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1. Training data for the curriculum learning

In order to train SamplerNet in a gradual manner, a region-wise
augmentation technique is used to approximate the interpolation
between the UV-aligned partial texture and the unaligned partial
texture.

TDensePose is an unaligned partial texture used during the training
when the curriculum step is 3 or higher. TDensePose is produced by
mapping the human appearance in the source image into the UV
space of the SMPL model [LMR*15] using DensePose [GNK18].
During the mapping process, MDensePose, a binary mask that indi-
cates valid pixels in TDensePose, is obtained as shown in Figure 1a.

TAugment is used for the UV-aligned and interpolated textures.
TAugment is produced by applying region-wise augmentation to T M

GT ,
where T M

GT is produced by masking the ground truth texture TGT us-
ing MDensePose. This process is visualized in Figure 1b. The region-
wise augmentation is applied by varying control parameter α ac-
cording to the curriculum step, as explained in Section 3.2.2 of the
main paper. By changing α, interpolation from T M

GT to TDensePose is
approximated which enables the curriculum learning scheme.

As explained in Section 3.1 of the main paper, we produce the
input texture map by combining the partial texture and its mirrored
counterpart, which is expressed as follows:

Tinput = Tsource +(T mirror
source ⊙ (1−Msource)), (1)

where Tsource is the partial texture created from the source image,
Msource is a binary mask that indicates the valid pixels of Tsource,
and T mirror

source is the mirrored counterpart of Tsource. The training data
for SamplerNet is produced by replacing Tsource in Equation 1 with
TDensePose or TAugment according to the curriculum step as shown in
Figure 2.

2. Network Architecture

The architecture of SamplerNet consists of two encoders and a sin-
gle decoder. Both encoders in SamplerNet consist of one convolu-
tional layer followed by five layers of residual blocks. The decoder
contains five residual block layers with up sampling and one convo-
lutional layer at the end. The residual block consists of two convo-
lutional layers with gated convolutions [YLY*19]. One encoder of
SamplerNet receives a normal map as input and the other encoder

(a) TDensePose (b) TAugment

Figure 1: Illustration of the acquisition process of (a) TDensePose
and (b) TAugment that will be used in the curriculum learning pro-
cess.

Figure 2: Change of Tinput according to the curriculum step. In-
put texture is produced using (a) TAugment with α = 0 (step=0), (b)
TAugment with α = 0.1 (step=1), and (c) TAugment with α = 0.125 or
TDensePose (step≥ 3).
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receives a partial texture map, Tinput , concatenated with a visibility
mask. The decoder outputs a sampling grid that is used to produce
a sampled texture, Tsample. An overview of the architecture and the
details of the network are shown in Figure 3 and Table 1, respec-
tively.

Re f inerNet has a U-Net like architecture. The network consists
of three down and up sampling convolution layers and 9 residual
blocks in the bottleneck. The sampled texture, Tsample, and the
occlusion mask are concatenated together and given as input to
Re f inerNet. The output of Re f inerNet is a blending mask Mblend
and a refined texture map Tre f ine. The overview of the architecture
and the details of the network are shown in Figure 4 and Table 2,
respectively.

Both networks use LeakyReLU for activation with instance nor-
malization. We set the negative slope for LeakyReLU as 0.2. The
last layer of the decoder of Re f inerNet and SamplerNet use sig-
moid and tanh for the activation, respectively. Reflection padding
was used for all padding operations in the network.

Table 1: Architecture detail of SamplerNet.

(a) Appearance Encoder

Layer Kernel Stride Padding Activation Output
Input 4×256×256
Conv2d 7×7 1 3 LeakyReLU 32×128×128
ResBlock 3×3 2 1 LeakyReLU 64×64×64
ResBlock 3×3 2 1 LeakyReLU 128×32×32
ResBlock 3×3 2 1 LeakyReLU 256×16×16
ResBlock 3×3 2 1 LeakyReLU 512×8×8
ResBlock 3×3 2 1 LeakyReLU 1024×4×4

(b) Geometry Encoder

Layer Kernel Stride Padding Activation Output
Input 3×256×256
Conv2d 7×7 1 3 LeakyReLU 32×128×128
ResBlock 3×3 2 1 LeakyReLU 64×64×64
ResBlock 3×3 2 1 LeakyReLU 128×32×32
ResBlock 3×3 2 1 LeakyReLU 256×16×16
ResBlock 3×3 2 1 LeakyReLU 512×8×8
ResBlock 3×3 2 1 LeakyReLU 1024×4×4

(c) Decoder

Layer Kernel Stride Padding Activation Output
Upsample 2048×8×8
ResBlock 3×3 2 1 LeakyReLU 512×8×8
Upsample 1024×16×16
ResBlock 3×3 2 1 LeakyReLU 256×16×16
Upsample 512×32×32
ResBlock 3×3 2 1 LeakyReLU 128×32×32
Upsample 256×64×64
ResBlock 3×3 2 1 LeakyReLU 64×64×64
Upsample 128×128×128
ResBlock 3×3 2 1 LeakyReLU 32×128×128
Conv2d 3×3 1 1 Tanh 2×256×256
Output 2×256×256

Table 2: Architecture detail of Re f inerNet.

Layer Kernel Stride Padding Activation Output
Input 3×256×256
Conv2d 7×7 1 3 LeakyReLU 32×256×256
Conv2d 3×3 2 1 LeakyReLU 64×128×128
Conv2d 3×3 2 1 LeakyReLU 128×64×64
Conv2d 3×3 2 1 LeakyReLU 256×32×32
ResBlock 3×3 1 1 LeakyReLU 256×32×32
ResBlock 3×3 1 1 LeakyReLU 256×32×32
ResBlock 3×3 1 1 LeakyReLU 256×32×32
ResBlock 3×3 1 1 LeakyReLU 256×32×32
ResBlock 3×3 1 1 LeakyReLU 256×32×32
ResBlock 3×3 1 1 LeakyReLU 256×32×32
ResBlock 3×3 1 1 LeakyReLU 256×32×32
ResBlock 3×3 1 1 LeakyReLU 256×32×32
ResBlock 3×3 1 1 LeakyReLU 256×32×32
Upsample 256×64×64
Conv2d 3×3 1 1 LeakyReLU 128×64×64
Upsample 128×128×128
Conv2d 3×3 1 1 LeakyReLU 64×128×128
Upsample 64×256×256
Conv2d 3×3 1 1 LeakyReLU 32×256×256
Conv2d 3×3 1 1 Sigmoid 4×256×256
Output 4×256×256
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Figure 3: The architecture of SamplerNet.

Figure 4: The architecture of Re f inerNet.
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