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Figure 1: EG subdivision. (a) Magenta bullets • have five tabulated rules (stencils applied using structural symmetry) in addition to the rule
for the extraordinary point c0. (b) Un-symmetric input control net with 8 extraordinary nodes of valence 6. (c,d,e) The EG surface does not
reveal the extraordinary points.

Abstract
To overcome the well-known shape deficiencies of bi-cubic subdivision surfaces, Evolving Guide subdivision (EG subdivision)
generalizes C2 bi-quartic (bi-4) splines that approximate a sequence of piecewise polynomial surface pieces near extraordinary
points. Unlike guided subdivision, which achieves good shape by following a guide surface in a two-stage, geometry-dependent
process, EG subdivision is defined by five new explicit subdivision rules. While formally only C1 at extraordinary points, EG
subdivision applied to an obstacle course of inputs generates surfaces without the oscillations and pinched highlight lines
typical for Catmull-Clark subdivision. EG subdivision surfaces join C2 with bi-3 surface pieces obtained by interpreting regular
sub-nets as bi-cubic tensor-product splines and C2 with adjacent EG surfaces. The EG subdivision control net surrounding
an extraordinary node can have the same structure as Catmull-Clark subdivision: two rings of 4-sided facets around each
extraordinary nodes so that extraordinary nodes are separated by at least one regular node.

1. Introduction

In Catmull-Clark subdivision [CC78], except for extraordinary
nodes, all new nodes of a refinement step are defined by regu-
lar bi-cubic (bi-3) uniform knot-insertion rules. (An extraordinary
node is a mesh node that has fewer or more than the regular n = 4
neighbors.) The simplicity of just one special rule for each valence
n 6= 4 makes implementation conceptually easy and broadly ap-
plicable (see e.g. [NLMD12] for a canonical implementation with
additional features). However, the simple rules come at the cost of
non-uniformly distributed highlight lines, e.g. visually unpleasant
pinching of highlight lines near the extraordinary point, see Fig. 12e
or Fig. 16f. Uniform highlight line distribution is a standard crite-
rion for high surface quality [BC94] and the non-uniformity hints at

the subdivision surface’s inherent unbounded curvature in the limit.
In response, Malcolm Sabin pioneered curvature-bounded subdivi-
sion [Sab91]. To control curvature at the limit extraordinary point
c0, curvature-bounded subdivision has special refinement rules also
for the 2n nearest neighbors of the extraordinary node. Initial ver-
sions of curvature-bounded subdivision resulted in undue flatness
at the extraordinary point for convex control neighborhoods of the
extraordinary node, [PU98]. Arguably the best shape of this class
of ‘tuned’ subdivision algorithms is obtained by Ma-Ma subdivi-
sion surfaces [MM18] where, following [Sab91], each bi-3 patch of
Catmull-Clark subdivision is replaced by 2×2 bi-3 macro-patches.
The resulting shape is good, except for curvature oscillations at the
transitions between the surface rings, see Fig. 12d,f. Also in the
spirit of [Sab91], [LFS16] prescribe part of the Taylor expansion
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Figure 2: (a) Bi-3 subdivision algorithms using a c-net as input. Magenta bullets (left and right of the c-net) are obtained by special rules.
(b) the standard layout of contracting subdivision surface rings.

to prevent shape defects where the knot-spacing near the extraor-
dinary point is highly unequal. Guided subdivision [KP18, KP19]
provides a still more complete geometric Taylor expansion at the
extraordinary point by making the subdivision surface follow an
initially-computed, hence static guide surface. The shape of guided
subdivision is reportedly very good, but guided subdivision is com-
plex to implement due to its two construction stages: first construct
the guide surface and then the subdivision surface, as a series of
surface extension operators.

The contribution of the new EG subdivision algorithm is that it
achieves the surface quality of guided subdivision with the explicit
formulas familiar from classical or tuned algorithms. The num-
ber of output patches is the same as for Catmull-Clark subdivision
and therefore 1/4th of the tuned algorithms. Of course a price has
to be paid: the polynomial degree of the surface near extraordi-
nary points is increased to bi-quartic (bi-4) and generalizes bi-4 C2

splines that smoothly join bi-3 C2 splines of any surrounding regu-
lar quad-grid. That is, apart from where the extraordinary rules ap-
ply, the surface is the same uniform tensor-product bi-cubic spline
as for Catmull-Clark subdivision. While Catmull-Clark subdivision
has just one extraordinary rule, Ma-Ma subdivision has three (and
4 times as many bi-cubic pieces) and EG subdivision has five in ad-
dition to the once-executed rule for setting the limit point. On the
other hand, the footprint of the EG rules is smaller than of guided
subdivision. For example, the tight, not symmetric input control
net Fig. 1b yields a surface consisting of eight 6-sided EG subdivi-
sion pieces that join directly, i.e. without requiring separating bi-3
surfaces generated from regular sub-nets, see Fig. 1c. This input
net was chosen to rule out that the good shape is due to accidental
symmetries and sufficiently small so that shape is not dominated
by regular bi-cubic surfaces. The highlight lines in Fig. 1d are re-
markably uniform and the mean curvature in Fig. 1e reveals neither
unwanted oscillations nor betrays the locations of the extraordinary
points. The key to this good shape is that EG subdivision follows
an evolving converging sequence of piecewise polynomial surface
caps baked into the explicit EG subdivision rules.

As input, EG subdivision requires only second-order Hermite
boundary data and a central limit point c0. These can be obtained
from a c-net, the control net of Catmull-Clark subdivision, i.e. two
rings of quads surrounding a node of valence n with its direct and
diagonal neighbor nodes of regular valence 4, see Fig. 2a. Alterna-

tively, the control net of EG subdivision is a d-net: a d-net has the
structure of a c-net with the central node removed and extended on
the outside by one quad layer. All interior nodes have valence 4, see
Fig. 1a. The nodes are interpreted as a C2 bi-4 spline control points
while the EG caps are of degree bi-4.

Overview After a review of recent progress in subdivision sur-
face algorithms, Section 2 recalls the rules for regular C2 bi-4 sub-
division. Section 3 shows how c-nets are converted to d-nets and
how to set the extraordinary point, c0. Section 4 contains the tech-
nical derivation of the rules of EG subdivision. This section can
be skipped by the non-specialist. It is only intended for the spe-
cialist to follow the derivation. Section 5 presents the subdivision
rules and Section 6 analyses the eigenstructure of the resulting limit
surface. Examples and Discussion follow in Section 7. While Sec-
tion 5 already presents explicit formulas (stencils) for n = 3 and
n = 5, the formulas for valences n = 6,7,8,9,10 are provided in
the Appendix.

1.1. Literature

Catmull-Clark subdivision [CC78] generalizes uniform bi-cubic
(bi-3) tensor-product spline refinement to polyhedral control nets.
Catmull-Clark subdivision is widely used in character anima-
tion [DKT98, NLMD12] and less so in industrial design [Ma05].
Repeated Catmull-Clark subdivision steps accumulate hyperbolic
terms that result in geometric artifacts near extraordinary points
whose valence is n > 4 [KPR04]. A number of algorithms, with
increased complexity, have been devised to remedy this flaw in
the limit, see e.g. [ADS06, CADS09, MM18, LFS16]. [CADS09,
MM18] modify the differential expansion at the extraordinary point
by adjusting subdivision weights; [LFS16] even prescribes leading
parts of the eigenstructure. Guided Subdivision [KP07] removes ar-
tifacts by providing the limit differential expansion and eigenstruc-
ture directly and geometrically in the form of a guide surface. In all
cases, this comes at the cost of more complex rules to generate the
contracting subdivision surface rings. Subdivision rules have also
been adjusted to improve convergence when used to solve partial
differential equations [WLZH21, ZSC18].

The shape of EG subdivision surfaces is very similar to surfaces
generated by the bi-4 variant of [KP19] that generalizes the ap-
proach in [KP18]. The best outcome among five compared variants
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Figure 3: Refinement of degree 4 C2 B-splines: (a) curve case;
nodes (marked ◦ are associated with simple knots, marked • with
double knots. (b) tensor-product bi-4 surface case.

of curvature-bounded guided subdivision is for a variant of degree
bi-4 akin to EG subdivision. Both best constructions have bi-cubic
variants that require more pieces and result in a slight deteriora-
tion of shape (see Fig. 21 and [KP19, Figs 2, 27]). The alikeness
of shape is remarkable since the guided subdivision constructions
in [KP19] and [KP18] yield excellent shape but are far more com-
plicated: they require creating an explicit guide and a process of
prolongation rather than the explicit formulas of EG subdivision.

Fig. 2a juxtaposes the nodes with special rules of bi-3 Catmull-
Clark and Ma-Ma subdivision. These two algorithms are the main
ones to be compared to since Catmull-Clark subdivision is widely
used and [MM18] is the best of its class of ‘tuned’ bi-3 subdivi-
sion algorithms ( [MM19] has a subdominant eigenvalue yielding
faster contractions, but the oscillations increase). Both generate a
sequence of C2-connected C2 contracting rings, see Fig. 2b. Each
sector of a ring consists of Bézier patches, three for Catmull-Clark
subdivision [CC78] and 3×2×2 for Ma-Ma subdivision [MM18].
Since subdivision surfaces have to have a parameterization of de-
gree at least bi-6 to yield C2 surfaces [PR08], Catmull-Clark, Ma-
Ma and EG subdivision can only be C1 at the extraordinary point
c0 (•).

2. C2 bi-4 spline subdivision

We first recall the regular subdivision rules of tensor-product C2

degree 4 splines (bi-4 splines) by knot insertion. The stencils for
univariate refinement are shown in Fig. 3a. The stencils are convex
combinations of the old nodes (top) and yield the three cases of new
nodes that are indicated by 2. Note that the stencil weights are al-
ways scaled to sum to 1. For example, the stencil on the left implies
that a new point d̃2i corresponding to an even-labeled old point di
is obtained as an average of 10/16 the old point di , and 3/16 times
each of its old neighbors di−1 and di+1. For a new point d̃2i−1 to
the left of d2i, the weights are 9/16, 6/16 and 1/16. Tensoring this
univariate refinement yields nodes with simple knots (marked ◦ in
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Figure 4: Input and structure of EG subdivision: (a) input d-net;
no central point c0. (b) Regular rules ◦, •, • and EG subdivision
rules •.

Fig. 3b), double knots (marked •) in u and v, and single in one and
double in the other variable (marked •). The explicit formulas for
the refinement of bi-4 C2 B-splines, d→ d̃, are:

d :=
1

256
[d00,d10,d20,d30,d01,d11,d21,d31,d02,d12,d22,d32]

T ,

d̃00 :=[81,54,9,0,54,36,6,0,9,6,1,0]d,
d̃10 :=[27,90,27,0,18,60,18,0,3,10,3,0]d,
d̃11 :=[9,30,9,0,30,100,30,0,9,30,9,0]d,
d̃30 :=[0,18,108,18,0,12,72,12,0,2,12,2]d, (1)

d̃31 :=[0,6,36,6,0,20,120,20,0,6,36,6]d,
d̃33 :=(36d22 +6(d21 +d12 +d32 +d23)+d11 +d33 +d31 +d13)/64.
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The remaining d̃i j are defined by symmetry as follows:
d̃01 is obtained from d̃10 replacing di j by d ji;
d̃2r, r = 0,1, are obtained from d̃0r replacing di j by d2−i, j;
d̃r2, r = 0, . . . ,3, are obtained from d̃r0 replacing di j by di,2− j;
d̃r3, r = 0,1,2, are obtained from d̃3r replacing di j by d ji;
d̃r+4,s are obtained from d̃rs replacing di j by d2+i, j;
d̃r,s+4 are obtained from d̃rs replacing di j by di,2+ j.

To extend the formulas to irregular multi-sided configurations
we consider n groups of 12 nodes, see Fig. 4a:

ds
i j, i = 0, . . . ,3, j = 0, . . . ,2, s = 0, . . . ,n−1. (2)

The superscript s indicates a sector as marked by cyan dashed
boxes. The configuration of n sectors is called a d-net. All but
n nodes ds

32 of the d-net have valence 4 (are regular). The solid
lines in Fig. 4a serve only to delineate the sectors and ds

32 has three
neighbors. In particular, the intersection of the solid lines is not a
control point.

Regular refinement yields the nodes marked •, ◦ or • in Fig. 4b.
The 6n magenta nodes depend on special rules to be derived and
explained in Section 5. The refined net defines a surface ring of
3n polynomial pieces of degree bi-4 that matches the second-order
Hermite data at the outer boundary of the ring and so is a C2 pro-
longation. The nodes in cyan dashed boxes in Fig. 4b form a refined
net with nodes denoted as d̃. Each step yields a new C2 bi-4 ring
that is C2-connected to the current bi-4 ring. Although formally
C2 and rather simple, a careful definition of new magenta nodes
in Section 5 is key to obtaining good shape near the extraordinary
point.

e
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Figure 5: ‘Degree-raising’ a c-net to a d-net.

3. Initialization: c→ d and setting the limit point c0

If the input net is a c-net with extraordinary node e,

c0 :=

{
n

n+5 e+ 4
n(n+5) ∑

n−1
i=0 ci

6 +
1

n(n+5) ∑
n−1
i=0 ci

5, n > 4,
11
32 e+ 1

6 ∑
n−1
i=0 ci

6 +
5

96 ∑
n−1
i=0 ci

5, n = 3,
(3)

i.e. c0 is the extraordinary limit point of Catmull-Clark subdivision
[HKD93], slightly corrected for n = 3 as in [KP15].

We degree-raise the c-net to a d-net: d := Rc where R is a 12n×
6n+1 matrix whose entries do not depend on n and that can be
applied per sector, see Fig. 5: the c-net nodes are marked as ©
and the d-net nodes as •, • or ◦. For one sector, Fig. 5b gives the
degree-raising stencils that, in different positions, define 12 rows of
R.

Conversely, when the input is a d-net and therefore lacks a cen-
tral node, c0 is determined by fitting a c-net c̃ (with 6n+1 undeter-
mined nodes) to d: apply the stencils of Fig. 5b to c̃ and minimize
the sum of squared distances between the corresponding nodes and
d. Then c0 is defined by applying (3) to c̃. For an input d-net, the
explicit solution of this approach is

c0 :=
n−1

∑
s=0

3

∑
i=0

2

∑
j=0

ei j

γn
ds

i j, (4)

e10 :=−6e00,e01 := e10, e02 := e20, e12 := e21,e21 :=−6e20,

n > 4 : γn := 178480n(n+5); δn := 11185n(n+5);

e20 := 19339n−53929, e30 := 336(153n−448),

e22 := 157051n+50279, e32 :=
γn

δn
(8483n−5008),

e00 := 2587n−8377,e11 := 36e00, e31 :=−6e30,

n = 3 : γ3 := 93120, e00 := 11, e20 :=−73, e11 := 396,

e22 := 10643, e32 := 19062, e30 := e10, e31 := e11.

4. Derivation of the refinement rules

This technical section is intended for the specialist to retrace the
derivation of the subdivision rules and is not needed to use or im-
plement EG subdivision. The steps are computed symbolically, not
numerically, to yield the subdivision rules.

Since the subdivision surface is piecewise polynomial, the
derivation takes advantage of the Bernstein-Bézier form (BB-
form, [dB87, Far88]). For Bernstein polynomials Bd

k (t) :=
(d

k
)
(1−

t)d−ktk the polynomials of bi-degree d = 4 are

d

∑
i=0

d

∑
j=0

bi jB
d
i (u)B

d
j (v), 0≤ u,v≤ 1.

Connecting the BB-coefficients bi j ∈R3 to bi+1, j and bi, j+1, wher-
ever well-defined, yields the BB-net.

To express C2 degree d = 4 splines in BB-form, we first consider
one variable. Every even-labeled spline control point d2s, marked ◦
in Fig. 6a, is associated with a single knot and is interpreted as the
middle BB-coefficient of a corresponding curve segment with la-
bel s, i.e. bs

2 := d2s. Every odd-labeled control point (labeled d2s−1
and marked • in Fig. 6a) is associated with a double knot and corre-
sponds to, but is typically not equal to, the common BB-coefficient
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K. Karčiauskas & J. Peters / Evolving Guide Subdivision

d2s−2

d2s−1

d2s

bs−1
3 bs

0 bs
1

bs−1
2 bs

2

(a) univariate degree 4 B-to-BB con-
version

00 10 20 40

01 11 21 41

02 12 22 42

04 44

dkl

00 10 20 40

01 11 21 41

02 12 22 42

04 44

b

→

(b) bi-variate degree bi-4 B-to-BB conversion

Figure 6: Conversion from degree 4 C2 B-spline form to BB-form:
(a) univariate case; (b) tensor-product case. The four dkl marked
by • correspond to corner coefficients b00, b40, b44, b04 of the bi-4
patch b.

of two curve segments bs−1
4 = bs

0 . The explicit formulas of the
conversion to the BB-coefficients of segment s are:

bs
0 :=

1
4
(d2s−2 +2d2s−1 +d2s), bs

4 :=
1
4
(d2s +2d2s+1 +d2s+2),

bs
1 :=

1
2
(d2s−1 +d2s), bs

2 := d2s, bs
3 :=

1
2
(d2s +d2s+1). (5)

Tensoring the univariate case yields nodes with simple knots
(marked ◦ in Fig. 6b,left), double knots (marked •) in u and v and
single in one and double in the other variable (marked •). The for-
mulas for B-to-BB conversion, d→ b, are

d := [d00,d10,d01,d20,d02,d11,d21,d12,d22]
T ,

b00 :=
1

16
[1,2,2,1,1,4,2,2,1]d b10 :=

1
16

[0,2,0,2,0,4,4,2,2]d

b20 :=
(
d20 +2d21 +d22

)
/4, b21 :=

(
d12 +d22

)
/2, (6)

b11 :=
(
d11 +d21 +d12 +d22

)
/4, b22 := d22.

The remaining BB-coefficients are defined by symmetries:
b01, b02, b12 are obtained from b10, b20, b21 by replacing dkl by
dlk; bkl , k = 3,4, l = 0,1,2 are obtained from b4−k,l by replacing
dkl by d4−k,l ; bkl , k = 0, . . . ,4, l = 3,4 are obtained from bk,4−l by
replacing dkl by dk,4−l . Analogous to c-net conversion, conversion
of the d-net to BB-form (6) provides second-order Hermite data
around the hole.

The construction repeatedly uses Taylor expansions, or jets, at
corners of patches and Taylor expansions along boundaries of
patches, called tensor-borders. For example, the second-order Tay-
lor expansion of a map f at corner of its unit square domain can
be collected in the matrix of partial derivatives at a corner point,

(
f ∂u f ∂

2
u f

∂v f ∂u∂v f ∂
2
u∂v f

∂
2
v f ∂u∂

2
v f ∂

2
u∂

2
v f

)
∼

↗
→↘

Figure 7: Assembly of three corner jets into an L-net

→L
−1

(a) linear transformation L
1− λ : λ

(b) sampling

←
1
4

−1
4

1

(c) C2 correction

Figure 8: Contraction of spline rings.

see Fig. 7, left, that is re-expressed as a 3× 3 BB-net (right of ∼)
of some degree bi-d. Three corner jets (cyan,yellow and blue) can
be merged into an L-net by averaging the BB-coefficients at over-
lapping locations. The L-net defines two tensor-borders of degree
bi-4.

Let L be the linear transformation that maps the unit square into
a unit-edge-length parallelogram with opening angle 2π

n . Let χ be
the characteristic map of Catmull-Clark subdivision with subdom-
inant eigenvalue λ, see Fig. 8a. Scaling χ

T := L−1 ◦χ by λ there-
fore maps the tensor-border of the characteristic map into the up-
per right pink area in Fig. 8b. Analogous to the construction for a
c-net, in [KP18, Appendix], we construct a map g, consisting of n
G1-connected bi-5 sectors with a unique quadratic expansion at the
common point, as an affine combination of the nodes d and c0. Re-
stricting g to the same subdomain as χ

T therefore allows sampling
the L-shaped bi-4 tensor-borders from g ◦λχ

T , see Fig. 8c. These
adjacent L-shaped pieces are off-hand C1-connected, but applying
the univariate stencil of Fig. 8c,right to ◦← and its ◦ sibling below
by symmetry, makes the layers join C2. Then we apply the inverse
of the formulas (6), to yield d in terms of b, to the n C2-connected
bi-4 tensor-borders. This defines the refined nodes d̃s

i j, i = 0, . . . ,3,
j = 0, . . . ,2, s = 0, . . . ,n−1.

In all sectors, d̃s
i0, i = 0, . . . ,3, d̃s

0 j, j = 1,2, are obtained by reg-
ular refinement of d, see Fig. 4b. All calculations are symbolic and
yield explicit affine expressions, shown in the next section, of the
refined nodes d̃ in terms of the initial nodes d and the central point
c0 fixed in Section 3. Tabulating, for each valence n, the expressions
in a subdivision matrix, respectively the arrays An

i j of Section 5 and
the Appendix, completes the derivation of the algorithm.
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K. Karčiauskas & J. Peters / Evolving Guide Subdivision

5. The subdivision algorithm d→ d̃

The derivation in the previous section may give the impression that
EG subdivision is complicated to implement. However implemen-
tation requires only five special rules in addition to rule (3), re-
spectively (4) for c0. These rules, expressed as integer weights af-
ter scaling by 105, are presented here and in the Appendix. The
six outer new nodes d̃s

hk (for h = 0 or k = 0) are generated by
the regular refinement rules (1). The six inner new nodes d̃s

hk,
h = 1,2,3, k = 1,2, are each calculated by the following formula

d̃s
hk := ahk

0 c0 +
n−1

∑
r=0

3

∑
i=0

2

∑
j=0

ar,hk
i j ds+r

i j . (7)

The pseudocode for EG is then (cf. EGRefinePatchCon-
structor in [LKP22])

Prior to runtime, once ever:
- for each valence n, assemble the subdivision matrix An

by copying and replicating the 5-digit array entries ar,hk
i j

using the structural symmetries explained below and ex-
tending to a full d-net by regular refinement (1).

If input is a d-net
- Set c0← d by (4),
If input is a c-net
- if extraordinary nodes not separated by one regular

node, apply one (local) Catmull-Clark subdivision step;
- Set d := Rc, c0← c by (3).
Repeat (subdivision step)

Collect the d-net and the limit point c0 into (d,c0), a
12n+1 vector of points.

- (output) Convert the d-net to a surface ring in BB-form
by tensoring (5) or applying (6).

- Then the new d-net points are

(d,c0)
new := An · (d,c0)

where · denotes matrix-vector multiplication.

The outer surface ring refined by regular rules (1) together with
the new d̃-net then define a C2-joined bi-4 spline ring, that can be
expressed in BB-form by the expressions (6).

All regular sub-nets of the input mesh can be interpreted as bi-
3 C2 B-spline control nets. The resulting bi-3 surface pieces join
C2 with the bi-4 EG surface caps because second-order Hermite
data along the boundary of the EG subdivision pieces stems from
degree-raised bi-3 uniform B-spline pieces generated when deriv-
ing the d-net from a c-net in Section 3. By the same reasoning abut-
ting EG surface pieces join C2.

It remains to specify the weights ar,hk
i j . To have a partition

of unity, the weight scaling the c0 contribution is ahk
0 := 1−

∑
n−1
r=0 ∑

3
i=0 ∑

2
j=0 ar,hk

i j . The inner double summation, whose indices
are illustrated in Fig. 4a, is unfolded into a 4×3 vector with indices

00 10 20 30 01 11 21 31 02 12 22 32
to form the rows of each of the five arrays An

11,A
n
22,A

n
21,A

n
31,A

n
32

required to build An. Here the superscript n is the valence and the
subscript is the index of the new node.

Several symmetries, in the construction (not the geometry), sim-
plify the formulas. For example, the rules for d̃s

12 follow from
those of d̃s

21 by subscript exchange. Formula (7) clearly shows
the rotational invariance of the construction. Mirror symmetries
with respect to sector diagonals and sector separating lines im-
ply further relations that allow shortening the arrays An

hk of pre-
calculated weights ar,hk

i j (superscript ‘3’ indicates nodes on the
sector-separating line):

ar,hk
i j = a−r,kh

ji , h = 1,2, k = 1,2, ar,3k
i j = a−r+1,3k

ji , k = 1,2,

ar,hk
3 j = a−r−1,kh

3 j , h = 1,2, k = 1,2, ar,3k
3 j = a−r,3k

3 j , k = 1,2.

Therefore it suffices to list the full set of rows, i.e. r = 0, . . . ,n−1,
for only the new node with index 21. For hk ∈ {11,22}, we need
only r = 0, . . . ,N, where N := b n

2c, i.e. N = 3 for n ∈ {6,7}. For
hk ∈ {31,32}, r = 0, . . . ,M where M := b n+1

2 c, i.e. M = 4 for
n ∈ {7,8}. The formulas have yet more symmetries, but some re-
dundancy simplifies reading and implementation.

The formulas were initially computed with 20-digit accuracy, but
truncating to 5 digits after the decimal point preserves good high-
light line distributions. After scaling by 105, truncation allows us
to explicitly list the ar,hk

i j as integers. Note that these integers are
not approximations but are the exact EG subdivision rules. The in-
teger representation facilitates an exact computation of the char-
acteristic polynomial of the EG subdivision matrix. The arrays
for n = 6,7,8,9,10 are listed in the Appendix and for n = 3 and
n = 5 here. As an example of how to read the arrays below, see
A5

11: a0,11
00 := −0.00129, a0,11

11 := 0.02629 a1,11
21 := −0.00111 and

a2,11
30 := 0.00021.

For n = 3,

A3
11 :=

(
−1 −13 −37 42 −13 1671 10243 2049 −37 10243 50096 5073
0 0 38 35 −4 20 −169 −859 −77 −272 −1886 −2793

)
A3

22 :=
(

0 6 −49 −96 6 −87 2309 1776 −49 2309 15760 6979
0 0 87 57 −11 39 −330 −1928 −58 −793 −3253 −5925

)
A3

21 :=
(

0 −10 2 1 −5 153 8101 7372 −173 2036 32183 20229
0 3 46 −11 −7 −3 98 −966 −118 328 1736 −2329
0 −8 −3 −128 0 16 −709 307 55 −198 −2703 4434

)
A3

31 :=
(

0 −3 0 76 16 −125 3642 9873 79 −370 4902 23927
0 16 79 79 −3 −125 −370 −1761 0 3642 4902 −6789
,0 −7 113 79 −7 80 −1088 −1761 113 −1088 −6828 −6789

)
A3

32 :=
(

0 −3 −30 63 9 −28 792 2658 14 −402 341 7126
0 9 14 44 −3 −28 −402 −1866 −30 792 341 −6175
0 −4 63 44 −4 62 −1112 −1866 63 −1112 −6536 −6175

)

For n = 5,

A5
11 :=

(
−129 221 50 −28 221 2629 6368 2877 50 6368 61638 6916
−26 68 −27 2 36 −65 −111 −16 2 −177 −10 −388
28 −41 −27 21 −57 −73 278 −17 4 306 −692 −676

)
A5

22 :=
(

−491 973 57 −205 973 −322 −4931 1147 57 −4931 41825 11869
−74 217 −103 27 68 −164 −225 −200 76 −94 2039 −3059
165 −264 −112 114 −332 −210 1422 −150 34 1591 −5064 −3801

)
A5

21 :=

−256 482 14 −132 582 −379 5085 5035 70 −3009 48736 23656
−143 317 −74 −16 243 −143 −857 −44 −67 434 5702 −564

89 −140 −48 53 −195 −107 773 −48 67 874 −2602 −1630
57 −96 −42 35 −83 −172 625 −107 −74 552 −1421 −2015
49 −135 104 −135 −59 −88 456 957 −37 538 −1701 3402


A5

31 :=

(−269 492 −13 −197 541 −115 −84 9355 −192 −1203 16754 43563
−269 541 −192 −10 492 −115 −1203 −313 −13 −84 16754 641
103 −154 −54 62 −243 −113 944 −117 118 951 −2635 −2601
79 −125 −80 62 −125 −219 800 −117 −80 800 −2081 −2601

)

A5
32 :=

(−433 772 −48 −208 910 −235 −3106 1327 −264 −2342 12285 25197
−433 910 −264 −41 772 −235 −2342 −207 −48 −3106 12285 −542
220 −354 −73 125 −509 −69 1859 −299 263 1600 −6314 −5478
169 −285 −124 125 −285 −260 1544 −299 −124 1544 −5418 −5478

)
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(a) n = 3 (b) n = 5 (c) n = 6

Figure 9: Characteristic map of EG subdivision (one sector).

6. Limit Analysis

The eigenvalues of the (12n+ 1)× (12n+ 1) subdivision matrix
can be computed directly by the software Maple based on the ar-
rays An

hk. The discrete Fourier transform needs not be used. As ex-
pected, exactly one eigenvalue dominates and is 1, and c0 is the
corresponding extraordinary point. The double subdominant eigen-
value λ differs from that of Catmull-Clark subdivision by less than
10−3 for any n≥ 3. This too is expected, since a linear transforma-
tion of the tensor-border of the characteristic map (ring) of Catmull-
Clark subdivision was used to derive the refinement rules. With µ
the subsubdominant eigenvalue, the deviation of µ

λ2 from 1 is small:

n= 3 5 6 7 8 9 10
µ

λ2 = 1.00015 1.00016 1.00151 1.00241 1.02887 1.04865 1.05815

This is a consequence of the guide-based derivation of the refine-
ment rules. The BB-nets of the characteristic rings, computed nu-
merically for n=3,5,. . . ,10, look identical (but are not identical)
to those of the degree-raised characteristic maps of Catmull-Clark
subdivision. Standard formal numerical computation confirms in-
jectivity of the rings. Fig. 9 displays the characteristic maps for
n = 3,5,6.

7. Examples and Discussion

In the following examples, wherever a sub-net is regular, the con-
trol net is interpreted as a bi-3 tensor-product spline, just as for
Catmull-Clark and Ma-Ma subdivision. The extraordinary nodes
are assumed to be surrounded by a c-net and each c-net is ‘degree-
raised’ to a d-net according to Section 3. Then the bi-4 EG surface
joins C2 with any bi-3 surface on the regular net and to neighbor-
ing EG surfaces. In the following examples, the input is a c-net
extended by one ring of quads to define a surrounding bi-3 surface
and so evaluate the transition from a regular bi-3 B-spline surface
(green) to the bi-4 EG subdivision surface (reddish gold). An ex-
tended c-net is anyhow required to start curvature-bounded subdi-
vision like Ma-Ma, because their rules have a larger support than
those for Catmull-Clark subdivision. (If the surface not governed
by the c-net is to be preserved, one Catmull-Clark-step needs to
precede the first Ma-Ma step).

We focus on the shape of the non-regular caps where the sur-
face differs from the uniform tensor-product bi-cubic spline sur-
face. Small nets are preferred to assess shape over large ‘real-
life’ meshes where regular surfaces dominate. As the egg cup in
Fig. 10 illustrates, even for models of moderate size still-images
from afar make it tricky to spot surface flaws evident under zoom

(a) input net

	

(b) Catmull-Clark

(c) layout (d) EG subdivision

Figure 10: Surfaces viewed from afar obscure shape deficiencies.

(a) n = 3 (b) layout (c) highlight lines

(d) n = 6 (e) layout

(f) Catmull-Clark (g) Ma-Ma (h) EG

Figure 11: Convex shapes for n = 3 and n = 6.

(right) or when interactively moving the object. The following
small, carefully-selected examples enable shape prediction and sur-
face quality verification.

Fig. 11 tests the new algorithm for convex input nets. For n = 3,
often an outlier in terms of shape, the highlight line distribution is
uniform. Fig. 11d consists of 6 planar sectors tangent to a slightly
bent cylinder. Catmull-Clark and Ma-Ma exhibit oscillations near
the extraordinary point, while EG subdivision does not. The input
of Fig. 12 are 7 planar sectors to be blended. The highlight lines
of eight subdivision rings show pinching for Catmull-Clark sub-
division in Fig. 12e. Ma-Ma subdivision applied to the extended
c-net shows unexpected kinks in the highlight lines, see 	 in
Fig. 12c. Unlike Catmull-Clark, Ma-Ma does not preserve the in-

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

327
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(a) n = 7 (b) layout

	

(c) Ma-Ma

	

(d) Ma-Ma, replaced

	

(e) Catmull-Clark

	 	

(f) CC-step +Ma-Ma (g) EG

(h) [KP19] (i) Gauss (j) mean

(k) EG (l) Gauss (m) mean

Figure 12: Blending 7 planar sectors. (c) applying [MM18] to
the extended c-net yields sharp turns, (d) replacing the outermost
ring with a Catmull-Clark (CC) ring results in a discontinuity, (e)
CC yields pinched highlight lines near the center. (f) prepending
one step of CC moves smaller ripples inwards. (h–m) zoom on the
inner four of nine rings of [KP19] vs. EG subdivision reveal strong
similarity in highlight lines, Gauss and mean curvature.

put ring. This results in gaps when the first ring is replaced by the
bi-3 ring of the c-net extension as illustrated in Fig. 12d. Therefore
one Catmull-Clark refinement step must be applied before starting
Ma-Ma subdivision. The ripples in the resulting surface become
milder than those in Fig. 12c but they repeat inwards, see Fig. 12f.
By contrast, for EG the highlight line distribution is nearly uni-
form, see Fig. 12g. As aimed for, to spot any difference between
EG subdivision and [KP19] requires zooming in on the last four
of nine surface rings. The bottom two rows of Fig. 12 reveal slight
differences in curvature, expected due to the different initial guide
and the fact that the baked-in guide of EG subdivision evolves with
refinement. Despite the differences, no case can be made that one
surface shape is superior to the other.

To obtain a finite construction, the hole remaining after k steps

(a) n = 6 (b) layout (c) highlight lines

(d) BB-net of cap (e) highlight lines (f) mean curvature

Figure 13: Blending 4 planar faces and filling the hole. Surface
layout: surrounding bi-3 surface, 8 rings of subdivision surface and
tiny G1 bi-4 cap with 2×2 sectors (see (d)). bottom: last 3 rings +
tiny cap.

(a) n = 5 (b) layout (c) highlight lines

Figure 14: Blending 3 planes, n = 5. Surface layout: surrounding
bi-3 surface, three subdivision surface rings and G1 bi-4 cap.

of subdivision can be filled with a multi-sided cap. Fig. 13 illus-
trates the use of a bi-4 G1 cap in the spirit of [KP19]. Fig. 13a
is considered a difficult input net since some consecutive sectors
are co-planar. Here the EG subdivision is capped after 8 rings. The
highlight lines are well-distributed both in the large, see Fig. 13c,
and when zooming in, see Fig. 13e. Though formally only G1,
Fig. 13e,f demonstrate high quality also of capped EG subdivi-
sion. Fig. 14a models a two-beam corner using n = 5. A bi-4 cap
fills the hole after 3 rings. The highlight lines in Fig. 14c are well-
distributed.

(a) (b) (c) layout (d) highlight lines

Figure 15: (a) Net ‘degree-raised’ from Fig. 14 and (b) its pertur-
bation to insert grooves along the top plane and the upward blend.
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Fig. 15 demonstrates the insertion of grooves into the two-beam
corner of Fig. 14. The extended c-net is ‘degree-raised’, i.e. the
stencils of Fig. 5 are applied wherever well-defined. Then the d-
net appears as the interior sub-net. The entire new net is perturbed
to yield the groves. Fig. 16 rounds the beams of a regular oc-

(a) net (b) Catmull-Clark (c) Ma-Ma (d) EG

(e) (f) Catmull-Clark (g) Ma-Ma (h) EG

Figure 16: Octahedral beam net. (b,c,d): green part of (e); (f,g,h):
zoom to rings 3 to 9.

(a) n = 8 (b) [MM18] (c) EG subdivision

(d) [MM18] (e) EG subdivision

(f) n = 8

	

(g) [MM18] (h) EG subdivision

(i) [MM18] (j) EG subdivision

Figure 17: Convex net and saddle net for n = 8: comparison of
transition (first ring) and limit shape.

tahedron scaffold (a). The scaffold contains 12 nodes of valence

(a) n = 9 (b) [MM19] (c) EG subdivision

(d) n = 9 (e) [MM19] (f) EG subdivision

(g) n = 9 (h) [MM19] (i) EG subdivision

Figure 18: n = 9 extended c-nets

8. While the pinched highlight lines of the Catmull-Clark surface
in (b) reveal high curvature near the extraordinary point, and (c)
Ma-Ma surfaces [MM18] have fine oscillations, the highlight line
distribution of EG subdivision is remarkably uniform. The mag-
nification in the second row reveals artifacts that a designer would
flag. Under zoom, we see that for a convex input net, Catmull-Clark
subdivision concentrates the artifacts near the limit point while
Ma-Ma [MM18] spreads them out. Elaborating on the flaws of
Catmull-Clark and Ma-Ma in Fig. 16, the c-nets of Fig. 17 illus-
trate, for convex and saddle inputs, the advantages of EG subdivi-
sion. The artifacts of Ma-Ma concentrate at the first ring transition
(Fig. 17g, see also Fig. 12) and closer to the limit.

Since [MM18] has rules only up to n = 8, for valence n = 9
Fig. 18, we choose [MM19] as a typical representative of tuned
and classic subdivision. Convex input nets result in visible ripples,
see Fig. 18c. The two types of saddles yield kinks in the transition
to the first subdivision ring, see Fig. 18g,k. EG subdivision shows
no such oscillations or kinks in Fig. 18d,h and only mild oscilla-
tions in Fig. 18l. For valence n = 10, Fig. 19 has four ridges ele-
vated from the plane. While Catmull-Clark subdivision exhibits the
typical pinching of highlight lines in the vicinity of the limit point
Fig. 19e, EG subdivision handles the challenge well both globally
and near the limit point. The example illustrates how complex ex-
amples obscure shape flaws (and are therefore not shown) since the
comparison of Fig. 19c to d barely shows the difference.

Fig. 20 demonstrates that EG subdivision fares well when raising
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(a) (b) (c) Catmull-Clark (d) EG

(e) CC, zoom (f) EG, zoom

Figure 19: n= 10 extended c-net and layout (CC=Catmull-Clark).

(a) n = 3 (b) n = 5 (c) n = 6 (d) n = 8

(e) n = 3 (f) n = 5 (g) n = 6 (h) n = 8

(i) n = 8, ridge raised

Figure 20: Top two rows: single off-center c-net node raised (top
row: highlight lines, middle row: mean curvature). (bottom) entire
ridge raised.

a single c-net off-center point (a–h) or even a whole ridge of points
(i).

It is is possible to construct a variant of EG subdivision that uses
2× 2 bi-3 patches in place of each bi-4 patch of EG subdivision.
The overall shape and highlight line distribution of this variant is
very similar to the original so that we illustrate the differences via
the uniformity of curvature after zoom to inner rings in Fig. 21.
Given the fragmentation of curvature and a quadrupling of the num-
ber of patches the bi-cubic variant does not seem to provide an ad-
vantage and so is not discussed here.

Limitations: Given the structural similarity to Catmull-Clark
subdivision, the main drawback is the increase of the degree to bi-4
and the concomitant heterogeneity of degree if the regular parts of
the control net are interpreted as bi-3 splines, as for Catmull-Clark
subdivision.

In general, for engineering analysis, subdivision surfaces com-
bine the advantages of parametric refinability, relatively low degree

(a) n = 7 (b) 2×2 bi-3 variant (c) EG subdivision

Figure 21: Mean curvature of a 2× 2 bi-3 variant of EG subdivi-
sion compared to (1×1) bi-4 EG subdivision.

and smoothness. Many alternative surface constructions, such as
G-splines, rational blending constructions and manifold construc-
tions [Pet96,YZ04,GH95,SV18] lack built-in refinability, or are of
too high a degree for many applications, or are not compatible with
surface exchange standards. Conversely, an inherent disadvantage
of subdivision is the definition of infinitely many pieces near ex-
traordinary points. This complicates the numerical treatment of ex-
traordinary neighborhoods: for example, integration of derivatives
across the extraordinary point requires careful estimates.

To date there exists no agreed-upon measure defining aestheti-
cally pleasing shapes. Rather, designers characterize good shape as
the absence of flaws. Flaws include oscillations, unwanted rapid
changes, and non-uniform distribution of the surface highlight
lines, see e.g. [Aut19, Aut22]. An unavoidable limitation is there-
fore that there is no ‘proof’ of good shape other than demonstrat-
ing the subdivision for a gallery of challenging input control nets.
Obtaining good highlight line distributions for all configurations
of [KP] gives hope that EG subdivision is suitable for industrial
outer surface design, especially when filling the remaining hole,
after a finite number of subdivision rings have been generated, by a
minuscule polynomial cap.

8. Conclusion

Empirically, the new EG subdivision generates surfaces with de-
sirably uniform highlight line distributions. Compared to other ex-
plicit subdivision algorithms, EG subdivision keeps shape oscilla-
tions under control by following a sequence of evolving guide sur-
faces. In contrast to the static, initial guide of Guided Subdivision,
these evolving surfaces are baked into and part of the EG subdivi-
sion rules.

Thanks to these evolving guides, starting with the first step, EG
subdivision surfaces join gracefully to the surrounding surfaces.
Ma-Ma and similar rules focus on limit behaviour and not the ini-
tial transition. Formally, the limit curvature of [MM18, MM19] is
bounded, but since the formulas in both papers were presented with
4 digit accuracy, their µ differs from λ

2, albeit slightly less than
for EG subdivision. Yet the EG subdivision highlight line distribu-
tion near the center is more uniform and straight than for Ma-Ma.
This illustrates that eigenanalysis, while relevant, does not deter-
mine good shape.
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EG subdivision is associated with a d-net stemming from C2 bi-
4 splines. However, there is an easy initial step, namely applying
the matrix R, to start EG subdivision from a c-net, the net configu-
ration of Catmull-Clark subdivision. A Catmull-Clark subdivision
surface ‘cap’ can therefore be replaced by a EG subdivision cap
near extraordinary points. We can therefore interpret regular sub-
nets as uniform bi-3 splines that smoothly join the surface caps
generated by EG subdivision, see [LKP22]. A control-net model-
ing session with EG subdivision then looks like a modeling session
with Catmull-Clark.

EG subdivision uses five special subdivision rules in addition to
the once-executed rule for c0. The central extraordinary limit point
c0 is computed at the beginning and remains fixed throughout EG
subdivision. The footprint of the five special rules is smaller than
that of guided subdivision but sufficiently large to result in good
highlight line distributions. Although the derivation of the EG rules
is non-trivial, the implementation, see [LKP22], amounts to apply-
ing the subdivision matrices An to the d-net. The matrices An are
defined by the arrays given Section 5 and the Appendix. Rules for
n > 10 exist, but such designs are not encouraged since high va-
lence is better modeled by polar configurations, see e.g. [MP09].
Just as for classical subdivision, the vector of 12n+1 entries rep-
resenting the 12n nodes of the current d-net plus the central point
c0 is multiplied by the subdivision matrix to obtain the finer control
net near the extraordinary point. That is, the implementation only
differs from Catmull-Clark code by computing the matrix-vector
product And in place of the sparser product of Catmull-Clark sub-
division that is often implemented via stencils. For n≤ 10, switch-
ing from Catmull-Clark to EG subdivision no more than doubles
the execution time of the surface cap. Various GPU implementation
strategies used for Catmull-Clark subdivision can, in the future, be
adapted to EG subdivision.
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[KP07] KARČIAUSKAS K., PETERS J.: Concentric tesselation maps and
curvature continuous guided surfaces. Computer Aided Geometric De-
sign 24, 2 (Feb 2007), 99–111. 2
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Appendix: The arrays for n = 6,7,8,9,10

Valences higher than n = 10 are best modeled using polar config-
urations [MP09]. Recall that the entries are scaled by 105, i.e. are
numbers of absolute value less than 1.

For n = 6,

A6
11 :=

(
195 −490 623 −140 −490 4810 4137 3117 623 4137 63933 7100
342 −398 60 165 −643 153 349 −750 355 342 −796 481
222 −262 −41 121 −345 −124 704 −157 27 807 −968 −641
27 10 −126 121 10 −257 354 −157 −126 354 −241 −641

)
A6

22 :=

(
691 −1154 1518 −88 −1154 1397 −5589 −2697 1518 −5589 44242 15443
1107 −1155 80 540 −2274 641 1058 −2136 1210 1852 1130 −54
585 −609 −304 305 −924 −575 2575 519 −66 3057 −5551 −4453
−348 729 −717 305 729 −1152 695 519 −717 695 −1356 −4453

)

A6
21 :=


409 −852 852 −6 −394 421 5574 2189 686 −3575 49782 25832
527 −545 146 287 −1117 491 −306 −1681 561 1785 4561 1936
615 −738 −55 263 −1047 −101 1899 −344 245 2081 −3384 −1918
−83 195 −249 113 261 −540 330 326 −364 510 −311 −1452
131 −99 −249 327 −126 −431 1134 −881 −152 846 −1571 −1306
715 −1327 596 −59 −820 130 1558 −394 −10 1625 −2372 5053


A6

31 :=

(
508 −1059 900 −93 −620 727 627 5908 110 265 14832 49296
508 −620 110 363 −1059 727 265 −2727 900 627 14832 3395
696 −794 −57 310 −1262 14 1852 −568 405 2036 −2474 −1968
−4 95 −258 119 128 −560 670 480 −353 923 −1326 −2000

)

A6
32 :=

(
781 −1843 1572 −12 −773 1255 −1663 −4879 256 −1014 9893 34152
781 −773 256 463 −1843 1255 −1014 −3816 1572 −1663 9893 4992
1200 −1288 −227 516 −2277 9 3563 −392 875 3395 −5835 −5458
−303 620 −648 101 701 −1205 964 1841 −865 1509 −3393 −5397

)

For n = 7,

A7
11 :=

(
1649 −2653 1079 712 −2653 6369 5384 403 1079 5384 62604 8301
1305 −1557 38 763 −1997 −61 2516 −2607 387 2676 −2787 1537
420 −446 −101 185 −601 −234 1218 −147 −113 1350 −1171 −781
−93 174 −103 −45 246 −290 −43 616 −233 21 185 −918

)
A7

22 :=

(
5832 −8101 2137 3660 −8101 798 5305 −15649 2137 5305 35906 21029
3961 −4574 95 1995 −6317 4 7442 −6686 988 8899 −3417 3345
521 −282 −432 −239 −864 −670 2423 2810 −496 2936 −4147 −5538

−1449 2086 −415 −1131 2395 −880 −2497 5701 −946 −2245 1336 −5879

)

A7
21 :=


2885 −4258 990 2256 −3619 65 11354 −5554 1006 1426 45673 29166
2545 −3097 233 1471 −3911 76 4356 −5514 399 7121 151 4283
877 −854 −246 329 −1442 −296 2477 −181 −7 2714 −2638 −1977
−319 430 −119 −318 683 −452 −208 1870 −530 −23 −425 −2056
−543 919 −324 −161 844 −441 −1104 1397 −212 −1150 1571 −2120

19 114 −458 729 30 −421 928 −1861 −138 696 −1557 −451
1502 −2449 429 1395 −1616 −172 3382 −5219 −161 3370 −2822 7200


A7

31 :=

 2541 −3792 872 2000 −3280 190 5492 −1538 103 5818 10039 54445
2541 −3280 103 1738 −3792 190 5818 −7146 872 5492 10039 5391
1058 −1080 −179 410 −1758 −193 2573 −666 93 2892 −1732 −1305
−278 425 −151 −358 538 −399 −50 2079 −465 153 −868 −2504
−692 1077 −287 −358 1077 −415 −1368 2079 −287 −1368 1410 −2504


A7

32 :=

 5498 −8345 1585 4853 −6921 304 10167 −22235 490 10813 −1236 44864
5498 −6921 490 3294 −8345 304 10813 −13424 1585 10167 −1236 10408
1937 −1799 −448 449 −3428 −328 4891 278 438 4874 −3772 −4503
−1285 1837 −387 −1403 2101 −825 −1425 6914 −1137 −935 −1786 −7449
−2288 3411 −716 −1403 3411 −865 −4596 6914 −716 −4596 3658 −7449


For n = 8,

A8
11 :=

 3170 −4510 920 1956 −4510 6628 7736 −2189 920 7736 61019 8736
2083 −2333 −209 1181 −2807 −798 4581 −3462 −29 4678 −3918 1918
112 −11 −139 −67 −227 −130 520 622 −219 489 −101 −1145
−264 309 −34 −105 477 −110 −461 680 −193 −421 209 −763

47 38 −68 −105 38 −292 71 680 −68 71 113 −763


A8

22 :=

 10373 −12886 575 8227 −12886 −3151 16663 −25704 575 16663 30076 22718
6054 −6715 −524 2897 −8311 −2184 13246 −8565 −600 14241 −5536 4705
−666 1221 −285 −1440 469 86 −611 5615 −563 −718 217 −5930
−2095 2510 68 −1699 3042 205 −4251 6254 −468 −4122 1359 −4999
−1137 1693 −49 −1699 1693 −375 −2643 6254 −49 −2643 1084 −4999



A8
21 :=


4909 −6314 17 4907 −5735 −1787 16674 −11343 425 6455 43020 30282
4130 −4760 −272 2463 −5448 −1527 8827 −7586 −680 11662 −2629 4990
470 −260 −237 −274 −903 −222 1431 1425 −261 1325 −355 −2179

−1018 1213 −32 −619 1430 157 −1901 2455 −304 −1845 583 −2274
−171 236 8 −280 463 −322 −478 1283 −120 −430 307 −984
−375 750 −198 −611 415 −205 −756 2467 30 −829 372 −2550
−802 1013 −320 488 1036 151 −1316 −1067 −98 −1328 399 −310
1686 −2496 −51 2896 −1690 −635 3551 −8287 −280 3936 −1872 7579


A8

31 :=

 3675 −4738 38 3873 −4401 −1343 8558 −5588 −532 9748 8074 56324
3675 −4401 −532 2740 −4738 −1343 9748 −9017 38 8558 8074 5459
866 −784 −187 16 −1374 −328 2138 330 −273 2162 −130 −1074
−860 1077 −32 −714 1122 178 −1585 2657 −234 −1563 469 −2399
−501 621 34 −526 825 −106 −1129 1980 −108 −1084 431 −1470


A8

32 :=

 9036 −11741 −575 10319 −10636 −3489 20136 −34655 −909 21657 −7903 49585
9036 −10636 −909 6047 −11741 −3489 21657 −19408 −575 20136 −7903 11910
1787 −1489 −389 −501 −3016 −608 4490 2410 −288 3596 −167 −3650
−2779 3468 9 −2521 3555 730 −5353 8857 −514 −5301 1515 −7416
−1996 2461 180 −2111 2969 46 −4464 7358 −187 −4352 1495 −5223



For n = 9,

A9
11 :=

 4093 −5443 535 2924 −5443 6544 9053 −3513 535 9053 60551 8408
2689 −2873 −538 1577 −3251 −1631 6281 −4215 −524 6180 −4560 2304
−68 197 −36 −491 −53 40 40 1541 −202 −256 675 −1322
−740 825 67 −308 932 343 −1654 1150 5 −1587 812 −1033
235 −241 −97 279 −114 −376 505 −409 −100 616 −389 −22


A9

22 :=

 12251 −14026 −1298 11142 −14026 −6557 21567 −29660 −1298 21567 29964 21461
7408 −7911 −1396 3947 −9024 −4402 17317 −10685 −2139 17532 −6277 5988
−853 1312 120 −2450 545 584 −1356 7126 −397 −2273 2175 −5230
−3200 3597 500 −2351 3859 1682 −7161 7197 282 −7028 2802 −5147
−685 856 71 −836 1201 −225 −1625 3205 47 −1331 −481 −2550



A9
21 :=


5670 −6637 −990 6444 −6194 −3310 18807 −13281 −318 8488 43022 29636
4821 −5263 −929 3259 −5708 −2923 11101 −8858 −1709 13818 −3350 5199
588 −430 −131 −642 −952 −318 1665 1930 −398 1080 381 −1623

−1649 1879 237 −1245 1901 942 −3629 3738 104 −3671 1743 −2714
−409 425 15 52 705 −12 −1005 296 8 −760 73 −483
504 −409 −129 −235 −473 −645 1191 1056 −126 1136 −906 −977
−887 1213 56 −1294 946 346 −1841 3811 96 −2058 681 −2783
−1253 1333 −12 487 1499 759 −2874 −1213 174 −2642 1646 357
2065 −2663 −443 3870 −2077 −1211 4092 −9471 −401 5004 −1701 7073


A9

31 :=


3781 −4394 −596 4535 −4250 −2346 8932 −6027 −1133 10845 8383 56431
3781 −4250 −1133 3257 −4394 −2346 10845 −9453 −596 8932 8383 4984
968 −922 −180 −83 −1319 −546 2425 312 −489 2119 319 −452

−1104 1292 179 −1095 1222 652 −2385 3199 50 −2505 1209 −2244
−708 779 103 −418 953 268 −1636 1441 75 −1495 393 −1091

19 72 −16 −418 72 −253 61 1441 −16 61 −451 −1091


A9

32 :=


9998 −11695 −2527 13001 −11040 −6386 23394 −37999 −2496 25842 −8658 49843
9998 −11040 −2496 7824 −11695 −6386 25842 −21926 −2527 23394 −8658 11595
2395 −2253 −396 −586 −3331 −1303 6050 1746 −821 4129 724 −1650
−3362 3927 610 −3571 3710 2020 −7294 10249 242 −7655 3389 −6935
−2551 2840 453 −1977 3278 1132 −5850 6153 360 −5504 1356 −4230
−716 1064 145 −1977 1064 −200 −1575 6153 145 −1575 −828 −4230


For n = 10,

A10
11 :=


4415 −5674 258 3428 −5674 6674 9056 −3686 258 9056 60949 7690
3115 −3194 −903 2119 −3464 −2354 7453 −5254 −938 7248 −4866 2746
166 −75 −25 −594 −309 −98 617 1548 −265 42 671 −1019

−1079 1156 265 −803 1171 781 −2506 2208 216 −2521 1201 −1460
−146 154 −44 320 289 −50 −445 −454 18 −174 −13 −72
668 −619 −243 320 −619 −732 1594 −454 −243 1594 −865 −72


A10

22 :=


12317 −13272 −2483 12345 −13272 −8251 21587 −29645 −2483 21587 32596 19201
8111 −8335 −2296 5324 −9055 −6061 19425 −13318 −3228 19270 −6145 7100
123 133 98 −2248 −512 24 952 5692 −576 −647 1762 −3437

−3592 3859 1008 −3392 3853 2649 −8248 8942 819 −8409 3342 −5447
−1618 1739 329 −886 2055 811 −3944 3070 456 −3324 404 −2426

311 −86 −149 −886 −86 −825 887 3070 −149 887 −1713 −2426



A10
21 :=



5610 −6140 −1586 6933 −5793 −4017 18722 −12896 −796 8274 44253 28456
4889 −5085 −1437 3863 −5357 −3702 11542 −9617 −2354 14279 −2990 5152
1088 −997 −249 −338 −1373 −776 2895 862 −608 1993 175 −618
−1609 1754 463 −1732 1664 1228 −3620 4479 311 −3889 1792 −2689
−1056 1098 218 −361 1270 659 −2587 1267 287 −2248 710 −1035

524 −491 −220 429 −403 −667 1188 −635 −168 1373 −955 −27
172 −12 −57 −824 −158 −369 606 2355 −132 307 −573 −1596

−1426 1609 358 −1548 1494 1000 −3194 3951 344 −3394 1244 −2359
−960 900 66 999 1105 770 −2538 −2494 305 −2011 1516 1242
2507 −2890 −769 4316 −2501 −1857 4968 −9454 −674 6178 −1869 6258



A10
31 :=


3419 −3680 −851 4419 −3649 −2696 8017 −4959 −1476 10394 9411 56122
3419 −3649 −1476 3442 −3680 −2696 10394 −9235 −851 8017 9411 4417
1185 −1160 −297 215 −1406 −859 2987 −549 −662 2539 294 235
−851 950 269 −1183 845 665 −1853 3024 131 −2136 1031 −1779
−973 1028 250 −697 1105 665 −2301 1947 260 −2168 678 −1261
−89 130 −6 −129 197 −96 −228 598 26 −91 −349 −557


A10

32 :=


9504 −10305 −3546 13468 −9935 −7648 22629 −36623 −3506 25599 −6951 48820
9504 −9935 −3506 8685 −10305 −7648 25599 −22321 −3546 22629 −6951 10611
3259 −3193 −783 432 −3887 −2331 8236 −1160 −1317 5785 504 521
−2594 2889 857 −3763 2575 2036 −5635 9556 441 −6482 2887 −5520
−3213 3413 890 −2737 3600 2240 −7526 7386 888 −7221 2048 −4542
−979 1148 235 −1302 1324 285 −2289 3999 313 −1939 −685 −2784


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