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Figure 1: Our approach estimates absolute 3D positions of multiple humans in a scene, body shape and articulation in a globally and
temporally coherent manner from a single monocular RGB video. It achieves higher 3D reconstruction accuracy than competing methods,
allows motion re-targeting in the 3D space, and works exceptionally well even for in-the-wild videos.

Abstract
In this work, we consider the problem of estimating the 3D position of multiple humans in a scene as well as their body shape
and articulation from a single RGB video recorded with a static camera. In contrast to expensive marker-based or multi-view
systems, our lightweight setup is ideal for private users as it enables an affordable 3D motion capture that is easy to install and
does not require expert knowledge. To deal with this challenging setting, we leverage recent advances in computer vision using
large-scale pre-trained models for a variety of modalities, including 2D body joints, joint angles, normalized disparity maps,
and human segmentation masks. Thus, we introduce the first non-linear optimization-based approach that jointly solves for
the 3D position of each human, their articulated pose, their individual shapes as well as the scale of the scene. In particular,
we estimate the scene depth and person scale from normalized disparity predictions using the 2D body joints and joint angles.
Given the per-frame scene depth, we reconstruct a point-cloud of the static scene in 3D space. Finally, given the per-frame
3D estimates of the humans and scene point-cloud, we perform a space-time coherent optimization over the video to ensure
temporal, spatial and physical plausibility. We evaluate our method on established multi-person 3D human pose benchmarks
where we consistently outperform previous methods and we qualitatively demonstrate that our method is robust to in-the-
wild conditions including challenging scenes with people of different sizes. Code: https://github.com/dluvizon/
scene-aware-3d-multi-human

CCS Concepts
• Computing methodologies → Motion capture; Scene understanding;

† This work was funded by the ERC Consolidator Grant 4DRepLy
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1. Introduction

Estimating the absolute 3D position, body shape, and articulation
of multiple people in a scene is a fundamental research problem
that has many applications in game development, VR/AR, and HCI.
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Years of research went into developing sophisticated and expensive
setups such as multi-view systems, motion capture suits, and manu-
ally or semi-automatically denoising of the tracked motions to then,
for example, animate CG characters with these captured motions.
However, one ideally would like to obtain such an absolute scene
understanding from a capture setup that is easy to install, afford-
able, and that does not require expert knowledge, i.e. a single RGB
camera. Such a lightweight setup would enable 3D motion capture
for private users, e.g. avatar control via the smartphone, but it can
also be applied for post production in the movie industry where, for
example, one person should be replaced by another in a 3D consis-
tent manner. At the same time, it has to be stated that performing
motion capture given such limited data is exceptionally more dif-
ficult compared to multi-view systems. The major challenges for
such a monocular setting, where only a single static video of the
entire scene with moving persons is given, are the inherent depth
ambiguity and occlusions, among many others.

Therefore, recent monocular approaches focus on a single hu-
man [MRC*17; PZDD17] or even assume an actor template is
given [XCZ*18; HXZ*19; HXZ*20]. Recently, some works started
to research the multi-person setting, but they either only learn
a relative depth ordering of people in the scene [JKP*20] that
is not 3D consistent over time or they directly predict absolute
depth, which is prone to overfit to the settings shown in the train-
ing data [MCL19]. Most of those works leverage recent advances
in Computer Vision and take as input several types of regressed
data modalities obtained from models trained on large-scale data.
This involves 1) 2D body joints [CHS*21; FXTL17], 2) joint an-
gles [SBL*21], 3) normalized disparity maps [RBK21; LDC*19],
and 4) human segmentation masks [CMS*21]. Interestingly, none
of those works jointly considers all of those modalities.

To this end, this work investigates how each of those modalities
can benefit the task of multi-person absolute 3D pose and shape
estimation. A particular challenge, however, is that each individual
modality has, of course, advantages, but also disadvantages. While
2D and 3D keypoint detections can help to infer the local 3D pose
of a single person, they cannot ensure 3D consistency across hu-
mans and the scene. Joint angle estimates can be directly used to
drive CG characters, but they are usually less accurate than the
3D keypoint detectors due to error accumulation along the kine-
matic chain. Normalized disparity maps provide global reasoning
of the entire scene as well as the humans in terms of its scale-
normalized depth, but they cannot provide absolute depth and scale
of the scene. Finally, human segmentation masks can provide close
to pixel-perfect and identity preserving segmentations of humans
in the scene, but they lack a 3D understanding.

Now, to unite all the advantages of each of the modalities while
compensating for their potential limitations, we propose the first
optimization-based approach that jointly recovers the 3D position
of all humans in the images, their articulated pose, their individ-
ual shapes, as well as a global scale of the scene relative the size
of the humans from a single video recorded with a static camera;
see Fig. 1. In particular, we propose a novel energy formulation,
which infers the scene depth and a consistent person scale from
scale-normalized disparity predictions by using the 2D and joint
angle estimates of the humans in the scene as a prior. Once the

per-frame consistent depth is known, we reconstruct a dense point
cloud of the static scene in 3D space by segmenting out the hu-
mans using the predicted segmentations and aggregating per-frame
depth over time. Finally, we perform a coherent space-time opti-
mization over the entire sequence to ensure temporal and spatial
consistency as well as physical plausibility leveraging the aggre-
gated scene estimate and the joint angle predictions. Note that in
each of those steps, the combination of different data modalities
is leveraged through our method and only this specific approach
achieves the desired result in the considered setting, as extensively
shown in our results. In summary, our primary technical contribu-
tions are as follows.

• The first monocular approach for multi-person 3D pose and scale
estimation that jointly estimates multiple human poses and the
3D scene by combining data modalities in a novel optimization
framework.

• A human body prior to disambiguate the scale of the scene,
which allows us to perform a coherent space-time reasoning of
the human motion in 3D and relative to a consistent scale.

• We show that the estimated 3D human bodies can be refined in
3D space and time by filtering body movements in 3D coordi-
nates and by penalizing implausible poses w.r.t. the estimated
scene, resulting in a more coherent final prediction.

Since our approach estimates joint angles, global positions and
scale, the recovered 3D human poses can be directly applied to CG
characters enabling exciting applications as shown in Section 4.
Moreover, we demonstrate that the joint reasoning of the human
body shape, pose, and the dense scene over the entire video se-
quence improves state of the art in terms of 3D localization, scene
and person scale, as well as body pose compared to prior work,
both, quantitatively and qualitatively. Finally, we show that several
downstream applications can be directly derived from our method,
such as monocular human motion capture and avatar control.

2. Related Work

3D human motion capture is an active research area, and many
works have been proposed in the past [MSS*17; SSLW17;
MHRL17; CR17; KAB20; ZHS*17; LPT22; TKS*16; SXW*18;
WR19]. Since we target a monocular setting, we do not review
multi-view- and depth-based methods. Instead, we review previous
works that are most related to our method.

2.1. 3D Human Pose Estimation

2.1.1. Single Person Pose Estimation

Estimating the human body pose in 3D from a single image is a
challenging problem that has been successfully handled by learn-
ing a human body prior from MoCap data [IPOS13]. To sim-
plify the problem, previous methods usually predict 3D coordi-
nates relative to the root joint, assuming a normalized human body
size [MRC*17] and a fixed bounding box around the person in
3D space [MSS*17; PZDD17]. However, when multiple people
are interacting with the environment, normalized and root-relative
predictions are not enough to disambiguate the position and scale
of individual persons in the scene. In addition, directly estimating
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the 3D joint coordinates could result in implausible poses, which
is a problem that can be mitigated by estimating joint angles in-
stead [ZSZ*16].

Several works focus on estimating the full human mesh de-
formation from videos [XCZ*18; HXZ*19; HXZ*20], assum-
ing that the actor mesh is provided in advance. Other works for
single human estimation [KBJM18; KPBD19; PCG*19] rely on
SMPL [LMR*15] as a proxy shape. Reconstructing shape proxies
along with sparse 3D skeletons is desirable in many scenarios (e.g. ,
they can be used for body parts segmentation). Moreover, SMPL
serves as a statistical prior on human body shapes and enables ad-
ditional supervisory terms such as human silhouette overlays in 2D,
which can result in higher accuracy [PCG*19].

2.1.2. Multiple Person Pose Estimation

Estimating positions of each person w.r.t. the others is crucial in
multi-human pose estimation. Nonetheless, most of the existing
multi-person methods are by design performing root-relative pre-
dictions [SBL*21; BCL*20; RWS17; RWS19]. Several techniques
predict translations of each person in the camera reference frame.
They either optimize the translation by projecting and fitting the
estimated 3D poses into the image plane [MSM*20; ZZB*21a;
DGM*19] or by directly regressing the distance of the root joint to
the camera with a deep neural network [MCL19; LL20; WLL*20;
ZFS*20]. The first case can be more robust to different camera se-
tups, but is limited by the unknown height of each person in the
scene. The second strategy is highly dependent on the training data
and may not generalize to camera configurations not present in
the training. Others explore human priors [LVC*21] to estimate a
global trajectory [YIM*22], but still fail to recover the body size.

Recent methods performing human depth estimation are focused
on penalizing depth ordering of multiple humans. For instance,
Jiang et al. [JKP*20] uses instance segmentation masks to penal-
ize depth inversion and Sun et al. [SLB*22] proposes to infer the
depth of each person based on an imaginary bird’s-eye-view repre-
sentation and to estimate the person age as a proxy for the scale.
Other approaches predict the relative depth among multiple per-
sons by inferring some scene properties. A possible scene simpli-
fication is to assume a parametric planar floor, in such a way that
each prediction can be positioned to respect a plausible human-
floor contact [ZMS18; URA*21]. The common limitation of such
approaches is the dependency on a simplified floor representation,
which is often not the case in real applications. Contrarily, we es-
timate a scene point cloud that can represent an arbitrary ground
floor.

The works from Jiang et al. [JKP*20] and Ugrinovic et
al. [URA*21] are the most closely related to ours. Similarly to the
former, we also render the estimated human models into the image
plane to provide additional supervision in the depth dimension, and,
related to the latter, we also disambiguate body size and depth for
each person by constraining predictions with an estimated scene ge-
ometry. But differently from [JKP*20], that does not take the scene
into account, and from [URA*21], that relies on a simplified scene
representation and operates in a single frame, our method repre-
sents the scene as a frustum point cloud and performs optimization
over the entire video sequence. In our work, we also rely on a hu-

man body proxy model [LMR*15] to estimate joint angles and we
propose a new formulation to optimize the position of the humans
and the scene in a joint optimization process. Therefore, our model
improves the prediction of human positions by relying on an esti-
mated proxy scene geometry that does not depend on a simplified
parametric model.

2.2. Scene-aware Motion Capture

Predicting and understanding how humans interact in 3D has re-
cently gained a lot of attention. Several current methods focus
on positioning humans in a pre-scanned 3D scene [GMSP21;
HYH*22; HCTB19] and on simultaneous estimation of hu-
man poses and objects humans interact with [WY21; CHY*19;
YHT*22]. Different setups from ours assume an RGB-D sen-
sor [ZZB*21b] or a moving camera [ZMZ*22; LYZ*21; HLL22;
LBX*22] to estimating the scene geometry. Recent methods inte-
grate physics-based constraints into monocular 3D human motion
capture and mitigate foot-floor penetration and other severe arte-
facts [SGXT20; SGX*21]. Yu et al. [YPL21] also support compos-
ite scenes in the parcours and sports scenarios. Although there is
a growing interest in investigating the interactions of humans and
objects [DSJ*21; BXP*22], 3D motion capture of multiple humans
with environmental awareness from a single monocular camera re-
mains underexplored.

Determining the human scale in 3D is an ill-posed and challeng-
ing task. Bieler et al. [BGFR19] estimate the height of a single per-
son from monocular videos by observing jumping people. Dabral
et al. [DSJ*21] require an interaction with an object undergoing a
free flight to resolve the absolute scene scale. Both methods assume
motion influenced by the universal law of gravity near the surface
of Earth, which allows them to relate the time spent in the air or the
form of the observed trajectory with absolute distances in the met-
ric units. The downside is that jumping humans or flying objects
are restrictive assumptions. In contrast, we use a human body and
3D scene priors in 3D multi-human motion estimation and do not
make strong assumptions about the observed human motions.

3. Method

The goal of our method is to estimate the absolute 3D position of
each human in the scene, i.e., up to a unique and global scale that
depends only on the size of the humans in the scene, their proxy
shape and pose, as well as the scene scale solely from a monocular
RGB video recorded with a static camera for which we know the
intrinsics. To this end, we propose a unified approach that, for the
first time, leverages all available data modalities, including 2D joint
detections, regressed SMPL parameters, estimated disparity maps,
and human segmentations. As illustrated in Figure 2, our method
is divided into two stages. The first stage, i.e. Image Modality Re-
gression and Matching (Section 3.1), extracts per-frame estimates
and aggregates human-related predictions to individuals throughout
the video sequence. The second stage, i.e. the proposed Optimiza-
tion Framework, estimates the person and per-frame scene scale,
the global 3D position of each person in the scene, as well as the
refined articulated body pose in the form of joint angles per frame.

The optimization framework is further subdivided into two parts.
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Figure 2: Overview of our method. For each frame in a monocular RGB video, we first estimate a normalized disparity map, 2D human
poses, SMPL model parameters, and segmentation masks. These predictions are matched and tracked across frames to obtain per-person
associations (blue box). The multi-modal estimates are then fed into our optimization framework. The first part of our optimization process
estimates per-frame human models in global position and the scene geometry (yellow box). In the second part, the per-frame scene predictions
are aggregated into a single point cloud representation and the human predictions are refined in a space-time coherent manner over the full
video (red box). The yellow arrows indicate the energy terms minimized by our method. The output of our method is the 3D position of each
human in the scene, their shape and pose as well as a consistent scene scale. ⊙ is the Hadamard product.

The Scene Scale and Depth Disambiguation part (Section 3.2) re-
covers a consistent and absolute 3D scene depth per frame, the
human scales, and their absolute 3D position and body pose by
jointly reasoning about multiple humans and the scene. The second
part, referred to as Space-time Coherent Pose Optimization (Sec-
tion 3.3), refines the pose and position of the estimated humans in a
space-time coherent formulation, i.e. we enforce over the entire se-
quence the estimated poses to be temporally stable and physically
plausible. For this, we leverage a rough scene geometry estimation,
which is obtained by aggregating the absolute depth maps also esti-
mated by our method. This final part significantly reduces artifacts,
such as foot sliding, human-scene intersections, and jitter. Before
we explain our method in more detail, we introduce relevant nota-
tions.

Notations. The input of our framework is a video sequence It , with
t ∈ {1, . . . ,T}, where T is the number of frames. We leverage the
skinned multi-person linear model (SMPL) [LMR*15] to repre-
sent the humans in the scene. SMPL is a differentiable paramet-
ric human model that takes as input the pose parameters θθθ ∈ R72,
corresponding to the axis-angles of 24 body joints and the global
body rotation, and PCA shape parameters βββ ∈ R10, and produces a
skinned human mesh

fsmpl(θθθ,βββ) = V, (1)

where V are the posed and shaped vertices of the human body; for

more details we refer to their paper [LMR*15]. The mesh vertices
regressed by SMPL can also be used to estimate a sparse 3D pose as
J (V), where J (·) is a linear regressor parameterized by a matrix
W ∈ RJ×6890, and J denotes the total number of joints.

To account for translations in 3D space, we further add a trans-
lation ΓΓΓt,n ∈ R3 to the SMPL representation, where n is the person
index. Furthermore, the 3D human pose models are overwhelm-
ingly biased towards adult body sizes. Thus, we explicitly model
the person scale by sn ∈ R+ and our final human mesh can be de-
fined as

Ṽt,n = snVt,n +ΓΓΓt,n. (2)

This human mesh for person n at time t is then fully determined by
the parameters θθθt,n, ΓΓΓt,n, βββn, and sn, which we aim to recover in the
following. Important to note is that the person scale sn and shape
βββn are unique for each person and consistent across the entire video
sequence.

3.1. Input Modality Regression and Matching

To solve this underconstrained and challenging problem, our idea
is to unite the strength of all data modalities, which recent state-
of-the-art Computer Vision methods provide, in a single algorithm.
More precisely, we leverage data-driven priors in the form of four
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off-the-shelf methods for each frame of the input video sequence,
as shown in Figure 2.

First, we obtain normalized disparity maps d̂t from the state-
of-the-art DPT model [RBK21], which are then post-processed to
enhance sharpness [WAT*20]. Note that these maps only encode
relative and normalized depth and they are not consistent across
frames, which becomes visible in the form of depth jitter.

Second, 2D pose tracking is obtained by AlphaPose [FXTL17],
which coherently detects and tracks 2D joint positions P̂2d

t,n ∈RJ×2

in image space and over time. Although this method is very robust
due to training on large scale data, it falls short in predicting 3D.

Third, we predict the body shape βββt,n and joint angles θ̂θθt,n for
each person in each frame using ROMP [SBL*21]. Since ROMP
predicts varying shapes for a single person across time, we average
the predictions over the entire sequence to obtain a temporally con-
sistent body shape. Thus, the vertices (Equation 2) are now only a
function of the pose θθθt,n, translation ΓΓΓt,n, and scale sn, which will
be important in the next section. Moreover, to match the 2D Al-
phaPose and the SMPL detections, we leverage ROMPs projection
model, compute the average Euclidean distance in image space, and
pair detections with the lowest distance based on the Hungarian
matching. It is worth mentioning that ROMP cannot account for
out-of-distribution body sizes, e.g. small kids, neither it can predict
the absolute 3D position of the humans with respect to the scene.

Fourth, we also leverage human segmentation masks,
referred to as ΩΩΩt,n ∈ RH×W , which are obtained from
Mask2Former [CMS*21]. Similarly, if we consider all the
remaining pixels for frame t that do not belong to a person mask,
we can also obtain a per-frame background segmentation mask
Bt ∈ RH×W . To ensure that the 2D AlphaPose detections, the
SMPL detections, and the foreground masks have a consistent
person ID, we read the pixel values of the segmented masks at
the 2D joint detections for each detected skeleton and apply a
max-voting to retrieve the ID of the person.

In summary, the inputs to our algorithm now are:

• d̂t : Normalized disparity maps
• P̂2d

t,n: 2D joint predictions
• θ̂θθt,n, β̂ββn: Pose angle and shape estimates
• ΩΩΩt,n,Bt : Human and background segmentations

Note that none of these predictions individually or by a trivial com-
bination is discriminative enough to fully describe the entire scene,
i.e. absolute 3D position, pose, and scale of the humans in the
scene. Next, we demonstrate how our proposed method solves this
problem.

3.2. Scene Scale and Depth Disambiguation

In the first part or our optimization process we focus on jointly ob-
taining the joint angles θθθt,n, shape parameters βββn, global translation
ΓΓΓt,n, and scale sn of each person. Importantly, this step is performed
jointly for the entire sequence, where the static camera is the global
reference. However, estimating the height of a person and the scale
given only a single RGB video is, by itself, an ill-posed problem as
variations in scale can be compensated by a translation along the

depth and vice versa. As a result, infinitely many scale/translation
combinations can lead to the same 2D image projections.

So far, we only considered individual humans without looking at
the surrounding scene, although the scene itself can provide an im-
portant prior that helps to solve the above problem. Therefore, we
leverage recent advances in monocular depth estimation [RBK21],
which regress per-pixel normalized disparity maps d̂t . It encodes
the relative depth of each person in the scene, but obtaining the
absolute depth values solely from d̂t is also an ill-posed problem,
and further these predictions are not consistent across frames. The
question remains, how the absolute scene depth or equivalently the
human scales and translations can be recovered.

Our idea is to set the two entities, i.e., the scene and the humans,
into a relation such that they constrain each other in an absolute
3D space. While the humans can already be represented in absolute
space by means of their global translation ΓΓΓt,n and scale sn, we also
require a per-frame conversion of temporally inconsistent normal-
ized disparity maps to absolute depth maps, which can be defined
as

D̃t =
zfar,tznear,t

d̂t(zfar,t − znear,t)+ znear,t
(3)

where znear,t and zfar,t are the near and far depth values, respec-
tively. Intuitively, this operation shifts and scales the normalized
disparity maps to convert them to absolute depth values. Impor-
tantly, these near and far values are optimized per-frame to com-
pensate for the temporal inconsistencies in the disparity maps.

Once both humans and the scene can be represented in absolute
3D space, we now relate them to each other by jointly solving for
κκκt,n ∈ {znear,t ,zfar,t ,θθθt,n,βββn,ΓΓΓt,n,sn} by minimizing the energy

argmin
∀t∈{1,...,T},∀n∈{1,...,N}:κκκt,n

EI, with (4)

EI = Edepth +E2d +Esmpl +Ereg, (5)

which is jointly optimized over the entire sequence. In particular,
our energy is composed of a depth term Edepth, a 2D image evi-
dence term E2d, a joint angle and shape term Esmpl, and additional
regularization terms Ereg. In the following, we explain each term in
more detail.

3.2.1. Depth Consistency Energy

Most importantly, to ensure a coherent depth between the scene and
all humans in the scene, we propose a depth consistency energy

Edepth = λdepth ∑
t,n

(
M(Ψd(Ṽt,n))−M(D̃t)

)2
, (6)

M(D) = ∑
ΩΩΩt,n

|ΩΩΩt,n|
log(D), (7)

where |ΩΩΩ| denotes the number of foreground pixels, M(·) com-
putes the average of the log-depth in the foreground, Ψd(·) is a
differentiable rasterizer [RRN*20] that projects and converts a 3D
mesh into a depth map in the image plane, and λdepth is a hyperpa-
rameter. The vertices Ṽt,n refer to the estimated SMPL models of
each person in global space, which are a function of the variables
θθθt,n, βββn, ΓΓΓt,n, and sn (Equation 2). The rasterized human depths
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are then compared to the estimated absolute depth map D̃t of the
scene (Equation 3), which are a function of the variables znear,t and
zfar,t . Thus, this energy jointly optimizes the human and the scene
parameters. However, since both sides of the penalty term contain
free variables, this energy alone would not disambiguate the prob-
lem.

3.2.2. Image Projection Energy

We introduce an additional data term, which further constrains the
human-related variables by enforcing the 3D bodies to project ac-
curately into the image plane. More precisely, the data term

E2d = Ejoints +Esilhouette (8)

penalizes the error between the projected 3D body joints J (Ṽt,n)
of the optimized SMPL models and the respective 2D body joints
P̂2d

t,n regressed by AlphaPose with

Ejoints = ∑
t,n

∥∥∥Π(J (Ṽt,n))− P̂2d
t,n

∥∥∥2

2
, (9)

where Π(·) is the perspective camera projection operator. The right
term of (8) penalizes the discrepancy between the SMPL silhouette
and the instance segmentation masks:

Esilhouette =
λsilhouette

|ΩΩΩ| ∑
t,n

σσσt,n
∥∥Ψs(Ṽt,n)−ΩΩΩt,n

∥∥2
2, (10)

where Ψs(·) is a differentiable renderer [RRN*20] that projects and
converts a 3D mesh into a silhouette image and σσσt,n is a visibility
mask, so vertices hidden by other humans are not penalized.

3.2.3. Joint Angle and Shape Energy

Since (8) only constrains the parameters in 2D image space, we
further add an additional data term that ensures that the optimized
SMPL parameters are close the prediction of ROMP:

Esmpl = λsmpl ∑
t,n

∥∥∥θθθt,n − θ̂θθt,n

∥∥∥
1
+
∥∥∥βββn − β̂ββn

∥∥∥
1
. (11)

Here, ∥·∥1 denotes the L1 norm.

3.2.4. Temporal and Human Priors

To further constrain the scale and position of a person, we leverage
priors on the human body size and on the temporal information.
This is achieved by our regularization term

Ereg = Escale +Espeed. (12)

For the scale term Escale, our assumptions are two-fold: i) The
scale of a person should not deviate too much from the standard
person size, i.e., the standard SMPL size when sn = 1, and ii) the
average scale of multiple people in the scene should remain close
to one. This dual assumption is enforced by

Escale = λscale ∑
n
(sn −1)2 +

(
∑
n
(sn −1)

)2

, (13)

where the first term accounts for the individual person scale and the
second term accounts for the average scale of multiple persons.

In addition to the person scale, we also introduce an underlying

Figure 3: Per-frame estimations of our method considering the first
optimization part (Section 3.2) only. From left to right: Estimated
depth map, frontal view of the scene and estimated humans, and top
view. Note how the persons’ absolute 3D location, articulated pose
and shape as well as the scene scale can be recovered from a single
input image, even with people of different sizes (bottom row).

assumption that locomotion is rather smooth over time based on the
physical limits of the human body, so we penalize large movements
of the root joint by our energy

Espeed = λspeed ∑
t,n

∥∥ΓΓΓt,n −ΓΓΓt−1,n
∥∥2

2 . (14)

In the optimization process described above, the per frame hu-
man parameters and the absolute scene depth are obtained by
means of the optimized human ∀t ∈ {1, ...,T},∀n ∈ {1, ...,N} :
θθθt,n,βββn,ΓΓΓt,n,sn, and scene znear,t ,zfar,t parameters. Figure 3 shows
our estimated scene and humans for example frames. Note that the
estimated depth looks plausible, humans and the scene are coherent
with each other, and the reprojection of humans into the input view
looks accurate.

3.3. Space-time Coherent Pose Optimisation

Since we obtained absolute and per-frame human models and scene
estimations, both information can be used together to further refine
the human poses in a spatially and temporally coherent manner.
Therefore, in the last part of our optimization method, we refine the
estimated poses in 3D by enforcing physical plausibility between
humans and the estimated scene, as well as by applying a temporal
smoothness term. More precisely, we extend (4) by including a
new energy term EII:

argmin
∀t∈{1,...,T},∀n∈{1,...,N}:κκκt,n

EI +EII, with (15)

EII = Econtact +Eslip +Etemporal. (16)

For implementing Econtact and Eslip, we leverage the estimated
scene geometry as a reference for enforcing foot contact and pe-
nalizing foot slipping. In the following, we first explain how the
per-frame depth maps are aggregated into a static 3D scene repre-
sentation, then we present the energy terms of EII in more detail.
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3.3.1. Scene Point Cloud Estimation

Our method relies on humans as anchors in the scene, i.e. , the esti-
mated geometry around the humans tends to be coherent. However,
mainly due to occlusions, the estimated per-frame absolute depth
values are not yet temporally consistent for the whole scene. To
obtain a static representation of the background, we rely on the seg-
mentation masks to aggregate the depth values in the background
from each frame into a single depth map. This static depth map
representation is obtained by computing the per-pixel median for
the entire video sequence, which is a metric robust to outlier depth
values. We also experimented with more sophisticated aggrega-
tion strategies, such as aggregating values near the human anchors
weighted by a Gaussian distribution—since the human positions
are stable—but this strategy was significantly more expensive and
resulted in marginal improvements. At the end of this aggregation
process, we obtain a single depth map D̂ of the scene, which can
be then converted to a point cloud representation P ∈ RHW×3 in
absolute 3D space.

3.3.2. Improving Physical Plausibility of Estimated Motions

Recently, a series of works highlighted the importance of physics
awareness in monocular single person motion capture [SGXT20;
SGX*21; RBH*21; LBX*22] with assumptions about the camera
and floor plane positions. Inspired by them and the fact that we
obtain a coherent and consistent scale estimation of the scene, we
propose to model in our energy formulation the physical interac-
tion between the humans and the environment. Here, the first term
penalizes "floating" characters, i.e. , humans that are not in contact
with the ground, and the second term penalizes foot sliding, i.e. , a
foot that is in contact with the ground should not move.

More precisely, given the scene point cloud P and the estimated
human meshes Ṽt,n, floating characters are penalized by

Econtact = λcontact ∑
t,n

ζ

(∥∥∥min(Ṽy+
t,n −P)

∥∥∥
1

)
(17)

where Ṽy+
t,n ∈ R1×3 is the vertex of person n at time t with lower Y

coordinate, considering that the Y -axis is the gravitational axis for
our coordinate frame. In other words, the term Econtact minimizes
the distance between the lower vertex Ṽy+ of each prediction and
its respective closest point in the scene point cloud. Here, ζ(·) is a
robust thresholding function, which only considers distances below
20cm.

The term

Eslip = λslip ∑
t,n

ζ

∥∥∥∆(Ṽ y+
t,n )

∥∥∥
1

(18)

penalizes the movement of this lowest vertex in the time domain
(∆) when it is in contact with the scene. By applying those energy
terms, we can now enforce that the humans interact more physically
accurate with respect to the 3D scene.

3.3.3. Temporally Stable Pose

Furthermore, since the joint and absolute position optimized by EI
can still contain smaller jitter, we propose a temporal stability term

Etemporal = λtemporal ∑
t,n

∥∥∆t(Ṽt,n)−∆t(V̄t,n)
∥∥2

, (19)

based on the 1C filter [CRV12], where ∆t(Vt,n) = Vt,n −Vt−1,n
is the temporal variation of the human mesh vertices and V̄t,n are
the estimated SMPL vertices after temporal filtering [CRV12]. This
term allows us to obtain temporally more stable poses with signifi-
cantly less jitter.

4. Experiments

In this section, we present an empirical evaluation of our method.
We first briefly describe the datasets and metrics used in our exper-
iments in Sections 4.1 and 4.2, followed by the implementation de-
tails in Section 4.3. Next, we compare our approach with the most
related works to ours in Section 4.4. In Section 4.5, we perform a
thorough ablation study of the main components of our method and
show additional qualitative results in Section 4.6.

4.1. Datasets

MuPoTs-3D [MSM*18] is a test dataset composed of 20 video se-
quences with multiple people, including different types of cameras
in indoor and outdoor environments. We followed the evaluation
protocol from [MSM*18] in our experiments. This dataset is espe-
cially challenging due to the large amount of interactions between
humans and the various types of scenes. Ground-truth 3D pose an-
notations are provided in absolute coordinates.

CMU Panoptic [JLT*15] is a dataset recorded in the Panoptic
Studio with multiple people. As in preliminary work [JKP*20;
ZMS18], we use this dataset for evaluation considering the se-
quences haggling1, ultimatum1, and pizza1, which are
performed by several adults.

In addition to the previous datasets, we also evaluated our
method quantitatively on Internet videos considering challenging
cases with multiple people of different sizes, including adults and
children.

4.2. Metrics

MRPE and AP. We quantitatively evaluate the prediction of the
absolute 3D location of a human using the widely adopted mean
root position error (MRPE), in millimeters, and the average pre-
cision of the human root joint (AProot

25 ) [MCL19], considering the
standard threshold of 25 cm.

3DPCK. The quality of the articulated 3D pose prediction is mea-
sured using root-relative 3DPCK [MRC*17], with the standard
threshold of 15 cm. The 3DPCK metric enables measuring the cor-
rectness of the pose, independently of the prediction of the absolute
3D location of the human.

MPJPE. For a fair comparison with previous methods, we also
report root-relative mean per-joint position error (MPJPE) in the
CMU Panoptic dataset.

Jitter. Finally, since we are targeting high-quality temporal pre-
dictions in 3D coordinates, we also evaluate the amount of jitter
of our estimations, which is a critical indicator for many down-
stream applications. For this evaluation, we adapted the temporal
smoothness error esmooth from [SGX*21] to evaluate the jitter in
3D coordinates.
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Table 1: Comparison of our method with previous approaches on
MuPoTs-3D in the MRPE (lower is better), AProot

25 , and 3DPCK
metrics (higher is better), considering the global 3D pose and the
normalized (univ) ground truths. Our approach is superior to all
compared methods on the absolute metrics (MRPE, AProot

25 and
3DPCK3d), i.e. , the most expressive ones for 3D human motion
capture. “†” evaluated on samples with IK only; “∗” evaluated on
root-relative predictions without IK; “‡” results only possible with
an additional 2D fitting stage, implemented as our baseline.

Method
Char.

control
MRPE ↓ AProot

25 3DPCK3d 3DPCKuniv

LCR-Net [RWS17] ✘ – – – 53.8
LCR-Net++ [RWS19] ✘ – – – 70.6
3DMPPE [MCL19] ✘ – 31.0 – 81.8
SMAP [ZFS*20] ✘ – 45.5 – 80.3
XNect∗ [MSM*20] ✘ – – 64.1 71.9
XNect† [MSM*20] ✔ 639 31.6 56.5 60.1
CRMH [JKP*20] ✔ – – – 69.1
BEV [SLB*22] ✔ – – – 70.2

Baseline (ROMP+2D fitting) ✔ 331‡ 45.4‡ 68.2‡ 71.8
Ours ✔ 266 62.3 74.9 78.9

4.3. Implementation Details

Our method is implemented in PyTorch [PGM*19] using Py-
Torch3D [RRN*20] for the rasterization (6) and silhouette ren-
dering (10). The camera intrinsics are used in the 3D joint pro-
jection (9), rasterization (6), and rendering (10) parts, and can be
obtained from video metadata if not given. We apply the RM-
Sprop [HSS12] optimizer with the parameters α and momentum
set to 0.5 and 0.9, respectively, for all experiments. In the opti-
mization process, we initially minimize the first part (4) only for
30 iterations, then perform the full optimization (15) for more 200
iterations. We use a learning rate initially set to 0.01 and exponen-
tially decaying with factor 0.99. The weights λ(.) were empirically
defined to balance the magnitude of the individual energy terms,
and fixed in the method in all experiments, except when mentioned
otherwise (ablation in Section 4.5). The values were defined as
λdepth = λspeed = 0.05, λsilhouette = 0.1, λsmpl = λtemporal = 0.002,
λscale = 0.0001, λcontact = 0.001, and λslip = 0.01. For numeri-
cal stability, we constrain the variables sn, znear,t , and zfar,t to be
non-zero and positive. Both human and background segmentation
masks were post-processed with morphological erosion and dila-
tion filters of size 3×3 and 5×5, respectively. For the sake of GPU
memory efficiency, we use mini batches of ten images in the depth
and silhouette losses. Our experiments run on a workstation with
one Nvidia Titan V GPU with 12 GB of memory.

4.4. Comparison with Previous Methods

In Table 1, we compare our method to the most related prior work.
We compare our method for human localization considering MRPE
and AProot

25 metrics with the methods that are capable of providing
such predictions. We use two protocols to evaluate the quality of
the 3D pose. First, we compare against the global 3D pose with-
out any normalization, which is a fairer protocol for our method,
since we are capable of estimating the person scale (denoted by
3DPCK3d). In the second case, we compare against the universal
3D pose, which has all bone lengths normalized to a standard size,

Table 2: Comparison of our method with previous approaches on
the CMU Panoptic dataset for 3D pose estimation. Results reported
in millimeters. Camera views capturing only the upper body parts
were not used in our evaluation. † evaluated in all the sequences.
Best results are bold on the standard sequences and underlined on
the full-body visible sequences.

Metric Method Haggling Ultimatum Pizza Avg.

MPJPE
CRMH [JKP*20]† 129.6 153.0 156.7 146.4
BEV [SLB*22]† 90.7 113.1 125.2 109.6
Baseline 93.6 133.8 145.9 124.4
Ours 84.5 108.9 133.2 108.9

MRPE
Baseline 235.2 269.6 356.4 287.0
Ours 213.7 208.0 229.7 217.1

as described in [MSM*18] (denoted as 3DPCKuniv). For this uni-
versal protocol, in our method, we assume person scale sn equals to
one for all predictions. Note how our method outperforms all prior
work by a wide margin at 3D localization and also performs bet-
ter at estimating the articulated pose compared to all other meth-
ods that allow for character control. As a baseline, we evaluate
ROMP [SBL*21] predictions with an additional stage for fitting
estimated SMPL models to AlphaPose 2D body joint detections,
since this is the closest setup to our method without including our
new energy formulation. For this, we assume a unitary person scale
(w.r.t. the SMPL neutral model) and optimize only the global trans-
lation in 3D of each person. We also tried GLAMR [YIM*22] as
our baseline, but it often failed in detecting and tracking humans
and was not able to process long video sequences, resulting in a
very low 3DPCK of 42.9% on MuPoTs-3D. In a similar manner,
XNect [MSM*20] estimates the global position by fitting the pre-
dicted 3D poses into 2D body joints, assuming a universal and nor-
malized human body size. The inverse kinematics (IK) stage from
XNect allows this global estimation, however, since the optimized
3D human pose differs from the preliminary estimated pose, the ac-
curacy after IK drops significantly. In summary, we observe that our
approach outperforms previous methods for human position esti-
mation by a significant margin, improving the average precision of
the root joint from 45.4% to 62.3%. Our method also outperforms
all other approaches for human pose estimation that are capable of
driving a virtual character.

In Table 2, we compare our method with other approaches on
the CMU Panoptic dataset. This dataset is specially challenging be-
cause in many sequences the persons are only partially visible, ei-
ther due to occlusions, or because the camera is capturing only the
upper body part of the actors. Even in this challenging scenario, our
method performs on par with the recent BEV [SLB*22] method,
which was trained on the CMU Panoptic dataset and, therefore,
performs better in the cases of partial body visibility then our op-
timization approach. In order to evaluate the performance of our
method on the more practical scenario of cameras recording the full
body of the persons, we removed the few sequences capturing only
the upper body parts. In this setup, we largely improve over other
methods and over our baseline, as can be seen by the underlined
numbers in Table 2.

For many downstream applications, such as gaming and charac-
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Table 3: Comparison of our method on MuPoTs-3D with previous
approaches on temporal smoothness error esmooth, that measures
the amount of jitter in the predictions in millimeters. We also report
the MRPE and 3DPCK3d metrics for completeness. Our method
has a drastically lower jitter in the prediction compared to previous
multi-person motion capture approaches.

Method Jitter ↓ MRPE ↓ 3DPCK3d ↑

XNect [MSM*20] 136.4 639 56.5
ROMP [SBL*21] 59.6 331 68.2

Ours (EI only) 17.5 281 73.5
Ours (EI +Econtact) 17.6 276 73.7
Ours (EI +Econtact +Eslip) 17.1 273 73.8
Ours (EI +Etemporal) 7.8 272 74.8
Ours (EI +Econtact +Eslip +Etemporal) 7.5 266 74.9

ter control, jitter is a severe artifact that hinders usability. Therefore,
we also evaluated our method by reporting the temporal smooth-
ness error esmooth in 3D coordinates. The results from our method,
as well as from previous work in the literature related to ours, are
shown in Table 3. In this experiment, we compared our approach
with two methods from the literature, showing a significant im-
provement in reducing the jitter artifact. Furthermore, we also eval-
uated the contribution of different components of our method. For
instance, the temporal energy term in our approach has a critical
effect in reducing jitter. In addition, the contact and slip terms also
contribute in a small proportion but consistently to all metrics, re-
gardless the presence or absence of the temporal energy. When all
terms are included, our approach is very stable, with an average
jitter error below 1cm.

4.5. Ablation Study

In this section, we perform additional evaluations of the different
components of our method. The results on MuPoTs-3D are shown
in Tables 4 and 5. First, we evaluate the influence of the energy
terms of the first part of our optimization framework. The energy
term Edepth provides essential information to disambiguate depth
and scale, which contributes to improving the position estimation.
The flexibility provided by the person scale factor can be detri-
mental to the overall accuracy of the method if no constraints are
imposed on it. This can be seen in the second row of Table 4, with-
out Escale. By constraining our predictions to remain close to the
original estimates from ROMP, our method enforces the final esti-
mates to be valid and prevents them from collapsing, as shown in
the results without Esmpl. Finally, Espeed is relevant for reducing
jitter and the silhouette term provides beneficial contributions to all
the metrics. With all the energy terms, our method is stable and
precise in estimating 3D position and pose. Since our method re-
lies on off-the-shelf predictors as input, we also provide a concise
evaluation considering two different 2D pose and three different
depth estimation models from the recent literature. The results in
Table 5 show that the influence of the depth estimation models is
relatively small; however, the best performing model is the most
recent transformer architecture, which suggests that our approach
directly benefits from improved monocular depth estimations. Re-
garding 2D pose estimation, HRNet [WSC*20] performed worse

Table 4: Ablation study for different energy terms. Without the pro-
posed depth and scale terms, the global position in 3D cannot be
precisely recovered, i.e. , AProot

25 drops from 62.3 to 47.4% and to
22.2%, respectively. The SMPL term is critical for enforcing valid
estimates, and the speed term contributes to reducing the jitter. The
silhouette term provides consistent improvements in all the metrics.

Experiment Jitter ↓ MRPE ↓ AProot
25 ↑ 3DPCK3d ↑

w/o Edepth 7.8 284 47.4 75.5
w/o Escale 7.7 541 22.2 68.9
w/o Esmpl 8.0 674 11.5 56.3
w/o Espeed 8.9 269 63.6 74.8
w/o Esilhouette 7.6 270 62.0 74.7

Ours (full) 7.5 266 62.3 74.9

Table 5: Our results considering different models for 2D pose
and monocular depth estimation. We observe that the human
position estimation from our method benefits directly from ad-
vances in the monocular depth estimation when comparing MiDaS
v2.1 [RLH*20] and DPT-Large [RBK21].

2D Pose Model Depth Model MRPE ↓ AProot
25 ↑ 3DPCK3d ↑

AlphaPose MiDaS v2.1 278 55.8 75.7
AlphaPose DPT-Hybrid 276 60.8 75.0
AlphaPose DPT-Large 266 62.3 74.9
HRNet DPT-Large 304 54.9 72.7

than AlphaPose, since HRNet relies on person detection as a first
step, which makes it susceptible to detection failures.

4.6. Qualitative Results

Figure 4 provides additional qualitative results with predictions
from our method in 3D coordinates, alongside the ground truth
pose. We compare our method with XNect [MSM*20] and
ROMP [SBL*21]. We can see that predictions from ROMP do of-
ten not correspond to the correct position of the humans in the
scene, since it is not able to estimate the correct person scale.
For XNect, we can observe that it also fails to recover the cor-
rect scale of the person, which can be observed from the top view.
On the other hand, our approach can predict a 3D pose that cor-
responds to the ground truth human annotation and is coherently
positioned in 3D coordinates. We also compare our method with
GLAMR [YIM*22] and BEV [SLB*22] in Figure 6. GLAMR fails
to track all the persons in the scene and BEV fails to predict co-
herent human positions. More qualitative comparisons are in the
supplementary video.

Our method has the advantage of jointly estimating the humans
and the scene point cloud, which can be further used to impose
physical constrains in the estimated humans over time. The effect of
these constraints can be visually seen in Figure 7, where we show a
sequence of a person standing on the floor. In the top row, where no
physical constraints were applied, we can observe that the right foot
oscillates drastically from one frame to another. When the physical
constraints are applied (the bottom row), this artifact is drastically
reduced, and the right foot stays still in contact with the ground.
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Ground-truth Ours Baseline (ROMP + 2D fitting) XNect

Figure 4: Comparisons of predictions from our method with other approaches. Compared to XNect and our baseline, our method is the only
one that is able to estimate the person scale. Therefore, it predicts human positions in a more coherent way even for people of smaller height.
3D human poses are shown in the image plane (left) and top view (right). The ground-truth pose is not available for all the subjects in the
dataset. Digital zoom is recommended.

Input image Ours Baseline (ROMP + 2D fitting)

Figure 5: 3D Human poses estimated by our method from Internet videos. The baseline method can correctly localise the persons in the
image plane, but fails drastically in positioning the characters in 3D. Note from our method the correct character order along the depth
channel and the correctly estimated scale for each person. Digital zoom is recommended.

BEV

GLAMR

Ours

Input image

Figure 6: Our results compared to BEV [SLB*22] and
GLAMR [YIM*22] on a scene with people of different sizes.

Since our method does not require any specific training proce-
dure and rely on multiple predictions from models trained on a
large corpus of data, our approach automatically generalizes well
for in-the-wild and Internet videos, as can be seen in Figure 5 and
can be directly used to drive virtual characters from monocular
RGB videos; see Figure 8.

5. Discussion

Our method achieves low reconstruction errors, because it can
successfully leverage multi-modal inputs to disambiguate the rel-
ative depths between humans and human scales better than pre-
vious works. Moreover, our results evince significantly less jitter
and foot-floor penetrations than the evaluated baselines for multi-
human 3D pose estimation and the ablative study confirms that all
components of the method contribute to the final accuracy. We have
demonstrated that the recovered 3D human motions can be applied
for virtual character animation, as one potential application among
the many others.

Limitations and Possible Extensions. Although our method out-
performs competing methods and makes a step forward in monoc-
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Figure 7: The effect of the physical constrains imposed by the esti-
mated geometry in our predictions. The results without Econtact and
Eslip (top) contain more foot sliding artifacts than our results with
physical constrains (bottom).
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Figure 8: Our method can be directly used to drive virtual charac-
ters or animate avatars in augmented reality applications (bottom
row) from monocular RGB videos. Note the correct character or-
der along the depth channel. Thanks to our physical plausibility
constraints, barely any foot-floor penetrations or foot sliding are
observed in the animations; see the video.

ular multi-human 3D motion capture, it has several limitations
caused by the severe ill-posedness of our monocular setting.
All these limitations open possibilities for future extensions and
follow-up works as described in the following.

First, our approach relies on multiple inputs from pre-trained
models (depth maps and 2D body joints) and, therefore, could also
be negatively affected by the output of those methods; for example
if the estimated depth maps contain significant artefacts (e.g., when

obtained on our-of-distribution environments). On the other hand,
this implies that the performance of our approach has the potential
to keep increasing in the future with the progress in related fields
(cf. Table 5).

Our method also requires that people are entirely visible in most
of the frames and move in the scene. Otherwise, the setting be-
comes degenerate, and we do not get enough cues for accurate re-
construction. Even though we mitigate artefacts that appear as vi-
olations of physical laws by geometric terms, some minor ones of
this type remain. Further improvements can be attained by methods
explicitly modelling physical laws as in single-human 3D motion
capture [SGXT20; SGX*21; XWI*21].

Moreover, while the static camera assumption is practical, it is
also very challenging, and a moving camera could provide addi-
tional 3D reconstruction cues. Finally, the proposed approach is an
optimization method that can efficiently process an entire video se-
quence and extract relevant information about the scene from all
frames globally. However, due to this characteristic, the method in
its current version does not allow real-time applications.

6. Conclusion

We present a new holistic approach for multi-human 3D motion
capture from a single static monocular RGB camera. Our core
statement—that the synergy between multi-modal inputs and priors
can significantly boost the 3D reconstruction accuracy in this chal-
lenging setting—is confirmed by extensive experiments in which
we set a new state of the art on commonly used benchmarks. More-
over, as expected, we confirm that the constraints from the scene
point clouds steadily boost the accuracy of the final 3D poses.
Qualitatively, our reconstructions evince substantially fewer arte-
facts (such as jitter and foot-floor penetrations), enabling excit-
ing downstream applications such as motion re-targeting for vir-
tual characters. We believe that the proposed holistic approach for
multi-human 3D motion capture can be extended in many useful
ways, and we will be excited to see follow-ups.
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