualizing origin-destination trails in urban
traffic.Computer Graphics Forum 38, 3 (2019), 581–593. doi:10.
1111/cgf.13712

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

https://doi.org/10.1111/j.1467-8659.2009.01680.x
https://doi.org/10.1111/j.1467-8659.2009.01680.x
https://doi.org/10.1016/j.jvlc.2017.09.004
https://doi.org/10.1145/2833165.2833168
https://doi.org/10.1145/1044731.1044732
https://doi.org/10.1145/1044731.1044732
https://doi.org/10.1109/TVCG.2016.2515611
https://doi.org/10.1111/j.1467-8659.2008.01232.x
https://doi.org/10.1109/TVCG.2021.3114795
https://doi.org/10.1109/TVCG.2021.3114795
https://doi.org/10.1109/BigData.2015.7364046
https://doi.org/10.1109/TVCG.2019.2944619
https://doi.org/10.1111/cgf.13712
https://doi.org/10.1111/cgf.13712

