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Abstract
Vectorizing line drawings is a fundamental component of the workflow in various applications such as graphic design and com-
puter animation. A practical vectorization tool is desired to produce high-quality curves that are faithful to the original inputs
and close to the connectivity of human drawings. The existing line vectorization approaches either suffer from low geometry
accuracy or incorrect connectivity for noisy inputs or detailed complex drawings. We propose a novel line drawing vectorization
framework based on coarse-to-fine curve network optimization. Our technique starts with an initial curve network generated by
an existing tracing method. It then performs a global optimization which fits the curve network to image centrelines. Finally, our
method performs a finer optimization in local junction regions to achieve better connectivity and curve geometry around junc-
tions. We qualitatively and quantitatively evaluate our system on line drawings with varying image quality and shape complexity,
and show that our technique outperforms existing works in terms of curve quality and computational time.

Keywords: methods and applications, line drawings, vectorization

CCS Concepts: • Computing methodologies → Image manipulation; Shape modelling

1. Introduction

The vectorization of line drawings is an important component of the
workflow in graphic design and computer animation. It serves as a
pre-processing step for many applications such as animated con-
struction of line drawings [FZLM11] and creation of curve-based
vector graphics [OBW*08, FSH11]. A practical vectorization tool
is desired to produce high-quality curves that are faithful to the in-
put line drawings and close to the connectivity of human drawings.
The quality of vectorization has a high impact on downstream ap-
plications.

Software tools for vectorization of line art include Adobe Live
Trace, Inkscape Potrace [Sel03], VectorMagic, WinTopo [ZS84],
etc. The existing tools are efficient but often fail to deal with de-
tailed complex drawings. The traditional methods based on tracing
[BF12] or skeletonization [NHS*13] are not robust to noisy inputs
or complex junctions. The modern techniques rely on deep learn-
ing or frame fields [BS19]. However, the deep learning approaches
[GZH*19, MSSG*21] are not good at geometry modelling, even
in areas without ambiguity. Frame fields robustly distinguish direc-

tions around junctions. However, extracting curves from a frame
field often produces artifacts. The approach of Bessmeltsev and
Solomon [BS19] traced along the frame field and thus only distin-
guishes X- and T-junctions. Puhachov et al. [PNCB21] improved
curve extraction based on image junction detection, which, how-
ever, leads to incorrect connectivity due to lack of detection of Y-
junctions. A quick comparison to existing methods is demonstrated
in Figure 2.

To effectively and efficiently produce high-quality curves, we
propose a novel coarse-to-fine optimization framework. We observe
that compared with ambiguous directions in noisy and junction ar-
eas, image gradients containing magnitudes are more reliable (see
a comparison in Figure 1a,b). Thus by taking image gradients as
external forces, our optimization algorithm always keeps curves lo-
cated at image centrelines. Our method starts with a curve network
initialized by an existing tracing method [BF12] (Figure 1a). It then
performs a global optimization, leading to accurate curve geometry
in non-junction regions and coarse refinement of junction positions
(Figure 1b). Our method finally detects junction regions based on
the coarse solution and perform a local optimization in each junction
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Figure 1: Given a line drawing image, our method first derives a tangent vector field from the input image and traces it to get an initial curve
network (a). It then performs a global optimization that fits the curve network to image centrelines by taking the gradient vector field as an
external force (b). Our method finally detects junction regions based on (b) and performs a local optimization in each junction region (c). Our
coarse-to-fine optimization framework is able to produce high-quality curves (as shown right) with low computational cost.

region, aiming to achieve more continuous connectivity and better
curve geometry around junctions (Figure 1c).

Our system is efficient since our optimization solvers perform on
sparse curve points rather than dense pixels. In contrast, the frame
field-based methods [BS19, PNCB21] computed the frame field by
a global optimization on a pixel grid, and deep learning-based meth-
ods [GZH*19,MSSG*21] alsomake computations on image pixels.

To demonstrate the effectiveness of our proposed method, we
qualitatively and quantitatively evaluate our system on line draw-
ings with varying image quality and shape complexity.We show that
our technique outperforms existing works in terms of curve quality
and computational speed. The main contributions of our work are
as follows:

• A novel gradient-driven curve network optimization algorithm for
line vectorization, which robustly forces a given curve network to
fit the centrelines of an input line drawing image.

• A novel line drawing vectorization framework based on coarse-
to-fine curve network optimization, which is able to produce high-
quality curves with low computational cost.

2. Related Work

Vectorization of Line Drawings. The early studies on line vec-
torization often suffer from serious artifacts on line art with com-
plex shapes, including the tracing methods [SSC*00, SSTC02] and
the skeletonization methods [ZS84, ZY01]. Improved tracing ap-
proaches [BF12, CLMP15, NS19] can produce more promising
tracing results. However, they still fail on ambiguous junctions due
to unreliable tracing guides. Recently, Mo et al. [MSSG*21] pro-
posed a learning-based tracing approach. Their deep learning frame-
work focuses on image coverage and thus has few advantages in
capturing geometry and topology. In contrast, our method takes the
tracing process as an initial step, and then corrects the geometry and
topology by our coarse-to-fine optimization algorithm.

Recently, many learning-based methods have been proposed for
this task. However, these works are either not suitable for noisy in-
puts (e.g. noisy scanned pencil drawings in Figure 10) [KWÖG18,
GZH*19, BCY*21, DYH*21], or not good at geometry modelling
on detailed complex drawings [EVA*20, MSSG*21].

The recent frame field-based methods target noisy scanned in-
puts and detailed complex drawings. For example, Bessmeltsev and
Solomon [BS19] proposed the frame field to disambiguate direc-
tions. However, tracing along the frame field only distinguishes
X- and T-junctions. Stanko et al. [SBBB20] explored a parame-
terization approach, but it tends to over-simplify the shapes. Puha-
chov et al. [PNCB21] improved curve extraction by detecting junc-
tions, but introduced extra connectivity artifacts due to lack of Y-
junction detection. Besides, frame field-based methods are high
computational complexity, thus greatly limiting their practical us-
age. In contrast, our method is more efficient and produces re-
sults with better connectivity (see comparisons in Figure 2 and
Section 5).

There exist several techniques focusing on topology reconstruc-
tion [NHS*13, GZH*19]. We are inspired by these approaches that
first built base centrelines and then re-constructed the topology at
junctions. Noris et al. [NHS*13] removed the centrelines inside
the junction regions and reconnected those outside. Their approach
might make the reconstructed curves deviate from the original im-
age lines. Our optimization method avoids such problems by always
keeping curves located at image centrelines. Guo et al. [GZH*19]
proposed a learning-basedmethod. However, their model is not suit-
able for noisy inputs as shown in their article. In contrast, our system
works well on both clean and noisy drawings.

Sketchy drawings vectorization. Vectorization methods for
sketchy line drawings [FLB16, PPM18] adopted a region-based
manner and were not suitable for line drawings with many open
curves. Besides, these approaches designed for sketchy drawings
focus on simplifying sketches and thus often fail to deal with com-
plex shapes, even on clean line drawings.
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Figure 2: The traditional method [NHS*13] is sensitive to noisy
inputs. The deep learning approach [MSSG*21] suffers from geo-
metrical artifacts. Frame field-based approaches [BS19, PNCB21]
are more precise but suffer from incorrect connectivity at complex
junctions. The topology comparison shows that Puhachov et al.’s
results contain long redundant curves (for clarity, we draw them
with small offsets), though the connectivity of these curves is visu-
ally correct. Our method produces higher quality curves in terms of
geometry and topology.

Sketchy simplification. Sketchy image simplification aims to
transfer sketchy line drawings to clean drawings. The existing so-
lutions for this task include local filter-based methods [BCF*07,
DCP17] and deep learning-based approaches [SSISI16, SSII18,
XXM*21, MKDM22]. The difference between these methods and
ours is that they generate bitmap images while our work produces
vector curves. The sketchy image simplification tools can work as a
pre-processing step for vectorizing line drawings.

Another related problem is sketchy vector curve simplification,
including the clustering methods [BTS05, LRS18], the region-
based approach [LWH15] and the global optimization approach
[PvMLV*21]. The difference is that these works take vectors as

inputs and aim to generate clean curves, while our method produces
vectors from the input rasterized bitmap images.

3. Overview

The workflow of our approach is shown in Figure 3. We first adopt
a tracing approach to generate an initial curve network, which cap-
tures the raw geometry and connectivity (Figure 3b and Section 4.1).
We then refine the initial curve network in two optimization steps:
(1) globally optimize the overall geometry and junction positions
by taking the image gradients to force the curve network to image
centrelines (Figure 3c,d and Section 4.2); and (2) locally optimize
the junction position and curve pieces in each junction region (Fig-
ure 3e,f and Section 4.3) by taking the connectivity inferred from the
result of the global optimization step as soft constraints (Figure 3i).
At each step, we formulate an energy minimization problem and
employ an iterative solver. Our optimization solvers can converge
in several iterations.

4. Methodology

4.1. Initialization by tracing

To produce an initial curve network, we use a tracing method based
on [BF12]. The method of Bao and Fu [BF12] distinguishes local
ambiguities due to: (1) tracing directions determined by an orienta-
tion field and the front-end direction of tracing lines; and (2) cross
sections used to distinguish multiple underlying lines which meet at
the pixel level due to anti-aliasing. Our method differs fromBao and
Fu [BF12] by making the following modifications: (1) we compute
the orientation field more efficiently by simply adopting a vector
field perpendicular to the image gradient; and (2) our tracing algo-
rithm does not deal with connection cases and geometry appearance,

Figure 3: Workflow of our proposed technique. (a) shows a part of an input line drawing. (b) is the initial curve network generated by an
existing tracing approach. We optimize (b) in two steps: (c), (d) globally optimize the overall geometry and junction positions of the curve
network; and (e), (f) locally optimize the junction positions and curve pieces in junction regions, leading to the final result (g). (h) and (i) serve
as the external forces. (h) is the image gradients, and (i) is the connectivity inferred from (d): a curve piece is either continuously connected
with another or not (marked in red or blue).
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since they will be addressed in the subsequent optimization steps.
Thus, our tracing process is much faster than Bao and Fu [BF12].

4.2. Global curve network optimization

Problem formulation. We present the initial tracing curve network
as a graph G = 〈V, E〉, where V corresponds to the junction points
and endpoints, and E corresponds to the curves. Each edge e ∈ E is
associatedwith a curve, denoted as ce = {pe,1, pe,2, . . . , pe,n}, where
pe,i is the ith curve point coordinate. Our goal is to optimize the
curve network to satisfy the following constraints: (1) each ce is a
smooth curve; (2) each ce locates at image centrelines and (3) the
connections defined by the graph G keep invariant. We, thus, define
the energy minimization problem as follows:

{
min
{ce}

∑
e∈E

(Esmooth(ce) + wdEimage(ce)),

s.t.∀ce ∈ Ne(v) endpoints are equal, ∀v ∈ V
, (1)

where wd is the balance weight (empirically wd = 0.2), Ne(v) is
the neighbouring edges of v, Esmooth and Eimage are defined to sat-
isfy the first and second constraints, respectively, and the equality
equations correspond to the third constraint.

The smooth term Esmooth encourages the curve to be more contin-
uous while keeping the sections of high curvature by measuring the
sum of first- and second-order derivatives over the curve. Specifi-
cally, we define Esmooth as

Esmooth(ce) = w1

|ce|−1∑
i=1

‖pe,i+1 − pe,i‖2

+ w2

|ce|−1∑
i=2

‖pe,i+1 + pe,i−1 − 2pe,i‖2,
(2)

where w1 and w2 are two balancing weights (empirically w1 =
0.8, w2 = 0.5).

We introduce the image term Eimage by observing that image cen-
trelines locate at the minima of image intensity. We, thus, define the
image term as the sum of image intensity at all curve positions:

Eimage(ce) =
|ce|∑
i=1

I(pe,i), (3)

where I denotes the input image. Note that Eimage is the key to cor-
recting curve geometry and junction positions. Figure 4 illustrates
the effects by comparing the optimization results with and without
the image term (Figure 4b,c).

Problem solver. Computing all points of the curve network at
once in Equation (1) is computationally expensive. Independently
solving each curve is faster but would make the constraints of Equa-
tion (1) unsatisfied. To address this issue, we adopt an iterative ap-
proach which alternately updates the coordinates of curves and the
junction points. At each iteration, we update each curve by adopting
a gradient descent approach and update the junctions as the average
of the endpoints of adjacent curves. According to implicit Euler, we
define the formula for updating the points of curve ce as follows:

Pt+1
e = (λ(w1L1 + w2L2) + I)−1(Pte − λwd∇I�n(Pte )), (4)

Figure 4: Comparison of with and without the image term Eimage.
(a) is an initial curve network. (b) is the result with Eimage, which
forces the curve network to the centrelines of input line drawings.
(c) shows the result without Eimage. The comparison shows that Eimage
plays an important role in correcting both curve geometry and junc-
tion positions.

Figure 5: Results of global curve network optimization for 1 and 3
iterations. (a) visualizes the gradients of the input image and (b) is
the initial curve network. (e), (f) shows the iterations that take the
image gradients as external forces, and (c), (d) shows the iterations
without the gradient forces. In comparison, (e), (f) converges much
faster than (c), (d).

with

L1 =

⎡
⎢⎢⎢⎢⎢⎣

0 0
−1 2 −1

. . .
. . .

. . .
−1 2 −1

0 0

⎤
⎥⎥⎥⎥⎥⎦, L2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
−2 5 −4 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .
1 −4 6 −4 1

−1 −4 5 −2
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Pte = [pte,1, p
t
e,2, . . . , p

t
e,n]

T are the curve points at the tth iter-
ation, λ is a fixed step size (empirically set to 2 by default), I is the
identity matrix, ∇I = [ ∂I

∂x ,
∂I
∂y ]

T represents the gradients of the input
image I and ∇I�n = 〈∇I,�n〉�n is the projection of ∇I to the curve’s
normal vectors.

Figure 5 shows the results by Equation (4) for 1 and 3 iterations.
The external force ∇I�n makes the iterations converge fast (typically
3 iterations by default).

4.3. Local optimization at junctions

Based on the optimized curve network generated by Section 4.2, we
first detect junction regions and then optimize the junction position
and curve pieces inside each junction region. An overview of our
algorithm is illustrated in Figure 6.
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Figure 6: The workflow of local optimization around junctions. (a) shows the curve network produced by global curve network optimization.
We first detect the junction regions (f)–(h) and then estimate the connectivity at junctions (b): a curve piece is either continuously connected
with another or not (marked in red or blue). To avoid reconnection artifacts (c), we optimize the curve pieces by taking the connectivity as
soft constraints (j)–(l), leading to a correct reconstruction result (d).

Junction region detection. The junctions of an initial curve net-
work by tracing might deviate from the ground truth, especially in
ambiguous areas where many lines meet. We detect the ambigu-
ous regions by clustering junctions of the graph G = 〈V, E〉 de-
fined in Section 4.2, and each cluster defines a new junction region
(Figure 6h). Specifically, we perform a typical clustering algorithm
[JK05] by taking the distance function defined as

d(v, u) =
{
1 R(v)∩R(u)

max(R(v),R(u)) > 0.3

0 otherwise
, (5)

where R(v) is the polygon region at junction v ∈ V within a distance
r (empirically r ∈ [2, 5]), as shown in Figure 6g.

Optimization in junction regions. Given a junction region, we
divide the curves that meet in the area into two sets of curve pieces.
We denote the curve pieces inside and outside the junction region as
S = {si} and B = {bi}, respectively, where si = {pi,1, pi,2, . . . , pi,n}
and bi = {qi,1, qi,2, . . . , qi,m} (see an example in Figure 6i). We es-
timate the connectivity among S as connection pairs, denoted as
T = {(si, s j )}. (si, s j ) ∈ T if the maxima curvature of the Hermit
spline of bi and bj is less than a threshold. A curve piece si is ei-
ther included in T or not (marked as red or blue in Figure 6b,i).
Our goal is to reconstruct the curve pieces inside the junction re-
gion (S) according to the estimated connectivity. Directly recon-
necting the curve pieces outside (B) might produce curves that de-
viate from the input image (Figure 6c). To avoid such artifacts,
we optimize the junction position and curve pieces by taking the
connectivity as a soft constraint and the image term (see Equa-
tion (3) in Section 4.2) as another constraint that penalizes deviation
(Figure 6d,j–l).

The goal of the local optimization in a junction region is to opti-
mize the curve pieces S = {si} and the junction point p0 where they
meet, by enforcing the following constraints: (1) each si locates at
image centrelines; (2) each pair (si, bi) is continuously connected
and (3) each pair (si, s j ) ∈ T is continuously connected, and for the
other curve pieces not included T ((so, sl ) /∈ T ∀sl), so is the linear

Figure 7: Illustration of the initial p0 and si, in the case of clus-
tering multiple initial junctions (b) into one junction region (c). (a)
shows the input image and initial curves. (d) is the final result.

extension of bo. Mathematically, we, thus, define the energy mini-
mization problem as follows:{

min
S

Econtinue + wtEconnect + wdEimage

s.t. pi,0 = p0 ∀si ∈ S
, (6)

where wt and wd are balancing weights (empirically wt =
0.8, wd = 0.2), Eimage is defined in Equation (3) to satisfy the first
constraint, Econtinue and Econnect are defined to satisfy the second and
third constraints, respectively. Initially, we set p0 as the one clos-
est to the centre of the clustered junction region and remove the
curve pieces fully inside the region (Figure 7b,c). As Figure 7 shows,
it might lead to topology simplification (see more results in Fig-
ures 12c,d and 14).

To encourage each si to be continuous and keep si and bi to be G1

continuous, we define Econtinue as

Econtinue =
|S|∑
i=1

|si|−1∑
j=1

‖pi, j+1 − pi, j‖2

+
|S|∑
i=1

‖(pi,n − pi,n−1) − (qi,1 − pi,n)‖2.
(7)

To satisfy the third constraint, each pair (si, s j ) ∈ T should have
the same tangent directions at the connecting point p0. Thus we for-
mulate the third constraint asμi(p0 − pi,1) = μ j(pj,1 − p0) for each
(si, s j ) ∈ T . We set μi 
= μ j to control the shape of the other curve
pieces sk ∈ S\{si, s j}. As Figure 8 shows, μi > μ j would increase
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Figure 8: Top to bottom: Minimizing Equation (8) with μi > μ j

makes p0 move towards si, causing α to increase. This changes the
shape of sk in two cases: (a) making sk smoothly merge to si for
(sk, si) ∈ T ; and (b), (c) forcing the other sk to be nearly straight
(suppose si is the one that satisfies α < β).

the angle between sk and si, thus either making sk smoothly merge
to si (Figure 8a) or forcing sk to be nearly straight (Figure 8b,c).

The larger the difference between μi and μ j, the more curve shapes
would change. We, thus, define Econnect as

Econnect =
∑

(si,s j )∈T
‖μi(p0 − pi,1) − μ j(pj,1 − p0)‖2, (8)

where μi and μ j are initialized as 1 for each pair (si, s j ) ∈ T , and
μi is increased for each curve piece sk ∈ S\{si, s j}:

μi =

⎧⎪⎨
⎪⎩

μi +C(1 − e− π−θ (sk ,si )
π ) (sk, si) ∈ T

μi +C(1 − e−κ (sk ) ) (sk, si) /∈ T , (sk, s j ) /∈ T ,

θ (sk, si) < θ (bk, bi)

, (9)

where θ (sk, si) is the angle between sk and si, θ (bk, bi) is the angle
between bk and bi, κ (sk ) is the maxima curvature over the curve
piece sk andC is a constant (set to 10 by default).

Like Equation (1) in Section 4.2, Equation (6) is also solved by
an iterative gradient descent approach as illustrated in Figure 6j–l.

Figure 9: Comparisons on clean digital inputs. Note that the topology of Puhachov et al.’s results might be incorrect though they look visually
correct (as shown in the small circles; for clarity, we draw them with small offsets).
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Figure 10: Comparisons on noisy scanned inputs. Note that the topology of Puhachov et al.’s results might be incorrect, though they look
visually correct (as shown in the small circles; for clarity, we draw them with small offsets).

5. Results and Discussion

To demonstrate the effectiveness of our proposed method, we
qualitatively and quantitatively evaluate our results (Sections 5.1
and 5.2). We show the efficiency of our method in Section 5.3
and show our method as a post-processing step in Section 5.4.
We discuss the robustness in Section 5.5 and the limitations in
Section 5.6.

5.1. Results and comparison

We have tested our methods on a variety of line drawings with vary-
ing image quality and shape complexity, as shown in Figures 9–11
and 16.

Comparisons. We compare our method with the recent mor-
den algorithms, including three frame field-based methods [BS19,
SBBB20, PNCB21], and one deep learning method [MSSG*21].
We take the results presented in the compared papers if any. Oth-
erwise, we produce the results by the authors’ code of the corre-
sponding papers. We ran the code of Stanko et al. [SBBB20] with
optimized parameters, and for Mo et al. [MSSG*21], we ran their
code for several trials and selected visually the best ones. To show
the comparison in term of topology, we re-coloured all the results
in the same colour palette.

Figures 9 and 10 show that our method produces more contin-
uous curves close to human drawings and is more robust on fine
details and complex junctions where many lines meet. The method

© 2023 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Figure 11: Comparisons to the ground truth. The inputs (a) are created from the ground truth vector drawings (d). The comparison shows
that our results are much closer to the ground truth.

Table 1: Following Yan et al. [YVG20], we evaluate the sketch-to-sketch similarity (compared to ground truth) by computing the Chamfer distance (lower is
better) and F-score with distance 0 (higher is better). We measure the quality of vector graphics representation by the average length of vector strokes (see the
‘L’ columns; closer to the ground truth is better, and longer is preferred with the same similarity). For clarity, we highlight the best results under each metric
for each example in boldface.

Mo et al. Bessmeltsev and Solomon Ours Ground truth

Examples Chamfer F-socre L Chamfer F-socre L Chamfer F-socre L L

Car 0.00046 0.740 0.049 0.00038 0.794 0.296 0.00026 0.869 0.717 0.597
Glasses 0.00025 0.861 0.047 0.00020 0.898 0.321 0.00020 0.899 0.834 0.667
Duck 0.00036 0.811 0.053 0.00032 0.808 0.165 0.00032 0.819 0.329 0.327
Face 0.00036 0.842 0.052 0.00026 0.869 0.178 0.00019 0.904 0.450 0.360
Cat 0.00034 0.789 0.051 0.00032 0.805 0.163 0.00031 0.804 0.386 0.326
Bag 0.00040 0.792 0.072 0.00026 0.833 0.413 0.00024 0.858 0.921 0.802
Product 0.00045 0.746 0.066 0.00032 0.808 0.280 0.00023 0.853 0.588 0.521

Table 2: Our method is computationally more efficient than the frame field-based approaches [BS19, SBBB20] and the deep learning approach [MSSG*21].

Examples Input Res. Bessmeltsev and Solomon [BS19] Stanko et al. [SBBB20] Mo et al. [MSSG*21] Our
time time time time

Elephant 500 × 753 1670 s 1061 s 18s 3.1s
Puppy 660 × 624 1180 s 2031 s 17s 2.4s
Hippo 700 × 535 1396 s 463 s 14s 1.8s
Penguin 500 × 714 1133 s 354 s 9s 1.6s
Kitten 500 × 714 2034 s 462 s 13s 1.9s
Banana Tree 500 × 714 606 s 1079 s 21s 2.3s
Muten 10242 2172 s 2130 s 29s 3.7s
Mouse 10242 >40 min 1531 s 31s 3.9s
Dracolion 10242 >40 min >40 min 38s 5.1s

of Stanko et al. [SBBB20] produces oversimplified curve geom-
etry and misses fine details. The deep learning-based approach
[MSSG*21] suffers from small redundant curve segments since it
focuses on image coverage rather than geometry modelling. Bess-
meltsev and Solomon’s method [BS19] produces curves more accu-

rately but often fails at complex junctions (e.g. Sheriff’s left hand in
Figure 9, Puppy’s eyes and Hippo’s claws in Figure 10). Puhachov
et al.’s results [PNCB21] achieve visually pleasing effects. How-
ever, the lack of detection of Y-junctions leads to incorrect connec-
tivity, such as long redundant curves (e.g. marked regions shown in
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Figure 12: Using our curve network optimization to post-process
the results by Stanko et al. [SBBB20] and Mo et al. [MSSG*21],
respectively. The top row shows that our algorithm can correct the
oversimplified curve geometry of Stanko et al. The bottom row shows
that our method can fix the issues of redundant curve segments and
undesired line breaks of Mo et al.’s vector output.

Figure 13: Using our curve network optimization to post-process
the results by Bessmeltseve and Solomon [BS19]. (a) is their result
generated with default parameters. (b) is the result of applying our
method to correct the topology artifacts.

small circles in Figures 9 and 10) and lack of some connections (e.g.
the Hippo’s crawl in Figure 10).

5.2. Quantitative evaluation

To quantitatively evaluate our method, we adopt metrics from a re-
cent benchmark [YVG20]. We compute the metrics between the

Figure 14: Results on a sketchy image. (b) and (c) show the results of our initial tracing process and the following optimization algorithm,
respectively. In comparison, (d) shows Bessmeltseve and Solomon’s [BS19] result and (e) shows the result of applying our optimization method
to (d).

algorithm’s vector output and ground truth vector drawings. Note
that the dataset of [YVG20] designed for sketchy inputs is not in
our scope, and the tested images frequently used in previous works
(e.g. inputs in Figures 9 and 10) have no corresponding ground truth.
Therefore we generate several image inputs (e.g. examples shown in
Figure 11) from vector drawings with various shapes and topology
connections. To mimic the noisy scanned input images, we render
each stroke with varying line width and grey density.

Following Yan et al. [YVG20], we evaluate the sketch-to-sketch
similarity between our results and the ground truth by computing
Chamfer distance and F-score with distance 0. We also measure the
quality of vector graphics representation by the average length of the
resulting vector strokes. For comparison, we compute the samemet-
rics on the frame field-based method [BS19] and the deep learning-
based method [MSSG*21]. The quantitative evaluation results are
shown in Table 1.

The similarity evaluation in Table 1 shows that our results are
more precise, since our optimization algorithm always keep the
curves to fit the image centrelines. For the vector quality evaluation,
our results are much closer to the ground truth and have longer con-
tinuous curves (see the visual effects in Figure 11). Our results have
a longer curve length than the ground truth because we make con-
nections in all the non-junction areas, while human drawings might
make breaks on sharp corners.

5.3. Running time

We implemented our method in Python. A notebook with Intel(R)
Core(TM) i7 2.80 GHz and 16GB RAM was used as the testing
device. Table 2 presents the running time statistics of our algorithm
compared to other approaches. We ran the authors’ code of the com-
pared methods [BS19, SBBB20, MSSG*21] on the same testing
device. As the table shows, our method is more efficient than the
frame field-based methods and the deep learning approach, thanks
to the efficient tracing initialization and the fast converged solver
for optimization. Note that the deep learning method of Mo et al.
[MSSG*21] could be faster on GPUs. It is about half of the running
time on CPU in their article, yet slower than ours.

5.4. As post-processing step

Our curve network optimization algorithm (Sections 4.2 and 4.3)
can also work as a post-processing step for other line drawing
vectorization methods. The top row of Figure 12 shows that our

© 2023 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Figure 15: Effect of changing the parameter r. Increasing r leads
to more continuous connectivity, and decreasing r allows capturing
more details.

technique is able to correct the curve geometry of Stanko et al.
[SBBB20]. The bottom row shows that our method can fix the is-
sues of redundant curve segments and break lines of Mo et al.

[MSSG*21]. Figure 13 shows that our algorithm can correct the
topology artifacts of Bessmeltsev and Solomon [BS19] at com-
plex junctions.

5.5. Robustness and paramter settings

Our method depends on a few key parameters. In our experiments,
we use fixed parameter values for the energy weights w1, w2 in
Equation (2), wd in Equations (1) and (6), wt in Equation (6), and
the gradient descent step λ in Equation (4). We set one tunable pa-
rameter r used for junction clustering in Section 4.3. We selected r
within the range r ∈ [2, 5] (r = 3 by default). The effect of changing
the parameter r is demonstrated in Figure 15.

Figures 12 and 14 show how our optimization framework de-
pends on the initial curve network. Given the initial curves generated
by different methods (Figures 12a,c and 14b,d), our optimization
method produces similar results (Figures 12b,d and 14c,e). The ge-
ometry of our results is not sensitive to the initial curves, while the

Figure 16: Gallery of additional results, showing that our method can handle line drawings with varying image quality and shape complexity.
Facilier, Moose, Penguin and Banana-Tree are scanned drawings. The others are synthetic images mentioned in Section 5.2.
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topology might depend on the initial curve network in some cases
such as missing parts.

5.6. Limitations and future work

Figure 14 shows our results on rough drawings that contain thick
overskeched lines. Our method does not address the problem of
sketchy simplification. However, our optimization algorithm can
still improve the initial tracing curves (Figure 14b,c) and benefit the
other vectorization method [BS19] as a post-processing step (Fig-
ure 14d,e).

Although our solution is able to extract correct topology in most
cases, our algorithm still fails in some areas. Our method might pro-
duce topology that differs from human perception (e.g. Elephant’s
left front feet in Figure 10). It is mainly because the connectivity
is not guaranteed to be correctly estimated (Section 4.3). In future
work, an improved connectivity estimation algorithm might be ex-
plored to address this issue. As shown in Figure 15, our connectivity
estimation depends on a parameter r. A possible future direction is
to compute the value of r adaptively rather than select a fixed value
for a particular input.

6. Conclusion

We have presented a novel line drawing vectorization framework
based on coarse-to-fine curve network optimization. Our optimiza-
tion algorithm achieves geometry accuracy by keeping curves lo-
cated at image centrelines. To achieve more continuous connec-
tivity, we perform a global optimization followed by a finer opti-
mization at local junction regions. Since our computation performs
on curve points rather than image pixels, our algorithm is efficient.
Our system can be immediately useful for downstream applications,
such as line art animation and curve-based vector graphics.
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